[go: up one dir, main page]

TW201205903A - Light-emitting diode package structure and method for encapsulating it - Google Patents

Light-emitting diode package structure and method for encapsulating it Download PDF

Info

Publication number
TW201205903A
TW201205903A TW99125010A TW99125010A TW201205903A TW 201205903 A TW201205903 A TW 201205903A TW 99125010 A TW99125010 A TW 99125010A TW 99125010 A TW99125010 A TW 99125010A TW 201205903 A TW201205903 A TW 201205903A
Authority
TW
Taiwan
Prior art keywords
emitting diode
light emitting
light
package
electrode
Prior art date
Application number
TW99125010A
Other languages
Chinese (zh)
Inventor
Shen-Bo Lin
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW99125010A priority Critical patent/TW201205903A/en
Publication of TW201205903A publication Critical patent/TW201205903A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A light-emitting diode package structure includes a metal film with a first surface and a second surface opposite to the first surface. The metal film includes a first metal layer and a second metal layer insulated from the first metal layer. A light-emitting diode unit is formed on the first metal layer. The light-emitting diode unit includes a first electrode and a second electrode electrically connected to the first metal layer and the second metal layer, respectively. The light-emitting diode unit is sealed with a glass package body and the second surface of the metal film is exposed to the outer side of the glass package body. With external electrode made of metal film and the glass package body, the light-emitting diode package structure can be effectively thin, and have good high temperature properties. The invention also provides a method of encapsulating the light-emitting diode package structure.

Description

201205903 -j— 發明說明: [0001] 【發明所屬之技術領威】 本發明涉及一種發光二極體的封裝結構及該發光 的封裝方法。 極體 [0002] 【先前技術】 發光二極體(Light Emitting Diode,LEme ^疋—種可 將電流轉換成特定波長範圍的光的半導體元件。 發光二 極體以其亮度高、工作電壓低、功耗小、易與積體泰路 匹配、驅動簡單、壽命長等優點,從而可作為光货而廣 泛應用於照明領域。 [0003] 隨著科技的發展,發光二極體封裝體的尺寸亦逐漸朝著 小型化及薄片化發展。發光二極體的封裝結構—般包括 設置有電極圖案的基板,設置於基板上的發光二極體晶 粒以及用於將發光二極體晶粒封裝於基板上的封裝材料 層。由於基板的厚度較大,這種發光二極體封骏結構無 法有效地薄片化。另外,―般的發光云極體封裝結構都 採用樹脂作為密封材料,由於樹脂材料容易在高溫下產 生黃化’從而影響該發光二極體的出光效率與使用壽命 [0004] [0005] 099125010 【發明内容】 有鑒於此,有必要提供一種薄型的發光二極體封裝結構 及該發光二極體的封裝方法。 一種發光二極體封裝結構,其包括一金屬薄膜,所述金 屬薄膜具有第—表面以及與第一表面相對的第二表面。 該金屬薄膜包括相互絕緣的第一金屬層與第二金屬層。 表箪編號Α0101 第4頁/共28頁 201205903 [0006] [0007] Ο [0008] [0009] [0010] Ο [0011] [0012] 一發光二極體晶粒設置於金屬薄膜的第一表面。該發光 二極體晶粒具有第一電極與第二電極,第一電極與第一 金屬層電性連接,第二電極與第二金屬層電性連接。所 述發光二極體封裝結構進一步包括一玻璃封裝體,用於 密封設置於金屬薄膜上的發光二極體晶粒。所述金屬薄 膜的第二表面顯露于玻璃封裝體的外部。 一種發光二極體的封裝方法,其包括以下步驟: 在基體上形成一層金屬薄膜,所述金屬薄膜包括第一表 面以及與第一表面相對的第二表面; 將金屬薄膜圖案化而形成相互絕緣的第一金屬層與第二 金屬層; 在金屬薄膜的第一表面設置發光二極體晶粒,所述發光 二極體晶粒具有第一電極與第二電極,第一電極與第一 金屬層電性連接,第二電極與第二金屬層電性連接; 採用玻璃材料密封設置於金屬薄膜上的發光二極體晶粒 以形成一玻璃封裝體; 移除基體而顯露出金屬薄膜的第二表面。 相較於先前技術,本發明藉由移除基體而顯露出金屬薄 膜的表面,並且採用金屬薄膜作為發光二極體晶粒的電 極,從而有效地使發光二極體封裝結構薄型化。同時, 在基體被移除之後,由於該金屬薄膜的第一金屬層與第 二金屬層設置於封裝體的底部,該發光二極體封裝結構 可有效地進行表面貼裝的過程。另外,本發明採用玻璃 099125010 表單編號Α0101 第5頁/共28頁 0992043934-0 201205903 材料來封裝發光二極體晶粒,由於玻璃材料具有耐高溫 特性好且不易黃化的優點,使到玻璃封裝層能夠在更高 的溫度下正常工作。 【實施方式】 [0013] [0014] [0015] [0016] 下面以具體的實施例對本發明作進一步地說明。 請參見圖5 ’本發明第一實施例提供的發光二極體封裝結 構10 0包括金屬薄膜110、設置於金屬薄膜110上的發光 二極體晶粒120及玻璃封裝體130。 所述金屬薄膜110包括具有第一表面111以及與第一表面 U1相對的第二表面112。並且該金屬薄膜11 〇包括相互 絕緣的第一金屬層113與第二金屬層114,所述第一金屬 層113與第二金屬層114可作為該發光二極體封裝結構 100在表面貼裝時進行對外連接的兩個電極。該金屬薄膜 110的製作材料選自金(Au)、銀(Ag)、銅(Cu)、 鋁(A1 )、錫(Sn)、鎳(Ni )、鈷(Co)其中之一或 其合金。 .· ... .:, 發光二極體晶粒120設置於备屬薄膜11〇的第一表面lu 。在本實施例中,該發光二極體晶粒12〇設置於第一金屬 層113的表面。所述發光二極體晶粒120具有設置於其兩 端的第一電極121與第二電極122。第一電極121與第一 金屬層113相接觸且與第一金屬層113電性連接,第二電 極122藉由導線(圖未標示)與第二金屬層114電性連接。 在工作時,在第一電極121與第二電極122之間施加一定 的驅動電壓,即可使發光二極體晶粒12 0發光。根據需要 ,發光二極體晶粒的設置方式並不限於本實施例,如可 099125010 表單編號A0101 第6頁/共28頁 0992043934-0 201205903 以採用覆晶(flip chip)或共晶(eutectic)結構的發光 二極體晶粒,使發光二極體晶粒直接設置於金屬薄膜上 〇 [0017] Ο 玻璃封裝體130用於封農設置於金屬薄膜11〇上的發光二 極體晶粒120。所述金屬薄膜11〇的第二表面112顯露于 玻璃封裝體130的外部,從而使第—金屬詹113與第二金 屬層114可有效地對外進行電 學連接,為二極體晶粒 正常工作提供相應的驅動電流或者電壓。所述玻璃封裝 體的材料可為Si〇2或者NaO. nSi〇2(n>0) °優選地,在玻 璃封裝體130上可鍍上一層抗反射膜15〇,如圖6所示。該 抗反射膜150可降低光線在玻璃封裝體13〇與外界空氣的 介面上的反射率,從而提高出光效率。在本發明的實施 例中,該抗反射膜150為光學鍍膜,所述光學鍍膜為無機 金屬氧化物’如氧化鈦、氧化妙或氧化銘。 [0018] Ο [0019] 圖1-圖5為本實施例的發光二極體封裝結構1〇〇的製作過 程。 請參見圖1,首先提供一個基體140,該基體14〇可以是石夕 基板'碳化石夕基板、藍寶石基板、氧化鋅基板、金屬美 板或者是玻璃基板。然後在基體140表面藉由真空蒸鍛或 者濺鍍的方法形成一層金屬薄膜110,該金屬薄膜11〇具 有第一表面111以及與第一表面111相對的第二表面112 ,所述第二表面112與基體140相接觸。另外,該金屬薄 膜110亦可以藉由絲網印刷、電鍍等方法形成於基體14〇 的表面。 099125010 表單編號A0101 第7頁/共28頁 0992043934-0 201205903 [〇〇2〇]請參見圖2,將金屬薄膜110圖案化而形成相互絕緣的第 一金屬層113與第二金屬層114。具體地,在金屬薄膜 110表面塗覆感光層,然後藉由曝光顯影的方法使感光層 形成所需的圖案,然後經過蝕刻使金屬薄膜11〇形成相應 的圖案。另外,亦可以在真空蒸鍍或者濺鍍之前在基體 140的表面形成一層Si〇2阻擋層,在真空蒸鍍或者濺鍍的 過程中,金屬薄膜no將會沈積在基體140的未被以〇2阻 擋層覆蓋的區域,從而形成相應的圖案。然後再去除 Si〇2阻擋層。 _1]料見圖3,在金屬薄膜110的第一表面川設置發光二極 體晶粒120。該發光二極體晶粒12〇具有第一電極121與 第二電極122,第-電極121藉由焊接或採用共晶結合的 方法設置於第-金屬層113上並與第一金屬層113電連接 ,第二電極122藉由打線的方式與第二金屬層114形成電 連接。 _]請參見圖4,採用玻璃材料密封設置於余屬薄膜ιι〇上的 發光一極體晶粒12〇以形成一玻璃封裝體13〇。在本發明 的實施例中,玻璃封裝體13〇具有凸狀或子彈狀的結構。 [0023] 3青參見圖5,移除基體14〇而顯露出金屬薄膜ιι〇的第二表 面112。具體地,採用録射切割、研磨或钮刻等方法去除 基體140 ’使得金屬薄臈11〇的第二表面112顯露于玻璃 封裝體130的外部。此時,金屬薄膜110位於玻璃封裝體 13㈣底部’其從由基體14〇承載轉移到由玻璃封裝體 130承載。 0992043934-0 099125010 表單編號A0101 第8頁/共28頁 201205903 [0024] 在本實施例中,採用玻璃封裝體130作為發光二極體曰粒 120的支撐結構,同時以位於玻璃封裝體13〇底部的金屬 薄膜110作為發光二極體晶粒12〇對外連接的電極。 辦· φ Ο [0025} 規的發光二極體封裝結構相比,本實施例的發光二極體 封裝結構100去除了基板,使到該結構可以有效地薄型化 。具體地,本發明發光二極體封裝結構的厚度可達到100 微米Um)至150微米(em)之間。另外,採用玻璃作為 發光二極體晶粒12〇的封裝材料,由於玻璃的耐高溫特性 較好,其可以避免常規的樹脂封裝材料在高溫下黃化而 造成的出光效率降低及壽命卞降趣間翅。 : ;. .:::.' : : . 本發明的發光二極體封裝結構並不限於上述實施方式, 圖7為本發明第二實施例的發光二極體封裝結構200,其 包括金屬薄膜210,設置於金屬薄膜2ΐα表面的發光二極 體晶粒220及用於封裝發光二極體晶粒220的玻璃封裝體 230。與第一實施例不同的是,該發光二極體封裝結構 200進一步包括一螢光轉換層250,所述螢光轉換層250 可以藉由塗覆或粒貼的方法設置於玻璃封裝體230的表面 。所述螢光轉換層250的製作材料選自石榴石(YAG)結構 的榮光粉材料,氮化物系螢光粉材料,磷化物,硫化物 或石夕酸鹽化合物等。該螢光轉換層250可將發光二極體晶 粒220所發出的第一波長範圍内的光線轉換為第二波長範 圍内的光線’其中第一波長的數值不同於第二波長的數 值°例如將發藍光的發光二極體晶粒220與將藍光轉換為 黃光的螢光轉換層250相組合而使整個發光二極體封裝結 構200發出白光或多波長的混光。優選地,所述螢光轉換 099125010 表單編號Α0101 0992043934-0 201205903 層250還可以進一步包括環氧樹脂(ep ο X y )、秒樹脂 (silicone)或者其他封裝材料。 [0026] 另外’營光轉換層的設置位置亦不限於第二實施例所描 述的方式。 [0027] 如圖8所示’本發明第三實施例的發光二極體封裝結構 30 0包括金屬薄膜310,設置於金屬薄膜310表面的發光 二極體晶粒320及用於封裝發光二極體晶粒320的玻填封 裝體330。與第二實施例不同的是,玻璃封裝體330的内 部設置有螢光粉顆粒350 »談螢光粉顆粒350可在玻璃封 裝體330的形成過程中溱加進玻璃材料中,當玻璃材料固 化時’所述螢光粉顆粒350即可固定于玻璃封裝體330的 内部。本實施例中’將螢光粉顆粒350設置於玻璃封裝體 330的内部’其不容易受到外界環境的影響,使得該發光 二極體封裝結構300具有較好的穩定性。 [0028] 如圖9所示,本發明第四實施飼的發光二植體封裝結構 400包括金屬薄膜410 ’設£於金屬麥膜410表面的發光 二極體晶粒420及用於封裝發光二極體晶粒420的玻璃封 裝體430。與第一實施例不同的是,所述玻璃封裝體430 的内部具有一容置空間431,發光二極體晶粒420設置於 該容置空間431内部。在本實施例中,玻璃封裝體430並 不直接與發光二極體晶粒420相接觸,因此發光二極體晶 粒420及其引線結構不容易受到封裝過程中的溫度所影響 而導致性能下降。在實際操作過程中,可在封裝的過程 中通入保護性氣體如氮氣或惰性氣體,該保護性氣體可 在發光二極體晶粒420與玻璃封裝體430之間形成一層氣 099125010 表單編號A0101 第10頁/共28頁 0992043934-0 201205903 體隔離層432,使玻璃封裝體43〇與發光二極體晶粒42〇 之間不直接接觸。另外,保護性氣體亦可以避免水氣進 入谷置空間431中,造成發光二極體晶粒42〇壽命降低或 遭支破壞。根據需要,該容置空間431的内壁還可以設置 鸯光轉換層450 ’同樣,該螢光轉換層45〇不容易受到 外界環境的影響而使其性能劣化。 [0029] 〇 另外’在本實施例中’螢光轉換層450並不限於設置於容 置空間431的内壁中。請參見圖1〇,所述螢光轉換層450 覆蓋在發光二極體晶粒420的表面,發光二極體晶粒420 所發出的光在經過螢光轉換_45〇後,然後藉由玻璃封裝 體4 3 0出射到外界。 fc: : : : [0030] 發光二極體晶粒的安裝方式盖不限於上述實施方式。圖 11為本發明第五實施例的發光二極體封裝結構5〇〇,其包 括金屬薄膜510,設置於金屬薄膜510表面的發光二極體 晶粒520及用於封裝發光二極韹晶粒520的玻璃封裝體 530,在本發明的實施例中,硖璃封裝體530為凸狀或子 彈狀的結構。金屬薄膜510包括相互絕緣的第一金屬層 513與第二金屬層514。所述發光二極體晶粒520包括第 一電極521與第二電極522。與第一實施例不同的是,所 述發光二極體晶粒520藉由固晶膠560固定在第一金屬層 511的表面。發光二極體晶粒520的第一電極521與第二 電極522設置於發光二極體晶粒的同一侧。所述第一電極 521藉由打線的方式與第一金屬層513電性連接’所述第 二電極522亦藉由打線的方式與第二金屬層514電性連接 。另外,發光二極體晶粒520亦可以採用共晶結合或覆晶 099125010 表單編號A0101 第11頁/共28頁 0992043934-0 201205903 的方法設置於金屬薄膜510的表面。 [0031] 玻璃封裝體的結構亦不限於上述實施方式。請參見圖12 ,本發明第六實施例的發光二極體封裝結構600包括金屬 薄膜610,設置於金屬薄膜610表面的發光二極體晶粒 620及用於封裝發光二極體晶粒620的玻璃封裝體630。 金屬薄膜610包括相互絕緣的第一金屬層613與第二金屬 層614。所述發光二極體晶粒620藉由固晶膠660固定在 第一金屬層613的表面。發光二極體晶粒620的第一電極 621與第一金屬層613電性連接,發光二極體晶粒620的 第二電極622與第二金屬層614電性連接。與第五實施例 不同的是,在本實施例中,玻璃封裝體630的出光面設置 為平面。同時,該玻璃封裝體630上亦可以設置由石榴石 (YAG)結構的螢光粉材料,氮化物系螢光粉材料,磷化物 ,硫化物或矽酸鹽化合物等材料製成的螢光轉換層。 [0032] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0033] 圖卜圖5係本發明第一實施例的發光二極體封裝結構的製 作過程示意圖。 [0034] 圖6係在圖5的發光二極體封裝結構中增加抗反射膜的結 構示意圖。 099125010 表單編號 A0101 第 12 頁/共 28 頁 0992043934-0 201205903 [0035] 圖7係本發明第二實施例的發光二極體封裝結構示意圖。 [0036] 圖8係本發明第三實施例的發光二極體封裝結構示意圖。 [0037] 圖9係本發明第四實施例的發光二極體封裝結構示意圖。 [0038] 圖10係圖9中的發光二極體封裝結構的一種變化實施方式 〇 [0039] 圖11係本發明第五實施例的發光二極體封裝結構示意圖 〇 q [0040] 圖12係本發明第六實施例的發光二極體封裝結構示意圖 〇 [0041] 【主要元件符號說明】 發光二極體封裝結構:100、200、300、400、500、 600 [0042] 金屬薄膜:110、210、310、410、510、610 [0043] :;j 身飞二\ ί.....i J -.^ r, . "i. '' 、' . u . 第一表面:111 W':?毛W ' ? r- .-;s 〇 [〇〇44] 第二表面:112 [0045] 第一金屬層:113、513、613 [0046] 第二金屬層:114、514、614 [0047] 發光二極體晶粒:120、220、320、420、520、620 [0048] 第一電極:121、521、621 [0049] 第二電極:122、522、622 [0050] 玻璃封裝體:130、230、330、430、530、630 099125010 表單編號A0101 第13頁/共28頁 0992043934-0 201205903 [0051] 容置空間:431 [0052] 氣體隔離層:432 [0053] 基體:140 [0054] 抗反射膜:150 [0055] 螢光轉換層:250、450 [0056] 螢光粉顆粒:350 [0057] 固晶膠:560、660 0992043934-0 099125010 表單編號A0101 第14頁/共28頁201205903 -j - Description of the Invention: [0001] The present invention relates to a package structure of a light-emitting diode and a package method of the same. Polar body [0002] [Prior Art] Light Emitting Diode (LEME) is a semiconductor element that converts current into light of a specific wavelength range. The light emitting diode has high brightness and low operating voltage. The utility model has the advantages of small power consumption, easy matching with the integrated body road, simple driving, long service life, etc., and can be widely used as a light goods in the field of illumination. [0003] With the development of technology, the size of the LED package is also Gradually toward miniaturization and thinning, the package structure of the light-emitting diode generally includes a substrate provided with an electrode pattern, a light-emitting diode die disposed on the substrate, and a package for encapsulating the light-emitting diode die The encapsulating material layer on the substrate. Due to the large thickness of the substrate, the light-emitting diode sealing structure cannot be effectively thinned. In addition, the general light-emitting cloud body package structure uses resin as a sealing material due to the resin material. It is easy to produce yellowing at high temperature, thereby affecting the light-emitting efficiency and service life of the light-emitting diode [0004] [0005] 099125010 [Summary of the Invention] In view of this, it is necessary A light-emitting diode package structure and a package method of the light-emitting diode. The light-emitting diode package structure includes a metal film having a first surface and a first surface opposite to the first surface The metal film comprises a first metal layer and a second metal layer insulated from each other. Table 箪 No. 101 0101 Page 4 / Total 28 pages 201205903 [0007] [0007] [0008] [0009] [0010] Ο [ [0012] A light-emitting diode crystal grain is disposed on the first surface of the metal thin film. The light-emitting diode crystal grain has a first electrode and a second electrode, and the first electrode is electrically connected to the first metal layer, The two electrodes are electrically connected to the second metal layer. The light emitting diode package further includes a glass package for sealing the light emitting diode crystal grains disposed on the metal film. The second surface of the metal film Formed on the exterior of the glass package. A method of packaging a light emitting diode, comprising the steps of: forming a metal film on a substrate, the metal film comprising a first surface and opposite the first surface a second surface; a metal film is patterned to form a first metal layer and a second metal layer insulated from each other; a light emitting diode die is disposed on the first surface of the metal film, the light emitting diode die having a first electrode And the second electrode, the first electrode is electrically connected to the first metal layer, and the second electrode is electrically connected to the second metal layer; the light emitting diode die disposed on the metal film is sealed by a glass material to form a glass package Removing the substrate to expose the second surface of the metal film. Compared with the prior art, the present invention exposes the surface of the metal film by removing the substrate, and uses the metal film as the electrode of the light-emitting diode die. Thereby, the light emitting diode package structure is effectively thinned. At the same time, after the substrate is removed, since the first metal layer and the second metal layer of the metal thin film are disposed at the bottom of the package, the light emitting diode package structure can effectively perform the surface mounting process. In addition, the present invention uses the glass 099125010 form number Α0101 page 5 / 28 pages 0992043934-0 201205903 material to package the light-emitting diode die, because the glass material has the advantages of high temperature resistance and is not easy to yellow, so that the glass package The layer can work properly at higher temperatures. [Embodiment] [0016] [0016] [0016] The present invention will be further described below with reference to specific embodiments. Referring to FIG. 5, the LED package structure 100 of the first embodiment of the present invention includes a metal thin film 110, a light emitting diode die 120 disposed on the metal thin film 110, and a glass package 130. The metal film 110 includes a first surface 111 and a second surface 112 opposite the first surface U1. The metal film 11 〇 includes a first metal layer 113 and a second metal layer 114 that are insulated from each other. The first metal layer 113 and the second metal layer 114 can be used as the light emitting diode package structure 100 when being surface mounted. Two electrodes for external connection. The material of the metal thin film 110 is selected from one of gold (Au), silver (Ag), copper (Cu), aluminum (A1), tin (Sn), nickel (Ni), cobalt (Co) or an alloy thereof. . . . . : The light-emitting diode die 120 is disposed on the first surface lu of the thin film 11A. In the present embodiment, the light emitting diode die 12 is disposed on the surface of the first metal layer 113. The light emitting diode die 120 has a first electrode 121 and a second electrode 122 disposed at both ends thereof. The first electrode 121 is in contact with the first metal layer 113 and electrically connected to the first metal layer 113. The second electrode 122 is electrically connected to the second metal layer 114 by a wire (not shown). In operation, a certain driving voltage is applied between the first electrode 121 and the second electrode 122 to cause the light-emitting diode die 120 to emit light. The arrangement of the light-emitting diode dies is not limited to this embodiment as needed, for example, 099125010 Form No. A0101 Page 6 / Total 28 Page 0992043934-0 201205903 To use flip chip or eutectic The light-emitting diode crystal grains of the structure are arranged such that the light-emitting diode crystal grains are directly disposed on the metal thin film. [0017] The glass package body 130 is used for sealing the light-emitting diode crystal grains 120 disposed on the metal thin film 11 . The second surface 112 of the metal film 11 is exposed to the outside of the glass package 130, so that the first metal and the second metal layer 114 can be electrically connected externally, thereby providing normal operation of the diode die. Corresponding drive current or voltage. The material of the glass package may be Si 〇 2 or NaO. nSi 〇 2 (n > 0) ° Preferably, an anti-reflection film 15 可 may be plated on the glass package 130 as shown in FIG. The anti-reflection film 150 can reduce the reflectance of light on the interface between the glass package 13 and the outside air, thereby improving the light extraction efficiency. In an embodiment of the present invention, the anti-reflection film 150 is an optical coating film of an inorganic metal oxide such as titanium oxide, oxidized or oxidized. [0018] FIGS. 1 to 5 illustrate a manufacturing process of the light emitting diode package structure 1A of the present embodiment. Referring to Fig. 1, first, a substrate 140 is provided. The substrate 14 can be a stone substrate, a carbonized stone substrate, a sapphire substrate, a zinc oxide substrate, a metal plate or a glass substrate. Then, a metal film 110 having a first surface 111 and a second surface 112 opposite to the first surface 111, the second surface 112, is formed on the surface of the substrate 140 by vacuum evaporation or sputtering. Contact with the substrate 140. Further, the metal thin film 110 may be formed on the surface of the substrate 14A by screen printing, plating or the like. 099125010 Form No. A0101 Page 7 of 28 0992043934-0 201205903 [〇〇2〇] Referring to Fig. 2, the metal thin film 110 is patterned to form a first metal layer 113 and a second metal layer 114 which are insulated from each other. Specifically, a photosensitive layer is coated on the surface of the metal film 110, and then the photosensitive layer is formed into a desired pattern by exposure and development, and then the metal film 11 is etched to form a corresponding pattern. In addition, a Si〇2 barrier layer may be formed on the surface of the substrate 140 before vacuum evaporation or sputtering. During the vacuum evaporation or sputtering, the metal film no will be deposited on the substrate 140. 2 The area covered by the barrier layer to form a corresponding pattern. The Si〇2 barrier layer is then removed. _1] See Fig. 3, in which the light-emitting diode crystal grains 120 are disposed on the first surface of the metal thin film 110. The LED die 12 has a first electrode 121 and a second electrode 122. The first electrode 121 is disposed on the first metal layer 113 and electrically connected to the first metal layer 113 by soldering or eutectic bonding. The second electrode 122 is electrically connected to the second metal layer 114 by wire bonding. _] Referring to Fig. 4, the light-emitting one-pole crystal 12 设置 disposed on the remaining film ιι is sealed with a glass material to form a glass package 13 〇. In the embodiment of the invention, the glass package 13 has a convex or bullet-like structure. [0023] 3C See Figure 5, the substrate 14 is removed to reveal the second surface 112 of the metal film. Specifically, the substrate 140' is removed by a method such as shot cutting, grinding or button etching so that the second surface 112 of the metal thin film 11 is exposed to the outside of the glass package 130. At this time, the metal film 110 is located at the bottom of the glass package 13 (four), which is transferred from the carrier 14 到 to the glass package 130. 0992043934-0 099125010 Form No. A0101 Page 8 / Total 28 Page 201205903 [0024] In the present embodiment, the glass package body 130 is used as the support structure of the light-emitting diode particles 120 while being located at the bottom of the glass package body 13 The metal thin film 110 serves as an electrode to which the light emitting diode die 12 is externally connected. The light-emitting diode package structure 100 of the present embodiment has the substrate removed, so that the structure can be effectively thinned. Specifically, the thickness of the light emitting diode package structure of the present invention can be between 100 micrometers Um and 150 micrometers (em). In addition, the use of glass as the encapsulating material of the LED dipole 12 〇, because of the high temperature resistance of the glass, it can avoid the degradation of the light-emitting efficiency and the life of the conventional resin encapsulation material at high temperatures. Wings. The light emitting diode package structure of the present invention is not limited to the above embodiment, and FIG. 7 is a light emitting diode package structure 200 according to a second embodiment of the present invention, which includes a metal film. 210. A light emitting diode die 220 disposed on a surface of the metal film 2ΐα and a glass package 230 for encapsulating the light emitting diode die 220. Different from the first embodiment, the LED package structure 200 further includes a fluorescent conversion layer 250, and the fluorescent conversion layer 250 can be disposed on the glass package 230 by coating or affixing. surface. The material of the fluorescent conversion layer 250 is selected from the group consisting of a garnet material of a garnet (YAG) structure, a nitride-based phosphor material, a phosphide, a sulfide or a compound. The phosphor conversion layer 250 converts light in a first wavelength range emitted by the LED die 220 into light in a second wavelength range. The value of the first wavelength is different from the value of the second wavelength. The blue light emitting diode die 220 is combined with the fluorescent conversion layer 250 that converts blue light into yellow light to cause the entire light emitting diode package structure 200 to emit white light or multiple wavelengths of light. Preferably, the fluorescent conversion 099125010 Form No. 1010101 0992043934-0 201205903 The layer 250 may further comprise an epoxy resin (ep ο X y ), a second resin or other encapsulating material. Further, the arrangement position of the camp light conversion layer is not limited to the mode described in the second embodiment. [0027] The LED package structure 30 of the third embodiment of the present invention includes a metal thin film 310, a light emitting diode die 320 disposed on the surface of the metal thin film 310, and a packaged light emitting diode. The glass of the bulk die 320 is filled with the package 330. Different from the second embodiment, the inside of the glass package 330 is provided with phosphor powder particles 350. The phosphor powder particles 350 can be added to the glass material during the formation of the glass package 330, when the glass material is cured. The phosphor powder particles 350 can be fixed to the inside of the glass package 330. In the present embodiment, the phosphor powder particles 350 are disposed inside the glass package 330, which is not easily affected by the external environment, so that the light-emitting diode package structure 300 has better stability. [0028] As shown in FIG. 9, the illuminating implant structure 400 of the fourth embodiment of the present invention includes a metal thin film 410' disposed on the surface of the metal film 410, and is used for encapsulating the light-emitting diodes. The glass package 430 of the polar body 420. Different from the first embodiment, the interior of the glass package 430 has an accommodating space 431, and the LED 420 is disposed inside the accommodating space 431. In this embodiment, the glass package 430 is not directly in contact with the LED 420, so the LED 420 and its lead structure are not easily affected by the temperature during the packaging process, resulting in degradation of performance. . During the actual operation, a protective gas such as nitrogen or an inert gas may be introduced during the encapsulation process, and the protective gas may form a layer of gas between the LED die 420 and the glass package 430. 099125010 Form No. A0101 Page 10/28 pages 0992043934-0 201205903 The bulk isolation layer 432 is such that the glass package 43 is not in direct contact with the LED die 42. In addition, the protective gas can also prevent moisture from entering the valley space 431, resulting in a decrease in the lifetime of the light-emitting diode die 42 or damage. The inner wall of the accommodating space 431 may be provided with a calender conversion layer 450' as well, and the phosphor conversion layer 45 is not easily affected by the external environment to deteriorate its performance. [0029] Further, in the present embodiment, the fluorescent conversion layer 450 is not limited to being disposed in the inner wall of the housing space 431. Referring to FIG. 1A, the fluorescent conversion layer 450 covers the surface of the LED 420, and the light emitted by the LED 420 is converted to 〇45 by fluorescence conversion, and then by the glass. The package 430 is emitted to the outside. Fc: : : : [0030] The mounting method of the light-emitting diode die is not limited to the above embodiment. 11 is a light emitting diode package structure 5 of a fifth embodiment of the present invention, which includes a metal film 510, a light emitting diode die 520 disposed on the surface of the metal film 510, and a packaged light emitting diode die. In the glass package 530 of 520, in the embodiment of the present invention, the glass package 530 has a convex or bullet-like structure. The metal thin film 510 includes a first metal layer 513 and a second metal layer 514 which are insulated from each other. The light emitting diode die 520 includes a first electrode 521 and a second electrode 522. Different from the first embodiment, the light-emitting diode die 520 is fixed on the surface of the first metal layer 511 by a bonding adhesive 560. The first electrode 521 and the second electrode 522 of the light-emitting diode die 520 are disposed on the same side of the light-emitting diode die. The first electrode 521 is electrically connected to the first metal layer 513 by wire bonding. The second electrode 522 is also electrically connected to the second metal layer 514 by wire bonding. In addition, the light-emitting diode die 520 can also be disposed on the surface of the metal film 510 by a method of eutectic bonding or flip chip 099125010 Form No. A0101, page 11 / page 28 0992043934-0 201205903. [0031] The structure of the glass package is also not limited to the above embodiment. Referring to FIG. 12, the LED package structure 600 of the sixth embodiment of the present invention includes a metal film 610, a light-emitting diode die 620 disposed on the surface of the metal film 610, and a package for the light-emitting diode die 620. Glass package 630. The metal thin film 610 includes a first metal layer 613 and a second metal layer 614 which are insulated from each other. The light emitting diode die 620 is fixed on the surface of the first metal layer 613 by a bonding adhesive 660. The first electrode 621 of the light-emitting diode die 620 is electrically connected to the first metal layer 613, and the second electrode 622 of the light-emitting diode die 620 is electrically connected to the second metal layer 614. Different from the fifth embodiment, in the present embodiment, the light-emitting surface of the glass package 630 is set to be a flat surface. At the same time, the glass package 630 may also be provided with a fluorescent conversion material made of a garnet (YAG) structured phosphor material, a nitride-based phosphor material, a phosphide, a sulfide or a citrate compound. Floor. [0032] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0033] FIG. 5 is a schematic view showing a manufacturing process of a light emitting diode package structure according to a first embodiment of the present invention. 6 is a schematic view showing the structure of adding an anti-reflection film in the light-emitting diode package structure of FIG. 5. 099125010 Form No. A0101 Page 12 of 28 0992043934-0 201205903 [0035] FIG. 7 is a schematic diagram of a light emitting diode package structure according to a second embodiment of the present invention. 8 is a schematic diagram of a light emitting diode package structure according to a third embodiment of the present invention. 9 is a schematic diagram of a light emitting diode package structure according to a fourth embodiment of the present invention. 10 is a schematic diagram of a light emitting diode package structure according to a fifth embodiment of the present invention. [0040] FIG. A schematic diagram of a light emitting diode package structure according to a sixth embodiment of the present invention [0041] [Explanation of main component symbols] Light emitting diode package structure: 100, 200, 300, 400, 500, 600 [0042] Metal film: 110, 210, 310, 410, 510, 610 [0043] :; j flies two \ ί.....i J -.^ r, . "i. '' , ' . u . First surface: 111 W ':?毛 W ' ? r- .-;s 〇[〇〇44] Second surface: 112 [0045] First metal layer: 113, 513, 613 [0046] Second metal layer: 114, 514, 614 [0047] Light-emitting diode dies: 120, 220, 320, 420, 520, 620 [0048] First electrode: 121, 521, 621 [0049] Second electrode: 122, 522, 622 [0050] Glass package Body: 130, 230, 330, 430, 530, 630 099125010 Form No. A0101 Page 13 / Total 28 Page 0992043934-0 201205903 [0051] Housing space: 431 [0052] Gas barrier: 432 [0053] Base: 140 [0054 Antireflective film: 150 [0055] Fluorescent conversion layer: 250, 450 [0056] Fluorescent powder particles: 350 [0057] Solid crystal glue: 560, 660 0992043934-0 099125010 Form No. A0101 Page 14 of 28

Claims (1)

201205903 七、申請專利範圍: 1 . 一種發光二極體封裝結構,其包括一金屬薄膜,所述金屬 薄膜具有第一表面以及與第一表面相對的第二表面,並且 該金屬薄膜包括相互絕緣的第一金屬層與第二金屬層,一 發光二極體晶粒設置於金屬薄膜的第一表面,該發光二極 體晶粒具有第一電極與第二電極,第一電極與第一金屬層 電性連接,第二電極與第二金屬層電性連接,其中,所述 發光二極體封裝結構進一步包括一玻璃封裝體,用於密封 設置於金屬薄膜上的發光二極體晶粒,所述金屬薄膜的第 0 二表面顯露于玻璃封裝體的外部。 2 .如申請專利範圍第1項所述之發光二極體封裝結構,其中 ,所述發光二極體封裝結構進一步包括一螢光轉換層,該 螢光轉換層設置於玻璃封裝體的表面。 3. 如申請專利範圍第1項所述之發光二極體封裝結構,其中 ,所述玻璃封裝體包括螢光粉顆粒,所述螢光粉顆粒分散 于玻璃封裝體中。 4. 如申請專利範圍第1項所述之發光二極體封裝結構,其中 ◎ ,所述玻璃封裝體内部具有一容置空間,所述發光二極體 晶粒設置於該容置空間内。 5 .如申請專利範圍第4項所述之發光二極體封裝結構,其中 ,所述容置空間的内壁設置有一層螢光轉換層。 6 .如申請專利範圍第4項所述之發光二極體封裝結構,其中 ,所述發光二極晶粒表面設置有一層螢光轉換層。 7 .如申請專利範圍第1項至第6項任意一項所述之發光二極體 封裝結構,其中,所述玻璃封裝體的製作材料為Si〇24 099125010 表單編號A0101 第15頁/共28頁 0992043934-0 201205903 NaO. nS i 〇2,其中 n> 0。 8 . —種發光二極體封裝方法,其包括以下步驟: 在基體上形成一層金屬薄膜,所述金屬薄膜包括第一表面 以及與第一表面相對的第二表面; 將金屬薄膜圖案化而形成相互絕緣的第一金屬層與第二金 屬層; 在金屬薄膜的第一表面設置發光二極體晶粒,所述發光二 極體晶粒具有第一電極與第二電極,第一電極與第一金屬 層電性連接,第二電極與第二金屬層電性連接; 採用玻璃材料密封設置於金屬薄膜上的發光二極體晶粒以 形成一玻璃封裝體; 移除基體而顯露出金屬薄膜的第二表面。 9.如申請專利範圍第8項所述之發光二極體封裝方法,其中 ,在密封過程之中,在玻璃封裝中添加螢光粉顆粒,使螢 光粉顆粒分散在玻璃封裝體中。 10 .如申請專利範圍第8項所述之發光二極體封裝方法,其中 ,在密封過程中,在玻璃封裝體内部形成一容置空間,所 述發光二極體晶粒設置於該容置空間内,螢光轉換層設置 於容置空間的内壁或發光二極體晶粒的表面。 099125010 表單編號Α0101 第16頁/共28頁 0992043934-0201205903 VII. Patent application scope: 1. A light emitting diode package structure, comprising a metal film, the metal film having a first surface and a second surface opposite to the first surface, and the metal film comprises mutually insulated a first metal layer and a second metal layer, wherein a light emitting diode die is disposed on the first surface of the metal film, the light emitting diode die has a first electrode and a second electrode, and the first electrode and the first metal layer Electrically connecting, the second electrode is electrically connected to the second metal layer, wherein the LED package further comprises a glass package for sealing the LED of the LED disposed on the metal film. The 0th surface of the metal thin film is exposed on the outside of the glass package. The light emitting diode package structure of claim 1, wherein the light emitting diode package further comprises a fluorescent conversion layer disposed on a surface of the glass package. 3. The light emitting diode package structure of claim 1, wherein the glass package comprises phosphor powder particles, the phosphor powder particles being dispersed in a glass package. 4. The illuminating diode package structure of claim 1, wherein ◎, the glass package has an accommodating space therein, and the illuminating diode dies are disposed in the accommodating space. The illuminating diode package structure of claim 4, wherein the inner wall of the accommodating space is provided with a fluorescent conversion layer. 6. The light emitting diode package structure of claim 4, wherein the surface of the light emitting diode chip is provided with a fluorescent conversion layer. The light-emitting diode package structure according to any one of claims 1 to 6, wherein the glass package is made of Si〇24 099125010 Form No. A0101 Page 15 of 28 Page 0992043934-0 201205903 NaO. nS i 〇2, where n> 0. 8. A method of encapsulating a light emitting diode, comprising the steps of: forming a metal film on a substrate, the metal film comprising a first surface and a second surface opposite to the first surface; patterning the metal film to form a first metal layer and a second metal layer insulated from each other; a light emitting diode die is disposed on the first surface of the metal film, the light emitting diode die has a first electrode and a second electrode, and the first electrode and the first electrode a metal layer is electrically connected, and the second electrode is electrically connected to the second metal layer; the light emitting diode die disposed on the metal film is sealed by a glass material to form a glass package; and the substrate is removed to expose the metal film The second surface. 9. The method according to claim 8, wherein the phosphor powder particles are added to the glass package during the sealing process to disperse the phosphor particles in the glass package. The illuminating diode package method of claim 8, wherein an accommodating space is formed inside the glass package during the sealing process, and the illuminating diode die is disposed in the accommodating In the space, the fluorescent conversion layer is disposed on the inner wall of the accommodating space or the surface of the luminescent diode die. 099125010 Form number Α0101 Page 16 of 28 0992043934-0
TW99125010A 2010-07-29 2010-07-29 Light-emitting diode package structure and method for encapsulating it TW201205903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125010A TW201205903A (en) 2010-07-29 2010-07-29 Light-emitting diode package structure and method for encapsulating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125010A TW201205903A (en) 2010-07-29 2010-07-29 Light-emitting diode package structure and method for encapsulating it

Publications (1)

Publication Number Publication Date
TW201205903A true TW201205903A (en) 2012-02-01

Family

ID=46761797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125010A TW201205903A (en) 2010-07-29 2010-07-29 Light-emitting diode package structure and method for encapsulating it

Country Status (1)

Country Link
TW (1) TW201205903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513053B (en) * 2013-10-01 2015-12-11 Prolight Opto Technology Corp Light emitting diode package structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513053B (en) * 2013-10-01 2015-12-11 Prolight Opto Technology Corp Light emitting diode package structure

Similar Documents

Publication Publication Date Title
TWI530235B (en) Flexible light-emitting diode device for thermal management and manufacturing method thereof
KR100978028B1 (en) Light emitting device
US8450764B2 (en) Semiconductor light-emitting apparatus and method of fabricating the same
TW200905907A (en) Package structure of compound semiconductor device and fabrication method thereof
US20130105978A1 (en) Silicon submount for light emitting diode and method of forming the same
TW200926445A (en) Fabricating method of photoelectric device and packaging structure thereof
TW200807740A (en) A light emitting device
JP2010239105A (en) Optical semiconductor device and manufacturing method thereof
KR20120125350A (en) Light emitting device and method for manufacturing light emitting device
JP5413137B2 (en) Light emitting device and method for manufacturing light emitting device
US9553245B2 (en) Light emitting device
WO2008038574A1 (en) Wiring board for surface mounting type light emitting element and light emitting device
JP2008091459A (en) Led illumination apparatus and manufacturing method thereof
US9627583B2 (en) Light-emitting device and method for manufacturing the same
US20150280093A1 (en) Light emitting device, method for manufacturing same, and body having light emitting device mounted thereon
US9865779B2 (en) Methods of manufacturing the package and light-emitting device
JP5454154B2 (en) Light emitting device and method for manufacturing light emitting device
CN101630668A (en) Encapsulation structure of compound semiconductor element and photoelectric element and manufacturing method thereof
TW201212303A (en) LED packaging structure and packaging method thereof
TW201017921A (en) Compound semiconductor device package module structure and fabricating method thereof
EP2704541A2 (en) Wiring board, light-emitting device, and method of manufacturing the wiring board
CN103618041B (en) ESD (electro-static discharge) protected LED (light-emitting diode) packaging structure and packaging method thereof
CN102332522A (en) Light-emitting diode packaging structure and packaging method
KR100634189B1 (en) Thin film type light emitting diode package and manufacturing method thereof
JP2018056576A (en) Optical semiconductor device and method for manufacturing the same