[go: up one dir, main page]

TW201203408A - FPD module assembling apparatus - Google Patents

FPD module assembling apparatus Download PDF

Info

Publication number
TW201203408A
TW201203408A TW100104699A TW100104699A TW201203408A TW 201203408 A TW201203408 A TW 201203408A TW 100104699 A TW100104699 A TW 100104699A TW 100104699 A TW100104699 A TW 100104699A TW 201203408 A TW201203408 A TW 201203408A
Authority
TW
Taiwan
Prior art keywords
acf
tab
unit
cutting
blade
Prior art date
Application number
TW100104699A
Other languages
Chinese (zh)
Inventor
Hideki Nomoto
Kunio Aburada
Tatsuo Kaneko
Yoshinori Kitano
Takafumi Hisa
Noriyuki Oroku
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of TW201203408A publication Critical patent/TW201203408A/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Wire Bonding (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A FPD module assembling apparatus is provided, by which a length of ACF can be made according to the individual difference of electronic components, and thus the ACF can be adhered to the electronic components precisely. The FPD module assembling apparatus comprises a photographing camera 266 for photographing an end portion of a TAB, a determining section to a cut position, a first cutter 264A and a second cutter 264B. The determining section to a cut position determines a cut position according to the photographed result of the photographing camera 266, whereby the first cutter 264A and the second cutter 264B are driven to cut the ACF3 according to the determined cutt position.

Description

201203408 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種在平板顯示器(FPD : Flat Panel Display )的顯示基板上裝配電子零件的FPD模組之組裝裝 置。 【先前技術】 有關FPD方面,例如有液晶顯示器或有機EL ( Electro — Luminescence)顯示器,電獎顯示器等等。在此FPD中 的顯示基板的周緣部進行驅動1C的搭載或C0F( Chip on Film )、FPC ( Flexible Printed Circuit )等之 TAB ( Tape Automated Bonding)連接。且於顯示基板的周邊裝配例如 PCB ( Printed Circuit Board)等之周邊基板。結果遂組裝成 FPD模組。 FPD模組的組裝線係透過依序進行複數個處理作業工 程而在FPD的顯示基板中的周緣部及周邊裝配驅動1C、 TAB及PC B等之裝置。以下,將顯示基板略稱爲「基板」, 而其他的基板,例如在PCB的情況係清楚記載爲^ PCB基 板j。 在FPD模組的組裝線中的一處理工程例方面,有(1 ) 清掃基板端部的TAB貼附部之端子清淨工程、及(2 )在 清掃後的基板端部貼附各向異性導電薄膜(ACF : Anisotropic Conductive Film)的 ACF 工程。且有(3)在基 板之貼附ACF的位置定位並搭載TAB或1C的搭載工程、 201203408 以及(4 )將搭載的TAB或1C加熱壓接並利用ACF固定的 壓接工程。更有(5 )在TAB之基扳側的相反側預先貼附 並搭載貼附有ACF的PCB基板的PCB.工程。此外,PCB工 程係由複數個工程構成。 ACF只要預先貼附於要接合的構件任一面即可。亦 即,在上述ACF工程的其他例子中,是將ACF預先貼附於 TAB或1C側。又,在顯示基板模組組裝線上,因應於所要 處理之基板的邊數、所要處理的TAB或1C的數量及各處 理裝置的數量等,需要用以進行旋轉基板的處理裝置等》 藉由經過這樣一連串的工程,對基板上的電極與設置 在TAB或1C等的電極之間進行熱壓接,經由ACF內部的 導電性粒子進行兩電極的電連接。此外,當壓接工程完了 時,因ACF基材樹脂會硬化,所以兩電極在進行電連接的 同時,基板和TAB或1C等亦進行機械式連接。 —般而言,當要搭載的TAB或1C的數量増加時,ACF 的貼附數量亦會増加。此外,雖亦存在有將ACF在維持長 形的單一片狀的情況下貼附於顯示基板的方法,但因爲貼 附在未搭載TAB或1C的部分上的ACF會變得浪費所以不 理想。 在此,本發明中稱爲TAB的電子零件係依其詳細形狀 或構件的厚度差異等而被稱爲TCP ( Tape Carrier Package) 或稱爲COF(ChipOnFilm)。該等TCP或COF係在具有傳 動孔位(Sprocket hole)的長尺寸的聚醯亞胺膜上施作有配 201203408 線的FPC ( Flexible Printed Circuit )上搭載1C晶片並將其 切出之構成,在裝配方面並無差異。又’亦有依面板的設 計而僅組裝無1C晶片的FPC之情況?在FPD的裝配組裝 工程中,該等零件並無實質上的差異,故在本發明中稱爲 TAB ° 專利文獻1及2中記載一種將ACF貼附於電子零件之 後,將其電子零件預壓接於基板上的FPD模組之組裝裝 置。在專利文獻1所記載的FPD模組之組裝裝置中,係將 ACF切斷成指定的長度並貼附於電子零件。但未揭示兩者 的對位之相關技術。 另一方面,在專利文獻2所記載的FPD模組之組裝裝 置中,係利用攝像相機檢測已切斷成指定的長度之ACF的 緣部,透過使ACF的緣部和電子零件的緣部一致以進行 ACF對電子零件的定位。 〔習知技術文獻〕 〔專利文獻〕 〔專利文獻1〕日本特開2 0 0 8 - 1 6 5 9 4號公報 〔專利文獻2〕日本特開2009-26831號公報 【發明內容】 〔發明所欲解決之課題〕 裝配於FPD模組的基板上的COF等之電子零件,通常 被以長尺寸的帶狀薄膜進行供給,且經由沖切機構沖切而 被個別地切出。因而會依設置在沖切機構上的模具的尺寸 201203408 誤差或磨損等而在電子零件的大小或形狀上産生誤差(個 體差)。 然而’在專利文獻1及2所記載的FPD模組之組裝裝 置中,預先將ACF切斷成指定的長度。因此,當電子零件 的大小或形狀發生誤差時,會有所謂不適當的長度之ACF 被貼附於電子零件上的問題。例如,在專利文獻2所記載 的FPD模組之組裝裝置中,當被沖切的電子零件之緣部因 模具的尺寸誤差等而傾斜時,會在ACF及電子零件的相反 側的緣部產生位置偏差。 本發明之目的在於提供一種考慮到上述先前技術中的 實際情況,可將ACF作成因應電子零件的個體差之長度, 且能高精度地貼附於電子零件上的平板顯示器的裝配裝 置。 〔解決課題之手段〕 爲解決上述課題以達成本發明之目的,本發明的FPD 模組之組裝裝置係具備:對電子零件的端部進行拍攝的攝 像部、切斷位置決定部及切斷部。 切斷位置決定部係依據攝像部的拍攝結果,決定ACF 的切斷位置,因應切斷部所決定的切斷位置而驅動以切斷 ACF ° 〔發明功效〕 依據本發明的FPD模組之組裝裝置,係對電子零件的 端部拍攝並進行圖像測定,依據其結果來決定ACF的切斷 201203408 位置。其結果爲,可將ACF切斷成因應電子零件的個體差 之長度,且能高精度地貼附於電子零件。 【實施方式】 以下,針對用以實施FPD (平板顯示器)模組之組裝 裝置的形態,茲參照圖1〜圖13作說明。.此外,各圖中對 共通的構件係賦予相同的符號。 〔FPD模組〕 首先,針對FPD模組,茲參照圖1作說明。 圖1係顯示在本發明進行組裝組裝的FPD模組之示意 構成的平面圖。 如圖1所示,FPD模組7係建構成:於顯示基板1的 周緣部透過ACF接合連接複數個TAB2,同時在一部分的 TAB2上以ACF連接PCB6=TAB2係於扁平的長方形聚醯亞 胺膜上形成有銅箔的印刷電路(未圖示)後的FPC( Flexible Printed Circuit) 4上搭載1C晶片5而成的電子零件。1C晶 片5係組裝於FPC4的大致中央。FPC4的下面設有印刷電 路,於長邊方向的兩側(2個長邊)設有外部引導端子(未 圖示)。 根據TAB2的種類,有1C晶片5是位在下面側的情況 (COF型)或無1C晶片的情況(FPC型)等。圖1中是例 示1C晶片5嵌入FPC4的孔內之形式(TAB型)。又,TAB2 或PCB6雖因連接部位而在電路上彼此有差異,但因爲在搭 載裝配的說明上無需加以區別,故圖式成相同者。 201203408 1 ·第1實施形態 〔FPD模組的組裝線〕 其次,針對屬本發明的FPD模組之組裝裝 施形態之FPD模組組裝線,茲參照圖2作說明 圖2係顯示FPD模組組裝線整體之平面配 ’ FPD模組組裝線1 0係由接入單元1 〇〇、 200、正式壓接單元300、PCB連接單元400及掷 所構成。各單元具有機架103、203、303、403 機架的操作面側設有搬送軌道101、201、301、 相鄰的搬送軌道被連結。 搬送軌道101、201、301及401係將搬送平 302及402支持成可移動。該等搬送平台102、 402係將顯示基板1搬送到下個單元之作業位g 後的搬出單元5 00雖另設有用以接取顯示基板 但因爲從搬出單元500進行搬出通常按工場而 不同,故在此省略。 在預壓接單元200、正式壓接單元3 00及 元400,設置有擱放顯示基板1作業邊的基準 及404。該等基準桿204、304及404係吸附顯 作業邊,進行顯示基板1的平坦化。該等基準 及4 04係連同各單元200、300及400的後端支 示)一起將作業中的顯示基板1穩定地保持。 預壓接單元200係藉由ACF將TAB2預壓 置的第1實 〇 置圖。 預壓接單元 i出單元500 及503 。各 401 及 501 , 台 102、202、 202 ' 302 及 置。此外,最 1的裝置, 在規格上有 PCB連接單 桿 204 、 304 示基板1的 桿 204 、 304 撐物(未圖 接在顯不基 201203408 板1的一長邊和兩短邊的三個邊上。針對將此TAB2 (參照 圖1 )預壓接的構成,將於後面詳細地說明。 正式壓接單元3 00具有正式壓接部3 20A、3 20B及3 20C 等3個,對搭載於顯示基板1的三個邊上的TAB2 (參照圖 1)同時進行壓接作業。正式壓接部320A、320B及320C等 3個係具備:具有上刃的正式壓接頭及下刃。上刃及下刃 係被加熱器加熱而對TAB2加熱加壓並連接於顯示基板1。 要將TAB2正式壓接於顯示基板1時,一邊以下刃從 下側支撐預壓接有TAB2的顯示基板1 —邊以上刃加壓。 被上刃所加壓的ACF係例如在190°C下加熱5秒鐘而熱硬 化。 在該正式壓接單元3 00中有需要移動機構,用以讓對 預壓接於顯示基板1的兩個短邊的閘門側之TAB2進行正 式壓接的正式壓接部3 20B、320C朝左右方向(單元排列的 方向)移動。然而,因爲能同時實施節拍時間(tact time) 最長的正式壓接作業,故具有所謂能縮短整體的等待處理 時間(around time)之優點。 PCB連接單元400係將PCB基板連到被連接至顯示基 板1的長邊之來源側的TAB2。PCB連接單元400具備:PCB 供給裝置43 0、ACF貼附裝置440、移載裝置450及正式壓 接部460 » PCB供給裝置430係將由托架(未圖示)所供給的PCB 基板1片1片地朝左右的ACF貼附裝置440供給。ACF貼 -10- 201203408 附裝置440係對由PCB供給裝置430所供給的PCB基板貼 附ACF。移載裝置450係將完成ACF的貼附之PCB基板搬 送到正式壓接部460。接著,正式壓接部460係將PCB碁 板加壓加熱並連接於複數個來源側的TAB2。 〔預壓接單元〕 其次,針對預壓接單元200,茲參照圖3作說明。 圖3係預壓接單元200的平面圖。 如圖3所示,預壓接單元200具備TAB供給部220、 ACF貼附部230及搭載部280。TAB供給部220具備捲筒 221、使捲筒221旋轉用的捲筒進給機構222、及沖切機構 223 » 搭載於顯示基板1的TAB2係以長尺寸的帶狀薄膜捲 繞於捲筒221。捲筒221係透過捲筒進給機構222而旋轉, 將帶狀薄膜以規定節距送出。沖切機構223係沖切被捲筒 221所送出的帶狀薄膜,將TAB2個別地切出。被切出的 TAB2供給至ACF貼附部230。 ACF貼附部230係將ACF帶3的ACF3a貼附於所供給 之TAB2的長邊方向之一側(一長邊)。被ACF貼附部230 貼附了 ACF3a的TAB2係被遞交於收付部275 »收付部275 係被支持成可於X軸導引件276移動。此收付部275係將 TAB2遞交於搭載部280。 搭載部280係由將TAB 2搭載於顯示基板1的長邊之長 邊搭載部280A、及各自將TAB2搭載於顯示基板1的短邊 -11- 201203408 之短邊搭載部280B、28 0C所構成。該等長邊搭載部28 0A 及短邊搭載部280B、280C係從收付部27 5接取TAB2。 長邊搭載部280A係具備梭動夾頭281、Y軸導引件 282、X軸導引件283、搭載部件285、X軸導引件286及 相機部287。 梭動夾頭281係從收付部275接取TAB2。此梭動夾頭 281被支持成可於Y軸導引件282移動。而且,γ軸導引件 282被支持成可於X軸導引件283移動。依此,梭動夾頭 281係成爲在水平方向移動自如。梭動夾頭281及Y軸導 引件282係各設置2個。而且,2個Y軸導引件282係共 有X軸導引件283。 搭載部件285係由搭載座291、TAB台292、搭載頭 293、及收付頭294所構成。搭載座291被支持成可在X軸 導引件286移動,移動至顯示基板1的長邊之TAB搭載位 置。TAB台292、搭載頭293及收付頭294係配置在搭載座 291 上。 梭動夾頭281係接近搭載座291並將TAB2遞交於TAB 台292。收付頭294係將TAB台292上的TAB2遞交於搭載 頭293。搭載頭293係將收付頭294所供給的TAB2預壓接 ..(搭載)於顯示基板1的TAB搭載位置。此時,在搭載座 291移動前,事先在搭載位置的兩端部下方待機且分別具有 雙場透鏡的一對相機部287會先行拍攝顯示基板1的搭載 標記和TAB2的定位標記。將依該圖像測定算出的定位誤 -12- 201203408 差傳送到搭載頭293,搭載頭293係依接收到的個別調整 値,一邊進行搭載位置之調整(定位)—邊將TAB2搭載於顯 不基板1。 此外,長邊搭載部280A的搭載部件285及相機部287, 係對應梭動夾頭281而設置2組。此外’ 2個搭載座291 係共有X軸導引件286。 短邊搭載部280B、280C係具有和長邊搭載部280A同 樣的構成。亦即,短邊搭載部280B、280C係各自具備:梭 動夾頭281、X軸導引件296、Y軸導引件297、搭載部件 28 5、Y軸導引件29 8及相機部(未圖示)。 短邊搭載部280B、280C的梭動夾頭281係被支持成可 移動於X軸導引件296,X軸導引件296係被支持成可於Y 軸導引件297移動。短邊搭載部280B、280C的搭載座291 係被支持成可於Y軸導引件29 8移動,且移動至顯示基板 1的短邊中之TAB搭載位置。 顯示基板1被載置於基準桿204之際,係在預先以相 機部287拍攝兩端的基準標記並進行槪略的校準調整後的 狀態下被遞交。但是,爲避免顯示基板1之尺寸誤差所致 之搭載位置之偏差,就算是利用搭載頭293來搭載,亦要 個別地進、.行校準。 〔ACF貼附部〕 其次,針對ACF貼附部230,茲參照圖4及圖5作說 明。 -13- 201203408 圖4 ( a)係顯示ACF貼附部230的平面圖。圖4 ( b ) 係ACF貼附部230的側面圖。圖5係說明ACF貼附部230 的刀刃之驅動的說明圖。 如圖4所示,ACF貼附部230係具備:供給捲筒233、 導輥234、夾輥235、回收捲筒236、ACF平台250、刀刃 251 及 TAB 平台 252。 又,ACF貼附部230係具備TAB夾頭261及剝離夾頭 263。再者,ACF貼附部230係具備:第1刀刃264A、第2 刀刃264B、第1刀刃驅動機構265A、第2刀刃驅動機構 265B、攝像相機266及鏤空臂268 »第1刀刃264A及第2 刀刃264B係顯示切斷部的一具體例。 ACF帶3係在厚度35# m的帶狀基膜3b的單面上塗布 ACF3a(20〜30#m)而形成,且以ACF3a爲內側地捲繞於 供給捲筒2 3 3。 ‘供給捲筒233係藉由配送馬達(未圖示)一邊控制送 出長度和速度一邊送出ACF帶3。由於ACF帶3的進給量 會受供給捲筒23 3的殘餘帶量影響,故利用帶有凸緣的導 輥234測定。通常,在管理帶行走的進給量之情況,係設 置有和導輥234對向的表面是橡膠製的夾輥進行按壓使帶 不會滑動。但在本實施形態中,由於會造成具黏著性的 ACF3a貼附於夾輥上,故不使用夾輥。 如圖5所示,第1刀刃264A和第2刀刃264B,係在 與ACF帶3的進給方向平行的方向(ACF帶的長邊方向) -14- 201203408 隔著適當的間隔作配置。 第1刀刃驅動機構2 65 A(參照圖4)係具有:使第1 刀刃264A在上下方向移動的昇降驅動部、於ACF帶3的 長邊方向移動的水平驅動部、及以與ACF帶3正交的軸爲 中心轉動的轉動驅動部。又,第2刀刃264B(參照圖4) 係具有:使第2刀刃264B在上下方向移動的昇降驅動部、 於ACF帶3的長邊方向移動的水平驅動部、及以與aCF帶 3正交的軸爲中心轉動的轉動驅動部。 攝像相機266係同時對貼附有ACF3a之相鄰的TAB2 之對向的端部進行拍攝。亦即,攝像相機266的攝像區域T 係包含相鄰的TAB2之對向的端部。第1刀刃264A和第2 刀刃264B係配置在攝像相機266的攝像區域T的上方。因 此’刀刃264A、264B係在攝像相機266對TAB2之對向的 端部進行拍攝時,退避到不造成妨礙的位置。針對此刀刃 264A、264B的驅動控制,將於後面詳細說明。 ACF帶3係藉導輥234改變方向,被送到ACF平台25 0 之上的固定位置。ACF平台250係表面進行平滑加工的不 鏽鋼製構件,且與TAB夾頭261對向的區域之表面被施作 氟樹脂加工。藉此,自基膜3b伸出的ACF3a係成爲没有黏 著於ACF平台250。 TAB夾頭261係設置在臂260(參照圖3),將TAB2 真空吸附並予以搬送,且推抵沿著ACF平台250延伸的ACF 帶3的ACF3a。在TAB夾頭261之與ACF帶3對向的部分 -15- 201203408 內建有加熱器,用以將ΤΑ B2加熱到例如70〜90°C。在此 狀態下,吸附TAB2的TAB夾頭261係以對ACF帶3的表 面加壓例如2MPa的方式朝下按壓。.此外,TAB2的表面溫 度及朝向ACF帶3的加壓力係因應使用的ACF的特性而適 當設定》 完成加壓後的TAB夾頭261係將真空吸附開放於大氣 中,將TAB2放置於TAB平台252之上。TAB平台252係 兩端具有圓筒輥(未圖示)的帶式輸送帶,利用兩端的圓 筒輥控制TAB2的進給量和進給速度》 被TAB夾頭261放開的TAB2係與TAB平台252的進 給同步地被由供給捲筒233所送出的ACF帶3送出一個節 距量。該一個節距係節省ACF帶3的浪費,確實地進行基 膜3b的剝離,且作成比TAB2的長邊(貼附ACF3a的邊) 稍長,致使於TAB2搭載時不會折曲過剩的ACF3a。在本例 中,設定一個節距爲TAB 2之長邊方向的長度再加上0.5mm 後的量。 當TAB2被以指定的間隔(例如,〇.5mm)配置並進給 時’藉由第1刀刃264A及第2刀刃264B在相鄰的TAB2 間之ACF3a產生切痕。亦即,藉由刀刃2 64A、264B對ACF 帶3實施半切。以半切而言,爲了將ACF3a確實地切斷, 將刀刃264A、264B保持在下死點位置〇.1〜〇.2秒的時間, 基膜3b的內部應力係確保夾持部放開的時間。藉此,ACF 帶3成爲ACF3a被切離且基膜3b保持連續性的狀態。 -16- 201203408 ACF平台25 0中實施半切的部分,爲了耐磨損,於表 面鑲嵌有已硬化處理過的高速工具鋼。該高速工具鋼係可 在磨損時進行替換》 當相鄰的TAB2間的ACF3a出現切痕時,使捲繞著黏 著帶的鏤空臂268透過昇降部26 9移動至下方,將藉2片 的刀刃264A、264B形成的過剩ACF層33,貼附於黏著帶並 除去。 TAB2被送到設置在ACF平台250的端部之刀刃251。 接著,藉剝離夾頭263進行真空吸附。該剝離夾頭263具 有由多孔質陶瓷構成的吸附墊而非一般的真空吸附孔,可 將TAB2確實地真空吸附。 剝離夾頭263係在位於TAB2進行方向的前側之半切部 位快要到達刀刃251之前吸附TAB2,並將其以與ACF帶3 的進給速度同步的速度朝圖4中的左方拉引。藉此剝離基 膜3b而完成剝離工程。此時,基膜3b係藉由刀刃251的 銳角部分一邊被拉伸一邊被從TAB2剝下,故可穩定地剝 離基膜3b。 特別在作爲剝離開始點的TAB2的左端部(進行方向 的前側的端部)近旁,預先在ACF3 a上實施半切,成爲容 易獲得剝離之開端。萬一,夾著半切部位而相鄰的ACF3 a 再度黏著,位在比半切部位還前側的ACF3a係依前次的剝 離而被拉伸於圖4中左方,由於拉伸方向不是基膜3b的進 行方向故不易發生剝離。 -17- 201203408 被剝離的基膜3b’係藉由帶有凸緣的導輥234與經橡 膠加工的夾輥235’以規定的進給速度捲繞規定的進給量而 被回收捲筒236捲繞。在此,已剝離了 ACF3a的基膜3b係 以夾輥235捲繞著,故無需擔心夾輥23 5或導輥234的表 面會附著ACF3a並被弄髒》 剝離夾頭263係藉排出臂262而移動,將貼附有ACF3a 的TAB2遞交於收付部275 (參照圖3 )»而且,收付部275 係將收取的TAB2遞交於搭載部280。 〔刀刃的驅動控制〕 其次,針對ACF貼附部230中的刀刃264A、264B之 驅動控制,茲參照圖6及圖7作說明。 圖6係顯示刀刃264A、264B的驅動控制之控制電路的 方塊圖。圖7 ( a)係說明在ACF貼附部230中進行之TAB2 的圖像測定之說明圖,圖7(b)係顯示被切斷的ACF3 a之 斷面圖。 . 如圖6所示,刀刃264A、264B的驅動控制之控制電路 係具備:攝像相機266、圖像處理裝置271及控制裝置272。 圖像處理裝置271係與攝像相機266及控制裝置272電連 接。控制裝置272係與刀刃驅動機構265A、265 B電連接。 攝像相.機.266係將所拍攝的TAB2的端部之圖像輸出到 圖像處理裝置27 1。圖像處理裝置271係由送來的圖像檢測 TAB2的端部相對於基準線的位置及傾斜》控制裝置272具 有:與圖像處理裝置271電連接的演算處理部273、及與刀 -18- 201203408 刃驅動機構265A、265B電連接的驅動輸出部274 » 演算處理部273係依據TAB2的端部與基準線L(參照 圖7 ( a))的距離及傾斜,決定刀刃264A、264B要進行切 斷的位置。驅動輸出部274係依據由演算處理部273所決 定的切斷位置來生成驅動信號且對刀刃驅動機構265 A、 265 B輸出。 如圖7 ( a)所示,推抵到ACF帶3的ACF3a之TAB2 的端部會被攝像相機266拍攝。此時,刀刃264 A、264B移 動至退避位置,利用攝像相'機266拍攝攝像區域T。 由於TAB2是藉由沖切機構223沖切,所以會依模具的 尺寸誤差或磨損等而在大小或形狀上産生誤差(個體差)。 因此,當使刀刃264 A、264 B始終在相同位置下降時,ACF3 a 相對於TAB2的切斷位置.變得不均一。例如,在ACF3a從 TAB2長長地突出的情況,會降低基膜3b剝離的可靠性。 於是’在ACF貼附部230中,係藉由圖像處理裝置271 檢測TAB2的端部與基準線L的距離(△ X )和傾斜(△ 0 )。具體而言,從攝像區域T中的角區域Ml、M2,檢測 相鄰的TAB2當中的TAB夾頭261側之TAB2a的端部(進 行方向的前側)與基準線L的距離和傾斜。又,從攝像區 域T中的角區域M3、M4.,檢測相鄰的TAB2當中的剝離夾 頭263側之TAB2b的端部(進行方向的後側)與基準線l 的距離和傾斜。 演算處理部273,係依據TAB2a的端部與基準線l的 -19- 201203408 距離和傾斜,以ACF3a的切斷線和TAB2a的端部成爲平行 的方式決定第1刀刃264 A要進行切斷的位置。又,依據 TAB2b端部與基準線L的距離和傾斜,以ACF3a的切斷面 和TAB2b的端部成爲平行的方式決定第2刀刃264B要進 行切斷的位置。 其次,驅動輸出部274係依據所決定的切斷位置來生 成驅動信號並對刀刃驅動機構265A、265B輸出。第1刀刃 驅動機構265A係依據所接收的驅動信號使第1刀刃264A •旋轉及水平移動。藉此,第1刀刃264A係被配置在與TAB2a 的端部平行且在水平方向和TAB2a的端部相距指定的距離 之位置上。接著,第1刀刃驅動機構265 A係使第1刀刃 264A下降以將ACF3a切斷。其結果,能將ACF3a切斷成對 應於TAB2a的長度,可將ACF3a高精度地貼附於TAB2a (參照圖7b )。 又,第2刀刃驅動機構265B係依據所接收的驅動信號 使第2刀刃2 64 B旋轉及水平移動。藉此,第2刀刃264B 係配置在與TAB2b的端部平行且和TAB 2b的端部相距指定 的距離之位置上。接著,第2刀刃驅動機構265B使第2刀 刃264B下降以將ACF3a切斷。其結果,能將ACF3a切斷 成對應於丁八8 21)的長度,可將八0?3 3高精度地貼附於丁八3 25 (參照圖7 ( b ))。 本實施形態中,由於第1刀刃264A和第2刀刃264B 配置在攝像相機266的攝像區域T的上方,故在圖像測定 -20- 201203408 的位置進行 ACF3a的切斷。因此,在藉刀刃264A、264B 切斷ACF3a以前,TAB2的端部與基準線L的距離(ΛΧ) 和傾斜(A 0 )不可能變化,能將ACF3a高精度地切斷成 對應TAB2的長度。其結果,在剝離ACF3a之際,能防止 ACF3a.附著於基膜3b。又,在進行貼附著ACF3a的TAB2 的預壓接之際,能防止造成ACF3a折疊而附著的情況。 2 ·第2實施形態 〔ACF貼附裝置〕 其次,針對屬本發明的FPD模組之組裝裝置的第2實 施形態,茲參照圖8作說明。 圖8係說明本發明的FPD模組之組裝裝置之第2實施 形態的ACF貼附部的刀刃之驅動的說明圖。 FPD模組之組裝裝置的第2實施形態係具有和第1實 施形態的FPD模組組裝線1〇(參照圖2)同樣的構成。此 FPD模組的組裝裝置之第2實施形態與FPD模組組裝線1 〇 的不同點爲ACF貼附部230A。因此,在此,針對ACF貼 附部230A作說明,並將與FPD模組組裝線1〇共通的構成 之說明省略。 ACF貼附部230A與第1實施形態的ACF貼附部230 之不同點爲,第2刀刃264B的位置。如圖8所示,ACF貼 附部230A的第2刀刃264B係配置在比攝像相機266的攝 像區域T還偏靠剝離夾頭263側一個節距量的位置上。在 此,雖配置有鏤空臂26 8,但第2刀刃264B是以不會干渉 -21- 201203408 鏤空臂268的方式作配置。又,亦可將ACF平台250及TAB 平台252加長,將鏤空臂268以偏靠剝離夾頭263側一個 節距量的方式作配置。 〔刀刃的驅動控制〕 其次,針對ACF貼附部230A中的刀刃264A、264B的 驅動控制,茲參照圖9作說明》 圖9 ( a )係說明在第〗·實施形態的a C F貼附部進行測 定TAB2的圖像之說明圖’圖9(b)係顯示被切斷的ACF3a 之斷面圖。 ACF貼附部230A的刀刃264A、264B之驅動控制的控 制電路係與第1實施形態的相同(參照圖6 )。 在ACF貼附部230A中,係與ACF貼附部230同樣, 利用圖像處理裝置27 1檢測TAB2的端部與基準線L之距 離(ΔΧ)和傾斜(△ β )。具體而言,由攝像區域T中的 角區域Ml、M2,檢測相鄰的ΤΑΒ2當中之TAB夾頭261側 的TAB2a的端部(前端部)與基準線L1之距離和傾斜。且, 由攝像區域T中的角區域M3、M4檢測相鄰的TAB2當中之 剝離夾頭263側的TAB2b的端部(後端部)與基準線L1 之距離和傾斜。 ...演算處理部273係依據TAB2a的端部與基準線L1之距 離和傾斜,以ACF3a的切斷線和TAB2a的端部平行的方式 決定第1刀刃264A要進行切斷的位置。又,依據TAB2b 的端部與"基準線L1之距離和傾斜,以ACF3a的切斷線和 -22- 201203408 TAB2b的端部平行的方式決定第2刀刃264B要進行切斷的 位置,並記憶在記憶部(未圖示)。 記憶在記憶部之第2刀刃264B要進行切斷的位置,係 在TAB2被送出一個節距量時藉驅動輸出部27 4抽出。且作 爲TAB 2b的端部與基準線L2之距離及傾斜使用。此外, 基準線L2係與基準線L1在剝離夾頭263側偏離一個節距 量。 驅動輸出部274係依據本次的圖像測定所決定之第1 刀刃264 A要進行切斷的位置來生成驅動信號,並對第1刀 刃驅動機構265A輸出。接著,第1刀刃驅動機構265A係 依據所接收的驅動信號使第1刀刃264A旋轉及水平移動。 藉此,第2刀刃264A係配置在和TAB2a的端部平行 且與TAB 2a的端部在水平方向分離指定的距離之位置上。 接著,第1刀刃驅動機構265A係使第1刀刃264A下降以 將ACF3a切斷。其結果,能將ACF3a切斷成對應於TAB2a 的長度,可將 ACF3a高精度地貼附於TAB2a (參照圖9 (b ))。 又,驅動輸出部274係自記憶部抽出依據前次的圖像 測定所決定之第2刀刃264B進行切斷的位置。接著,依據 所抽出的切斷位置來生成驅動信號並對第2刀刃驅動機構 265B輸出。接著,第2刀刃驅動機構265B係依據所接收 的驅動信號使第2刀刃264B旋轉及水平移動。 藉此,第2刀刃264B係配置在與位在比TAB2b還靠 -23- 201203408 近一個剝離夾頭263側的TAB2c的端部平行且和TAB2c的 端部分離指定距離的位置上。接著,第2刀刃驅動機構265 B 使第2刀刃264B下降以切斷ACF3a »其結果,能將ACF3a 切斷成對應於TAB2c的長度,可將ACF3a高精度地貼附於 TAB2c (參照圖 9b )。 本案施形態中,第1刀刃264A配置在攝像相機266的 攝像區域T的上方,第2刀刃264B配置在比攝像相機266 的攝像區域T還偏靠剝離夾頭263側一個節距量的位置 上。因此,可容易地確保第1刀刃驅動機構265A和第2刀 刃驅動機構265B的配置空間。 又,將用以形成要開始剝離ACF3a之切斷部分的第1 刀刃264A配置在攝像相機266的攝像區域T之上方。藉 此’迄至利用第1刀刃264A切斷ACF3a以前,TAB2的端 部與基準線L的距離(ΔΧ)和傾斜(△ 0 )不可能變化, 能在與TAB2的端部分離指定的距離之位置正確地切斷 ACF3a。其結果,能將ACF3a從基膜3b確實地剝離。 此外,在第1及第2實施形態中,至少將第1刀刃264A 配置在攝像相機2'66的攝像區域T之上方。然而,本發明 的刀刃亦可配置在比所有的攝像區域T還靠近剝離夾頭側 (下游側)。 3 ·第3實施形態 〔預壓接單元〕 其次’針對本發明的FPD模組組裝裝置之第3實施形 -24- 201203408 態,茲參照圖1 0〜圖1 2作說明。 圖10係顯示本發明的FPD模組組裝裝置之第3實施形 態的預壓接單元的平面圖。圖1 1係第3實施形態的ACF 貼附部之構成示意圖。 FPD模組之組裝裝置的第2實施形態係具有和第1實 施形態的FPD模組組裝線1 〇 (參照圖2 )同樣的構成。此 FPD模組的組裝裝置之第2實施形態與FPD模組組裝線10 之差異點爲預壓接單元600。因此,在此針對預壓接單元 600作說明,且將與FPD模組組裝線10共通的構成之說明 省略。 如圖10所示,預壓接單元600具備:TAB供給部620、 ACF貼附部630及搭載部280。TAB供給部62 0具備:捲筒 221、使捲筒221旋轉的捲筒進給機構62 2、及沖切機構623。 搭載於顯示基板1的TAB2係作成長尺寸的帶狀薄膜 而被捲繞於捲筒221。捲筒221係藉捲筒進給機構622旋轉 使帶狀薄膜以規定節距送出。沖切機構623係沖切由捲筒 221所送出的帶狀薄膜’將TAB2個別地切出。被切出的 TAB2係由取出機構624(參照圖11)取出並供給至ACF 貼附部630。 如圖11所示,ACF貼附部630係具備搬入用十字臂 660、ACF貼附部件670及搬出用十字臂680 » 搬入用十字臂6 60具備4個臂片660a,用以朝ACF貼 附部件670供給TAB2。搬入用十字臂660的4個臂片660a -25- 201203408 各自具有將TAB2真空吸附的TAB夾頭661。搬入用十字臂 660大致是一次旋轉90度以將各臂片660a配置在取出位 置、清掃位置、攝像位置及載置/壓接位置。 沖切機構623和取出機構624配置在取出位置。在該 TAB取出位置,取出機構6 24的上下反轉臂624a係從沖切 機構623取出TAB2並遞交於TAB夾頭66卜在清掃位置配 置有刷子625。在此清掃位置,刷子625係對被TAB夾頭 661所吸附的TAB2中貼附ACF3a的面進行清掃。 第1攝像相機626配置於攝像位置。在該攝像位置, 第1攝像相機626'自下方攝像被TAB夾頭661吸附的 TAB2,以檢測TAB2的端部(貼附ACF3a的邊)的長度與 校準標記710A、710B(參照圖12)。載置/壓接位置上配·置 有ACF貼附部件670。在該載置/壓接位置,TAB夾頭661 所吸附的TAB2被遞交於ACF貼附部件670。有關ACF貼 附部件670,將於後面參照圖1 2作詳細說明。 搬出用十字臂6 80係與搬入用十字臂660同樣地具備4 個臂片680a,用以對搭載部280供給TAB2。搬出用十字臂 680.的4個臂片680a係各自具有將TAB2真空吸附的剝離 夾頭681。搬出用十字臂6 80大約一次旋轉90度以將各臂 片6 80a配置在剝離位置、攝像位置、搬出位置及待機位置。 ACF貼附部件670配置在剝離位置。在該剝離位置, 貼附著ACF3a(參照圖12)的TAB2係被剝離夾頭681所 吸附。第2攝像相機627配置在攝像位置。在該攝像位置, •26- 201203408 第2攝像相.機627係從下方拍攝被吸附於剝離夾頭681的 TAB2。藉第2攝像相機627所拍攝的圖像被輸出於圖像處 理裝置(未圖示),以檢查ACF3a對TAB2的貼附狀態。 收付部275配置在搬出位置(參照圖10)。在該搬出位 置,藉由依據在攝像位置所拍攝的圖像之檢查而被判定合 格的TAB2係被遞交於收付部275。收付部275係將所供給 的TAB2遞交於搭載部280。此外,搭載部280由於和第1 實施形態的相同,故省略重複的說明。在待機位置中,未 吸附TAB2的剝離夾頭681係待機中。此外,在攝像位置中 之檢查結果不合格的TAB 2,係在待機位置被廢棄並回收至 未圖示的回收部。 〔ACF貼附部件〕 其次,針對ACF貼附部件670,茲參照圖12作說明。 圖1 2係第3實施形態的ACF貼附部之斜視圖。 圖12所示的ACF貼附部件670係將ACF帶3的ACF3a 貼附於從搬入用十字臂660供給之TAB2的2個邊上。此 ACF貼附部件670具備:未圖示的供給捲筒、導輥691 A、 691B、691C、基膜回收部692、第1刀刃694A及第2刀刃 694B。而且,ACF貼附部件670具備:ACF導引件696、壓 接..刃,697、下支承件698、吸附用支承件699、剝離輥701、 移動夾頭702A、702B及固定夾頭703» 第1刀刃694A和第2刀刃694B係在平行於ACF帶3 的進給方向之方向(ACF帶的長邊方向)上隔著適當的間 -27- 201203408 隔作配置。第1刀刃694 A係透過第1刀刃驅動 示)移動於上下方向和ACF帶3的長邊方向》 刀刃694A係透過第1刀刃驅動機構以與ACF : 軸爲中心轉動。 第2刀刃694B係與第1刀刃694A同樣地 刀刃驅動機構(未圖示)而移動於上下方向和 邊方向。又,第2刀刃694B係透過第2刀刃驅 ACF帶3正交的軸爲中心轉動。 .第1刀刃69 4A和第2刀刃69 4B係對ACF 切。在該等刀刃694A.、694B間設有鏤空臂(诗 鏤空臂係將刀刃694 A、694B所形成的2個半切 的ACF3a貼附於黏著帶並予以除去。 ACF導引件696係表面進行平滑加工的 件,且與TAB夾頭661對向的表面被施作氟樹 此,自基膜3b伸出的ACF3a係成爲没有黏著| 件696。ACF導引件696係將ACF帶3及載置 的ACF3a上的TAB2支持成可移動。 此外,在圖12中雖顯示TAB夾頭661自搬 660的臂片660a脫離,但TAB夾頭661係連接 而形成一體。此TAB夾頭661係連同臂片660a 將TAB2朝被.送到ACF導引件696上的ACF帶 按壓。又,在TAB夾頭661及ACF導引件69.6 器,例如以70〜90°C對TAB2及ACF帶3加熱 機構(未圖 然後,第1 帶3正交的 ,透過第2 ACF帶的長 動機構以與 帶3施行半 5圖示)。此 部位間過剩 不鏽鋼製構 脂加工。藉 冷ACF導引 於ACF帶3 入用十字臂 於臂片660a 一起下降, 3 的 ACF3a 內建有加熱 -28- 201203408 壓接刃697係透過昇降機構(未圖示)而下降,且在 其與下支承件69 8之間夾住TAB2及ACF帶3,例如以2MPa 進行加壓。又,在壓接刃697及下支承件698之與ACF帶 3對向的部分內建有加熱器,以例如70〜90°C將TAB2及 ACF帶3加熱。此外,TAB夾頭661、ACF導引件696、壓 接刃697及下支承件698的加熱溫度和加壓力,係因應要 使用的ACF之特性作適當設定。 移動夾頭7 02A、702B係各自夾持已去除過剩的ACF3a 的2個半切間的基膜3b。該等移動夾頭702A、702B係各 自被夾頭座705A、705 B所支持。夾頭座705A、705 B係使 移動夾頭702A、702B朝與ACF帶3的進給方向或朝與進 給方向相反的方向移動一個節距量。又,固定夾頭703係 配置在導輥691C和基膜回收部692之間,夾持從ACF3a 剝離的基膜3b。 其次,針對ACF貼附部件670的動作進行說明。 ACF帶3係依導輥691A而改變方向,配置在ACF導 引件696上的固定位置。ACF帶3係在被配設於ACF導引 件696之前,藉由刀刃694A、694B對ACF帶3施行半切。 此時,刀刃69 4A、69 4B係依據從藉第1攝像相機626拍攝 的圖像所檢測出之TAB2的端部(貼附有ACF3a的邊)的 長度及傾斜而被驅動控制。針對該等刀刃694A ' 694B的驅 動控制,將於後面詳細說明。 搬入用十字臂6 60的TAB夾頭661係將TAB2真空吸 -29- 201203408 附並搬送,且載置於沿著ACF導引件696延伸的ACF帶3 之ACF3a上並予以加壓。此時,TAB夾頭661係依據藉第 1攝像相機626拍攝的TAB2之校準標記710A、710B而被 驅動,並修正TAB2對ACF3a的姿勢(X,γ,0 )。 又,壓接刃69 7係透過昇降機構(未圖示)而下降, 且夾住位在其與下支承件69 8之間的TAB2及ACF帶3,例 如以2MPa進行加壓。另一方面,搬出用十字臂6 80的剝離 夾頭681係吸附被吸附用支承件699所支持的TAB2。然 後,移動夾頭702A、702B係各自夾持基膜3b,固定夾頭 703係放開基膜3b。 完成加壓後的TAB夾頭661係將真空吸附開放於大氣 中且自TAB2離開。又,完成加壓後的壓接刃697係透過昇 降機構而上昇。接著,夾頭座70 5A、7 05 B係使夾持著基膜 3b的移動夾頭702 A、702 B朝進給方向移動一個節距量。 藉此,TAB 2及ACF帶3係朝進給方向被送出一個節距量。 此時,貼附於被剝離夾頭681所吸附的TAB2上的 ACF3a和基膜3b之間插入有剝離輥701’用以使基膜3b從 A C F 3 a剝離。 當完成TAB2及ACF帶3之送出時,固定夾頭7〇3係 夾持已剝離了 ACF3a的基膜3b。接著,移動夾頭7〇2a、7〇2B 放開基膜3b,透過夾頭座705 A、705 B而朝與進給方向相 反的方向移動一個節距量。 另一方面,搬入用十字臂660和搬出用十字臂68〇係 -30- 201203408 旋轉約90度。藉此,在ACF導引件696的上方配設被搬入 用十字臂660的TAB夾頭661所吸附的TAB2。又,貼附有 被搬出用十字臂680的剝離夾頭681所吸附之ACF3a的 TAB2被遞交於收付部275,吸附用支承件699的上方配置 著未吸附TAB2的剝離夾頭681。藉此,ACF貼附部件670 的動作完成一個循環,利用刀刃694A、694B進行ACF帶3 之半切。 〔刀刃的驅動控制〕 其次,針對ACF貼附部630中的刀刃694A、694B之 驅動控制,茲參照圖1 3作說明。 圖13 ( a )係顯示在ACF貼附部630進行之TAB2的攝 像之攝像區域的說明圖。圖1 3 ( b )係說明在ACF貼附部 630中進行的TAB2之圖像測定的說明圖。 ACF貼附部630的刀刃694A、694B之驅動控制的控制 電路係和第1實施形態相同(參照圖6 )。 在ACF貼附部630中,係透過圖像處理裝置271檢測 端子部分S的位置。且檢測TAB2的端部(貼附ACF3a的 邊)之長度和對端子部分之傾斜。 第1攝像相機626係具有雙場透鏡,用以拍攝設有2 個校準標記710A、710B之包含有TAB2的2個角部之攝像 區域ΤΙ、T2。圖像處理裝置271係透過2個校準標記710A、 71 0B來檢測端子部分S的位置。且從攝像區域T1中的角區 域Ml和攝像區域T2中的角區域M2,檢測TAB2的端部(貼 -31- 201203408 附ACF3a的邊)之長度Μ »接著,檢測TAB2 (進行方向)相對於前後的邊的端子部分S之* 此外,本發明的攝像部未限定是具有雙場 攝像相機6 2 6,例如亦可藉由2個攝像相機和稜 在此情況,一攝像相機透過稜鏡拍攝攝像區域 像相機透過稜鏡拍攝攝像區域Τ2。又,在因應 而變更攝像區域ΤΙ、Τ2的位置之情況,可藉由 像相機並使稜鏡移動或固定稜鏡並使2個攝像 因應。 演算處理部273係依據端子部分S的位 ΤΑΒ2對ACF3a之姿勢(X,Υ,0 )的修正値。ί 的端部之長度Μ和ΤΑΒ2的進給方向(進行方 前後的邊之端子部分S的傾斜,決定刀刃694 A 行切斷的位置。然後,將第2刀刃694B要進行 記憶於記憶部(未圖示)。 驅動輸出部274,係基於根據本次的圖像測 第1刀刃694A之切斷位置而産生驅動信號,並 刀刃驅動機構265A。第1刀刃驅動機構265A TAB2位於攝像位置時,依據所接收的驅動信號 694A旋轉及水平移動。 藉此,第1刀刃694A係被配置在與對應的 給方向的前側邊平行且與TAB2的端部之長度 置。接著,第1刀刃驅動機構265A使第1刀3 的進給方向 傾斜。 透鏡的第1 鏡來構成。 T1,另一攝 TAB的種類 固定2個攝 相機移動來 置,來決定 ί依據TAB2 向)相對於 、694Β要進 切斷的位置 定所決定的 :輸出到第1 係在對應的 使第1刀刃 J ΤΑΒ2之進 Μ對應的位 ]694Α下降 -32- 201203408 且切斷ACF3a。 又,驅動輸出部274爲,在對應的TAB2是配置在載置 /壓接位置(ACF導引件696的上方)時,抽出被記憶在記 憶部之第2刀刃264 B要進行切斷的位置。接著,依據所抽 出的切斷位置來産生驅動信號·,並輸出到第2刀刃驅動機 構265B。第2刀刃驅動機構265B係依據所接收的驅動信 號使第2刀刃694B進行旋轉及水平移動。 藉此,第2刀刃694B係配置在與對應的TAB2之進給 方向的後側邊平行且與TAB2的端部之長度Μ對應的位 置。接著,第2刀刃驅動機構2 65 Β係使第2刀刃69 4Β下 降以切斷ACF3a。其結果,能將ACF3a切斷成因應所對應 之TAB2的長度,可將ACF3a高精度地貼附於TAB2。 依據上述之第1〜第3實施形態,係利用攝像相機266 (626 )拍攝TAB2的端部以進行圖像測定,依據其結果來 決定ACF3a的切斷位置。其結果,能將ACF3a切斷成因應 TAB2的個體差之長度,可高精度地貼附於對應的TAB2。 在上述的第1〜第3實施形態中,係使用2個刀刃作爲 切斷部,但本發明的刀刃也可以是1個。在該情況下,成 爲利用1個刀刃切斷相對於TAB2的ACF3a的2個切斷位 置。 以上,係針對本發明的FPD模組之組裝裝置的實施形 態,且包含其作用效果作說明。然而,本發明的FPD模組 之組裝裝置並未受限於上述的實施形態,可在未悖離申請 -33- 201203408 專利範圍所記載之發明要旨的範圍內進行各種變形且實 施。 【圖式簡單說明】 圖1係顯示在本發明進行組裝組裝的FPD模組之示意 構成的平面圖。 1 圖2係顯示本發明的FPD模組組裝裝置之第1實施形 態的FPD模組組裝線之平面配置圖。 圖3係顯示本發明的FPD模組組裝裝置之第1實施形 態的預壓接單元的平面圖。 圖4 ( a )係本發明的FPD模組組裝裝置之第1實施形 態的ACF貼附部的平面圖,圖4 ( b )係ACF貼附部的側面 圖。 圖5係說明本發明的FPP模組組裝裝置之第1實施形 態的ACF貼附部的刀刃之驅動的說明圖。 圖6係顯示本發明的FPD模組組裝裝置之第1實施形 態的ACF貼附部的刀刃之控制電路的方塊圖。 圖7 ( a )係說明在本發明的FPD模組組裝裝置之第1 實施形態的ACF貼附部中進行之電子零件的圖像測定之說 明圖,圖7(b)係顯示被切斷的A CF之斷面圖。 圖8係說明本發明的FPD .模組組裝裝置之第2實施形 態的ACF貼附部的刀刃之驅動的說明圖。 圖9 ( a )係說明在本發明的FPD模組組裝裝置之第2 實施形態的ACF貼附部中進行之電子零件的圖像測定的說 -34- 201203408 明圖’圖9( b.)係顯示被切斷的AC F之斷面圖。 圖1 〇係顯示本發明的FPD模組組裝裝置之第3實施形 態的預壓接單元的平面圖。 圖1 1係顯示本發明的FPD模組組裝裝置之第3實施形 態的ACF貼附部的構成示意圖。 圖1 2係本發明的FPD模組組裝裝置之第3實施形態的 ACF貼附部之斜視圖。 圖1 3 ( a )係顯示在本發明的FPD模組組裝裝置之第3 實施形態的ACF貼附部進行之電子零件的攝像之攝像區域 的說明圖,圖13 ( c )係說明在ACF貼附部中進行之TAB2 的圖像測定之說明圖。 【主要元件符號說明】 1 顯示基板 2 TAB 3 ACF帶 3a ACF 3b 基膜 4 FPC 5 IC晶片 6 PCB 7 FPD模組 10 FPD模組組裝線 100 接入單元 -35- 201203408 200、 600 預壓 接 單 元 220 ' 620 TAB 供 給 部 221 捲筒 222 ' 622 捲筒 進 給 機 構 223、 623 沖切 機 構 230、 23 0A、 63 0 ACF 貼 附 部 233 供給 捲 筒 234 導輥 235 夾輥 236 回收 捲 筒 250 ACF 平 台 25 1 刀刃 252 TAB 平 台 260 臂 261、 661 TAB 夾 頭 262 排出 臂 263 ' 68 1 剝離 夾 頭 264A 、6 9 4 A 第1 刀 刃 264B 、694B 第2 刀 刃 265A 第1 刀 刃 驅 動 機 構 265 B 第2 刀 刃 驅 動 機 構 266 攝像 相 機 268 鏤空 臂 -36- 201203408 269 昇 降 部 27 1 圖 像 處 理 裝 置 272 控 制 裝 置 273 演 算 處 理 部 274 驅 動 輸 出 部 280 搭 載 部 300 正 式 壓 接 單 元 400 PCB 連 接 單 元 500 搬 出 單 元 624 取 出 機 構 624a 上 下 反 轉 臂 62 刷 子 626 第 1 攝 像 相 機 627 第 2 攝 像 相 機 660 搬 入 用 十 字 臂 670 ACF 貼 附 部 件 680 搬 出 用 十 字 臂 691A、 691 B 、69 1C 導 i 混 692 基 膜 回 收 部 696 ACF 導 引 件 697 壓 接 刃 701 剝 離 輥 702A、 702B 移 動 夾 頭 -37- 201203408 703 固定夾頭 705 A、705 B 頭座 7 10A ' 7 10B 校準標記 -38-201203408 VI. Description of the Invention: The present invention relates to an assembly apparatus for an FPD module in which an electronic component is mounted on a display substrate of a flat panel display (FPD: Flat Panel Display). [Prior Art] Regarding the FPD aspect, there are, for example, a liquid crystal display or an organic EL (electro-luminescence) display, a telegraphic display, and the like. In the peripheral portion of the display substrate in the FPD, driving 1C is mounted, or TAB (Plasma Automated Bonding) such as C0F (Chip On Film) or FPC (Flexible Printed Circuit) is connected. A peripheral substrate such as a PCB (Printed Circuit Board) is mounted on the periphery of the display substrate. The result is assembled into an FPD module. The assembly line of the FPD module is equipped with devices such as 1C, TAB, and PC B mounted on the peripheral portion and the periphery of the display substrate of the FPD by performing a plurality of processing operations in sequence. Hereinafter, the display substrate will be referred to as a "substrate", and other substrates, for example, in the case of a PCB, will be clearly described as "PCB substrate j". In the processing example of the assembly line of the FPD module, there are (1) cleaning of the terminal of the TAB attaching portion at the end of the substrate, and (2) attaching anisotropic conductive to the end of the substrate after cleaning. ACF project of ACF (Anisotropic Conductive Film). (3) Mounting work in which the ACF is attached to the base plate and equipped with TAB or 1C, 201203408, and (4) The TAB or 1C that is mounted on the base is heated and crimped by ACF. (5) Pre-attach the PCB on the opposite side of the base side of the TAB and mount the PCB with the ACF attached PCB substrate. engineering. In addition, the PCB engineering consists of a number of projects. The ACF may be attached to either side of the member to be joined in advance. That is, in another example of the ACF project described above, the ACF is attached to the TAB or 1C side in advance. Further, on the display substrate module assembly line, depending on the number of sides of the substrate to be processed, the number of TABs or 1C to be processed, the number of each processing device, and the like, a processing device for rotating the substrate, etc. is required. In such a series of processes, the electrodes on the substrate are thermocompression-bonded to electrodes provided between TAB or 1C, and the electrodes are electrically connected via conductive particles inside the ACF. Further, when the crimping process is completed, since the ACF substrate resin is hardened, the electrodes are mechanically connected while the electrodes are electrically connected, and the substrate is also mechanically connected to TAB or 1C. In general, when the number of TABs or 1Cs to be carried is increased, the number of ACFs attached will also increase. Further, although there is a method in which the ACF is attached to the display substrate while maintaining the elongated single sheet shape, it is not preferable because the ACF attached to the portion where the TAB or the 1C is not mounted is wasted. Here, the electronic component called TAB in the present invention is called TCP (Tape Carrier Package) or COF (Chip On Film) depending on the detailed shape or the difference in thickness of the member. The TCP or COF is configured by mounting a 1C wafer on an FPC (Flexible Printed Circuit) equipped with a 201203408 line on a long-sized polyimide film having a Sprocket hole and cutting it out. There is no difference in assembly. Also, is there a case where only FPCs without 1C chips are assembled according to the design of the panel? In the assembly and assembly process of the FPD, there is no substantial difference between the components, so it is referred to as TAB in the present invention. Patent Documents 1 and 2 describe a method of pre-pressing an electronic component after attaching the ACF to the electronic component. An assembly device for the FPD module attached to the substrate. In the assembly apparatus of the FPD module described in Patent Document 1, the ACF is cut to a predetermined length and attached to an electronic component. However, the related technology of the alignment of the two has not been revealed. On the other hand, in the assembly apparatus of the FPD module described in Patent Document 2, the edge portion of the ACF that has been cut to a predetermined length is detected by the imaging camera, and the edge of the ACF is aligned with the edge of the electronic component. To perform ACF positioning of electronic components. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. 2009-A No. 2009-26831 Problem to be Solved] The electronic components such as COF attached to the substrate of the FPD module are usually supplied with a long strip-shaped film, and are punched out by a punching mechanism to be individually cut out. Therefore, an error (individual body difference) is generated in the size or shape of the electronic component in accordance with the size of the mold set on the punching mechanism 201203408 error or wear. However, in the assembly apparatus of the FPD module described in Patent Documents 1 and 2, the ACF is previously cut to a predetermined length. Therefore, when an error occurs in the size or shape of the electronic component, there is a problem that an ACF of an inappropriate length is attached to the electronic component. For example, in the assembly apparatus of the FPD module described in Patent Document 2, when the edge portion of the die-cut electronic component is inclined due to a dimensional error of the mold or the like, it is generated at the edge of the ACF and the opposite side of the electronic component. Positional deviation. SUMMARY OF THE INVENTION An object of the present invention is to provide an assembly apparatus for a flat panel display which can be attached to an electronic component with high precision in consideration of the actual situation in the prior art described above, in accordance with the length of the individual difference of the electronic components. [Means for Solving the Problem] In order to achieve the object of the present invention, an assembly apparatus for an FPD module according to the present invention includes an imaging unit that detects an end portion of an electronic component, a cutting position determining unit, and a cutting unit. . The cutting position determining unit determines the cutting position of the ACF based on the shooting result of the image capturing unit, and drives the cutting position determined by the cutting unit to cut off the ACF°. [Invention Effect] Assembly of the FPD module according to the present invention The device takes an image of the end of the electronic component and measures the image, and determines the position of the ACF cut 201203408 based on the result. As a result, the ACF can be cut to a length corresponding to the individual difference of the electronic component, and can be attached to the electronic component with high precision. [Embodiment] Hereinafter, an embodiment of an assembly device for implementing an FPD (Flat Panel Display) module will be described with reference to Figs. 1 to 13 . . In the drawings, the same reference numerals are given to the common components. [FPD Module] First, the FPD module will be described with reference to FIG. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing the schematic configuration of an FPD module assembled and assembled in the present invention. As shown in FIG. 1, the FPD module 7 is constructed by connecting a plurality of TABs through the ACF joint on the peripheral portion of the display substrate 1, and connecting the PCB6=TAB2 to the flat rectangular polyimide on a part of the TAB2. An electronic component in which a 1C wafer 5 is mounted on an FPC (Flexible Printed Circuit) 4 in which a copper foil printed circuit (not shown) is formed on the film. The 1C wafer 5 is assembled in the approximate center of the FPC 4. A printed circuit is provided under the FPC 4, and external guide terminals (not shown) are provided on both sides (two long sides) in the longitudinal direction. Depending on the type of TAB2, there is a case where the 1C wafer 5 is located on the lower side (COF type) or a case where there is no 1C wafer (FPC type). Fig. 1 shows a form (TAB type) in which the 1C wafer 5 is embedded in the hole of the FPC 4. Further, although TAB2 or PCB6 differs in circuit from each other due to the connection portion, since the description of the mounting assembly does not need to be distinguished, the drawings are identical. 201203408 1 · First Embodiment [Assembly line of FPD module] Next, an FPD module assembly line for assembling and mounting an FPD module according to the present invention will be described with reference to FIG. 2 and FIG. 2 shows an FPD module. The FPD module assembly line 10 of the assembly line as a whole is composed of the access unit 1 〇〇, 200, the formal crimping unit 300, the PCB connecting unit 400, and the throwing. Each unit has racks 103, 203, 303, and 403. The transport rails 101, 201, and 301 are provided on the operation surface side of the rack, and adjacent transport rails are connected. The transport rails 101, 201, 301, and 401 support the transport planes 302 and 402 to be movable. The transporting platforms 102 and 402 are configured to transport the display substrate 1 to the work position g of the next unit. The carry-out unit 500 is provided separately for picking up the display substrate, but the carry-out from the carry-out unit 500 is usually different depending on the factory. Therefore, it is omitted here. The pre-crimping unit 200, the final crimping unit 300 and the unit 400 are provided with a reference and a 404 for placing the working side of the display substrate 1. The reference rods 204, 304, and 404 adsorb the display side and flatten the display substrate 1. The reference and the 044 series together with the rear end of each of the units 200, 300, and 400) stably hold the display substrate 1 in operation. The pre-crimping unit 200 is a first real map in which the TAB 2 is pre-compressed by the ACF. The pre-crimping unit i exits the units 500 and 503. Each of 401 and 501, station 102, 202, 202 '302 and set. In addition, the first device has a PCB connection single pole 204, 304 indicating the rod 204, 304 support of the substrate 1 (not shown in the three sides of the long side and the two short sides of the board of the 201203408 board 1 The configuration of the TAB2 (see Fig. 1) is pre-compressed in the following. The final crimping unit 3 00 has three main crimping parts 3 20A, 3 20B and 3 20C, and is mounted on the side. The TAB2 (see Fig. 1) on the three sides of the display substrate 1 is simultaneously subjected to a pressure bonding operation. The three types of the final crimping portions 320A, 320B, and 320C include a final crimping joint having an upper blade and a lower blade. The lower blade is heated by the heater to heat and pressurize the TAB 2 and is connected to the display substrate 1. When the TAB 2 is officially pressure-bonded to the display substrate 1, the display substrate 1 to which the TAB 2 is pre-compressed is supported from the lower side by the lower blade. Pressurizing the upper edge of the blade. The ACF pressurized by the upper blade is thermally cured, for example, by heating at 190 ° C for 5 seconds. There is a need for a moving mechanism in the final crimping unit 300 for pre-crimping The final crimping portion 3 20B, 3 for the final crimping of the TAB 2 on the gate side of the two short sides of the display substrate 1 20C moves in the left-right direction (the direction in which the cells are arranged). However, since the final crimping operation with the longest tact time can be performed at the same time, there is an advantage that the overall waiting time can be shortened. The unit 400 connects the PCB substrate to the TAB 2 connected to the source side of the long side of the display substrate 1. The PCB connection unit 400 includes a PCB supply device 430, an ACF attaching device 440, a transfer device 450, and a formal crimping portion. 460 » The PCB supply device 430 supplies the PCB substrate supplied from the carrier (not shown) one by one to the left and right ACF attaching devices 440. The ACF pin -10- 201203408 is attached to the device 440 by the PCB supply device The ACF is attached to the PCB substrate supplied by 430. The transfer device 450 transports the PCB substrate on which the ACF is attached to the final crimping portion 460. Then, the final crimping portion 460 pressurizes and connects the PCB board to the main board. A plurality of source side TABs. [Pre-compression bonding unit] Next, the pre-crimping unit 200 will be described with reference to Fig. 3. Fig. 3 is a plan view of the pre-crimping unit 200. As shown in Fig. 3, the pre-crimping unit 200 with TAB supply unit 2 20. The ACF attaching unit 230 and the mounting unit 280. The TAB supply unit 220 includes a reel 221, a reel feeding mechanism 222 for rotating the reel 221, and a punching mechanism 223 » TAB2 mounted on the display substrate 1 The long strip-shaped film is wound around the reel 221. The reel 221 is rotated by the reel feeding mechanism 222, and the strip-shaped film is fed at a predetermined pitch. The punching mechanism 223 punches the strip-shaped film fed from the reel 221 and cuts the TAB 2 individually. The cut TAB2 is supplied to the ACF attaching portion 230. The ACF attaching portion 230 attaches the ACF 3a of the ACF tape 3 to one side (one long side) of the longitudinal direction of the supplied TAB 2. The TAB2 to which the ACF 3a is attached by the ACF attaching unit 230 is delivered to the receiving and dispensing unit 275. The receiving and receiving unit 275 is supported to be movable by the X-axis guide 276. The receiving unit 275 delivers TAB2 to the mounting unit 280. The mounting portion 280 is composed of a long-side mounting portion 280A in which the TAB 2 is mounted on the long side of the display substrate 1, and a short-side mounting portion 280B and 28 0C in which the TAB 2 is mounted on the short side -11-201203408 of the display substrate 1. . The long-side mounting unit 28 0A and the short-side mounting units 280B and 280C receive the TAB 2 from the receiving unit 27 5 . The long-side mounting portion 280A includes a shuttle chuck 281, a Y-axis guide 282, an X-axis guide 283, a mounting member 285, an X-axis guide 286, and a camera portion 287. The shuttle chuck 281 picks up the TAB 2 from the receiving portion 275. This shuttle chuck 281 is supported to be movable by the Y-axis guide 282. Moreover, the gamma axis guide 282 is supported to be movable by the X-axis guide 283. Accordingly, the shuttle chuck 281 is movable in the horizontal direction. Two shuttle chucks 281 and Y-axis guides 282 are provided. Further, the two Y-axis guides 282 have a common X-axis guide 283. The mounting member 285 is composed of a mounting base 291, a TAB table 292, a mounting head 293, and a receiving head 294. The mount 291 is supported to be movable in the X-axis guide 286 and moved to the TAB mounting position of the long side of the display substrate 1. The TAB stage 292, the mounting head 293, and the receiving head 294 are disposed on the mounting base 291. The shuttle chuck 281 is close to the mounting base 291 and the TAB 2 is delivered to the TAB table 292. The receiving head 294 delivers the TAB 2 on the TAB station 292 to the mounting head 293. The mounting head 293 pre-compresses the TAB 2 supplied from the receiving head 294. . (Mounted) on the TAB mounting position of the display substrate 1. At this time, before the mounting seat 291 moves, the pair of camera units 287 which are placed under the both end portions of the mounting position and each having the two-field lens in advance capture the mounting mark of the display substrate 1 and the positioning mark of the TAB 2 in advance. The positioning error -12-201203408 calculated based on the image measurement is transmitted to the mounting head 293, and the mounting head 293 adjusts the positioning position (positioning) based on the received individual adjustment —, and the TAB2 is mounted on the display. Substrate 1. Further, the mounting member 285 and the camera portion 287 of the long-side mounting portion 280A are provided in two groups corresponding to the shuttle chuck 281. Further, the two mounting bases 291 share an X-axis guide 286. The short side mounting portions 280B and 280C have the same configuration as the long side mounting portion 280A. In other words, each of the short-side mounting portions 280B and 280C includes a shuttle chuck 281, an X-axis guide 296, a Y-axis guide 297, a mounting member 285, a Y-axis guide 298, and a camera unit ( Not shown). The shuttle chuck 281 of the short side mounting portions 280B, 280C is supported to be movable to the X-axis guide 296, and the X-axis guide 296 is supported to be movable by the Y-axis guide 297. The mounting base 291 of the short side mounting portions 280B and 280C is supported to be movable by the Y-axis guide 298 and moved to the TAB mounting position in the short side of the display substrate 1. When the display substrate 1 is placed on the reference lever 204, it is delivered in a state in which the reference numerals of both ends are photographed in advance by the camera unit 287 and the calibration adjustment is performed. However, in order to avoid variations in the mounting position due to the dimensional error of the display substrate 1, even if it is mounted by the mounting head 293, it is also required to enter separately. Line calibration. [ACF Attachment Section] Next, the ACF attachment section 230 will be described with reference to Figs. 4 and 5 . -13- 201203408 Fig. 4 (a) shows a plan view of the ACF attaching portion 230. Fig. 4 (b) is a side view of the ACF attaching portion 230. FIG. 5 is an explanatory view for explaining the driving of the blade of the ACF attaching portion 230. As shown in Fig. 4, the ACF attaching portion 230 includes a supply reel 233, a guide roller 234, a nip roller 235, a recovery reel 236, an ACF stage 250, a blade 251, and a TAB stage 252. Further, the ACF attaching portion 230 includes a TAB chuck 261 and a peeling chuck 263. Further, the ACF attaching unit 230 includes a first blade 264A, a second blade 264B, a first blade drive mechanism 265A, a second blade drive mechanism 265B, an imaging camera 266, and a hollow arm 268 » a first blade 264A and a second The blade 264B is a specific example of the cut portion. The ACF tape 3 is formed by applying ACF3a (20 to 30 #m) to one surface of the strip-shaped base film 3b having a thickness of 35 # m, and is wound around the supply reel 2 3 3 with the ACF 3a inside. The supply spool 233 feeds the ACF tape 3 while controlling the delivery length and speed by a delivery motor (not shown). Since the feed amount of the ACF tape 3 is affected by the residual amount of the supply reel 23 3, it is measured by the flanged guide roller 234. Usually, in the case of managing the feed amount of the belt running, the surface facing the guide roller 234 is pressed by a rubber nip roller so that the belt does not slide. However, in the present embodiment, since the adhesive ACF 3a is attached to the nip roller, the nip roller is not used. As shown in Fig. 5, the first cutting edge 264A and the second cutting edge 264B are arranged at an appropriate interval in a direction parallel to the feeding direction of the ACF tape 3 (longitudinal direction of the ACF tape) -14 - 201203408. The first blade drive mechanism 2 65 A (see FIG. 4 ) includes a lift drive unit that moves the first blade 264A in the vertical direction, a horizontal drive unit that moves in the longitudinal direction of the ACF tape 3 , and the ACF tape 3 . The orthogonal axes are the rotational driving portions that are rotated centrally. Further, the second cutting edge 264B (see FIG. 4) includes a lifting drive unit that moves the second cutting edge 264B in the vertical direction, a horizontal driving unit that moves in the longitudinal direction of the ACF tape 3, and is orthogonal to the aCF tape 3 The shaft is a centrally rotating rotary drive. The camera camera 266 simultaneously photographs the opposite end portions of the adjacent TABs to which the ACF 3a is attached. That is, the imaging area T of the imaging camera 266 includes the opposite ends of the adjacent TABs 2. The first cutting edge 264A and the second cutting edge 264B are disposed above the imaging region T of the imaging camera 266. Therefore, the cutting edges 264A and 264B are retracted to a position where no obstruction occurs when the imaging camera 266 photographs the end portion of the TAB 2 facing the TAB2. The drive control for the blades 264A, 264B will be described in detail later. The ACF belt 3 is redirected by the guide roller 234 and sent to a fixed position above the ACF platform 25 0 . The ACF stage 250 is a stainless steel member whose surface is smoothed, and the surface of the region opposed to the TAB chuck 261 is subjected to fluororesin processing. Thereby, the ACF 3a protruding from the base film 3b is not adhered to the ACF stage 250. The TAB collet 261 is disposed on the arm 260 (see FIG. 3), vacuum-adsorbs and transports the TAB 2, and pushes against the ACF 3a of the ACF belt 3 extending along the ACF platform 250. A heater is built in the portion of the TAB collet 261 opposite to the ACF tape 3 -15-201203408 to heat the crucible B2 to, for example, 70 to 90 °C. In this state, the TAB chuck 261 which adsorbs TAB2 is pressed downward so that the surface of the ACF tape 3 is pressurized, for example, 2 MPa. . Further, the surface temperature of the TAB 2 and the pressing force toward the ACF tape 3 are appropriately set depending on the characteristics of the ACF to be used. The TAB chuck 261 after completion of the pressurization is vacuum-adsorbed to the atmosphere, and the TAB 2 is placed on the TAB platform 252. Above. The TAB platform 252 is a belt conveyor belt having a cylindrical roller (not shown) at both ends, and the feed amount and feed rate of the TAB 2 are controlled by the cylindrical rollers at both ends. TAB2 and TAB released by the TAB chuck 261 The feed of the platform 252 is synchronously sent by the ACF tape 3 fed from the supply reel 233 by a pitch amount. This one pitch saves the waste of the ACF tape 3, and reliably peels off the base film 3b, and is made slightly longer than the long side of the TAB2 (the side to which the ACF3a is attached), so that the ACF3a does not bend excessively when the TAB2 is mounted. . In this example, set a pitch to the length of the long side of TAB 2 plus 0. The amount after 5mm. When TAB2 is at the specified interval (for example, 〇. When the 5 mm) is placed and fed, the first edge 264A and the second blade 264B are cut by the ACF 3a between the adjacent TABs. That is, the ACF tape 3 is half-cut by the blades 2 64A, 264B. In terms of half cut, in order to cut the ACF3a reliably, the cutting edges 264A, 264B are held at the bottom dead center position. 1 ~ 〇. For 2 seconds, the internal stress of the base film 3b ensures the time during which the grip portion is released. Thereby, the ACF tape 3 is in a state in which the ACF 3a is cut away and the base film 3b is kept continuous. -16- 201203408 The half-cut part is implemented in the ACF platform 25 0. In order to resist wear, the surface is inlaid with a hardened high-speed tool steel. The high-speed tool steel can be replaced when worn. When the ACF3a between the adjacent TAB2 is incisive, the hollow arm 268 around which the adhesive tape is wound is moved to the lower side through the lifting portion 26 9 and the blade is borrowed. The excess ACF layer 33 formed by 264A and 264B is attached to the adhesive tape and removed. The TAB 2 is sent to the blade 251 provided at the end of the ACF platform 250. Next, vacuum suction is performed by the peeling chuck 263. The peeling chuck 263 has an adsorption pad made of a porous ceramic instead of a general vacuum suction hole, and the TAB 2 can be vacuum-adsorbed. The peeling chuck 263 sucks the TAB 2 just before the half-cut portion on the front side in the direction in which TAB is proceeding reaches the blade 251, and pulls it toward the left in Fig. 4 at a speed synchronized with the feed speed of the ACF tape 3. Thereby, the base film 3b is peeled off to complete the peeling process. At this time, the base film 3b is peeled off from the TAB 2 while being stretched by the acute angle portion of the blade 251, so that the base film 3b can be stably peeled off. In particular, in the vicinity of the left end portion (the end portion on the front side in the direction of progress) of the TAB 2 as the peeling start point, half cut is performed on the ACF 3 a in advance, and the beginning of peeling is easily obtained. In the unlikely event that the adjacent ACF3a is adhered again with the half-cut portion, the ACF3a positioned on the front side of the half-cut portion is stretched to the left in FIG. 4 by the previous peeling, since the stretching direction is not the base film 3b. The direction of the progress is not easy to peel off. -17- 201203408 The peeled base film 3b' is retracted by the guide roller 234 with the flange and the rubberized nip roller 235' by a predetermined feed rate at a predetermined feed rate. Winding. Here, since the base film 3b from which the ACF 3a has been peeled is wound by the nip roller 235, there is no need to worry that the surface of the nip roller 25 5 or the guide roller 234 adheres to the ACF 3a and is soiled. The peeling chuck 263 is attached to the discharge arm 262. On the other hand, the TAB2 to which the ACF 3a is attached is delivered to the depositing and dispensing unit 275 (see FIG. 3)», and the receiving and paying unit 275 submits the received TAB2 to the mounting unit 280. [Drive Control of Blade] Next, the drive control of the blades 264A and 264B in the ACF attaching unit 230 will be described with reference to Figs. 6 and 7 . Fig. 6 is a block diagram showing a control circuit for driving control of the cutting edges 264A, 264B. Fig. 7(a) is an explanatory view for explaining image measurement of TAB2 performed in the ACF attaching unit 230, and Fig. 7(b) is a cross-sectional view showing the cut ACF3a. .  As shown in Fig. 6, the control circuit for driving control of the blades 264A and 264B includes an imaging camera 266, an image processing device 271, and a control device 272. The image processing device 271 is electrically connected to the imaging camera 266 and the control device 272. Control device 272 is electrically coupled to blade drive mechanisms 265A, 265B. Camera phase. machine. The 266 system outputs an image of the end portion of the captured TAB 2 to the image processing device 27 1 . The image processing device 271 includes a position processing and a tilt of the end portion of the image detection TAB2 with respect to the reference line. The control device 272 includes an arithmetic processing unit 273 electrically connected to the image processing device 271, and a knife -18. - 201203408 Drive output unit 274 that is electrically connected to the blade drive mechanisms 265A and 265B. The calculation processing unit 273 determines that the cutting edges 264A and 264B are to be performed in accordance with the distance and inclination of the end portion of the TAB 2 and the reference line L (see FIG. 7( a )). The cut position. The drive output unit 274 generates a drive signal based on the cut position determined by the calculation processing unit 273 and outputs the drive signals to the blade drive mechanisms 265 A and 265 B. As shown in FIG. 7(a), the end of the TAB2 pushed to the ACF 3a of the ACF tape 3 is photographed by the camera 266. At this time, the blades 264 A, 264B are moved to the retracted position, and the imaging region T is captured by the imaging phase machine 266. Since the TAB 2 is punched by the punching mechanism 223, an error (individual difference) in size or shape depending on the dimensional error or wear of the mold or the like is caused. Therefore, when the cutting edges 264 A, 264 B are always lowered at the same position, the ACF3 a is cut off relative to the TAB 2 . Become uneven. For example, in the case where the ACF 3a protrudes long from the TAB 2, the reliability of peeling of the base film 3b is lowered. Then, in the ACF attaching portion 230, the distance (Δ X ) and the inclination (Δ 0 ) between the end portion of the TAB 2 and the reference line L are detected by the image processing device 271. Specifically, the angles and inclinations of the end portion (the front side in the traveling direction) of the TAB 2a on the TAB chuck 261 side of the adjacent TAB 2 from the reference line L are detected from the corner regions M1 and M2 in the imaging region T. Also, from the corner areas M3, M4 in the imaging area T. The distance and inclination of the end portion (the rear side in the direction) of the TAB 2b on the peeling chuck 263 side of the adjacent TAB 2 from the reference line 1 are detected. The calculation processing unit 273 determines that the first cutting edge 264 A is to be cut so that the cutting edge of the ACF 3a and the end portion of the TAB 2a are parallel in accordance with the distance and inclination of the end portion of the TAB 2a from the reference line 1 of -19 to 201203408. position. Further, the position at which the second cutting edge 264B is to be cut is determined such that the cutting surface of the ACF 3a and the end portion of the TAB 2b are parallel in accordance with the distance and inclination of the end portion of the TAB 2b from the reference line L. Next, the drive output unit 274 generates a drive signal based on the determined cut position and outputs the drive signals to the blade drive mechanisms 265A and 265B. The first blade drive mechanism 265A rotates and horizontally moves the first blade 264A in accordance with the received drive signal. Thereby, the first cutting edge 264A is disposed at a position parallel to the end of the TAB 2a and at a predetermined distance from the end of the TAB 2a in the horizontal direction. Next, the first blade drive mechanism 265 A lowers the first blade 264A to cut the ACF 3a. As a result, the ACF 3a can be cut to a length corresponding to the TAB 2a, and the ACF 3a can be attached to the TAB 2a with high precision (see Fig. 7b). Further, the second blade drive mechanism 265B rotates and horizontally moves the second blade 2 64 B in accordance with the received drive signal. Thereby, the second cutting edge 264B is disposed at a position parallel to the end of the TAB 2b and at a predetermined distance from the end of the TAB 2b. Next, the second blade drive mechanism 265B lowers the second blade 264B to cut the ACF 3a. As a result, the ACF 3a can be cut to a length corresponding to Ding 8 8 21), and 830-3 can be attached to Ding 3 3 25 with high precision (see Fig. 7 (b)). In the present embodiment, since the first cutting edge 264A and the second cutting edge 264B are disposed above the imaging region T of the imaging camera 266, the ACF 3a is cut at the position of the image measurement -20-201203408. Therefore, before the ACF 3a is cut by the cutting edges 264A and 264B, the distance (ΛΧ) and the inclination (A 0 ) between the end portion of the TAB 2 and the reference line L are unlikely to be changed, and the ACF 3a can be cut with high precision to the length of the corresponding TAB 2 . As a result, ACF3a can be prevented when ACF3a is peeled off. Attached to the base film 3b. Further, when pre-compression bonding of the TAB 2 to which the ACF 3a is attached is performed, it is possible to prevent the ACF 3a from being folded and adhered. 2. Second Embodiment [ACF Attachment Apparatus] Next, a second embodiment of an assembly apparatus for an FPD module according to the present invention will be described with reference to Fig. 8 . Fig. 8 is an explanatory view showing the driving of the blade of the ACF attaching portion according to the second embodiment of the assembling apparatus of the FPD module of the present invention. The second embodiment of the FPD module assembly apparatus has the same configuration as the FPD module assembly line 1 (see Fig. 2) of the first embodiment. The second embodiment of the assembly apparatus of the FPD module differs from the FPD module assembly line 1A in the ACF attaching portion 230A. Therefore, the description of the configuration in which the ACF attaching portion 230A is common to the FPD module assembly line 1A will be omitted. The difference between the ACF attaching portion 230A and the ACF attaching portion 230 of the first embodiment is the position of the second cutting edge 264B. As shown in Fig. 8, the second cutting edge 264B of the ACF attaching portion 230A is disposed at a position closer to the peeling chuck 263 than the imaging region T of the imaging camera 266 by one pitch. Here, although the hollow arm 26 8 is disposed, the second cutting edge 264B is disposed so as not to dry the -21-201203408 hollow arm 268. Further, the ACF platform 250 and the TAB platform 252 may be lengthened, and the hollow arms 268 may be arranged to be offset by a pitch amount on the side of the peeling chuck 263. [Drive Control of Blades] Next, the drive control of the blades 264A and 264B in the ACF attaching unit 230A will be described with reference to Fig. 9 . Fig. 9 (a) shows the a CF attaching portion of the embodiment. Description of the image for measuring TAB2 Fig. 9(b) is a cross-sectional view showing the cut ACF3a. The control circuit for driving control of the cutting edges 264A and 264B of the ACF attaching portion 230A is the same as that of the first embodiment (see Fig. 6). In the ACF attaching portion 230A, similarly to the ACF attaching portion 230, the distance between the end portion of the TAB 2 and the reference line L (ΔΧ) and the tilt (Δβ) are detected by the image processing device 27 1 . Specifically, the angular portions M1 and M2 in the imaging region T detect the distance and inclination of the end portion (front end portion) of the TAB 2a on the TAB chuck 261 side of the adjacent cymbal 2 from the reference line L1. Further, the angles and inclinations of the end portion (rear end portion) of the TAB 2b on the peeling chuck 263 side of the adjacent TAB 2 from the reference line L1 are detected by the corner regions M3 and M4 in the imaging region T. . . . The calculation processing unit 273 determines the position at which the first cutting edge 264A is to be cut, in accordance with the distance between the end portion of the TAB 2a and the reference line L1 and the inclination of the cutting line of the ACF 3a and the end portion of the TAB 2a. Further, depending on the distance and inclination of the end portion of the TAB 2b and the "reference line L1, the position at which the second cutting edge 264B is to be cut is determined by the cutting line of the ACF 3a and the end portion of the -22-201203408 TAB2b, and the memory is determined. In the memory section (not shown). The position where the second cutting edge 264B of the memory unit is to be cut is stored by the drive output unit 27 when the TAB 2 is sent by one pitch. And the distance between the end of the TAB 2b and the reference line L2 and the inclination are used. Further, the reference line L2 is offset from the reference line L1 by one pitch amount on the side of the peeling chuck 263. The drive output unit 274 generates a drive signal based on the position at which the first cutting edge 264 A determined by the current image measurement is to be cut, and outputs the drive signal to the first blade drive mechanism 265A. Next, the first blade drive mechanism 265A rotates and horizontally moves the first blade 264A in accordance with the received drive signal. Thereby, the second cutting edge 264A is disposed at a position parallel to the end portion of the TAB 2a and separated from the end portion of the TAB 2a by a predetermined distance in the horizontal direction. Next, the first blade drive mechanism 265A lowers the first blade 264A to cut the ACF 3a. As a result, the ACF 3a can be cut to a length corresponding to the TAB 2a, and the ACF 3a can be attached to the TAB 2a with high precision (see Fig. 9 (b)). Further, the drive output unit 274 extracts a position at which the second cutting edge 264B determined by the previous image measurement is cut off from the memory unit. Then, a drive signal is generated in accordance with the extracted cut position and output to the second blade drive mechanism 265B. Next, the second blade drive mechanism 265B rotates and horizontally moves the second blade 264B in accordance with the received drive signal. Thereby, the second cutting edge 264B is disposed at a position parallel to the end of the TAB 2c which is located closer to the side of the peeling chuck 263 than the TAB 2b -23 to 201203408, and is separated from the end of the TAB 2c by a predetermined distance. Then, the second blade drive mechanism 265 B lowers the second blade 264B to cut off the ACF 3a. As a result, the ACF 3a can be cut to a length corresponding to the TAB 2c, and the ACF 3a can be attached to the TAB 2c with high precision (refer to FIG. 9b ). . In the present embodiment, the first cutting edge 264A is disposed above the imaging region T of the imaging camera 266, and the second cutting edge 264B is disposed at a position closer to the separation chuck 263 than the imaging region T of the imaging camera 266. . Therefore, the arrangement space of the first blade drive mechanism 265A and the second blade drive mechanism 265B can be easily ensured. Further, the first blade 264A for forming the cut portion to start peeling off the ACF 3a is disposed above the imaging region T of the imaging camera 266. Therefore, the distance (ΔΧ) and the inclination (Δ 0 ) of the end portion of the TAB 2 from the reference line L are unlikely to change until the ACF 3a is cut by the first cutting edge 264A, and can be separated from the end portion of the TAB 2 by a predetermined distance. The position is correctly cut off ACF3a. As a result, the ACF 3a can be reliably peeled off from the base film 3b. Further, in the first and second embodiments, at least the first cutting edge 264A is disposed above the imaging region T of the imaging camera 2'66. However, the blade of the present invention may be disposed closer to the peeling chuck side (downstream side) than all of the image capturing regions T. 3. Third Embodiment [Pre-compression bonding unit] Next, the third embodiment of the FPD module assembling apparatus of the present invention is described in the description of Figs. 10 to 2012. Fig. 10 is a plan view showing a pre-crimping unit of a third embodiment of the FPD module assembling apparatus of the present invention. Fig. 1 is a schematic view showing the configuration of an ACF attaching portion according to a third embodiment. The second embodiment of the FPD module assembly apparatus has the same configuration as the FPD module assembly line 1 (see Fig. 2) of the first embodiment. The difference between the second embodiment of the assembly apparatus of the FPD module and the FPD module assembly line 10 is the pre-crimping unit 600. Therefore, the description of the configuration of the pre-crimping unit 600 and the configuration common to the FPD module assembly line 10 will be omitted. As shown in FIG. 10, the pre-crimping unit 600 includes a TAB supply unit 620, an ACF attaching unit 630, and a mounting unit 280. The TAB supply unit 62 0 includes a reel 221, a reel feeding mechanism 62 that rotates the reel 221, and a punching mechanism 623. The TAB 2 mounted on the display substrate 1 is wound into the reel 221 as a strip-shaped film of a large size. The reel 221 is rotated by the reel feed mechanism 622 to feed the strip film at a predetermined pitch. The punching mechanism 623 cuts the TAB 2 individually by punching the strip-shaped film sent by the reel 221 . The cut TAB 2 is taken out by the take-out mechanism 624 (see Fig. 11) and supplied to the ACF attaching portion 630. As shown in Fig. 11, the ACF attaching portion 630 includes a loading cross arm 660, an ACF attaching member 670, and a carry-out cross arm 680. The loading cross arm 6 60 is provided with four arm pieces 660a for attaching to the ACF. Component 670 is supplied to TAB2. The four arm pieces 660a - 25 - 201203408 that carry the cross arm 660 each have a TAB chuck 661 that vacuum-adsorbs TAB2. The loading cross arm 660 is rotated approximately 90 degrees at a time to arrange the arm pieces 660a at the take-out position, the cleaning position, the imaging position, and the placement/crimping position. The punching mechanism 623 and the take-out mechanism 624 are disposed at the take-out position. At the TAB take-out position, the upper and lower reverse arms 624a of the take-up mechanism 6 24 take out the TAB 2 from the punching mechanism 623 and submit it to the TAB chuck 66. The brush 625 is disposed at the cleaning position. At this cleaning position, the brush 625 cleans the surface of the TAB 2 adsorbed by the TAB chuck 661 to which the ACF 3a is attached. The first imaging camera 626 is disposed at the imaging position. At the imaging position, the first imaging camera 626' captures the TAB2 adsorbed by the TAB chuck 661 from below to detect the length of the end of the TAB 2 (the side to which the ACF 3a is attached) and the alignment marks 710A and 710B (see Fig. 12). An ACF attaching member 670 is placed on the mounting/crimping position. At the placement/crimping position, the TAB2 adsorbed by the TAB chuck 661 is delivered to the ACF attaching member 670. The ACF attaching member 670 will be described in detail later with reference to Fig. 12. Similarly to the loading cross arm 660, the carrying-out cross arm 680 is provided with four arm pieces 680a for supplying the TAB 2 to the mounting portion 280. Move out with a cross arm 680. Each of the four arm pieces 680a has a peeling chuck 681 that vacuum-adsorbs TAB2. The carry-out cross arm 680 is rotated approximately 90 degrees at a time to arrange the arm pieces 680a at the peeling position, the imaging position, the carry-out position, and the standby position. The ACF attaching member 670 is disposed at the peeling position. At the peeling position, the TAB 2 to which the ACF 3a (see Fig. 12) is attached is adsorbed by the peeling chuck 681. The second imaging camera 627 is disposed at the imaging position. In the camera position, • 26- 201203408 2nd camera phase. The machine 627 photographs the TAB 2 adsorbed to the peeling chuck 681 from below. The image captured by the second imaging camera 627 is output to an image processing device (not shown) to check the attachment state of the ACF 3a to the TAB 2 . The depositing and dispensing unit 275 is disposed at the unloading position (see FIG. 10). At the carry-out position, the TAB2 determined to be qualified based on the inspection of the image taken at the imaging position is delivered to the receiving unit 275. The depositing and dispensing unit 275 delivers the supplied TAB2 to the mounting unit 280. Since the mounting portion 280 is the same as that of the first embodiment, the overlapping description will be omitted. In the standby position, the peeling chuck 681 which does not adsorb TAB2 is in standby. Further, the TAB 2 which is unsatisfactory in the inspection result at the imaging position is discarded at the standby position and collected in a collection unit (not shown). [ACF Attaching Member] Next, the ACF attaching member 670 will be described with reference to Fig. 12 . Fig. 1 is a perspective view showing an ACF attaching portion of a third embodiment. The ACF attaching member 670 shown in FIG. 12 attaches the ACF 3a of the ACF tape 3 to the two sides of the TAB 2 supplied from the carry-in cross arm 660. The ACF attaching member 670 includes a supply reel (not shown), guide rollers 691 A, 691B, and 691C, a base film collecting portion 692, a first cutting edge 694A, and a second cutting edge 694B. Moreover, the ACF attaching member 670 is provided with: an ACF guide 696, crimping. . The blade 697, the lower support member 698, the adsorption support member 699, the peeling roller 701, the moving chuck 702A, 702B, and the fixed chuck 703» the first blade edge 694A and the second blade edge 694B are fed in parallel to the ACF tape 3 The direction of the direction (longitudinal direction of the ACF tape) is separated by the appropriate interval -27-201203408. The first blade 694A is driven by the first blade to move in the vertical direction and the longitudinal direction of the ACF tape 3. The blade 694A is rotated by the first blade drive mechanism around the ACF: axis. The second cutting edge 694B is moved in the vertical direction and the side direction in the same manner as the first cutting edge 694A by a blade driving mechanism (not shown). Further, the second cutting edge 694B is rotated about the axis orthogonal to the second blade drive ACF belt 3. . The first cutting edge 69 4A and the second cutting edge 69 4B are cut to the ACF. At the edge of the blade 694A. There is a hollow arm between the 694B. The two half-cut ACF3a formed by the blade 694 A and 694B are attached to the adhesive tape and removed. The ACF guide 696 is a smooth-processed surface, and The opposite surface of the TAB collet 661 is applied as a fluorine tree. The ACF3a extending from the base film 3b becomes a non-adhesive member 696. The ACF guide 696 supports the ACF tape 3 and the TAB2 on the mounted ACF3a. Further, although the TAB collet 661 is detached from the arm piece 660a of the transfer 660 in Fig. 12, the TAB collet 661 is connected and integrated. The TAB collet 661 is attached to the TAB2 together with the arm piece 660a. . The ACF tape sent to the ACF guide 696 is pressed. Also, in the TAB collet 661 and ACF guide 69. 6, for example, 70 to 90 ° C for TAB2 and ACF belt 3 heating mechanism (not shown, then the first belt 3 orthogonal, through the 2 ACF belt long moving mechanism to implement a half 5 with the belt 3) . Excessive stainless steel structure is processed between this part. Guided by the cold ACF to the ACF belt 3, the cross arm is lowered together with the arm piece 660a, and the ACF3a of the 3 is internally heated -28-201203408. The crimping blade 697 is lowered by the lifting mechanism (not shown), and The TAB 2 and the ACF tape 3 are sandwiched between the lower support member 69 8 and pressurized, for example, at 2 MPa. Further, a heater is built in a portion of the crimping blade 697 and the lower support member 698 opposed to the ACF tape 3, and the TAB2 and the ACF tape 3 are heated at, for example, 70 to 90 °C. Further, the heating temperature and the pressing force of the TAB chuck 661, the ACF guide 696, the pressing blade 697, and the lower support member 698 are appropriately set depending on the characteristics of the ACF to be used. The moving chucks 7 02A, 702B each sandwich the base film 3b between the two half-cuts of the excess ACF 3a. The moving collets 702A, 702B are each supported by the collet holders 705A, 705B. The collet holders 705A, 705B move the moving collets 702A, 702B by a pitch amount in a direction opposite to the feed direction of the ACF tape 3 or in a direction opposite to the feed direction. Further, the fixing chuck 703 is disposed between the guide roller 691C and the base film collecting portion 692, and sandwiches the base film 3b peeled off from the ACF 3a. Next, the operation of the ACF attaching member 670 will be described. The ACF belt 3 is redirected by the guide roller 691A and disposed at a fixed position on the ACF guide 696. The ACF tape 3 is half cut by the cutting edges 694A, 694B before being disposed in the ACF guide 696. At this time, the blades 69 4A and 69 4B are driven and controlled in accordance with the length and inclination of the end portion of the TAB 2 (the side to which the ACF 3a is attached) detected from the image captured by the first imaging camera 626. The drive control for the blades 694A '694B will be described in detail later. The TAB chuck 661 loaded with the cross arm 6 60 attaches and transports the TAB 2 vacuum suction -29-201203408, and is placed on the ACF 3a of the ACF tape 3 extending along the ACF guide 696 and pressurized. At this time, the TAB collet 661 is driven in accordance with the TAB2 calibration marks 710A, 710B captured by the first camera 626, and the posture (X, γ, 0) of the TAB2 to the ACF 3a is corrected. Further, the pressure contact blade 69 7 is lowered by the elevating mechanism (not shown), and the TAB 2 and the ACF tape 3 positioned between the lower and lower supports 69 8 are sandwiched, for example, pressurized at 2 MPa. On the other hand, the peeling chuck 681 of the carry-out cross arm 680 sucks the TAB 2 supported by the adsorption support 699. Then, the moving chucks 702A, 702B each hold the base film 3b, and the fixing chuck 703 releases the base film 3b. The TAB chuck 661 after completion of the pressurization is vacuum-adsorbed to the atmosphere and exits from TAB2. Further, the pressure-bonding blade 697 after completion of the pressurization is raised by the raising and lowering mechanism. Next, the collet holders 70 5A and 7 05 B move the moving chucks 702 A, 702 B sandwiching the base film 3b by one pitch amount in the feeding direction. Thereby, the TAB 2 and the ACF belt 3 are fed a pitch amount in the feeding direction. At this time, a peeling roller 701' is inserted between the ACF 3a and the base film 3b attached to the TAB 2 adsorbed by the peeling chuck 681 to peel the base film 3b from A C F 3 a . When the delivery of the TAB 2 and the ACF tape 3 is completed, the fixing chuck 7 〇 3 holds the base film 3b from which the ACF 3a has been peeled off. Next, the moving chucks 7A, 2B, and 2B release the base film 3b, and are moved by the chuck holders 705 A and 705 B by a pitch amount in a direction opposite to the feeding direction. On the other hand, the carry-in cross arm 660 and the carry-out cross arm 68 are rotated by about 90 degrees from -30 to 201203408. Thereby, the TAB 2 adsorbed by the TAB chuck 661 of the carrying cross arm 660 is disposed above the ACF guide 696. Further, the TAB 2 to which the ACF 3a adsorbed by the peeling chuck 681 of the carry-out cross arm 680 is attached is delivered to the receiving portion 275, and the peeling chuck 681 to which the TAB 2 is not adsorbed is disposed above the adsorption supporting member 699. Thereby, the operation of the ACF attaching member 670 is completed in one cycle, and the half cut of the ACF tape 3 is performed by the blades 694A, 694B. [Drive Control of Blade] Next, the drive control of the blades 694A and 694B in the ACF attaching portion 630 will be described with reference to Fig. 13 . Fig. 13 (a) is an explanatory view showing an imaging area of the image of the TAB 2 performed by the ACF attaching unit 630. Fig. 13 (b) is an explanatory diagram for explaining image measurement of TAB2 performed in the ACF attaching portion 630. The control circuit for driving control of the cutting edges 694A and 694B of the ACF attaching portion 630 is the same as that of the first embodiment (see Fig. 6). In the ACF attaching portion 630, the position of the terminal portion S is detected by the image processing device 271. And the length of the end of the TAB 2 (the side to which the ACF 3a is attached) and the inclination of the terminal portion are detected. The first imaging camera 626 has a two-field lens for capturing imaging regions ΤΙ and T2 including two corners of the TAB 2 including the two calibration marks 710A and 710B. The image processing device 271 detects the position of the terminal portion S through the two calibration marks 710A and 71 0B. And detecting the length of the end of the TAB2 (the side of the attached -31-201203408 with the ACF3a) from the angular area M1 in the imaging area T1 and the angular area M2 in the imaging area T2. Next, detecting the TAB2 (the direction of progress) with respect to The terminal portion S of the front and rear sides is further limited. The imaging unit of the present invention is not limited to have a two-field camera 6 6 . For example, two camera cameras and an edge can be used. In this case, a camera camera shoots through the camera. The shooting area is like a camera through the 稜鏡 shooting area Τ2. Further, when the positions of the imaging areas ΤΙ and Τ 2 are changed in response to the situation, the camera can be moved or fixed by the camera and the two images can be matched. The calculation processing unit 273 corrects the posture (X, Υ, 0) of the ACF 3a in accordance with the position ΤΑΒ 2 of the terminal portion S. The length Μ of the end of the ί and the feed direction of the ΤΑΒ 2 (the inclination of the terminal portion S of the side before and after the side of the front side determines the position at which the cutting edge 694 A is cut. Then, the second cutting edge 694B is to be memorized in the memory portion ( The drive output unit 274 generates a drive signal based on the cutting position of the first cutting edge 694A based on the current image, and the blade drive mechanism 265A. When the first blade drive mechanism 265A TAB2 is located at the imaging position, The first drive edge 694A is placed in parallel with the front side of the corresponding feed direction and the length of the end of the TAB 2. The first blade drive mechanism is then rotated in accordance with the received drive signal 694A. 265A tilts the feed direction of the first knife 3. The first mirror of the lens is constructed. T1, the type of another TAB is fixed by two camera movements, and the decision is made according to TAB2). The position determined by the cutting is determined: the output to the first system is lowered by the corresponding position of the first cutting edge J ΤΑΒ2] 694 - -32 - 201203408 and the ACF 3a is cut off. Further, when the corresponding TAB 2 is placed at the placement/crimping position (above the ACF guide 696), the drive output unit 274 extracts the position to be cut by the second cutting edge 264 B stored in the memory unit. . Then, a drive signal is generated based on the extracted cut position, and is output to the second blade drive mechanism 265B. The second blade drive mechanism 265B rotates and horizontally moves the second blade 694B in accordance with the received drive signal. Thereby, the second cutting edge 694B is disposed at a position parallel to the rear side of the corresponding TAB2 in the feeding direction and corresponding to the length Μ of the end portion of the TAB 2. Next, the second blade drive mechanism 2 65 causes the second blade 69 4 to be lowered to cut off the ACF 3a. As a result, the ACF 3a can be cut to the length of the TAB 2 corresponding to the response, and the ACF 3a can be attached to the TAB 2 with high precision. According to the first to third embodiments described above, the end portion of the TAB 2 is imaged by the imaging camera 266 (626) to perform image measurement, and the cutting position of the ACF 3a is determined based on the result. As a result, the ACF 3a can be cut to a length corresponding to the individual difference of TAB2, and can be attached to the corresponding TAB2 with high precision. In the above-described first to third embodiments, two cutting edges are used as the cutting portions, but the number of cutting edges of the present invention may be one. In this case, the two cutting positions of the ACF 3a with respect to the TAB 2 are cut by one blade. The above is the embodiment of the assembly apparatus of the FPD module of the present invention, and the effects thereof will be described. However, the assembly apparatus of the FPD module of the present invention is not limited to the above-described embodiments, and various modifications and effects can be made without departing from the spirit and scope of the invention as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing the schematic configuration of an FPD module assembled and assembled in the present invention. Fig. 2 is a plan view showing the assembly line of the FPD module of the first embodiment of the FPD module assembling apparatus of the present invention. Fig. 3 is a plan view showing a pre-crimping unit of a first embodiment of the FPD module assembling apparatus of the present invention. Fig. 4 (a) is a plan view showing an ACF attaching portion of a first embodiment of the FPD module assembling device of the present invention, and Fig. 4 (b) is a side view of the ACF attaching portion. Fig. 5 is an explanatory view showing the driving of the blade of the ACF attaching portion in the first embodiment of the FPP module assembling device of the present invention. Fig. 6 is a block diagram showing a control circuit of a blade of the ACF attaching portion of the first embodiment of the FPD module assembling apparatus of the present invention. Fig. 7 (a) is an explanatory view showing an image measurement of an electronic component performed in the ACF attaching portion of the first embodiment of the FPD module assembling apparatus of the present invention, and Fig. 7 (b) shows the cut. A section view of A CF. Figure 8 is a diagram showing the FPD of the present invention. Description of the driving of the blade of the ACF attaching portion of the second embodiment of the module assembling device. Fig. 9 (a) is a view showing an image measurement of an electronic component performed in the ACF attaching portion of the second embodiment of the FPD module assembling apparatus of the present invention - 34 - 201203408 ) shows a cross-sectional view of the cut AC F. Fig. 1 is a plan view showing a pre-crimping unit of a third embodiment of the FPD module assembling apparatus of the present invention. Fig. 11 is a view showing the configuration of an ACF attaching portion of a third embodiment of the FPD module assembling apparatus of the present invention. Fig. 1 is a perspective view showing an ACF attaching portion of a third embodiment of the FPD module assembling apparatus of the present invention. Fig. 13 (a) is an explanatory view showing an imaging region in which an electronic component is imaged by an ACF attachment portion according to a third embodiment of the FPD module assembly device of the present invention, and Fig. 13 (c) is attached to the ACF sticker. An explanatory diagram of image measurement of TAB2 performed in the attached section. [Main component symbol description] 1 Display substrate 2 TAB 3 ACF tape 3a ACF 3b Base film 4 FPC 5 IC chip 6 PCB 7 FPD module 10 FPD module assembly line 100 Access unit -35- 201203408 200, 600 Pre-crimp Unit 220 ' 620 TAB supply unit 221 reel 222 ' 622 reel feed mechanism 223, 623 punching mechanism 230, 23 0A, 63 0 ACF attachment portion 233 supply reel 234 guide roller 235 nip roller 236 recovery reel 250 ACF platform 25 1 blade 252 TAB platform 260 arm 261, 661 TAB chuck 262 discharge arm 263 ' 68 1 peeling chuck 264A, 6 9 4 A 1st cutting edge 264B, 694B 2nd cutting edge 265A 1st blade drive mechanism 265 B 2 Blade drive mechanism 266 Camera camera 268 Cut-off arm -36- 201203408 269 Lifting unit 27 1 Image processing device 272 Control device 273 Calculation processing unit 274 Drive output unit 280 Mounting unit 300 Formal crimping unit 400 PCB Connection unit 500 Carry-out unit 624 Take-out mechanism 624a Up-and-down reverse arm 62 Brush 626 First camera 627 Second camera 660 Carry-in cross arm 670 ACF Attachment member 680 Carry-out cross arms 691A, 691 B, 69 1C 692 Base film recovery unit 696 ACF guide 697 Crimp blade 701 Stripping roller 702A, 702B Moving chuck -37- 201203408 703 Fixing chuck 705 A, 705 B Head holder 7 10A ' 7 10B Calibration mark -38-

Claims (1)

201203408 七、申請專利範圍·· 1. 一種FPD模組之組裝裝置,係具備: 拍攝電子零件的端部之攝像部; 依據前述攝像部的拍攝結果來決定ACF的切斷位置之 切斷位置決定部;及 在前述切斷位置決定部所決定的切斷位置將前述A CF 切斷之切斷部。 2. 如申請專利範圍第1項之FPD模組之組裝裝置,其中具 備· 使前述切斷部移動於前述ACF的長邊方向之水平驅動 部;及 使前述切斷部以與前述ACF正交的軸爲中心轉動的轉 動驅動部。 3. 如申請專利範圍第1項或第2項之FPD模組之組裝裝置, 其中 前述切斷位置決定部,係以前述ACF的切斷線和前述 電子零件的端部平行的方式決定前述切斷位置。 4. 如申請專利範圍第1項至第3項中任一項之FPD模組之 組裝裝置,其中 前述ACF係於切斷前被貼附於前述電子零件, 前述攝像部係拍攝貼附有前述ACF的前述電子零件的 端部, 前述切斷位置決定部係將前述切斷位置設在前述電子 201203408 零件的端部之外側。 5.如申請專利範圍第4項之FPD模組之組裝裝置,其中 前述攝像部,係對貼附有前述A C F的相鄰之電子零件 的對向之端部進行同時拍攝。 6 ·如申請專利範圍第4項或第5項之FPD模組之組裝裝置, 其中 前述切斷部,係具有被插入於貼附有前述ACF的相鄰 之電子零件間以切斷前述ACF之第1刃及第2刃。 7. 如申請專利範圍第1項至第3項中任一項之FPD模組之 組裝裝置,其中 前述ACF係在被切斷後貼附於前述電子零件, 前述攝像部,係對被貼附前述ACF之前的前述電子零 件的端部進行拍攝, 前述切斷位置決定部,係依據前述電子零件的端部之 長度來決定前述切斷位置。 8. 如申請專利範圍第7項之FPD模組之組裝裝置,其中 前述攝像部係爲了特定前述電子零件的端子部之位置 而拍攝被設置在前述電子零件之標記。 -40-201203408 VII. Patent application scope · 1. An assembly device for an FPD module, comprising: an imaging unit that captures an end portion of an electronic component; and determines a cutting position of the ACF cutting position based on a result of the imaging of the imaging unit And a cutting unit that cuts the A CF at a cutting position determined by the cutting position determining unit. 2. The apparatus for assembling an FPD module according to the first aspect of the invention, comprising: a horizontal driving unit that moves the cutting unit in a longitudinal direction of the ACF; and the cutting unit is orthogonal to the ACF The shaft is a centrally rotating rotary drive. 3. The apparatus for assembling an FPD module according to claim 1 or 2, wherein the cutting position determining unit determines the cutting by the cutting line of the ACF and the end of the electronic component. Broken position. 4. The assembly apparatus of the FPD module according to any one of the items 1 to 3, wherein the ACF is attached to the electronic component before cutting, and the camera unit is attached to the camera. In the end portion of the electronic component of the ACF, the cutting position determining unit sets the cutting position on the outer side of the end portion of the electronic 201203408 component. 5. The apparatus for assembling an FPD module according to claim 4, wherein the image pickup unit simultaneously photographs an end portion of the adjacent electronic component to which the A C F is attached. [6] The assembly device of the FPD module of claim 4, wherein the cutting portion is inserted between adjacent electronic components to which the ACF is attached to cut the ACF. The first blade and the second blade. 7. The assembly apparatus of the FPD module according to any one of the items 1 to 3, wherein the ACF is attached to the electronic component after being cut, and the imaging unit is attached to the aforementioned The end portion of the electronic component before the ACF is imaged, and the cutting position determining unit determines the cutting position based on the length of the end portion of the electronic component. 8. The apparatus for assembling an FPD module according to claim 7, wherein the image pickup unit captures a mark provided on the electronic component in order to specify a position of a terminal portion of the electronic component. -40-
TW100104699A 2010-03-19 2011-02-14 FPD module assembling apparatus TW201203408A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064950A JP2011199056A (en) 2010-03-19 2010-03-19 Assembling device for fpd module

Publications (1)

Publication Number Publication Date
TW201203408A true TW201203408A (en) 2012-01-16

Family

ID=44603877

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104699A TW201203408A (en) 2010-03-19 2011-02-14 FPD module assembling apparatus

Country Status (4)

Country Link
JP (1) JP2011199056A (en)
KR (1) KR101209502B1 (en)
CN (1) CN102196720A (en)
TW (1) TW201203408A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584712B (en) * 2012-08-22 2017-03-08 松下知识产权经营株式会社 Element fixing apparatus and installation method
TWI491333B (en) * 2014-04-17 2015-07-01 Chipmos Technologies Inc Film package structure
CN104066276B (en) * 2014-06-28 2017-08-18 歌尔股份有限公司 Stiffening plate disc type full-automatic false sticker
CN107432110B (en) * 2015-03-18 2020-02-14 株式会社富士 Component mounting apparatus and tape peeling recovery method for component mounting apparatus
CN107246428A (en) * 2017-06-20 2017-10-13 苏州市唯西芈电子科技有限公司 Automatic patch FPCB equipment for producing vibrations motor
JP6954442B2 (en) * 2018-02-15 2021-10-27 株式会社村田製作所 Laminated electrode body manufacturing equipment
KR102267731B1 (en) * 2019-05-03 2021-06-22 주식회사 탑 엔지니어링 Apparatus and method for cutting film
JP7398724B2 (en) * 2019-05-15 2023-12-15 パナソニックIpマネジメント株式会社 Component mounting device and component mounting method
KR102083453B1 (en) * 2019-08-30 2020-03-02 주식회사 디앤에이시스템 Mixed tape cutting device
KR102799609B1 (en) * 2021-03-16 2025-04-29 한미반도체 주식회사 Sawing setting method of semiconductor materials sawing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024457B2 (en) * 1993-09-30 2000-03-21 松下電器産業株式会社 Electronic component mounting apparatus and electronic component mounting method
JP4818008B2 (en) * 2006-07-20 2011-11-16 株式会社東芝 Anisotropic conductive tape sticking apparatus and method of manufacturing electrical equipment
JP2008216295A (en) * 2007-02-28 2008-09-18 Fujifilm Corp Photosensitive laminate manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP2011199056A (en) 2011-10-06
KR20110105703A (en) 2011-09-27
CN102196720A (en) 2011-09-21
KR101209502B1 (en) 2012-12-07

Similar Documents

Publication Publication Date Title
TW201203408A (en) FPD module assembling apparatus
US6618937B2 (en) Method of assembling electronic applications and display devices
JP4966139B2 (en) Bonding material sticking inspection device, mounting device, and manufacturing method of electrical parts
TWI375843B (en)
JP2018170497A (en) Electronic component mounting device and method for manufacturing member for display
CN108430167A (en) Mounting device for electronic components and method for manufacturing display components
JP5315273B2 (en) FPD module assembly equipment
JP3596492B2 (en) Bonding method
JP3275744B2 (en) Work thermocompression bonding equipment
JP2008213149A (en) Photosensitive laminate manufacturing apparatus and manufacturing method
JP4562309B2 (en) Chip bonding method and apparatus
CN104918409B (en) Outer pin vacation pressing system
JP4523732B2 (en) Chip bonding equipment
JPH08114812A (en) Apparatus for producing liquid crystal panel
TWI383718B (en) An anisotropic conductive film (ACF) sticking device, a flat panel display (FPD) manufacturing apparatus, and a flat panel display
JP2012227194A (en) Fpd module assembly device and time recognition method
JP5424976B2 (en) FPD module assembly equipment
JP5026220B2 (en) Component mounting method and apparatus
TW201237975A (en) Assembly device and method of FPD module
TW202240724A (en) Electronic part mounting device characterized by continuously laminating an ACF without stopping the electronic part mounting device
JP4870010B2 (en) Adhesive sheet sticking device and sticking method
JP2009010123A (en) Apparatus for mounting electronic component and method of manufacturing electronic component
JP2013089676A (en) Acf sticking device and fpd module assembly device
KR102744026B1 (en) Electronic component mounting device
JP2012123134A (en) Fpd module assembly device