[go: up one dir, main page]

TW201202740A - Antireflective films comprising microstructured surface - Google Patents

Antireflective films comprising microstructured surface Download PDF

Info

Publication number
TW201202740A
TW201202740A TW100116059A TW100116059A TW201202740A TW 201202740 A TW201202740 A TW 201202740A TW 100116059 A TW100116059 A TW 100116059A TW 100116059 A TW100116059 A TW 100116059A TW 201202740 A TW201202740 A TW 201202740A
Authority
TW
Taiwan
Prior art keywords
refractive index
film
index layer
weight
low refractive
Prior art date
Application number
TW100116059A
Other languages
Chinese (zh)
Other versions
TWI533016B (en
Inventor
Christopher Bland Walker Jr
Christopher Paul Tebow
Tri Dinh Pham
Steven Hin-Chung Kong
Taun Lee Mckenzie
Joseph Theodore Aronson
Anthony Michael Renstrom
Kyle Jon Lindstrom
Robert Anthony Yapel
Michael Kenneth Gerlach
Mitchell Alan Fallon Johnson
Michelle Lund Toy
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW201202740A publication Critical patent/TW201202740A/en
Application granted granted Critical
Publication of TWI533016B publication Critical patent/TWI533016B/en

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention concerns antireflective films comprising a high refractive index layer and low refractive index layer disposed on the high refractive index layer. The antireflective films have a microstructured surface that can be derived from a microreplicated tool.

Description

201202740 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種抗反射薄膜,其包括高折射率層及位 於該高折射率層上之低折射率層》該抗反射薄膜具有可衍 生自微複製工具之微結構表面。 【先前技術】 已闡述不同的無光澤薄膜(亦稱為防眩薄膜)。無光澤薄 膜可經製造成具有交替的高及低折射率層。該無光澤薄膜 可表現出低光澤度及抗反射性。然而,在不存在交替的高 及低折射率層的情況下’該膜將表現出防眩性,但不表現 抗反射性》 如US 2007/0286994之0039段所述,無光澤抗反射薄膜 一般具有比等效光澤薄膜更低的透射率及更高的濁度。如 根據ASTM D1003所測得,濁度一般為至少5%、、 7%、8%、9%、或 1〇%。如根據ASTM D 245'〇3在6〇。下所 測得,其他光澤表面一般具有至少13〇的光澤度,而無光 澤表面具有小於120的光澤度。 存在若干種獲得無光澤薄膜之方法。 例如,如US 6,778,240中所述 製備無光澤塗層。 此外, 可藉由添加無光澤顆粒201202740 VI. Description of the Invention: [Technical Field] The present invention relates to an antireflection film comprising a high refractive index layer and a low refractive index layer on the high refractive index layer, the antireflection film having a derivable The microstructure surface of the microreplication tool. [Prior Art] Different matt films (also known as anti-glare films) have been described. The matte film can be fabricated to have alternating layers of high and low refractive index. The matte film exhibits low gloss and antireflection. However, in the absence of alternating high and low refractive index layers, the film will exhibit anti-glare properties but will not exhibit anti-reflective properties. As described in paragraph 0039 of US 2007/0286994, matte anti-reflective films are generally It has lower transmittance and higher turbidity than the equivalent gloss film. The turbidity is generally at least 5%, 7%, 8%, 9%, or 1% by weight as measured according to ASTM D1003. For example, according to ASTM D 245'〇3 at 6〇. As measured below, other glossy surfaces typically have a gloss of at least 13 inches, while the non-glossy surface has a gloss of less than 120. There are several ways to obtain a matt film. For example, a matt coating is prepared as described in US 6,778,240. In addition, by adding matt particles

提供高及低折射率層而製備。Prepared by providing high and low refractive index layers.

。根據美國專利第5,82G,957號, 156113.doc 201202740 「可藉由任何紋理化材料、表面或方法賦予抗反射薄膜之 紋理化表面《紋理化材料或表面之非限制實例包括:具有 無光澤處理之薄膜或概裡、微型壓印薄膜、包含所需紋理 圖案或模板之微複製工具、套管或帶狀物、輥筒(諸如金 屬或橡膠輥筒)或經橡膠塗佈之報筒」。 【發明内容】 本發明係關於一種抗反射薄膜,其包括高折射率層及位 於該高折射率層上之低折射率層。該抗反射薄膜具有可衍 生自微複製工具之微結構表面。 在某些實施例中,該微結構表面包括複數個具有互補累 積斜率大小分佈之微結構,以使得至少30%的微結構具有 至少0.7度的斜率大小及至少25%的微結構具有小於13度 的斜率大小。 在另一實施例令,該抗反射薄膜之特徵為小於9〇%的透 明度及至少G.G5微米且不大於〇· 14微米的平均表面粗糖度 (Ra)。 在另一實施例中,該抗反射薄膜之特徵為小於9〇%的透 明度及至少0.50微米且不大於丨.^微米的平均最大表面高 度(Rzp 在另一實施例中,該抗反射薄膜之特徵為小於9〇%的透 明度及該微結構層包括平均等效直徑為至少5微米且不大 於30微米之峰。 在某些實施例中,該抗反射薄膜不含嵌入的無光澤顆 粒。在其他實施例中,不多於50%的微結構包括嵌入的無 156113.doc 201202740 光澤顆粒。 該抗反射薄膜一般具有至少鳩的it明度及不大於10% 的濁度。此外,該抗反射薄骐在5〇〇⑽至⑵⑽之波長範 園内具有小於2%之平均適光反射率。 在某些實施例中’至少3〇%、至少35%、或至少4〇%的 微結構具有小於1.3度的斜率大小。 在某些實施例中,少於15%、或少於1〇%、或少於5%的 微結構具有4.1度或更大的斜率大小。此外,至少7〇%的微 結構具有至少〇_3度的斜率大小。 在某些具有低「亮斑」之實施例中,該微結構包括平均 等效圓直徑(ECD)為至少5微米或至少丨〇微米之峰。此外, 該等峰之平均ECD—般係小於3〇微米或小於25微米。在某 些實施例中’該微結構包括平均長度為至少5微米或至少 10微米之峰^此外’該微結構峰之平均寬度一般係至少5 微米。在某些實施例中,該等峰之平均寬度係小於丨5微 米。 在其他實施例中,描述高折射率組合物及低折射率組合 物’可自該等組合物製造本文所述之抗反射薄膜。 【實施方式】 本發明描述一種無光澤(即防眩)薄膜及抗反射薄膜。參 照圖1A ’無光澤薄膜1〇〇包括一般位於光透射(例如薄膜) 基板50上之微結構高折射率(例如觀測表面)層6〇。基板5〇 及該無光澤或抗反射薄膜一般具有至少85°/。,或90°/。的透 射率’且在某些實施例中具有至少91%、92%、93%或更 156113.doc 201202740 高的透射率。 S亥透明基板可為薄膜。該薄膜基板之厚度一般係視預期 用途而定。對於大部份應用而言,基板厚度較佳係小於約 0.5 mm且更佳為約〇.〇2至約0 2 mm。或者,該透明薄膜基 板可為光學(例如照明)顯示器,經由其可顯示測試、圖形 或其他資訊。該透明基板可包括常用於不同光學裝置中之 任何種類的非聚合材料(諸如玻璃)、或各種熱塑性及交聯 聚合材料(諸如聚對苯二甲酸乙二醋(PET)、(例如雙盼A)聚 碳酸醋、乙酸纖維素、聚(甲基丙烯酸甲醋)及聚烯烴(諸如 雙軸向聚丙稀))或由其組成。 圖1B之抗反射薄膜另外包括位於該微結構高折射率層上 之低折射率表面層80。如圖1B中所示,該抗反射薄膜之曝 露的低折射率(觀測)表面層亦包括自下層微結構高折射率 層形成之微結構表面。 該南折射率層具有至少約⑽之折射率。對於具有分 於父聯有機材❹之高折射率無機(例如氧化鍅)奈米t 之塗層而言,該高折射率層之最大折射率—般不大於, 1.75。該低折射率層具有小於高折射率層之折射率。% :率層與低折射率層之間的折射率差異一般係幻 約15,\二或Ο或更大°該低折射㈣—般具有小方 之折射車M W、於約Μ5,且甚至更通常係小於約 =射率。該低折射率層之最小折射率一般係至少約 般包括相對厚的高折射率 耐久性無光澤或抗反射薄膜一 1561I3.doc • 6 - 201202740 層與相對薄的低折射率層之組合。該高折射率層一般具有 至少0.5微米,較佳至少丨微米,及更佳至少2或3微米的平 均厚度(「(」)。該高折射率層一般具有不大於15微米且更 通常不大於4或5微米的厚度。該低折射率層具有約1/4波 長之光學厚度。該厚度一般小於〇·5微米,更通常係小於 約0.2微米且經常係約90 11〇1至11〇 nm。當耐久性高折射率 層與耐久性低折射率層組合使用時,可在不存在其他硬塗 層下提供耐久性(例如雙層)抗反射薄臈。然而,當不需要 無光澤或抗反射薄膜之耐久性時,高折射率層之厚度可更 薄。 Λ 在某些實施例中,該等微結構可為凹陷。例如,圖2八係 包含凹陷微結構320或微結構孔之微結構(例如無光澤)層 31〇之示意側視圖。工具表面(微結構表面係自其形成)一般 包括複數個凹孔。無光澤或抗反射薄膜之微結構一般為凸 起。例如,圖2Β係包含凸起微結構34〇之微結構層33〇之示 意側視圖。圖8Α至10D描繪包含複數個微結構凸起之不同 的微結構表面。 在某些實施例中,該微結構可形成規則圖案。例如,圖 3Α係在主表面415中形成規則圖案之微結構4ι〇之示意俯視 圖。然而-般而言,該等微結構會形成不規則圖案。例 如’圖3Β係形成不規則圖案之微結構㈣之示意俯視圖。 在某些情況下,微結構可形成看似隨機的偽隨機圖案。 可藉由斜率分析(例如離散型)微結構之特徵。圖4係微 結構(例如無光澤)層140之一部份之示意側視圖。特定言 156113.doc 201202740 圖4顯示在主表面i2〇及相對 T主表面142中之微結構 。微結構1 60具有橫跨該微結構< 如,&桃 。構表面之斜率分佈。例 °茨微結構於位置510處之斜率社丄 ^ ,1Λ. 处心計旱為θ,其中Θ為垂直於位 〇處的微結構表面之法線 罢老a 90度)與相切於相同位 处的Μ結構表面之切線5 3 〇之 530盥盔之間的角。斜率Θ亦為切線 υ,、無先澤層之主表面142之間的角。 二般而言,高折射率層及抗反射薄膜之微結構通常會且 =高度分佈。在某些實施例中,微結構之平均高度(根 虞實例令所述之測試方法測得)係不大於約5微米,或不大 於約4微米,或不大於約3微米,或不大於約㈣米,或不 大於約1微米。該平均高度一般為至少〇」或〇 2微米。 在某些實施例中’微結構係實質上不含(例如無機氧化 物或聚苯乙烯)無光澤顆粒。然而,如圖! Α中所示,即使 在不存在無光澤顆粒的條件下,微結構7〇及高折射率層通 常亦會包含(例如氧化錯)奈米顆粒3〇。 選擇奈米顆粒之大小以避免明顯的可見光散射。可希望 使用無機氧化物顆粒類型之混合物以使光學或材料特性最 優化並降低總組合成本。經表面改質之膠狀奈米顆粒可為 具有至少1 nm或5 nm的(例如不相關)初級粒度或結合粒度 之無機氧化物顆粒。初級或結合粒度一般係小於1 〇〇 、 75 nm、或50 nm。初級或結合粒度通常係小於4〇 nm、3〇 nm、 或20 nm ^該等奈米顆粒較佳係無關。其測量可基於透射 電子顯微術(TEM)。該等經表面改質之膠狀奈米顆粒實質 上可完全凝聚。 1561I3.doc 201202740 ^凝聚的奈米顆粒(除珍石外)_般具有大於训,較 :。及更佳大於70%的結晶度(以單離的金屬氧化 物顆粒測得)。舉例而言,結晶度可升高至約祕或更大。 可藉由X-射線繞射技術測定結晶度。凝聚的結晶(例如氧 =锆)奈米顆粒具有高折射率,而非晶形奈米顆粒一般具 有較低的折射率。 ,由於奈米顆粒之粒度實質上較小,故該等奈米顆粒不會 形成微結構。相反地’料微結構包含複數個奈米顆粒。 雖然未顯示,但該低折射率層8G—般亦包括(例如梦 米顆粒。 在”他實施例令’該尚折射率層之部份微結構可包括嵌 入的無光澤顆粒。 無光澤顆粒-般具有大於約0a微米(ho奈米),或大於 約〇.5微米,或大於約0.75微米,或大於約】微米,或大於 約1.25微米,或大於約15微米,或大於約175微米,或大 於微米的平均粒度。對於包含相對較薄的高折射率層 之抗反射薄膜而言,通常為較小的無光澤顆粒。然而,對 於其中該高折射率層較厚之實施例而言,該無光澤顆粒可 具有大至5微米或10微米的平均粒度。無光澤顆粒之濃度 可在至少1或2重量%至約5、6、7、8、9、或1〇重量。或更 大的範圍内。 圖5係包括位於基板85〇上的無光澤層86〇之光學薄膜8⑽ 之示意側視圖。無光澤層86〇包括附接至基板85〇之第一主 表面810及複數個分散於聚合黏合劑8 4 〇中之無光澤顆粒 .1561I3.doc 201202740 830及/或無光澤顆粒聚結物β微結構87〇的大部份(諸如至 少約50%、或至少約60%、或至少約7〇%、或至少約8〇%、 或至少約90%)不含無光澤顆粒83〇或無光澤顆粒聚結物 880。因此,該等微結構不含(例如嵌入的)無光澤顆粒。據 推斷,即使當該等無光澤顆粒之存在不足以提供所需的抗 反射、透明度及濁度性質時,(例如矽石或caC〇3)無光澤 顆粒之存在仍可提供改善的耐久性,此將在下文中闡述。 然而,由於無光澤顆粒之粒度相對較大,因此難以保持無 光澤顆粒均勻分散於塗料組合物中。此會引起所施用之無 光澤顆粒的濃度變化(尤其係在絲網塗佈的情況下),此進 一步引起無光澤性質之變化。 對於其中至少部份微結構包含嵌入的無光澤顆粒或聚結 無光澤顆粒之實施例而言,無光澤顆粒之平均粒度一般係 】、於微結構之平均尺寸(例如小至少約2倍或更多倍)而足以 使該無光澤顆粒經微結構層之可聚合樹脂組合 圖5所示. According to U.S. Patent No. 5,82, 957, 156,113, doc 201202740, "Non-limiting examples of textured materials or surfaces that can be imparted to the antireflective film by any textured material, surface or method include: matt Processed film or microfilm, micro-imprinted film, micro-reproducing tool containing the desired texture pattern or template, sleeve or ribbon, roller (such as metal or rubber roller) or rubber-coated newspaper tube . SUMMARY OF THE INVENTION The present invention is directed to an antireflective film comprising a high refractive index layer and a low refractive index layer on the high refractive index layer. The antireflective film has a microstructured surface that can be derived from a microreplication tool. In certain embodiments, the microstructured surface comprises a plurality of microstructures having a complementary cumulative slope size distribution such that at least 30% of the microstructures have a slope size of at least 0.7 degrees and at least 25% of the microstructures have less than 13 degrees The slope size. In another embodiment, the antireflective film is characterized by a transparency of less than 9% by weight and an average surface roughness (Ra) of at least G.G5 microns and no greater than 〇14 microns. In another embodiment, the antireflective film is characterized by a transparency of less than 9% by weight and an average maximum surface height of at least 0.50 microns and no greater than 微米.μm (Rzp in another embodiment, the antireflective film The transparency is characterized by less than 9% by weight and the microstructured layer comprises a peak having an average equivalent diameter of at least 5 microns and no greater than 30 microns. In certain embodiments, the antireflective film is free of embedded matt particles. In other embodiments, no more than 50% of the microstructures comprise embedded 156113.doc 201202740 glossy particles. The antireflective film generally has at least itit brightness and no more than 10% turbidity.骐 has an average photopic reflectance of less than 2% in the wavelength range of 5 〇〇 (10) to (2) (10). In certain embodiments, at least 3 〇 %, at least 35%, or at least 4 〇 % of the microstructure has less than 1.3. The slope of the degree. In some embodiments, less than 15%, or less than 1%, or less than 5% of the microstructure has a slope size of 4.1 degrees or greater. In addition, at least 7% of the micro The structure has a slope size of at least 〇3 degrees. In embodiments having low "bright spots", the microstructures include peaks having an average equivalent circular diameter (ECD) of at least 5 microns or at least 丨〇 microns. Furthermore, the average ECD of the peaks is generally less than 3 microns or Less than 25 microns. In some embodiments 'the microstructure comprises a peak having an average length of at least 5 microns or at least 10 microns. Further, the average width of the microstructure peaks is typically at least 5 microns. In some embodiments, The average width of the iso peaks is less than 丨5 μm. In other embodiments, high refractive index compositions and low refractive index compositions are described as being capable of producing the antireflective films described herein from the compositions. A matte (i.e., anti-glare) film and an anti-reflective film are described. Referring to Figure 1A, a matte film 1 includes a microstructured high refractive index (e.g., viewing surface) layer 6 generally disposed on a light transmissive (e.g., film) substrate 50. The substrate 5 and the matte or antireflective film generally have a transmittance of at least 85°, or 90°, and in some embodiments at least 91%, 92%, 93% or 156,113. .doc 20120 2740 High Transmittance. The S-transparent substrate can be a film. The thickness of the film substrate is generally dependent on the intended use. For most applications, the substrate thickness is preferably less than about 0.5 mm and more preferably about 〇. 〇2 to about 0 2 mm. Alternatively, the transparent film substrate can be an optical (eg, illumination) display through which tests, graphics or other information can be displayed. The transparent substrate can include any of the types commonly used in different optical devices. Non-polymeric materials (such as glass), or various thermoplastic and cross-linked polymeric materials (such as polyethylene terephthalate (PET), (such as double-looking A) polycarbonate, cellulose acetate, poly(methacrylic acid) And consisting of vinegar) and polyolefins (such as biaxial polypropylene). The antireflective film of Figure 1B additionally includes a low refractive index surface layer 80 on the microstructured high refractive index layer. As shown in Fig. 1B, the exposed low refractive index (observation) surface layer of the antireflective film also includes a microstructured surface formed from the underlying microstructured high refractive index layer. The south refractive index layer has a refractive index of at least about (10). For coatings having a high refractive index inorganic (e.g., yttrium oxide) nanotin t, which is separate from the parent organic material, the maximum refractive index of the high refractive index layer is generally no greater than 1.75. The low refractive index layer has a refractive index smaller than that of the high refractive index layer. % : The difference in refractive index between the rate layer and the low refractive index layer is generally about 15 illusion, \2 or Ο or more. The low refraction (4) has a small square refracting car MW, about Μ5, and even more Usually less than about = radiance. The minimum refractive index of the low refractive index layer is generally at least about the combination of a relatively thick high refractive index durable matte or antireflective film and a relatively thin low refractive index layer. The high refractive index layer typically has an average thickness ("(")) of at least 0.5 microns, preferably at least 丨 microns, and more preferably at least 2 or 3 microns. The high refractive index layer typically has a thickness of no greater than 15 microns and more typically no greater than A thickness of 4 or 5 microns. The low refractive index layer has an optical thickness of about 1/4 wavelength. The thickness is generally less than 〇5 μm, more typically less than about 0.2 μm and often about 90 11 〇 1 to 11 〇 nm. When a durable high refractive index layer is used in combination with a durable low refractive index layer, a durable (e.g., double layer) antireflective sheet can be provided in the absence of other hard coat layers. However, when no matte or anti-wear is required The thickness of the high refractive index layer may be thinner when the reflective film is durable. Λ In some embodiments, the microstructures may be recessed. For example, Figure 8 includes a recessed microstructure 320 or a microstructured aperture. A schematic side view of a structure (e.g., matte) layer 31. The tool surface (from which the microstructured surface is formed) generally includes a plurality of recessed holes. The microstructure of the matte or antireflective film is generally raised. For example, Figure 2 The system contains raised micro knots A schematic side view of a microstructured layer 33A of the structure 34. Figures 8A through 10D depict different microstructured surfaces comprising a plurality of microstructured protrusions. In some embodiments, the microstructures can form a regular pattern. For example, Figure 3 is a schematic top view of a microstructure 4 〇 formed in a regular pattern in the major surface 415. However, in general, the microstructures will form an irregular pattern. For example, 'Figure 3 Β is an microstructure forming an irregular pattern (4) A top view is illustrated. In some cases, the microstructures may form a seemingly random pseudo-random pattern. The features of the microstructure may be analyzed by slope (e.g., discrete). Figure 4 is one of the microstructures (e.g., matte) layer 140. A schematic side view of a portion.Specific 156113.doc 201202740 Figure 4 shows the microstructure in the major surface i2〇 and the opposing T major surface 142. The microstructure 1 60 has a cross-section such as & peach. The slope distribution of the surface of the structure. The slope of the microstructure is at position 510. The slope is θ, where Θ is the normal to the surface of the microstructure perpendicular to the 〇. ) is tangent to the same position 53 of 530 square angle between the surface structure of the helmet wash Μ tangent. The slope Θ is also a tangent υ, and there is no angle between the major surfaces 142 of the first layer. In general, the microstructure of the high refractive index layer and the antireflective film is usually = height distribution. In certain embodiments, the average height of the microstructures (as measured by the test methods described in the Examples) is no greater than about 5 microns, or no greater than about 4 microns, or no greater than about 3 microns, or no greater than about (d) meters, or no more than about 1 micron. The average height is generally at least 〇 or 〇 2 microns. In certain embodiments, the microstructure is substantially free of (e.g., inorganic oxide or polystyrene) matte particles. However, as shown in Fig. Α, the microstructure 7〇 and the high refractive index layer usually contain (for example, oxidized) nanoparticles 3〇 even in the absence of matte particles. The size of the nanoparticles is chosen to avoid significant visible light scattering. It may be desirable to use a mixture of inorganic oxide particle types to optimize optical or material properties and reduce overall combined cost. The surface modified colloidal nanoparticle may be an inorganic oxide particle having a primary particle size or a combined particle size of at least 1 nm or 5 nm (e.g., unrelated). The primary or binding particle size is typically less than 1 〇〇, 75 nm, or 50 nm. The primary or binding particle size is typically less than 4 〇 nm, 3 〇 nm, or 20 nm ^ These nanoparticles are preferably independent. Its measurement can be based on transmission electron microscopy (TEM). The surface modified colloidal nanoparticles can be substantially completely agglomerated. 1561I3.doc 201202740 ^ Condensed nano-particles (except for rare stones) _ generally have greater than training, compared with: And more preferably greater than 70% crystallinity (measured as isolated metal oxide particles). For example, the degree of crystallinity can be raised to about secret or greater. Crystallinity can be determined by X-ray diffraction techniques. The agglomerated crystals (e.g., oxygen = zirconium) nanoparticles have a high refractive index, while the amorphous nanoparticles generally have a lower refractive index. Since the particle size of the nanoparticle is substantially small, the nanoparticle does not form a microstructure. Conversely, the material microstructure contains a plurality of nanoparticles. Although not shown, the low refractive index layer 8G generally also includes (e.g., Mengmi particles. In some embodiments, the partial microstructure of the still refractive index layer may include embedded matte particles. Matte particles - Typically having greater than about 0 a micron (ho nano), or greater than about 0.5 micron, or greater than about 0.75 micron, or greater than about micron, or greater than about 1.25 micron, or greater than about 15 micron, or greater than about 175 micron, Or an average particle size greater than micrometers. For an antireflective film comprising a relatively thin layer of high refractive index, typically less matte particles. However, for embodiments in which the high refractive index layer is thicker, The matte particles can have an average particle size of up to 5 microns or 10 microns. The concentration of matte particles can range from at least 1 or 2% by weight to about 5, 6, 7, 8, 9, or 1 Torr. or greater. Figure 5 is a schematic side view of an optical film 8 (10) comprising a matte layer 86 on a substrate 85. The matte layer 86 includes a first major surface 810 attached to the substrate 85 and a plurality of dispersions. No light in the polymer binder 8 4 〇 PARTICLE .1561I3.doc 201202740 830 and/or a portion of the matte particulate agglomerate beta microstructure 87〇 (such as at least about 50%, or at least about 60%, or at least about 7〇%, or at least about 8〇) %, or at least about 90%) does not contain matte particles 83〇 or matte particle agglomerates 880. Therefore, the microstructures do not contain (e.g., embedded) matte particles. It is inferred that even when such matte Where the presence of particles is insufficient to provide the desired antireflection, clarity and haze properties, the presence of matte particles (e.g., vermiculite or caC〇3) can still provide improved durability, as will be explained below. The particle size of the matte particles is relatively large, so it is difficult to keep the matte particles uniformly dispersed in the coating composition. This causes a change in the concentration of the applied matte particles (especially in the case of screen coating), and further A change in matt properties is caused. For embodiments in which at least a portion of the microstructures comprise embedded matte particles or agglomerated matte particles, the average particle size of the matte particles is generally, average of the microstructures. FIG inch (e.g., at least about 2-fold or more times smaller) and matte particles are sufficient to enable the micro-structure layer of polymerizable resin composition 5

^者(或此外)’該低折射率層可&括無光澤顆粒。 猶^吉構表面可佶用杯佃谪古从制、Λ 可使用任何適宜的製造方法製得。微結構一 工具之微複製’藉由澆鑄及固化與工具表面 合樹脂組合物而製得(諸如美國專利第 般係利用自一工具之 接觸的可聚合樹脂 156113.doc 201202740 5,175,030號(Lu等人)及第5,183,597號(Lu)中所述)。可藉由 任何可利用的製造方法(諸如藉由使用雕刻或金剛石車肖j ) 製造該工具。示範性金剛石車削系統及方法可包括並利用 一如(例如)PCT公開申請案WO 00/48037及美國專利第 7,350,442號及第7,328,638號中所述之快速工具伺服系統 (FTS) ’該案之全文以引用的方式併入本文中。 圖6係用於切割一工具之切割工具系統1〇〇〇之示意側視 圖’該工具可經微複製以製造微結構160及無光澤層14〇。 切割工具系統1 〇〇〇利用螺紋切削車床車削製程且包括一能 夠藉由驅動器1030圍繞中心轴1〇2〇旋轉及/或沿中心轴 1020移動之輥筒1 〇丨〇,及一用於切割該輥筒材料之切割器 1040。該切割器係安裝在伺服系統1〇5〇上且可藉由驅動器 1060沿X-方向移動進入該輥筒中及/或沿該輥筒移動。一般 而言,可將切割器1040安裝成垂直於該輥筒及中心軸 1020,且在該輥筒圍繞該中心轴旋轉時使其進入輥筒ι〇ι〇 之可雕刻材料中。隨後使該切割器平行於該中心軸移動, 以進行螺紋切削。切割器1040可同時在高頻率下及低位移 下運作以於該輥筒中製造在經微複製時產生微結構16〇之 特徵。 伺服系統1050係快速工具伺服系統(FTS)且包括—固熊 壓電(PZT)裝置(通常稱為PZT堆疊物),其可快速調整切割 器1040之位置。FTS 1050允許切割器1〇4〇在χ_、丫_及/戋ζ_ 方向’或離轴方向上高度精確及高速地移動。飼服系統 1050可為任何能夠產生受控運動(就靜止位置而言)之高品 156I13.doc 201202740 質位移伺服系統。在某些情況下,伺服系統1050能可靠及 可重複地提供解析度為約〇. 1微米或更佳之〇至約2〇微米範 圍内之位移。 驅動器1060可使切割器1040沿平行於中心軸1〇2〇之χ—方 向移動。在某些情況下,驅動器1060之位移解析度係優於 約0.1微米,或優於約0.01微米。藉由驅動器1〇3〇產生之旋 轉運動係與藉由驅動器1 〇6〇產生之平移運動同步,以精確 控制微結構160之所得形狀。 輥奇10〗0之可雕刻材料可為能夠經切割器〗〇4〇雕刻之任 何材料。示範性輥筒材料包括金屬(諸如銅)、各種聚合物 及各種玻璃材料。 切割器1040可為任何類型的切割器且可具有應用中需要 的任何形狀。例如,圖7A係具有半徑為「R」的弧形切削 刀片1115之切割器111 〇之示意側視圖。在某些情況下,切 削刀片1115之半徑R為至少約!〇〇微米,或至少約}5〇微 米,或至少約200微米。在某些實施例中,切削刀片之半 徑Κ為或至少約3〇〇微米,或至少約400微米,或至少約50〇 微米,或至少約1〇〇〇微米,或至少約15〇〇微米,或至少約 2〇〇〇微米’或至少約2500微米,或至少約3000微米。 或者,可使用如圖7B所示之具有v形切削刀片丨125的切 割器1120、如圖7C所示之具有分段線狀切削刀片1135的切 割器1130、或如7D所示之具有彎曲狀切削刀片1145的切割 器1140來形成該工具之微結構表面。在一實施例中,使用 頂角β為至少約178度或更大之v形切削刀片。 156113.doc -12· 201202740 返回乡照圖6 ’在切割該報筒材料時沿中心軸⑽峻轉 幸昆筒UH0及沿χ·方向移動切割器购可界定圍繞該輥筒之 螺紋軌跡’其具有沿該中心軸之螺距卜當該切割器沿垂 直:該輥筒表面之方向移動以切割該輥筒材料時,經該切 刀。j之材料寬度隨著切割器的切入及切出而變化。參 :(例如)圖7A ’該切割器之最大透人深度對應於經該切割 态切割之取大寬度P” -般而言,卩化比例係在約2至約4 的範圍内。 藉由微複製九種不同的圖案化卫具來製造若干微結構高 折射率層’以製造高折射率無光澤層。由於高折射率無光 澤層之微結構表面係工具表面之精確複製,因此微結構高 折射率層之稱後描述亦即相反卫具表面之描述。微結構表 面H5及H5A制相同的卫具且因此展現實質上相同的互補 累積斜率大小分佈F肩及峰尺寸特徵,其將在隨後閣 述。微結構表面H10A及H10B亦利用相同的工具且因此亦 展現實質上相同的互補累積斜率大小分佈F肩及峰尺寸 特徵。微結構表面H2A、H2B及H2C亦利用相同的工具。 因此’ H2B及H2C具有實質上與H2A相同的互補累積斜率 大小分佈及峰尺寸特徵。 圖8 A至9 D闡述示例性微結構高折射率層之表面型態之 某些實例。圖10A至l〇D中描繪一代表性微結構抗反射薄 膜。 根據實例中所述的測試方法,使用原子力顯微術 (AFM)、共焦顯微術、或相移干涉術對所製造樣品的表面 156113.doc •13- 201202740 之代表性部份(其具有約200微米乘以25〇微米至約500微米 乘以600微米的面積)進行特徵分析。 斜率分佈之Fcc(e)互補累積斜率大小分佈係由以下等式 定義: 〜(θ) = ^—— Σ^σ(^) 9=〇 〇 特定角度(θ)處之Fcc係斜率大於或等於θ之分率。微結構 高折射率層之微結構之微結構的Fcc(e)係閣述於下表工中° 表1-微結構高折射率層透明度、濁度及累積斜率 大小之特徵(or in addition) 'The low refractive index layer can <RTIgt; include matte particles. The surface of the frame can be made by using any suitable manufacturing method. Micro-replication-micro-replication of tools is produced by casting and curing a resin composition with a tool surface (such as the U.S. patents using a polymerizable resin from a tool contact 156113.doc 201202740 5,175,030 (Lu et al. And 5,183,597 (Lu)). The tool can be manufactured by any available manufacturing method, such as by using an engraving or diamond car j. An exemplary diamond turning system and method may include and utilize a rapid tool servo system (FTS) as described in, for example, PCT Publication No. WO 00/48037 and U.S. Patent Nos. 7,350,442 and 7,328,638. This is incorporated herein by reference. Figure 6 is a schematic side view of a cutting tool system for cutting a tool. The tool can be micro-replicated to produce a microstructure 160 and a matte layer 14A. The cutting tool system 1 utilizes a thread cutting lathe turning process and includes a roller 1 能够 that can be rotated about the central axis 1〇2〇 by the driver 1030 and/or along the central axis 1020, and a for cutting The cutter material 1040 of the roller material. The cutter is mounted on the servo system 1〇5〇 and is movable into and/or along the drum by the drive 1060 in the X-direction. In general, cutter 1040 can be mounted perpendicular to the roll and central axis 1020 and into the engraved material of the roll as it rotates about the central axis. The cutter is then moved parallel to the central axis for thread cutting. Cutter 1040 can operate at both high frequencies and low displacements to create features in the roll that create microstructures 16 upon microreplication. The servo system 1050 is a fast tool servo system (FTS) and includes a PBT device (commonly referred to as a PZT stack) that can quickly adjust the position of the cutter 1040. The FTS 1050 allows the cutter 1〇4〇 to move highly accurately and at high speed in the χ_, 丫_ and /戋ζ_ directions or off-axis directions. The feeding system 1050 can be any high-quality 156I13.doc 201202740 mass displacement servo system capable of producing controlled motion (in terms of rest position). In some cases, servo system 1050 can reliably and reproducibly provide displacements ranging from about 1 micron or better to about 2 micrometers. Actuator 1060 can move cutter 1040 in a direction parallel to the center axis 1〇2〇. In some cases, the displacement resolution of the driver 1060 is preferably better than about 0.1 microns, or better than about 0.01 microns. The rotational motion generated by the driver 1〇3〇 is synchronized with the translational motion produced by the driver 1〇6〇 to precisely control the resulting shape of the microstructure 160. The engraving material of the roller 10 10 can be any material that can be engraved by the cutter 〇 4〇. Exemplary roller materials include metals such as copper, various polymers, and various glass materials. Cutter 1040 can be any type of cutter and can have any shape desired in an application. For example, Fig. 7A is a schematic side view of a cutter 111 of a curved cutting insert 1115 having a radius "R". In some cases, the radius R of the cutting insert 1115 is at least about! 〇〇 microns, or at least about 5 〇 micrometers, or at least about 200 microns. In certain embodiments, the cutting insert has a radius Κ of at least about 3 μm, or at least about 400 μm, or at least about 50 μm, or at least about 1 μm, or at least about 15 μm. , or at least about 2 microns micron' or at least about 2500 microns, or at least about 3000 microns. Alternatively, a cutter 1120 having a v-shaped cutting insert 125 as shown in FIG. 7B, a cutter 1130 having a segmented linear cutting insert 1135 as shown in FIG. 7C, or a curved shape as shown in FIG. 7D may be used. The cutter 1140 of the cutting insert 1145 forms the microstructured surface of the tool. In one embodiment, a v-shaped cutting insert having a vertex angle β of at least about 178 degrees or greater is used. 156113.doc -12· 201202740 Return to the township picture Figure 6 'When cutting the barrel material, the core axis (10) is swung to the UH0 and the direction of the cutter is removed. The thread can be defined around the roller. Having a pitch along the central axis through the cutter as it moves in a direction perpendicular to the surface of the roll to cut the roll material. The material width of j varies with the cutting and cutting of the cutter. Reference: For example, Figure 7A 'The maximum penetration depth of the cutter corresponds to the large width P" cut by the cut state - generally, the ratio of deuteration is in the range of about 2 to about 4. Microfabrication of nine different patterned guards to fabricate several microstructured high refractive index layers' to produce a high refractive index matte layer. Microstructures due to the precise replication of the surface of the tool surface of the high refractive index matte layer The description of the high refractive index layer is also described as the surface of the opposite guard. The microstructured surfaces H5 and H5A are made of the same fixture and thus exhibit substantially the same complementary cumulative slope size distribution, F shoulder and peak size characteristics, which will It follows that the microstructured surfaces H10A and H10B also utilize the same tools and therefore exhibit substantially the same complementary cumulative slope size distribution, F shoulder and peak size characteristics. The microstructured surfaces H2A, H2B and H2C also utilize the same tool. 'H2B and H2C have substantially the same cumulative cumulative slope size distribution and peak size characteristics as H2A. Figures 8A through 9D illustrate some examples of surface patterns of exemplary microstructured high refractive index layers. A representative microstructured antireflective film is depicted in 10A through 10D. Surface 156113 of the fabricated sample was fabricated using atomic force microscopy (AFM), confocal microscopy, or phase shifting interferometry according to the test methods described in the examples. .doc • A representative portion of 13-201202740 (which has an area of about 200 microns by 25 〇 microns to about 500 microns by 600 microns) for characterization. Fcc(e) complementary cumulative slope size distribution for slope distribution It is defined by the following equation: ~(θ) = ^—— Σ^σ(^) 9=〇〇The slope of the Fcc system at a certain angle (θ) is greater than or equal to the fraction of θ. The microstructure of the high refractive index layer The structure of the microstructure of Fcc (e) is described in the table below. Table 1 - Microstructure high refractive index layer transparency, turbidity and cumulative slope size characteristics

156113.doc • 14 - 201202740 文中所揭示之光學透明度值係使用購自B YK_Gardiner之 HaZe-Gard Phls濁度儀測得。如表丨中所示,聚合高折射率 硬塗層微結構表面之光學透明度—般為至少約6〇%或 65%。在某些實施例中,該光學透明度為至少⑽或 8〇%。在某些實施财,該透明度不大於9G%,或89%, 或88/。或87/。’或86%,或85%。如下表4中所示,微結 構抗反射薄膜亦具有此等光學透明度。 光學濁度一般係定義為偏離法線方向大於2 5度的透射 光對總透射光之比例。文_所揭示之光學濁度值亦係根 據ASTM Dl〇〇3中所述之步驟’使用出〜以以pius濁度 儀(購自 BYK-Gardiner,Silver Springs,Md )測得。如上 表1所述,聚合咼折射率硬塗層微結構表面之光學濁度係 小於20 /。且較佳小於i 5%。在較佳實施例中,該光學濁度 係在約1%、或2%或3〇/〇至約10%的範圍内。在某些實施例 中,該光學濁度係在約1%、或2%,或3%至約5%的範圍 内。如下表4中所不,微結構抗反射薄膜亦具有此等濁 微結構表面包括複數個峰,其係根據以下實例中所述之 測試方法經特徵分析。料峰之尺切徵係顯示於下表2 中: 156113.doc 15 201202740 表2-微結構高折射率層峰尺寸特徵 平均ECD 微米 平均長度 微米 平均寬度 微米 W/L 平均值 NN 微米 亮斑 比較例 H11 3.37 4.10 3.05 0.82 13.24 2 比較例 H1 12.35 18.94 9.23 0.55 18.90 1 H5 11.29 14.52 9.53 0.67 17.25 1 H4 23.46 50.70 12.15 0.28 33.44 2 H10A 15.31 20.72 12.42 0.61 22.60 2 H10B 14.7 19.776 11.986 0.619 21.34 2 H6 21.82 28.66 18.18 0.64 29.36 3 H8 24.38 31.63 20.74 0.67 34.37 3 H9 21.55 29.47 17.43 0.60 29.11 3 H3 58.23 74.94 48.69 0.66 76.34 4 H7 30.55 41.44 24.82 0.61 40.37 4 H2A 未測定 已發現該等尺寸特徵與「亮斑」相關,其係經由無光澤 表面顯示之影像因無光澤表面與LCD之像素的相互作用而 發生的視覺退化。亮斑之外觀可描述為特定顏色之複數個 亮點,其在LCD影像上疊加「粒度」,從而降低透射影像 之透明度。亮斑的水準或數量係取決於微複製結構與LCD 像素之間的相對尺寸差異(即亮斑之數量係顯示器依賴 型)。一般而言,微複製結構需要遠小於LCD像素尺寸以 消除亮斑。亮斑之數量係藉由與以商標名稱「Apple iPod Touch」(如利用顯微鏡所測得,其具有約159 μιη的像素間 距)購得之呈白色態之LCD顯示器之一組物理驗收標準(具 有不同亮斑水準之樣品)進行視覺比較而評估。數量係在1 至4的範圍内,其中1為亮斑的最低數量且4為最高數量。 雖然比較例H1具有低亮斑,但如表1中所指出,該微結 構高折射率層具有低透明度及高濁度。 156113.doc -16· 201202740 比較例H11係市售無光澤薄膜,其中實質上所有峰皆係 由無光澤顆粒形成。因此,平均等效圓直徑(ecd)、平均 長度及平均寬度係大致相同。 其他實例(即除H1以外)顯示低抗反射與低亮斑之組合可 利用與比較m!之峰尺寸特„fJl不同之抗反射薄膜獲 得。舉例而言,所有其他示範性微結構表面之峰具有實質 上比比較例H11高至少5微米且一般為至少1〇微米的平均 ECD。此外,具有低於H3&H7之亮斑的其他實例具有小 於30微米或小於25微米的平均ECD(即峰)。其他示範性微 結構表面之峰具有大於5微米(即大於H11)及一般大於1〇微 米的平均長度。示範性微結構表面之峰的平均寬度亦為至 少5微米。低亮斑實例之峰具有不大於約15微米,且在某 些實施例中不大於1 〇微米的平均長度。寬度對長度之比例 (即W/L) —般係至少!.〇,或〇 9,或〇 8。在某些實施例 中,W/L係至少〇·6。在另一實施例中,W/L係小於〇.5或 〇·4及一般係至少。最鄰近距離ypNN)一般係至 少ίο或15微米且不大於100微米。在某些實施例中,NN係 在15微米至約20微米或25微米的範圍内。除其中W/L小於 0.5之貫施例外,較高亮斑的實施例一般具有至少約或 40微米的NN。 將低折射率層施加至表2之微結構高折射率層上。利用 購自 Shimadzu Co” Japan 及 Shimadzu Scientific Instruments, (:〇1111111^,\10之具有機械臂桿1^〇3100之81^1^心111;¥-3101PC UN-VIS-NIR掃描分光光度計,或在12。之入射角 156113.doc •17· 201202740 下以380至800 nm之反射模式’或利用購自Hunter Labs之 測量RSIN及RSEX模式之UltaScan XE(其申鏡面反射 =(RSIN Y-RSEX Y)) ’測量該微結構抗反射薄膜之反射(即 第一表面鏡面反射)。該等儀器測量約1 cm2區域之反射β 繪製反射曲線,並記錄反射最小時之波長。 如下表所記錄’重新測量亮斑不大於「3」之微結構表 面之透明度、濁度、及互補累積斜率大小分佈。 表3-微結構抗反射薄膜表面特徵 HIHC Lambda Rphot 透明度 濁度 Fee (01) Fee (0.3) Fee (0·7) Fee (1.3) Fee (4.1) 比較例 F11 H11 555 1.11 82.4 4.9 94.9 82.6 54.1 27.2 3.4 比較例 F1 H1 487 1.51 37.7 19.5 99.7 99.0 95.8 86.6 22.2 F6 H6 536 1.42 82.1 3.30 96.0 84.7 49.8 11.1 0.0 F8 H8 548 1.32 87.0 1.72 96.4 83.6 44.4 6.7 0.0 F9 H9 559 1.67 71.2 5.04 98.0 92.0 68.9 30.8 0.0 F2A1 H2 558 2.48 80 5.4 95.3 ^84.2 60.4 32.9 0.6 F2A2 H2 530 1.93 78.7 5.5 98.0 92.4 75.2 48.2 7 5 F2B H2B 644 1.33 74.0 8.94 未測定 F2C H2C 473 1.40 72.9 7.84 未測定 _ F4 H4 614 1.57 82 3.37 93.9 78.7 46.7 18.1 0.1 F5 H5 547 1.35 87.6 4.93 94.9 81.3 44.2 8.4 0.0 F10A H10A 518 1.57 79.3 4.07 97.3 89.7 65.2 26.0 0.0 F10B H10B 573 1.26 77.8 3.28 96.4 88.1 63.8 26.1 0.0 ~ 如利用之刖所述之分光光度計所測得,該抗反射薄膜在 550 nm下顯示小於2%、或小於15%之平均適光反射率(即 Rphot) 0 斜率大小欄中所指出之各值係具有該斜率大小或更大斜 156113.doc -18· 201202740 率值之微結構之總百分比(即微結構表面之總百分比)。舉 例而言’在微結構表面Η6的情況下,97.3%的微結構具有 〇.1度或更大的斜率大小;89.8%的微結構具有〇.3度或更大 的斜率大小;62.6%的微結構具有〇.7度或更大的斜率大 小;22.4%的微結構具有U度或更大的斜率大小;且〇%的 (無)微結構(所測量的面積)具有4 · 1度或更大的斜率大小。 相反地,由於62.6%的微結構具有〇.7度或更大的斜率大 小,因此100%-62.6。/。=37.4%的微結構具有小於〇.7度的斜 率大小。此外,由於22.4°/。的微結構具有h3度或更大的斜 率大小,因此100%-22.4%=77.6%的微結構具有小於i 3度 的斜率大小。 如表1及3及圖11中所示,各微結構表面之至少或更 多的微結構具有至少0.1度或更大的斜率大小。此外,至 少75%的微結構具有至少0J度的斜率大小。 具有高透明度及低濁度之較佳高折射率硬塗層及八尺微 結構表面的累積斜率特徵與H1及F1不同。在ρ 1的情況 下,至少95.8%的微結構具有至少0.7度的斜率大小。因 此’僅有4.2%的微結構具有小於〇·7度的斜率大小。對於 其他微結構表面而言,至少30%或35%或40%且在某些實 施例中至少45%或50〇/〇或55%、或6〇〇/0或65%或70〇/〇或75% 的微結構具有至少0.7度的斜率大小。因此,至少25%、或 30%、或 35%、或 40¾、或 45。/。、或 50%、或 55%、或 60%、或65。/。、或70。/。的微結構具有小於〇7度的斜率大 I561J3.doc •19· 201202740 或者(或此外),較佳的抗反射微結構表面與?1之區別可 在於:對於F1而言,至少86.6%的微結構具有至少丨3度的 斜率大小。因此,僅有13.4%具有小於丨3度的斜率大小。 對於其他微結構表面而t,至少25%的微結構具有小於13 度的斜率大小。在一實施例t,至少3〇%、或35%、或 4〇%、或45。/。的微結構具有至少h3度的斜率大小。因此, 55%或60%或65%或70%的微結構具有小於〗3度的斜率大 J在其他實施例中,至少5%或10%或15%或2〇%的微結 構具有至少1.3度的斜率大小。因此,8〇%或85%或9〇%或 9 5 %的微結構具有小於1 3度的斜率大小。 或者(或此外),抗反射微結構表面與F1之區別可在於: 對F1而言,至少約22.2%的微結構具有至少4」度的斜率大 I 而在較佳^結構表面的情況下,少於20%或15%或 10%的微結構具有4.1度或更大的斜率大小。因此,8〇%或 85%或90%具有小於4·1度的斜率大小。在一實施例中,5 至10%的微結構具有4.1度或更大的斜率大小。在大多數實 施例中,少於5%或4。/。或3%或2%或1%的微結構具有41度 或更大的斜率大小。 如上所述’將低折射率層施加至微結構高折射率層上可 將透明度降低至多約10%,限制條件為抗反射薄膜之透明 度係在目標範圍内。在某些實施例中,該微結構高折射率 層與該抗反射薄膜之間的透明度差異係不大於約3%、或 2%或1 %。此外’將低折射率層施加至微結構高折射率層 上可將濁度增加至多5%。在某些實施例中,該微結構高 156113.doc -20· 201202740 不大於約 折射率層與該抗反射薄膜之間的濁度差異係 3%、或 2% 或 1%。 /將低折射率層施加至微結構高折射率層上—般會改變該 微結構表面之互補累積斜率大小分佈。參考圖丨丨,另外^ 括低折射率層之微結構抗反射薄膜之互補累積斜率大小: 佈趨於稍低’然而一般具有與對應的微結構高折射率層: 似的互補累積斜率大小分佈曲線。雖然該微結構低折射率 層之互補累積斜率大小分佈較低,但該互補累積斜率大小 分佈及♦尺寸特徵係在與先前針對微結構高折射率層所述 者相同的目標範圍内。在某些實施例中,斜率大小為至少 〇.7度或至少1.3度之微結構之百分比的變化(即hif12 = 對值)係小於5%、4%、3%、2%、或1 °/0。 其他實施例中,斜率為〇.7度或更大之微結構之百分比 及斜率大小為至少i.3度之微結構之百分比可增加至多 1〇%。據推測,可製造斜率大小比上述所需_更高的高 折射率微結構層’在施加低折射率層之後,該斜率大小減 將低折射率層.施加至微結構高折射率層上一般稍微改變 峰結構之尺寸。舉例而言,平均等效圓直徑(ECD)及/或平 均長度 '及/或平均寬度之一般變化係小於15或丨微米。在 某些實施例中,平均ECD之變化係不大於〇 5、〇4、〇3、 或0.2微米。平均W/L之一般變化係不大於〇 5。最接近的 峰結構(即最相鄰的兩個峰結構)之間的距離可改變0.5微 米’但是一般不大於2.5或3微米。 156113.doc -21- 201202740 就7Γ lGi 14问折射率微結構層及AR薄膜而言,該等微結 構實質上覆蓋替伽# = _ 個表面。然而,在不受理論限制下,據信 斜率大〗、為至少〇 7度之微結構可提供所需的無光澤性 質因此’推測斜率大小為至少〇7度之微結構可覆蓋至 夕.勺40/〇 ’或至少約45%,或至少約5〇%,或至少約, 或至八勺60/。’或至少約65%,或至少約的主表面, 然而仍提供所需的高透明度及低濁度及足夠的抗反射性 質。 亦可就平均南度、平均粗糙度(Ra)及平均最大表面高度 ㈣來分析微結構表面之複數個峰的特徵。 表4·平均高度及粗糙度 平均高度 (微米) Ra (微米) Rz (微米) 比較例F11 比較例ίϊ ~F6 -0357_ 0.678 0.148 ΟΪ68 2.462 1.297 _ 0.441 0.101 0.785 VO τ?〇 -- 0.387 0.085 0.727 ry 0.549 0.137 1.067 F2A1 0.290 夫分 定 F2A2 Ί?Α -- 0.352 夫測定 T?c — 0.371 0.081 0.687 r5 0.257 0.058 0.503 r ( l/ΜΒΙ* 斑、 171 Λ A 0.375 0.097 0.727 rlUA i?mr> 0.381 0.089 0.714 JP lUo 0.660 0.090 0.790 平均表面粗糙度(即Ra)一般係小於〇 2〇微米。具有高透 明度及充足濁度之較佳實施例顯示不大於〇 .丨5微米的Ra » 在某些實施例中’ Ra係小於〇 14,或〇 13,或〇 12,或 0·11 ’或0.10微米。Ra—般係至少0 04或0 05微米。 平均最大表面高度(即RZ)—般係小於3微米或小於2.5微 156113.doc -22- 201202740 米。具有高透明度及充足濁度之較佳實施例顯示不大於 1.2〇微米的Rz。在某些實施例中,RZ係小於i 1〇或1〇〇微 米。Rz—般為至少〇 40或〇 5〇微米。 無光澤或抗反射薄膜之高折射率層一般包括聚合物質, 諸如折射率為至少16〇之可聚合樹脂之反應產物。該可聚 合樹脂較佳包含經表面改質之奈米顆粒(較佳具有至少16〇 之折射率)。各種(例如非氟化)自由基可聚合單體、寡聚 物、聚合物及其混合物可用於高折射率層之有機材料中。 「已知各種高折射率顆粒,其包括(例如)單獨的氧化锆 (「Zr02」)、二氧化鈦(「Ti〇2」)、氧化銻、氧化鋁、氧 化錫或其組合。亦可使用混合金屬氧化物。用於高折射率 層之氧化錯可以商標;g「Nalc〇 〇〇ss〇〇8」購自则⑺ Chemical Co.及以商標名「Buhler zirc〇nia z w〇 購 自Buhler AG Uzwil,Switzerland。氧化鍅奈米顆粒亦可根 據美國專利第7,24M37號及美國專利第6,376,59〇號中所述 而製備。 該低折射率表面層包括可聚合低折射率組合物之反應產 物。該等低折射率組合物較佳包括―或多種氟化自由基可 聚合物質及經表面改質之無機奈米顆粒。較佳具有低折射 率(例如小於1.50)之該等經表面改質之顆粒係分散於本文 所述之自由基聚合氟化有機材料中。已知多種低折射率無 機顆粒,如金屬氧化物、金屬氮化物、及金W化物⑽ 如氟化物)。低折射率顆粒包括膠狀石夕石、氟化鎮、及氟 Μ。用於該低折射率組合物令之石夕石可以商標名 l56U3.doc •23- 201202740156113.doc • 14 - 201202740 The optical transparency values disclosed herein were measured using a HaZe-Gard Phls turbidity meter from B YK_Gardiner. As shown in the Table, the optical clarity of the polymeric high refractive index hardcoat microstructure surface is generally at least about 6% or 65%. In certain embodiments, the optical transparency is at least (10) or 8%. In some implementations, the transparency is no more than 9G%, or 89%, or 88/. Or 87/. ‘Or 86%, or 85%. As shown in Table 4 below, the microstructured antireflective film also has such optical transparency. Optical haze is generally defined as the ratio of transmitted light to total transmitted light that is greater than 25 degrees from the normal direction. The optical turbidity values disclosed in the text are also measured according to the procedure described in ASTM Dl 3, to be measured by a pius turbidity meter (available from BYK-Gardiner, Silver Springs, Md). As described in Table 1, the optical turbidity of the microstructured surface of the polymerized ruthenium index hard coat layer is less than 20 /. And preferably less than i 5%. In a preferred embodiment, the optical haze is in the range of from about 1%, or 2% or from 3 Torr/Torr to about 10%. In certain embodiments, the optical turbidity is in the range of about 1%, or 2%, or 3% to about 5%. As shown in Table 4 below, the microstructured antireflective film also has such turbid microstructured surfaces including a plurality of peaks which are characterized by a test method as described in the Examples below. The ruler of the peak is shown in Table 2 below: 156113.doc 15 201202740 Table 2 - Microstructure High Refractive Index Layer Peak Size Characteristics Average ECD Micron Average Length Micron Average Width Micron W/L Average NN Micron Bright Spot Comparative Example H11 3.37 4.10 3.05 0.82 13.24 2 Comparative Example H1 12.35 18.94 9.23 0.55 18.90 1 H5 11.29 14.52 9.53 0.67 17.25 1 H4 23.46 50.70 12.15 0.28 33.44 2 H10A 15.31 20.72 12.42 0.61 22.60 2 H10B 14.7 19.776 11.986 0.619 21.34 2 H6 21.82 28.66 18.18 0.64 29.36 3 H8 24.38 31.63 20.74 0.67 34.37 3 H9 21.55 29.47 17.43 0.60 29.11 3 H3 58.23 74.94 48.69 0.66 76.34 4 H7 30.55 41.44 24.82 0.61 40.37 4 H2A Not determined These dimensional features have been found to be associated with "bright spots" which are matte The image displayed on the surface is visually degraded by the interaction of the matte surface with the pixels of the LCD. The appearance of a bright spot can be described as a plurality of bright spots of a particular color, which superimposes "granularity" on the LCD image to reduce the transparency of the transmitted image. The level or number of bright spots depends on the relative size difference between the microreplicated structure and the LCD pixels (ie, the number of bright spots is display dependent). In general, microreplicated structures need to be much smaller than the LCD pixel size to eliminate bright spots. The number of bright spots is a set of physical acceptance criteria for a white display of a white display obtained by the brand name "Apple iPod Touch" (measured with a microscope, which has a pixel pitch of about 159 μηη) Samples of different spot levels were evaluated for visual comparison. The number is in the range of 1 to 4, where 1 is the lowest number of bright spots and 4 is the highest number. Although Comparative Example H1 had a low bright spot, as indicated in Table 1, the microstructured high refractive index layer had low transparency and high haze. 156113.doc -16· 201202740 Comparative Example H11 is a commercially available matte film in which substantially all of the peaks are formed from matte particles. Therefore, the average equivalent circle diameter (ecd), the average length, and the average width are substantially the same. Other examples (ie, other than H1) show that the combination of low anti-reflection and low speckle can be obtained with an anti-reflection film that is different from the peak size of the m! „fJl. For example, the peak of all other exemplary microstructured surfaces. There is an average ECD that is substantially at least 5 microns higher than the comparative example H11 and typically at least 1 micron. In addition, other examples having bright spots below H3 & H7 have an average ECD of less than 30 microns or less than 25 microns (ie, peaks) The peaks of other exemplary microstructured surfaces have an average length greater than 5 microns (i.e., greater than H11) and generally greater than 1 〇 microns. The average width of the peaks of the exemplary microstructured surface is also at least 5 microns. The peaks have an average length of no greater than about 15 microns, and in some embodiments no greater than 1 〇 microns. The ratio of width to length (ie, W/L) is generally at least!.〇, or 〇9, or 〇8 In some embodiments, the W/L system is at least 〇·6. In another embodiment, the W/L system is less than 〇.5 or 〇·4 and generally at least. The closest neighbor distance ypNN is generally at least ίο. Or 15 microns and no more than 100 microns. In some implementations The NN is in the range of 15 microns to about 20 microns or 25 microns. Except for the case where W/L is less than 0.5, the higher bright spot embodiment typically has a NN of at least about or 40 microns. The rate layer was applied to the microstructured high refractive index layer of Table 2. Using a 81^1^ core with a mechanical arm 1^〇3100 from Shimadzu Co" Japan and Shimadzu Scientific Instruments, (: 〇1111111^, \10 111; ¥-3101PC UN-VIS-NIR scanning spectrophotometer, or in the reflection angle of 380 to 800 nm under the incident angle of 156113.doc •17·201202740' or the measurement of RSIN and RSEX from Hunter Labs The UltaScan XE mode (the RSIN Y-RSEX Y) 'measures the reflection of the microstructured anti-reflective film (ie, the first surface specular reflection). These instruments measure the reflection of the region about 1 cm2. Curve and record the wavelength at which the reflection is minimal. Record the transparency, turbidity, and complementary cumulative slope size distribution of the microstructure surface with the re-measurement of the bright spot not greater than "3" as shown in the following table. Table 3 - Microstructure anti-reflective film surface Characteristics HIHC Lambda Rphot transparent Turbidity Fee (01) Fee (0.3) Fee (0·7) Fee (1.3) Fee (4.1) Comparative Example F11 H11 555 1.11 82.4 4.9 94.9 82.6 54.1 27.2 3.4 Comparative Example F1 H1 487 1.51 37.7 19.5 99.7 99.0 95.8 86.6 22.2 F6 H6 536 1.42 82.1 3.30 96.0 84.7 49.8 11.1 0.0 F8 H8 548 1.32 87.0 1.72 96.4 83.6 44.4 6.7 0.0 F9 H9 559 1.67 71.2 5.04 98.0 92.0 68.9 30.8 0.0 F2A1 H2 558 2.48 80 5.4 95.3 ^84.2 60.4 32.9 0.6 F2A2 H2 530 1.93 78.7 5.5 98.0 92.4 75.2 48.2 7 5 F2B H2B 644 1.33 74.0 8.94 Not determined F2C H2C 473 1.40 72.9 7.84 Not determined _ F4 H4 614 1.57 82 3.37 93.9 78.7 46.7 18.1 0.1 F5 H5 547 1.35 87.6 4.93 94.9 81.3 44.2 8.4 0.0 F10A H10A 518 1.57 79.3 4.07 97.3 89.7 65.2 26.0 0.0 F10B H10B 573 1.26 77.8 3.28 96.4 88.1 63.8 26.1 0.0 ~ The antireflective film shows less than 2% or less than 15% at 550 nm as measured by the spectrophotometer described above Average reflectance (ie Rphot) 0 The values indicated in the Slope Size column are the total number of microstructures with this slope size or greater 156113.doc -18·201202740 Ratio (i.e., the total percentage of the surface microstructure). For example, 'in the case of microstructure surface Η6, 97.3% of the microstructures have a slope of 〇.1 degree or greater; 89.8% of the microstructures have a slope of 〇.3 degrees or greater; 62.6% The microstructure has a slope of 〇.7 degrees or greater; 22.4% of the microstructures have a slope of U degrees or greater; and 〇% of the (none) microstructure (measured area) has 4 · 1 degrees or A larger slope size. Conversely, since 62.6% of the microstructures have a slope of 〇.7 degrees or more, they are 100%-62.6. /. = 37.4% of the microstructure has a slope of less than 〇.7 degrees. In addition, due to 22.4 ° /. The microstructure has a slope of h3 degrees or greater, so a microstructure of 100%-22.4% = 77.6% has a slope size less than i3 degrees. As shown in Tables 1 and 3 and Figure 11, at least or more of the microstructures of each microstructure surface have a slope size of at least 0.1 degrees or greater. In addition, at least 75% of the microstructures have a slope size of at least 0 J degrees. The preferred high-refractive-index hard coating with high transparency and low haze and the cumulative slope characteristics of the eight-foot microstructured surface are different from H1 and F1. In the case of ρ 1 , at least 95.8% of the microstructures have a slope size of at least 0.7 degrees. Therefore, only 4.2% of the microstructures have a slope size less than 〇·7 degrees. For other microstructured surfaces, at least 30% or 35% or 40% and in certain embodiments at least 45% or 50%/〇 or 55%, or 6〇〇/0 or 65% or 70〇/〇 Or 75% of the microstructures have a slope size of at least 0.7 degrees. Therefore, at least 25%, or 30%, or 35%, or 403⁄4, or 45. /. , or 50%, or 55%, or 60%, or 65. /. , or 70. /. The microstructure has a slope greater than 〇7 degrees. I561J3.doc •19·201202740 or (or in addition), the preferred anti-reflective microstructure surface and ? The difference between 1 may be that for F1, at least 86.6% of the microstructures have a slope size of at least 丨3 degrees. Therefore, only 13.4% has a slope size less than 丨3 degrees. For other microstructured surfaces and t, at least 25% of the microstructures have a slope size of less than 13 degrees. In an embodiment t, at least 3%, or 35%, or 4%, or 45. /. The microstructure has a slope size of at least h3 degrees. Thus, 55% or 60% or 65% or 70% of the microstructures have a slope greater than 〖3 degrees. In other embodiments, at least 5% or 10% or 15% or 2% of the microstructures have at least 1.3. The slope of the degree. Thus, 8〇% or 85% or 9〇% or 95% of the microstructures have a slope size of less than 13 degrees. Alternatively (or in addition), the anti-reflective microstructure surface may differ from F1 in that: for F1, at least about 22.2% of the microstructures have a slope of at least 4" degrees, and in the case of a preferred structure surface, Less than 20% or 15% or 10% of the microstructure has a slope size of 4.1 degrees or greater. Therefore, 8〇% or 85% or 90% has a slope size of less than 4.1 degrees. In one embodiment, 5 to 10% of the microstructures have a slope size of 4.1 degrees or greater. In most embodiments, less than 5% or 4. /. Or a 3% or 2% or 1% microstructure has a slope size of 41 degrees or greater. Applying the low refractive index layer to the microstructured high refractive index layer as described above reduces the transparency by up to about 10%, with the proviso that the transparency of the antireflective film is within the target range. In certain embodiments, the difference in transparency between the microstructured high refractive index layer and the antireflective film is no greater than about 3%, or 2% or 1%. Further, applying a low refractive index layer to the microstructured high refractive index layer can increase the turbidity by up to 5%. In certain embodiments, the microstructure height 156113.doc -20 201202740 is no greater than 3%, or 2% or 1% of the difference in turbidity between the refractive index layer and the antireflective film. Applying a low refractive index layer to the microstructured high refractive index layer generally changes the complementary cumulative slope size distribution of the microstructured surface. Referring to the figure 丨丨, the complementary cumulative slope of the microstructure antireflection film of the low refractive index layer is additionally included: the cloth tends to be slightly lower 'however, generally has a high refractive index layer corresponding to the microstructure: a complementary cumulative slope size distribution curve. Although the complementary cumulative slope size distribution of the microstructured low refractive index layer is low, the complementary cumulative slope size distribution and ♦ size characteristics are within the same target range as previously described for the microstructured high refractive index layer. In certain embodiments, the change in the percentage of microstructures having a slope size of at least 〇7 degrees or at least 1.3 degrees (ie, hif12=value) is less than 5%, 4%, 3%, 2%, or 1°. /0. In other embodiments, the percentage of microstructures having a slope of 〇.7 degrees or greater and the percentage of microstructures having a slope of at least i.3 degrees may be increased by up to 1%. It is speculated that a high refractive index microstructure layer having a slope size greater than that required above can be fabricated. After applying the low refractive index layer, the slope is reduced by applying a low refractive index layer to the microstructured high refractive index layer. Slightly change the size of the peak structure. For example, the average variation in mean equivalent circle diameter (ECD) and/or average length 'and/or average width is less than 15 or 丨 microns. In certain embodiments, the average ECD change is no greater than 〇 5, 〇 4, 〇 3, or 0.2 microns. The average change in average W/L is no greater than 〇 5. The distance between the closest peak structures (i.e., the two most adjacent peak structures) can vary by 0.5 micrometers' but is generally no greater than 2.5 or 3 microns. 156113.doc -21- 201202740 For the 7 Γ lGi 14-relevant refractive microstructure layer and the AR film, the micro-structures substantially cover the Tiga## _ surface. However, without being bound by theory, it is believed that a microstructure with a slope of at least 度7 degrees can provide the desired matt properties. Therefore, a microstructure with a slope of at least 度7 degrees can be covered. 40/〇' or at least about 45%, or at least about 5%, or at least about, or up to eight tablespoons 60/. 'or at least about 65%, or at least about the major surface, yet still provide the desired high clarity and low haze and sufficient anti-reflective properties. The characteristics of the complex peaks of the microstructure surface can also be analyzed for average southness, average roughness (Ra), and average maximum surface height (4). Table 4. Average Height and Roughness Average Height (μm) Ra (μm) Rz (μm) Comparative Example F11 Comparative Example ϊ F ~F6 -0357_ 0.678 0.148 ΟΪ68 2.462 1.297 _ 0.441 0.101 0.785 VO τ?〇-- 0.387 0.085 0.727 ry 0.549 0.137 1.067 F2A1 0.290 Divided F2A2 Ί?Α -- 0.352 Determination T?c — 0.371 0.081 0.687 r5 0.257 0.058 0.503 r ( l/ΜΒΙ* spot, 171 Λ A 0.375 0.097 0.727 rlUA i?mr> 0.381 0.089 0.714 JP lUo 0.660 0.090 0.790 The average surface roughness (i.e., Ra) is generally less than 2 〇 2 μm. A preferred embodiment with high transparency and sufficient turbidity exhibits Ra of not more than 〇 5 μm » In some embodiments 'Ra is less than 〇14, or 〇13, or 〇12, or 0·11' or 0.10 microns. Ra is generally at least 0 04 or 0 05 microns. The average maximum surface height (ie RZ) is generally less than 3 microns. Or less than 2.5 micro 156113.doc -22-201202740 m. A preferred embodiment with high transparency and sufficient turbidity exhibits an Rz of no more than 1.2 〇 microns. In some embodiments, the RZ system is less than i 1 〇 or 1 〇. 〇micron. Rz is generally at least 40 or 〇 5 〇 micron. The high refractive index layer of the matte or antireflective film generally comprises a polymeric substance, such as a reaction product of a polymerizable resin having a refractive index of at least 16 Å. The polymerizable resin preferably comprises a surface modified Nanoparticles (preferably having a refractive index of at least 16 Å). Various (e.g., non-fluorinated) radical polymerizable monomers, oligomers, polymers, and mixtures thereof can be used in the organic material of the high refractive index layer. Various high refractive index particles are known, including, for example, zirconia alone ("Zr02"), titanium dioxide ("Ti〇2"), cerium oxide, aluminum oxide, tin oxide, or combinations thereof. Mixed metal oxidation may also be used. Oxidation error for high refractive index layer can be trademarked; g "Nalc〇〇〇ss〇〇8" is available from (7) Chemical Co. and under the trade name "Buhler zirc〇nia zw〇 from Buhler AG Uzwil, Switzerland The cerium oxide nanoparticles can also be prepared as described in U.S. Patent No. 7,24 M37 and U.S. Patent No. 6,376,59. The low refractive index surface layer comprises the reaction product of a polymerizable low refractive index composition. Preferably, the low refractive index compositions comprise - or a plurality of fluorinated free radical polymerizable materials and surface modified inorganic nanoparticles. Preferably, the surface modified particles having a low refractive index (e.g., less than 1.50) are dispersed in the free radically polymerized fluorinated organic material described herein. A variety of low refractive index inorganic particles such as metal oxides, metal nitrides, and gold halides (10) such as fluorides are known. The low refractive index particles include colloidal stone, fluorinated town, and fluoroquinone. For the low-refractive-index composition, the stone stone can be used as the brand name l56U3.doc •23- 201202740

Nalco Collodial Silicas」購自 Nalco Chemical c〇 ,Nalco Collodial Silicas" was purchased from Nalco Chemical c〇

Naperville,II卜如產品 1040、1042、1050、1060、2327及 2329。適宜的發煙石夕石包括(例如)可以商標名「Aer〇su系 列OX-50」及產品號130、150、及200購自DeGussa AG(Hanau,Germany)之產品,。發煙石夕石亦可以商標名 「CAB-O-SPERSE 2095」、「CAB-O-SPERSE A105」、及 「CAB-O-SIL M5」購自 Cabot Corp.,Tuscola, 111. » 該低折射率層及/或該高折射率層中之(例如無機)奈米顆 粒之濃度一般係至少25重量%或30重量%。該低折射率層 一般包括不大於50重量%或40重量%之無機氧化物奈米顆 粒。該高折射率層中之無機奈米顆粒之濃度一般係至少4〇 重量°/◦且不大於約60重量%或70重量%。 s亥專無機奈米顆粒較佳係經表面處理劑處理。對於石夕石 而言,以矽烷較佳;對於矽質填料而言,以其他物質較 佳。對於金屬氧化物(如氧化鍅)而言,以矽烷及羧酸較 佳。已知多種表面處理劑,其中某些係描述於us 2007/0286994 中。 高折射率(例如氧化锆)奈米顆粒可經包括一含有羧酸端 基及CyC8酯重複單元或至少一個C6_CM酯單元之化合物的 表面處理劑表面處理,如PCT申請案號〜0 2010/074862中 所述’該案以引用的方式併入本文中。 該化合物通常具有以下通式: 156113.doc -24- 201202740Naperville, II Bu products such as 1040, 1042, 1050, 1060, 2327 and 2329. Suitable smoky stones include, for example, those available under the trade designation "Aer〇su Series OX-50" and Product Nos. 130, 150, and 200 from DeGussa AG (Hanau, Germany). The smoky stone can also be sold under the trade names "CAB-O-SPERSE 2095", "CAB-O-SPERSE A105", and "CAB-O-SIL M5" from Cabot Corp., Tuscola, 111. » This low refraction The concentration of the (eg, inorganic) nanoparticles in the rate layer and/or the high refractive index layer is generally at least 25% by weight or 30% by weight. The low refractive index layer generally comprises no more than 50% by weight or 40% by weight of the inorganic oxide nanoparticles. The concentration of the inorganic nanoparticles in the high refractive index layer is generally at least 4 Å by weight/◦ and not more than about 60% by weight or 70% by weight. The inorganic nanoparticles of shai are preferably treated with a surface treatment agent. For Shi Xishi, it is better to use decane; for enamel filler, it is better for other substances. For metal oxides such as cerium oxide, decane and carboxylic acid are preferred. A variety of surface treatment agents are known, some of which are described in us 2007/0286994. The high refractive index (e.g., zirconia) nanoparticle can be surface treated with a surface treatment agent comprising a compound comprising a carboxylic acid end group and a CyC8 ester repeating unit or at least one C6_CM ester unit, such as PCT Application No. 0 0 2010/074862 'The case is incorporated herein by reference. This compound usually has the following general formula: 156113.doc -24- 201202740

Υ——L2 — ζ Jn ,或 L2— Υ--- 7 Jn I 其中 n的平均值為1.1至6 ; L1為(VC8烧基、芳烷基、或芳基,其視需要經一或多個 氧原子或酯基取代; L2為C^C:8院基、芳烷基、或芳基,其視需要經一或多個 氧原子取代; 〇一 * 或Υ——L2 — ζ Jn , or L2 — Υ--- 7 Jn I where n has an average value of 1.1 to 6; L1 is (VC8 alkyl, aralkyl, or aryl, which may be passed through one or more Substituted by an oxygen atom or an ester group; L2 is C^C: 8 ortho, aralkyl, or aryl, which may be substituted by one or more oxygen atoms as needed;

且 Y係 Ζ係端基,其包括c:rC8烷基、醚、酯、烷氧基、(甲基)丙 烯酸酯、或其組合。 在某些實施例中,L2包括Ce-C:8烷基且η的平均值為15 至2.5。Ζ較佳包括CrC8烷基。Ζ較佳包括(曱基)丙烯酸酯 端基。 含羧酸端基及C3-C8酯重複單元之表面改質劑係衍生自 經基聚己内酯(諸如羥基聚己内酯(曱基)丙烯酸酯)與脂族 或芳族酸酐之反應。該羥基聚己内酯化合物通常係以具有 分子分佈之聚合混合物獲得。該分子之至少一部份具有 C3_CS酯重複單元,即η至少為2。然而,由於該混合物亦 包括其中η為1之分子,因此該羥基聚己内酯化合物混合物 156113.doc -25· 201202740 之η平均值可為L1、、1>3、i 4或丨5。在某些實施例 中,11平均值為2.〇、2.1、2.2、2.3、2.4或2.5。 適宜的經基聚己内酯(甲基)丙烯酸酯化合物係以商標名 稱「Pemcure 12A」購自Cognis及以商標名稱「SR495」購 自Sartomer(據稱具有344 g/莫耳的分子量)。 適宜的脂族酸酐包括(例如)馬來酸酐、琥珀酸酐、辛二 酸酐及戊二酸酐。在某些實施例中,該脂族酸酐較佳為琥 珀酸酐。 芳族酸酐具有相對較高的折射率(例如至少丨5〇的幻)。 包含諸如彼等衍生自芳族酸酐者之表面處理化合物可提高 整個可聚合樹脂組合物之折射率。適宜的芳族酸酐包括 (例如)鄰苯二曱酸酐。 或者(或此外),該表面處理劑可包括由前述脂族或芳族 酸酐與(甲基)丙烯酸羥(例如C^C8)烷基酯之反應製得之(甲 基)丙烯酸酯官能化化合物。 此類型之表面改質劑之實例為琥珀酸單_(2_丙烯醯氧基_ 乙基)酯、馬來酸單-(2-丙烯醯氧基·乙基)酯、及戊二酸2· (2-丙烯醯氧基-乙基)酯、馬來酸單_(4_丙烯醯氧基-丁基) 酯、琥珀酸單-(4-丙烯醯氧基_ 丁基)酯、及戊二酸單丙 烯醯氧基-丁基)酿。此等種類係顯示於w〇 2〇〇8/i2i465 中,該案以引用的方式併入本文中。 在-實施例中’該低折射率組合物包括自由基可聚合含 氣聚合物。 一類含氟聚合物係自稱為四氟乙烯(「TFE」)、六氟丙 156113.doc • 26 - 201202740 烯(「HFP」)、及偏二氟乙烯(「VDF」、「VF2」)之組成單 體形成。該含氟聚合物較佳包括不同莫耳含量之至少兩種 該等組成單體(HFP及VDF),且更佳所有三種該等組成單 體。該含氟聚合物包含自由基可聚合基團。此可藉由包含 含鹵素固化位點单體(「CSM」)及/或鹵化端基而實現。或 者(或此外)’可藉由任何將提供該含氟聚合物之足夠(0.5 至6莫耳。/〇)碳-碳不飽和鍵之方法進行去氫氟化,以使該含 氟聚合物具有反應性。 可經由使用鹵化鏈轉移劑(其產生含有反應性鹵素端基 之含氟聚合鏈末端),將鹵素固化位點引入聚合物微結構 中。該等鏈轉移劑(「CTA」)係文獻資料中所熟知且典型 實例係:Br—CF2CF2-Br ' CF2Br2、CF2I2、CH2I2 » 其他典 型實例可參考頒予Weisgerber之美國專利第4,0〇〇,356號。 在形成共交聯網絡中使用固化位點單體之一優點在於(與 去風氟*化方法相反):不損害所形成之聚合物層之光學透 明度’因為丙烯酸酯與含氟聚合物之反應不依賴於聚合物 主鏈中之不飽和鍵以反應。 另—類含氟聚合物包括具有高分支鏈結構之聚合物種 類’如美國專利第7,615,283號中所述,其以引用方式併入 本文中。 該聚合物包括以下物質之反應產物:i)氟含量為至少25 重3: %之至少一種多官能性自由基可聚合物質,及π)視情 況選用之氟含量在〇至小於25重量%範圍内之至少一種多 g旎性自由基可聚合物質,其中多官能性物質之總含量係 156113.doc -27- 201202740 佔》亥可聚合有機組合物之固體重量%的至少約Μ重量%。 據推測,氟(甲基)丙烯酸酯聚合物中間溶液包括未反應 2自由基可聚合起始物質、寡聚物種類、及具有高分支鍵 結構之聚合物種類之混合物。高分支鏈聚合物係定義為任 可八中、”。構重複單元具有大於2之連結性之聚合物;此定 義可延伸至高交聯聚合物(其中存在大環類,但非梯形及 螺聚合物)。 利用兩步式製程製備該低折射率組合物。第—(例如溶 液)聚合反應利用稀釋的有機溶劑條件,以形成高分支鏈 氟丙烯酸酯聚合物(例如奈米凝膠”隨後,將該高分支鏈 氟丙烯酸酯在實質上1〇〇%固體條件下用作第二(例如光)聚 合反應中之反應物,以形成氟化交聯系統,其據推測係該 (奈米凝膠)聚合物在交聯(甲基)丙烯酸酯基質中之互穿網 絡。 多種氟化單-及多官能性自由基可聚合物單體、寡聚 物、及聚合物可用於製備該低折射率層。該等物質一般包 括自由基可聚合部份,及(全)氟聚醚部份、(全)氟烷基部 份、及(全)氟伸烷基部份。可作為丨)之具有高氟含量(例 如,至少20重量%)之多官能性種類係屬於此等類別。氟含 量小於25重量%之各類別中之其他種類可用作輔助組分。在 某些實施例中,該等輔助的氟化(甲基)丙烯酸酯單體可助於 使該反應混合物中存在之低折射率或其他氟化物質相容。 可自多種(全)氟聚醚(曱基)丙烯酸酯化合物製備低折射 率層及氟(曱基)丙稀酸酯聚合物。一種適宜的高含乾物質 156113.doc -28- 201202740 係(例如全氟聚醚)丙烯酸酯寡聚物,據供應商指出,其折 射率為1.341,且可以商標名「CN4000」購自Sartomer。 就低折射率而言,據信該物質之氟含量為至少約50重量 %。根據NMR分析,CN4000之分子量(Μη)為約1300 g/莫 耳’且主要由以下通式之全氟聚醚組成:And Y is a lanthanide terminal group which includes c:rC8 alkyl, ether, ester, alkoxy, (meth) acrylate, or a combination thereof. In certain embodiments, L2 comprises Ce-C:8 alkyl and the average of η is from 15 to 2.5. Ζ preferably includes a CrC8 alkyl group. The ruthenium preferably includes a (fluorenyl) acrylate end group. The surface modifier containing a carboxylic acid end group and a C3-C8 ester repeating unit is derived from the reaction of a perylene polycaprolactone such as hydroxypolycaprolactone (mercapto) acrylate with an aliphatic or aromatic acid anhydride. The hydroxypolycaprolactone compound is usually obtained as a polymerization mixture having a molecular distribution. At least a portion of the molecule has a C3_CS ester repeat unit, i.e., η is at least two. However, since the mixture also includes a molecule in which η is 1, the η average of the hydroxypolycaprolactone compound mixture 156113.doc -25·201202740 may be L1, 1, > 3, i 4 or 丨5. In certain embodiments, the average value of 11 is 2. 〇, 2.1, 2.2, 2.3, 2.4, or 2.5. Suitable trans-polycaprolactone (meth) acrylate compounds are commercially available under the trade designation "Pemcure 12A" from Cognis and under the trade designation "SR495" from Sartomer (it is said to have a molecular weight of 344 g/mole). Suitable aliphatic acid anhydrides include, for example, maleic anhydride, succinic anhydride, octane anhydride, and glutaric anhydride. In certain embodiments, the aliphatic anhydride is preferably succinic anhydride. The aromatic anhydride has a relatively high refractive index (e.g., a illusion of at least 〇5 )). The surface treatment compound containing, for example, those derived from an aromatic acid anhydride can increase the refractive index of the entire polymerizable resin composition. Suitable aromatic anhydrides include, for example, phthalic anhydride. Alternatively (or in addition), the surface treatment agent may comprise a (meth) acrylate functional compound prepared by the reaction of the aforementioned aliphatic or aromatic acid anhydride with a hydroxy (meth) acrylate (eg, C^C8) alkyl ester. . Examples of surface modifying agents of this type are succinic acid mono-(2-propenyloxy-ethyl) ester, maleic acid mono-(2-propenyloxyethyl) ester, and glutaric acid 2 · (2-propenyloxy-ethyl) ester, maleic acid mono-(4-propyleneoxy-butyl) ester, succinic acid mono-(4-propenyloxy-butyl) ester, and Glutaric acid monopropenyloxy-butyl) is brewed. Such species are shown in w〇 2〇〇8/i2i465, which is incorporated herein by reference. In the embodiment, the low refractive index composition comprises a radical polymerizable gas-containing polymer. A class of fluoropolymers are known as tetrafluoroethylene ("TFE"), hexafluoropropylene 156113.doc • 26 - 201202740 olefin ("HFP"), and vinylidene fluoride ("VDF", "VF2") Monomer formation. The fluoropolymer preferably comprises at least two of the constituent monomers (HFP and VDF) of different molar contents, and more preferably all three of the constituent monomers. The fluoropolymer contains a radical polymerizable group. This can be accomplished by including a halogen-containing cure site monomer ("CSM") and/or a halogenated end group. Or (or in addition) 'dehydrofluorination can be carried out by any method which will provide sufficient (0.5 to 6 moles per mole) of carbon-carbon unsaturated bonds of the fluoropolymer to render the fluoropolymer Reactive. The halogen cure site can be introduced into the polymer microstructure via the use of a halogenated chain transfer agent which produces a fluoropolymer chain end containing reactive halogen end groups. Such chain transfer agents ("CTA") are well known in the literature and are typical examples: Br-CF2CF2-Br 'CF2Br2, CF2I2, CH2I2 » Other typical examples can be found in U.S. Patent No. 4,0, issued to Weisgerber. , No. 356. One of the advantages of using a cure site monomer in forming a co-crosslinked network is (as opposed to a de-fluidization process): does not impair the optical transparency of the formed polymer layer 'because of the reaction of the acrylate with the fluoropolymer Does not depend on the unsaturated bond in the polymer backbone to react. Further fluoropolymers include those having a high degree of branched chain structure as described in U.S. Patent No. 7,615,283, incorporated herein by reference. The polymer comprises the reaction product of i) at least one polyfunctional free radical polymerizable material having a fluorine content of at least 25 and 3:3%, and π) optionally having a fluorine content in the range of from 〇 to less than 25% by weight. At least one polyglycolically free radical polymerizable material, wherein the total content of the polyfunctional material is 156113.doc -27-201202740, which accounts for at least about 9% by weight of the solids by weight of the polymerizable organic composition. It is presumed that the fluorine (meth) acrylate polymer intermediate solution includes a mixture of unreacted 2 radical polymerizable starting materials, oligomer species, and polymer species having a high branching bond structure. A highly branched polymer is defined as a polymer having a linker of greater than 2; this definition can be extended to highly crosslinked polymers in which macrocycles are present, but non-trapezoidal and spiropolymerization The low refractive index composition is prepared by a two-step process. The first (eg, solution) polymerization utilizes diluted organic solvent conditions to form a highly branched chain fluoroacrylate polymer (eg, nanogel) followed by The high-branched chain fluoroacrylate is used as a reactant in a second (eg, photo) polymerization reaction under substantially 1% solids conditions to form a fluorinated crosslinking system, which is presumed to be Interpenetrating network of polymers in crosslinked (meth) acrylate matrices. A variety of fluorinated mono- and polyfunctional free radical polymerizable monomers, oligomers, and polymers can be used to prepare the low refraction Rate layer. These materials generally include a radical polymerizable moiety, and a (per)fluoropolyether moiety, a (per)fluoroalkyl moiety, and a (per)fluoroalkyl moiety. Has a high fluorine content (for example, to 20% by weight) as much as functional species belonging to such class-based. Other species in each of the categories having a fluorine content of less than 25% by weight can be used as the auxiliary component. In certain embodiments, the auxiliary fluorinated (meth) acrylate monomers can aid in the compatibility of low refractive index or other fluorinated materials present in the reaction mixture. Low refractive index layers and fluoro(fluorenyl) acrylate polymers can be prepared from a variety of (per)fluoropolyether (fluorenyl) acrylate compounds. A suitable high dry matter 156113.doc -28-201202740 is a (for example, perfluoropolyether) acrylate oligomer having a refractive index of 1.341 according to the supplier and is commercially available under the trade designation "CN4000" from Sartomer. In terms of low refractive index, it is believed that the fluorine content of the material is at least about 50% by weight. According to NMR analysis, the molecular weight (??) of CN4000 was about 1300 g/mol' and consisted mainly of perfluoropolyether of the following formula:

R-0-[CF2-0]w.[CF2CF20]x-[CF2CF2CF2-0]y-[CF2CF2CF2CF2-0]z-R 其中-[CF2_0]w-及-[cf2cf2o]x-重複單元係該全氟聚醚缝中 之主鏈的主要重複單元,且該R端基主要為H2C=CH-CO- 0-(CH2CH2-〇)x-CH2CF2-。 本文所述之含有含氟聚合物之低折射率組合物較佳包括 至少一胺基有機矽烷酯偶聯劑或其縮合產物(如U.S. 7,323,514中所述)。適宜的胺基有機矽烷酯偶聯劑包括3_ 胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、(胺基 乙基胺基曱基)苯乙基三曱氧基矽烷、(胺基乙基胺基甲基) 苯乙基三乙氧基矽烷、N-(2-胺基乙基)-3-胺基丙基甲基二 曱氧基矽烷、N-(2-胺基乙基)-3-胺基丙基曱基二乙氧基矽 烧、N-(2-胺基乙基)-3-胺基丙基三曱氧基矽烷、N_(2_胺基 乙基)-3-胺基丙基三乙氧基矽烷、4-胺基丁基三曱氧基矽 烷、4-胺基丁基三乙氧基矽烷、3_胺基丙基甲基二乙氧基 石夕烧、3-胺基丙基甲基二甲氧基矽烷、3_胺基丙基二曱基 甲氧基矽烷、3-胺基丙基二甲基乙氧基矽烷、2,2_二甲氧 基-1-氮雜-2-矽環戊烷乙胺、2,2-二乙氧基_丨_氮雜_2_矽 環戊烷-1-乙胺、2,2-二乙氧基-1-氮雜_2_矽環戊烷、2,2_二 156113.doc 29- 201202740 曱氧基·1-氮雜-2-矽環戊烷、4-胺基苯基三甲氧基矽烷、 及3-苯基胺基丙基三甲氧基矽烷。一種適宜的胺基有機矽 烷酯偶聯劑可以商標名「All06」購得。 在不受理論限制下,據推測’該胺基有機矽烷酯偶聯劑 增加該低折射率塗料組合物之黏度,藉此阻止流動。當該 低折射率塗料組合物自該微結構高折射率層之峰流至峰之 間的谷或平面層時,反射會增加。發煙矽石可類似地增加 該低折射率組合物之黏度。高分子量樹脂及低沸點溶劑亦 可增加該低折射率塗料組合物之抗過度流動性。 該低折射率及有機高折射率可聚合組合物一般包括至少 5重量°/〇或10重量%的交聯劑(即具有至少三個(曱基)丙烯酸 酿基之單體)。低折射率組合物中交聯劑之濃度一般不大 於約30重量%、或25重量%、或20重量°/。》高折射率組合 物中交聯劑之濃度一般不大於約1 5重量%。 適宜的父聯劑單體包括(例如)三經甲基丙院三丙稀酸酯 (以商標名稱「SR351」購自 Sartomer Company,Exton, pa.)、乙氧基化三羥甲基丙烷三丙烯酸酯(以商標名稱 「 SR454」購自 Sartomer Company, Exton,Pa.)、四丙稀酸 季戊四醇酯、三丙稀酸季戊四醇酯(以商標名稱「SR444」 購自Sartomer)、五丙烯酸二季戊四醇酯(以商標名稱 「SR399」購自Sartomer)、乙氧基化季戊四醇四丙烯酸 酉θ、乙氧基化季戊四醇三丙稀酸酯(以商標名稱「」 購自Sartomer)、六丙烯酸二季戊四醇酯、及叁(2_羥乙基) 異氰尿酸酯三丙烯酸酯(以商標名稱「SR368」購自 156113.doc •30· 201202740R-0-[CF2-0]w.[CF2CF20]x-[CF2CF2CF2-0]y-[CF2CF2CF2CF2-0]zR wherein -[CF2_0]w- and -[cf2cf2o]x-repeat units are the perfluoropolymer The main repeating unit of the main chain in the ether suture, and the R terminal group is mainly H2C=CH-CO- 0-(CH2CH2-〇)x-CH2CF2-. The fluoropolymer-containing low refractive index composition described herein preferably comprises at least one amino-based organodecyl ester coupling agent or a condensation product thereof (as described in U.S. 7,323,514). Suitable amine organodecyl ester coupling agents include 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, (aminoethylaminomercapto)phenethyltrimethoxyloxy Decane, (aminoethylaminomethyl) phenethyltriethoxydecane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxyoxydecane, N-(2 -aminoethyl)-3-aminopropyl decyl diethoxy oxime, N-(2-aminoethyl)-3-aminopropyltrimethoxy decane, N_(2-amine Benzyl)-3-aminopropyltriethoxydecane, 4-aminobutyltrimethoxy decane, 4-aminobutyltriethoxydecane, 3-aminopropylmethyldi Ethoxylate, 3-aminopropylmethyldimethoxydecane, 3-aminopropyldimethoxymethoxydecane, 3-aminopropyldimethylethoxydecane, 2, 2-dimethoxy-1-aza-2-indolecyclopentanylamine, 2,2-diethoxy-indole_aza_2_indolecyclopentan-1-ethylamine, 2,2 -diethoxy-1-aza_2_矽cyclopentane, 2,2_2 156113.doc 29- 201202740 曱oxy·1-aza-2-indolecyclopentane, 4-aminobenzene Trimethoxy decane, and 3-phenylaminopropyl trimethyl Oxydecane. A suitable amine-based organodecyl ester coupling agent is commercially available under the trade designation "All06". Without being bound by theory, it is presumed that the amine-based organodecyl ester coupling agent increases the viscosity of the low refractive index coating composition, thereby preventing flow. When the low refractive index coating composition flows from the peak of the microstructured high refractive index layer to the valley or planar layer between the peaks, the reflection increases. The fumed vermiculite similarly increases the viscosity of the low refractive index composition. The high molecular weight resin and the low boiling point solvent also increase the resistance to excessive flow of the low refractive index coating composition. The low refractive index and organic high refractive index polymerizable composition generally comprises at least 5 weight percent / 10% or 10% by weight of a crosslinking agent (i.e., a monomer having at least three (fluorenyl) acrylic acid-forming groups). The concentration of the crosslinking agent in the low refractive index composition is generally not more than about 30% by weight, or 25% by weight, or 20% by weight. The concentration of the crosslinker in the high refractive index composition is generally no greater than about 15% by weight. Suitable parenteral monomers include, for example, tris-methylpropane triacrylate (sold under the trade designation "SR351" from Sartomer Company, Exton, pa.), ethoxylated trimethylolpropane III Acrylate (sold under the trade designation "SR454" from Sartomer Company, Exton, Pa.), pentaerythritol tetrapropanate, pentaerythritol triacrylate (sold under the trade designation "SR444" from Sartomer), dipentaerythritol pentaacrylate (sold under the trade designation "SR399" from Sartomer), ethoxylated pentaerythritol tetraacrylate 酉θ, ethoxylated pentaerythritol triacrylate (sold under the trade name "" from Sartomer), dipentaerythritol hexaacrylate, and Bismuth (2-hydroxyethyl) isocyanurate triacrylate (trade name "SR368" from 156113.doc •30· 201202740

Sartomer)。在某些態樣中,使用諸如美國專利第4,262,072 號(Wendling等人)中所述之含乙内醯脲基之多_(甲基)丙烯 酸酯化合物。 高折射率可聚合組合物一般包括至少一種含兩個(甲基) 丙烯酸酯基之芳族(曱基)丙烯酸酯單體(即二(曱基)丙烯酸 酯單體)。 在某些實施例中,該二(曱基)丙烯酸酯單體係衍生自雙 酚A。一種示範性雙酚-A乙氧基化二丙烯酸酯單體係以商 標名稱「SR602」購自Sartomer(據稱其在20°C下的黏度為 610 cps且Tg為2°C)。另一示範性雙酚A乙氧基化二丙烯酸 酯單體係以商標名稱「SR601」購自Sartomer(據稱其在 20°C下的黏度為1080 cps且Tg為60t)。在相關技藝中已闡 述其他各種雙酚A單體,諸如彼等美國專利第7,282,272號 中所述者。 在其他實施例中,高折射率層及AR薄膜係不含衍生自 雙酚A之單體。 種適且的雙官能性芳族(甲基)丙稀酸酯單體係 2008/0221291中所述之聯苯基二(曱基)丙烯酸酯單體·該 案以引用的方式併人本文中。該聯苯基二(甲基)丙稀酸醋 單體可具有以下通式結構:Sartomer). In some aspects, a poly-(meth) acrylate compound containing an intramethylene ureido group as described in U.S. Patent No. 4,262,072 (Wendling et al.) is used. The high refractive index polymerizable composition generally comprises at least one aromatic (fluorenyl) acrylate monomer (i.e., bis(indenyl) acrylate monomer) having two (meth) acrylate groups. In certain embodiments, the bis(indenyl) acrylate monolith system is derived from bisphenol A. An exemplary bisphenol-A ethoxylated diacrylate monoester was purchased from Sartomer under the trade designation "SR602" (it is said to have a viscosity of 610 cps at 20 ° C and a Tg of 2 ° C). Another exemplary bisphenol A ethoxylated diacrylate monoester is available from Sartomer under the trade designation "SR601" (it is said to have a viscosity of 1080 cps at 20 ° C and a Tg of 60 t). Other various bisphenol A monomers are described in the related art, such as those described in U.S. Patent No. 7,282,272. In other embodiments, the high refractive index layer and the AR film are free of monomers derived from bisphenol A. a bifunctional aryl (meth) acrylate monoester system described in 2008/0221291, a biphenyl bis(indenyl) acrylate monomer, which is incorporated herein by reference. . The biphenyl di(meth)acrylic acid vinegar monomer may have the following general structure:

I56113.doc 201202740 其中各R1係獨立地為Η或甲基; 各R2係獨立地為Br ; m係在0至4的範圍内; 各Q係獨立地為〇或S ; η係在〇至1〇的範圍内; L係視需要經一或多個羥基取代之C2至C12烷基; ζ為芳族環;且 t係獨立地為〇或1。 至少一個且較佳兩個-Q[L-0]n C(0)C(R1)=CH2基團係在 鄰位或間位經取代,以使該單體在25°C下為液體。 該聯笨基二(曱基)丙烯酸酯單體可單獨使用或與諸如 WO 2008/1 12452中所述之三苯基三(甲基)丙烯酸酯單體組 合使用,該案以引用的方式併入本文中。WO 2008/112452 亦闡述三笨基單(曱基)丙烯酸酯及二(曱基)丙烯酸酯,其 據推測亦為適用於高折射率層的組分。 在某些實施例中,該雙官能性芳族(曱基)丙烯酸酯單體 係與分子量小於450 g/莫耳且折射率為至少丨5〇、丨51、 1.52、1.53、1·54、us、I%、i 57 或 i 58之芳族單(甲 基)丙烯酸酯單體組合。該等反應性稀釋劑一般包括苯 基、聯苯基或萘基。其他該等反應性稀釋劑可係画化或非 鹵化(例如非溴化)。包含反應性稀釋劑(諸如聯苯基單(甲 基)丙烯酸酯單體)可藉由降低黏度同時提高有機組分之折 射率並改善可聚合組合物之可加工性。 芳族單(曱基)丙烯酸酯反應性稀釋劑之濃度一般係在上 156113.doc •32· 201202740 重量%或2重量%至約10重量%的範圍内。在某些實施例 中,高折射率層包括不多於9、8、7、6、或5重量%的反 應性稀釋劑《當使用過量的反應性稀釋劑時,高折射率層 及抗反射薄膜會顯示降低的鉛筆硬度,例如,當單官能性 反應性稀釋劑總計不大於約7重量%時,該鉛筆硬度一般 為約3H至4H。然而,當單官能性稀釋劑總計超過7重量% 時’該鉛筆硬度會降低至2H或更低。 適宜的反應性稀釋劑包括(例如):(曱基)丙烯酸苯氧乙 酯;(甲基)丙烯酸苯氧基_2_甲基乙酯;(曱基)丙烯酸苯氧 基乙氧基乙酯、(甲基)丙稀酸3 -羥基_2_羥丙基酯;(甲基) 丙烯酸苄酯;苯硫基丙烯酸乙酯;2_萘硫基丙烯酸乙酯; 1-萘硫基丙烯酸乙酯;2,4,6-三溴苯氧基丙烯酸乙酯;2,4_ 二溴苯氧基丙烯酸乙酯;2-溴苯氧基丙烯酸乙酯;丨_萘氧 基丙烯酸乙酯;2-萘氧基丙烯酸乙酯;苯氧基丙烯酸2-甲 基乙酯;丙烯酸苯氧基乙氧基乙酯;3_苯氧基_2_羥基丙烯 酸丙酯;2,4-二溴-6-第二丁基苯基丙烯酸酯;2,4_二溴_6_ 異丙基苯基丙烯酸酯;丙烯酸苄酯;丙烯酸苯酯;丙烯酸 2,4,6-三溴苯酯。亦可使用諸如丙烯酸五溴苄基酯及丙烯 酸五溴苯基酯之其他高折射率單體。 一種適宜的稀釋劑係丙烯酸苯氧乙酯(pEA)。丙烯酸苯 氧乙酯可購自一個以上商業來源,其包括以商標名稱 「SR339」購自Sartomer ;以商標名稱r Etermer 21〇」購 自 Eternal Chemical Co. Ltd.;及以商標名稱「丁〇_1166」 麟自Toagosei Co. Ltd。丙烯酸苄酯係購自AlfaAeser corp, 156113.doc -33- 201202740I56113.doc 201202740 wherein each R1 is independently hydrazine or methyl; each R2 is independently Br; m is in the range of 0 to 4; each Q is independently 〇 or S; η is in 〇 to 1 In the range of hydrazine; L is preferably a C2 to C12 alkyl group substituted with one or more hydroxy groups; hydrazine is an aromatic ring; and t is independently hydrazine or 1. At least one and preferably two -Q[L-0]n C(0)C(R1)=CH2 groups are substituted in the ortho or meta position to render the monomer liquid at 25 °C. The bis(indenyl) acrylate monomer can be used alone or in combination with a triphenyl tri(meth) acrylate monomer such as described in WO 2008/1 12452, which is incorporated by reference. Into this article. WO 2008/112452 also describes trisyl mono(mercapto) acrylates and bis(indenyl) acrylates, which are also presumed to be suitable components for the high refractive index layer. In certain embodiments, the difunctional aromatic (fluorenyl) acrylate monosystem has a molecular weight of less than 450 g/mole and a refractive index of at least 丨5〇, 丨51, 1.52, 1.53, 1.54, An aromatic mono(meth)acrylate monomer combination of us, I%, i57 or i58. These reactive diluents generally include phenyl, biphenyl or naphthyl. Other such reactive diluents may be either patterned or non-halogenated (e.g., non-brominated). The inclusion of a reactive diluent such as a biphenyl mono(meth)acrylate monomer can improve the refractive index of the organic component and improve the processability of the polymerizable composition by lowering the viscosity. The concentration of the aromatic mono(indenyl) acrylate reactive diluent is generally in the range of 156113.doc • 32·201202740% by weight or 2% by weight to about 10% by weight. In certain embodiments, the high refractive index layer comprises no more than 9, 8, 7, 6, or 5% by weight of reactive diluent "High refractive index layer and anti-reflection when excess reactive diluent is used The film will exhibit a reduced pencil hardness, for example, when the monofunctional reactive diluent amounts to no more than about 7% by weight, the pencil hardness will generally be from about 3H to 4H. However, when the monofunctional diluent amounts to more than 7% by weight in total, the pencil hardness is lowered to 2H or lower. Suitable reactive diluents include, for example: (phenoxy)phenoxyethyl acrylate; phenoxy-2-methylethyl (meth)acrylate; phenoxyethoxyethyl (meth) acrylate , (meth)acrylic acid 3-hydroxy-2-hydroxypropyl ester; (meth) benzyl acrylate; ethyl phenyl thioacrylate; 2 - naphthyl thioethyl acrylate; 1-naphthyl thio acrylate Ester; 2,4,6-tribromophenoxyethyl acrylate; 2,4-dibromophenoxyethyl acrylate; 2-bromophenoxyethyl acrylate; 丨-naphthyloxyethyl acrylate; Ethyl naphthylacetate; 2-methylethyl phenoxyacrylate; phenoxyethoxyethyl acrylate; 3-phenoxy-2-propyl propyl acrylate; 2,4-dibromo-6- Second butyl phenyl acrylate; 2,4-dibromo-6-isopropyl phenyl acrylate; benzyl acrylate; phenyl acrylate; 2,4,6-tribromophenyl acrylate. Other high refractive index monomers such as pentabromobenzyl acrylate and pentabromophenyl acrylate can also be used. A suitable diluent is phenoxyethyl acrylate (pEA). Phenyloxyethyl acrylate is commercially available from more than one commercial source and is commercially available under the trade designation "SR339" from Sartomer; under the trade name r Etermer 21" from Eternal Chemical Co. Ltd.; and under the trade name "丁〇_ 1166" Lin from Toagosei Co. Ltd. Benzyl acrylate was purchased from Alfa Aeser corp, 156113.doc -33- 201202740

Ward Hill, ΜΑ 〇 在光學顯示器或用於光學顯示器之抗反射薄膜上形成抗 反射塗層之方法可包括提供光透射基板層;在該基板層上 提供微結構高折射率材料;及提供本文所述之結合至該高 折射率層之低折射率層。可藉由將該低折射率物質層塗佈 至該高折射率物質之該(例如固化)層上,並用足夠的紫外 線輻射照射以交聯,來提供該低折射率層。或者,可將該 低折射率塗料塗佈至釋放襯墊上,至少部份固化,並轉移 塗佈。此外,可將該抗反射材料直接塗佈至基板上,或者 塗佈至可轉移抗反射薄膜之釋放層上,且隨後使用熱或輻 射誘導之轉移法自該釋放層轉移至基板上。適宜的轉移方 法係描述於美國公開申請案第2006/0147614號中。 可使用習知薄膜塗佈技術,將低折射率組合物與高折射 率組合物直接塗佈至薄膜或顯示器表面基板上。有利地, 可利用在單一高折射率層上提供之單一低折射率層獲得低 反射率與良好咐久性之組合。 可使用多種技術(其包括浸塗、順輥及逆輥塗佈、線繞 桿式塗佈、及模塗)塗佈薄膜。模式塗佈機尤其包括刮刀 塗佈機、狭縫塗佈機、滑道塗佈機、液體軸承塗佈機、滑 簾塗佈機、鍛模簾式塗佈機、及擠出塗佈機等。諸多類型 之模式塗佈機係描述於文獻資料(例如Edward Cohen及 Edgar Gutoff,Modern Coating and Drying Technology, VCH 出 版社,NY 1992,ISBN 3-527-28246-7,及Gutoff 及 Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, 156113.doc • 34- 201202740Ward Hill, 方法 方法 A method of forming an anti-reflective coating on an optical display or an anti-reflective film for an optical display can include providing a light transmissive substrate layer; providing a microstructured high refractive index material on the substrate layer; The low refractive index layer bonded to the high refractive index layer is described. The low refractive index layer can be provided by applying the low refractive index material layer to the (e.g., cured) layer of the high refractive index material and irradiating with sufficient ultraviolet radiation to crosslink. Alternatively, the low refractive index coating can be applied to a release liner, at least partially cured, and transferred to a coating. Alternatively, the antireflective material can be applied directly onto the substrate or onto the release layer of the transferable antireflective film and subsequently transferred from the release layer to the substrate using a thermal or radiation induced transfer method. A suitable method of transfer is described in U.S. Published Application No. 2006/0147614. The low refractive index composition and the high refractive index composition can be applied directly to the film or display surface substrate using conventional film coating techniques. Advantageously, a combination of low reflectance and good durability can be obtained with a single low refractive index layer provided on a single high refractive index layer. The film can be coated using a variety of techniques including dip coating, roll and reverse roll coating, wire wound coating, and die coating. The mode coater includes, in particular, a knife coater, a slit coater, a slide coater, a liquid bearing coater, a curtain coater, a forging die coater, and an extrusion coater. . Many types of mode coaters are described in the literature (eg Edward Cohen and Edgar Gutoff, Modern Coating and Drying Technology, VCH Press, NY 1992, ISBN 3-527-28246-7, and Gutoff and Cohen, Coating and Drying). Defects: Troubleshooting Operating Problems, 156113.doc • 34- 201202740

Wiley Interscience,NY ISBN 0-471-59810-0)中。 該等低折射率塗料一般係自溶劑塗佈,而該高折射率塗 料一般實質上不含溶劑。或者可藉由氣相沉積施用無機低 折射率塗料(如Si02)。 該低折射率塗料組合物一般係於烘箱中乾燥,以移除溶 劑,且隨後藉由(例如)使用所需波長下之H_燈泡或其他燈 (較佳在惰性氛圍(小於5 0份/每百萬份氧)中)以曝露於紫外 線輻射下而固化◊該反應機制會引起自由基可聚合材料交 聯。 該微結構高折射率層可藉由(例如)使用所需波長下之h_ 燈泡或其他燈(較佳在惰性氛圍(小於5〇份/每百萬份氧)中) 以曝露於紫外線輻射而固化。該反應機制會引起自由基可 聚合材料交聯。可在烘箱中乾燥該固化微結構層,以移除 光引發劑副產物或微量溶劑(若存在)。或者,將包含更高 直的溶劑之可聚合組合物抽吸至網狀物上、乾燥且隨後經 微複製及固化。 雖然基板通常較方便呈連續網狀物之捲筒形式,但可將 塗料施用至個別薄板上。 可處理該基板以改善該基板與鄰近層之黏著性,例如化 學處理、電暈處理(諸如空氣或氮氣電暈)、電漿處理、火 焰處理或光化輻射。若需要,可將視需要選用之黏結層或 底漆塗佈至基板及/或硬塗層,以增加層間黏著性。或者 (或此外),可塗佈底漆以減少干擾帶,或提供抗靜電性 質。 1561J3.doc •35- 201202740 可於该薄膜基板之反面上提供不同的永久性及可移除級 黏著劑組合物。對於利用壓敏黏著劑之實施例而言,該抗 反射薄膜物件一般包括可移除的脫離襯。在施用至顯示器 表面期間,移除該脫離襯,以使該抗反射薄膜物件可黏附 至該顯示器表面上。 在某些實施例中’本文所述之抗反射薄膜係耐久性。在 一態樣中,該耐久性抗反射薄膜在與磨料物質(如鋼絲絨) 重複接觸後耐劃傷。顯著劃傷之存在會增加該抗反射薄膜 之濁度。在一實施例中,根據實例中進一步描述之鋼絲絨 耐久性測試(Steel Wool Durability Test),該抗反射薄獏在 使用3.2 cm心軸及2〇〇 g質量之鋼絲絨擦拭5、1 1 5、2〇 或25次後’其濁度增加小於1.0%。 耐可見劃傷之表面層不一定保留其低表面能。該抗反射 溥膜可在與磨料物質(如鋼絲絨)重複接觸後,保留低表面 能。根據鋼絲絨耐久性測試,在使用3.2 cm直徑心軸及 1〇〇〇克質量之鋼絲絨擦拭5、10、15、20或25次後,該抗 反射薄膜可與十六烷顯示至少45度、50度、或60度之前進 接觸角。在使用3.2 cm直徑心軸及2〇〇克質量之鋼絲絨擦 拭10-人50次、1〇〇次、200次或甚至300次後,該抗反射 溥膜一般亦與水顯示至少90度、95度、或100度之靜態接 觸角。 實例: 微結構表面特徵 以下方法係用於確定及特徵化峰區域及關注高度分佈, 156113.doc -36· 201202740 其係藉由原子力顯微術(AFM)、共焦掃描雷射顯微術 (CSLM)、或相移干涉術(psi)利用具有物鏡之寧。表 面輪廓儀在從約2〇〇微米χ2顺米至約谓微米·微 米之區域上獲彳于。該方法係利用曲率臨限值及疊代演算法 以使選擇為最佳。使用曲率替代簡單的高度臨限值有助於 挑選出位於波谷處之相關峰。在某些情況下,此亦有助於 避免選擇單一連續網狀物。 在分析高度分佈之前’使用中值渡波器減少嗓音。然後 對於高度分佈中之各點,計算平行於坡度最陡之方向(沿 梯度向量)之曲率。亦計算垂直於此方向之曲率。使用三 個點計算曲率且其係、闡述於以下部份中。峰區域係藉由確 疋在此兩個方向之至少—個方向上具有正曲率之區域來確 定八他方向之曲率的負值不能過大。為完成此目的,藉 由使用此兩個曲率之臨限值產生二進制影像。將某些標準 影像處理功能應用至該二進制影像以清理之。此外,移除 過淺的峰區域。 ” 中值濾波器之尺寸及用於曲率計算之點間的距離係相當 重要。若其等過小’則主峰可能會因峰上的缺陷而分裂成 較小輕域。若其等過大,則可能無法確定相關峰。將此 等尺寸π定為與峰區域之尺寸或峰之間的波谷區域之寬度 成比例’無論哪—個較小1而’該等區域尺寸取決^ 值遽波器的尺寸及用於曲率計算之點間的距離。因此,最 代過程係詩確定滿足某㈣成良好峰識狀舰條件: 間隔。 156113.doc •37- 201202740 斜率及曲率分析 表面型態數據得出以x&y位置為函數的表面高度。將此 數據表示成函數H(x,y)。影像之x方向為影像的水平方向。 影像之y方向為影像之垂直方向。 利用MATLAB計算以下各項: 1.梯度向量Wiley Interscience, NY ISBN 0-471-59810-0). Such low refractive index coatings are typically applied from a solvent, and the high refractive index coating is generally substantially free of solvent. Alternatively, an inorganic low refractive index coating such as SiO 2 can be applied by vapor deposition. The low refractive index coating composition is typically dried in an oven to remove the solvent, and then by, for example, using an H-bulb or other lamp at a desired wavelength (preferably in an inert atmosphere (less than 50 parts / Each million parts of oxygen) is cured by exposure to ultraviolet radiation. This reaction mechanism causes cross-linking of the radical polymerizable material. The microstructured high refractive index layer can be exposed to ultraviolet radiation by, for example, using an h_bulb or other lamp at a desired wavelength (preferably in an inert atmosphere (less than 5 parts per million oxygen)) Cured. This reaction mechanism causes crosslinking of the free radical polymerizable material. The cured microstructure layer can be dried in an oven to remove photoinitiator by-products or traces of solvent, if any. Alternatively, the polymerizable composition comprising a higher straight solvent is drawn onto the web, dried and subsequently microreplicated and cured. While the substrate is generally conveniently in the form of a web of continuous web, the coating can be applied to individual sheets. The substrate can be treated to improve adhesion of the substrate to adjacent layers, such as chemical processing, corona treatment (such as air or nitrogen corona), plasma treatment, flame treatment, or actinic radiation. If necessary, a bonding layer or primer may be applied to the substrate and/or hard coat layer as needed to increase interlayer adhesion. Or (or in addition), a primer may be applied to reduce the interference band or provide antistatic properties. 1561J3.doc • 35- 201202740 Different permanent and removable grade adhesive compositions can be provided on the reverse side of the film substrate. For embodiments utilizing pressure sensitive adhesives, the antireflective film article typically includes a removable release liner. The release liner is removed during application to the surface of the display such that the anti-reflective film article can adhere to the surface of the display. In certain embodiments, the antireflective films described herein are durable. In one aspect, the durable anti-reflective film is scratch resistant after repeated contact with an abrasive material such as steel wool. The presence of significant scratches increases the turbidity of the antireflective film. In one embodiment, the anti-reflective tweezers are wiped using a 3.2 cm mandrel and a 2 〇〇g quality steel wool according to a Steel Wool Durability Test as further described in the Examples. 5, 1 1 5 After 2 or 25 times, its turbidity increase is less than 1.0%. Surface layers that are resistant to visible scratches do not necessarily retain their low surface energy. The anti-reflective film retains low surface energy after repeated contact with abrasive materials such as steel wool. According to the steel wool durability test, the anti-reflective film can exhibit at least 45 degrees with hexadecane after being wiped for 5, 10, 15, 20 or 25 times with a 3.2 cm diameter mandrel and 1 gram of steel wool. Enter the contact angle before 50 degrees or 60 degrees. After using a 3.2 cm diameter mandrel and 2 g g of steel wool to wipe 10-man 50 times, 1 time, 200 times or even 300 times, the anti-reflective film generally shows at least 90 degrees with water. 95 degree, or 100 degree static contact angle. Example: Microstructure surface features The following methods are used to determine and characterize peak regions and height distributions of interest, 156113.doc -36· 201202740 by atomic force microscopy (AFM), confocal scanning laser microscopy ( CSLM), or phase-shifting interferometry (psi) utilizes the contrast of the objective lens. The surface profiler is obtained from an area of about 2 Å to 2 μm to about 10 μm. The method utilizes curvature thresholds and iterative algorithms to optimize selection. Using a curvature instead of a simple height threshold helps to pick out the relevant peaks at the trough. In some cases, this also helps to avoid the choice of a single continuous mesh. Use a median waver to reduce the arpeggio before analyzing the height distribution. Then for each point in the height distribution, calculate the curvature parallel to the steepest slope (along the gradient vector). The curvature perpendicular to this direction is also calculated. The curvature is calculated using three points and is described in the following sections. The peak region determines that the negative value of the curvature of the eight directions is not excessive by confirming the region having positive curvature in at least one of the two directions. To accomplish this, a binary image is produced by using the thresholds of the two curvatures. Apply some standard image processing functions to the binary image to clean it up. Also, remove the shallow peak area. The size of the median filter and the distance between the points used for curvature calculation are important. If it is too small, the main peak may split into smaller light areas due to defects on the peak. If it is too large, it may It is not possible to determine the correlation peak. These dimensions π are set to be proportional to the width of the peak region or the width of the valley region between the peaks. 'Whether it is smaller than 1', the size of these regions depends on the size of the chopper and The distance between the points used for curvature calculation. Therefore, the most recent process is determined to satisfy a certain (four) good peak identification ship condition: interval. 156113.doc •37- 201202740 Slope and curvature analysis surface type data is obtained by x&amp The y position is the surface height of the function. This data is represented as a function H(x, y). The x direction of the image is the horizontal direction of the image. The y direction of the image is the vertical direction of the image. Use MATLAB to calculate the following: Gradient vector

'Η(χ + Αχ^)-Η(χ~Αχ,ν)λ 2 「丑(尤,y + Ay) - "(jc, y -知)丫 1 2Αχ ) + l 2Ay J 2_斜率(以度計)分佈_ng(q) 0 = arctan ()▽//(' 丨)丨)=arctan 3. Fcc(0)-斜率分佈之互補累積分佈 ίχω'Η(χ + Αχ^)-Η(χ~Αχ,ν)λ 2 "Ugly (yes, y + Ay) - "(jc, y - know)丫1 2Αχ ) + l 2Ay J 2_slope ( In degrees _ng(q) 0 = arctan ()▽//(' 丨)丨)=arctan 3. Fcc(0)-the complementary cumulative distribution of the slope distribution χχω

FcCS- ΣΝ〇^) g=0FcCS- ΣΝ〇^) g=0

FccW係累積斜率分佈之補充並得出斜率大於或等請 分率。 4. g-曲率,梯度向量方向之曲率(倒數微米) 5. t-曲率’垂直於梯度向量的方向之曲率(增加微米) 曲率 如圖1 2中所述,利用用於钭盎呌瞀 、针早s十算之兩點及中心點來計 算某一點上的曲率。對於±卜八此 ^ , 、匕刀析’將曲率定義為1除以内 接由此二個點形成之二角形之圓的半徑。 曲率=±l/R=±2*sin(0)/d 156113.doc 38- 201202740 其中θ係斜邊的對角,且d為三角形斜邊的長度。若該曲線 係向上凹,則曲率為負,且若向下凹,則曲率為正。 沿梯度向量方向(即g_曲率)並沿垂直於梯度向量之方向 (即t-曲率)測量曲率。使用插入法獲得兩個端點。 峰尺寸測量 使用曲率分佈來獲得樣品表面上的峰之尺寸統計數據。 利用曲率分佈之臨限值以產生用於確定峰之二進制影像。 使用MATLAB,在各像素處應用以下臨限值,以產生用於 確定峰之二進制影像: max(g-曲率,t_ 曲率)>e〇lnax min(g·曲率,t·曲率)>c〇min 其中cOmax及c0min係曲率戴取值。通常,c〇max& c〇min 係如下經賦值: cOmax=2sin(q〇)N〇/f〇v (q〇 及 N〇係固定參數) cOmin=-c〇max q〇應為最小斜率(以度計)之估值(十分重要)。應為可希 望具有的橫跨視野最長尺寸之峰區域的最小數目之估值。 fov係視野最長尺寸之長度。 利用具有影像處理工具箱之MATLAB分析高度分佈並獲 付峰統st數據。以下順序概要說額於分析峰區域特徵之 MATLAB代碼中的步驟。 L右像素之數目>=1〇〇1*1〇〇1 ,則減去像素數 •计异 nskip=fix(na*nb/1〇〇1/1〇〇1)+1 *原始影像具有naXnb像素之尺寸 156113.doc •39· 201202740 -若 nskip>l,則進行(2*fix(nskip/2)+l) X (2*fix(nskip/2)+1) 中值平均 fix係四捨五入為最近整數之函數。 -產生將各nskip像素保持在各方向之新影像(例如若 nskip=3 ’ 則保持列及行 1,4, 8, 11 ...) 2. r=round(Ax/pix) -Δχ係用於斜率計算中之步進大小 -pix係像素尺寸》 -r係四捨五入為最近的像素總體數目之Δχ -所選擇的Δχ之初始值係等於ffov* f()v。 ffov係使用者在運行此程式之前所選定的參數 3·對round(fMX*r) X round(fMY*r)像素之視窗大小進行 中值平均。 -若該區域經定向,則用一具有接近以下所定義之典 型區域的縱橫比(W/L)之視窗處理進行中值平均。該 視窗縱橫比不允許低於預定值rm__aspect—min。 應注意若該區域經定向,則應利用經對準以使 此方向係沿X或y軸之樣品來分析高度分佈。 -對於此分析,若出現以下情況則將該等區域視為 經定向: 該等區域(經區域面積加權)之平均定向角係小於 15度或大於75度。 1.定向角係定義為橢圓的主軸與產生轴的區 域相交形成之角。 156113.doc •40· 201202740 此定向角之標準偏差小於25度 覆蓋率大於10% -若此係第一輪或該區域未定向,則 將f*MX及fMY設定為等於【M •若該定向係沿y-軸 fMx=r〇und(fM*r*sqrt(aspect)); fMY=round(fM*r/sqrt(aspect)); 、若該定向係沿x-軸 fMX=r〇und(fM*r/sqrt(aspect)); fMY=round(fM*r*sqrt(aspect)); -aspect=經該區域面積加權之平均縱橫比 若其小於rm_aspect—min,則將其設定 rm_aspect_min 〇 • fM係在運行該程式之前所選擇的固定參數。 4 ·移除斜角。 -有效地使整個曲線分佈之所有方向上的平均斜率 等於零 5·如先前所述計算斜率分佈。 6. 汁异平行於梯度向量(g_曲率)之方向及垂直於梯度向 量(t-曲率)之方向上的曲率分佈。 7. 使用上述曲率臨限值形成二進制影像。 8. 腐蝕該二進制影像。 -將該影像經腐蝕的次數設定為等於r〇und(r*fE) -fE係在運行該程式之前所選擇之固定參數(一般£1) 156113.doc -41- 201202740 •此有助於分離由窄線連接之不同區域並消除過小 的區域 9·放大該影像。 -擴大該影像之次數一般係選擇為與腐蝕該影像的 次數相同 10.進一步放大該影像。 -在此輪中’該影像係在被腐蝕之前放大 -有助於移除cul-de-sacs、使邊緣呈圓形、並將極為 接近的區域結合在一起 11 ·腐蝕該影像。 -腐触該影像之次數一般係選擇為與最後步驟中放 大影像之次數相同 12.消除過於接近該影像邊緣之區域。 -一般而言,若區域之任何部份係在邊緣内(ner〇de +2) ’則認為其過於接近,其中該ner〇de係步驟9中 影像經腐飯的次數 -此消除僅部份在視野内之區域 13 .填滿各區域中之任何洞。 14.消除ECD(等效圓直徑)<2sin(q〇)N0/fov之區域。 -q〇及N〇係用於計算曲率截取值之參數 -此消除比具有半徑R之半球小的區域 -此等區域可具有在小於q〇範圍内之斜率變化 -待考慮替換此濾波器之另一濾波器係要消除斜率 標準偏差小於截取值之區域 156113.doc -42- 201202740 15. 隨後計算關於新的r值。 -若確定峰數等於零,則將^咸去二並取整數 運行步驟4 -新r=round(fw*L〇) fw係在開始該程式之前所選擇的固定參數(一般 ^1) L〇係表A1中所定義的長度 -若新r小於rMIN,則將其設定為等於Γμιν -若新r大於rMAX,則將其設定為等於ΓΜΑχ -若r未變化或重複,則此係所選擇的]*值。運行步驟 17 _若覆蓋率減少Kc倍或更多倍,或者若區域之數量增 加Kn倍或更多倍,則選擇之前的[值。運行步驟17 •若未選擇r之值,則運行步驟4 16. 對於選定的r,計算各確定區域之以下尺寸: -ECD、L、W及縱橫比。 17. 計算各尺寸之平均及標準偏差。 18. 計算覆蓋率及NN(表A2)。 表A1.參數之定義 △X r 四捨五入為最接近的傻音數目之Δχ fw 新「round(fw*L0) L〇 ^表區域之一般尺寸之長度’區域間的距離,及區域的曲 中之最小者 0 L〇=niinfW〇, Wi,D〇) 〇 W〇 W〇=fw〇*W+(l-fwo^I — Wj Wi-WoY覆蓋率 156113.doc -43· 201202740 D〇 曲率直徑分佈的10百分位點(10%係小於此點) fwo 用於計算W〇之參數 ίε 二進制影像經腐钮之次數=round(r*fE) fM 影響用於中值平均之視窗大小的參數 rrn aspect min 中值平均視窗之寬長比的下限 fov 視野最長尺寸之長度 ffov △X最初係經使用者選擇或設定為等於ffov * f〇v ffov之值一般為0.01及0.015 cOmax cOmax=2sm(q0)N0/fov max(g-曲率,t-曲率)之油盅蚱眼枯 cOmin c0min=-c0max min(g-曲率,t-曲率)之曲率臨眼佶 N〇 可希望具有的橫跨視野最長尺寸的峰區域之悬小谢曰夕仕作 q〇 重要的最小斜率(以度計)之估值 ΓΜΙΝ r不允許低於此值 γμαχ r不允許向於此值 Kc 若(新覆蓋率)<(先前覆蓋率)/Kc,則停止並保持先前的他 Kn (新區域數)>(先前區域數)*Kn,則停止並保持先前的r值 表A2區域尺寸之定義 ECD 區域之等效圓直徑(ECD) L 具有與該ϋ域相同的鮮化第二巾心矩的_主轴之長唐 W 縱橫比 具有與該ϋ域相同的標準化第二中心矩㈣坤長疫 W/L-- NN f 的平方根。部份區_包含於此計算 i離成陣,則此係等於區域中心之間的最鄰近 覆蓋率 域所佔總面積除以該影像之總面積。部倾域係包含在一 - ---- s亥等尺寸係兩個高度分佈之平均值。 —* 般的參數設置如下 ffov 0.015 fw 1/3 fM 2/3 f^E 0.3 fwo 3/4 156113.doc 201202740The FccW is supplemented by the cumulative slope distribution and gives a slope greater than or equal to the fraction. 4. g-curvature, curvature of the direction of the gradient vector (reciprocal micrometer) 5. t-curvature 'curvature perpendicular to the direction of the gradient vector (increases the micrometer) The curvature is as described in Figure 12. The needle is measured at two points and the center point to calculate the curvature at a certain point. For ±, this, ^, 匕 析 'defines the curvature as 1 divided by the radius of the circle formed by the two points formed by the two points. Curvature = ± l / R = ± 2 * sin (0) / d 156113. doc 38 - 201202740 where θ is the diagonal of the hypotenuse, and d is the length of the hypotenuse of the triangle. If the curve is concave upward, the curvature is negative, and if it is concave downward, the curvature is positive. The curvature is measured along the gradient vector direction (i.e., g_curvature) and in a direction perpendicular to the gradient vector (i.e., t-curvature). Use the interpolation method to get two endpoints. Peak Size Measurement Use the curvature distribution to obtain the size statistics for the peaks on the surface of the sample. The threshold of the curvature distribution is utilized to generate a binary image for determining the peak. Using MATLAB, the following threshold is applied at each pixel to produce a binary image for determining the peak: max(g-curvature, t_curvature)>e〇lnax min(g·curvature, t·curvature)>c〇 Min where cOmax and c0min are the values of curvature. In general, c〇max& c〇min is assigned as follows: cOmax=2sin(q〇)N〇/f〇v (q〇 and N〇 fixed parameters) cOmin=-c〇max q〇 should be the minimum slope ( Estimated by degree (very important). It should be an estimate of the minimum number of peak regions that can be expected to have the longest dimension across the field of view. Fov is the length of the longest dimension of the field of view. The height distribution was analyzed using MATLAB with an image processing toolbox and the peak data was obtained. The following sequence outlines the steps in the MATLAB code for analyzing peak region characteristics. The number of L right pixels >=1〇〇1*1〇〇1 , then subtract the number of pixels • Count nskip=fix(na*nb/1〇〇1/1〇〇1)+1 *The original image has The size of the naXnb pixel 156113.doc •39· 201202740 - If nskip>l, then (2*fix(nskip/2)+l) X (2*fix(nskip/2)+1) The median average fix is rounded off Is a function of the nearest integer. - Generate new images that hold each nskip pixel in each direction (for example, if nskip = 3 ', keep the column and rows 1, 4, 8, 11 ...) 2. r = round (Ax / pix) - Δχ Step size in the slope calculation - pix system pixel size - r is rounded to the nearest number of pixels Δ χ - the initial value of the selected Δ 等于 is equal to ffov * f () v. Ffov is the parameter selected by the user before running this program. 3. The median average of the window size of the round (fMX*r) X round (fMY*r) pixel. - If the area is oriented, a median average is performed with a window processing having an aspect ratio (W/L) close to the typical area defined below. The aspect ratio of the window is not allowed to be lower than the predetermined value rm__aspect_min. It should be noted that if the area is oriented, the height distribution should be analyzed using samples aligned to have this direction along the X or y axis. - For this analysis, the areas are considered to be oriented if: The average orientation angle of the areas (weighted by area area) is less than 15 degrees or greater than 75 degrees. 1. The directional angle system is defined as the angle formed by the intersection of the major axis of the ellipse and the region where the axis is generated. 156113.doc •40· 201202740 The standard deviation of this orientation angle is less than 25 degrees coverage is greater than 10% - if the first round or the area is not oriented, set f*MX and fMY equal to [M • if the orientation Y-axis fMx=r〇und(fM*r*sqrt(aspect)); fMY=round(fM*r/sqrt(aspect)); if the orientation is along the x-axis fMX=r〇und( fM*r/sqrt(aspect)); fMY=round(fM*r*sqrt(aspect)); -aspect=If the average aspect ratio weighted by the area is less than rm_aspect-min, set it to rm_aspect_min 〇• fM is the fixed parameter selected before running the program. 4 · Remove the bevel. - Effectively make the average slope in all directions of the entire curve distribution equal to zero. 5. Calculate the slope distribution as previously described. 6. The juice is parallel to the direction of the gradient vector (g_curvature) and the curvature distribution perpendicular to the direction of the gradient vector (t-curvature). 7. Use the above curvature threshold to form a binary image. 8. Corrode the binary image. - Set the number of times the image has been etched equal to r〇und(r*fE) -fE is the fixed parameter selected before running the program (generally £1) 156113.doc -41- 201202740 • This helps to separate The different areas are connected by narrow lines and the area that is too small is eliminated. 9. The image is enlarged. - The number of times the image is enlarged is generally selected to be the same as the number of times the image is etched. 10. The image is further enlarged. - In this round, the image is magnified before being corroded - to help remove cul-de-sacs, to round the edges, and to bring together extremely close areas. 11 · Corrode the image. - The number of times the image is corrupted is generally selected to be the same as the number of times the image is enlarged in the last step. 12. The area that is too close to the edge of the image is removed. - In general, if any part of the area is within the edge (ner〇de +2) ' it is considered too close, where the ner〇de is the number of times the image is pasted in the step 9 - this eliminates only part of Areas within the field of view 13. Fill any holes in each area. 14. Eliminate the area of ECD (equivalent circle diameter) < 2sin(q〇)N0/fov. -q〇 and N〇 are parameters used to calculate the curvature intercept value - this eliminates regions smaller than the hemisphere with radius R - these regions may have slope variations in the range less than q〇 - to be considered to replace this filter Another filter is to eliminate the area where the slope standard deviation is less than the intercept value. 156113.doc -42 - 201202740 15. Then calculate the new r value. - If it is determined that the number of peaks is equal to zero, then ^2 is taken and the integer is taken. Step 4 - New r = round(fw*L〇) fw is the fixed parameter selected before starting the program (general ^1) Length defined in Table A1 - If the new r is less than rMIN, set it equal to Γμιν - if the new r is greater than rMAX, set it equal to ΓΜΑχ - if r does not change or repeat, then the system selects] *value. Run step 17 _ If the coverage is reduced by Kc times or more, or if the number of areas is increased by Kn times or more, select the previous [value. Run step 17 • If the value of r is not selected, run step 4 16. For the selected r, calculate the following dimensions for each defined area: -ECD, L, W and aspect ratio. 17. Calculate the average and standard deviation of each size. 18. Calculate coverage and NN (Table A2). Table A1. Definition of parameters △X r Rounded to the nearest number of silly Δχ fw The distance between the new “round(fw*L0) L〇^the length of the general size of the table area' area, and the radius of the area The smallest one is 0 L〇=niinfW〇, Wi,D〇) 〇W〇W〇=fw〇*W+(l-fwo^I — Wj Wi-WoY coverage 156113.doc -43· 201202740 D〇 curvature diameter distribution 10th percentile (10% is less than this) fwo is used to calculate the parameter of W〇 ίε The number of times the binary image is corrupted = round(r*fE) fM The parameter rrn aspect that affects the window size used for the median average The lower limit of the width-to-length ratio of the mean median window fov The length of the longest dimension of the field of view ffov △X is initially selected by the user or set equal to ffov * f〇v ffov is generally 0.01 and 0.015 cOmax cOmax=2sm(q0) N0/fov max (g-curvature, t-curvature) oil eye dryness cOmin c0min=-c0max min (g-curvature, t-curvature) curvature of the eye 佶N〇 can have the longest dimension across the field of view The peak area of the suspension of the small Xie Xi Xi Shi q〇 important minimum slope (in degrees) of the valuation ΓΜΙΝ r not allowed below this value γ α χ r does not allow this value Kc if (new coverage) < (previous coverage) / Kc, then stop and keep the previous his Kn (new number of regions) > (previous region number) * Kn, then stop And maintaining the previous r value table A2 region size definition ECD region equivalent circle diameter (ECD) L has the same freshened second towel core moment as the ϋ domain of the long axis W aspect ratio with the ϋ The same standardized second central moment of the domain (4) Kunming epidemic W/L-- the square root of NN f. The partial zone _ is included in this calculation, and this is equal to the nearest neighbor coverage domain between the regional centers. Divided by the total area divided by the total area of the image. The partial dip system consists of the average of two height distributions in a size range of ------- shai. The general parameters are as follows: ffov 0.015 fw 1/3 fM 2/3 f^E 0.3 fwo 3/4 156113.doc 201202740

Kc 1/2 Kn 2-4 rmin 2 rmax 50 rm aspect min 1/3 N〇 4 q〇 1/3-1/2 調整此等參數設置以確保可確定主要特徵(而非次要特 徵)。 高度頻數分佈 從高度數據中減去最小高度值,以使最小高度為零。藉 由繪製柱狀圖產生高度頻數分佈。此分佈之平均值係稱^ 平均高度。 ...... 粗糙度度量Kc 1/2 Kn 2-4 rmin 2 rmax 50 rm aspect min 1/3 N〇 4 q〇 1/3-1/2 Adjust these parameter settings to ensure that the main features (not minor features) can be determined. Height Frequency Distribution Subtracts the minimum height value from the height data so that the minimum height is zero. A high frequency distribution is produced by drawing a histogram. The average of this distribution is called the average height. Roughness measurement

Ra-計算整個測量陣列之平均粗糙度。 1 Μ ΝRa- calculates the average roughness of the entire measurement array. 1 Μ Ν

Ra = -L-y y\zRa = -L-y y\z

MNh U 其中Zjk=減去零均值之後各像素之高度。MNh U where Zjk = the height of each pixel after subtracting the zero mean.

Rz係評估區域中十個最大峰穀間距之平均最大表面言 办=士[的 + A以2+·“ + Ζι。)]。 其中Η為峰高度且L係穀高度,且Hik 、一有共同的參考平 及粗糙度之各 所指出的關於互補累積斜率分佈、峰尺寸 I56113.doc •45· 201202740 值皆係基於兩個區域之平均值。對於較大的膜,諸如典型 的17電腦顯示器,一般利用5至1〇個隨機選擇區域之平均 值。 高折射率硬塗層組合物 聯苯基二丙烯酸酯_2,2,_二乙氧基聯苯基二丙烯酸酯 (DEBPDA)之合成 將2,2,-雙齡(1415 g,7.6莫耳,υ當量)、氟化钟⑴8 §, 0.2莫耳,0.027當量)、碳酸伸乙酯(1415 g,161莫耳, 2.11當量)添加至裝備有溫度探測器、氮氣清洗管、頂置式 攪拌器及加熱套之12000 ml之4頸樹脂頭圓底燒瓶中並加 熱至155 C ^在4.5小時後,GC分析顯示0%的起始材料、 0 /〇的單乙氧基化物及94%的產物。冷卻至§〇。匸,添加$ 4 升甲笨,添加2 · 5升去離子水,混合丨5分鐘並經相分離。 移除水並用2.5升去離子水再次沖洗,相分離,移除水並 蒸餾溶液以移除殘留的水及約1.8升甲苯。將溶液冷卻至 50°C並且添加1.8升環己烷、以商標名稱Pr〇stab 5198購自 CIBA Specialty Chemicals 之 4-羥基 _2,2,6,6-四甲基小派咬 基氧(通常稱為4-羥基ΤΕΜΡΟ)(〇·52 g,〇.003莫耳, 0.00044 當量)、吩噻嗪(0.52 g,0.0026 莫耳,0.00〇38當 量)、丙烯酸(1089.4 g,ι5·12莫耳,22當量)、曱磺酸 (36.3 g,0.38莫耳,0.055當量)並將其加熱至回流(罐溫度 為92至95。〇。將Dean-Stark分離器裝在燒瓶上以收集水。 在18小時之後,GC分析顯示8〇/0的單丙烯酸酯中間物。另 外添加8 g丙烯酸並再連續回流6小時,總共24小時。在24 156113.doc •46· 201202740 小時之後,GC分析顯示3%的單丙烯酸酯中間物。將反應 冷卻至50°C並用2356 ml 7%碳酸鈉處理,欖拌3〇分鐘,相 分離’移除水’用2356 ml DI水再次沖洗,相分離並移除 水。將4-羥基ΤΕΜΡΟ(〇·52 g,0.003莫耳,0.00044當量)、 吩噻嗪(0.52 g ’ 0.0026莫耳,0.00038當量)、N_亞墙基苯基 羥胺鋁(0.52 g,0.0012莫耳,〇_〇〇〇17當量)添加至(粉紅_紅) 曱苯/環己烷溶液中,並在真空中濃縮至約5000如溶液。經 由一石夕藻土塾過渡’並在50°C及12 torr真空下伴隨空氣吹洗 將滤液真空濃縮3小時。藉由在捲筒薄膜蒸發器上蒸館進一 步純化所得之黃色至棕色油。蒸餾的條件為在l5Vc下加熱 筒狀物、在50°C下及1至5 mtorr下之冷凝器。回收產量為 2467 g(理論值的85%)且純度為約90°/〇 DEBPDA。 三苯基三丙烯酸酯1,1,1-叁(4-丙烯醯氧基乙氧基苯基)乙烷 (TAEPE)之合成 將叁(4-羥基笨基)乙烷(200 g,0.65莫耳,1.0當 量)、氟化鉀(0.5 g,0.0086莫耳,0.013當量)、碳酸伸乙 酯(175 g ’ 2.0莫耳,3.05當量)添加至裝備有溫度探測器、 頂置式攪拌器及加熱套之1000 ml之3頸圓底燒瓶中並加熱 至165 °C。在5小時後’ GC分析顯示〇%的起始材料、〇%的 單乙氧基化物、2%的二乙氧基化物、及95%的產物。冷卻 至100°C,添加750 ml曱苯,轉移至3000 ml之3頸圓底燒瓶 中並另外添加750 ml曱苯。將溶液冷卻至50°C並添加4-羥 基 TEMPO(0.2 g,0.00116 莫耳,0.00178 當量)、丙烯酸 (155 g,2.15莫耳,3.3當量)、甲磺酸(10.2 g,0.1莫耳, 156113.doc •47· 201202740 0_ 162當量)並加熱至回流。將Dean-Stark分離器裝在燒瓶 上以收集水。在6小時後,GC分析顯示7%的二丙烯酸酿中 間物及85%的產物。將反應冷卻至5〇。(:並用400 ml的7%碳 酸鈉處理,攪拌30分鐘,相分離,移除水,再次用4〇〇 ml 的20°/〇氣化鈉水沖洗’相分離並移除水。用4000 mi甲醇稀 釋有機相,經由3英吋x5英叫·直徑之矽膠墊(250至400網 目)過濾並於50°C及12 torr真空下將濾液在真空中伴隨空氣 吹洗濃縮3小時。回收獲得332 g(理論值的85%)棕色油且 純度為約85% TAEPE。 氧化锆溶膠之製備 用於實例中之Zr〇2溶膠具有以下性質(根據美國專利第 7,241,437號中所述之方法測得)。 相對強度 表觀微晶尺寸(nm) 立方形/ 四方形 單斜晶 (C,T) (111) Μ (-111) Μ (111) 平均Μ 尺寸 %C/T 加權平均 XRD尺寸 100 6-12 7.0-8.5 3.0-6.0 4.0-11.0 4.5-8.3 89%-94% 7.0-8.4 °/〇 C/T=初級粒度 HEAS/DCLA表面改質劑之製備 在三頸圓底燒瓶上安裝溫度探測器、機械攪拌器及冷凝 器。將以下反應物裝入該燒瓶中:83.5 g琥珀酸酐、0.04 g Prostab 5 198抑制劑、0.5 g三乙胺、87.2 g丙烯酸2-羥乙 S旨、及28.7 g以商標名稱「SR495」賭自Sartomer之經基-聚 己内酯丙烯酸酯(η平均值為約2)。以中度攪拌使燒瓶混合並 加熱至80°C並保持~6小時。在冷卻至4〇°C之後,添加200 g 的卜曱氧基-2-丙醇並將燒瓶混合丨小時。根據紅外及氣相層 156113.doc •48- 201202740 析分析所測得,該反應混合物為琥珀酸酐與丙烯酸2-經乙 酯之反應產物(即HEAS)及琥珀酸酐與羥基-聚己内酯丙稀酸 酯之反應產物(即DCLA)之混合物,且重量比為81.5/18.5。 HE AS表面改質劑-係藉由使號珀酸針與丙稀酸2-經乙酯反 應而製得。 HIHC 1之製備 將氧化錯溶膠(1000 g @ 45.3%固體)及476.4 g 1-曱氧基-2-丙醇裝入5 L圓底燒瓶中。將該燒瓶設定用於真空蒸德 並安裝上頂置式攪拌器、溫度探測器、附接至溫度監測控 制器之加熱套。將氧化锆溶膠及曱氧基丙醇加熱至5〇»c。 將HEAS/DCLA表面改質劑(233.5 g @ 50%固體含於曱氧 基-2-丙醇中,81.5/18.5 重量比之HEAS/DCLA)、DEBPDA (120.5 g)、賭自 Toagosei Co. Ltd. of Japan之2-苯基丙烯酸 苯酯(HBPA)(5 0.2 g @ 46%固體含於乙酸乙酯中)、以商標 名稱「SR 351 LV」(85.3 g)及商標名稱「pr〇stab 5198」 (〇·17 g)購自Sartomer之低黏度三羥甲基丙烷三丙烯酸酯分 別隨攪拌裝入該燒瓶中。將溫度監測設定為8〇它及8〇。/0功 率。經由真空蒸館移除水及溶劑直至批料溫度達到。 重複進行此製程六次且隨後將所有此六批物質合併至設定 用於真空蒸餾且裝備有加熱套、溫度探測器/熱電偶、溫 度控制益、頂置式授拌器及用於將水蒸氣併入該液體組合 物之鋼管之12 L圓底燒瓶中。將液體組合物加熱至8〇°c , 此時在真空下將水蒸氣流以每小時8〇〇 ml的速度引入該液 體組合物中。藉由蒸氣流連續真空蒸餾6小時,之後中止 156113.doc -49- 201202740 蒸氣流。將該批料在8〇°C下再蒸餾60分鐘。隨後利用空氣 清洗破壞真空。裝入光引發劑(17 7 g rDarocure 4265」, 聯苯基(2,4,6-三甲基苯甲醯基)_氧化膦與2_羥基_2_甲基_ι_ 苯基-1-丙酮之50:50混合物)並混合3〇分鐘。所得之產物為 含於丙稀酸酯單體中的約68%經表面改質之氧化結,其具 有1.6288的折射率。 HIHC 2之製備 將氧化锆溶膠(5000 g @ 45·30/〇固體)及2433 g 1-曱氧基_ 2-丙醇裝入12 L圓底燒瓶中》將該燒瓶設定用於真空蒸餾 並安裝上加熱套、溫度探測器/熱電偶、溫度控制器、頂 置式攪拌器、及用於將水蒸氣併入該液體組合物中之鋼 管。將氧化錯溶膠及曱氧基丙醇加熱至5〇°C。將HEAS表 面改質劑(1056 g @ 50%固體含於1-甲氧基_2_丙醇中)、 DEBPDA (454.5 g)、HBPA(197 g @ 46% 固體含於乙酸乙酯 中)、SR 351 LV(317.1 g)及ProStab 5198(0.69 g)分別隨搜 拌裝入該燒瓶中。將溫度控制器設定為8〇°C。經由真空蒸 餾將水及溶劑移除直至批料溫度達到80°C,此時在真空下 將水蒸氣流以每小時800 ml的速度引入該液體組合物中。 藉由蒸氣流連續真空蒸餾6小時,之後中止蒸氣流並將該 批料在80°C下再蒸餾60分鐘。隨後利用空氣清洗破壞真 空。裝入光引發劑(87.3 g Darocure 4265)並混合30分鐘。 所得產物為含於丙烯酸酯單體中的約73%經表面改質之氧 化鍅,其具有以下特性。 根據與HIHC 1及HIHC 2相同的方法製備高折射率硬塗 156113.doc -50· 201202740 層塗料組合物3至9。高折射率硬塗層的各組分之(重量%固 體)係如下。 HIHC1 HIHC2 HIHC3 HIHC4 HIHC5 Zr02 w/HEAS 及 DCLA 68 70.9 68 68 僅 Zr02wHEAS 73* DEBPDA 15.6 12.9 16.3 15.6 15.6 HBPA 3 2.6 3.1 3 3 SR351 LV 11.1 9 7.3 11.1 11.1 Darocure 1173 2.4 2.3 Darocure 4265 2.3 2.5 2.3 總計 100 100 100 100 100 黏度** @60°C 0.77 1.73 4.06 1.44 1.88 黏度@70°C 0.47 0.91 2.35 0.86 1.1 黏度@80°C 0.54 折射率@25°C 1.6288 1.645 1.6378 1.6244 1.6288 * 73重量%經表面改質之Zr02包含約58重量%乙1"02及15重量%表面改質劑。 **在具有60 mm 2度圓錐之TA儀器AR2000上測得,以2°C/min將溫度自80°C降低至 45°C,剪切速度為Ι/s。黏度單位為帕斯卡-秒。 HIHC6 HIHC7 HIHC8 HIHC9 Zr02 w/HEAS 及 DCLA 68 73 僅 Zr〇2 w/HEAS 73 71.54 DEBPDA 12.9 12.6 TAEPE 6 0 SR601 15.6 12.9 0 HBPA 3 2.6 2.6 4.6 SR351 LV 11.1 9 8.8 SR339 3 0 Darocure 1173 2.5 0 Darocure 4265 2.3 2.5 2.5 總計 100 100 100 100 黏度@60°C 3.07 3.39 3.59 1.18 黏度@70°C 1.61 1.96 1.69 0.64 黏度@80°C 0.95 0.95 0.39 折射率@25°C 1.6198 1.6252 1.6676 1.6439 SR601-(雙酚-A乙氧基化二丙烯酸酯單體之商標名稱)係購 自Sartomer(據稱在20°C下具有1080 cps的黏度且Tg為 60°C ) 〇The average maximum surface of the ten largest peak-to-valley spacings in the Rz evaluation area is = [+ + 2+·" + Ζι.)] where Η is the peak height and the L-system valley height, and Hik, one has The common reference slope and roughness are all indicated for the complementary cumulative slope distribution, peak size I56113.doc •45·201202740 are based on the average of the two regions. For larger membranes, such as a typical 17 computer monitor, The average of 5 to 1 randomly selected regions is generally used. The synthesis of high refractive index hard coating composition biphenyl diacrylate 2,2,-diethoxybiphenyl diacrylate (DEBPDA) will 2, 2, - double age (1415 g, 7.6 m, υ equivalent), fluorinated clock (1) 8 §, 0.2 mol, 0.027 equivalent), ethyl carbonate (1415 g, 161 mol, 2.11 equivalent) was added to It was equipped with a 12000 ml 4-neck resin head round bottom flask equipped with a temperature detector, a nitrogen purge tube, an overhead stirrer and a heating mantle and heated to 155 C ^. After 4.5 hours, GC analysis showed 0% starting material, 0 / 〇 monoethoxylate and 94% of the product. Cool to § 〇. 匸, add $ 4 liters Stupid, add 2 · 5 liters of deionized water, mix for 5 minutes and phase separation. Remove water and rinse again with 2.5 liters of deionized water, phase separation, remove water and distill the solution to remove residual water and about 1.8 Toluene was added. The solution was cooled to 50 ° C and 1.8 liters of cyclohexane was added, and the 4-hydroxy-2,2,6,6-tetramethyl butyl base was purchased from CIBA Specialty Chemicals under the trade name Pr〇stab 5198. Oxygen (commonly known as 4-hydroxyindole) (〇·52 g, 〇.003 mol, 0.00044 eq.), phenothiazine (0.52 g, 0.0026 mol, 0.00〇38 equivalent), acrylic acid (1089.4 g, ι 5·) 12 moles, 22 equivalents), hydrazine sulfonic acid (36.3 g, 0.38 moles, 0.055 equivalents) and heated to reflux (pot temperature 92 to 95. 〇. Dean-Stark separator was placed on the flask for collection After 18 hours, GC analysis showed a mono- acrylate intermediate of 8 〇 / 0. Additional 8 g of acrylic acid was added and refluxed for a further 6 hours for a total of 24 hours. After 24 156113.doc • 46 · 201202740 hours, GC Analysis showed 3% monoacrylate intermediate. Cool the reaction to 50 ° C and use 2356 ml 7% sodium carbonate Rinse for 3 minutes, phase separation 'removal water' rinse again with 2356 ml DI water, phase separate and remove water. 4-hydroxyindole (〇·52 g, 0.003 mol, 0.00044 equiv), pheno Thiazide (0.52 g ' 0.0026 mol, 0.00038 equiv), N_subwall phenylhydroxylamine aluminum (0.52 g, 0.0012 mol, 〇_〇〇〇 17 equivalent) added to (pink_red) toluene/ring Concentrate in hexane to about 5000 such as a solution in vacuo. The filtrate was concentrated in vacuo by air-purging at 50 ° C and 12 torr vacuum for 3 hours. The resulting yellow to brown oil was further purified by steaming on a roll film evaporator. The distillation conditions were a condenser heated at 15 ° C, a condenser at 50 ° C and 1 to 5 mtorr. The recovered yield was 2467 g (85% of theory) and the purity was about 90 ° / 〇 DEBPDA. Synthesis of triphenyltriacrylate 1,1,1-anthracene (4-propenyloxyethoxyphenyl)ethane (TAEPE) 叁(4-hydroxyphenyl)ethane (200 g, 0.65 Mo) Ear, 1.0 equivalent), potassium fluoride (0.5 g, 0.0086 m, 0.013 equivalent), ethyl carbonate (175 g '2.0 mol, 3.05 eq) added to a temperature probe, overhead stirrer and heating A 1000 ml 3-neck round bottom flask was placed and heated to 165 °C. After 5 hours' GC analysis showed 〇% starting material, 〇% monoethoxylate, 2% diethoxylate, and 95% product. After cooling to 100 ° C, 750 ml of toluene was added and transferred to a 3000 ml 3-neck round bottom flask with an additional 750 ml of toluene. The solution was cooled to 50 ° C and added 4-hydroxy TEMPO (0.2 g, 0.00116 moles, 0.00178 equivalents), acrylic acid (155 g, 2.15 moles, 3.3 equivalents), methanesulfonic acid (10.2 g, 0.1 mol, 156113 .doc •47· 201202740 0_ 162 eq.) and heated to reflux. A Dean-Stark separator was placed on the flask to collect water. After 6 hours, GC analysis showed 7% of the diacrylic acid blended intermediate and 85% of the product. The reaction was cooled to 5 Torr. (: and treated with 400 ml of 7% sodium carbonate, stirred for 30 minutes, phase separated, water removed, rinsed again with 4 〇〇ml of 20 ° / 〇 gasified sodium water 'phase separation and remove water. With 4000 mi The organic phase was diluted with methanol, filtered through a pad of EtOAc (yield: 250 to 400 mesh), and the filtrate was concentrated in vacuo for 3 hours under vacuum at 50 ° C and 12 torr vacuum. g (85% of theory) of brown oil and purity of about 85% TAEPE. Preparation of zirconia sol The Zr〇2 sol used in the examples has the following properties (measured according to the method described in U.S. Patent No. 7,241,437) Relative) Apparent crystallite size (nm) Cuboid / Square monoclinic (C, T) (111) Μ (-111) Μ (111) Average 尺寸 Size % C / T Weighted average XRD size 100 6-12 7.0-8.5 3.0-6.0 4.0-11.0 4.5-8.3 89%-94% 7.0-8.4 °/〇C/T=Primary particle size preparation of HEAS/DCLA surface modifier in three-neck round bottom flask Detector, mechanical stirrer and condenser. The following reactants were charged to the flask: 83.5 g succinic anhydride, 0.04 g Prostab 5 198 inhibitor, 0.5 g triethylamine, 87.2 g 2-hydroxyethyl acrylate, and 28.7 g of the base-polycaprolactone acrylate from Sartomer under the trade name "SR495" (average η of about 2). Stirring with moderate The flask was mixed and heated to 80 ° C for ~6 hours. After cooling to 4 ° C, 200 g of dipoxy-2-propanol was added and the flask was mixed for a few hours. According to the infrared and gas phase layers 156113.doc •48-201202740 The reaction mixture was determined to be the reaction product of succinic anhydride with 2-ethyl acrylate (ie HEAS) and succinic anhydride with hydroxy-polycaprolactone acrylate. A mixture of (ie, DCLA) in a weight ratio of 81.5/18.5. HE AS surface modifier - prepared by reacting a benzoic acid needle with acrylic acid 2-ethyl ester. Preparation of HIHC 1 will oxidize The wrong sol (1000 g @ 45.3% solids) and 476.4 g of 1-decyloxy-2-propanol were placed in a 5 L round bottom flask. The flask was set up for vacuum evaporation and mounted on an overhead stirrer, temperature Detector, heating jacket attached to temperature monitoring controller. Heat zirconia sol and decyloxypropanol to 5〇»c. HEAS/DCLA Surface modifier (233.5 g @ 50% solids in decyloxy-2-propanol, 81.5/18.5 by weight of HEAS/DCLA), DEBPDA (120.5 g), gambling from Toagosei Co. Ltd. of Japan Phenyl 2-phenylacrylate (HBPA) (5 0.2 g @ 46% solids in ethyl acetate) under the trade name "SR 351 LV" (85.3 g) and the trade name "pr〇stab 5198" (〇· 17 g) Low viscosity trimethylolpropane triacrylate from Sartomer was charged into the flask with stirring. Set the temperature monitoring to 8 〇 and 8 〇. /0 power. The water and solvent are removed via a vacuum evaporation chamber until the batch temperature is reached. This process was repeated six times and all six batches of material were subsequently combined into vacuum distillation and equipped with a heating jacket, temperature probe/thermocouple, temperature control benefit, overhead mixer and water vapor The 12 L round bottom flask was placed in the steel tube of the liquid composition. The liquid composition was heated to 8 ° C, at which time a stream of water vapor was introduced into the liquid composition at a rate of 8 liters per hour under vacuum. Continuous vacuum distillation for 6 hours by vapor flow followed by a vaginal flow of 156113.doc -49 - 201202740. The batch was distilled again at 8 ° C for 60 minutes. The vacuum is then destroyed by air cleaning. Charged with photoinitiator (17 7 g rDarocure 4265), biphenyl (2,4,6-trimethylbenzylidene)-phosphine oxide and 2-hydroxyl_2_methyl_ι_phenyl-1- A 50:50 mixture of acetone) and mix for 3 minutes. The resulting product was about 68% surface modified oxides contained in acrylate monomers having a refractive index of 1.6288. Preparation of HIHC 2 A zirconia sol (5000 g @ 45·30/〇 solid) and 2433 g of 1-decyloxy-2-propanol were charged into a 12 L round bottom flask. The flask was set for vacuum distillation. A heating jacket, a temperature probe/thermocouple, a temperature controller, an overhead stirrer, and a steel tube for incorporating water vapor into the liquid composition are installed. The oxidized sol and the decyloxypropanol were heated to 5 °C. HEAS surface modifier (1056 g @ 50% solids in 1-methoxy-2-propanol), DEBPDA (454.5 g), HBPA (197 g @ 46% solids in ethyl acetate), SR 351 LV (317.1 g) and ProStab 5198 (0.69 g) were separately charged into the flask. Set the temperature controller to 8 °C. The water and solvent were removed via vacuum distillation until the batch temperature reached 80 ° C, at which time a stream of water vapor was introduced into the liquid composition at a rate of 800 ml per hour under vacuum. The vacuum stream was continuously vacuum distilled for 6 hours, after which the vapor stream was stopped and the batch was further distilled at 80 ° C for 60 minutes. The air is then used to destroy the vacuum. A photoinitiator (87.3 g Darocure 4265) was charged and mixed for 30 minutes. The resulting product was about 73% surface-modified cerium oxide contained in the acrylate monomer, which had the following characteristics. A high refractive index hard coat 156113.doc -50·201202740 layer coating composition 3 to 9 was prepared in the same manner as HIHC 1 and HIHC 2 . The components (% by weight solids) of the high refractive index hard coat layer are as follows. HIHC1 HIHC2 HIHC3 HIHC4 HIHC5 Zr02 w/HEAS and DCLA 68 70.9 68 68 Zr02wHEAS 73* DEBPDA 15.6 12.9 16.3 15.6 15.6 HBPA 3 2.6 3.1 3 3 SR351 LV 11.1 9 7.3 11.1 11.1 Darocure 1173 2.4 2.3 Darocure 4265 2.3 2.5 2.3 Total 100 100 100 100 100 Viscosity ** @60°C 0.77 1.73 4.06 1.44 1.88 Viscosity @70°C 0.47 0.91 2.35 0.86 1.1 Viscosity @80°C 0.54 Refractive index @25°C 1.6288 1.645 1.6378 1.6244 1.6288 * 73% by weight surface modification Zr02 comprises about 58% by weight of B<2>> and 15% by weight of surface modifying agent. **Measured on a TA instrument AR2000 with a 60 mm 2 degree cone, the temperature was lowered from 80 °C to 45 °C at 2 °C/min, and the shear rate was Ι/s. The viscosity unit is Pascal-second. HIHC6 HIHC7 HIHC8 HIHC9 Zr02 w/HEAS and DCLA 68 73 Zr〇2 w/HEAS 73 only 71.54 DEBPDA 12.9 12.6 TAEPE 6 0 SR601 15.6 12.9 0 HBPA 3 2.6 2.6 4.6 SR351 LV 11.1 9 8.8 SR339 3 0 Darocure 1173 2.5 0 Darocure 4265 2.3 2.5 2.5 Total 100 100 100 100 Viscosity @60°C 3.07 3.39 3.59 1.18 Viscosity @70°C 1.61 1.96 1.69 0.64 Viscosity @80°C 0.95 0.95 0.39 Refractive index @25°C 1.6198 1.6252 1.6676 1.6439 SR601-(bisphenol- A brand name of ethoxylated diacrylate monomer is purchased from Sartomer (it is said to have a viscosity of 1080 cps at 20 ° C and a Tg of 60 ° C) 〇

Darocure 1173-(2-經基-2-曱基-1-苯基-丙-1-酮光引發劑)係 156113.doc -51 - 201202740 購自 Ciba Specialty Chemicals。 SR399-(二季戊四醇五丙烯酸酯之商標名稱)係購自 Sartomer 〇 微結構高折射率硬塗層之製備: 實例HI、H2、H3、H2B、H2C-將矩形微複製工具(4 英吋寬及24英吋長)置於160°F熱板上進行預熱,並使用其 製造 Handspread塗層。將賭自 General Binding Corporation (GBC) of Northbrook, IL,USA之「Catena 35」型層壓機予頁 熱至160°F (設定速度為5,層壓壓力為「大型量規」)。將 高折射率硬塗層在60°C下之烘箱中預熱且啟動Fusion Systems UV處理器並預熱(60 fpm,100%功率,600瓦特/ 英吋之D燈,分色反射鏡)。將聚酯薄膜之樣品切割成工具 的長度(〜2英尺)。利用塑膠可棄式吸管將高折射率硬塗層 施加至工具之末端上,將4密耳(Mitsubishi 0321E100W76) 經底塗之聚酯置於珠狀物及工具之頂部,且使具有聚酯之 工具經過該層壓機,藉此將該塗層大致分佈於該工具上, 以使該工具之凹陷充滿高折射率硬塗層組合物。將該等樣 品置於UV處理器帶上並經由UV聚合作用固化。所得之固 化塗層為約3至6微米厚。 HIHC調配物 H1 HIHC3 H2A HIHC4 H3 HIHC1 H2B HIHC9 H2C HIHC8 156113.doc -52- 201202740 使用絲網塗佈機將其他高折射率硬塗層(18英吋寬)施加 至4密耳PET基板上。將除H10A及H10B以外之其他高折射 率硬塗層在170°F的工具溫度、160°F的模溫度及160°F的 高折射率硬塗層溫度下施加至以商標名稱「4 mil Polyester film 0321 E100W76」購自 Mitsubishi之經底塗之 PET上。在180°F的工具溫度、170°F(對於H10A)及 180°F (對於HI 0B)的模溫度及180°F的高折射率硬塗層溫度 下,將高折射率硬塗層H10A及H10B施加至以商標名稱 「ScotchPar」購自3M之未經底塗之4密耳聚酯薄膜(以0.75 MJ/cm2經電暈處理)上。在塗佈前,亦利用設定為約150-180°F之IR加熱器加熱該基板。藉由在該工具及夾膜之間 產生樹脂之滾動堆將該等高折射率硬塗層覆墨。用D燈及分 色反射鏡在50至100%功率下使該等塗層UV固化。所得之固 化塗層為約3至6微米厚。其他加工條件係包含於下表中。 HIHC 塗層 爽持 壓力 (psi) 工具 溫度 (°F) 絲網 速度 (fpm) 樹脂 溫度 (T) UV設 定(功 率%) *厚度 (um) IR 加熱器 (T) H6 HIHC5 80 170 40 160 100 4至5 160 H8 HIHC5 80 170 40 160 100 4至5 160 H9 HIHC5 80 170 40 160 100 4至5 160 H4 HIHC 1 80 170 40 160 50 3至5 160 H5 HIHC5 80 170 40 160 100 4至5 160 H5A HIHC 7 80 170 40 160 100 4至5 160 H6 HIHC 5 80 170 40 160 100 4至5 160 H7 HIHC 5 80 170 40 160 100 4至5 160 H10A HIHC 6 80 180 25 146 100 3至5 180 H10B HIHC 2 80 180 25 180 100 4至5 180 *大約厚度 如先前表1中所述,對該微結構高折射率硬塗層樣品之 156I13.doc -53- 201202740 透明度、濁度、及互補累積斜率分佈進行特徵分析。亦如 表2中所述,對微結構表面的峰尺寸進行特徵分析。 低折射率組合物 如US 2007/02 86994 A1中第0117段中所述’製備經表面 改質之Si02奈米顆粒(HMDS/A174)矽石。 「L1組分」係如下所製得:藉由在攪拌下將四氟乙烯 (TFE)、偏二氟乙烯(VDF)及六氟丙烯(HFP)之自由基可聚 合物非晶形三聚物、及具有70重量%氟之含Br-及I-固化位 點之單體(以「Dyneon FPO3740」購自 Dyneon LLC of Oakdale, MN)(39.41重量%固體)添加至一定量之MEK中, 以獲得5重量%溶液。隨後,在攪拌下添加額外的MEK, 以將FPO3740之濃度進一步稀釋至3%。接著,在攪拌下, 將含於MEK中之HMDS/A174矽石(34.38重量%固體)之 19.9%(重量)摻合物添加至該FPO3740/MEK摻合物中。接 著,將與MEK混合之二季戊四醇五丙烯酸酯(可以 「SR3 99」購自Sartomer)之20°/〇(重量)溶液添加至該 FPO/MEK/HMDS矽石混合物中。最後,添加另一部份 MEK,以將總固體稀釋至7%(重量)。將在MEK中預稀釋至 1 〇%(重量)之一定量的聯苯醯二甲基縮酮光引發劑(可以商 標名「Esacure KB1」購得(Gallarate,Italy))(1.48 重量 % 固 體)添加至該溶液中。添加額外的MEK,以將固體百分比 進一步降低至4%。 如W0 2007/146509 A1中所述,使用以下組分製備高分 支鏈氟丙烯酸酯(FPA)。 156N3.doc -54· 201202740 物質描述 功能(即,單體、溶劑、引發劑 等)_ 典型輸入百分比 2,3,3,3,4,4,5,5,-八氟-1,6· 己烷二丙烯酸酯 單體 3.91 CN-4000丙烯酸酯 單體一 1.08 VAZO 52 引發塑一__ 0.35 髄基乙酸異辛酯 鏈轉移劑 0.00005 乙酸乙酯 溶劑___ 37.61 甲基乙基酮 溶劑 75.05 如WO 2007/146509 A1中第43頁第10行中所述’製備Tri 8F HDDA Michael加合物 2 ° L2組分係如下所製得:將以1 〇%(重量)預溶於乙酸乙醋 中之Sartomer CN4000添加至混合容器中。隨後’將以下 組分(以5%(重量)預溶於乙酸乙醋中之高分支鍵氟丙烯酸 酯(FPA)、以 10%(重量)預溶於 MEK 中之 Sartomer SR399、 以5%(重量)預溶於乙酸丁酯中之trl_8F HDDA)添加至該混 合容器中。接著,添加以33.5%(重量)預分散於甲基異丁 基酮中之HMDS/A174矽石(30.5重量0/〇固體)。將光引發劑 (募聚羥基-2-曱基-l-[4-(l-甲基乙烯基)苯基]丙酮’可以 「Lamberti Esacure One」購得)(以10%預溶於MEK中之3重 量%固體)添加至該混合容器中。最後,將額外的溶劑添加至 該調配物中,以使其含4%固體。該(即固化)組合物之重量% 固體及該塗料組合物中所利用之溶劑係描述於下表中。 如下表中所述,多種摻合物係自LI、L2、A1106、及可 以「Cab-O-Sil TS530」獲得之發煙矽石製得。Darocure 1173-(2-Phenyl-2-indenyl-1-phenyl-propan-1-one photoinitiator) 156113.doc -51 - 201202740 available from Ciba Specialty Chemicals. SR399-(trade name for dipentaerythritol pentaacrylate) is purchased from Sartomer(R) microstructured high refractive index hardcoat: Example HI, H2, H3, H2B, H2C- rectangular rectangular replication tool (4 inches wide and 24 inches long) was preheated on a 160 °F hot plate and used to make a Handspread coating. The "Catena 35" laminator from the General Binding Corporation (GBC) of Northbrook, IL, USA was heatd to 160 °F (set speed 5, lamination pressure "large gauge"). The high refractive index hardcoat was preheated in an oven at 60 °C and the Fusion Systems UV processor was started and preheated (60 fpm, 100% power, 600 watts/inch D-lamp, dichroic mirror). A sample of the polyester film was cut into the length of the tool (~2 feet). A high refractive index hardcoat is applied to the end of the tool using a plastic disposable straw, and 4 mil (Mitsubishi 0321E100W76) primed polyester is placed on top of the bead and tool and has a polyester The tool passes through the laminator whereby the coating is substantially distributed over the tool such that the depression of the tool is filled with the high refractive index hardcoat composition. The samples were placed on a UV processor tape and cured via UV polymerization. The resulting cured coating is about 3 to 6 microns thick. HIHC formulation H1 HIHC3 H2A HIHC4 H3 HIHC1 H2B HIHC9 H2C HIHC8 156113.doc -52- 201202740 Other high refractive index hardcoats (18 inches wide) were applied to a 4 mil PET substrate using a screen coater. Apply high-refractive-index hardcoats other than H10A and H10B to a tool temperature of 170°F, a mold temperature of 160°F, and a high refractive index hardcoat temperature of 160°F to the brand name “4 mil Polyester Film 0321 E100W76" was purchased from Mitsubishi's primed PET. High refractive index hard coat H10A at a tool temperature of 180 °F, a mold temperature of 170 °F (for H10A) and 180 °F (for HI 0B) and a high refractive index hard coat temperature of 180 °F H10B was applied to a 3M unprimed 4 mil polyester film (corona treated at 0.75 MJ/cm2) under the trade designation "ScotchPar". The substrate was also heated by an IR heater set to about 150-180 °F prior to coating. The high refractive index hard coat layer is overcoated by a rolling stack of resin between the tool and the interlayer. The coatings are UV cured with a D lamp and a dichroic mirror at 50 to 100% power. The resulting cured coating is about 3 to 6 microns thick. Other processing conditions are included in the table below. HIHC Coating Swing Pressure (psi) Tool Temperature (°F) Screen Speed (fpm) Resin Temperature (T) UV Setting (Power %) *Thickness (um) IR Heater (T) H6 HIHC5 80 170 40 160 100 4 to 5 160 H8 HIHC5 80 170 40 160 100 4 to 5 160 H9 HIHC5 80 170 40 160 100 4 to 5 160 H4 HIHC 1 80 170 40 160 50 3 to 5 160 H5 HIHC5 80 170 40 160 100 4 to 5 160 H5A HIHC 7 80 170 40 160 100 4 to 5 160 H6 HIHC 5 80 170 40 160 100 4 to 5 160 H7 HIHC 5 80 170 40 160 100 4 to 5 160 H10A HIHC 6 80 180 25 146 100 3 to 5 180 H10B HIHC 2 80 180 25 180 100 4 to 5 180 * Approximate thickness As described in Table 1 above, the transparency, turbidity, and complementary cumulative slope distribution of the microstructured high refractive index hard coat sample 156I13.doc -53 - 201202740 Characteristics. The peak size of the microstructured surface was also characterized as described in Table 2. Low refractive index composition Surface modified SiO 2 nanoparticle (HMDS/A174) vermiculite was prepared as described in paragraph 0117 of US 2007/02 86994 A1. The "L1 component" is prepared by radically polymerizable amorphous trimer of tetrafluoroethylene (TFE), vinylidene fluoride (VDF) and hexafluoropropylene (HFP) by stirring, And a monomer containing Br- and I-curing sites of 70% by weight of fluorine ("Dyneon FPO3740" from Dyneon LLC of Oakdale, MN) (39.41% by weight solids) was added to a certain amount of MEK to obtain 5 wt% solution. Subsequently, additional MEK was added with stirring to further dilute the concentration of FPO3740 to 3%. Next, a 19.9% by weight blend of HMDS/A174 vermiculite (34.38 wt% solids) in MEK was added to the FPO3740/MEK blend with stirring. Next, a 20 ° / 〇 (by weight) solution of dipentaerythritol pentaacrylate ("SR3 99" available from Sartomer) mixed with MEK was added to the FPO/MEK/HMDS vermiculite mixture. Finally, another portion of MEK was added to dilute the total solids to 7% by weight. A biphenyl dimethyl ketal photoinitiator (available under the trade name "Esacure KB1" (Gallarate, Italy)) (1.48 wt% solids) pre-diluted to 1 〇% by weight in MEK Add to the solution. Additional MEK was added to further reduce the percent solids to 4%. High-strand branched fluoroacrylate (FPA) was prepared using the following components as described in WO 2007/146509 A1. 156N3.doc -54· 201202740 Substance description function (ie, monomer, solvent, initiator, etc.) _ Typical input percentage 2,3,3,3,4,4,5,5,-octafluoro-1,6· Hexane diacrylate monomer 3.91 CN-4000 acrylate monomer-1.08 VAZO 52 Initiating plastic __ 0.35 thioglycolic acid isooctyl ester chain transfer agent 0.00005 ethyl acetate solvent ___ 37.61 methyl ethyl ketone solvent 75.05 The preparation of the Tri 8F HDDA Michael adduct 2 ° L2 component described in WO 2007/146509 A1, page 4, line 10 is prepared as follows: pre-dissolved in ethyl acetate in an amount of 1% by weight The Sartomer CN4000 is added to the mixing vessel. Subsequently, the following components (pre-dissolved in 5% by weight of high-branched fluoroacrylate (FPA) in ethyl acetate, 10% by weight of Sartomer SR399 pre-dissolved in MEK, at 5% ( The weight) trl_8F HDDA) pre-dissolved in butyl acetate was added to the mixing vessel. Next, HMDS/A174 vermiculite (30.5 wt. 0 / 〇 solid) pre-dispersed in methyl isobutyl ketone at 33.5% by weight was added. The photoinitiator (acquired hydroxy-2-mercapto-l-[4-(l-methylvinyl)phenyl]acetone' can be purchased from "Lamberti Esacure One") (pre-dissolved in MEK at 10%) 3 wt% solids) was added to the mixing vessel. Finally, an additional solvent was added to the formulation to make it contain 4% solids. The weight percent solids of the (i.e., cured) composition and the solvent utilized in the coating composition are described in the following table. As described in the following table, various blends were prepared from LI, L2, A1106, and fluorite obtained from "Cab-O-Sil TS530".

L8及L9係如下所製得:將以10%(重量)濃度預溶於MEK 中之Dyneon FPO3740添加至混合容器中。隨後,用MEK 156113.doc -55- 201202740 及MIBK進一步稀釋該FPO3740。將以10%(重量)預溶於乙 酸乙酯中之Sartomer CN4000及以5%(重量)預溶於乙酸乙 酯中之FPA37添加至該混合物中。接著’將以33·5%(重量) 預分散於甲基異丁基酮中之HMDS/A174矽石及純Sartomer SR494添加至該混合容器中。最後,將以1〇%(重量)預溶於 MEK中之Lamberti Esacure One添加至該混合容器中。以所 述之順序及下表中之濃度添加針對L8及L9所列之各組分。 當該低折射率組合物亦含有γ-胺基丙基三曱氧基矽烷(可以 商標名「Α1106」購自 Momentive Performance Materials, Wilton,CT)之寡聚產物時,則在即將塗佈之前或至多在塗佈 前24小時,在攪拌下,將以25%(重量)預稀釋於曱醇中之該 組分緩慢添加至該調配物中。添加額外的MEK,以將固體。/〇 降低至4%,以為塗佈作準備。對於各低折射率塗料組合物而 言,添加額外的MEK,以使得各塗料組合物係4重量%固體。 組分 L2 L3 L4 L5 Dyneon FPO3740 0 27.61 27.65 CN400❶ 15.25 14.56 4.59 4.37 FPA 15.25 14.56 4.59 4.37 A1106 4.77 3.43 5 HMDS/A174 30.5 29.12 33.3 32.9 SR399 15.25 14.56 18.38 18.19 Tri8FHDDA 20.5 19.57 6.15 5.86 KB1 0 1.04 1.04 Esacure 1 3.0 2.86 0.9 0.86 總計 100 99.99 100.24 MEK 63.65 63.29 89 88.5 EtOAc 12.11 12.04 3.63 3.61 MeOH 0.57 0.09 0.6 MIBK 2.98 2.96 0.89 0.88 CHO 5.09 5.06 1.53 1.52 BuOAC 16.156 16.06 4.85 4.82 總計 99.99 99.98 99.99 99.93 156113.doc •56- 201202740 組分 L6 L7 L8 L9 Dyneon FPO3740 19.71 28.46 30 30.77 CN4000 7.65 4.5 5 10.69 FPA 7.65 4.5 10 10.69 A1106 2.47 0 5 1.99 HMDS/A174 32.49 33.87 33.5 28.84 SR494 0 15 15.41 SR399 17.48 18.72 0 0 Tri 8F HDDA 10.25 6.03 0 0 KB1 0.74 1.07 0 0 Esacure 1 1.5 0.88 1.5 1.59 Cab-O-Sil TS530 2 0 0 塗料溶液中之溶劑% 總計 99.94 100.03 100 99.98 MEK 81.58 89 86.8 76.53 EtOAc 6.04 3.63 9.8 12.47 MeOH 0.3 0 0.6 0.25 MIBK 1.49 0.89 2.8 10.75 CHO 2.54 1.53 0 0 BuOAC 8.06 4.85 0 0 總計 100.01 99.9 100 100 將低折射率組合物施加至微結構高折射率硬塗層: 自具有相同數字名稱之微結構高折射率層「Η」製備各 抗反射層「F」。因此,自Η1製得F1,其另外包括低折射 率層。類似地,自Η11製得F11,其另外包括低折射率層。 FI、F2A1、F2A2、F3、F10A、F2B及 F2C-藉由利用可 棄式移液管將一滴低折射率塗料施加至各先前製備並固化 之微複製高折射率硬塗層之6英吋乘以12英吋之樣品之一 端,製造Handspread塗層(4英吋寬),並穿過該珠狀物拉動 一 Webster 4號線繞桿(mayer bar)達該薄膜之長度,以在該 微結構高折射率硬塗層上形成均勻的濕塗層。在烘箱中乾 燥(1分鐘,60°C)所有低折射率調配物,並於Fusion Systems UV處理器中在30 fpm下固化(雙向)(氮氣淨化, 156113.doc -57- 201202740 600瓦特/英吋Η燈泡,100%功率),其產生約100 nm之乾燥 低折射率塗層。 LI溶液 F1 L6 F2A1 L2 F2A2 L3 F2 L5 F10A L7 F2B L9 F2C L9 使用絲網塗佈機,在30英尺/分鐘之絲網速度下,使用 注射器泵或壓力罐施加其他低折射率調配物。當利用壓力 罐時,使溶液在通過模具之前通過過濾器(0.5微米)。隨 後,將該等塗料施加至聚酯基板上之固化高折射率塗層 上,並藉由通過設定為約120 F之烘箱約1分鐘而乾燥。隨 後,利用在氮氣(氧氣<50 ppm)下之具有Η燈泡、鋁反射器 及100%功率之UV系統固化該等塗層。其他製程條件係含 於下表中。 LI溶液 泵類型 流速 (ml/min) 卡尺(nm) 塗層寬度 (in.) F6 L4 注射器 4.6 536 4 F8 L4 注射器 4.6 548 4 F9 L4 注射器 4.6 559 4 F4 L4 注射器 5 614 4 F5 L4 注射器 4.6 547 4 F10B L8 壓力罐 12.3 537 8 所得之固化低折射率層係約90至100奈米厚。 【圖式簡單說明】 圖1Α係無光澤薄膜之示意側視圖; 156113.doc -58- 201202740 圖1B係抗反射薄膜之示意側視圖; 圖2A係微結構凹陷之示意側視圖; 圖2B係微結構凸起之示意側視圖; 圖3A係有規則排列的微結構之示意俯視圖; 圖3B係不規則排列的微結構之示意俯視圖; 圖4係微結構之示意側視圖; 圖5係包括一部份含嵌:人# I I :里, 3人的無先澤顆粒之微結構的光學 薄膜之示意側視圖; 干 圖6係切割工具系統之示意側視圖; 圖7A至7D係不同切割器之示意側視圖; 圖8 A係示範性微結構表面(即微結構高折射率層H丨)之二 維表面型態; 圖8Β係圖8Α之示範性微結構表面之三維表面型態; 圖8C至8D分別係圖8Α之微結構表面沿){_及7方向之橫 截面分佈圖; 圖9Α係另一示範性微結構表面(即微結構高折射率層Η4) 之二維表面型態; 圖9Β係圖9Α之示範性微結構表面之三維表面型雜; 圖9C至9D分別係圖9A之微結構表面沿x_及y—方向之橫 截面分佈圖; 圖10 A係另一示範性微結構表面(即抗反射薄膜實例 F10B)之二維表面型態; 圖10B係圖1 〇 A之示範性微結構表面之三維表面型態; 圖10C至10D分別係圖10A之微結構表面沿x_及y_方向之 156113.doc •59- 201202740 橫截面分佈圖; 圖11係描述各種示範性微結構表面之互補累積斜率大^ 分佈之圖;及 圖12描繪計算曲率之方法 【主要元件符號說明】 30 奈米顆粒 50 基板 60 咼折射率微結構表面層 70 微結構 80 低折射率層 100 無光澤薄膜 120 主表面 140 無光澤層 142 主表面 160 微結構 310 包含凹陷微結構32〇或名 320 凹陷微結構 330 包含凸起微結構34〇之;{ 340 凸起微結構 410 規則圖案之微結構 415 主表面 420 不規則圖案之微結構 510 位置 520 法線 156113.doc 201202740 530 800 810 830 840 850 860 870 880 1000 1010 1020 1030 1040 1050 1060 1110 1115 1120 1125 1130 1135 1140 1145 切線 光學薄膜 第一主表面 無光澤顆粒 聚合黏著劑 基板 無光澤層 微結構 無光澤顆粒聚結物 切割工具系統 幸昆筒 中心軸 驅動器 切割器 伺服系統 驅動器 切割器 弧形切削刀片 切割器 V形切削刀片 切割器 分段線狀切削刀片 切割器 彎曲狀切削刀片 156113.doc •61-L8 and L9 were prepared by adding Dyneon FPO3740 pre-dissolved in MEK at a concentration of 10% by weight to a mixing vessel. Subsequently, the FPO 3740 was further diluted with MEK 156113.doc -55 - 201202740 and MIBK. Sartomer CN4000 pre-dissolved in ethyl acetate at 10% by weight and FPA37 pre-dissolved in ethyl acetate at 5% by weight were added to the mixture. Next, HMDS/A174 vermiculite preliminarily dispersed in methyl isobutyl ketone at 33.5% by weight and pure Sartomer SR494 were added to the mixing vessel. Finally, Lamberti Esacure One, which was pre-dissolved in MEK at 1% by weight, was added to the mixing vessel. The components listed for L8 and L9 were added in the order described and in the concentrations in the table below. When the low refractive index composition also contains an oligomeric product of gamma-aminopropyltrimethoxy decane (available under the trade designation "Α1106" from Momentive Performance Materials, Wilton, CT), either immediately before coating or At least 24 hours before coating, the component pre-diluted in sterol at 25% by weight was slowly added to the formulation with stirring. Add additional MEK to place the solid. /〇 Reduced to 4% to prepare for coating. For each low refractive index coating composition, additional MEK was added to make each coating composition 4% by weight solids. Component L2 L3 L4 L5 Dyneon FPO3740 0 27.61 27.65 CN400❶ 15.25 14.56 4.59 4.37 FPA 15.25 14.56 4.59 4.37 A1106 4.77 3.43 5 HMDS/A174 30.5 29.12 33.3 32.9 SR399 15.25 14.56 18.38 18.19 Tri8FHDDA 20.5 19.57 6.15 5.86 KB1 0 1.04 1.04 Esacure 1 3.0 2.86 0.9 0.86 Total 100 99.99 100.24 MEK 63.65 63.29 89 88.5 EtOAc 12.11 12.04 3.63 3.61 MeOH 0.57 0.09 0.6 MIBK 2.98 2.96 0.89 0.88 CHO 5.09 5.06 1.53 1.52 BuOAC 16.156 16.06 4.85 4.82 Total 99.99 99.98 99.99 99.93 156113.doc •56- 201202740 Component L6 L7 L8 L9 Dyneon FPO3740 19.71 28.46 30 30.77 CN4000 7.65 4.5 5 10.69 FPA 7.65 4.5 10 10.69 A1106 2.47 0 5 1.99 HMDS/A174 32.49 33.87 33.5 28.84 SR494 0 15 15.41 SR399 17.48 18.72 0 0 Tri 8F HDDA 10.25 6.03 0 0 KB1 0.74 1.07 0 0 Esacure 1 1.5 0.88 1.5 1.59 Cab-O-Sil TS530 2 0 0 Solvent % in coating solution Total 99.94 100.03 100 99.98 MEK 81.58 89 86.8 76.53 EtOAc 6.04 3.63 9.8 12.47 MeOH 0.3 0 0.6 0.25 MIBK 1.49 0.89 2.8 10.75 CHO 2.54 1.53 0 0 BuOAC 8 .06 4.85 0 0 Total 100.01 99.9 100 100 Application of a low refractive index composition to a microstructured high refractive index hard coat layer: Preparation of each antireflection layer "F" from a microstructured high refractive index layer "Η" having the same numerical designation . Therefore, F1 is produced from Η1, which additionally includes a low refractive index layer. Similarly, F11 was produced from Η11, which additionally included a low refractive index layer. FI, F2A1, F2A2, F3, F10A, F2B, and F2C-by applying a drop of low refractive index coating to a 6 inch multiplication of each previously prepared and cured microreplicated high refractive index hardcoat using a disposable pipette A Handspread coating (4 inches wide) was fabricated on one end of a 12 inch sample and a Webster 4 wire mayer bar was pulled through the beads to the length of the film to the microstructure A uniform wet coating is formed on the high refractive index hard coat layer. All low refractive index formulations were dried in an oven (1 min, 60 ° C) and cured in a Fusion Systems UV processor at 30 fpm (bidirectional) (nitrogen purge, 156113.doc -57 - 201202740 600 watts / eng Helium bulb, 100% power), which produces a dry low refractive index coating of approximately 100 nm. LI solution F1 L6 F2A1 L2 F2A2 L3 F2 L5 F10A L7 F2B L9 F2C L9 Other low refractive index formulations were applied using a syringe coater or pressure jar at a screen speed of 30 ft/min using a screen coater. When using a pressure tank, the solution was passed through a filter (0.5 micron) before passing through the mold. These coatings were then applied to the cured high refractive index coating on the polyester substrate and dried by passing through an oven set at about 120 F for about 1 minute. The coatings were then cured using a UV system with a xenon bulb, an aluminum reflector and 100% power under nitrogen (oxygen < 50 ppm). Other process conditions are included in the table below. LI solution pump type flow rate (ml/min) caliper (nm) coating width (in.) F6 L4 syringe 4.6 536 4 F8 L4 syringe 4.6 548 4 F9 L4 syringe 4.6 559 4 F4 L4 syringe 5 614 4 F5 L4 syringe 4.6 547 4 F10B L8 Pressure Tank 12.3 537 8 The resulting cured low refractive index layer is about 90 to 100 nanometers thick. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic side view of a matte film; 156113.doc -58-201202740 Fig. 1B is a schematic side view of an antireflection film; Fig. 2A is a schematic side view of a microstructured recess; Fig. 2B is a micro Figure 3A is a schematic plan view of a regularly arranged microstructure; Figure 3B is a schematic plan view of an irregularly arranged microstructure; Figure 4 is a schematic side view of the microstructure; Figure 5 includes a Inclusion: Man #II: In, a schematic side view of the optical film of the microstructure of the three people without the zirconia particles; Figure 6 is a schematic side view of the cutting tool system; Figures 7A to 7D are schematic diagrams of different cutters Figure 8 is a two-dimensional surface profile of an exemplary microstructured surface (i.e., microstructured high refractive index layer H丨); Figure 8 is a three-dimensional surface profile of the exemplary microstructured surface of Figure 8A; Figure 8C 8D is a cross-sectional profile of the {_ and 7 directions of the microstructure surface of FIG. 8Α, respectively; FIG. 9 is a two-dimensional surface profile of another exemplary microstructured surface (ie, the microstructured high refractive index layer Η4); 9Β is the third of the exemplary microstructure surface of Figure 9Α Figure 9C to 9D are cross-sectional profiles of the microstructure surface of Figure 9A along the x- and y-directions, respectively; Figure 10A is another exemplary microstructure surface (i.e., anti-reflection film example F10B) Fig. 10B is a three-dimensional surface pattern of the exemplary microstructure surface of Fig. 1A; Figs. 10C to 10D are respectively 156113.doc of the microstructure surface of Fig. 10A along the x_ and y_ directions. 201202740 Cross-sectional profile; Figure 11 is a diagram depicting the cumulative cumulative slope of various exemplary microstructured surfaces; and Figure 12 depicts a method for calculating curvature [Major component notation] 30 Nanoparticles 50 Substrate 60 咼 Refractive index Microstructured Surface Layer 70 Microstructure 80 Low Refractive Index Layer 100 Matte Film 120 Main Surface 140 Matte Layer 142 Main Surface 160 Microstructure 310 Contains recessed microstructures 32 〇 or 320 recessed microstructures 330 Contains raised microstructures 34〇 { 340 raised microstructure 410 regular pattern microstructure 415 main surface 420 irregular pattern microstructure 510 position 520 normal 156113.doc 201202740 530 800 810 830 840 850 860 870 880 1000 1010 1020 1030 1040 1050 1060 1110 1115 1120 1125 1130 1135 1140 1145 Tangential optical film first main surface matt particle polymeric adhesive substrate matt layer microstructure matt particle agglomerate cutting tool system Xingkun cylinder central axis drive cutter Servo system drive cutter curved cutting blade cutter V-shaped cutting blade cutter segmental linear cutting blade cutter curved cutting blade 156113.doc •61-

Claims (1)

201202740 七、申請專利範圍: 1.種抗反射薄膜,其包含高折射率層及位於該高折#_ 層上之低折射率表面層,其中該低折射率層包括複數個 具有互補累積斜率大小分佈之微結構,以使得至少30% 的微,..口構具有至少0 7度的斜率大小、至少“ο乂的微結構 具有小於1.3度的斜率大小,且該抗反射薄膜不含丧入的 無光澤顆粒。 2.種抗反射薄膜,其包含高折射率層及位於該高折射率 層上之低折射率表面層,其中該低折射率層包括複數個 具有互補累積斜率大小分佈之微結構,以使得至少洲 的微、.、。構具有至少〇 7度的斜率大小、至少的微結構 ’、有小於1.3度的斜率大小,且不多於5()%的微結構包含 嵌入的無光澤顆粒。 3·如吻求項1之無光澤薄膜,其中至少30%的微結構具有小 於1·3度的斜率大小。 4. 如吻求項1之無光澤薄膜,其中至少35%的微結構具有小 於1.3度的斜率大小。 5. 如吻求項1之無光澤薄膜,其中至少40°/❶的微結構具有小 於1.3度的斜率大小。 6. 士吻求項1至5中任一項之抗反射薄膜,其中少於1的 微結構具有4.1度或更大的斜率大小^ 如吻求項1至5中任一項之抗反射薄膜,其中少於5〇/。的微 結構具有4.1度或更大的斜率大小。 8.如《月求項1至5中任一項之抗反射薄膜,其中至少μ%的 156113.doc 201202740 微結構具有至少0.3度的斜率大小β 9·如請求項丨至5中任一項之抗反射薄膜,其中該表面層包 括平均等效圓直徑為至少5微米之♦。 1 〇.如咐求項9之抗反射薄膜,其中該平均等效圓直徑係至 少10微米。 11.如請求項9之抗反射薄膜,其中該平均等效圓直徑係小 於30微米。 12·如請求項9之抗反射薄膜,其中該平均等效圓直徑係小 於25微米。 13.如請求項丨至5中任一項之抗反射薄膜,其中該微結構表 面包括平均長度為至少5微米之峰。 14·如請求項13之抗反射薄膜,其中該等峰具有至少1〇微米 之平均長度。 1 5.如請求項1至5中任一項之抗反射薄膜,其中該微結構表 面包括平均寬度為至少5微米之峰。 16. 如請求項15之抗反射薄膜,其中該等峰具有小於15微米 的平均寬度。 17. 如請求項丨至5中任一項之抗反射薄膜,其中該薄膜具有 小於0.14微米的平均粗糙度(Ra)。 18. 如請求項丨至5中任一項之抗反射薄膜,其中該薄膜具有 小於1.20微米的平均最大表面高度(RZ)。 19·如請求項丨至5中任一項之抗反射薄膜,其中該抗反射薄 膜具有至少70%的透明度。 20.如請求項1至5中任一項之抗反射薄膜,其中該抗反射薄 156113.doc 201202740 膜具有不大於1 〇%的濁度。 21. -種抗反射薄膜’其包含微結構高折射率層及位於該高 折射率層上之低折射率層’其中該抗反射薄膜具有不大 於90%的透明度,至少〇 〇5微米且不大於〇14微米的平均 表面粗糙度,且該抗反射薄膜不含嵌入的無光澤顆粒。 22. -種抗反射薄膜’其包含微結構高折射率層及位於該高 折射率層上之低折射率層,其中該抗反射薄膜具有不大 於90%的透明度,至少〇5〇微米且不大於12〇微米的平均 最大表面高度,且該抗反射薄膜不含嵌入的無光澤顆 粒0 23· —種抗反射薄膜,其包含微結構高折射率層及位於該高 折射率層上之低折射率層,其中該抗反射薄膜具有不大 於90%的透明度,且該微結構層包括平均等效直徑為至 少5微米且不大於3〇微米之峰,且不大於5〇%的微結構包 括嵌入的無光澤顆粒。 24. 如叫求項1至5及21至23中任一項之抗反射薄膜,其中該 抗反射薄膜在550 nm之波長下具有小於2%的平均適光反 射率。 25. 如請求項⑴及⑽以中任一項之抗反射薄膜^中該 高折射率層包括折射率為至少16()之可聚合樹脂組合物 之反應產物》 26. 如請求項25之抗反射薄膜,其中該聚合樹脂組合物包括 折射率為至少約1.60之奈米顆粒。 27. 如請求項26之抗反射薄膜,其中該等奈米顆粒包括氧化 156113.doc 201202740 結。 28. 如請求項26至27之無光澤薄膜,其中該等奈米顆粒係經 包含幾酸端基之化合物表面改質。 29. 如請求項26之抗反射薄膜,其中該化合物包括ΙΑ醋重 複單元或至少一個(:6-(:16酯單元。 30. 如請求項29之抗反射薄膜,其中該表面處理劑包括以下 物質之反應產物: i) 至少一種脂族酸酐,及 ii) 至少一種羥基聚己内酯(甲基)丙烯酸酯。 31. 如請求項29或30之抗反射薄膜,其中該等奈米顆粒係經 藉由脂族酸酐與(甲基)丙烯酸羥基CrC8烷基酯之反應製 得的化合物表面改質》 32. 如請求項25之抗反射薄膜,其中該可聚合樹脂組合物包 括一或多種芳族二(甲基)丙婦酸酯單體,其含量係在約 10至約20重量%的範圍内。 33. 如請求項25之抗反射薄膜,其中該可聚合樹脂組合物包 括約5至約15重量%的含有至少三個(甲基)丙烯酸酯基之 交聯劑。 34. 如請求項25之抗反射薄膜,其中該可聚合樹脂組合物包 括高達約10重量%的芳族單(曱基)丙烯酸酯單體。 35. 如請求項1至5及21至23中任一項之抗反射薄膜,其中該 低折射率層包括自由基可聚合氟化聚合物。 36·如明求項35之抗反射薄膜,其中該自由基可聚合物氟化 聚合物包括具有高分支鏈結構之聚合物種類。 156113.doc 201202740 3 7.如請求項36之抗反射薄膜,其中該自由基可聚合物氟化 聚合物包括以下物質之反應產物:i)氟含量為至少25重 量%之至少一種多官能性自由基可聚合物質,及H)視情 況選用之氟含量在0至小於25重量%範圍内之至少一種多官 月b性自由基可聚合物質,其中多官能性物質之總含量係佔 該可聚合有機組合物之固體重量。/。的至少約2 5重量%。 38·如請求項35之抗反射薄膜,其中該自由基可聚合物氟化 聚合物包括選自TFE、VDF、及HFP之至少兩種組成單 體,且具有來自至少一種含函素固化位點單體的反應性 官能基。 39. 如請求項35之抗反射薄膜,其中該低折射率層包括氟含 虽為至少約25重量%之至少一種氟化自由基可聚合單 體。 40. 如請求項35之抗反射薄膜’其中該低折射率層另外包括 胺基矽烷偶聯劑。 41. 如請求項35之抗反射薄膜,其中該低折射率層另外包括 發煙矽石。 42. —種高折射率可聚合樹脂組合物,其包括: 40重量%至70重量%之經含有羧酸端基及c3_C8酯重複 單元或至少一個Ce-Cw酯單元之化合物表面改質的氧化 鍅奈米顆粒; 含置為約10至約20重量%的一或多種芳族二(甲基)丙 稀酸醋單體; 1重量%至15重量%之具有至少三個(曱基)丙烯酸酯基 156113.doc 201202740 之交聯劑;及 至多5重量%之芳族單(甲基)丙烯酸酯單體。 43. 如凊求項42之高折射率可聚合樹脂組合物其中該芳族 單(曱基)丙烯酸酯單體係聯苯單體。 44. 一種低折射率可聚合組合物,其包括: 第一自由基可聚合氟化聚合物,其包含具有高分支鏈 結構之聚合物種類;及 第二自由基可聚合氟化聚合物,其包括選自Tfe、 VDF、及HFP之至少兩種組成單體,且具有來自至少— 種含函素固化位點單體的反應性官能基。 45. 如請求項44之低折射率可聚合組合物,其中該第—自由 基可聚合氟化聚合物包括以下物質之反應產物:〇氟含 量為至少25重量。/。之至少一種多官能性自由基可聚合物 質,及11)視情況選用之氟含量在〇至小於25重量%範圍内 之至少一種多官能性自由基可聚合物質,其中多官能性 物質之總含量係佔該可聚合有機組合物之固體重量%的 至少約25重量%。 46·如請求項44至45中任一項之低折射率可聚合組合物,其 中該低折射率層另外包括氟含量為至少約25重量%之至 少一種氟化自由基可聚合單體。 47.如請求項44至45中任一項之低折射率可聚合組合物,其 中該低折射率層另外包括胺基矽烧偶聯劑。 48·如請求項44至45中任一項之低折射率可聚合組合物, 其中該低折射率層另外包括經表面改質之石夕石。 156113.doc201202740 VII. Patent application scope: 1. An antireflection film comprising a high refractive index layer and a low refractive index surface layer on the high refractive layer #_, wherein the low refractive index layer comprises a plurality of complementary cumulative slopes Distributing the microstructure such that at least 30% of the micro-portions have a slope of at least 107 degrees, at least "the microstructure of the 乂 has a slope of less than 1.3 degrees, and the anti-reflective film does not contain a matte particle. 2. An antireflective film comprising a high refractive index layer and a low refractive index surface layer on the high refractive index layer, wherein the low refractive index layer comprises a plurality of microscopically having a cumulative cumulative slope size distribution Structure, such that at least the micro, s., has a slope size of at least 度7 degrees, at least a microstructure ', has a slope size of less than 1.3 degrees, and no more than 5 (%) of the microstructures comprise embedded Matte granules. 3. A matte film such as Kiss 1, wherein at least 30% of the microstructure has a slope of less than 3.4 degrees. 4. A matte film such as Kiss 1, of which at least 35% Microstructure has A slope size of less than 1.3 degrees 5. A matte film of the same as in claim 1, wherein the microstructure of at least 40°/❶ has a slope size of less than 1.3 degrees. 6. The stroke of any one of items 1 to 5 An antireflection film in which a microstructure having less than 1 has a slope size of 4.1 degrees or more, and an antireflection film according to any one of claims 1 to 5, wherein a microstructure of less than 5 Å has a degree of 4.1 degrees. Or a larger slope size. 8. The antireflection film of any one of the items 1 to 5, wherein at least μ% of the 156113.doc 201202740 microstructure has a slope size of at least 0.3 degrees β 9 · as requested The antireflection film of any one of 5, wherein the surface layer comprises an average equivalent circle diameter of at least 5 μm. 1 〇. The antireflection film of claim 9, wherein the average equivalent circle diameter is 11. The antireflection film of claim 9, wherein the average equivalent circular diameter is less than 30 microns. 12. The antireflective film of claim 9, wherein the average equivalent circular diameter is less than 25 microns. 13. The antireflection film of any one of clauses 5 to 5, wherein the microjunction The surface comprises an average length of at least 5 micrometers. 14. The antireflective film of claim 13, wherein the peaks have an average length of at least 1 micron. 1 5. The anti-resistance of any one of claims 1 to 5. A reflective film, wherein the microstructured surface comprises a peak having an average width of at least 5 microns. 16. The antireflective film of claim 15, wherein the peaks have an average width of less than 15 microns. 17. as claimed in item 5 The antireflection film of any one of the present invention, wherein the film has an average roughness (Ra) of less than 0.14 μm. The antireflection film of any one of claim 5, wherein the film has an average maximum of less than 1.20 μm. Surface height (RZ). The antireflection film of any one of claims 5 to wherein the antireflective film has a transparency of at least 70%. The antireflection film according to any one of claims 1 to 5, wherein the antireflection film 156113.doc 201202740 film has a haze of not more than 1%. 21. An antireflective film comprising: a microstructured high refractive index layer and a low refractive index layer on the high refractive index layer, wherein the antireflective film has a transparency of no more than 90%, at least 微米5 microns and no An average surface roughness greater than 〇 14 microns, and the antireflective film does not contain embedded matt particles. 22. An antireflective film comprising: a microstructured high refractive index layer and a low refractive index layer on the high refractive index layer, wherein the antireflective film has a transparency of no more than 90%, at least 〇5 〇 microns and not An average maximum surface height greater than 12 μm, and the antireflective film does not contain embedded matt particles. The antireflective film comprises a microstructured high refractive index layer and a low refractive index on the high refractive index layer. a layer, wherein the antireflective film has a transparency of not more than 90%, and the microstructure layer comprises a peak having an average equivalent diameter of at least 5 microns and not more than 3 Å, and no more than 5% of the microstructure including embedding Matte particles. The antireflection film of any one of claims 1 to 5 and 21 to 23, wherein the antireflection film has an average reflectance reflectance of less than 2% at a wavelength of 550 nm. 25. The antireflection film according to any one of claims 1 to 10, wherein the high refractive index layer comprises a reaction product of a polymerizable resin composition having a refractive index of at least 16 (). A reflective film, wherein the polymeric resin composition comprises nanoparticle having a refractive index of at least about 1.60. 27. The antireflective film of claim 26, wherein the nanoparticles comprise an oxide 156113.doc 201202740 knot. 28. The matte film of claim 26 to 27, wherein the nanoparticles are surface modified with a compound comprising a few acid end groups. 29. The antireflection film of claim 26, wherein the compound comprises a vinegar repeating unit or at least one (: 6-(: 16 ester unit. 30. The antireflective film of claim 29, wherein the surface treating agent comprises the following The reaction product of the substance: i) at least one aliphatic acid anhydride, and ii) at least one hydroxypolycaprolactone (meth) acrylate. 31. The antireflective film of claim 29 or 30, wherein the nanoparticles are surface modified by a reaction of an aliphatic acid anhydride with a hydroxy CrC8 alkyl (meth)acrylate. The antireflection film of claim 25, wherein the polymerizable resin composition comprises one or more aromatic di(meth)propionate monomers in an amount ranging from about 10 to about 20% by weight. 33. The antireflective film of claim 25, wherein the polymerizable resin composition comprises from about 5 to about 15% by weight of a crosslinking agent comprising at least three (meth) acrylate groups. 34. The antireflective film of claim 25, wherein the polymerizable resin composition comprises up to about 10% by weight of an aromatic mono(indenyl) acrylate monomer. The antireflection film of any one of claims 1 to 5 and 21 to 23, wherein the low refractive index layer comprises a radical polymerizable fluorinated polymer. 36. The antireflective film of claim 35, wherein the radical polymerizable fluorinated polymer comprises a polymer species having a high branched structure. The antireflection film of claim 36, wherein the radical polymerizable fluorinated polymer comprises a reaction product of: i) at least one polyfunctional free having a fluorine content of at least 25% by weight a base polymerizable substance, and H) optionally at least one polyvalent monthly b-radical polymerizable substance having a fluorine content in the range of 0 to less than 25% by weight, wherein the total content of the polyfunctional substance accounts for the polymerizable The solid weight of the organic composition. /. At least about 25 wt%. 38. The antireflective film of claim 35, wherein the radical polymerizable fluorinated polymer comprises at least two constituent monomers selected from the group consisting of TFE, VDF, and HFP, and having at least one functional element-containing curing site A reactive functional group of a monomer. 39. The antireflective film of claim 35, wherein the low refractive index layer comprises at least one fluorinated free radical polymerizable monomer having a fluorine content of at least about 25% by weight. 40. The antireflective film of claim 35 wherein the low refractive index layer additionally comprises an amino decane coupling agent. 41. The antireflective film of claim 35, wherein the low refractive index layer additionally comprises fumed vermiculite. 42. A high refractive index polymerizable resin composition comprising: 40% by weight to 70% by weight of a surface-modified oxidation of a compound containing a carboxylic acid end group and a c3_C8 ester repeating unit or at least one Ce-Cw ester unit鍅 Nanoparticles; containing from about 10 to about 20% by weight of one or more aromatic di(meth)acrylic acid vinegar monomers; from 1% by weight to 15% by weight of at least three (fluorenyl) acrylic acid a crosslinker of ester group 156113.doc 201202740; and up to 5% by weight of an aromatic mono(meth)acrylate monomer. 43. The high refractive index polymerizable resin composition of claim 42, wherein the aromatic mono(indenyl) acrylate single system biphenyl monomer. 44. A low refractive index polymerizable composition, comprising: a first radical polymerizable fluorinated polymer comprising a polymer species having a high branched chain structure; and a second radical polymerizable fluorinated polymer, It comprises at least two constituent monomers selected from the group consisting of Tfe, VDF, and HFP, and has a reactive functional group derived from at least one of the functional group-containing curing site monomers. 45. The low refractive index polymerizable composition of claim 44, wherein the first free radical polymerizable fluorinated polymer comprises a reaction product of a rhodium fluoride content of at least 25 weight percent. /. At least one polyfunctional radical polymerizable substance, and 11) optionally at least one polyfunctional radical polymerizable substance having a fluorine content in the range of 〇 to less than 25% by weight, wherein the total content of the polyfunctional substance It is at least about 25% by weight of the solids by weight of the polymerizable organic composition. The low refractive index polymerizable composition of any one of claims 44 to 45, wherein the low refractive index layer additionally comprises at least one fluorinated free radical polymerizable monomer having a fluorine content of at least about 25% by weight. The low refractive index polymerizable composition according to any one of claims 44 to 45, wherein the low refractive index layer additionally comprises an amine based lanthanum coupling agent. The low refractive index polymerizable composition according to any one of claims 44 to 45, wherein the low refractive index layer additionally comprises a surface modified stone. 156113.doc
TW100116059A 2010-05-07 2011-05-06 Antireflective films comprising microstructured surface TWI533016B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33223110P 2010-05-07 2010-05-07

Publications (2)

Publication Number Publication Date
TW201202740A true TW201202740A (en) 2012-01-16
TWI533016B TWI533016B (en) 2016-05-11

Family

ID=46756214

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116059A TWI533016B (en) 2010-05-07 2011-05-06 Antireflective films comprising microstructured surface

Country Status (1)

Country Link
TW (1) TWI533016B (en)

Also Published As

Publication number Publication date
TWI533016B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6100684B2 (en) Anti-reflective film with microstructured surface
TWI500971B (en) Antiglare films comprising microstructured surface
TWI432327B (en) Flexible high refractive index hardcoat
TWI393632B (en) Durable antireflective film
KR101455580B1 (en) Fluoro(meth)acrylate Polymer Composition Suitable for Low Index Layer of Antireflective Film
KR101247058B1 (en) Low Refractive Index Fluoropolymer Compositions Having Improved Coating and Durability Properties
TWI377235B (en) Stain repellent optical hard coating
TW200804430A (en) Low refractive index composition comprising fluoropolyether urethane compound
TWI379872B (en) Coating composition for forming low-refractive-index layer, antireflective film using the same, and image display device comprising the antireflective film
US20150011668A1 (en) Nanostructured materials and methods of making the same
JP2014501946A (en) Microstructured articles and methods comprising nanostructures
TW200806473A (en) Low refractive index composition comprising fluoropolyether urethane compound
WO2014188831A1 (en) Ultraviolet shielding film
JP2009515218A (en) Optical film with high refractive index and antireflection coating
TW201202740A (en) Antireflective films comprising microstructured surface
TW201640151A (en) Microstructured optical film comprising low refractive index layer disposed on base film substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees