201202717 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種電磁波檢測裝置,尤其涉及一種基於奈 米碳管之電磁波檢測裝置。 【先前技術】 [0002] 在先前技術中,用於檢測電磁波某一偏振方向之強度之 檢測裝置通常包括一偏振片及一設置在偏振片之後之光 敏介質。該偏振片由一組平行且間隔設置之絲線結構組 成。其具體之檢測過程為,當電磁波入射到所述偏振片 時,振動方向平行於絲線結構之電磁波被該偏振片吸收 ,而振動方向垂直於該絲線結構之電磁波則會通過該偏 振片並照射到所述光敏介質,所述光敏介質經該偏振電 磁波照射之後,其電阻將發生變化,通過檢測該電阻之 變化值即可檢測出所述偏振電磁波之強度。 [0003] 請參見 “Review of passive imaging po 1 ar i me try for remote sensing applications” , Applied optics, J.Scott Tyo et al, Vol. 45, No.22, P(5453-5469), 2006。為實現同時檢測電磁波兩個不 同偏振方向之強度,該文獻揭示一電磁波檢測裝置,其 包括並排之設置在同一平面内之兩個偏振片,以及分別 設置在該兩個偏振片後之兩個光敏介質,該兩個偏振片 中之絲線結構相互垂直。在檢測之過程中,採用兩束相 同之電磁波分別照射該兩個偏振片,由於該兩個偏振片 之絲線結構排列方向不同,故通過該兩個偏振片之電磁 波之偏振方向也不同,當該兩束具有不同偏振方向之電 099122577 表單編號A0101 第4頁/共36頁 0992039776-0 201202717 磁波分別照射到與其相對之光敏介質之後,該兩個光敏 介質之電阻發生改變,通過檢測該兩個光敏介質之電阻 變化值即可同時獲得上述電磁波兩個不同偏振方向之強 度。 [0004] Ο [0005] [0006] ❹ [0007] 099122577 然,上述電磁波檢測裝置為能測得入射電磁波兩個偏振 方向之強度需要兩個光敏介質,增加了製造成本和體積 ,且測試時需要兩束電磁波,限制了其在實踐中之廣泛 應用。 【發明内容】 有鑒於此,提供一種具有較小之體積且成本較低,可同 時檢測同一束電磁波兩個偏振方向之強度之電磁波檢測 裝置實為必要。 一種電磁波檢測裝置,其包括至少一個電磁波檢測單元 ,其中,每個電磁波檢測單元包括:一第一奈米碳管結 構,該第一奈米碳管結構包括複數沿第一方向延伸之奈 米碳管;兩個第一電極相互間隔且分別與該第一奈米碳 管結構電連接;一第二奈米碳管結構,該第二奈米碳管 結構包括複數沿第二方向延伸之奈米碳管,該第二奈米 碳管結構與該第一奈米碳管結構相對且間隔設置,且該 第一方向與第二方向垂直;及兩個第二電極相互間隔且 分別與該第二奈米碳管結構電連接。 一種電磁波檢測裝置,其包括:複數按行及列排布之電 磁波檢測單元,其中,該每個電磁波檢測單元包括:一 第一奈米碳管結構,該第一奈米碳管結構包括複數沿第 一方向延伸之奈米碳管;兩個第一電極相互間隔且分別 表單編號Α0101 第5頁/共36頁 0992039776-0 201202717 與該第一奈米碳管結構電連接;一第二奈米碳管結構, 該第二奈米碳管結構包括複數沿第二方向延伸之奈米碳 管,該第二奈米碳管結構與該第一奈米碳管結構相對且 間隔設置,且該第一方向與第二方向垂直;及兩個第二 電極相互間隔且分別與該第二奈米碳管結構電連接;複 數相互平行且間隔設置之第一導電條,該第一導竜條包 括兩個相互平行且間隔設置之第一導電線,該一第一導 電線與一行之每個電磁波檢測單元之一第一電極電連接 ,該另一第一導電線與另一行之每個電磁波檢測單元之 一第二電極電連接;以及複數相互平行且間隔設置之第 二導電條,該第二導電條包括兩個相互平行且間隔設置 之第二導電線,該一第二導電線與一列之每個電磁波檢 測單元之另一第一電極電連接,該另一第二導電線與另 一列之複數電磁波檢測單元之另一第二電極電連接。 [0008] 相較於先前技術,本發明提供之電磁波檢測裝置中相對 設置之第一奈米碳管結構和第二奈米碳管結構分別包括 複數沿同一方向延伸之奈米碳管,且該第二奈米碳管結 構包括之複數奈米碳管與第一奈米碳管結構中包括之複 數奈米碳管相互垂直,故該第一奈米碳管結構和第二奈 米碳管結構即可使入射電磁波發生偏振,還可同時分別 通過自身電阻之變化檢測被吸收之具有一定偏振方向之 電磁波之強度,即無需額外之光敏元件,體積較小且成 本較低。 【實施方式】 [0009] 以下將結合附圖詳細說明本發明實施例之電磁波檢測裝 099122577 表單編號A0101 第6頁/共36頁 0992039776-0 201202717 置。 [0010]請參閱圖1,本發明第一實施例提供一種電磁波檢測裝置 〇 10 ’其包括:一第一奈米碳管結構12,一第二奈米碳管 結構14,兩個第一電極16,及兩個第二電極18。該第一 奈米碳管結構12和第二奈米碳管結構14相對且間隔設置 ’所述第—奈米碳管結構12包括複數沿第一方向延伸之 奈来碳管’所述第二奈米碳管結構14包括複數沿第二方 向延伸之奈米碳管,且該第一方向基本垂直於該第二方 向。该兩個第一電極16相互間隔且分別與該第一奈米碳 管結構12電連接’從—個第一電極16至另一個第一電極 16之方向為該第一方向。該兩個第二電極18相互間隔且 G 分别與該第二奈米碳管結構12電連接.,從一個第二電極 18至另一個第二電極18之方向為該第二方向。所述電磁 波檢測裝置1〇在使料,待測之電磁波之人射方向優選 為垂直於該第-奈米碳管結構12和第二奈米碳管結構Η 所在之平面,該第_奈米碳管結構12和第二奈米碳管結 構14設置在該電财㈣财線上,該㈣電磁波依次 入射至4第奈米碳官結構12及第二奈米碳管結構Η。 [0011] 所謂沿同—方向(第-方向或第二方向)延伸係指多數 不米峻管之延伸方向基本平行於該方向,如基本沿該方 向擇優取向延伸。所謂擇優取向係指大多數奈米碳管之 整體延伸方向基本為該方向。而且,所述大多數奈米碳 管之整體延伸方向基本平行於該奈米碳管結構之表面。 當然,所述第-、第二奈米碳管結構Μ,中存在少數 隨機排列之奈米碳管,這些奈米碳管不會對第―、第二 099122577 表單編號A0101 第7頁/共36頁 0992039776-0 201202717 奈米碳管結構12、14中大多數奈米碳管之整體取向排列 構成明顯影響。所述奈米碳管包括單壁奈米碳管、雙壁 奈米碳管及多壁奈米碳管中之一種或多種。所述單壁奈 米碳管之直徑為0. 5奈米〜10奈米,雙壁奈米碳管之直徑 為1.0奈米〜15奈米,多壁奈米碳管之直徑為1.5奈米~50 奈米。 [0012] 具體地,所述第一、第二奈米碳管結構12、14之整體形 狀為片狀,可包括至少一奈米碳管膜、至少一奈米碳管 線狀結構或其組合。 [0013] 所述奈米碳管膜包括奈米碳管拉膜、帶狀奈米碳管膜或 長奈米碳管膜。 [0014] 所述奈米碳管拉膜通過拉取一奈米碳管陣列直接獲得, 優選為通過拉取一超順排奈米碳管陣列直接獲得。該奈 米碳管拉膜中之奈米碳管首尾相連地沿同一個方向擇優 取向延伸,且為一自支撐結構,所述自支撐為奈米碳管 拉膜不需要大面積之載體支撐,而只要相對兩邊提供支 撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米 碳管拉膜置於(或固定於)間隔一定距離設置之兩個支 撐體上時,位於兩個支撐體之間之奈米碳管拉膜能夠懸 空保持自身膜狀狀態。所述自支撐主要通過奈米碳管拉 膜中存在連續之通過凡得瓦力(van der Waals at-tractive force )首尾相連排列之奈米碳管而實現。 請參閱圖2及圖3,具體地,每一奈米碳管拉膜包括複數 連續且定向排列之奈米碳管片段143,該複數奈米碳管片 段143通過凡得瓦力首尾相連,每一奈米碳管片段143包 099122577 表單編號A0101 第8頁/共36頁 0992039776-0 201202717 [0015] Ο ο [0016] 099122577 括複數大致相互平行之奈米碳管145,該複數相互平行之 奈米%I官145通過凡得瓦力緊密結合。該奈米碳管片段 143具有任意之寬度、厚度、均勻性及形狀。所述奈米碳 管拉膜之厚度為0. 5奈米〜1〇〇微米。所述奈米碳管拉膜結 構及其制備方法請參見馮辰等人於2〇〇8年8月16日公開之 第200833862號台灣公開專利申請。 所述帶狀奈米碳管骐為通過將一狹長之奈米碳管陣列沿 垂直於奈米碳管陣列長度方向傾倒在一基底表面而獲得 。該帶狀奈米碳管膜包括複數擇優取向延伸之奈米碳管 。所述複數奈米碳管之間基本互相平行並排排列,且通 過凡得瓦力繁密結合,該複數奈米碳管具有大致相等之 長度,且其長度可達到毫米量級。所述帶狀奈卡碳管膜 之寬度與奈米碳管之長度相等,故該帶惠奈米碳管陣列 中至少有-個奈米碳管從帶狀奈米碳管膜之—端延伸至 另一端’從而跨越整個帶狀奈米碳管膜。帶狀奈米碳管 膜之寬度受奈米碳管之長度糊,優選地,該奈米碳管 之1度為1毫米〜1〇棄_。所述帶狀奈米碳管膜之結構及 其製備方法請參見姜開利等人於2〇〇8年6月13曰申請之第 971 22118號台灣專利申請。 所=長奈来碳管膜為通過放風箏法獲得,具體為,使奈 未奴督沿著碳源氣體之氣流方向生長,當停止通入碳源 氣^後’該沿氣流方向形成之超長奈米碳管將平行且 太:也彳貝倒至-接文基底上構成_長奈米碳管膜。該長 奈管m包純數平倾奈米碳管絲面之超長奈米 碳f ’且該複數奈米碳管彼此基本平行排列。所述複數 表單編Sfe A0101 第9頁/共36頁 0992039776-0 201202717 奈米碳管之長度可大於ίο厘米。所述奈米碳管膜中相鄰 兩個超長奈米碳管之間之距離小於5微米。所述長奈米碳 管膜之結構及其製備方法請參見王雪深等人於2008年2月 29曰申請之第971 07078號台灣專利申請。 [0017] 上述奈米碳管拉膜、帶狀奈米碳管膜或長奈米碳管膜為 複數時,可共面且無間隙鋪設或/和層疊鋪設,從而製備 不同面積與厚度之第一、第二奈米碳管結構12、14。在 由複數共面且無間隙鋪設和/或相互層疊之奈米碳管膜組 成之奈米碳管結構中,相鄰兩個奈米碳管膜中之奈米碳 管之延伸方向相同。 [0018] 所述奈米碳管線狀結構包括至少一奈米碳管線。當該奈 米碳管線狀結構包括複數奈米碳管線時,該複數奈米碳 管線可相互平行組成束狀結構或相互扭轉組成絞線結構 。該奈米碳管線可以為非扭轉之奈米碳管線或扭轉之奈 米碳管線。所述奈米碳管線狀結構可為單根或多根。請 參閱圖4,當為單根時,該單根奈米碳管線狀結構可在一 平面内有序彎折成一膜狀結構,且除彎折部分之外,該 奈米碳管線狀結構其他部分可看作並排且相互平行排列 ;請參閱圖5,當為多根時,該多根奈米碳管線狀結構可 共面且沿一個方向平行排列或堆疊且沿一個方向平行排 列設置。 [0019] 所述非扭轉之奈米碳管線包括複數沿該非扭轉之奈米碳 管線長度方向排列之奈米碳管。具體地,該非扭轉之奈 米碳管線包括複數奈米碳管片段,該複數奈米碳管片段 通過凡得瓦力首尾相連,每一奈米碳管片段包括複數相 099122577 表單編號A0101 第10頁/共36頁 0992039776-0 201202717 該 Ο [0020] ❹ =平行並通過凡得瓦力緊密結合之奈米碳管。該奈 Β片段具有任意之長度、厚度、均勻性及形狀。該非扭 轉之奈米碳管線長度不限,直徑狀5奈米⑽微米。 非^轉之奈米碳管線為將奈米碳管拉_過有機溶劑處 ^传到m將有機_浸賴述奈米碳管拉膜之 整個表面’在揮發性有機溶劑揮發時產生之表面張力之 作用下’奈米碳管拉财之相互平行之複數奈米碳管通 過凡得瓦力緊密結合,從而使奈米碳管軸收縮為_非 扭轉之奈米碳n該有機溶劑為揮發,时機溶劑,如 醇甲%、丙酮、二氣乙院或氯仿,本實施例中採用 乙醇°通過有機溶财理之鉢轉奈μ管線與未經有 機〜】處理之奈米碳管膜相比’比表面積減小,枯性降 所述扭轉之奈米碳管線包括複數賴_轉之奈米碳管線 轴向螺旋排列並沿線之—端向另__端延伸之奈米碳管。 具體地,該扭轉之奈米碳管線包括複數奈切管片段, β亥複數奈米錢片段通過凡得瓦力首尾相連,每一奈米 碳官片段包括複數相互平行並通軌得瓦力緊密結合之 奈求碳管。該奈米碳管片段具有任意之長度、厚度、均 =生及形狀。該_之奈米碳管線長度*限,直徑為〇. & 奈米:1〇〇微米。所述扭轉之奈米碳管線為採用一機械力 述不米碳官拉膜兩端沿相反方向扭轉獲得。進—步 地’可採用-揮發性有機溶劑處理該扭轉之奈米碳管線 。在揮發性有機溶劑揮發時產生之表面張力之作用下, 處理後之扭轉之奈米碳管線中相鄰之奈米碳管通過凡得 099122577 表單編Sfe Α0101 第Π頁/共36頁 0992039776-0 201202717 瓦力緊密結合,使扭轉之奈米碳管線之比表面積減小, 密度及強度增大。 [0021] 所述奈米碳管線狀結構及其製備方法請參見姜開利等人 於2008年11月21日公告之第1303239號台灣公告專利, 及於2007年7月1日公開之第200724486號台灣公開專利 申請。 [0022] 該奈米碳管線狀結構具有較大之強度,從而提高了該電 磁波檢測裝置1 0之使用壽命和穩定性。 [0023] 若所述第一、第二奈米碳管結構12、14為奈米碳管膜或 奈米碳管線狀結構之組合時,所述奈米碳管膜中奈米碳 管與奈米碳管線狀結構沿相同方向延伸。 [0024] 可以理解,上述奈米碳管結構均包括複數基本沿相同方 向平行延伸之奈米碳管、至少一個奈米碳管線狀結構或 其組合。該奈米碳管結構不限於上述列舉之各種形式之 純之奈米碳管膜及奈米碳管線狀結構,只要奈米碳管結 構包括之奈米碳管基本沿同一方向延伸,均在本發明保 護之範圍内。如,該奈米碳管結構還可為含有其他複合 材料之奈米碳管複合膜及奈米碳管複合線狀結構,其中 所述複合材料為透光性有機聚合物,該有機聚合物可為 聚甲基丙烯酸甲酯、聚碳酸酯、聚丙烯酸乙酯或聚丙烯 酸丁酯等。 [0025] 由於奈米碳管對電磁波之吸收接近絕對黑體,從而使奈 米碳管對於各種波長之電磁波具有均一之吸收特性,即 該奈米碳管結構可測量紅外線、可見光、紫外線等不同 099122577 表單編號A0101 第12頁/共36頁 0992039776-0 201202717 波長範圍之電磁波。進一步地,奈米碳管在吸收了如鐳 射等電磁波之能量後溫度上升,從而使奈米碳管結構之 電阻也相應發生了變化,該奈米碳管結構可以檢測從微 瓦到千瓦之電磁波強度範圍。另,由於奈米碳管具有較 小之熱容和較大之散熱面積,故,其對電磁波之回應速 度也較快。故,該奈米碳管結構可用於檢測電磁波之強 度變化。 [0026] ❹201202717 VI. Description of the Invention: [Technical Field] The present invention relates to an electromagnetic wave detecting device, and more particularly to an electromagnetic wave detecting device based on a carbon nanotube. [Prior Art] [0002] In the prior art, a detecting device for detecting the intensity of a certain polarization direction of an electromagnetic wave generally includes a polarizing plate and a photosensitive medium disposed behind the polarizing plate. The polarizer consists of a set of parallel and spaced wire structures. The specific detection process is that when electromagnetic waves are incident on the polarizing plate, electromagnetic waves whose vibration direction is parallel to the wire structure are absorbed by the polarizing plate, and electromagnetic waves whose vibration direction is perpendicular to the wire structure pass through the polarizing plate and are irradiated thereto. In the photosensitive medium, after the photosensitive medium is irradiated by the polarized electromagnetic wave, its resistance changes, and the intensity of the polarized electromagnetic wave can be detected by detecting the change value of the resistance. [0003] See "Review of passive imaging po 1 ar i me try for remote sensing applications", Applied optics, J. Scott Tyo et al, Vol. 45, No. 22, P (5453-5469), 2006. In order to simultaneously detect the intensity of two different polarization directions of electromagnetic waves, the document discloses an electromagnetic wave detecting device comprising two polarizing plates arranged side by side in the same plane, and two photosensitive cells respectively disposed behind the two polarizing plates. In the medium, the wire structures in the two polarizing plates are perpendicular to each other. In the process of detecting, the two polarizing plates are respectively irradiated by two identical electromagnetic waves, and since the two linear polarizing plates are arranged in different directions, the polarization directions of the electromagnetic waves passing through the two polarizing plates are also different. Two beams of different polarization directions 099122577 Form No. A0101 Page 4 / Total 36 pages 0992039776-0 201202717 After the magnetic waves are respectively irradiated to the photosensitive medium opposite thereto, the resistance of the two photosensitive media changes, by detecting the two photosensitivity The resistance change value of the medium can simultaneously obtain the intensity of two different polarization directions of the electromagnetic wave. [0004] 0007 [0007] 099122577 However, the electromagnetic wave detecting device described above requires two photosensitive media to measure the intensity of two polarization directions of incident electromagnetic waves, which increases manufacturing cost and volume, and requires testing. Two electromagnetic waves limit its wide application in practice. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an electromagnetic wave detecting device which has a small volume and is low in cost and can simultaneously detect the intensity of two polarization directions of the same electromagnetic wave. An electromagnetic wave detecting device comprising at least one electromagnetic wave detecting unit, wherein each electromagnetic wave detecting unit comprises: a first carbon nanotube structure, the first carbon nanotube structure comprising a plurality of nanocarbons extending in a first direction a tube; the two first electrodes are spaced apart from each other and electrically connected to the first carbon nanotube structure; a second carbon nanotube structure, the second carbon nanotube structure includes a plurality of nanometers extending in the second direction a carbon tube, the second carbon nanotube structure is opposite to and spaced apart from the first carbon nanotube structure, and the first direction is perpendicular to the second direction; and the two second electrodes are spaced apart from each other and the second The carbon nanotube structure is electrically connected. An electromagnetic wave detecting device comprising: a plurality of electromagnetic wave detecting units arranged in rows and columns, wherein each electromagnetic wave detecting unit comprises: a first carbon nanotube structure, the first carbon nanotube structure including a plurality of edges a carbon nanotube extending in a first direction; the two first electrodes are spaced apart from each other and form number Α0101, page 5 / total 36 pages 0992039776-0 201202717 electrically connected to the first carbon nanotube structure; a second nanometer a carbon nanotube structure, the second carbon nanotube structure includes a plurality of carbon nanotubes extending in a second direction, the second carbon nanotube structure is opposite to and spaced apart from the first carbon nanotube structure, and the first One direction is perpendicular to the second direction; and the two second electrodes are spaced apart from each other and electrically connected to the second carbon nanotube structure respectively; the plurality of first conductive strips are parallel and spaced apart from each other, and the first guiding strip comprises two a first conductive line disposed parallel to and spaced apart from each other, the first conductive line being electrically connected to one of the first electrodes of each of the electromagnetic wave detecting units, and the electromagnetic wave detecting of the other first conductive line and the other line One of the second electrodes is electrically connected; and a plurality of second conductive strips that are parallel and spaced apart from each other, the second conductive strip includes two second conductive lines that are parallel and spaced apart from each other, the second conductive line and a column The other first electrode of each electromagnetic wave detecting unit is electrically connected, and the other second conductive line is electrically connected to the other second electrode of the complex electromagnetic wave detecting unit of the other column. [0008] Compared with the prior art, the first carbon nanotube structure and the second carbon nanotube structure disposed opposite to each other in the electromagnetic wave detecting device provided by the present invention respectively include a plurality of carbon nanotubes extending in the same direction, and the The second carbon nanotube structure includes a plurality of carbon nanotubes perpendicular to the plurality of carbon nanotubes included in the first carbon nanotube structure, so the first carbon nanotube structure and the second carbon nanotube structure The incident electromagnetic wave can be polarized, and the intensity of the absorbed electromagnetic wave having a certain polarization direction can be detected by the change of its own resistance at the same time, that is, no additional photosensitive element is needed, and the volume is small and the cost is low. [Embodiment] Hereinafter, an electromagnetic wave detecting device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Form No. A0101 Page 6 of 36 0992039776-0 201202717. [0010] Referring to FIG. 1, a first embodiment of the present invention provides an electromagnetic wave detecting device 10' including a first carbon nanotube structure 12, a second carbon nanotube structure 14, and two first electrodes. 16, and two second electrodes 18. The first carbon nanotube structure 12 and the second carbon nanotube structure 14 are opposite and spaced apart. The first carbon nanotube structure 12 includes a plurality of carbon nanotubes extending in a first direction. The carbon nanotube structure 14 includes a plurality of carbon nanotubes extending in a second direction, and the first direction is substantially perpendicular to the second direction. The two first electrodes 16 are spaced apart from each other and are electrically connected to the first carbon nanotube structure 12, respectively. The direction from the first electrode 16 to the other first electrode 16 is the first direction. The two second electrodes 18 are spaced apart from each other and G is electrically connected to the second carbon nanotube structure 12, respectively, and the direction from one second electrode 18 to the other second electrode 18 is the second direction. The electromagnetic wave detecting device 1 is configured to make a direction in which the electromagnetic wave of the electromagnetic wave to be measured is perpendicular to a plane perpendicular to the first carbon nanotube structure 12 and the second carbon nanotube structure, the first nanometer. The carbon tube structure 12 and the second carbon nanotube structure 14 are disposed on the electricity (four) financial line, and the (four) electromagnetic waves are sequentially incident on the 4th carbon nanostructure and the second carbon nanotube structure. [0011] By extending in the same direction (first direction or second direction) is meant that the direction of extension of the majority of the tube is substantially parallel to the direction, such as extending substantially in a preferred orientation along the direction. The preferred orientation means that the overall direction of extension of most of the carbon nanotubes is substantially in this direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube structure. Of course, there are a few randomly arranged carbon nanotubes in the first and second carbon nanotube structures, and these carbon nanotubes do not number the first and second 099122577 forms A0101, page 7 of 36 Page 0992039776-0 201202717 The overall orientation of most of the carbon nanotubes in the carbon nanotube structures 12, 14 constitutes a significant influence. The carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, the diameter of the double-walled carbon nanotube is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon nanotube is 1.5 nm. ~50 nm. [0012] Specifically, the first and second carbon nanotube structures 12, 14 are in the form of a sheet, and may include at least one carbon nanotube film, at least one carbon nanotube wire structure, or a combination thereof. [0013] The carbon nanotube film comprises a carbon nanotube film, a ribbon carbon nanotube film or a long carbon nanotube film. [0014] The carbon nanotube film is directly obtained by drawing an array of carbon nanotubes, preferably directly by drawing a super-sequential carbon nanotube array. The carbon nanotubes in the carbon nanotube film are extended end to end in a preferred orientation in the same direction, and are a self-supporting structure, and the self-supporting carbon nanotube film does not require a large-area carrier support. As long as the support force is provided on both sides, the whole film can be suspended and maintained in a self-membrane state, that is, when the carbon nanotube film is placed (or fixed) on two supports arranged at a certain distance, it is located at two supports. The carbon nanotube film between the bodies can be suspended to maintain its own membranous state. The self-supporting is mainly achieved by the presence of a continuous carbon nanotube in the carbon nanotube film which is continuously connected by van der Waals at-tractive force. Referring to FIG. 2 and FIG. 3, specifically, each of the carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments 143, and the plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. A carbon nanotube segment 143 pack 099122577 Form No. A0101 Page 8 / Total 36 page 0992039776-0 201202717 [0015] ο ο [0016] 099122577 A plurality of carbon nanotubes 145 substantially parallel to each other, the plural parallel to each other M%I official 145 is closely integrated through Van der Waals. The carbon nanotube segment 143 has any width, thickness, uniformity, and shape. 5纳米〜1〇〇微米。 The thickness of the carbon nanotube film is 0. 5 nanometers ~ 1 〇〇 micron. For the structure of the carbon nanotube film and the preparation method thereof, please refer to Taiwan Patent Application No. 200833862, published by Feng Chen et al. on August 16, 2008. The ribbon-shaped carbon nanotubes are obtained by pouring an array of elongated carbon nanotubes perpendicular to the length of the nanotube array on a substrate surface. The ribbon-shaped carbon nanotube film comprises a plurality of preferentially oriented extended carbon nanotubes. The plurality of carbon nanotubes are arranged substantially parallel to each other in parallel, and are densely combined by van der Waals. The plurality of carbon nanotubes have substantially equal lengths and may be of the order of millimeters in length. The width of the strip-shaped nica carbon nanotube film is equal to the length of the carbon nanotube, so that at least one carbon nanotube in the array of the carbon nanotubes extends from the end of the strip-shaped carbon nanotube film To the other end' thus spans the entire strip of carbon nanotube film. The width of the ribbon-shaped carbon nanotube film is affected by the length of the carbon nanotubes. Preferably, the carbon nanotubes have a degree of 1 mm to 1 Å. For the structure of the ribbon-shaped carbon nanotube film and the preparation method thereof, refer to Taiwan Patent Application No. 971 22118, filed by Jiang Kaili et al., June 13, 2008. The Changnai carbon film is obtained by the kite-flying method. Specifically, the Naiwunu is growing along the direction of the gas flow of the carbon source gas. When the carbon source gas is stopped, the length of the airflow is formed. The carbon nanotubes will be parallel and too: also the mussels are poured onto the substrate to form a long carbon nanotube membrane. The long tube m is a super-long nano carbon f' of the pure number of flat-necked carbon nanotubes and the plurality of carbon tubes are arranged substantially parallel to each other. The plural form is compiled as Sfe A0101 Page 9 of 36 0992039776-0 201202717 The length of the carbon nanotubes can be greater than ίο cm. The distance between two adjacent ultra-long carbon nanotubes in the carbon nanotube film is less than 5 microns. For the structure of the long carbon nanotube film and the preparation method thereof, please refer to Taiwan Patent Application No. 971 07078 filed by Wang Xueshen et al., February 29, 2008. [0017] When the above-mentioned carbon nanotube film, ribbon carbon nanotube film or long carbon nanotube film is plural, it can be coplanar and without gap laying or/and lamination, thereby preparing different areas and thicknesses. 1. Second carbon nanotube structure 12, 14. In a nanocarbon tube structure composed of a plurality of carbon nanotube membranes which are coplanar and have no gaps and are stacked one on another, the carbon nanotubes in the adjacent two carbon nanotube membranes extend in the same direction. [0018] The nanocarbon line-like structure comprises at least one nano carbon line. When the nanocarbon line-like structure comprises a plurality of nanocarbon lines, the plurality of carbon nanotubes may be parallel to each other to form a bundle structure or twisted to each other to form a strand structure. The nanocarbon line can be a non-twisted nanocarbon line or a twisted carbon line. The nanocarbon line-like structure may be single or multiple. Referring to FIG. 4, when it is a single root, the single nanocarbon pipeline structure can be bent into a film structure in a plane, and the carbon carbon pipeline structure is other than the bent portion. The portions may be considered side by side and arranged in parallel with each other; referring to FIG. 5, when there are a plurality of roots, the plurality of nanocarbon line-like structures may be coplanar and arranged in parallel or stacked in one direction and arranged in parallel in one direction. [0019] The non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes aligned along the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, the plurality of carbon nanotube segments are connected end to end by van der Waals, and each carbon nanotube segment includes a plurality of phases 099122577 Form No. A0101 Page 10 / Total 36 pages 0992039776-0 201202717 The Ο [0020] ❹ = parallel and through the van der Waals tightly combined with the carbon nanotubes. The naphthalene fragment has any length, thickness, uniformity and shape. The length of the non-twisted nanocarbon line is not limited and is 5 nanometers (10) micrometers in diameter. The non-returned nanocarbon pipeline is used to transfer the carbon nanotubes to the surface of the organic solvent, and the surface of the organic membrane is exposed to volatile organic solvents. Under the action of tension, the carbon nanotubes of the carbon nanotubes are parallel to each other through the van der Waals force, so that the carbon nanotube shaft shrinks to _ non-twisted nano carbon n. The organic solvent is volatilized. , the timing solvent, such as alcohol A%, acetone, Erqiyiyuan or chloroform, in this embodiment, the use of ethanol ° through the organic solution of the 钵 奈 奈 μ 管线 line and the non-organic ~ treatment of the carbon nanotube film Compared to the 'reduced specific surface area, the torsion-reduced nanocarbon pipeline includes a plurality of carbon nanotubes that are axially spirally arranged and extend along the line-end to the other __ end. Specifically, the twisted nanocarbon pipeline includes a plurality of negative-cut tube segments, and the β-Hypernumene nano-money segments are connected end to end by van der Waals force, and each nano-carbon member segment includes a plurality of parallel and parallel rails. Look for the carbon tube. The carbon nanotube segments have any length, thickness, and are both raw and shaped. The length of the carbon nanotube is limited to a diameter of 〇. & nm: 1 〇〇 micron. The twisted nanocarbon pipeline is obtained by twisting the opposite ends of the two-dimensional carbon film by a mechanical force. The twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of volatile organic solvents, the adjacent carbon nanotubes in the twisted nanocarbon pipeline after treatment are passed through the form of 099122577. Sfe Α0101 Page / Total 36 pages 0992039776-0 201202717 The tight combination of the wattage reduces the specific surface area of the twisted nanocarbon pipeline and increases the density and strength. [0021] The nanocarbon line-like structure and its preparation method can be found in Taiwan Patent No. 1303239 announced by Jiang Kaili et al. on November 21, 2008, and Taiwan No. 200724486 published on July 1, 2007. Public patent application. [0022] The nanocarbon line-like structure has a large strength, thereby improving the service life and stability of the electromagnetic wave detecting device 10. [0023] if the first and second carbon nanotube structures 12, 14 are a combination of a carbon nanotube film or a nanocarbon line-like structure, the carbon nanotubes and the naphthalene in the carbon nanotube film The rice carbon line-like structure extends in the same direction. It will be understood that the above-described carbon nanotube structures each comprise a plurality of carbon nanotubes extending substantially in parallel in the same direction, at least one nanocarbon line-like structure or a combination thereof. The carbon nanotube structure is not limited to the various forms of the pure carbon nanotube film and the nanocarbon line-like structure listed above, as long as the carbon nanotube structure includes the carbon nanotubes extending substantially in the same direction, both of which are Within the scope of the invention protection. For example, the carbon nanotube structure may also be a carbon nanotube composite film and a carbon nanotube composite linear structure containing other composite materials, wherein the composite material is a light transmissive organic polymer, and the organic polymer may be It is polymethyl methacrylate, polycarbonate, polyethyl acrylate or polybutyl acrylate. [0025] Since the absorption of electromagnetic waves by the carbon nanotubes is close to an absolute black body, the carbon nanotubes have uniform absorption characteristics for electromagnetic waves of various wavelengths, that is, the carbon nanotube structure can measure different infrared rays, visible rays, ultraviolet rays, etc. 099122577 Form No. A0101 Page 12 of 36 0992039776-0 201202717 Electromagnetic waves in the wavelength range. Further, the carbon nanotubes absorb the energy of electromagnetic waves such as lasers, and the temperature rises accordingly, so that the resistance of the carbon nanotube structure changes accordingly. The carbon nanotube structure can detect electromagnetic waves from microwatts to kilowatts. Strength range. In addition, since the carbon nanotube has a small heat capacity and a large heat dissipation area, the response speed to the electromagnetic wave is also fast. Therefore, the carbon nanotube structure can be used to detect changes in the intensity of electromagnetic waves. [0026] ❹
另,由於所述第一、第二奈米碳管結構12、14包括之複 數奈米碳管、奈米碳管線狀結構或其組合均沿同一方向 平行排列,故,當一電磁波訊號首先入射至第一奈米碳 管結構12時,振動方向平行於奈米碳管長度方向(第一 方向)之電磁波訊號被吸收,垂直於奈米碳管長度方向 之電磁波訊號能透過該第一奈米碳管結構12,使原電磁 波訊號變為偏振方向垂直於第一方向之偏振電磁波訊號 。由於該第一奈米碳管結構12吸收了偏振方向平行於奈 米碳管長度方向之部分電磁波,故該第一奈米碳管結構 12之溫度上升,且電阻發生相應改變。之後,該偏振方 向垂直於第一方向之偏振電磁波訊號入射至第二奈米碳 管結構14。由於第二奈米碳管結構14中之複數奈米碳管 與第一奈米碳管結構12中之複數奈米碳管相互垂直設置 ,即第二奈米碳管結構14中之奈米碳管之長度方向(第 二方向)垂直於第一奈米碳管結構12中之奈米碳管之長 度方向(第一方向),故,該偏振方向垂直於第一方向 之偏振電磁波訊號被吸收,且第二奈米碳管結構12之溫 度升高,電阻也相應發生改變。可見,該第一奈米碳管 099122577 表單編號A0101 第13頁/共36頁 0992039776-0 201202717 結構12和第二奈米礙管結構14可分別吸收入射電磁波中 兩個偏振方向相互垂直之電磁波,且均會因吸收電磁波 而引起温度升高,並導致電阻之改變。該第一奈米碳管 結構12電阻之改變可被連接於第一電極16之第一訊號檢 測裝置19檢測。該第二奈米碳管結構14電阻之改變可被 連接於第二電極18之第二訊號檢測裝置21檢測。 [0027]請參閱圖6至圖8,其中,圖6中之R(300K)指該第一奈米 碳管結構12或第二奈米碳管結構14在溫度為300K時之電 阻’ R(T)指該第一奈米碳管結構12或第二奈米碳管結構 14在不同溫度τ時之電阻,圖7和賴8中之r 指笫一太 dark ^ 不 米碳官結構12或第二奈米碳管結構1 4未被電磁波照射時 之電阻,RIK指第一奈米碳管結構12或第二奈米碳管結構 14被電磁波照射時之電阻。從該圖6至圖8可以發現,該 電阻之變化規律具體為該第一、第二奈米碳管結構12、 14對電磁波之吸收越強烈,該第一、第二奈米碳管結構 . .· 12、14之溫度越高,其電阻越小;相反,該第一、第二 奈米碳管結構12、14對電磁漆之吸收越微弱,該第一、 第二奈米碳管結構12、14之溫度越低,其電阻越大。根 據該電阻變化規律,該第一、第二奈米碳管結構12、14 可以檢測電磁波之強度。可見,該第一、第二奈米碳管 結構12、14不僅可使入射電磁波發生偏振,還可以同時 通過自身電阻之變化檢測被吸收之具有一定偏振方向之 電磁波之強度,故,相比於傳統之電磁波檢測裝置,該 電磁波檢測裝置10無需額外之光敏元件,體積較小且成 本較低。 099122577 表單編號A0101 第14頁/共36頁 0992039776-0 201202717 [0028] 另’上述第一、第二奈米碳管結構12、14之厚度不宜太 〇 厚,太厚則使整個第一、第二奈米碳管結構12、14之單 位面積熱容增大,從而使該第一、第二奈米碳管結構12 、14相應於入射電磁波之照射而引起之電阻變化所需反 應時間較長’有可能降低該電磁波檢測裝置之靈敏度與 穩定性。另’該第一、第二奈米碳管結構12、14之厚度 越小’單位面積熱容越小,且整個電磁波檢測裝置1〇之 靈敏度越高。該第一、第二奈米碳管結構丨2、14之單位 面積熱容可小於2x1 0-4焦耳每平方厘米開爾文(j/cm2 · K),優選地,該單位面積熱容小於丨7χ1〇_6焦耳每平方 厘米開爾文。但若其厚度太薄則也會使該第一、第二奈 米碳管結構12、14之強度變差,在探測過程,中容易損壞 ,影響該電磁波檢測裝置1〇之使用壽命,優選地,所述 第一、第二奈米碳管結構12、14之厚度為〇. 5奈米“毫 米。本實施例令,所述第一、第二奈米碳管結構12、14 均由15層相互層疊之奈米碳管拉膜組成。 ❹ [0029] 所述兩個第-電極16和兩個第二電極18由導電材料形成 ’具體為,該第-電極16和第二電極18之材料 金屬、導電聚合物 '導電膠、金屬性奈米碳管、銦錫氧 化物等。該兩個第一電極16和兩個第二電極此具體形 狀結構不限,具體地’該第-電極16和第二電極18可選 擇為層狀、棒狀、塊狀或其⑽^本實施例中,所述 兩個第-電極16為相互平行且間隔地設置於所述第一奈 米碳管結構12之表面之塊狀銅電極,其中,所述第一奈 米碳管結構12中之奈米碳管沿-第-電極16向另一第一 099122577 表單編號A〇101 第15頁/共36頁 0992039776-0 201202717 電極16延伸。所述兩個第二電極丨8也為相互平行且間隔 地設置於所述第二奈米碳管結構14之表面之塊狀鋼電極 ,其中,所述第二奈米碳管結構14中之奈米碳管沿其中 一第二電極18向另一第二電極18延伸。由於奈米碳管具 有極大之比表面積,在凡得瓦力之作用下,該第一、第 二奈米碳管結構12、14本身有很好之枯附性,故所述兩 個第一電極16和兩個第二電極18可分別與所述第_奈米 碳管結構16和第二奈米碳管結構18之間直接枯附固定, 並形成很好之電接觸1,也可以採料魏結層分別 將所述兩個第-電極職錄第—奈米碳管結構12之表 面,將兩個第二電極18固定於第二奈米碳管結構14之表 面。 [0030] 此外,所述電磁波檢測裝置1〇進一步包括一用於支擇所 述第一奈米碳管結構12和第二奈米碳管結構14之支樓體 Η。該支撐體17之形狀不限,僅需使該第一、第二奈米 碳管結構12、14相互_並懸空設置_可。所述支擇體 17之材料為絕熱材料,如玻璃、陶瓷等。本實施例中, 該支撐體17由四個長方體形狀之陶瓷元件組成。其中兩 個陶究元件分別支擇所述第—奈米碳管結構12之兩端, 具體為使該第—奈米碳管結構12之兩端分別設置於該兩 個陶究元件之表面,即,該第_奈卡碳管結構12之兩端 分別通過所述第_電極16和喊元件夹持;另兩個陶究 元件分別支撐所述第二奈米碳管結構14之兩端,具體為 使該第—奈米兔官結構〗4兩端分別設置於該兩個陶究元 件之表面’即該第二奈米碳管結構14兩端分別通過所述 099122577 表單編號A0I01 苐〗6頁/共36頁 0992039776-0 201202717 第二電極18和陶瓷元件夾持。該兩對支撐體17具有不同 之高度,從而使第一、第二奈米碳管結構12,14相互間 隔。 [0031] Ο [0032] 進一步地,為了定量之測定電磁波兩個不同偏振方向之 強度,可設置一與所述兩個第一電極16電連接之第一訊 號測量裝置19 ;同時,可進一步設置一與所述兩個第二 電極18電連接之第二訊號測量裝置21。該第一訊號測量 裝置19和第一訊號測量裝置21可以為一電流測量裝置或 電壓測量裝置’本實施例中所述之第一訊號測量装置19 和第二訊號測量裝置21均為一電流測量裝置。 在應用中’採用所述電磁波檢測裝置1 Q:測量電磁波訊號 兩個不同偏振方向之強度之方法為:S1,測量所述第一 、第二奈米碳管結構12、14在未被電磁波照射時之電阻 值%31^ ; S2 ’在相同之條件下用複數強度已知且不同之 電磁波分別照射所述第一、第二奈米碳管結構12、14, Ο 同時測得用該具有不同強度之電磁波照射該第一、第二 奈米碳管結構12、14時,該第一、第二奈米碳管結構i2 、14之電阻變化率(Rdark_RiR)/Rdark ’其中%為該第 一、第二奈米碳管結構12、14被電磁波照射時之電阻值 ,從而擬合出一條第一、第二奈米碳管結構12、14之電 阻變化率與入射電磁波強度之間之關係曲線;S3,在該 相同之條件下用一待測之電磁波訊號照射該電磁波檢測 裝置10 ’用所述第一訊號測量裝置19和第二訊號測量裝 置21分別測出此時第一、第二奈米碳管結構12、14之電 阻變化率’根據上述已擬合出之第一、第二奈米碳管結 099122577 表單編號A0101 第17頁/共36頁 0992039776-0 201202717 構1 2、1 4之電阻變化率與入射電磁波強度之間之關係曲 '線即可推出該待測電磁波兩個不同偏振方向之強度。 [0033] [0034] 在上述步驟S1和S2中,由於本實施例所述第一奈米碳管 、σ構1 2和第一奈米碳管結構14相同,均由1 5層之奈米碳 管拉膜構成,故僅需擬合出一條奈米碳管結構之電阻變 化率(Rdark-RiK)/Rdark隨入射電磁波之強度變化關係曲 線即可。請參閱圖7,本實施例在真空和非真空環境下分 別擬合出了兩條奈米碳管結構之電阻變化率同入射電磁 波之強度之間之關係曲線。從圖中可以發現,在真空環 境下該第一、第二奈米碳營結構^、丨4對電磁波之响應 較在非真空環境下之响應更靈敏。 在上述S3步驟中,所述待測電磁波直接照射該第一奈米 碳官結構12,此時,該電磁波中偏振方向與該第一奈米 石反管結構12中之奈米碳管長度方向相同之電磁波被吸收 ,而電磁波中偏振方向與奈米碳管長度方向垂直之電磁 波則透過,因而,該第一奈米磲管結構12因吸收了部分 電磁波而發生電阻變化;另,沐述透過第一奈米碳管結 構12之電磁波則會照射到第二奈米碳管結構14上,由於 該第二奈米碳管結構14中之奈米碳管延伸方向與第一奈 米碳管結構14中奈米碳管之延伸方向相互垂直,故,入 射至其上之電磁波之偏振方向與該第二奈米碳管結構14 中之奈米奴官延伸方向相同,且被該第二奈米碳管結構 14吸收,從而引起該第二奈米碳管結構14之電阻也發生 變化。通過測量該第一奈米碳管結構12和第二奈米碳管 結構14之電阻變化率即可同時獲得該上述待測電磁波兩 099122577 表單編號A0101 第18頁/共36頁 0992039776-0 201202717 [0035] Ο ◎ [0036] [0037] 099122577 個不同偏振方向之強度。 β參閱圖9 ’本發明第二實施例提供一種電磁波檢測裝置 2〇 ’其包括複數按行和列排布之電磁波檢測單元2〇〇。該 母個電磁波檢測單元200包括一第一奈米碳管結構22,一 第二奈米碳管結構24,兩個第一電極26,及兩個第二電 極28。該第一奈米碳管結構22和第二奈米碳管結構24相 對並間隔設置,所述第一奈米碳管結構2 2包括複數沿第 一方向延伸之奈米碳管,所述第二奈米碳管結構24包括 複數沿第二方向延伸之奈米碳管,且該第一方向基本垂 直於該第二方向。,該兩個第一電極2 6相互間隔且分別與 該第一奈米碳管結構22電連接,從一儋第—電極26至另 一個第一電極26之方向為該第一方向。該兩個第二電極 2 8相互間且分別與該第· 一奈米碳管結構2 4電連接,從 一個第二電極28至另一個第二電極28之方向為該第二方 向。進一步地’該每個電磁波檢測單元22還可包括用於 支撐所述第一奈米碳管結構22和第二奈米碳管結構24之 支撐體27 〇 本實施例與第一實施例基本相同,其區別在於本實施例 之電磁波檢測裝置20為由複數陣列排布之電磁波檢測單 元200組成’且每個電磁波檢測單元200與上述第一實施 例之電磁波檢測裝置之結構相同。 該複數電磁波檢測單元200可以具有各自之第一方向及第 二方向’不同之電磁波檢測單元200之第一方向可以相同 或不同,只要使每個電磁波檢測單元200内部之第一方向 基本垂直於第二方向即可。即僅需使每個電磁波檢測單 表單編號A0101 第19頁/共36頁 0992039776-0 201202717 元200中之第-奈米碳管結構22中之複數奈米碳管延伸方 向基本垂直於第三奈米碳管結構22中之複數奈米碳管延 伸方向即可。當不同之電磁波檢測單元2〇〇中之複數第一 奈米碳管結構22中之奈米碳管延伸方向不同,且有一相 同之電磁波分別照射該複數電磁波檢測單元2〇〇時該複 數電磁波檢測單元200可同時檢測該電磁波複數不同偏振 方向之強度。其具體之檢測原理及檢測方法與第一實施 例相同,在此不再贅述。 [0038] 該複數電磁波檢測單元2〇〇中之複數第一電極26和複數第 二電極28禮置方翁限。本實施例中,該電磁波檢測 裝置20進一步包括複數第一導電條26〇和複數第二導電條 280,該每個第一導電條26〇包括兩彻相互平行且間隔設 置之第一導電線2600,該每個第二導電條28〇包括兩個相 互平行且間隔設置之第二導電線28〇〇。該複數第一導電 條260相互平行且間隔設置,該複數第二導電條28〇相互 平行且間隔設置,且該複數第一導電條26〇和複數第二導 ..:.. 電條2 8 0相互正交設置,從而形成複數按行和列排列之矩 形網格,且在該第一導電條260和第二導電條280相互交 叉之位置採用一絕緣片(圖未示)間隔,以避免該第一 導電條260和第二導電條280因電接觸而發生短路。所述 複數電磁波檢測單元2 0 0 — 一對應之設置在該複數網格中 ’從而形成陣列結構。該每個第一導電條260中之一第一 導電線2600與相鄰一行之每個電磁波檢測單元200之一第 一電極2 6電連接,該另一第一導電線2600與相鄰之另— 行之每個電磁波檢測單元2〇〇之一第二電極28電連接,同 099122577 表單編號A0101 第20頁/共36頁 0992039776-0 201202717 時’該每個第二導電條280中之一第二導電線2800與相鄰 一列之每個電磁波檢測單元2〇〇之另—第一嘗極26電連接 ’該另一第二導電線2800與相鄰之另一列之複數電磁波 檢測單元2〇〇之另一第二電極28電連接。可見’該每個電 磁波檢測單元2 00中之兩個第一電極26分別與一第一導電 線2600和一第二導電線2800電連接,兩個第二電極28分 別與另一第一導電線和另一第二導電線2800電連接。該 與第一電極26電連接之第一導電線2600和與第二電極28 電連接之第一導電線2600相鄰且通過該電磁波檢測單元 200間隔’該與第一電極26電連接之第二導電線2800和 與第二電極電連接之第二導電線2800相鄰:且通過該電磁 波檢測單元200間隔》該複數第一導電條260和複數第二 導電條280之設置目的為便於該複數電磁波檢測單元2〇〇 與外部控制電路電連接。 [0039] 由於該電磁波檢測裝置2 0包括複數陣列排布之電磁波檢 測單元2 0 〇,且每個電磁波檢測單元2 〇 〇中均包括兩個第 一、第二奈米碳管結構22、24,該第一、第二奈米碳管 結構2 2、2 4中之奈米碳管還可感測紅外線,故該電磁波 檢測裝置20還可用於紅外偏振成像。 [〇〇4〇] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 099122577 表單編號A0101 第21頁/共36頁 0992039776-0 201202717 [0041] 圖1為本發明第一實施例提供之電磁波檢測裝置結構示意 圖。* [0042] 圖2為本發明第一實施例提供之電磁波檢測裝置中奈米碳 管拉膜局部放大結構示意圖。 [0043] 圖3為本發明第一實施例提供之電磁波檢測裝置中奈米碳 管拉膜之掃描電鏡照片。 [0044] 圖4為本發明第一實施例提供之電磁波檢測裝置中之一個 奈米碳管線狀結構在一個平面内有序彎折之示意圖。 [0045] 圖5為本發明第一實施例提供之電磁波檢測裝置中之複數 奈米碳管線狀結構在一個平面内相互平行排列之示意圖 〇 [0046] 圖6為本發明第一實施例用具有不同強度之電磁波照射電 磁波檢測裝置中之奈米碳管結構時,奈米碳管結構之電 阻變化率隨溫度變化之曲線圖。 [0047] 圖7為本發明第一實施例提供之奈米碳管結構之電阻變化 率與入射電磁波之偏振方向和奈米碳管結構中奈米碳管 長度方向之間之夾角之關係。 [0048] 圖8為本發明第一實施例在真空和非真空環境下,用不同 強度之電磁波照射電磁波檢測裝置中之奈米碳管結構時 ,奈米碳管結構之電阻變化率隨溫度變化之曲線圖。 [0049] 圖9為本發明第二實施例提供之電磁波檢測裝置結構示意 圖。 【主要元件符號說明】 099122577 表單編號A0101 第22頁/共36頁 0992039776-0 201202717 [0050] 電磁波檢測裝置:10,20 [0051] 第一奈米碳管結構:12,22 [0052] 第二奈米碳管結構:14,24 [0053] 奈米碳管片段:143 [0054] 奈米碳管:145 [0055] 第一電極:16,26 [0056] 支撐體:17,27 〇 [0057] 第二電極:18 , 28 [0058] 第一訊號檢測裝置:19 [0059] 第二訊號檢測裝置:21 [0060] 電磁波檢測單元:20 0 [0061] 第一導電條:260 [0062] 第一導電線:2600 [0063] 第二導電條:280 [0064] 第二導電線:2800 099122577 表單編號A0101 第23頁/共36頁 0992039776-0In addition, since the first and second carbon nanotube structures 12, 14 include a plurality of carbon nanotubes, a nanocarbon line-like structure or a combination thereof are arranged in parallel in the same direction, when an electromagnetic wave signal is first incident When the first carbon nanotube structure 12 is reached, the electromagnetic wave signal whose vibration direction is parallel to the longitudinal direction of the carbon nanotube (the first direction) is absorbed, and the electromagnetic wave signal perpendicular to the length of the carbon nanotube can pass through the first nanometer. The carbon tube structure 12 changes the original electromagnetic wave signal into a polarized electromagnetic wave signal whose polarization direction is perpendicular to the first direction. Since the first carbon nanotube structure 12 absorbs a portion of the electromagnetic wave whose polarization direction is parallel to the length of the carbon nanotube, the temperature of the first carbon nanotube structure 12 rises and the resistance changes accordingly. Thereafter, the polarized electromagnetic wave signal whose polarization direction is perpendicular to the first direction is incident on the second carbon nanotube structure 14. Since the plurality of carbon nanotubes in the second carbon nanotube structure 14 and the plurality of carbon nanotubes in the first carbon nanotube structure 12 are disposed perpendicular to each other, that is, the nanocarbon in the second carbon nanotube structure 14 The length direction of the tube (the second direction) is perpendicular to the length direction (first direction) of the carbon nanotubes in the first carbon nanotube structure 12, so that the polarization electromagnetic wave signal whose polarization direction is perpendicular to the first direction is absorbed. And the temperature of the second carbon nanotube structure 12 rises, and the resistance changes accordingly. It can be seen that the first carbon nanotube 099122577 Form No. A0101 Page 13 / 36 pages 0992039776-0 201202717 Structure 12 and the second nano-barrier structure 14 can respectively absorb electromagnetic waves of two incident directions perpendicular to each other in the incident electromagnetic wave. Both of them cause an increase in temperature due to absorption of electromagnetic waves and cause a change in resistance. The change in resistance of the first carbon nanotube structure 12 can be detected by the first signal detecting means 19 connected to the first electrode 16. The change in resistance of the second carbon nanotube structure 14 can be detected by the second signal detecting means 21 connected to the second electrode 18. [0027] Please refer to FIG. 6 to FIG. 8 , wherein R (300K) in FIG. 6 refers to the resistance 'R of the first carbon nanotube structure 12 or the second carbon nanotube structure 14 at a temperature of 300K ( T) refers to the electrical resistance of the first carbon nanotube structure 12 or the second carbon nanotube structure 14 at different temperatures τ, and r in Figure 7 and Lai 8 refers to a too dark ^ not carbon carbon structure 12 or The resistance of the second carbon nanotube structure 14 when it is not irradiated with electromagnetic waves, and RIK refers to the resistance of the first carbon nanotube structure 12 or the second carbon nanotube structure 14 when it is irradiated with electromagnetic waves. It can be seen from FIG. 6 to FIG. 8 that the change rule of the electric resistance is specifically that the first and second carbon nanotube structures 12 and 14 absorb the electromagnetic waves more strongly, and the first and second carbon nanotube structures are. The higher the temperature of 12, 14, the smaller the resistance; on the contrary, the weaker the absorption of the first and second carbon nanotube structures 12, 14 on the electromagnetic paint, the first and second carbon nanotube structures The lower the temperature of 12 and 14, the greater the resistance. According to the law of resistance change, the first and second carbon nanotube structures 12, 14 can detect the intensity of electromagnetic waves. It can be seen that the first and second carbon nanotube structures 12 and 14 can not only polarize the incident electromagnetic wave, but also detect the intensity of the electromagnetic wave having a certain polarization direction absorbed by the change of the self-resistance, so compared with The conventional electromagnetic wave detecting device 10 does not require an additional photosensitive member, and is small in size and low in cost. 099122577 Form No. A0101 Page 14/36 Page 0992039776-0 201202717 [0028] In addition, the thickness of the first and second carbon nanotube structures 12 and 14 should not be too thick, too thick to make the whole first and the first The heat capacity per unit area of the two carbon nanotube structures 12 and 14 is increased, so that the first and second carbon nanotube structures 12 and 14 have a longer reaction time corresponding to the resistance change caused by the incident electromagnetic wave irradiation. 'It is possible to reduce the sensitivity and stability of the electromagnetic wave detecting device. Further, the smaller the thickness of the first and second carbon nanotube structures 12, 14 is, the smaller the heat capacity per unit area is, and the higher the sensitivity of the entire electromagnetic wave detecting device 1 is. The heat capacity per unit area of the first and second carbon nanotube structures 丨2, 14 may be less than 2x1 0-4 joules per square centimeter Kelvin (j/cm2 · K), preferably, the heat capacity per unit area is less than 丨7χ1 〇 _6 joules per square centimeter Kelvin. However, if the thickness is too thin, the strength of the first and second carbon nanotube structures 12, 14 may be deteriorated, which may be easily damaged during the detecting process, affecting the service life of the electromagnetic wave detecting device 1 , preferably The thickness of the first and second carbon nanotube structures 12, 14 is 奈. 5 nm "mm. In this embodiment, the first and second carbon nanotube structures 12, 14 are each 15 The layers are composed of a carbon nanotube film laminated on each other. [0029] The two first electrode 16 and the two second electrodes 18 are formed of a conductive material, specifically, the first electrode 16 and the second electrode 18 a material metal, a conductive polymer 'conductive paste, a metallic carbon nanotube, an indium tin oxide, etc. The two first electrodes 16 and the two second electrodes are not limited in specific shape, specifically, the first electrode 16 and the second electrode 18 may be selected as a layer, a rod, a block or (10) in the embodiment, the two first electrodes 16 are disposed parallel to each other and spaced apart from each other on the first carbon nanotube a bulk copper electrode on the surface of the structure 12, wherein the carbon nanotubes in the first carbon nanotube structure 12 are along the -first The pole 16 extends to the other first 099122577 form number A 〇 101 page 15 / 36 pages 0992039776-0 201202717. The two second electrode 丨 8 are also disposed parallel to each other and spaced apart from the second a bulk steel electrode on the surface of the carbon nanotube structure 14, wherein the carbon nanotubes in the second carbon nanotube structure 14 extend along one of the second electrodes 18 toward the other second electrode 18. The carbon nanotubes have a very large specific surface area. Under the action of van der Waals, the first and second carbon nanotube structures 12, 14 themselves have good adhesion, so the two first electrodes 16 And the two second electrodes 18 can be directly adhered to and fixed between the first carbon nanotube structure 16 and the second carbon nanotube structure 18, and form a good electrical contact, and can also be used for mining. The junction layer respectively fixes the surfaces of the two first electrode-first carbon nanotube structures 12 to fix the two second electrodes 18 to the surface of the second carbon nanotube structure 14. [0030] The electromagnetic wave detecting device 1 further includes a method for selecting the first carbon nanotube structure 12 and the second carbon nanotube The shape of the support body 17 is not limited, and the first and second carbon nanotube structures 12 and 14 need to be disposed _ and suspended. The material of the support body 17 It is a heat insulating material, such as glass, ceramics, etc. In this embodiment, the support body 17 is composed of four ceramic elements having a rectangular parallelepiped shape, wherein two ceramic elements respectively select the two of the first carbon nanotube structures 12 Specifically, the two ends of the first carbon nanotube structure 12 are respectively disposed on the surfaces of the two ceramic elements, that is, the two ends of the first naga carbon tube structure 12 respectively pass through the _th electrode 16 and shouting component clamping; the other two ceramic components respectively support the two ends of the second carbon nanotube structure 14, specifically, the two ends of the first nano-bone structure 4 are respectively disposed on the two The surface of the ceramic component, that is, the two ends of the second carbon nanotube structure 14 are respectively clamped by the 099122577 form number A0I01 苐 6 pages / 36 pages 0992039776-0 201202717. The two pairs of supports 17 have different heights such that the first and second carbon nanotube structures 12, 14 are spaced apart from one another. [0031] Further, in order to quantitatively measure the intensity of two different polarization directions of the electromagnetic wave, a first signal measuring device 19 electrically connected to the two first electrodes 16 may be disposed; meanwhile, it may be further set A second signal measuring device 21 electrically connected to the two second electrodes 18. The first signal measuring device 19 and the first signal measuring device 21 can be a current measuring device or a voltage measuring device. The first signal measuring device 19 and the second signal measuring device 21 described in this embodiment are both current measuring devices. Device. In the application, the electromagnetic wave detecting device 1 is used: the method for measuring the intensity of two different polarization directions of the electromagnetic wave signal is: S1, measuring the first and second carbon nanotube structures 12 and 14 are not irradiated by electromagnetic waves. The resistance value of the time %31^ ; S2 'is irradiated with the first and second carbon nanotube structures 12, 14 respectively with the electromagnetic waves of known complex and different intensity under the same conditions, and simultaneously measured to have different When the intensity electromagnetic waves illuminate the first and second carbon nanotube structures 12, 14, the resistance change rate (Rdark_RiR) / Rdark '% of the first and second carbon nanotube structures i2, 14 is the first And the resistance value of the second carbon nanotube structure 12, 14 when irradiated by electromagnetic waves, thereby fitting a relationship between the resistance change rate of the first and second carbon nanotube structures 12, 14 and the incident electromagnetic wave intensity S3, under the same conditions, irradiate the electromagnetic wave detecting device 10 with an electromagnetic wave signal to be measured, and use the first signal measuring device 19 and the second signal measuring device 21 to respectively detect the first and second nanometers at this time. Resistance of carbon nanotube structure 12, 14 Rate of change 'The first and second carbon nanotube junctions have been fitted according to the above. 099122577 Form No. A0101 Page 17 / 36 Page 0992039776-0 201202717 Structure 1 2, 1 4 resistance change rate and incident electromagnetic wave intensity The relationship between the two lines of the electromagnetic wave of the electromagnetic wave to be measured can be derived. [0034] In the above steps S1 and S2, since the first carbon nanotube, the σ structure 1 2 and the first carbon nanotube structure 14 are the same in the embodiment, they are each composed of 15 layers of nanometers. The carbon tube is formed by a film, so it is only necessary to fit a resistance change rate (Rdark-RiK) of the carbon nanotube structure/Rdark with the intensity curve of the incident electromagnetic wave. Referring to Fig. 7, this embodiment respectively fits the relationship between the resistance change rate of two carbon nanotube structures and the intensity of incident electromagnetic waves in a vacuum and non-vacuum environment. It can be seen from the figure that the response of the first and second nanocarbon camp structures ^ and 丨4 to electromagnetic waves in a vacuum environment is more sensitive than that in a non-vacuum environment. In the above step S3, the electromagnetic wave to be tested directly illuminates the first nano carbon structure 12, and at this time, the polarization direction of the electromagnetic wave and the length direction of the carbon nanotube in the first nanosoil structure 12 The same electromagnetic wave is absorbed, and the electromagnetic wave in the electromagnetic wave whose polarization direction is perpendicular to the longitudinal direction of the carbon nanotube is transmitted. Therefore, the first nanotube structure 12 undergoes a resistance change due to absorption of part of the electromagnetic wave; The electromagnetic wave of the first carbon nanotube structure 12 is irradiated onto the second carbon nanotube structure 14, due to the direction in which the carbon nanotube extends in the second carbon nanotube structure 14 and the first carbon nanotube structure The extending direction of the 14 carbon nanotubes is perpendicular to each other, so that the polarization direction of the electromagnetic wave incident thereon is the same as the direction in which the nano slave in the second carbon nanotube structure 14 extends, and is the second nanometer. The carbon tube structure 14 absorbs, causing the electrical resistance of the second carbon nanotube structure 14 to also change. By measuring the resistance change rate of the first carbon nanotube structure 12 and the second carbon nanotube structure 14, the above-mentioned electromagnetic waves to be tested can be simultaneously obtained. 099122577 Form No. A0101 Page 18/36 pages 0992039776-0 201202717 [ 0035] ◎ ◎ [0036] 099122577 The intensity of different polarization directions. Reference is made to Fig. 9. The second embodiment of the present invention provides an electromagnetic wave detecting device 2' which includes a plurality of electromagnetic wave detecting units 2 arranged in rows and columns. The mother electromagnetic wave detecting unit 200 includes a first carbon nanotube structure 22, a second carbon nanotube structure 24, two first electrodes 26, and two second electrodes 28. The first carbon nanotube structure 22 and the second carbon nanotube structure 24 are opposite and spaced apart, and the first carbon nanotube structure 22 includes a plurality of carbon nanotubes extending in a first direction, the first The carbon nanotube structure 24 includes a plurality of carbon nanotube tubes extending in a second direction, and the first direction is substantially perpendicular to the second direction. The two first electrodes 26 are spaced apart from each other and electrically connected to the first carbon nanotube structure 22, respectively, and the direction from the first electrode 26 to the other first electrode 26 is the first direction. The two second electrodes 28 are electrically connected to each other and to the first carbon nanotube structure 24, respectively, and the direction from one second electrode 28 to the other second electrode 28 is in the second direction. Further, each of the electromagnetic wave detecting units 22 may further include a support body 27 for supporting the first carbon nanotube structure 22 and the second carbon nanotube structure 24. The present embodiment is substantially the same as the first embodiment. The difference is that the electromagnetic wave detecting device 20 of the present embodiment is composed of the electromagnetic wave detecting unit 200 arranged in a plurality of arrays, and each of the electromagnetic wave detecting units 200 has the same structure as the electromagnetic wave detecting device of the first embodiment described above. The first electromagnetic wave detecting unit 200 may have the first direction and the second direction different from each other. The first direction of the electromagnetic wave detecting unit 200 may be the same or different, as long as the first direction inside each electromagnetic wave detecting unit 200 is substantially perpendicular to the first direction. The second direction can be. That is, it is only necessary to make each electromagnetic wave detection single form number A0101 page 19/36 page 0992039776-0 201202717 element 200 in the first-carbon nanotube structure 22 in the direction of the plurality of carbon nanotubes extending substantially perpendicular to the third nai The plurality of carbon nanotubes in the carbon nanotube structure 22 may extend in the direction. When the carbon nanotubes in the plurality of first carbon nanotube structures 22 in different electromagnetic wave detecting units 2 are extended in different directions, and the same electromagnetic wave respectively illuminates the plurality of electromagnetic wave detecting units 2, the complex electromagnetic wave detecting The unit 200 can simultaneously detect the intensity of the complex polarization direction of the electromagnetic wave. The specific detection principle and detection method are the same as those in the first embodiment, and are not described herein again. [0038] The plurality of first electrodes 26 and the plurality of second electrodes 28 in the plurality of electromagnetic wave detecting units 2 are arbitrarily limited. In this embodiment, the electromagnetic wave detecting device 20 further includes a plurality of first conductive strips 26 and a plurality of second conductive strips 280, each of the first conductive strips 26 including two first conductive lines 2600 that are parallel to each other and spaced apart from each other. Each of the second conductive strips 28 includes two second conductive lines 28 that are parallel to each other and spaced apart from each other. The plurality of first conductive strips 260 are parallel and spaced apart from each other, and the plurality of second conductive strips 28 are parallel and spaced apart from each other, and the plurality of first conductive strips 26 and the plurality of second leads..:. 0 is orthogonally arranged to form a plurality of rectangular grids arranged in rows and columns, and an insulating sheet (not shown) is spaced at a position where the first conductive strip 260 and the second conductive strip 280 intersect each other to avoid The first conductive strip 260 and the second conductive strip 280 are short-circuited due to electrical contact. The complex electromagnetic wave detecting unit 200 - a corresponding one is disposed in the complex grid to form an array structure. One of the first conductive lines 2600 of each of the first conductive strips 260 is electrically connected to one of the first electrodes 206 of each of the electromagnetic wave detecting units 200 of the adjacent row, and the other first conductive line 2600 is adjacent to the adjacent one. - one of the second electromagnetic electrodes 28 of each of the electromagnetic wave detecting units 2 is electrically connected, the same as 099122577 Form No. A0101, page 20/36 pages 0992039776-0 201202717, one of each of the second conductive strips 280 The two conductive wires 2800 are electrically connected to the other first electromagnetic poles 26 of each of the adjacent ones of the electromagnetic wave detecting units 2'. The other second conductive wires 2800 and the adjacent ones of the plurality of electromagnetic wave detecting units 2 The other second electrode 28 is electrically connected. It can be seen that the two first electrodes 26 of each of the electromagnetic wave detecting units 200 are electrically connected to a first conductive line 2600 and a second conductive line 2800, respectively, and the two second electrodes 28 are respectively connected to another first conductive line. It is electrically connected to another second conductive line 2800. The first conductive line 2600 electrically connected to the first electrode 26 and the first conductive line 2600 electrically connected to the second electrode 28 are adjacent to each other and are electrically connected to the first electrode 26 by the electromagnetic wave detecting unit 200. The conductive line 2800 is adjacent to the second conductive line 2800 electrically connected to the second electrode: and is disposed by the electromagnetic wave detecting unit 200. The plurality of first conductive strips 260 and the plurality of second conductive strips 280 are disposed for the purpose of facilitating the plurality of electromagnetic waves. The detecting unit 2 is electrically connected to an external control circuit. [0039] Since the electromagnetic wave detecting device 20 includes the electromagnetic wave detecting unit 20 〇 arranged in a plurality of arrays, and each of the electromagnetic wave detecting units 2 includes two first and second carbon nanotube structures 22 and 24 The carbon nanotubes in the first and second carbon nanotube structures 2 2, 2 4 can also sense infrared rays, so the electromagnetic wave detecting device 20 can also be used for infrared polarization imaging. [〇〇4〇] In summary, the present invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the configuration of an electromagnetic wave detecting apparatus according to a first embodiment of the present invention. [0110] FIG. [0042] FIG. 2 is a partially enlarged schematic view showing a structure of a carbon nanotube film in an electromagnetic wave detecting device according to a first embodiment of the present invention. 3 is a scanning electron micrograph of a carbon nanotube film drawn in an electromagnetic wave detecting device according to a first embodiment of the present invention. 4 is a schematic view showing an orderly bending of a nanocarbon line-like structure in a plane in an electromagnetic wave detecting apparatus according to a first embodiment of the present invention. 5 is a schematic view showing a plurality of nano carbon line-like structures arranged in parallel in a plane in an electromagnetic wave detecting apparatus according to a first embodiment of the present invention. [0046] FIG. 6 is a first embodiment of the present invention. When the electromagnetic waves of different intensities illuminate the carbon nanotube structure in the electromagnetic wave detecting device, the resistance change rate of the carbon nanotube structure changes with temperature. 7 is a graph showing the relationship between the resistance change rate of the carbon nanotube structure and the polarization direction of the incident electromagnetic wave and the longitudinal direction of the carbon nanotube in the carbon nanotube structure according to the first embodiment of the present invention. 8 is a first embodiment of the present invention, in a vacuum and non-vacuum environment, when the carbon nanotubes in the electromagnetic wave detecting device are irradiated with electromagnetic waves of different intensities, the resistance change rate of the carbon nanotube structure changes with temperature. The graph. 9 is a schematic structural view of an electromagnetic wave detecting device according to a second embodiment of the present invention. [Main component symbol description] 099122577 Form No. A0101 Page 22/36 Page 0992039776-0 201202717 [0050] Electromagnetic wave detecting device: 10, 20 [0051] First carbon nanotube structure: 12, 22 [0052] Nano carbon tube structure: 14, 24 [0053] Nano carbon tube fragment: 143 [0054] Nano carbon tube: 145 [0055] First electrode: 16, 26 [0056] Support: 17, 27 〇 [0057 Second electrode: 18, 28 [0058] First signal detecting device: 19 [0059] Second signal detecting device: 21 [0060] Electromagnetic wave detecting unit: 20 0 [0061] First conductive strip: 260 [0062] A conductive wire: 2600 [0063] Second conductive strip: 280 [0064] Second conductive line: 2800 099122577 Form number A0101 Page 23 / Total 36 page 0992039776-0