[go: up one dir, main page]

TW201201598A - Earphone - Google Patents

Earphone Download PDF

Info

Publication number
TW201201598A
TW201201598A TW99120738A TW99120738A TW201201598A TW 201201598 A TW201201598 A TW 201201598A TW 99120738 A TW99120738 A TW 99120738A TW 99120738 A TW99120738 A TW 99120738A TW 201201598 A TW201201598 A TW 201201598A
Authority
TW
Taiwan
Prior art keywords
magnesium
earphone
composite material
nano
based composite
Prior art date
Application number
TW99120738A
Other languages
Chinese (zh)
Other versions
TWI428029B (en
Inventor
Wen-Zhen Li
Hwang-Miaw Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99120738A priority Critical patent/TWI428029B/en
Publication of TW201201598A publication Critical patent/TW201201598A/en
Application granted granted Critical
Publication of TWI428029B publication Critical patent/TWI428029B/en

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention relates to an earphone. The earphone includes an enclosure and a loudspeaker disposed in the enclosure. A material of the enclosure is magnesium based composite material. The magnesium based composite material includes magnesium based metal and nano reinforcements dispersed in the magnesium based metal. The earphone has 10% of total harmonic distortion in a frequency range of 20 Hz to 50 Hz less than an earphone having AZ91D magnesium alloy enclosure.

Description

201201598六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種耳機 機0 尤其涉及一種應用合金殼體的耳 [0002] Ο [0003] 〇 [0004] [0005] 099120738 [先前技術] 隨著新技術和新材料的不斷發展,人們對視聽品質的要 求也越來越高。發聲裝置,如耳機、音響,產品層出不 窮,然而,先前技術中對發聲裝音質的改進多著重於其 内置揚聲器的改進’對般體改進則較少。但殼體對音質 的回應同樣很大,直接影參搆聲器的效果。 以耳機為例’其殼體多由於共振及混響對揚聲器及整個 耳機的發聲效果域㈣,先前技射料機殼體為塑 膠或樹脂,造成耳機發聲的混響較長,殼體的乾 ’發聲效果不崎晰,使耳機存在切不抑問題 ,塑膠或樹脂的殼體耐用性不好,交且极 另外 輕巧。 4變形’並且不夠 【發明内容】 一種耳機’其包括般體以及揚聲器,該揚聲器 殼體内部;該殼體的材料為鎂基複合材料,“ ^ 材料包括鎮基金屬和分散在該鎂基金屬中的奈米2合 ’該耳機比相同形狀的採用AZ91D錢合金製下、3強相 機,在20赫茲至50赫茲頻率範圍内總 、體的耳 、反失真減少10%。 相較於切賴,本㈣方雜―基複合材料 機的殼體,可以減少殼體產生的混敏 ’、’、耳 t久兴振,使發聲 果清晰,從而提高耳機的音質。並且 '^双 表單編號峨 第3頁/共26頁 '基複合材料的 09卯036589-0 201201598 殼體比塑膠殼體更為堅固耐用,由於該殼體具有較好的 強度,在滿足強度需要的前提下,可採用較小的壁厚, 從而減輕耳機的總體質量,並使耳機内部空間增大。 【實施方式】 [0006] 以下將結合附圖詳細說明本技術方案實施例的發聲裝置 〇 [0007] 本技術方案提供一種發聲裝置,該發聲裝置包括中空的 殼體以及設置於殼體内部的揚聲器。該發聲裝置可以為 耳機、音響、喇D八、手機、筆記本電腦或電視。 [0008] 請參閱圖1,本技術方案實施方式以耳機10為例,該耳機 10包括中空的耳機殼體以及設置於殼體内部的揚聲器14 。該耳機10可以為頭戴式、耳掛式、入耳式或耳塞式等 結構。 [0009] 該揚聲器14可以為電動式、電容式、靜電式、氣動式及 壓電式等類型。該揚聲器14用於將電信號轉換成聲音信 號。具體地,揚聲器14可將一定範圍内的音頻電功率信 號通過換能方式轉變為失真小並具有足夠聲壓級的可聽 聲音。本實施例中,該揚聲器14為電動式揚聲器14。 [0010] 該殼體的壁厚為0. 01毫米至2毫米。該殼體可包括面對使 用者的前部12及連接導線的後部16,該前部12可進一步 包括多個出聲孔。本實施例中,該耳機為耳塞式,前部 12為具有出聲孔的圓片蓋體,後部16為與圓片蓋體扣合 的碗形基座。 [0011] 該殼體的前部12和後部16中至少一個部分由鎂基複合材 099120738 表單編號A0101 第4頁/共26頁 0992036589-0 201201598 ❹ Ο 料製成。本實施例中,該殼體整體由鎂基複合材料製成 ,即圓片蓋體與碗形基座的材料均為鎂基複合材料。該 鎂基複合材料包括鎮基金屬和分散在該鎂基金屬中的奈 米增強相。該奈米增強相可以為奈米碳管、碳化矽奈米 顆粒、氧化鋁奈米顆粒、碳化鈦奈米顆粒、碳化硼奈米 顆粒、石墨奈米顆粒或其混合,優選為奈米碳管或碳化 矽奈米顆粒。該奈米碳管可以為單壁奈米碳管、雙壁奈 米碳管及多壁奈米礙管中的一種或多種。所述單壁奈米 碳管的直徑為0. 5奈米〜50奈米,所述雙壁奈米碳管的直 徑為1. 0奈米~50奈米,所述多壁奈米碳管的直徑為1. 5 奈米~50奈米。該奈米增強相在鎂基複合材料中的質量百 分含量約為0. 01%至10%,優選為0. 5%至2%。該奈米增強 相的形狀可以為粉末、纖維或晶須。該奈米增強相的尺 寸(即粉末、纖維或晶須的直徑)約為1奈米至100奈米 ,優選為30奈米至50奈米。該錢基金屬為純鎂或錢合金 。該鎮合金的組成元素除錯外,還包括鋅、猛、銘、結 、钍、鋰、銀、鈣等合金元素的一種或多種,其中鎂佔 鎂合金質量百分比80%以上,其他金屬元素的總合佔鎂合 金質量百分比20%以下。該鎂合金的型號可以為ΑΖ91、 ΑΜ60、AS41、AS21、ΑΕ42,優選為ΑΖ91 ° [0012] 該奈米增強相的加入有利於鎂基金屬晶粒的細化,能夠 提高該殼體的抗拉強度(tensile strength)及伸長 率(elongation)。本實施例中,該鎂基金屬採用 AZ91D型號的鎂合金,該奈米增強相採用奈米碳管或碳化 矽奈米顆粒。請參閱圖2至圖5,將具有質量百分比為 099120738 表單編號A0101 第5頁/共26頁 0992036589-0 201201598 0. 5%,1%及1. 5%的奈米增強相的鎂基複合材料與純 AZ91D鎂合金進行晶粒對比,發現隨著奈米增強相質量百 分比在0. 5%至1. 5%範圍内逐漸提高,該鎂基複合材料的 晶粒明顯減小。所述該鎂基複合材料的晶粒比用於製造 該鎂基複合材料的鎂基金屬的晶粒減小60%至75%。該鎂 基複合材料的晶粒約為100微米至150微米。本實施例中 ,當該鎂基複合材料的奈米增強相為質量百分比為0.5% 至2%的奈米碳管時,該鎂基複合材料的晶粒可以比AZ91D 鎂合金的晶粒減小60%至75%。請參閱圖6,當該鎂基複合 材料的奈米增強相為質量百分比為0. 5%至2%的碳化矽時 ,鎂晶粒與碳化矽晶粒之間的介面清晰,不存在介面間 反應的中間相。請參閱圖7,將奈米增強相為不同質量百 分含量的奈米碳管的鎂基複合材料進行抗拉強度測試, 發現當奈米碳管佔鎂基複合材料質量百分比為1. 5%時, 該鎂基複合材料具有較好的抗拉強度。 [0013] 請參閱圖8,將奈米增強相為不同質量百分含量的奈米碳 管的鎂基複合材料進行伸長率測試,發現當奈米碳管佔 鎂基複合材料質量百分比為1. 5%時,該鎂基複合材料具 有較好的伸長率。上述測試表明,通過在鎂基金屬中加 入奈米增強相,有效地細化了晶粒,提高了鎂基複合材 料的抗拉強度及伸長率,有利於該耳機殼體的製造,並 有利於提高該耳機殼體的強度和耐用性,具體試驗資料 請參閱表1。 [0014] 表1抗拉強度及伸長率測試資料表 奈米碳 0% 0. 01% 0. 5% 1% 1. 5% 2% 表單編號A0101 第6頁/共26頁 0992036589-0 099120738 201201598 管質量 百分含 量 抗拉強 度 (MPa) 86 86.5 89 96 104 90 伸長率 (%) 0. 92 0. 93 1.1 1.26 1.28 0. 67201201598 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a headphone machine 0, and more particularly to an ear using an alloy casing [0002] [0003] [0004] [0005] 099120738 [Prior Art With the continuous development of new technologies and new materials, people's requirements for audio-visual quality are getting higher and higher. Sounding devices, such as earphones and stereos, are constantly emerging. However, improvements in sound quality in the prior art have focused more on the improvement of their built-in speakers. However, the shell responds equally to the sound quality, directly affecting the effect of the sounder. Taking the earphone as an example, the shell has many sound-absorbing effects on the speaker and the whole earphone due to resonance and reverberation. The former technology is made of plastic or resin, which causes the reverberation of the earphone to be longer and the shell is dry. 'The sound effect is not clear, so that the headphones are not cut, the plastic or resin shell is not durable, and it is extremely light. 4 deformation 'and not enough [invention] A headphone 'which includes an ordinary body and a speaker, the inside of the speaker housing; the material of the housing is a magnesium-based composite material, " ^ material includes a town-based metal and is dispersed in the magnesium-based metal The nano 2 in the 'the earphone is the same as the AZ91D money alloy, the top 3 camera, the total body ear and anti-aliasing in the frequency range of 20 Hz to 50 Hz is reduced by 10%. Compared with the cut The shell of the (four) square hybrid-based composite material machine can reduce the mixing sensitivity generated by the shell, 'the ear t, and the ear t will revitalize the sound, so that the sound quality is clear, thereby improving the sound quality of the earphone. And '^ double form number峨Page 3 of 26 'Base composite material 09卯036589-0 201201598 The housing is more durable than the plastic housing. Due to the good strength of the housing, it can be used under the premise of meeting the strength requirements. A small wall thickness, thereby reducing the overall quality of the earphone and increasing the internal space of the earphone. [Embodiment] [0006] Hereinafter, the sounding device of the embodiment of the present technical solution will be described in detail with reference to the accompanying drawings. A sounding device includes a hollow casing and a speaker disposed inside the casing. The sounding device can be a headphone, an audio, a D8, a mobile phone, a notebook computer or a television. [0008] Please refer to FIG. The technical solution embodiment takes the earphone 10 as an example, and the earphone 10 includes a hollow earphone casing and a speaker 14 disposed inside the casing. The earphone 10 can be a head-mounted, ear-hook, in-ear or earplug type structure. [0009] The speaker 14 can be of the electric, capacitive, electrostatic, pneumatic, and piezoelectric type, etc. The speaker 14 is used to convert an electrical signal into a sound signal. Specifically, the speaker 14 can be within a certain range. 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 The housing may include a front portion 12 facing the user and a rear portion 16 connecting the wires, and the front portion 12 may further include a plurality of sound holes. In the present embodiment, the earphone is an earplug. The front portion 12 is a wafer cover body having a sound hole, and the rear portion 16 is a bowl-shaped base that is engaged with the wafer cover body. [0011] At least one of the front portion 12 and the rear portion 16 of the housing is made of magnesium. Base composite 099120738 Form No. A0101 Page 4 / Total 26 page 0992036589-0 201201598 ❹ 制成 material. In this embodiment, the shell is made entirely of magnesium-based composite material, ie wafer cover and bowl base The material of the seat is a magnesium-based composite material, and the magnesium-based composite material comprises an alkali-based metal and a nano-reinforced phase dispersed in the magnesium-based metal. The nano-reinforced phase may be a carbon nanotube or a carbonized nano-particle. The alumina nanoparticle, the titanium carbide nanoparticle, the boron carbide nanoparticle, the graphite nanoparticle or a mixture thereof is preferably a carbon nanotube or a tantalum carbide particle. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled nanotube. The nano-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube The diameter is 1. 5 nm ~ 50 nm. 5%至2%。 The 5% to 2%, preferably from 0.5% to 2%. The nano reinforcing phase may be in the form of a powder, fiber or whisker. The size of the nano-enhanced phase (i.e., the diameter of the powder, fiber or whisker) is from about 1 nm to about 100 nm, preferably from 30 nm to 50 nm. The money base metal is pure magnesium or a money alloy. In addition to the constituent elements of the alloy, it also includes one or more alloying elements such as zinc, fission, inscription, knot, antimony, lithium, silver, calcium, etc., wherein magnesium accounts for more than 80% by mass of the magnesium alloy, and other metal elements The total amount of magnesium alloy is less than 20% by mass. The type of the magnesium alloy may be ΑΖ91, ΑΜ60, AS41, AS21, ΑΕ42, preferably ΑΖ91 °. [0012] The addition of the nano reinforcing phase is beneficial to the refinement of the magnesium-based metal grains, and the tensile strength of the shell can be improved. Tensile strength and elongation. In this embodiment, the magnesium-based metal is a magnesium alloy of the AZ91D type, and the nano reinforcing phase is made of a carbon nanotube or a carbonized nanoparticle. Please refer to Figure 2 to Figure 5, which will have a mass percentage of 099120738 Form No. A0101 Page 5 / Total 26 Page 0992036589-0 201201598 0. 5%, 1% and 1.5% of the nano-reinforced phase of the magnesium-based composite Compared with the pure AZ91D magnesium alloy, it is found that the grain size of the magnesium-based composite material is significantly reduced as the nano-reinforced phase mass percentage is gradually increased in the range of 0.5% to 1.5%. The grain of the magnesium-based composite material is reduced by 60% to 75% compared to the grain of the magnesium-based metal used to make the magnesium-based composite material. The magnesium matrix composite has a grain size of from about 100 microns to about 150 microns. In this embodiment, when the nano-reinforced phase of the magnesium-based composite material is 0.5% to 2% by mass of the carbon nanotubes, the crystal grains of the magnesium-based composite material can be reduced compared with the grain size of the AZ91D magnesium alloy. 60% to 75%. Referring to FIG. 6, when the nano-reinforced phase of the magnesium-based composite material is 0.5% to 2% by mass of niobium carbide, the interface between the magnesium crystal grains and the niobium carbide crystal grains is clear, and there is no interface between the interfaces. The intermediate phase of the reaction. 5%。 The mass ratio of the nano-carbon nanotubes to the magnesium-based composite material is 1.5%. The magnesium-based composite material has good tensile strength. [0013] Referring to FIG. 8 , the elongation test of the magnesium-based composite material with different nanometers of carbon nanotubes in the nano-reinforced phase was carried out, and it was found that the mass percentage of the carbon-based composite material was 1. At 5%, the magnesium-based composite material has a good elongation. The above test shows that by adding a nano reinforcing phase to the magnesium-based metal, the crystal grains are effectively refined, and the tensile strength and elongation of the magnesium-based composite material are improved, which is advantageous for the manufacture of the earphone housing and is advantageous. To improve the strength and durability of the earphone housing, please refer to Table 1 for specific test data. [0014] Table 1 tensile strength and elongation test data sheet nano carbon 0% 0. 01% 0. 5% 1% 1. 5% 2% Form No. A0101 Page 6 / 26 pages 0992036589-0 099120738 201201598 Tube mass percent tensile strength (MPa) 86 86.5 89 96 104 90 elongation (%) 0. 92 0. 93 1.1 1.26 1.28 0. 67

該殼體的製造方法可以為觸變成形、壓鑄成形、粉末冶 金或機械加工成形等。具體地,可將所述奈米增強相的 粉末、纖維或晶須加入熔融的鎂基金屬中,並通過觸變 成形或壓鑄成形的方法得到耳機殼體,或者可以將鎂基 金屬的粉末與奈米增強相進行混合,並通過粉末冶金的 方法製備耳機殼體,另外,也可以將所述鎂基複合材料 預先形成坯體,並通過機械加工的方式形成耳機殼體。 [0016] 在本實施例中,該鎂基複合材料的製備方法包括以下步 驟: [0017] 首先,提供鎂基金屬及奈米增強相; [0018] 其次,將奈米增強相在460°C至580°C下加入熔融的鎂基 金屬進行混合形成混合物; [0019] 再次,在620°C至65(TC下對該混合物進行超聲波處理使 奈米增強相均勻分散在鎂基金屬中;以及 [0020] 最後,將該混合物在650°C至680°C下進行澆鑄,形成鎂 基複合材料述體。 099120738 表單編號 A0101 第 7 頁/共 26 頁 0992036589-0 201201598 [0021] 在上述混合、超聲波處理及澆鑄過程中的溫度分三個階 段逐漸升高,有利於使鎂基複合材料中的晶粒細化,並 且,上述過程均在保護氣體中進行,以防止鎂基金屬被 氧化。所述保護氣體可選自惰性氣體和氮氣中的一種或 多種,本實施例中保護氣體優選為為氮氣。 [0022] 具體地,該鎂基金屬可以為AZ91D鎂合金,該奈米增強相 可以為奈米碳管或碳化矽。該熔融的鎂基金屬可設置於 一内部充滿保護氣體的容器中。在將奈米增強相加入該 熔融的鎂基金屬的過程中可進一步通過攪拌器不斷對容 器中的混合物進行機械攪拌,使奈米增強相和該熔融的 鎂基金屬初步混合,得到一混合漿料。 [0023] 該超聲波處理的過程可以為將混合物連同容器置於一高 能量超聲波震盪攪拌裝置中,在一定頻率的超聲波下震 盪一段時間後,得到一均勻混合漿料。所述超聲波的頻 率為15千赫茲至20千赫茲,本實施例中超聲波的頻率優 選為15千赫茲。所述超聲波處理的時間為5分鐘至40分鐘 ,優選為30分鐘。本技術方案所採用超聲震盪的超聲波 頻率選擇為15-20千赫茲,相對於一般超聲波頻率48千赫 茲而言,本技術方案所採用的超聲波的頻率較低,而此 超聲震盪裝置為一高能量超聲震盪攪拌裝置,因此該超 聲震盪裝置的振幅較大,因此可以使輕金屬熔湯中的輕 金屬微粒發生劇烈運動,從而可以使奈米級顆粒增強體 在輕金屬熔湯中均勻分配,得到一均勻混合漿料。 [0024] 在洗鑄的過程中該混合漿料可澆鑄至一模具中冷卻固化 ,形成該鎂基複合材料坯體。進一步地,可通過一擠壓 099120738 表單編號A0101 第8頁/共26頁 0992036589-0 201201598 [0025]The method of manufacturing the casing may be thixoforming, die casting, powder metallurgy or mechanical forming. Specifically, the powder, fiber or whisker of the nano reinforcing phase may be added to the molten magnesium-based metal, and the earphone casing may be obtained by a thixoforming or die casting method, or the magnesium-based metal powder may be obtained. The earphone housing is prepared by a powder metallurgy method by mixing with the nano reinforcing phase. Alternatively, the magnesium-based composite material may be preformed into a blank body, and the earphone housing may be formed by mechanical processing. [0016] In the present embodiment, the method for preparing the magnesium-based composite material comprises the following steps: [0017] First, a magnesium-based metal and a nano-reinforcing phase are provided; [0018] Next, the nano-reinforced phase is at 460 ° C. Adding molten magnesium-based metal to 580 ° C to form a mixture; [0019] again, ultrasonically treating the mixture at 620 ° C to 65 (TC) to uniformly disperse the nano reinforcing phase in the magnesium-based metal; [0020] Finally, the mixture is cast at 650 ° C to 680 ° C to form a magnesium-based composite material. 099120738 Form No. A0101 Page 7 of 26 0992036589-0 201201598 [0021] In the above mixing, The temperature during ultrasonic treatment and casting is gradually increased in three stages, which is advantageous for grain refinement in the magnesium-based composite material, and the above processes are all carried out in a protective gas to prevent oxidation of the magnesium-based metal. The shielding gas may be selected from one or more of an inert gas and nitrogen. The shielding gas in the embodiment is preferably nitrogen. [0022] Specifically, the magnesium-based metal may be an AZ91D magnesium alloy, the nano reinforcing phase. It is considered to be a carbon nanotube or a tantalum carbide. The molten magnesium-based metal may be disposed in a container filled with a protective gas. In the process of adding a nano-reinforced phase to the molten magnesium-based metal, it may be further passed through a stirrer. The mixture in the vessel is mechanically agitated to initially mix the nano reinforcing phase with the molten magnesium-based metal to obtain a mixed slurry. [0023] The ultrasonic treatment may be performed by placing the mixture together with the vessel in a high-energy ultrasonic vibration. In the stirring device, after a period of shaking under a certain frequency of ultrasonic waves, a uniform mixed slurry is obtained. The frequency of the ultrasonic waves is 15 kHz to 20 kHz, and the frequency of the ultrasonic waves in the embodiment is preferably 15 kHz. The ultrasonic treatment time is 5 minutes to 40 minutes, preferably 30 minutes. The ultrasonic frequency of the ultrasonic vibration used in the technical solution is selected to be 15-20 kHz, and the technical solution is compared with the general ultrasonic frequency 48 kHz. The frequency of the ultrasonic wave used is low, and the ultrasonic oscillating device is a high-energy ultrasonic oscillating stirring device, so the super The amplitude of the acoustic oscillating device is large, so that the light metal particles in the light metal melting soup can be vigorously moved, so that the nano-sized particle reinforcing body can be evenly distributed in the light metal melting soup to obtain a uniform mixed slurry. [0024] During the process of washing and casting, the mixed slurry can be cast into a mold to be cooled and solidified to form the magnesium-based composite material body. Further, it can be extruded through a 099120738 form number A0101 page 8 / 26 pages 0992036589-0 201201598 [0025]

膠殼體及AZ91D鎂合金殼趙相比,具有較㈣屈服強度, 且密度比AZ91D鎂合金有所降低。Compared with the AZ91D magnesium alloy shell, the rubber shell has a higher yield strength and a lower density than the AZ91D magnesium alloy.

[0026] [0027] 成型處理過程處理懸基複合材料關^通過該擠壓成 型處理過程’該奈米增強相在該混合物巾經再次分配, 分散更加均勻,可進—步提高該鎂基複合材料的強度和 動性。 該㈣可進-步通過㈣,得到該耳機殼體。將奈 米碳管作為奈米增強相,AZ91D鎂合金作為鎮基金屬,且 該奈米增強相的質量百分含量礼5%,通過壓铸成形法 製備殼體。請㈣表2 ’祕基複合材料製成的殼想與塑 表2不同材料殼體性能對比 參數 塑膠 (PC+ABS) A Z 91D鎮合金 鎂基複合材料 密度 (g/cm3) 1. 07 1. 82 1.80 屈服強度 (MPa) 39 230 .<-, J Ϊ·' v... !?!: ·;ί: 276 ~ 在採用相同形狀殼體的條件下,對採用該鎂基複合材料 的殼體的耳機進行聲學測試,並與AZ91D鎂合金殼體的耳 機及塑膠殼體的耳機進行對比發現,採用該鎂基複合材 料的殼體制成的耳機與採用“911)鎂合金殼體的耳機和採 用塑膠殼體的耳機具有基本一致的頻率回應曲線及阻抗 曲線。然而,請參閱圖9,採用該鎂基複合材料的殼體制 成的耳機在三種測試的耳機中具有最小的總諧波失真。 在20赫茲至50赫茲頻率範圍内,採用鎂基複合材料的殼 099120738 0992036589-0 表單編號A0101 第9頁/共26頁 201201598 體的耳機的總諧波失真比AZ91D鎂合金殼體的耳機減少約 10% ° [0028] 請參閱圖10至12,從採用不同材料的殼體的瀑布分析圖 中可以看出,在20赫茲至30赫茲範圍,採用鎂基複合材 料殼體的耳機音頻振幅最低,從而使這種耳機的總諧波 失真最小,而在100赫茲至600赫茲範圍,採用鎂基複合 材料殼體的耳機比其他兩種耳機波形均一,可知這種耳 機具有發聲效果清晰的特點。 [0029] 本技術方案採用鎂基複合材料作為耳機的殼體,可以縮 短耳機發聲的混響,減少耳機殼體共振,使發聲效果清 晰,從而提高耳機的音質。並且,鎂基複合材料的殼體 比塑膠殼體更為堅固耐用,由於該殼體具有較好的強度 ,在滿足強度需要的前提下,可採用較小的壁厚,從而 減輕耳機的總體質量,並使耳機内部空間增大。另外, 鎂基複合材料具有良好的導熱性,利於耳機散熱。 [0030] 本領域技術人員可以理解,本技術方案雖然以耳機作為 具體實施例進行說明,然而由於所述殼體因製造殼體的 材料本身具有上述優點,因此具有所述殼體的其他發聲 裝置也能具有發聲效果較好,質量較輕,堅固财用且易 於散熱的優點。 [0031] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 099120738 表單編號A0101 第10頁/共26頁 0992036589-0 201201598 [0032] [0033] [0034] [0035] 皆應涵蓋於以下中請專利範圍内β 【圖式簡單說明】 圖1為本技術方案實施例耳機的結構示意圖。 圖2為AZ91D鎂合金5G倍光學顯微鏡照片。 圖3為具有質量百分比為Q e 里白刀比為G.5%的奈米增強相 料50倍光學顯微鏡照片。 、基複合枓[0027] The molding process processes the suspension composite material through the extrusion molding process. The nano-reinforced phase is redistributed in the mixture, and the dispersion is more uniform, and the magnesium-based composite can be further improved. The strength and dynamics of the material. The (four) can be stepped through (4) to obtain the earphone housing. The carbon nanotube was used as the nano reinforcing phase, the AZ91D magnesium alloy was used as the base metal, and the mass percentage of the nano reinforcing phase was 5%, and the shell was prepared by a die casting method. Please (4) Table 2 'The shell made of the secret base composite material and the plastic watch 2 different material shell performance comparison parameters plastic (PC + ABS) AZ 91D town alloy magnesium matrix composite material density (g / cm3) 1. 07 1. 82 1.80 Yield strength (MPa) 39 230 .<-, J Ϊ·' v... !?!: ·; ί: 276 ~ Under the conditions of the same shape of the shell, the use of the magnesium-based composite material The earphone of the housing was acoustically tested and compared with the earphone of the AZ91D magnesium alloy case and the earphone of the plastic case. The earphone made of the magnesium-based composite material and the earphone with the "911" magnesium alloy casing were found. The frequency response curve and impedance curve are basically the same as those of the plastic case. However, referring to Figure 9, the earphone made of the magnesium-based composite case has the smallest total harmonic distortion in the three tested headphones. In the frequency range of 20 Hz to 50 Hz, the shell using magnesium-based composite material 099120738 0992036589-0 Form No. A0101 Page 9 / 26 pages 201201598 The total harmonic distortion of the body of the headphones is reduced compared to the headphones of the AZ91D magnesium alloy housing About 10% ° [0028] See Figure 1 From 0 to 12, it can be seen from the waterfall analysis of shells with different materials that in the range of 20 Hz to 30 Hz, the headphone audio amplitude of the magnesium-based composite housing is the lowest, thus making the total harmonics of the headphones The distortion is the smallest, and in the range of 100 Hz to 600 Hz, the earphones using the magnesium-based composite casing are more uniform than the other two types of earphones, and it is known that the earphones have the characteristics of clear sounding effect. [0029] The technical solution adopts magnesium-based composite As the housing of the earphone, the material can shorten the reverberation of the earphone, reduce the resonance of the earphone casing, and make the sound effect clear, thereby improving the sound quality of the earphone. Moreover, the shell of the magnesium-based composite material is more durable than the plastic casing. Because the shell has better strength, a smaller wall thickness can be used under the premise of meeting the strength requirement, thereby reducing the overall quality of the earphone and increasing the internal space of the earphone. In addition, the magnesium-based composite material has good The thermal conductivity of the earphone is beneficial to the heat dissipation of the earphone. [0030] It will be understood by those skilled in the art that the technical solution is performed by using the earphone as a specific embodiment. However, since the housing has the above advantages due to the material itself for manufacturing the housing, other sound generating devices having the housing can also have the advantages of better sounding effect, lighter weight, strong cost, and easy heat dissipation. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the patent application scope of the present invention cannot be limited thereby. Equivalent modifications or variations made by those skilled in the art of the present invention in accordance with the spirit of the present invention, 099120738 Form No. A0101 Page 10 / Total 26 Page 0992036589-0 201201598 [0033] [0035] [0035] It should be included in the following patent scope β [Simplified description of the drawings] FIG. 1 is a schematic structural view of an earphone according to an embodiment of the present technical solution. Figure 2 is a 5G optical microscope photo of AZ91D magnesium alloy. Figure 3 is a 50x optical micrograph of a nano-enhancement material with a mass percentage of Q e and a white knife ratio of G.5%. Base compound

[0036] [0037] [0038] 〇 [0039] [0040] [0041] [0042] [0043] 圖4為具有質量百分比為1%的奈米增強相的 50倍光學顯微鏡照片。 筏合柯料 圖5為具有質量百分比紅5%的奈切強相的 料50倍光學顯微鏡照片。 、暴複合材 圖6為縣複合材料中碳切與鎂晶粒介面的高解析度透 射電鏡照片》 圖7為具有不同f量百分含量的奈米增__基複合材 料抗拉強度的測試資料圖。, 圖8為具衫同質量料含量的奈料__基複合材 料伸長率的測試資料圖。 圖9為具有不 測試資料圖。 同材料的耳機殼體的耳機的總错波失真曲 線 圖10為具有Μ耳機殼體的耳機的科分析圖。 圖11為具有AZ91D鎂合金耳機殼體的耳機的漆布分析圖。 圖12為具祕基複合材料耳機贿料機_布分析圖 099120738 表單編號Α0101 第11頁/共26頁 0992036589-0 201201598 【主要元件符號說明】 [0044] 耳機:10 [0045] 前部:12 [0046] 揚聲器:14 [0047] 後部:16 0992036589-0 099120738 表單編號A0101 第12頁/共26頁[0038] [0043] [0043] FIG. 4 is a 50x optical micrograph of a nano-enhanced phase having a mass percentage of 1%.筏合克料 Figure 5 is a 50x optical micrograph of a material having a Niche strong phase of 5% by mass red. Figure 6 shows the high-resolution transmission electron micrograph of the carbon-cut and magnesium-grain interface in the composite material of the county. Figure 7 shows the tensile strength of the nano-enhanced composite with different content of f. Data map. Figure 8 is a test data diagram of the elongation of the composite material with the same mass content. Figure 9 is a diagram with no test data. The total undulation distortion curve of the earphone housing of the same material is shown in Fig. 10 as an analysis of the earphone with the Μ earphone housing. Figure 11 is a varnish analysis diagram of an earphone with an AZ91D magnesium alloy earphone housing. Figure 12 is a composite material headset earring machine _ cloth analysis diagram 099120738 Form No. 101 0101 Page 11 / Total 26 Page 0992036589-0 201201598 [Main component symbol description] [0044] Headphones: 10 [0045] Front: 12 [0046] Speaker: 14 [0047] Rear: 16 0992036589-0 099120738 Form No. A0101 Page 12 of 26

Claims (1)

201201598 七、申請專利範圍: 1 . 一種耳機,其包括: 殼體;以及 揚聲器,該揚聲器設置於該殼體内部; 其改進在於:該殼體的材料為鎂基複合材料,該鎂基複合 材料包括鎂基金屬和分散在該鎂基金屬中的奈米增強相, 該耳機比相同形狀的採用所述鎂基金屬製成的殼體的耳機 ,在20赫茲至50赫茲頻率範圍内總諧波失真減少10°/〇。 ^ 2 .如申請專利範圍第1項所述的耳機,其中,所述奈米增強 ❹ 相為奈米碳管、碳化矽奈米顆粒、氧化鋁奈米顆粒、碳化 鈇奈米顆粒、碳化硼奈米顆粒、石墨奈米顆粒中的一種或 多種的混合。 3. 如申請專利範圍第1項所述的耳機,其中,所述奈米增強 相的尺寸為30奈米至50奈米。 4. 如申請專利範圍第1項所述的耳機,其中,所述奈米增強 相在鎂基複合材料中的質量百分含量為0. 01 %至10%。 q 5 .如申請專利範圍第1項所述的耳機,其中,所述奈米增強 相在鎂基複合材料中的質量百分含量為0. 5%至2%。 6. 如申請專利範圍第1項所述的耳機,其中,所述奈米增強 相在鎂基複合材料中的質量百分含量為1. 5%。 7. 如申請專利範圍第1項所述的耳機,其中,所述鎂基金屬 為镁或錢合金。 8. 如申請專利範圍第7項所述的耳機,其中,所述鎂合金的 型號為AZ91、AM60、AS41、AS21 或AE42。 9. 如申請專利範圍第1項所述的耳機,其中,所述鎂基複合 099120738 表單編號A0101 第13頁/共26頁 0992036589-0 201201598 材料的晶粒尺寸為1 〇 〇微米至1 5 〇微米。 10. 如申請專利範圍第9項所述的耳機,其中,所述鎂基金屬 為型號為AZ91D的鎂合金。 11. 如申請專利範圍第1項所述的耳機,其中,所述鎮基複合 材料的晶粒尺寸比所述鎂基金屬的晶粒尺寸減小6〇%至 75%° 12 .如申請專利範圍第1項所述的 ㈣斗機’其中,所述鎂基金屬 ·、、型號為AZ91D賴合金,所述奈米增強相為奈米碳管, 所迷奈米碳管在鎮基複合材料中的質量百分含量為U 〇 13 .如申請專利範圍第】項所述的耳樁甘 mu卜所述殼體的壁 厚為0.01毫米至2毫米。 099120738 表單編號A010I 第14頁/共26頁 0992036589-0201201598 VII. Patent application scope: 1. An earphone comprising: a casing; and a speaker disposed inside the casing; the improvement is that the material of the casing is a magnesium-based composite material, and the magnesium-based composite material Including a magnesium-based metal and a nano-enhanced phase dispersed in the magnesium-based metal, the earphone has a total harmonic in a frequency range of 20 Hz to 50 Hz than a headphone of the same shape using a casing made of the magnesium-based metal The distortion is reduced by 10°/〇. The earphone according to claim 1, wherein the nano-reinforced ❹ phase is a carbon nanotube, a cerium carbide nanoparticle, an alumina nanoparticle, a cerium carbide nanoparticle, or a boron carbide. A mixture of one or more of nanoparticle and graphite nanoparticle. 3. The earphone of claim 1, wherein the nano-enhanced phase has a size of 30 nm to 50 nm. 01%至10百分比。 The mass percentage of the nano-reinforced phase in the magnesium-based composite material is 0.01% to 10%. 5%至2%。 The mass percentage of the nano-reinforced phase in the magnesium-based composite material is 0.5% to 2%. 5%。 The mass percentage of the nano-reinforced phase in the magnesium-based composite material is 1.5%. 7. The earphone of claim 1, wherein the magnesium-based metal is magnesium or a money alloy. 8. The earphone of claim 7, wherein the magnesium alloy is of the type AZ91, AM60, AS41, AS21 or AE42. 9. The earphone of claim 1, wherein the magnesium-based composite 099120738 form number A0101 page 13 / 26 pages 0992036589-0 201201598 material has a grain size of 1 〇〇 micrometer to 15 〇 Micron. 10. The earphone of claim 9, wherein the magnesium-based metal is a magnesium alloy of the type AZ91D. 11. The earphone of claim 1, wherein the grain size of the matrix-based composite material is reduced by 6〇% to 75%° to a grain size of the magnesium-based metal. The (four) bucket machine according to the first item, wherein the magnesium-based metal type is AZ91D Lai alloy, the nano reinforcing phase is a carbon nanotube, and the carbon nanotube is in a town-based composite material. The mass percentage in the middle is U 〇 13 . The wall thickness of the casing is 0.01 mm to 2 mm as described in the scope of the patent application. 099120738 Form No. A010I Page 14 of 26 0992036589-0
TW99120738A 2010-06-25 2010-06-25 Earphone TWI428029B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99120738A TWI428029B (en) 2010-06-25 2010-06-25 Earphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99120738A TWI428029B (en) 2010-06-25 2010-06-25 Earphone

Publications (2)

Publication Number Publication Date
TW201201598A true TW201201598A (en) 2012-01-01
TWI428029B TWI428029B (en) 2014-02-21

Family

ID=46755870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99120738A TWI428029B (en) 2010-06-25 2010-06-25 Earphone

Country Status (1)

Country Link
TW (1) TWI428029B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565389B (en) * 2010-06-25 2017-01-01 鴻海精密工業股份有限公司 Enclosure and acoustic device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545859A (en) * 1994-03-07 1996-08-13 Ullrich; Kenneth A. Anti-viral acoustically transparent earphone cover
US6563934B1 (en) * 2000-04-17 2003-05-13 Motorola, Inc. Mechanically tunable diaphragm using nickel titanium memory metal
WO2005067340A1 (en) * 2004-01-09 2005-07-21 Asahi Kasei Kabushiki Kaisha Body conducted sound microphone, signal processing device, communication interface system, and sound collecting method
JP4127235B2 (en) * 2004-04-16 2008-07-30 ソニー株式会社 Headphone device
TW200843948A (en) * 2007-05-10 2008-11-16 Yansheng Tech Applied Materials Co Ltd Materials for producing low conductive vacuum metallization thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565389B (en) * 2010-06-25 2017-01-01 鴻海精密工業股份有限公司 Enclosure and acoustic device using the same

Also Published As

Publication number Publication date
TWI428029B (en) 2014-02-21

Similar Documents

Publication Publication Date Title
CN101851716B (en) Magnesium base composite material and preparation method thereof, and application thereof in sounding device
CN101851717B (en) Shell and sounding device using the same
CN116709130A (en) Bone conduction speakers and bone conduction headphones
Choi et al. Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al–20Si–4.5 Cu alloy with addition of Al 2 O 3 nanoparticles
CN107409258A (en) Graphene oxide based acoustic transducer methods and devices
JP2007291438A (en) Method for producing carbon-containing magnesium alloy, and carbon-containing magnesium alloy
TWI468528B (en) Magnesium based composite material, method for making the same, and application using the same in acousitc devcie
JP6421338B2 (en) Speaker diaphragm, speaker, electronic device, mobile device
JP5156585B2 (en) Method for producing carbon-containing magnesium alloy
TWI469647B (en) Acoustic device
TWI461068B (en) Acoustic device
TWI428029B (en) Earphone
Li et al. Fabrication of carbon nanotubes and rare earth Pr reinforced AZ91 composites by powder metallurgy
CN101854572B (en) earphone
TWI565389B (en) Enclosure and acoustic device using the same
US20080124566A1 (en) Composite Material Comprising Ultra-Hard Particles Embedded in a Metal or Metal Alloy Matrix and Diaphragm Made Thereof
CN101873521B (en) Sound-producing device
CN101873520B (en) Sound-generating device
CN104611648A (en) Method for reinforcing magnesium matrix composite through carbon nanotubes coated with magnesium oxide
JP3848899B2 (en) Diaphragm for electroacoustic transducer
TW201134949A (en) Method for making aluminium-based metal matrix composites
CN109391880A (en) Loudspeaker acoustic diaphragm and preparation method based on graphene REINFORCED PET plastics
CN108441665B (en) Method for preparing nano particle reinforced composite material by multidimensional vibration-assisted synthesis
CN115175054A (en) Shell of sound generating device, sound generating device with shell and electronic equipment
CN106878889A (en) A flocked horn