TW201137841A - Driving method for image display apparatus and driving method for image display apparatus assembly - Google Patents
Driving method for image display apparatus and driving method for image display apparatus assembly Download PDFInfo
- Publication number
- TW201137841A TW201137841A TW100101438A TW100101438A TW201137841A TW 201137841 A TW201137841 A TW 201137841A TW 100101438 A TW100101438 A TW 100101438A TW 100101438 A TW100101438 A TW 100101438A TW 201137841 A TW201137841 A TW 201137841A
- Authority
- TW
- Taiwan
- Prior art keywords
- pixel
- sub
- signal
- input signal
- subpixel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 104
- 238000012545 processing Methods 0.000 claims abstract description 115
- 239000011159 matrix material Substances 0.000 claims description 35
- 230000007547 defect Effects 0.000 claims 1
- 235000019557 luminance Nutrition 0.000 description 149
- 239000004973 liquid crystal related substance Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 24
- 239000002245 particle Substances 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 19
- 239000000758 substrate Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 11
- 238000005192 partition Methods 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010422 painting Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- SENMPMXZMGNQAG-UHFFFAOYSA-N 3,4-dihydro-2,5-benzodioxocine-1,6-dione Chemical compound O=C1OCCOC(=O)C2=CC=CC=C12 SENMPMXZMGNQAG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 101000878595 Arabidopsis thaliana Squalene synthase 1 Proteins 0.000 description 1
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 108050007537 GPI mannosyltransferase 3 Proteins 0.000 description 1
- 229910001477 LaPO4 Inorganic materials 0.000 description 1
- 102100025582 Leukocyte immunoglobulin-like receptor subfamily B member 3 Human genes 0.000 description 1
- 229910009372 YVO4 Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005673 polypropylene based resin Polymers 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
- 229910052844 willemite Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0452—Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/06—Colour space transformation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of El Displays (AREA)
Abstract
Description
201137841 六、發明說明: 【發明所屬之技術領域】 本發明有關於影像顯示裝置之驅動方法及影像顯示裝 置組合之驅動方法。 【先前技術】 近年來’例如彩色液晶顯示裝置之影像顯示裝置具有 牽涉到性能增進之耗電量增加的問題。尤其例如在彩色液 晶顯示裝置中之解析度的增進、彩色再生範圍之增加、及 輝度推進的增加,背光之耗電量增加。已經留意到一種解 決上述問題之裝置》該裝置具有四個子畫素組態,其包括 ’除了包括顯示紅色的紅色顯示子畫素、顯示綠色的綠色 顯示子畫素、及顯示藍色的藍色顯示子畫素之三個子畫素 以外’例如,顯示白色的白色顯示子畫素。白色顯示子畫 素增進亮度。由於四個子畫素組態可以和相關技藝中之顯 示裝置類似之耗電量實現高輝度,若輝度與相關技藝中之 顯示裝置相等,則可降低背光之耗電量並可預期顯示品質 之增進。 例如,揭露在日本專利案號3 1 6702 6 (此後稱爲專利 文獻1 )中的彩色影像顯示裝置包括: 一機構,使用添加原色程序從一輸入信號產生三個不 同彩色信號;以及 一機構,以相等比例添加三色相之彩色信號以產生輔 助信號,並供應包括輔助信號及藉由從三色相之信號減掉 -5- 201137841 輔助信號而得的三個不同彩色信號之總共四個顯示信號至 顯示單元。 注意到由這三個不同彩色信號驅動紅色顯示子畫素、 綠色顯示子畫素、及藍色顯示子畫素,同時由輔助信號驅 動白色顯示子畫素。 同時,日本專利案號3 8 0 5 1 5 0 (此後稱爲專利文獻2 ) 揭露一種液晶顯示裝置,其包括液晶面板,其中紅色輸出 子畫素、綠色輸出子畫素、藍色輸出子畫素、及輝度子畫 素形成主畫素單元,以進行彩色顯示,包括: 計算機構,以使用從一輸入影像信號獲得的紅色輸入 子畫素、綠色輸入子畫素、及藍色輸入子畫素的數位値Ri 、Gi、及Bi來計算驅動輝度子畫素之數位値W及驅動紅色 輸入子畫素、綠色輸入子畫素、及藍色輸入子畫素的數位 値 Ro、Go、及 Bo; 該計算機構計算數位値R〇、Go、及Bo還有W的這種 値以滿足下列關係201137841 VI. Description of the Invention: [Technical Field] The present invention relates to a driving method of an image display device and a driving method of a combination of image display devices. [Prior Art] In recent years, an image display device such as a color liquid crystal display device has a problem of an increase in power consumption involving performance improvement. In particular, for example, in the color liquid crystal display device, the resolution is improved, the color reproduction range is increased, and the luminance advancement is increased, and the power consumption of the backlight is increased. A device for solving the above problem has been noticed. The device has four sub-pixel configurations including 'except for displaying red display sub-pixels in red, green display sub-pixels in green, and blue in blue. Displaying the sub-pixels of the three sub-pixels', for example, displaying a white white display sub-pixel. White displays sub-pictures to enhance brightness. Since the four sub-pixel configurations can achieve high luminance similar to the power consumption of the display device in the related art, if the luminance is equal to that of the related art, the power consumption of the backlight can be reduced and the display quality can be expected to be improved. . For example, a color image display device disclosed in Japanese Patent No. 3 1 6702 6 (hereinafter referred to as Patent Document 1) includes: a mechanism for generating three different color signals from an input signal using an additive primary color program; and a mechanism, Adding a color signal of the three-color phase in an equal ratio to generate an auxiliary signal, and supplying a total of four display signals including the auxiliary signal and three different color signals obtained by subtracting the auxiliary signal from the three-phase signal to the -5,378,384,41 auxiliary signal to Display unit. It is noted that the three different color signals drive the red display sub-pixel, the green display sub-pixel, and the blue display sub-pixel, while the auxiliary signal drives the white display sub-pixel. Meanwhile, Japanese Patent No. 3 8 0 5 1 5 0 (hereinafter referred to as Patent Document 2) discloses a liquid crystal display device including a liquid crystal panel in which a red output sub-pixel, a green output sub-pixel, and a blue output sub-picture The prime and the luminance sub-pixel form a main pixel unit for color display, comprising: a computing mechanism to use a red input sub-pixel obtained from an input image signal, a green input sub-pixel, and a blue input sub-picture The digits 値Ri, Gi, and Bi of the prime are used to calculate the digits of the driving luminance sub-pixels and the digits of the red input sub-pixels, the green input sub-pixels, and the blue input sub-pixels, Ro, Go, and Bo; The computing organization calculates the number of digits 値R〇, Go, and Bo and W to satisfy the following relationship
Ri: Gi: Bi = (Ro + W): (Go + W): (Bo + W) 且藉此藉由添加輝度子鷇素實現來自僅包括紅色輸入 子畫素、綠色輸入子畫素、及藍色輸入子畫素的組態之輝 度的增進。 此外,PCT/KR 2004/000659 (此後稱爲專利文獻3 ) 揭露一種液晶顯示裝置,其包括各別組態自紅色顯示子畫 素、綠色顯示子畫素、及藍色顯示子畫素之第一畫素及各 -6- 201137841 別組態自紅色顯示子畫素'綠色顯示子畫素、及白色顯示 子畫素之第一畫素’且其中在第一方向中交替排列第一及 第二畫素並亦在第二方向中交替排列第—及第二畫素。專 利文獻3進一步揭露一種液晶顯示裝置,其中在第一方向 中交替排列第一及第二畫素’同時,在第二方向中,互相 相鄰排列第一畫素兼之互相相鄰排列第二畫素。 【發明內容】 順帶一提’在專利文獻1及專利文獻2中揭露的裝置中 ’必須從四個子畫素組態一個畫素。這減少紅色顯示子畫 素或紅色輸出子畫素、綠色顯示子畫素或綠色輸出子畫素 、及藍色顯示子畫素或藍色輸出子畫素的孔徑區域的面積 ’導致通過孔徑區域之最大透光量的減少。因此,會有雖 額外設置了白色顯示子畫素或輝度子畫素但無法實現整個 畫素之想要的輝度增加之情況。 同時,在專利文獻3中揭露的裝置中,第二畫素包括 取代藍色顯示子畫素之白色顯示子畫素。此外,至白色顯 示子畫素之輸出信號爲至假設在白色顯示子畫素的取代前 所存在的藍色顯示子畫素之輸出信號。因此,無法實現至 構成第一畫素之藍色顯示子畫素及構成第二畫素之白色顯 示子畫素的輸出信號之最佳化。此外,由於發生色彩變異 或輝度變異,亦會有畫面品質明顯惡化的問題。 因此,希望能提供一種影像顯示裝置之驅動方法,其 可實現至個別子畫素之輸出信號的最佳化並可肯定地實現 201137841 輝度之增加,以及一種包括前述類型的影像顯示裝置之影 像顯示裝置組合的驅動方法。 根據本發明之一實施例,提供一種影像顯示裝置之驅 動方法,該影像顯示裝置包括影像顯示面板,其中總共P〇 X Q〇畫素排列在二維矩陣中,包括在第一方向中排列的P〇 畫素及在第二方向中排列的Q〇畫素,以及信號處理區; 該些畫素之每一者包括顯示第一原色之第一子畫素、 顯示第二原色之第二子畫素、及顯示第三原色之第三子畫 素、及顯示第四顏色之第四子畫素; 該信號處理區能夠: 依據至該畫素的第一子畫素輸入信號計算至該些畫素 的每一者之第一子畫素輸出信號,並輸出該第一子畫素輸 出信號至該第一子畫素; 依據至該畫素的第二子畫素輸入信號計算至該畫素之 第二子畫素輸出信號,並輸出該第二子畫素輸出信號至該 第二子畫素;以及 依據至該畫素的第三子畫素輸入信號計算至該畫素之 第三子盪素輸出信號,並輸出該第三子畫素輸出信號至該 第三子畫素, 該驅動方法包括進一步由該信號處理區所進行之下列 步驟: 依據從至當沿著該第二方向計數該些畫素之第(p,q )個畫素,其中時p爲1、2、…、P〇且q爲1、2、...、Q〇, 之該第一子畫素輸入信號、該第二子畫素輸入信號、及該Ri: Gi: Bi = (Ro + W): (Go + W): (Bo + W) and thereby adding from the red input sub-pixel, the green input sub-pixel, and The enhancement of the brightness of the configuration of the blue input sub-pixel. Further, PCT/KR 2004/000659 (hereinafter referred to as Patent Document 3) discloses a liquid crystal display device including a respective configuration of a red display sub-pixel, a green display sub-pixel, and a blue display sub-pixel. One pixel and each -6- 201137841 Do not configure the red display sub-pixel 'green display sub-pixel, and white display sub-pixel first pixel' and in which the first and the first are arranged alternately in the first direction The two pixels also alternately arrange the first and second pixels in the second direction. Patent Document 3 further discloses a liquid crystal display device in which first and second pixels are alternately arranged in a first direction. Meanwhile, in the second direction, first pixels are arranged adjacent to each other and second images are arranged adjacent to each other. Prime. SUMMARY OF THE INVENTION Incidentally, in the apparatus disclosed in Patent Document 1 and Patent Document 2, one pixel must be configured from four sub-pixels. This reduces the area of the aperture area of the red display sub-pixel or red output sub-pixel, the green display sub-pixel or the green output sub-pixel, and the blue display sub-pixel or blue output sub-pixel to cause the aperture area to pass through The reduction in the maximum amount of light transmitted. Therefore, there is a case where the white display sub-pixel or the luminance sub-pixel is additionally provided, but the desired luminance of the entire pixel cannot be increased. Meanwhile, in the device disclosed in Patent Document 3, the second pixel includes a white display sub-pixel that replaces the blue display sub-pixel. Further, the output signal to the white display sub-pixel is an output signal of the blue display sub-pixel which is assumed to exist before the substitution of the sub-pixel is displayed in white. Therefore, the optimization of the output signals to the blue display sub-pixels constituting the first pixel and the white display sub-pixels constituting the second pixel cannot be realized. In addition, due to color variation or luminance variation, there is also a problem that the picture quality is significantly deteriorated. Therefore, it is desirable to provide a driving method of an image display device that can optimize an output signal to an individual sub-pixel and can positively achieve an increase in luminance of 201137841, and an image display including the image display device of the foregoing type The driving method of the device combination. According to an embodiment of the present invention, a method for driving an image display device is provided. The image display device includes an image display panel, wherein a total of P〇XQ pixels are arranged in a two-dimensional matrix, including P arranged in the first direction. a pixel and a Q〇 pixel arranged in the second direction, and a signal processing area; each of the pixels includes a first sub-pixel displaying the first primary color and a second sub-picture displaying the second primary color And displaying a third sub-pixel of the third primary color and a fourth sub-pixel displaying the fourth color; the signal processing area can: calculate the pixels according to the first sub-pixel input signal to the pixel a first sub-pixel output signal of each of the two, and outputting the first sub-pixel output signal to the first sub-pixel; calculating to the pixel according to the second sub-pixel input signal to the pixel a second sub-pixel output signal, and outputting the second sub-pixel output signal to the second sub-pixel; and calculating a third sub-single of the pixel according to the third sub-pixel input signal to the pixel Outputs a signal and outputs the third sub-pixel And outputting a signal to the third sub-pixel, the driving method comprising the following steps further performed by the signal processing area: according to the (p, q)th drawing from the to the second direction of counting the pixels a first subpixel input signal, the second subpixel input signal, and the time p is 1, 2, ..., P〇 and q is 1, 2, ..., Q〇
S 201137841 第三子畫素輸入信號計算出之第四子畫素控制第二信號以 及從至沿著該第二方向定位在該第(p, q )個畫素旁的相 鄰畫素之該第一子畫素輸入信號、該第二子畫素輸入信號 、及該第三子畫素輸入信號計算出之第四子畫素控制第一 信號來計算第四子畫素輸出信號,並輸出該計算的第四子 畫素輸出信號至該第(p, q)個畫素的該第四子畫素。 根據本發明之一實施例,提供一種影像顯示裝置之驅 動方法,該影像顯示裝置包括影像顯示面板,其中總共P X Q畫素群組排列在二維矩陣中,包括在第一方向中排列 的P畫素群組及在第二方向中排列的Q畫素群組,以及信 號處理區; 該些畫素群組之每一組係從沿著該第一方向之第一畫 素及第二畫素組態; 該第一畫素包括顯示第一原色之第一子畫素、顯示第 二原色之第二子畫素、及顯示第三原色之第三子畫素; 該第二畫素包括顯示該第一原色之第一子畫素、顯示 該第二原色之第二子畫素、及顯示第四顏色之第四子畫,素 1 該信號處理區能夠: 至少依據至該第一畫素的第一子畫素輸入信號計算至 該第一畫素之第一子畫素輸出信號,並輸出該第一子畫素 輸出信號至該第一畫素的該第一子畫素; 至少依據至該第一畫素的第二子畫素輸入信號計算至 該第一畫素之第二子畫素輸出信號,並輸出該第二子畫素 -9- ϋ 201137841 輸出信號至該第一畫素的該第二子畫素; 至少依據至該第二畫素的第一子畫素輸入 該第二畫素之第—子畫素輸出信號,並輸出該 輸出信號至該第二畫素的該第一子畫素;以及 至少依據至該第二畫素的第二子畫素輸入 該第二畫素之第二子畫素輸出信號,並輸出該 輸出信號至該第二畫素的該第二子畫素; 該驅動方法包含進一步由該信號處理區所 步驟: 依據至當沿著該第二方向計數該些畫素時 )個第二畫素’其中P爲1、2、…、P且q爲1、 之該第一子畫素輸入信號、該第二子畫素輸入 第三子畫素輸入信號計算出之第四子畫素控制 及從至沿著該第二方向定位在該第(p,q )個 鄰畫素之該第一子畫素輸入信號、該第二子畫 、及該第三子畫素輸入信號計算出之第四子畫 信號來計算第四子畫素輸出信號,並輸出該計 畫素輸出信號至該第(P,q)個第二畫素的該 ;以及 進一步至少依據至第(p, q)個第二畫素 畫素輸入信號及至第(p, q)個第一畫素之該 輸入信號來計算第三子畫素輸出信號,並輸出 素輸出信號至該第三子畫素。 根據本發明之一實施例,提供一種影像顯 信號計算至 第一子畫素 信號計算至 第二子畫素 進行之下列 之第(P, q 2、…、Q, 信號、及該 第二信號以 畫素旁的相 素輸入信號 素控制第一 算的第四子 第四子畫素 之該第三子 第三子畫素 該第三子畫 示裝置組合S 201137841 The fourth sub-pixel input signal calculates a fourth sub-pixel control second signal and the neighboring pixels located next to the (p, q)th pixel along the second direction The fourth sub-pixel input signal, the second sub-pixel input signal, and the fourth sub-pixel input signal calculated by the third sub-pixel input signal control the first signal to calculate a fourth sub-pixel output signal, and output The calculated fourth subpixel output signal to the fourth subpixel of the (p, q)th pixel. According to an embodiment of the invention, a method for driving an image display device is provided. The image display device includes an image display panel, wherein a total of PXQ pixel groups are arranged in a two-dimensional matrix, including P pictures arranged in the first direction. a group of primes and a group of Q pixels arranged in a second direction, and a signal processing area; each of the groups of pixels from the first pixel and the second pixel along the first direction Configuring; the first pixel includes a first sub-pixel displaying a first primary color, a second sub-pixel displaying a second primary color, and a third sub-pixel displaying a third primary color; the second pixel includes displaying the a first sub-pixel of the first primary color, a second sub-pixel displaying the second primary color, and a fourth sub-picture displaying the fourth color, wherein the signal processing area can: at least depend on the first pixel The first subpixel input signal is calculated to the first subpixel output signal of the first pixel, and outputs the first subpixel output signal to the first subpixel of the first pixel; The second subpixel input signal of the first pixel is calculated to a second sub-pixel output signal of a pixel, and outputting the second sub-pixel -9- ϋ 201137841 output signal to the second sub-pixel of the first pixel; at least according to the second pixel The first subpixel inputs a first sub-pixel output signal of the second pixel, and outputs the output signal to the first sub-pixel of the second pixel; and at least according to the second pixel a second subpixel inputs a second subpixel output signal of the second pixel, and outputs the output signal to the second subpixel of the second pixel; the driving method includes further steps by the signal processing region : the first sub-pixel input signal, the first sub-pixel input signal, wherein P is 1, 2, ..., P, and q is 1, according to when counting the pixels along the second direction The second subpixel input is calculated by the fourth subpixel input signal and the first subpixel controlled from the second (p, q) neighboring pixels in the second direction The fourth sub-picture signal calculated by the input signal, the second sub-picture, and the third sub-pixel input signal is used to calculate the fourth sub-picture Outputting a signal, and outputting the pixel output signal to the (P, q)th second pixel; and further based at least on the (p, q)th second pixel pixel input signal and to the ( p, q) the input signal of the first pixel to calculate a third sub-pixel output signal, and output the prime output signal to the third sub-pixel. According to an embodiment of the present invention, a video display signal is calculated until the first sub-pixel signal is calculated to the second sub-pixel (P, q 2, . . . , Q, the signal, and the second signal) Controlling the third sub-third sub-pixel of the fourth sub-fourth pixel of the first calculation by the phase input semaphore adjacent to the pixel, the third sub-picture device combination
S -10- 201137841 之驅動方法,該影像顯示裝置組合包括: (A )影像顯示裝置,其包括影像顯示面板,其中總 共P〇 X Qo畫素排列在二維矩陣中,包括在第一方向中排 列的Po畫素及在第二方向中排列的Qo畫素,以及信號處理 區! 以及 (B )平面光源裝置,用以從後側照亮該影像顯示裝 置; 該些畫素之每一者包括顯示第一原色之第一子畫素、 顯示第二原色之第二子畫素、及顯示第三原色之第三子畫 素、及顯示第四顔色之第四子畫素; 該信號處理區能夠: 依據至該畫素的第一子畫素輸入信號計算至該些畫素 的每一者之第一子畫素輸出信號,並輸出該第一子畫素輸 出信號至該第一子畫素; 依據至該畫素的第二子畫素輸入信號計算至該畫素之 第二子畫素輸出信號,並輸出該第二子畫素輸出信號至該 第二子畫素;以及 依據至該畫素的第三子畫素輸入信號計算至該畫素之 第三子畫素輸出信號,並輸出該第三子畫素輸出信號至該 第三子畫素, 該驅動方法包含進一步由該信號處理區所進行之下列 步驟: 依據從至當沿著該第二方向計數該些畫素時之第(P, q)個畫素,其中P爲1、2、…、P〇且q爲1、2、…、Q〇, -11 - 201137841 之該第一子畫素輸入信號、該第二子畫素輸入信號、及該 第三子畫素輸入信號計算出之第四子畫素控制第二信號以 及從至沿著該第二方向定位在該第(p, q)個畫素旁的相 鄰畫素之該第一子畫素輸入信號、該第二子畫素輸入信號 、及該第三子畫素輸入信號計算出之第四子畫素控制第— 信號來計算第四子畫素輸出信號,並輸出該計算的第四子 畫素輸出信號至該第(p,q)個畫素的該第四子畫素。 根據本發明之一實施例,提供一種影像顯示裝置組合 之驅動方法,該影像顯示裝置組合包括: (A )影像顯示裝置,其包括影像顯示面板,其中總 共P X Q畫素群組排列在二維矩陣中,包括在第一方向中 排列的P畫素群組及在第二方向中排列的Q畫素群組,以 及信號處理區;以及 (B )平面光源裝置,用以從後側照亮該影像顯示裝 置: 該些畫素群組之每一組係從沿著該第一方向之第一畫 素及第二畫素組態; 該第一畫素包括顯示第一原色之第一子畫素、顯示第 二原色之第二子畫素、及顯示第三原色之第三子畫素; 該第二畫素包括顯示該第一原色之第一子畫素、顯示 該第二原色之第二子畫素 '及顯示第四顏色之華四子畫素 該信號處理區能夠: 至少依據至該第一畫素的第一子畫素輸入信號計算至The driving method of S-10-201137841, the image display device combination comprises: (A) an image display device comprising an image display panel, wherein a total of P〇X Qo pixels are arranged in a two-dimensional matrix, including in the first direction Arranged Po pixels and Qo pixels arranged in the second direction, and signal processing area! And (B) a planar light source device for illuminating the image display device from the rear side; each of the pixels includes a first sub-pixel displaying the first primary color and a second sub-pixel displaying the second primary color And displaying a third sub-pixel of the third primary color and displaying a fourth sub-pixel of the fourth color; the signal processing area can: calculate the pixels to the pixels according to the first sub-pixel input signal to the pixel a first sub-pixel output signal of each of the first sub-pixel output signals to the first sub-pixel; and a second sub-pixel input signal to the pixel is calculated to the pixel a second sub-pixel output signal, and outputting the second sub-pixel output signal to the second sub-pixel; and calculating a third sub-pixel to the pixel according to the third sub-pixel input signal to the pixel Outputting a signal and outputting the third sub-pixel output signal to the third sub-pixel, the driving method comprising the following steps further performed by the signal processing area: counting from the to the second direction The first (P, q) pixel of the prime time, where P is 1, 2 ..., P〇 and q are 1, 2, ..., Q〇, -11 - 201137841, the first sub-pixel input signal, the second sub-pixel input signal, and the third sub-pixel input signal are calculated The fourth sub-pixel controls the second signal and the first sub-pixel input signal from the adjacent pixels positioned next to the (p, q)th pixel along the second direction, the second a sub-pixel input signal and a fourth sub-pixel control first signal calculated by the third sub-pixel input signal to calculate a fourth sub-pixel output signal, and output the calculated fourth sub-pixel output signal to The fourth sub-pixel of the (p, q)th pixel. According to an embodiment of the present invention, a driving method of a combination of image display devices is provided. The image display device combination includes: (A) an image display device including an image display panel, wherein a total of PXQ pixel groups are arranged in a two-dimensional matrix The P pixel group arranged in the first direction and the Q pixel group arranged in the second direction, and the signal processing area; and (B) the planar light source device for illuminating the light from the rear side Image display device: each group of the pixel groups is configured from a first pixel and a second pixel along the first direction; the first pixel includes a first sub-picture showing a first primary color a second sub-pixel that displays the second primary color, and a third sub-pixel that displays the third primary color; the second pixel includes a first sub-pixel that displays the first primary color, and a second sub-pixel that displays the second primary color The sub-pixel' and the fourth color of the fourth color of the signal processing area can: calculate at least according to the first sub-pixel input signal to the first pixel to
S -12- 201137841 該第一畫素之第一子畫素輸出信號,並輸出該第一子畫素 輸出信號至該第一畫素的該第一子畫素; 至少依據至該第一畫素的第二子畫素輸入信號計算至 該第一畫素之第二子畫素輸出信號,並輸出該第二子畫素 輸出信號至該第一畫素的該第二子畫素; 至少依據至該第二畫素的第一子畫素輸入信號計算至 該第二畫素之第一子畫素輸出信號,並輸出該第一子畫素 輸出信號至該第二畫素的該第一子畫素;以及 至少依據至該第二畫素的第二子畫素輸入信號計算至 該第二畫素之第二子畫素輸出信號,並輸出該第二子畫素 輸出信號至該第二畫素的該第二子畫素: 該驅動方法包括進一步由該信號處理區所進行之下列 步驟: 依據至當沿著該第二方向計數該些畫素時之第(p,q )個第二畫素,其中P爲1、2、…、P且q爲1、2、…、Q, 之該第一子畫素輸入信號、該第二子畫素輸入信號、及該 第三子畫素輸入信號計算出之第四子畫素控制第二信號以 及從至沿著該第二方向定位在該第(p,q )個畫素旁的相 鄰畫素之該第一子畫素輸入信號、該第二子畫素輸入信號 、及該第三子畫素輸入信號計算出之第四子畫素控制第一 信號來計算第四子畫素輸出信號,並輸出該計算的第四子 畫素輸出信號至該第(p, q)個第二畫素的該第四子畫素 ;以及 進一步至少依據至第(p, q)個第二畫素之該第三子 -13- 201137841 畫素輸入信號及至第(p, q)個第一畫素之該第三子畫素 輸入信號來計算第三子畫素輸出信號’並輸出該第三子畫 素輸出信號至該第三子畫素。 藉由根據本發明之第一實施例的影像顯示裝置之驅動 方法及影像顯示裝置組合之驅動方法’依據至第(p,q) 個畫素之輸入信號及至沿著第二方向定位在第(p, q)個 畫素旁的畫素之輸入信號判斷至第(P,q)個畫素之第四 子畫素輸出信號。換言之,亦依據至定位在一特定畫素旁 之畫素的輸入信號來判斷至該特定«素的第四子畫素輸出 信號。因此,預期到至第四子畫素之輸出信號的進一步最 佳化。此外,由於設置第四子畫素,可肯定地實現輝度之 增加並可預期到顯示品質之增進》 藉由根據本發明之第二實施例的影像顯示裝置之驅動 方法及影像顯示裝置組合之驅動方法,依據至第(P,q) 個第二畫素之輸入信號及至沿著第二方向定位在第(P,q )個第二畫素旁的畫素之輸入信號判斷至第(P, q)個第 二畫素之第四子畫素輸出信號。換言之,不僅依據至組態 一特定畫素群組之第二畫素的輸入信號,亦依據至定位在 該特定第二畫素旁之畫素的輸入信號來判斷至組態一特定 畫素群組之該特定第二畫素的第四子畫素輸出信號。因此 ,預期到至第四子畫素之輸出信號的進一步最佳化。另外 ,由於在組態自第一及第二畫素之畫素群組中設置一個第 四子畫素,可抑制子畫素之孔徑區域的面積減少。結果’ 可肯定地實現輝度之增加並可預期到顯示品質之增進。S -12- 201137841 The first sub-pixel of the first pixel outputs a signal, and outputs the first sub-pixel output signal to the first sub-pixel of the first pixel; at least according to the first picture The second sub-pixel input signal of the element is calculated to the second sub-pixel output signal of the first pixel, and outputs the second sub-pixel output signal to the second sub-pixel of the first pixel; Calculating a first sub-pixel output signal to the second pixel according to the first sub-pixel input signal to the second pixel, and outputting the first sub-pixel output signal to the second pixel a sub-pixel; and calculating a second sub-pixel output signal to the second pixel based on at least the second sub-pixel input signal to the second pixel, and outputting the second sub-pixel output signal to the The second sub-pixel of the second pixel: the driving method includes the following steps further performed by the signal processing region: according to the (p, q) when counting the pixels along the second direction a second pixel, wherein P is 1, 2, ..., P and q is 1, 2, ..., Q, the first sub-pixel input The fourth sub-pixel control second signal calculated by the input signal, the second sub-pixel input signal, and the third sub-pixel input signal is located at the first (p, q) along the second direction The first sub-pixel input signal of the adjacent pixel next to the pixel, the second sub-pixel input signal, and the fourth sub-pixel input control signal calculated by the third sub-pixel input signal Calculating a fourth sub-pixel output signal, and outputting the calculated fourth sub-pixel output signal to the fourth sub-pixel of the (p, q)th second pixel; and further according to at least p, q) the third sub- 13-201137841 pixel input signal and the third sub-pixel input signal to the (p, q)th first pixel to calculate the third sub-pixel Outputting a signal 'and outputting the third sub-pixel output signal to the third sub-pixel. The driving method of the image display device according to the first embodiment of the present invention and the driving method of the image display device combination are based on the input signals to the (p, q)th pixel and to the second direction (the second direction) p, q) The input signal of the pixel next to the pixel is judged to the fourth sub-pixel output signal of the (P, q)th pixel. In other words, the fourth sub-pixel output signal to the particular element is also determined based on the input signal to the pixel positioned next to a particular pixel. Therefore, further optimization of the output signal up to the fourth sub-pixel is expected. In addition, since the fourth sub-pixel is set, the increase in luminance can be surely realized and the improvement of the display quality can be expected. The driving method of the image display device and the combination of the image display device according to the second embodiment of the present invention are driven. The method determines, according to an input signal to the (P, q)th second pixel and an input signal to a pixel positioned next to the (P, q)th second pixel in the second direction, to (P, q) The fourth sub-pixel output signal of the second pixel. In other words, determining to configure a particular pixel group based not only on the input signal to the second pixel configuring a particular pixel group, but also on the input signal to the pixel positioned next to the particular second pixel. The fourth sub-pixel output signal of the particular second pixel of the group. Therefore, further optimization of the output signal up to the fourth sub-pixel is expected. In addition, since a fourth sub-pixel is set in the pixel group configured from the first and second pixels, the area reduction of the aperture area of the sub-pixel can be suppressed. As a result, the increase in luminance can be surely achieved and an improvement in display quality can be expected.
S -14- 201137841 本發明之上述及其他目的、特徵、及優點將從下列說 明及所附之申請專利範圍,連同附圖,變得明顯,且在圖 中由類似參考符號標示類似部件或元件。 【實施方式】 於下,針對本發明之較佳實施例說明本發明。然而, 本發明不限於這些實施例,且在實施例之說明中所述的各 種數値、材料、及之類僅爲例示性。注意到以下列順序提 出說明。 1.根據本發明之第一或第二實施例的影像顯示裝置 之驅動方法及影像顯示裝置組合之驅動方法的槪述 2 ·可行範例1 (根據本發明之第一實施例的影像顯示 裝置之驅動方法及影像顯示裝置組合之驅動方法,第1A 模式) 3 .可行範例2 (可行範例1之修改例,第1 A模式) 4·可行範例3 (可行範例2之修改例) 5 _可行範例4 (可行範例2之另一修改例) 6·可行範例5 (根據本發明之第二實施例的影像顯示 之驅動方法及影像顯示裝置組合之驅動方法,第2A 模式) 7.可行範例6 (可行範例2之修改例,第2B模式), 以及其他 $ _本發明之第一或第二實施例的影像顯示裝置之驅 動方法及影像顯示裝置組合之驅動方法的槪述 -15- 201137841 根據本發明之第一實施例的驅動方法可以下列方式加 以組態。 尤其,關於第(p,q)個畫素, 具有心.(15, q)的信號値之第一子畫素輸入信號, 具有χ2-(Ρ, q>的信號値之第二子畫素輸入信號,以及 具有χ3-(Ρ, q>的信號値之第三子畫素輸入信號 係輸入到信號處理區。此外,信號處理區輸出,關於 第(P,q)個畫素, 判斷第一子畫素之顯示等級(display gradation)之 具有的信號値之第一子畫素輸出信號, 判斷第二子畫素之顯示等級之具有Χ2-(Ρ, ^的信號値 之第二子畫素輸出信號, 判斷第三子畫素之顯示等級之具有X3.(P, q)的信號値 之第三子畫素輸出信號,以及 判斷第四子畫素之顯示等級之具有X4.(P, q)的信號値 之第四子畫素輸出信號。此外,關於定位在第(p,q)個 畫素旁之相鄰畫素, 具有χ,.ίρ,Ο的信號値之第一子畫素輸入信號, 具有X2.(P, CT)的信號値之第二子畫素輸入信號,以及 具有X3-(P, q.)的信號値之第三子畫素輸入信號 係輸入到信號處理區。此外’信號處理區輸出’關於 該相鄰畫素, 判斷第一子畫素之顯示等級之具有Χΐ·(Ρ,以的信號値 之第一子畫素輸出信號,The above and other objects, features, and advantages of the present invention will be apparent from the description and appended claims. . [Embodiment] Hereinafter, the present invention will be described with respect to preferred embodiments of the invention. However, the present invention is not limited to the embodiments, and various numbers, materials, and the like described in the description of the embodiments are merely illustrative. Note that the instructions are presented in the following order. 1. Description of the driving method of the image display device according to the first or second embodiment of the present invention and the driving method of the combination of the image display device 2. Possible Example 1 (The image display device according to the first embodiment of the present invention Driving method and driving method of image display device combination, 1A mode) 3. Feasible example 2 (Modification of feasible example 1, 1st A mode) 4. Feasible example 3 (Modification of feasible example 2) 5 _ Feasible example 4 (Another modification of the feasible example 2) 6. Possible example 5 (Driving method of image display and driving method of image display device combination according to the second embodiment of the present invention, 2A mode) 7. Possible example 6 ( Modification of the possible example 2, the 2B mode), and other methods of driving the image display device of the first or second embodiment of the present invention and the driving method of the image display device combination -15-201137841 The driving method of the first embodiment of the invention can be configured in the following manner. In particular, regarding the (p, q)th pixel, the first sub-pixel input signal having the signal of (15, q) has a second sub-pixel of χ2-(Ρ, q> The input signal and the third sub-pixel input signal having a signal of χ3-(Ρ, q> are input to the signal processing area. In addition, the signal processing area outputs, regarding the (P, q) pixels, the judgment The first sub-pixel output signal of the signal 値 of the display gradation of the sub-pixel, and the second sub-picture of the signal level Χ2-(Ρ, ^ of the display level of the second sub-pixel is determined. The output signal, the third sub-pixel output signal of the signal having the X3.(P, q) of the display level of the third sub-pixel, and the display level of the fourth sub-pixel having the X4. (P , q) the fourth sub-pixel output signal of the signal 。. In addition, regarding the adjacent pixel positioned next to the (p, q)th pixel, the first sub-signal with χ, .ίρ, Ο a pixel input signal, a second sub-pixel input signal having a signal of X2. (P, CT), and a third sub-pixel having a signal of X3-(P, q.) The input signal is input to the signal processing area. In addition, the 'signal processing area output' determines the display level of the first sub-pixel with respect to the adjacent pixel, and has the first sub-pixel output of the signal 値signal,
S -16- 201137841 判斷第二子畫素之顯示等級之具有Χ2·(ρ,〇的信號値 之第二子畫素輸出信號, 判斷第三子畫素之顯示等級之具有Χ3·(ρ,C的信號値 之第三子畫素輸出信號’以及 判斷第四子畫素之顯示等級之具有Χ4·(Ρ, 〇的信號値 之第四子畫素輸出信號。 同時,根據本發明之第二實施例的驅動方法可以下列 方式加以組態。 尤其,關於組態第(p,q)個畫素群組之第一畫素’ 具有XHp,。.,的信號値之第一子畫素輸入信號’ 具有χ2·(ρ,q)的信號値之第二子畫素輸入信號’以及 具有X3-(p,q)的信號値之第三子畫素輸入信號 係輸入到信號處理區,以及 關於組態第(p,q )個畫素群組之第二畫素, 具有χι-(Ρ, q).2的信號値之第一子畫素輸入信號’ 具有χ2-(ρ, q) .2的信號値之第二子畫素輸入信號,以及 具有X3.(P,q) .2的信號値之第三子畫素輸入信號 係輸入到信號處理區。 此外’關於組態第(P, q )個畫素群組之第一畫素, 信號處理區輸出 判斷第一子畫素之顯示等級之具有χ^ρ, ^^的信號値 之第一子畫素輸出信號’ 判斷第二子畫素之顯示等級之具有X2.(p, q) ^的信號 値之第二子竃素輸出信號,以及 -17- 201137841 判斷第三子畫素之顯示等級之具有χ3·(Ρ, ^的信號 値之第三子畫素輸出信號。 此外,關於組態第(P,q )個畫素群組之第二畫素, 信號處理區輸出 判斷第一子畫素之顯示等級之具有X HP, cn-2的信號値 之第一子畫素輸出信號, 判斷第二子畫素之顯示等級之具有X2.(p, q) .2的信號 値之第二子畫素輸出信號,以及 判斷第四子畫素之顯示等級之具有X4.(P, «〇-2的信號値 之第四子畫素輸出信號。 此外,關於定位在第(P,q)個第二畫素旁之相鄰畫 素, 具有Xl.(p, 的信號値之第一子畫素輸入信號, 具有X 2. (p,cn的信號値之第二子畫素輸入信號,以及 具有X3-(p, q_)的信號値之第三子畫素輸入信號 係輸入到信號處理區。 在此,以下列方式界定 Max(p,q)、Min(p, q)、Max(p, 、 Min(p,q).i、Max(p,q)-2、Min(p, q).2、Max(p, q.)、及 Min(p, q.)。 此外,術語「輸入信號」及「輸出信號」有時是指信號本 身且有時是指信號之輝度。S -16- 201137841 Judging the display level of the second sub-pixel has a second sub-pixel output signal of Χ2·(ρ,〇 signal ,, and determining that the display level of the third sub-pixel has Χ3·(ρ, a third sub-pixel output signal of the signal C of C and a fourth sub-pixel output signal having a signal level of Χ4·(Ρ, 〇 of the fourth sub-pixel is displayed. Meanwhile, according to the present invention The driving method of the second embodiment can be configured in the following manner. In particular, regarding the configuration of the first pixel of the (p, q) pixel group, the first sub-pixel having the signal of XHp, . The input signal 'the second sub-pixel input signal ' having the signal χ2·(ρ,q) 以及 and the third sub-pixel input signal having the signal X of X3-(p,q) are input to the signal processing area, And a second pixel for configuring the (p, q)th pixel group, the first subpixel input signal having a signal of χι-(Ρ, q).2 has χ2-(ρ, q The second subpixel input signal of the signal of .2 and the third subpixel input signal of the signal of X3.(P,q) .2 are input to No. Processing area. In addition, regarding the first pixel of the configuration (P, q) pixel group, the signal processing area outputs a signal having χ^ρ, ^^ indicating the display level of the first sub-pixel. The first sub-pixel output signal 'determines the display level of the second sub-pixel with the signal of X2. (p, q) ^, the second sub-halogen output signal, and -17-201137841 determines the third sub-picture The display level of the third sub-pixel output signal with χ3·(Ρ, ^ signal 。. In addition, regarding the second pixel of the configuration (P, q) pixel group, signal processing area output Determining the first sub-pixel output signal of the signal of X HP, cn-2 of the display level of the first sub-pixel, and determining that the display level of the second sub-pixel has X2.(p, q) .2 The second sub-pixel output signal of the signal ,, and the fourth sub-pixel output signal of the signal X having the display level of the fourth sub-pixel is determined to be X4. (P, «〇-2 signal 。. (P, q) adjacent pixels next to the second pixel, having the first sub-pixel input signal of X1. (p, signal ,, having X 2. (p, cn letter) The second sub-pixel input signal and the third sub-pixel input signal having the signal of X3-(p, q_) are input to the signal processing area. Here, Max(p, q) is defined in the following manner , Min(p, q), Max(p, , Min(p,q).i, Max(p,q)-2, Min(p, q).2, Max(p, q.), and Min (p, q.) In addition, the terms "input signal" and "output signal" sometimes refer to the signal itself and sometimes to the luminance of the signal.
Max(p, q):至第(p,q)個畫素之包括第一子畫素輸 入信號値Xidp, q)、第二子畫素輸入信號値χ2·(ρ, q)、第三 子畫素輸入信號値X3.(p,…的三個子畫素輸入信號値之中 的最大値Max(p, q): to the (p, q)th pixel including the first subpixel input signal 値Xidp, q), the second subpixel input signal 値χ2·(ρ, q), the third Subpixel input signal 値X3.(p,...the maximum of the three subpixel input signals 値
S -18- 201137841S -18- 201137841
Min(p, q):至第(P,q)個畫素之包括第一子畫 入信號値)U-(P, <0、第二子畫素輸入信號値x2-(p, q) ' 子畫素輸入信號値Χ3·(ρ, q)的三個子畫素輸入信號値 的最小値Min(p, q): to the (P, q)th pixel including the first sub-input signal 値) U-(P, <0, the second sub-pixel input signal 値x2-(p, q ) 'Subpixel input signal 値Χ3·(ρ, q) The minimum of three subpixel input signals 値
Max(p,q).i.至弟(p, q)個第一畫素之包括第一 素輸入信號値q)-!、第二子畫素輸入信號値X2_(| 、第三子畫素輸入信號値x3.(p, q) ·,的三個子畫素輸入 値之中的最大値Max(p,q).i. to the younger (p, q) first pixels including the first element input signal 値q)-!, the second sub-pixel input signal 値X2_(|, the third sub-picture The maximum value of the three subpixel inputs 値 of the prime input signal 値x3.(p, q) ·,
Miiihqn .至桌(p,q)個第—畫素之包括第一 素輸入信號値x,-(p,、第二子畫素輸入信號値X2_n 、第三子畫素輸入信號値的三個子畫素輸入 値之中的最小値Miiihqn. to the table (p, q) first-pixel includes the first element input signal 値x, - (p, the second sub-pixel input signal 値X2_n, the third sub-pixel input signal 値 three sub-pixels The minimum number of pixels input 値
Max(P,q)-2:至第(p,q)個第二畫素之包括第一 素輸入信號値Xb(p,q)·2、第二子畫素輸入信號値X2_( 、第三子畫素輸入信號値Χ3·(ρ,q)_2的三個子畫素輸Λ 値之中的最大値Max(P,q)-2: to the (p,q)th second pixel including the first prime input signal 値Xb(p,q)·2, the second subpixel input signal 値X2_( ,, The three subpixels of the three subpixel input signal 値Χ3·(ρ,q)_2 are the largest of the three subpixels.
Mln(P,q)-2:至第(p,q)個第二畫素之包括第一 素輸入信號値X1_(p,q>·2、第二子畫素輸入信號値X2 ( 、第二子畫素輸入信號値X3 (p,q)_2的三個子畫素輸乂 値之中的最小値Mln(P,q)-2: to the (p, q)th second pixel including the first element input signal 値X1_(p, q> 2, the second sub-pixel input signal 値X2 (, The minimum of the three subpixel inputs of the two subpixel input signal 値X3 (p,q)_2
MaX(P, q.):至定位在第(p,q)個畫素或第(p 個第二畫素旁的相鄰畫素之包括第—子畫素輸入信 χ1-(Ρ’ q’)、第—子畫素輸入信號値㈠,,q,)、第三子畫 入信號値X3_(p, 〇的三個子畫素輸入信號値之中的最^ 素輸 第三 之中 子畫 ?,q) · 1 .信號 •子畫 p,q) -1 .信號 •子畫 p> q)-2 .信號 -子畫 p. q)-2 .信號 ,q) 號値 [素輸 t値 -19- 201137841MaX(P, q.): to the (p, q)th pixel or the (nth pixel adjacent to the second pixel) including the first sub-pixel input signal 1-(Ρ' q '), the first sub-pixel input signal 値 (1), q,), the third sub-input signal 値X3_ (p, 最 the three sub-pixel input signals 値 the most Draw?, q) · 1. Signal • Sub-picture p, q) -1. Signal • Sub-picture p> q)-2. Signal-sub-picture p. q)-2. Signal, q) No. T値-19- 201137841
Min(p,q,):至定位在第(p,q)個畫素或第(p,q)個第 二畫素旁的相鄰畫素之包括第一子畫素輸入信號値xMp,d、 第二子畫素輸入信號値x2.(p,q,)、第三子畫素輸入信號値 x3-(P,q.)的三個子畫素輸入信號値之中的最小値。 注意到定位在第(p,q )個畫素的相鄰畫素或定位在 第(P,q)個第二畫素旁的相鄰畫素可爲第(p,q-Ι)個 畫素,或可爲第(P,q+Ι)個畫素,或第(P,q-Ι)個畫 素及第(P,q + Ι )個畫素兩者。 根據本發明之第一實施例的驅動方法可具有一種模 式,其中依據Min(p, q>計算第四子畫素控制第二信號値 SG2-(p, q)並依據Min(p,q.)計算第四子畫素控制第一信號値 SG丨.(p, q)。注意到爲了方便說明,剛才敘述的這一種模式 此後稱爲「第1 A模式」。 詳言之,在第1A模式中,可從下列式子計算出第四 子畫素控制第二信號値SG2.(P, q>及第四子畫素控制第一信 號値 SGi.(p, q)。注意到式子中之 C|i、C12、C13、Ci4、C15、 及C16爲常數。針對第四子畫素控制第二信號値SG2.(p, q)及 第四子畫素控制第一信號値SG^p, q)的每一者之値該施加 什麼値或什麼式子可藉由製造影像顯示裝置或影像顯示裝 置組合的原型並例如藉由影像觀賞者來進行影像之評估以 適當地加以判斷。 SG2-(p, a) = c 11 (Min(p, q)) (1_ι_Α) (1—1—B) SGi-{P,Q) = cn (M i Πίρ,α-))Min(p,q,): to the adjacent pixel adjacent to the (p, q)th pixel or the (p, q)th second pixel, including the first subpixel input signal 値xMp, d, the second subpixel input signal 値x2. (p, q,), the third subpixel input signal 値x3-(P, q.) of the three subpixel input signals 値 minimum 値. Note that adjacent pixels positioned at the (p, q)th pixel or adjacent pixels positioned next to the (P,q)th second pixel may be the (p,q-Ι)th picture. The prime, or may be the (P, q + Ι) pixels, or the (P, q-Ι) pixels and the (P, q + Ι) pixels. The driving method according to the first embodiment of the present invention may have a mode in which the fourth sub-pixel is controlled according to Min(p, q> to control the second signal 値 SG2-(p, q) and according to Min(p, q. Calculating the fourth sub-pixel control first signal 値 SG 丨 (p, q). Note that for convenience of explanation, the mode just described is hereinafter referred to as "1st A mode". In detail, at 1A In the mode, the fourth sub-pixel control second signal 値 SG2. (P, q > and the fourth sub-pixel control first signal 値 SGi. (p, q) can be calculated from the following equation. C|i, C12, C13, Ci4, C15, and C16 are constants. The second signal 値 SG2. (p, q) and the fourth sub-pixel control first signal 値 SG^ are controlled for the fourth sub-pixel. Each of p, q) can be determined by making a prototype of the image display device or the combination of the image display device and evaluating the image, for example, by an image viewer. SG2-(p, a) = c 11 (Min(p, q)) (1_ι_Α) (1—1—B) SGi-{P,Q) = cn (M i Πίρ,α-))
S • 20- 201137841 或者 • . (1-2-A), …(1-2-B) s G2-(p.q) = c 12 (M i n (PiQ)): SGHp^scuOVIin^tn) 否則 s G2-(pt q) = c 13 s G 卜{p. q) == C 13 (Max(P>Q)) 1/2 (Max(p,q-)) 1/2 ...(1—3—A)f .· · (1-3—B) 否則 SG2-(piq) = Ci4{ (Min(p,q)/Max(p,q,.2)或(2n-l)} ... (1-4-A) SGi-(p,q) = ci4 { (Min(p,q-)/Max(p,q.))或(2n-l)} ...(1-4-B) 否則 SG2_(p,q> = c15[ { (2n-l) .Min(p,q)/(Majqp'^-Mindq)) }或 (2n-l)] ... (1-5-A) SGi-(P/q) = ci5[ { (2n-l) -Minjp,^,/(Max(p,q-)-Min(p,q-)) }或 (2n-l)] ...(1-5-B) 否則 SG2-(p,q) = CisiMaxdq)1’2 及 Min(p,q)之値的較低者)·.·(1-6-A) SG^p'q) = 〇16{Μ3Χ(Ρ〇1/2 及 Minhq,)之値的較低者} . .· (1-6-B) 此外,可組態第1 A模式使得,關於第(p,q )個畫素 至少依據第一子畫素輸入信號,亦即,第一子畫素輸 -21 - 201137841 入信號値XUP, q) ' Max(p, q)、Min(p, q)、及第四子畫素控 制第二信號,亦即信號値SG2-(P,q)計算第一子畫素輸出信 號或第一子畫素輸出信號値X^p, q); 至少依據第二子畫素輸入信號,亦即,第二子畫素輸 入信號値x2.(p, q)、Max(p, q)、Min(p,q)、及第四子畫素控 制第二信號,亦即信號値SG2.(P, q)計算第二子畫素輸出信 號或第二子畫素輸出信號値x2-(p, q);以及 至少依據第三子畫素輸入信號,亦即,第三子畫素輸 入信號値X3-(P, q>、Max(p, q)、Min(p, q) '及第四子畫素控 制第二信號,亦即信號値SG2-(P, 〇計算第三子畫素輸出信 號或第三子畫素輸出信號値X3-(P, q)。 或者,可組態根據本發明之第一實施例的驅動方法使 得, 其中;f界定爲取決於影像顯示裝置之常數, 藉由信號處理區來計算其中使用藉由添加第四顏色而 膨脹之HSV (色相、飽和度、及明度)色空間中之飽和度 s作爲變數的亮度之最大値vmax(s),以及 該信號處理區 (a) 依據至複數畫素的該些子畫素輸入信號値計算 該複數畫素之該飽和度S及該亮度v(s), (b) 至少依據來自關於該複數畫素而計算的Vmax(S)/ V(S)的該些値之一計算膨脹係數α 〇,以及 (c) 至少依據至該第(P,q)個畫素之該第一子畫素 輸入信號及該膨脹係數計算該第(p, q)個畫素之該第 -22- 201137841 一子畫素輸出信號; 至少依據至該第(P,q)個畫素之該第二子畫素輸入 信號及膨脹係數α 〇計算該第二子畫素輸出信號;以及 至少依據至該第(p,q)個畫素之該桌二子畫素輸入 信號及膨脹係數《 〇計算該第三子畫素輸出信號。注意到 爲了方便說明剛才敘述的這種模式此後稱爲「第1 Β模式」 。可針對每一影像顯示訊框判斷膨脹係數α 0。此外,在 上述組態中,在上述步驟(C )之後’可依據膨脹係數α 〇 減少平面光源裝置的輝度。 其中由S(p,q)表示第(P,q)個畫素之飽和度並由V(P> q)表示亮度,可以下列方式表示它們: S (p, q} = (M X (p, q) — M i n (p, q)) /M a X (ρ· 〇) V (p, q) = M a x (Pi Q) 注意到飽和度s可採取從0至1的範圍中之値且亮度V 可採取從〇至2n-l的値,其中η爲顯示等級位元數量。「 HSV色空間」之「Η」象徵一種顏色的色相代表,且「S」 象徵一種顏色之飽和度或鮮豔度的色度表示。同時,「V 」象徵一種顏色的亮度値或亮度的明亮値表示。此應相同 應用至下列說明中。 此外,可依據Min(p,q)及膨脹係數〇:〇計算第四子畫素 控制第二信號値SG2.(P,q)並依據及膨脹係數α 〇計 算第四子畫素控制第一信號値SGhp,q)。詳言之,可從下 列式子計算第四子畫素控制第二信號値SG2.<P,…及第四子 畫素控制第一信喊値SGi-(p,q)。注意到式子中之C21' C22 -23- 201137841 、c23、c24、C25、及C26爲常數。針對第四子畫素控制第二 信號値SG2-(P, q)及第四子畫素控制第一信號値SGhp,…的 每一者之値該施加什麼値或什麼式子可藉由製造影像顯示 裝置或影像顯示裝置組合的原型並例如藉由影像觀賞者來 進行影像之評估以適當地加以判斷。 S G2-(p, q) == c 21 (M i Π (Pi Q)) · 〇{〇 (2-1-Β) • .· (2~2—A)/ …(2-2-Β) (2-3-A) (2-3-B) SGh(p,q> = C21 (Μ i η (P.Q*)) · α〇 或者 S G2-(PiQ) = c 22 (Μ i η (Ρ,α)) 2 · α〇 SGH(p,Q) = C22(Min(p,q*>)2.a0 否則 s G2HP,q> = c 23 (Μ a X (ρ,Q>) 1/2 ♦ αο S Gl-(p.q) = C23 (MaX(p5af)) 1/2 · 〇!〇 否則 3〇2-(1),())=(;24{%111(|),(|)/^^(1^).2)或(2|1-1)及〇:。之乘積}...(2-4-八) SG卜(p,q) =。24{ (Min(p,q.) /Max(p,q.))或(2n-l)及 α 〇之乘積}... (2.4-B) 否則 SG2-(p, q)=c2s[{(2n-l)-Min(p> q/(Max(p, q)-Min(p, q))}^(2n-l)R a 〇2MW)l· (2-5-A) SGi_{P,q>= c25[{(2n-】)_Min_/(Max(p,q,)-Min(p,q).)}或(2n-l)及a〇之乘積}]·.· (2-5-B) SG2.(p, q) = c26{Max(p, q) 1/2及Min(p, q)之値的較低者及 a Q之乘積}..· (2-6-A) SGi-(p,q) = 〇26{ Max(p,q,)1/2及Mir^po之値的較低者及 a g之乘積}…(2-6-B) s •24- 201137841 此外,在上述第1A模式及第1B模式中,其中Cn及C12 爲常數,由下計算第(p,q)個畫素之第四子畫素輸出信 號値 X 4 . ( p,q ) ^4-(p,q) ~ (Cll SG2-(p,q) + Ci2 * SGi-(p< q) ) / ( Cn + ^12 ) .· · (3-A) 或藉由 x4-(p,q) = Cn'SG2-(p#q) + C12'SGi-(Piq) . . . (3-B) 否則藉由 X4-(p,q) = 〇11· (SG2-(p,q) — SGi-(p,q)) + Ci2.SGi-(p,q) -·. (3—C) 或可藉由下列計算 ^4-(p,q) = [ (SG2-(p,q) + SGl- (p, q) 2 ) / 2 ] 1/,2 ... ( 3 — D) 針對第四子畫素輸出信號値X4.(p,q)2値該施加什麼 値或什麼式子可藉由製造影像顯示裝置或影像顯示裝置組 合的原型並例如藉由影像觀賞者來進行影像之評估以適當 地加以判斷。或者’可根據SG2.(p> q>的値選擇式子(3-A )至(3-D)之一或可根據SGl.(p q)的値選擇式子(3_a) 至(3-D )之一。不然,可根據SG2_(p 〇及SGi_(p,的値 選擇式子(3-A)至(3_d)之一。換言之,針對每—子畫 素群組’可固定使用式子(3-A)至(3-D)之一來計算 X4-(p, 或針對每一子畫素群組,可選擇性使用式子( 3-A)至(3-D)之—來計算 χ4.(ρ,q)。 可組態與根據本發明之第二實施例的驅動方法一起使 -25- 201137841 用的影像顯示面板,使得第一畫素及第二畫素在第二方向 中互相相鄰定位。在此例子中,組態第一畫素之第一子畫 素及組態第二畫素之第一子畫素在第二方向中可互相相鄰 設置或可不互相相鄰設置。類似地,組態第一畫素之第二 子畫素及組態第二畫素之第二子畫素在第二方向中可互相 相鄰設置或可不互相相鄰設置。類似地,組態第一畫素之 第三子畫素及組態第二畫素之第四子畫素在第二方向中可 互相相鄰設置或可不互相相鄰設置。或者,可組態影像顯 示面板,使得在第二方向中第一畫素互相相鄰設置且第二 畫素互相相鄰設置。亦在此例子中,組態第一畫素之第一 子畫素及組態第二畫素之第一子畫素在第二方向中可互相 相鄰設置或可不互相相鄰設置。類似地,組態第一畫素之 第二子畫素及組態第二畫素之第二子畫素在第二方向中可 互相相鄰設置或可不互相相鄰設置。類似地,組態第一畫 素之第三子畫素及組態第二畫素之第四子畫素在第二方向 中可互相相鄰設置或可不互相相鄰設置》 包括在此上述之較佳組態的根據本發明之第二實施例 的驅動方法可具有一種模式,其中 從Min(p,q)_2獲得第(p,q)個第二畫素之第四子畫素 控制第二信號値SG2.(P,q> ;以及 從Min(p>q·)獲得定位在第(p,q)個第二畫素旁的相 鄰畫素之第四子畫素控制第一信號値SG^p, q)。注意到爲 了方便說明,剛才所述之這種模式此後稱爲「第2A模式S • 20- 201137841 or • . (1-2-A), ...(1-2-B) s G2-(pq) = c 12 (M in (PiQ)): SGHp^scuOVIin^tn) Otherwise s G2 -(pt q) = c 13 s G 卜{p. q) == C 13 (Max(P>Q)) 1/2 (Max(p,q-)) 1/2 ...(1—3 —A)f .· · (1-3—B) Otherwise SG2-(piq) = Ci4{ (Min(p,q)/Max(p,q,.2) or (2n-l)} ... (1-4-A) SGi-(p,q) = ci4 { (Min(p,q-)/Max(p,q.)) or (2n-l)} ...(1-4-B Otherwise SG2_(p,q> = c15[ { (2n-l) .Min(p,q)/(Majqp'^-Mindq)) } or (2n-l)] ... (1-5-A ) SGi-(P/q) = ci5[ { (2n-l) -Minjp,^,/(Max(p,q-)-Min(p,q-)) } or (2n-l)] .. (1-5-B) Otherwise SG2-(p,q) = CisiMaxdq) The lower of 1'2 and Min(p,q))···(1-6-A) SG^p' q) = 较低16{Μ3Χ(Ρ〇1/2 and Minhq,) is the lower of the }} . . . (1-6-B) In addition, the 1st A mode can be configured so that, regarding the (p, q) The pixels are based on at least the first sub-pixel input signal, that is, the first sub-pixel input - 21 - 201137841 into the signal 値 XUP, q) ' Max (p, q), Min (p, q), And the fourth sub-pixel controls the second signal, that is, the signal 値 SG2-(P, q) calculates the first sub-pixel output signal or the first sub-picture The output signal 値X^p, q); at least according to the second sub-pixel input signal, that is, the second sub-pixel input signal 値x2.(p, q), Max(p, q), Min(p , q), and the fourth sub-pixel control second signal, that is, the signal 値 SG2. (P, q) calculates the second sub-pixel output signal or the second sub-pixel output signal 値x2-(p, q) And at least according to the third sub-pixel input signal, that is, the third sub-pixel input signal 値X3-(P, q>, Max(p, q), Min(p, q) ', and the fourth sub-picture Controlling the second signal, that is, the signal 値 SG2-(P, 〇 calculating the third sub-pixel output signal or the third sub-pixel output signal 値X3-(P, q). Alternatively, it can be configured according to the present invention. The driving method of the first embodiment is such that: f is defined as a constant according to the image display device, and the HSV (hue, saturation, and lightness) in which expansion is performed by adding the fourth color is calculated by the signal processing region. The saturation s in the color space is the maximum 値vmax(s) of the brightness of the variable, and the signal processing area (a) calculates the full pixel based on the sub-pixel input signals to the plurality of pixels. Degree S and the brightness v(s), (b) calculating the expansion coefficient α 〇 based on at least one of the 値 from Vmax(S) / V(S) calculated for the complex pixel, and (c) at least Calculating the -22-201137841-sub-pixel output signal of the (p, q)th pixel according to the first sub-pixel input signal to the (P, q)th pixel and the expansion coefficient; Calculating the second sub-pixel output signal according to at least the second sub-pixel input signal to the (P, q)th pixel and the expansion coefficient α ;; and at least according to the (p, q)th picture The second sub-pixel input signal and the expansion coefficient of the table are 〇 calculate the third sub-pixel output signal. Note that this mode, which has just been described, is referred to as "the first mode". The expansion coefficient α 0 can be determined for each image display frame. Further, in the above configuration, after the above step (C), the luminance of the planar light source device can be reduced in accordance with the expansion coefficient α 〇 . Where S(p,q) represents the saturation of the (P,q)th pixel and the brightness is represented by V(P>q), which can be expressed in the following way: S (p, q} = (MX (p, q) — M in (p, q)) /M a X (ρ· 〇) V (p, q) = M ax (Pi Q) Note that the saturation s can take from 0 to 1 and The brightness V can be taken from 〇 to 2n-l, where η is the number of display level bits. The “Η” of the “HSV color space” symbolizes the hue representation of a color, and the “S” symbolizes the saturation or vividness of a color. The chromaticity of the degree is expressed. At the same time, "V" symbolizes the brightness 値 or the bright 値 representation of the brightness of a color. This should be applied to the following description. In addition, it can be based on Min(p,q) and expansion coefficient 〇:〇 The fourth sub-pixel control second signal 値 SG2. (P, q) is calculated and the fourth sub-pixel control first signal 値 SGhp, q) is calculated according to the expansion coefficient α 〇. In detail, the fourth sub-pixel control second signal 値 SG2. < P, ... and the fourth sub-pixel can be controlled from the following equation to control the first handshake SGi-(p, q). Note that C21' C22 -23- 201137841, c23, c24, C25, and C26 in the formula are constants. For the fourth sub-pixel control second signal 値 SG2-(P, q) and the fourth sub-pixel control each of the first signals 値 SGhp, ..., what to apply or what can be manufactured by The prototype of the image display device or the image display device combination is evaluated by the image viewer, for example, to appropriately judge. S G2-(p, q) == c 21 (M i Π (Pi Q)) · 〇{〇(2-1-Β) • .· (2~2—A)/ ...(2-2-Β (2-3-A) (2-3-B) SGh(p,q> = C21 (Μ i η (PQ*)) · α〇 or S G2-(PiQ) = c 22 (Μ i η ( Ρ,α)) 2 · α〇SGH(p,Q) = C22(Min(p,q*>)2.a0 Otherwise s G2HP,q> = c 23 (Μ a X (ρ,Q>) 1 /2 ♦ αο S Gl-(pq) = C23 (MaX(p5af)) 1/2 · 〇!〇 Otherwise 3〇2-(1),())=(;24{%111(|),(| ) /^^(1^).2) or (2|1-1) and 〇:. Product of the product}...(2-4-eight) SG (p,q) =.24{ (Min( p,q.) /Max(p,q.)) or the product of (2n-l) and α }}... (2.4-B) Otherwise SG2-(p, q)=c2s[{(2n-l )-Min(p> q/(Max(p, q)-Min(p, q))}^(2n-l)R a 〇2MW)l· (2-5-A) SGi_{P,q> = c25[{(2n-])_Min_/(Max(p,q,)-Min(p,q).)} or the product of (2n-l) and a〇}].. (2-5- B) SG2.(p, q) = c26{Max(p, q) 1/2 and the sum of Min(p, q) and the product of a Q}.. (2-6-A) SGi-(p,q) = 〇26{ The product of the lower of Max({,q,)1/2 and Mir^po and the product of ag}...(2-6-B) s •24- 201137841 In the above 1A mode and 1B mode, wherein Cn and C12 are constant , the fourth sub-pixel output signal of the (p, q)th pixel is calculated by 値X 4 . ( p,q ) ^4-(p,q) ~ (Cll SG2-(p,q) + Ci2 * SGi-(p< q) ) / ( Cn + ^12 ) . . . (3-A) or by x4-(p,q) = Cn'SG2-(p#q) + C12'SGi-( Piq) . . . (3-B) Otherwise by X4-(p,q) = 〇11· (SG2-(p,q) — SGi-(p,q)) + Ci2.SGi-(p,q ) - (. 3-(C) or can be calculated by ^4((q,q) + SGl-(p,q) 2 ) / 2 ] 1/,2 ... ( 3 - D) For the fourth sub-pixel output signal 値X4.(p, q) 2 値 what or what formula can be applied by manufacturing a prototype of the image display device or the image display device combination and The image viewer is evaluated by the image viewer to judge it appropriately. Or 'may select one of the formulas (3-A) to (3-D) according to 値2.(p>q> or select the formula (3_a) to (3-D according to 値 of SGl.(pq) One. Otherwise, according to SG2_(p 〇 and SGi_(p, 値 select one of (3-A) to (3_d). In other words, for each-sub-pixel group' can be fixedly used One of (3-A) to (3-D) to calculate X4-(p, or for each sub-pixel group, optionally using the formula (3-A) to (3-D) Calculate χ4.(ρ,q) Configurable with the driving method according to the second embodiment of the present invention, the image display panel for the use of the first pixel and the second pixel in the second direction Positioning adjacent to each other. In this example, the first sub-pixel configuring the first pixel and the first sub-pixel configuring the second pixel may be adjacent to each other in the second direction or may not be mutually Similarly, the second sub-pixel configuring the first pixel and the second sub-pixel configuring the second pixel may or may not be adjacent to each other in the second direction. Similarly, , configuring the third sub-pixel of the first pixel and The fourth sub-pixels of the second pixel may be disposed adjacent to each other in the second direction or may not be adjacent to each other. Alternatively, the image display panel may be configured such that the first pixels are adjacent to each other in the second direction Setting and the second pixels are arranged adjacent to each other. Also in this example, configuring the first sub-pixel of the first pixel and configuring the first sub-pixel of the second pixel to be mutually in the second direction The neighboring settings may or may not be arranged adjacent to each other. Similarly, the second sub-pixel configuring the first pixel and the second sub-pixel configuring the second pixel may be adjacent to each other in the second direction or may not be mutually Adjacent settings. Similarly, configuring the third sub-pixel of the first pixel and configuring the fourth sub-pixel of the second pixel may be adjacent to each other in the second direction or may not be adjacent to each other. The driving method according to the second embodiment of the present invention, which is preferably configured as described above, may have a mode in which the fourth (p, q)th second pixel is obtained from Min(p, q)_2 The pixel controls the second signal 値 SG2. (P, q >; and obtains the position (p, q) second from Min(p>q·) The fourth sub-pixel adjacent to the pixel next to a first control signal Su Zhi SG ^ p, q). Taking note of convenience of explanation, this pattern of a hereinafter just referred to as "first mode 2A
S -26- 201137841 之’使用於上提出之這種式子(l-l-A) 、 ( 1- 1-B)、( 1-2-A)、( 1-2-B )、( 1-3-A )、( 1-3-B )、 (1-4-A) 、( 1 ·4-β ) 、( 1-5-A ) 、( 1-5-B ) 、( 1-6-Α ) '及(1-6-Β )來計算第四子畫素控制第二信號値sg2_ (P,q)及第四子畫素控制第一信號値SGl.(p,q>。針對第四子 畫素控制第二信號値SG2_(p,q)及第四子畫素控制第—信號 値SGl-(p' q>之每一者的値該施加什麼値或什麼式子可藉由 製造影像顯示裝置或影像顯示裝置組合的原型並例如藉由 影像觀賞者來進行影像之評估以適當地加以判斷。 此外’可以下列方式組態第2A模式。尤其,關於第 (P,q)個第二畫素, 至少依據第一子畫素輸入信號,亦即,第一子畫素輸 入信號値 Xi-(p,q)-2、Max(p,q).2、Min(p,q).2 '及第四子畫 素控制第二信號,亦即,信號値SG2_(p, q)計算第—子畫素 輸出信號或第一子畫素輸出信號値Xhp,q)_2 ,以及 至少依據第二子畫素輸入信號,亦即,第二子畫素輸 入信號値 X2-(P,q)-2、Max(p,q).2、Min(p,q)-2、及第四子畫 素控制第二信號’亦即’信號値SG2-(p,q)計算第二子畫素 輸出信號或第二子畫素輸出信號値X2-(p,q)_2。此外,關於 第(p,q)個第一畫素, 至少依據第一子畫素輸入信號,亦即,第一子畫素輸 入信號値Χι·(ρ,q).i、Max(p,q)·丨' Min(p,q)·〗、及第三子畫 素控制信號,亦即’信號値SG3.(p,q)計算第一子畫素輸出 信號或第一子畫素輸出信號値,以及 -27- 201137841 至少依據第二子畫素輸入信號,亦即,第二子畫 入 號値 X2-(P, q)-l、Max(p, q)·,、Min(p, q)-l、及第三 素控制信號’亦即’信號値sg3.(p,㈠計算第二子畫素 信號或第二子畫素輸出信號値X2_(p, 。 注意到可藉由分別以「Max(p, W.1」及「Min(p, q 取代式子(1-1-B) 、 ( 1-2-B ) 、 ( 1-3-B ) 、 ( 1-4 、(1-5-B) 、( 1-6-B ) 、( 2-1-B ) 、( 2-2-B )、 3-B ) 、 ( 2-4-B ) 、 ( 2-5-B )、及(2-6-B )中S -26- 201137841 'Used in the formula (llA), (1- 1-B), (1-2-A), (1-2-B), (1-3-A) ), ( 1-3-B ), (1-4-A) , ( 1 ·4-β ) , ( 1-5-A ) , ( 1-5-B ) , ( 1-6-Α ) ' And (1-6-Β) to calculate the fourth sub-pixel control second signal 値 sg2_ (P, q) and the fourth sub-pixel control first signal 値 SGl. (p, q > for the fourth sub-picture The second signal 値 SG2_(p, q) and the fourth sub-pixel control first signal SG1 - (p' q > each of the 値 値 値 値 値 値 値 値 値 値 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造The prototype of the device or image display device combination is evaluated by the image viewer for example, as appropriate. Further, the 2A mode can be configured in the following manner. In particular, regarding the (P, q) second painting , at least according to the first sub-pixel input signal, that is, the first sub-pixel input signal 値Xi-(p,q)-2, Max(p,q).2, Min(p,q).2 And the fourth sub-pixel controls the second signal, that is, the signal 値 SG2_(p, q) calculates the first sub-pixel output signal or the first sub-pixel output signal値Xhp,q)_2 , and at least according to the second sub-pixel input signal, that is, the second sub-pixel input signal 値X2-(P,q)-2, Max(p,q).2, Min( p, q)-2, and the fourth sub-pixel control second signal 'that is, 'signal 値 SG2-(p, q) calculates the second sub-pixel output signal or the second sub-pixel output signal 値X2-( p, q)_2. Further, regarding the (p, q)th first pixel, at least the first sub-pixel input signal, that is, the first sub-pixel input signal 値Χι·(ρ, q). i, Max(p,q)·丨' Min(p,q)·, and the third sub-pixel control signal, that is, 'signal 値SG3.(p,q) calculates the first sub-pixel output signal or The first sub-pixel output signal 値, and -27-201137841 are based at least on the second sub-pixel input signal, that is, the second sub-picture number 値X2-(P, q)-l, Max(p, q) ·, Min(p, q)-l, and the third prime control signal 'is also' the signal 値 sg3. (p, (a) calculate the second sub-pixel signal or the second sub-pixel output signal 値X2_ (p, Note that by "Max(p, W.1" and "Min(p, q instead of (1-1-B), (1-2-B), (1-3-B) , ( 1-4, (1-5-B), (1-6-B), (2-1-B), (2-2-B), 3-B), (2-4-B), ( 2-5-B), and (2-6-B)
Max(p, q_)」及「Min(p,〇」來獲得控制信號値,亦即 三子畫素控制信號値SG3_(P,q)。 或者,可組態包括在此上述之較佳組態的根據本 之第二實施例的驅動方法,使得 其中;C爲取決於影像顯示裝置之常數,由信號處 計算其中使用在藉由添加該第四顔色放大之HSV色空 的飽和度S爲變數之亮度之最大値Vmax(S),且該信號 區 (a)依據複數畫素中的子畫素輸入信號値計算 畫素之該飽和度S及該亮度V(S), (b )至少依據來自關於複數畫素而計算的Vma V (S )的値之中的一値計算膨脹係數α 〇 ;以及 (C)依據第一子畫素輸入信號値Χΐ·(ρ, q).2、膨 數αο、及常數%計算第(P,q)個第二畫素之第一子 輸出信號値Xl.(p,q)-2 ’ 依據第二子畫素輸入信號値X2.(p, q)-2、膨脹係數 素輸 子畫 輸出 -B ) (2- 之「 ,第 發明 理區 間中 處理 複數 x(S)/ 脹係 畫素Max(p, q_)" and "Min(p, 〇" to obtain the control signal 値, that is, the three sub-pixel control signal 値 SG3_(P, q). Alternatively, it can be configured to include the above preferred group. According to the driving method of the second embodiment of the present invention, wherein C is a constant depending on the image display device, the saturation S of the HSV color space used by the addition of the fourth color is calculated from the signal. The maximum luminance 値Vmax(S) of the variable, and the signal region (a) calculates the saturation S of the pixel and the luminance V(S) according to the sub-pixel input signal in the complex pixel, (b) at least Calculating the expansion coefficient α 〇 according to one of the 値 of Vma V (S ) calculated from the complex pixel; and (C) according to the first sub-pixel input signal 値Χΐ·(ρ, q).2. The expansion number αο, and the constant % calculate the first sub-output signal 値Xl.(p, q)-2 ' of the (P, q)th second pixels according to the second sub-pixel input signal 値X2.(p, q)-2, expansion factor element input sub-picture output -B) (2-", processing complex number x(S) / expansion system pixel in the first invention interval
S -28- 201137841 及常數X計算第二畫素的第二子畫素輸出信號値χ2·(Ρ, q>-2 依據第四子畫素控制第二信號値SG2-(P,q) '第四子畫 素控制第一·信號値SG^p,q)、膨脹係數α 〇、及常數%計 算第二畫素的第四子畫素輸出信號値Χ4·(Ρ,q)-2。注意到爲 了方便說明,剛才所述之這種模式此後稱爲「第2B模式」 。可組態驅動方法使得針對每一影像顯示訊框判斷膨脹係 數α 〇。此外,可組態驅動方法使得 依據第一子畫素輸入信號値χι·(ρ,〇)-1、膨脹係數α 〇、 及常數;if計算第一畫素的第—子畫素輸出信遗値Χΐ·(ρ, q)-l > 依據第二子畫素輸入信號値χ2·(Ρ, <〇·!、膨脹係數α 0、 及常數Ζ計算第一畫素的第二子畫素輸出信號値Χ2·(Ρ, q)-l 。注意到爲了方便說明,剛才所述之這種模式此後稱爲「 第2B模式」。可組態驅動方法使得針對每一影像顯示訊框 判斷膨脹係數α 〇。 在其中分別由S(p,q)」及V(p,q)·!指示第一畫素之飽和 度及売度,且分別由S(p,q)-2及V(p,q)-2指不第一畫素之飽 和度及亮度之情況中,將第(P,q)個第一畫素之飽和度 及亮度及第(P, q)個第二畫素之飽和度及亮度表示爲: S(p,q)-1 = (MaX(p,q)-i - Min(P/q)-l) /MaX(p,q)-i v(P/q)-i ~ MaX(P,q)-i S(p,q)-2 = (MaX(p,q)-2 - Min(p,q)-2)/MaX(p,q>-2 V(p,q)-2 = MaX(p,q)-2 此外,可組態驅動方法使得依據q)·2及膨脹係 -29- 201137841 數α 0計算第四子畫素控制第二信號値SG2.(P, q)並依據 Min(p,q·)及膨脹係數α 〇計算第四子畫素控制第一信號値 SGi-(p, q)。詳言之,可使用式子(2-1-Α ) 、( 2-1-B )、S -28- 201137841 and constant X calculate the second sub-pixel output signal 値χ2· of the second pixel Ρ(·, q>-2 control the second signal 値SG2-(P,q) according to the fourth sub-pixel The fourth sub-pixel controls the first signal 値 SG^p, q), the expansion coefficient α 〇, and the constant % to calculate the fourth sub-pixel output signal 値Χ4·(Ρ, q)-2 of the second pixel. It is noted that for convenience of explanation, the mode just described is hereinafter referred to as "2B mode". The configurable drive method allows the expansion factor α 〇 to be determined for each image display frame. In addition, the configurable driving method is to calculate the first sub-pixel output of the first pixel according to the first sub-pixel input signal 値χι·(ρ,〇)-1, the expansion coefficient α 〇, and the constant;値Χΐ·(ρ, q)-l > The second sub-picture of the first pixel is calculated according to the second sub-pixel input signal 値χ2·(Ρ, <〇·!, the expansion coefficient α 0, and the constant Ζ The output signal 値Χ2·(Ρ, q)-l is noted. Note that for convenience of explanation, the mode just described is hereinafter referred to as “2B mode.” The configurable driving method allows the frame to be judged for each image. The expansion coefficient α 〇. The saturation and the degree of the first pixel are indicated by S(p,q)· and V(p,q)·!, respectively, and are respectively S(p,q)-2 and V. (p, q)-2 refers to the saturation and brightness of the (P, q)th first pixel and the second (P, q) second picture in the case of the saturation and brightness of the first pixel. The saturation and brightness of the prime are expressed as: S(p,q)-1 = (MaX(p,q)-i - Min(P/q)-l) /MaX(p,q)-iv(P/q )-i ~ MaX(P,q)-i S(p,q)-2 = (MaX(p,q)-2 - Min(p,q)-2)/MaX(p,q>-2 V (p,q)-2 = MaX(p,q)-2 In addition, the configurable driver The fourth sub-pixel control second signal 値 SG2.(P, q) is calculated according to q)·2 and the expansion system -29-201137841 number α 0 and is calculated according to Min(p,q·) and the expansion coefficient α 〇 The four sub-pixels control the first signal 値 SGi-(p, q). In detail, the equations (2-1-Α), (2-1-B),
(2-2-A ) 、 ( 2-2-B ) 、( 2-3-A ) 、(2-3-B) 、 (2-4-A )、(2-4-B) 、(2-5-A) 、(2-5-B) 、( 2 - 6 - A )、及 (2-6-B )計算第四子畫素控制第二信號値SG2.(P, q)及第 四子畫素控制第一信號値SG Hp, q)。針對第四子畫素控制 第二信號値SG2.(p, q)及第四子畫素控制第一信號値SG^p, q)之每一者的値該施加什麼値或什麼式子可藉由製造影像 顯示裝置或影像顯示裝置組合的原型並例如藉由影像觀賞 者來進行影像之評估以適當地加以判斷。 此外,在此上述之第2A模式及第2B模式中,其中C21 及C22爲常數,可藉由下列計算第(p, q)個第二畫素之第 四子畫素輸出信號値X4_(P, q>-2 X4-(p,q)-2 = (C21-SG2-(p,q) + C22 ' SGi_ (p> q) ) / (C21 + C22) ...(4-A) 或藉由下列計算 父4-<p,q>-2 =匚21 * SG2-<p,q> + C22 . SGi· (p,q> . . . ( 4 —B) 否則藉由下列計算 (p,q>-2 _ C21 . ( SG2-(p, q) _ SGi-<p, q) ) + C22 ' SGi- (p,q) …(4-C) 不然,可藉由下列計算第(p, q)個第二畫素之第四 子畫素輸出信號値Χ4·(ρ, q)-2 s -30- 201137841 X4-,P,q,-2 = [(SG2.,P(q)2 + SGi_(pq)2)/2]i/2 (4_D) 針對弟四子'畫素輸出信號値X4_(p, 〇-2的値該施加什麼 ί直或ft* 式子可藉由製造影像顯示裝置或影像顯示裝置組 € 0¾ H @ Μ例如藉由影像觀賞者來進行影像之評估以適當 地加以判斷。或者’可根據SG2_(p, q)的値選擇式子(4-Α )至(4_D)之—或可根據SGHP,q)的値選擇式子(4_A) 至(4-D )之一。不然,可根據sg2.(p,q)及SGl.(p q)的値 選擇式子(4-A)至(4_D)之一。換言之,針對每—子畫 素群組’可固定使用式子(4_A )至(4_D )之一來判斷 X4-(P,q)-2 ’或針對每—子畫素群組,可選擇性使用式子( 4-A)至(4-D)之-來判斷 X4_(p,q)-2。 在包括在此上述之較佳組態及模式的第1 B模式或第 2B模式中’其中藉由使用添加第四顏色而放大之HSV色空 間中之飽和度S作爲變數的亮度之最大値Vmax(S)係儲存在 信號處理區中或由信號處理區加以計算。接著,依據複數 畫素的子畫素輸入信號値計算複數畫素之飽和度S及亮度 V(S),且進一步,依據Vmax(S)/V(S)計算膨脹係數α 〇。此 外,依據輸入信號値及膨脹係數α 〇計算輸出信號値。若 依據膨脹係數α 〇膨脹輸出信號値,則雖然白色顯示子畫 素的輝度.如同在先前技藝中般增加,不會發生紅色顯示子 畫素、綠色顯示子畫素、及藍色顯示子畫素的輝度不會增 加之這種狀況》換言之,不僅白色顯示子畫素的輝度增加 ,且紅色顯示子畫素、綠色顯示子畫素、及藍色顯示子畫 素的輝度也會增加。因此,可肯定地防止色彩變暗的問題 -31 - 201137841 之發生。注意到可依據膨脹係數α 0及常數χ計算輸出信 號値 Xl-(P, q)、X2-(p, q)、及 X3-(P, q)及輸出信號値 X卜(p, q)-l ^2-(p, q)-l ' X3-(p, q)-l Xl-(p, q)-2、及 X 2 - ( p,q ) - 2。詳 S 之,可從下列式子計算上述的輸出信號値。注意到由/· X4-(P,q)·2來表示第(p,q)個第二畫素中之第四子畫素的 輝度。 第1B模式 X卜(ρ.α) =α〇· χι-(ρ,α) —% · SG2-(p.Q) X 2- (ρ· Q) =a〇 · X2-(p,q) - % · S G2-(P,a) (5-B) q) a 〇 · X 3= (ΐλ q> ^ >t * S G 2- ^ q) (5-C) 第2B模式 =a〇 · x x S G 3- (〇, d) (5-a) —a〇 · X 4 SGs-(iv«) (5-b) 'X 3- (^ 0 -l = (¾〇 * X 3- fp, q) -| — % • S G3H’p, fl) (5-c) Λ 1~ (p. ¢) -2 =Qi〇 · X l-(p.iii-2=- x • SGudi ... (5-d) ^2- q)~2 — ao· χ • SG2,《> … (5-e) X «〇 * X3-(pm)-2~ Z (5-f) 此外’在此上述之第2A模式及第2B模式中,其中C3I 及CJ2爲常數,可例如從下列式子計算第三子畫素輸出信 號’亦即,第三子畫素輸出信號値Χ3·(ρ,。 X3-(p,Q)-1= (C31.X’ 3-<p.q)-I + C32.X’ 3-(p.q>-2) / (C21+C22) …(6-a)(2-2-A), (2-2-B), (2-3-A), (2-3-B), (2-4-A), (2-4-B), (2 -5-A), (2-5-B), (2-6-A), and (2-6-B) calculate the fourth subpixel control second signal 値SG2.(P, q) and The four subpixels control the first signal 値SG Hp, q). Controlling, for the fourth sub-pixel, the second signal 値 SG2. (p, q) and the fourth sub-pixel control each of the first signals 値 SG^p, q), what 値 or what can be applied The prototype of the image display device or the image display device combination is manufactured and evaluated by the image viewer, for example, to appropriately judge. In addition, in the above-mentioned 2A mode and 2B mode, wherein C21 and C22 are constant, the fourth sub-pixel output signal 値X4_(P) of the (p, q)th second pixel can be calculated by the following. , q>-2 X4-(p,q)-2 = (C21-SG2-(p,q) + C22 ' SGi_ (p> q) ) / (C21 + C22) ... (4-A) or Calculate the parent 4-<p,q>-2=匚21* SG2-<p,q> + C22 . SGi· (p,q> . . . ( 4 —B) by the following calculation (p,q>-2 _ C21 . ( SG2-(p, q) _ SGi-<p, q) ) + C22 ' SGi- (p,q) (4-C) Otherwise, by the following Calculating the fourth sub-pixel output signal of the (p, q)th second pixel 値Χ4·(ρ, q)-2 s -30- 201137841 X4-, P, q, -2 = [(SG2., P(q)2 + SGi_(pq)2)/2]i/2 (4_D) For the fourth son's pixel output signal 値X4_(p, 〇-2, what to apply, igh or ft* The image display device or the image display device group can be made to evaluate the image appropriately by, for example, an image viewer, or can be appropriately judged according to the SG2_(p, q) 値 ( 4-Α) to (4_D) - or can be selected according to SG SGHP, q) (4_A) to ( One of 4-D). Otherwise, one of the equations (4-A) to (4_D) can be selected according to sg2.(p, q) and SGl.(pq). In other words, for each sub-pixel group The group 'can be fixed using one of the equations (4_A) to (4_D) to judge X4-(P,q)-2 ' or for each sub-pixel group, optionally using the formula (4-A) to (4-D) - to judge X4_(p, q)-2. In the first B mode or the 2B mode included in the above preferred configuration and mode, 'where the fourth color is added by using The saturation S in the enlarged HSV color space as the maximum luminance 値Vmax(S) of the variable is stored in the signal processing area or calculated by the signal processing area. Then, the sub-pixel input signal 复 is calculated according to the complex pixel The saturation S of the complex pixel and the luminance V(S), and further, the expansion coefficient α 〇 is calculated according to Vmax(S)/V(S). Further, the output signal 〇 is calculated according to the input signal 値 and the expansion coefficient α 値. According to the expansion coefficient α 〇 swells the output signal 値, although the white shows the luminance of the sub-pixels. As in the prior art, the red display sub-pixel, green display does not occur. Sub-pixels, and blues show that the luminance of sub-pixels does not increase. In other words, not only does the luminance of white display sub-pixels increase, but red displays sub-pixels, green displays sub-pixels, and blue displays. The luminance of subpixels will also increase. Therefore, the problem of color darkening -31 - 201137841 can be surely prevented. It is noted that the output signals 値Xl-(P, q), X2-(p, q), and X3-(P, q) and the output signal 値Xb (p, q) can be calculated according to the expansion coefficient α 0 and the constant χ. -l ^2-(p, q)-l ' X3-(p, q)-l Xl-(p, q)-2, and X 2 - ( p,q ) - 2. For the details of S, the above output signal 计算 can be calculated from the following equation. Note that the luminance of the fourth sub-pixel in the (p, q)th second pixel is represented by /· X4-(P, q)·2. 1B mode X Bu (ρ.α) = α〇· χι-(ρ,α) —% · SG2-(pQ) X 2- (ρ· Q) =a〇· X2-(p,q) - % · S G2-(P,a) (5-B) q) a 〇· X 3= (ΐλ q> ^ >t * SG 2- ^ q) (5-C) 2B mode = a〇· xx SG 3- (〇, d) (5-a) — a〇· X 4 SGs-(iv«) (5-b) 'X 3- (^ 0 -l = (3⁄4〇* X 3- fp, q ) -| — % • S G3H'p, fl) (5-c) Λ 1~ (p. ¢) -2 =Qi〇· X l-(p.iii-2=- x • SGudi ... ( 5-d) ^2- q)~2 — ao· χ • SG2, “> ... (5-e) X «〇* X3-(pm)-2~ Z (5-f) Also 'here above In the 2A mode and the 2B mode, wherein C3I and CJ2 are constant, for example, the third subpixel output signal can be calculated from the following equation, that is, the third subpixel output signal 値Χ3·(ρ, X3) -(p,Q)-1= (C31.X' 3-<pq)-I + C32.X' 3-(p.q>-2) / (C21+C22) (6-a)
S -32- 201137841 或者 , , X3-m-l=C31 · X’ 3-(p,a)-l+C32 . X’ 3-(Ρ.αΗ …(6-b) 或者 t X;i-(P, q)-l==C2l· (x 3-(p. q)~l 一 X’ 3-(p. q}-2) +C22.X 3-(P,a>-2 …(6-c) 一般而言,當具有相應於第一子畫素輸出信號的最大 信號値的信號輸入至第一子畫素及具有相應於第二子畫素 輸出信號的最大信號値的信號輸入至第二子畫素還有具有 相應於第三子畫素輸出信號的最大信號値的信號輸入至第 三子畫素時組態一畫素或一畫素群組的一組第一、第二、 及第三子畫素的輝度係由BN,.3表示,且當具有相應於第 四子畫素輸出信號的最大信號値的信號輸入至組態該畫素 或該畫素群組之第四子畫素時第四子畫素的輝度係由BN4 表示之情況中,可如下般表示常數7 χ = BN4/BNi-3 其中常數X爲影像顯示面板、影像顯示裝置、或影像 顯示裝置組合獨特的値,且由影像顯示面板 '影像顯示裝 置、或影像顯示裝置組合獨特地加以判斷。 可組態該模式,使得判斷來自關於複數畫素所計算的 vmax (S)/V(S)[三a (S)]的値中之最小値a min作爲膨脹係 數α 0。或者,雖這取決於欲顯示之影像,可使用(1±〇.4 )· a m i η內的値之一作爲膨脹係數a 0。不然’雖至少依據 來自關於複數畫素所判斷的Vmax (S)/V(S) [ = a (S)]的値 中之一値來判斷膨脹係數α ο ’可依據例如最小値a m i η的 諸値之一計算脹係數α Q ’或可從最小値開始依序計算複 -33- 201137841 數値a (S)並可使用這些値的平均値a ave作爲膨脹係數α 〇 。可從(1±0.4 ) . a ave之中判斷膨脹係數α 〇。不然,在 當從最小値開始依序計算複數値a (S)時畫素數量小於預 定數量的情況中,可改變該複數量以再次從最小値開始依 序判斷複數値a (S) »此外,在一些畫素群組中之全部的 輸入信號値等於「0」或非常低的情況中,可排除這種畫 素群組來計算膨脹係數α 〇。 第四顏色可爲白色。然而,第四顏色不限於此。第四 顏色可爲一些其他的顏色,如黃色、青色、或洋紅色。在 那些情況中,在從彩色液晶顯示裝置組態影像顯示裝置的 情況中,其可進一步包括 第一濾色器,設置在第一子畫素及影像觀賞者之間, 用以通過其透射第一原色, 第二濾色器,設置在第二子畫素及影像觀賞者之間, 用以通過其透射第二原色,以及 第三濾色器,設置在第三子畫素及影像觀賞者之間, 用以通過其透射第三原色。 其中PG爲組態一畫素群組之畫素數量且pQ X ΡΞΡ〇, 可採用一種模式,其中關於其將計算飽和度S及亮度V(s) 之複數畫素可爲全部的P〇x Q畫素。或可採用另一種模 式’其中_於其將計算飽和度S及亮度V(S)之複數畫素可 爲P〇/P' X Q/Q’畫素,其中Ρ〇2Ρ·且Q2Q·,還有Ρο/P·及 Q/(T的至少一者爲等於或大於2的自然數。注意到Po/p·或 Q/Q'的特定値可爲2的乘冪,如2、4、8、16、...。若採用S -32- 201137841 Or, , X3-ml=C31 · X' 3-(p,a)-l+C32 . X' 3-(Ρ.αΗ ...(6-b) or t X;i-(P , q)-l==C2l· (x 3-(p. q)~l -X' 3-(p. q}-2) +C22.X 3-(P,a>-2 ...(6- c) generally, when a signal having a maximum signal 相应 corresponding to the first sub-pixel output signal is input to the first sub-pixel and a signal having a maximum signal 相应 corresponding to the second sub-pixel output signal is input to the The second sub-pixel has a signal having a maximum signal 相应 corresponding to the output signal of the third sub-pixel, and a set of first and second, one pixel or one pixel group is configured when the signal is input to the third sub-pixel. And the luminance of the third sub-pixel is represented by BN, .3, and a signal having a maximum signal 相应 corresponding to the fourth sub-pixel output signal is input to the configured pixel or the fourth group of the pixel group. In the case where the luminance of the fourth sub-pixel is represented by BN4, the constant can be expressed as follows: χ = BN4/BNi-3 where the constant X is unique for the image display panel, the image display device, or the image display device combination値, and by the image display panel 'image display device Or the image display device combination is uniquely judged. This mode can be configured to determine the minimum 値a min from the 値 of vmax (S)/V(S)[three a (S)] calculated for the complex pixel. As the expansion coefficient α 0. Or, depending on the image to be displayed, one of the 値 in (1±〇.4 )· ami η can be used as the expansion coefficient a 0. Otherwise, it is at least based on the complex pixel. The judged Vmax (S) / V (S) [ = a (S)] of one of the 値 to determine the expansion coefficient α ο ' can calculate the expansion coefficient α Q ' according to one of the minimum 値 ami η Or you can calculate the complex -33-201137841 number 値a (S) from the minimum 并可 and use the average 値 a ave of these 作为 as the expansion coefficient α 〇. The expansion can be judged from (1±0.4). a ave The coefficient α 〇. Otherwise, in the case where the number of pixels is less than the predetermined number when the complex 値 a (S) is sequentially calculated from the minimum ,, the complex number may be changed to sequentially determine the plural 値 a from the minimum ( ( S) » In addition, in the case where all input signals in some pixel groups are equal to "0" or very low, The pixel group is excluded to calculate the expansion coefficient α 〇. The fourth color may be white. However, the fourth color is not limited thereto. The fourth color may be some other color such as yellow, cyan, or magenta. In those cases, in the case of configuring the image display device from the color liquid crystal display device, it may further include a first color filter disposed between the first sub-pixel and the image viewer for transmitting the first through a primary color, a second color filter disposed between the second sub-pixel and the image viewer for transmitting the second primary color through the third color filter and the third sub-pixel and the image viewer Between, through which the third primary color is transmitted. Where PG is the number of pixels of the configured one pixel group and pQ X ΡΞΡ〇, a mode may be adopted in which the complex pixels for which the saturation S and the luminance V(s) are to be calculated may be all P〇x Q picture. Or another mode may be used, in which the complex pixel for which the saturation S and the luminance V(S) will be calculated may be P〇/P' XQ/Q' pixels, where Ρ〇2Ρ· and Q2Q·, There are at least one of Ρο/P· and Q/(T is a natural number equal to or greater than 2. Note that the specific 値 of Po/p· or Q/Q′ can be a power of 2, such as 2, 4, 8 , 16, .... if adopted
S -34- 201137841 前者模式,則可維持畫面品質良好而無畫面品質變異。另 一方面,若採用後者模式’則可預期到處理速度之改善及 信號處理區之電路的簡化。注意到’在這種例子中’例如 ,若P〇/P' = 4且Q/Q' = 4’則由於從每四個畫素計算一飽 和度S及一亮度値V(S) ’針對其餘三個畫素’ Vn^ (S) /V(S)[三a (S)]的値可能會低於膨脹係數Q: 〇。尤其,膨脹 輸出信號的値可能超過Vmax (S)。在這種例子中,例如, 可將膨脹輸出信號的値之上限値變成與Vmax (S)—致。 雖然每一子畫素之形狀通常爲矩形,較佳設置每一子 畫素使得其之較長側與第二方向平行延伸且其之較短側與 第一方向平行延伸。 作爲組態平面光源裝置之光源,可使用發光元件,尤 其發光二極體(LED )。形成自發光二極體之發光元件具 有相對小的佔用體積,且適合設置複數發光元件。作爲成 爲發光元件之發光二極體,可使用白色發光二極體,例如 ’組態自發射紫或藍光二極體及發光粒子的結合以發射白 光之發光二極體。 在此,作爲發光粒子,可使用紅光發射磷粒子、綠光 發射磷粒子、及藍光發射磷粒子。作爲組態紅光發射磷粒 子之材料,可應用 Y2〇3 : Eu、YVO4 : Eu、Y(P,V)04 : Eu 、.3 . 5 M g Ο · 0.5 M g F 2 · G e 2 : Μ n、C a S i 0 3 : P b、Μ n、 Mg6AsO, , : Mn ' (Sr, Mg)3(P04)3 : Sn、La202S : Eu、 Y2O2S: Eu、(ME: Eu)S (其中「ME」象徵選自包括Ca、Sr 、及Ba之群組的至少—種原子,且這同樣適用於下列說明)、 201137841S -34- 201137841 The former mode maintains good picture quality without picture quality variation. On the other hand, if the latter mode is employed, an improvement in processing speed and simplification of the circuit of the signal processing area can be expected. Note that 'in this example', for example, if P〇/P' = 4 and Q/Q' = 4' then a saturation S and a luminance 値V(S) ' are calculated from every four pixels. The remaining three pixels 'Vn^(S) /V(S)[three a (S)] may be lower than the expansion coefficient Q: 〇. In particular, the 値 of the expanded output signal may exceed Vmax (S). In such an example, for example, the upper limit 値 of the 输出 of the expanded output signal can be made to be equal to Vmax (S). Although the shape of each sub-pixel is generally rectangular, it is preferable to arrange each sub-pixel such that its longer side extends in parallel with the second direction and the shorter side thereof extends in parallel with the first direction. As a light source for configuring a planar light source device, a light-emitting element, in particular a light-emitting diode (LED), can be used. The light-emitting element forming the self-luminous diode has a relatively small footprint and is suitable for providing a plurality of light-emitting elements. As the light-emitting diode which becomes a light-emitting element, a white light-emitting diode such as a light-emitting diode which emits a combination of self-emissive violet or blue light diode and light-emitting particles to emit white light can be used. Here, as the luminescent particles, red light-emitting phosphor particles, green light-emitting phosphor particles, and blue light-emitting phosphor particles can be used. As a material for configuring red-emitting phosphor particles, Y2〇3 : Eu, YVO4 : Eu, Y(P, V)04 : Eu , .3 . 5 M g Ο · 0.5 M g F 2 · G e 2 can be applied. : Μ n, C a S i 0 3 : P b, Μ n, Mg6AsO, , : Mn ' (Sr, Mg) 3 (P04) 3 : Sn, La202S : Eu, Y2O2S: Eu, (ME: Eu)S (where "ME" symbolizes at least one atom selected from the group consisting of Ca, Sr, and Ba, and the same applies to the following description), 201137841
(Μ : Sm)x(Si, A1)12(0,N)16 (其中「Μ」象徵選自包括 Li、 Mg、及Ca之群組的至少一種原子,且這同樣適用於下列 說明)、M e2 S i 5N 8 : Eu、( C a : Eu) S iN2、及(C a : Eu)AlSiN3。同時,作爲組態綠光發射磷粒子之材料,可 使用 LaP〇4: Ce、Tb、BaMgAli〇〇i7: Eu、Mn、Zn2Si〇4: Μη、MgAl 丨 i〇i9 : Ce、Tb、Y2Si〇5 : Ce、Tb ' MgAl"019 :CE、Tb、及 Mn。此外,可使用(ME: Eu)Ga2S4、(M: RE)x(Si,A1)12(0,N)16 (其中「RE」象徵 Tb及 Yb ) 、(M :Tb)x(Si,Al)12(0,N)16KM:Yb)x(Si,Al)12(0,N)16。 此外,作爲組態藍光發射磷粒子之材料,可使用 BaMgAli〇Oi7 : Eu、BaMg2Ali6〇27 : Eu、Sr2P2〇7 : Eu、 Sr5(P〇4)3Cl : Eu、(Sr,Ca,Ba,Mg)5(P〇4)3Cl : Eu、(Μ : Sm)x(Si, A1)12(0,N)16 (wherein "Μ" symbolizes at least one atom selected from the group consisting of Li, Mg, and Ca, and the same applies to the following description), M e2 S i 5N 8 : Eu, (C a : Eu) S iN2, and (C a : Eu)AlSiN3. Meanwhile, as a material for configuring green light-emitting phosphor particles, LaP〇4: Ce, Tb, BaMgAli〇〇i7: Eu, Mn, Zn2Si〇4: Μη, MgAl 丨i〇i9: Ce, Tb, Y2Si〇 can be used. 5 : Ce, Tb 'MgAl" 019: CE, Tb, and Mn. In addition, (ME: Eu)Ga2S4, (M: RE) x (Si, A1) 12 (0, N) 16 (where "RE" symbolizes Tb and Yb), (M: Tb) x (Si, Al can be used) ) 12 (0, N) 16 KM: Yb) x (Si, Al) 12 (0, N) 16. In addition, as a material for configuring blue-emitting phosphor particles, BaMgAli〇Oi7: Eu, BaMg2Ali6〇27: Eu, Sr2P2〇7: Eu, Sr5(P〇4)3Cl: Eu, (Sr, Ca, Ba, Mg) can be used. ) 5(P〇4)3Cl : Eu,
CaW04、及CaW04 : Pb。然而,發光粒子不限於磷粒子, 且例如,針對間接過渡類型之矽型材料,可應用發光粒子 ,其應用藉由本地化載波的波函數使用量子效應之量子井 結構(諸如二維量子井結構、一維量子井結構(量子薄線 )或零維量子井結構(量子點)以像直接過渡類型的材料 般有效率地轉換載波成爲光線。或者,已知添加至半導體 材料之稀土原子藉由在殼中過渡急劇發光,並可使用應用 剛才所述的這種技術之發光粒子。 不然,可從.紅光發射元件(例如,發射具有如640 nm 的主發射光波長之紅光的發光二極體)'綠光發射元件( 例如,發射具有如5 3 0 nm的主發射光波長之綠光的GaN爲 基的發光二極體)、及藍光發射元件(例如,發射具有如 -36- 201137841 450 nm的主發射光波長之藍光的GaN爲基的發光二極體) 之結合組態用於組態平面光源裝置之光源。平面光源裝置 可包括發射非紅、綠、及藍之第四顏色或第五顔色的光之 發光元件。 發光二極體可具有面朝上結構或覆晶結構。尤其,發 光二極體組態自基板及形成在基板上的發光層並且可加以 組態使得光從發光層發射至外部或來自發光層的光經過基 板發射至外部。詳言之,發光二極體(LED )具有例如形 成在基板上並具有第一傳導類型(如η型)之第一化合物 半導體層、形成在第一化合物半導體層上之主動層、及形 成在主動層上並具有第二傳導類型(如ρ型)的第二化合 物半導體層之疊層結構。發光二極體包括電連接至第一化 合物半導體層之第一電極,及電連接至第二化合物半導體 層之第二電極。組態發光二極體的層可以已知化合物半導 體材料製成,其取決於所發射的光波長。 可形成平面光源裝置成爲兩種不同平面光源裝置或背 光的任何者,包括揭露在例如日本實用新型公開案號Sho 63-187120或日本專利公開案號2002-277870中之直接平面 光源裝置,以及揭露在例如日本專利公開案號2002-1 3 1 5 5 2中之邊緣光型或側光型平面光源裝置。 可組態直接平面光源裝置,使得各充當光源之複數發 光元件設置並排列在一殼體中。然而,直接平面光源裝置 不限於此。在此,在複數紅光發射元件、複數綠光發射元 件、及複數藍光發射元件設置並排列在一殼體中的情況中 -37- 201137841 ,可有下列發光元件之陣列狀態。尤其’在諸如液 裝置之影像顯示面板的螢幕之水平方向中連續設置 光元件群組(各包括一紅光發射元件、一綠光發射 及一藍光發射元件)以形成發光元件群組陣列。此 影像顯示面板的螢幕之垂直方向中連續並列複數這 元件群組陣列。注意到發光元件群組可形成在數種 ,包括~紅光發射元件、一綠光發射元件、及一藍 元件的組合;一紅光發射元件、兩綠光發射元件、 光發射元件的另一組合;兩紅光發射元件、兩綠光 件、及一藍光發射元件的又一組合;及諸如此類。 ,可附接揭露在例如^灸^^_五/6£^0«1'£^,第8 8 9號, 12月20日,第128頁中之這種光提取透鏡至每一發 〇 此外,在直接平面光源裝置組態自複數平面光 的情況中,一平面光源單元可組態自一發光元件群 兩或更多發光元件群組。不然,一平面光源單元可 單一發射白光二極體或自兩或更多發射白光二極體 在直接平面光源裝置組態自複數平面光源單元 中,可在平面光源單元之間設置分隔牆。作爲組態 的材料,來自設置在平面光源單元中之發光元件所 光不可穿透的材料爲濟當,如丙烯酸爲基的樹脂、 酯樹脂、或ABS樹脂。或者,作爲來自設置在平面 元中之發光元件所發射之光可穿透的材料,可使用 丙烯酸甲酯樹脂(PMMA ),聚碳酸酯樹脂(PC ) 晶顯不 複數發 元件、 外,在 種發光 組合中 光發射 及一藍 發射元 注意到 2004 年 光元件 源單元 組或自 組態自 〇 的情況 分隔牆 發射之 聚碳酸 光源單 聚甲基 ,聚芳 201137841 酯樹脂(PAR ),聚對苯二甲酸乙二醇酯樹脂(PET )、 或玻璃。可施加光擴散反射功能至分隔牆的表面,或可施 加鏡面反射功能。爲了施加光擴散反射功能至分隔牆的表 面,可藉由噴砂,或可黏貼具有凹部及凸部的膜,亦即, 光擴散膜至分隔牆表面上,以在分隔牆表面上形成凹部及 凸部。爲了施加鏡面反射功能至分隔牆的表面,可黏貼光 反射膜至分隔牆的表面,或可例如藉由鍍覆在分隔牆的表 面上形成光反射層。 直接平面光源裝置可組態成包括光擴散板、包括光擴 散片、稜鏡片或偏光轉換片、及光反射片的光學功能片群 組。針對光擴散板、光擴散片、稜鏡片、偏光轉換片、及 光反射片,可廣泛使用已知材料。光學功能片群組可形成 自各種片,設置在互相間隔的關係中或層疊在互相整合關 係中。例如,光擴散片、稜鏡片、偏光轉換片 '及等等可 層疊在互相整合關係中。光擴散板及光學功能片群組設置 在平面光源裝置與影像顯示面板之間。 同時,在邊緣光型平面光源裝置中,導光板設置在與 影像顯示面板(尤其例如液晶顯示裝置)相對關係中,並 且發光元件設置在導光板的側面(此後稱爲第一側面)上 。導光板具有第一面或底面、與第一面相對之第二面或頂 面、第一側面、第二側面、與第一側面相對之第三側面、 及與第二側面相對之第四側面。作爲導光板之更特定形狀 ,可應用大致楔形截面四角錐形狀。在此例子中,截面四 角錐之兩相對面相應於第一及第二面,且截面四角錐之底 -39- 201137841 面對應至第一側面。較佳地。在第一面或底面之表面部上 設置凸部及/或凹部。透過第一側面引進光線到導光板之 中並從第二面或頂面朝影像顯示面板發射。導光板的第二 面可具有平順狀態,或鏡面,或可設有噴射浮雕,其呈現 光擴散效果,亦即,爲經細緻粗糙化的面。 較佳地,在第一面或底面上設置凸部及/或凹部。尤 其,較佳提供凸部或凹部不然就是凹-凸部給導光板的第 一面。當設置凹-凸部時,可連續或不連續地形成凹部及 凸部。設置在導光板的第一面上之凸部及/或凹部可組態 成在相關於至導光板的光之入射方向以預定角度傾斜的方 向中延伸之接續的凸部或凹部。藉由上述的組態,當沿著 至導光板的光之入射方向中並與第一面垂直地延伸之虛擬 平面切割導光板時,作爲接續的凸部或凹部之剖面形狀, 可應用三角形、包括正方形、矩形、及梯形之任意四角形 、任意多邊形、或包括圓形、橢圓形、拋物線、雙曲線、 鏈形、及諸如此類的任意平順弧形。注意到相關於至導光 板的光之入射方向以預定角度傾斜的方向象徵在至導光板 的光之入射方向爲〇度的情況中從60至120度的範圍內之方 向。這同樣適用於下列說明中。或者設置在導光板之第一 .面上的凸部及/或凹部可組態成沿著相關於至導光板的光 之入射方向以預定角度傾斜的方向延伸之非連續凸部及/ 或凹部。在剛才所述之這種組態中,作爲非連續凸部或凹 部的形狀,可應用諸如錐、圆錐、圓柱之各種弧形面、包 括三角形角柱體及四角形角柱體之多邊形角柱體、球體之CaW04, and CaW04: Pb. However, the luminescent particles are not limited to phosphorus particles, and for example, for indirect transition type 矽 type materials, luminescent particles can be applied, which employ quantum well structures using quantum effects by localizing the wave function of the carrier (such as a two-dimensional quantum well structure) A one-dimensional quantum well structure (quantum thin line) or a zero-dimensional quantum well structure (quantum dot) efficiently converts a carrier into light as a material of a direct transition type. Or, it is known that a rare earth atom added to a semiconductor material is used. The transition in the shell is sharply illuminated, and luminescent particles using the technique just described can be used. Otherwise, the red emitting element can be emitted (for example, a red light emitting a red light having a wavelength of 640 nm as the main emitted light) a polar light emitting element (for example, a GaN-based light emitting diode that emits green light having a dominant emission wavelength of 530 nm), and a blue light emitting element (for example, the emission has a -36- 201137841 450 nm of the main emission light wavelength of the blue GaN-based light-emitting diode) is configured to configure the light source of the planar light source device. The planar light source device can be packaged The light emitting element emitting light of a fourth color or a fifth color of non-red, green, and blue light. The light emitting diode may have a face-up structure or a flip chip structure. In particular, the light-emitting diode is configured from the substrate and formed. a light-emitting layer on the substrate and may be configured such that light emitted from the light-emitting layer to the outside or from the light-emitting layer is emitted to the outside through the substrate. In detail, the light-emitting diode (LED) has, for example, formed on the substrate and has a first compound semiconductor layer of a first conductivity type (eg, n-type), an active layer formed on the first compound semiconductor layer, and a second compound semiconductor formed on the active layer and having a second conductivity type (eg, p-type) a laminated structure of layers: the light emitting diode includes a first electrode electrically connected to the first compound semiconductor layer, and a second electrode electrically connected to the second compound semiconductor layer. The layer configuring the light emitting diode may be a known compound Made of a semiconductor material that depends on the wavelength of the emitted light. A planar light source device can be formed into any of two different planar light source devices or backlights, including The present invention discloses a direct planar light source device in the case of Sho 63-187120 or Japanese Patent Publication No. 2002-277870, and an edge light type or side disclosed in, for example, Japanese Patent Publication No. 2002-1 3 1 5 5 2 Light-type planar light source device. The direct planar light source device can be configured such that a plurality of light-emitting elements each serving as a light source are disposed and arranged in a casing. However, the direct planar light source device is not limited thereto. Here, the plurality of red light-emitting elements are In the case where the plurality of green light emitting elements and the plurality of blue light emitting elements are disposed and arranged in a casing - 37-201137841, the array of the following light emitting elements can be provided. Especially in the screen of an image display panel such as a liquid device A group of optical elements (each including a red light emitting element, a green light emitting, and a blue light emitting element) are continuously disposed in the horizontal direction to form an array of light emitting elements. The image display panel is vertically aligned with the array of component groups in the vertical direction of the screen. It is noted that a group of light emitting elements may be formed in several types, including a combination of a red light emitting element, a green light emitting element, and a blue element; a red light emitting element, two green light emitting elements, and another light emitting element Combination; a combination of two red light emitting elements, two green light elements, and a blue light emitting element; and the like. , can be attached to expose such a light extraction lens to each hairpin in ^^__5/6£^0«1'£^, No. 8 8 9th, December 20th, page 128 Furthermore, in the case where the direct planar light source device is configured from a complex planar light, a planar light source unit can be configured from two or more light emitting component groups of a light emitting component group. Otherwise, a planar light source unit can emit a single white light diode or two or more white light emitting diodes. In a direct planar light source device configured from a complex planar light source unit, a partition wall can be arranged between the planar light source units. As a material for the configuration, a material which is impermeable to light emitted from a light-emitting element provided in a planar light source unit is a resin such as an acrylic-based resin, an ester resin, or an ABS resin. Alternatively, as a material permeable to light emitted from a light-emitting element disposed in a planar element, a methyl acrylate resin (PMMA) may be used, and a polycarbonate resin (PC) crystal may be used to display a plurality of components, In the illuminating combination, the light emission and a blue emitting element are noted in 2004. The optical component source unit group or the self-configured self-contained case, the polycarbonate source of the polycarbonate source, the polyaryl 201137841 ester resin (PAR), the poly pair Ethylene phthalate resin (PET), or glass. A light diffuse reflection function can be applied to the surface of the partition wall, or a specular reflection function can be applied. In order to apply the light diffusion reflection function to the surface of the partition wall, a film having a concave portion and a convex portion, that is, a light diffusion film may be adhered to the surface of the partition wall to form a concave portion and a convex portion on the surface of the partition wall by sandblasting or bonding. unit. In order to apply the specular reflection function to the surface of the partition wall, the light reflecting film may be adhered to the surface of the partition wall, or a light reflecting layer may be formed, for example, by plating on the surface of the partition wall. The direct planar light source device can be configured to include a light diffusing plate, an optical functional patch group including a light diffusing sheet, a cymbal sheet or a polarizing converter sheet, and a light reflecting sheet. Known materials can be widely used for the light diffusing plate, the light diffusing sheet, the cymbal sheet, the polarizing conversion sheet, and the light reflecting sheet. The group of optical functional sheets can be formed from a variety of sheets, placed in spaced relation or stacked in a mutually integrated relationship. For example, light diffusing sheets, cymbals, polarizing plates, and the like can be stacked in a mutually integrated relationship. The light diffusing plate and the optical function sheet group are disposed between the planar light source device and the image display panel. Meanwhile, in the edge light type planar light source device, the light guide plate is disposed in a relationship with the image display panel (especially, for example, a liquid crystal display device), and the light emitting element is disposed on a side surface (hereinafter referred to as a first side surface) of the light guide plate. The light guide plate has a first surface or a bottom surface, a second surface or a top surface opposite to the first surface, a first side surface, a second side surface, a third side surface opposite to the first side surface, and a fourth side surface opposite to the second side surface . As a more specific shape of the light guide plate, a substantially wedge-shaped quadrangular pyramid shape can be applied. In this example, the opposite faces of the cross-section pyramid correspond to the first and second faces, and the bottom of the cross-section pyramid -39-201137841 corresponds to the first side. Preferably. A convex portion and/or a concave portion are provided on the surface portion of the first surface or the bottom surface. Light is introduced into the light guide through the first side and emitted from the second or top surface toward the image display panel. The second side of the light guide plate may have a smooth state, or a mirror surface, or may be provided with a spray embossing which exhibits a light diffusing effect, that is, a finely roughened surface. Preferably, the convex portion and/or the concave portion are provided on the first surface or the bottom surface. In particular, it is preferable to provide a convex portion or a concave portion which is a concave-convex portion to the first side of the light guide plate. When the concave-convex portion is provided, the concave portion and the convex portion may be formed continuously or discontinuously. The projections and/or recesses provided on the first face of the light guide plate may be configured as successive projections or recesses extending in a direction inclined at a predetermined angle with respect to the incident direction of light to the light guide plate. With the above configuration, when the light guide plate is cut along a virtual plane extending in the incident direction of the light to the light guide plate and perpendicular to the first surface, a triangular shape may be applied as a cross-sectional shape of the continuous convex portion or the concave portion. Any square shape including a square, a rectangle, and a trapezoid, an arbitrary polygon, or any smooth curve including a circle, an ellipse, a parabola, a hyperbola, a chain, and the like. It is noted that the direction in which the incident direction of light to the light guide plate is inclined at a predetermined angle symbolizes the direction from 60 to 120 degrees in the case where the incident direction of light to the light guide plate is a twist. The same applies to the following instructions. Or the convex portion and/or the concave portion disposed on the first surface of the light guide plate may be configured as a discontinuous convex portion and/or a concave portion extending in a direction inclined at a predetermined angle with respect to an incident direction of light to the light guide plate. . In the configuration just described, as the shape of the discontinuous protrusion or the recess, various curved faces such as a cone, a cone, a cylinder, a polygonal corner cylinder including a triangular angle cylinder and a quadrangular angle cylinder, and a sphere can be applied. It
S -40- 201137841 部分、橢球體之部分、拋 分。注意到,若有需要, 形成凸部或凹部。此外, 光衝擊形成在第一面上之 的同時,形成在導光板之 度或深度、間距、及形狀 而變。在後者情況中,當 部或凹部之間距可變得更 間距象徵沿著至導光板的 部之間距。 在包括導光板之平面 置在與導光板之第一面相 其例如液晶顯示裝置,係 關係中。從光源發射的光 面四角錐的底面)進入導 部或凹部並被凸部或凹部 出去,之後被光反射件反 後,光從導光板之第二面 ,光擴散片或稜片可設置 面之間。或著,可將從光 接引至導光板。在後者情S -40- 201137841 Part, part of the ellipsoid, throwing points. Note that a convex or concave portion is formed if necessary. Further, the light impact is formed on the first surface, and is formed at the degree or depth of the light guide plate, the pitch, and the shape. In the latter case, the distance between the portions or the recesses may become more spaced to symbolize the distance between the portions to the light guide plate. The plane including the light guide plate is disposed in relationship with the first surface of the light guide plate, for example, a liquid crystal display device. The bottom surface of the smooth square pyramid emitted from the light source enters the guide portion or the concave portion and is separated by the convex portion or the concave portion, and then the light reflection member is reversed, the light is from the second surface of the light guide plate, and the light diffusion sheet or the rib piece can be set. between. Or, it can be guided from the light to the light guide. In the latter
較佳地,從不會吸收 造導光板。尤其,作爲組 ,玻璃 '塑膠(如PMMA 物線體之部分、及雙曲線體之部 可不在導光板之第一面的周邊部 在從光源發射並引進導光板中的 凸部或凹部或被凸部或凹部擴散 第一面上的凸部或凹部位置之高 可爲固定或隨自光源之距離增加 自光源之距離增加時,例如,凸 細。在此,凸部之間距或凹部之 光之入射方向的凸部之間距或凹 光源裝置中,較佳光反射件係設 對的關係中。影像顯示面板,尤 設置在與導光板之第二面相對的 經由第一側面(其相應於例如截 光板。就此,光衝擊第一面之凸 散射,並接著從導光板之第一面 射並經由第一面進入導光板。之 出現並照射影像顯示面板。例如 在影像顯示面板與導光板的第二 源發射的光直接引至導光板或間 況中,例如,可使用光纖。 很多從光源發射之光線的材料製 態導光板之材料,可使用,例如 、聚碳酸酯樹脂、丙烯酸爲基的 -41 - 201137841 樹脂、非晶形聚丙烯爲基的樹脂、及包括AS樹脂之苯乙 烯爲基的樹脂)。 在本發明中,平面光源裝置之驅動方法及驅動條件不 特別加以限制,且可統一控制光源。尤其,例如,可同時 驅動複數發光元件。或者,可部分或分區驅動複數發光元 件。尤其,當平面光源裝置組態自複數平面光源單元時, 平面光源裝置可組態自S X T平面光源單元,當假設影像 顯示面板的顯示區域虛擬分成S X T顯示區域單元時,S X τ平面光源單元相應於S X T顯示區域單元。在此例子 中,可個別控制s X T平面光源單元的發光狀態。 平面光源裝置及影像顯示面板之驅動電路包括,例如 ,組態自發光二極體(LED )驅動電路、計算電路、儲存 裝置、或記憶體之類的平面光源裝置控制電路,以及組態 自已知電路的影像顯示面板驅動電路。注意到可在平面光 源裝置控制電路中包括溫度控制電路。針對每一影像顯示 訊框進行顯示區域之輝度(亦即,顯示輝度)以及平面光 源單元之輝度(亦即,光源輝度)的控制。注意到一秒內 發送至驅動電路作爲電信號之影像資訊的數量(亦即每秒 之影像數量)爲m框頻率或訊框率,且訊框頻率的倒數爲 訊框時間,其之單位爲秒》 透射型之液晶顯示裝置包括,例如,包括透明第一電 極之前面板、包括透明第二電極之後面板、及設置在前面 板與後面板之間的液晶材料。 更尤其組態前面板自從例如玻璃基板或矽基板所形成Preferably, the light guide plate is never absorbed. In particular, as a group, the glass 'plastic (such as a part of the PMMA object body and the part of the hyperbolic body may not be emitted from the light source and introduced into the convex portion or the concave portion of the light guide plate at the peripheral portion of the first surface of the light guide plate or The height of the convex portion or the concave portion on the first surface of the convex portion or the concave portion may be fixed or increased as the distance from the light source increases from the distance of the light source, for example, a convex portion. Here, the light between the convex portions or the concave portion Preferably, the light reflecting member is disposed in a pair relationship between the convex portions of the incident direction or the concave light source device. The image display panel is disposed on the second side opposite to the second surface of the light guide plate via the first side (which corresponds to For example, the light intercepting plate, in this case, the light impacts the convex scattering of the first surface, and then from the first surface of the light guide plate and enters the light guide plate through the first surface. The image display panel is exposed and illuminated. For example, in the image display panel and the light guide plate The light emitted by the second source is directly led to the light guide plate or the condition, for example, an optical fiber can be used. Many materials for the light emitted from the light source can be used, for example, polycarbonate. Resin, acrylic-based -41 - 201137841 Resin, amorphous polypropylene-based resin, and styrene-based resin including AS resin. In the present invention, the driving method and driving conditions of the planar light source device are not particularly The light source can be controlled in a unified manner. In particular, for example, the plurality of light-emitting elements can be driven at the same time. Alternatively, the plurality of light-emitting elements can be driven in part or in sections. In particular, when the planar light source device is configured from a complex planar light source unit, the planar light source device can be Configured from the SXT planar light source unit, when the display area of the image display panel is virtually divided into SXT display area units, the SX τ planar light source unit corresponds to the SXT display area unit. In this example, the s XT planar light source unit can be individually controlled. The driving circuit of the planar light source device and the image display panel includes, for example, a planar light source device control circuit configured with a self-luminous diode (LED) driving circuit, a computing circuit, a storage device, or a memory, and a group The image display panel drive circuit of the known circuit. Note that it can be The planar light source device control circuit includes a temperature control circuit for controlling the luminance (i.e., display luminance) of the display region and the luminance of the planar light source unit (i.e., the luminance of the light source) for each image display frame. The number of image information sent to the driving circuit as an electrical signal (that is, the number of images per second) is the m frame frequency or the frame rate, and the reciprocal of the frame frequency is the frame time, and the unit is in seconds. The liquid crystal display device includes, for example, a front panel including a transparent first electrode, a rear panel including a transparent second electrode, and a liquid crystal material disposed between the front panel and the rear panel. More particularly, the front panel is configured from, for example, a glass substrate or a crucible. Substrate formation
S -42- 201137841 之第一基板、設置在第一基板之內面上並且以例如氧化銦 錫(ITO )製成的透明第一電極(亦稱爲共同電極)、及 設置在第一基板之外面上的偏光膜。此外’透射型之彩色 液晶顯示裝置包括設置在第一基板的內面上之濾色器’其 覆蓋有以丙烯酸樹脂或環氧樹脂所製成之覆蓋層。進一步 組態前面板,使得透明第一電極形成在覆蓋層上。注意到 在透明第一電極上形成定位膜。同時,更尤其組態後面板 自從例如玻璃基板或矽基板所形成之第二基板'形成在第 二基板的內面上之切換元件、以例如ITO製成並被切換元 件控制在傳導與非傳導之間之透明第二電極(亦稱爲畫素 電極)、及設置在第二基板之外面上的偏光膜。定位膜形 成在包括透明第二電極之整體區域上方。組態包括透射型 之彩色液晶顯示裝置的液晶顯示裝置的這些各種件及液晶 材料可用已知件及材料加以組態。作爲切換元件,可使用 ,例如,三端子元件(如MOS型(金屬氧化物半導體) FET或薄膜電晶體(TFT ))及二端子元件(如MIM (金 屬一絕緣體一金屬)元件、變阻器元件、及形成在單晶矽 半導體基板上之二極體)。 排列在二維矩陣中之畫素的數量沿第一方向爲PG且沿 第二方向爲Q。在爲了方便說明以(PQ, Q)表示此畫素數 量的情況中,作爲(PQ, Q )的値,針對影像顯示可使用 數種解析度。尤其,VGA ( 640,480 ) 、S-VGA ( 800,a first substrate of S-42-201137841, a transparent first electrode (also referred to as a common electrode) provided on an inner surface of the first substrate and made of, for example, indium tin oxide (ITO), and disposed on the first substrate A polarizing film on the outside. Further, the 'transmissive type color liquid crystal display device' includes a color filter ' disposed on the inner surface of the first substrate', which is covered with a cover layer made of acrylic resin or epoxy resin. The front panel is further configured such that a transparent first electrode is formed on the cover layer. It is noted that a positioning film is formed on the transparent first electrode. At the same time, it is more particularly configured to configure the rear panel from a second substrate formed, for example, of a glass substrate or a germanium substrate, to form a switching element on the inner surface of the second substrate, made of, for example, ITO and controlled by the switching element in conduction and non-conduction. A transparent second electrode (also referred to as a pixel electrode) and a polarizing film disposed on the outer surface of the second substrate. The positioning film is formed over the entire area including the transparent second electrode. These various components and liquid crystal materials of a liquid crystal display device configured to include a transmissive color liquid crystal display device can be configured with known components and materials. As the switching element, for example, a three-terminal element such as a MOS type (metal oxide semiconductor) FET or a thin film transistor (TFT) and a two-terminal element (such as a MIM (Metal-Insulator-Metal) element), a varistor element, And a diode formed on the single crystal germanium semiconductor substrate). The number of pixels arranged in the two-dimensional matrix is PG in the first direction and Q in the second direction. In the case where the number of pixels is represented by (PQ, Q) for convenience of explanation, as the (PQ, Q) 値, several kinds of resolutions can be used for image display. In particular, VGA (640,480), S-VGA (800,
600) 、XGA ( 1,024, 76 8 ) 、APRC ( 1,1 52, 900 ) 、S-XGA ( 1,280, 1,024 ) ' U-XGA ( 1,600, 1,200 ) 、HD-TV -43- 201137841 (1,92 0, 1,0 80 )、及 Q-XGA ( 2,04 8,1,5 3 6 ),還有( 1,92 0, 1,03 5 ) 、( 720, 4 80 )、及(1,280,960 )。 然而,畫素數量不限於那些數目。此外,作爲(P〇, Q)的値與(S,T)的値之間的關係,可有例如於下表1中 所列之這種關係,雖關係不限於這些。作爲組態一顯示區 域單元之畫素數量,可使用20 X 20至320 X 240,較佳 5 0 X 5 0至200 X 200。不同顯示區域單元中之畫素數量 可互相相等或互不相等。 表1 S的値 T的値 VGA (640, 480) 2〜3 2 2-2 4 S-VGA (8 00, 600) 3〜4 0 2〜30 XG A (1 0 2 4. 7 6 8) 4〜5 0 3〜3 9 AP RC (1 1 5 2, 9 0 0) 4~ 5 8 3-4 5 S-XG A (1 2 8 0, 1 0 2 4) 4~ 6 4 4〜5 1 U-XGA (1 600. 1 2 0 0) 6〜8 0 4〜60 HD-TV (1 9 20, 1 08 0) 6~8 6 4〜54 Q-XGA (2 0 48, 1 5 3 6) 7〜1 0 2 5〜7 7 (1 9 2 0, 1 03 5) 7~6 4 4〜5 2 (7 20.4 8 0) 3〜3 4 2〜2 4 (1 280, 960) 4 ~ 6 4 3〜4 8 在本發明之影像顯示裝置及影像顯示裝置之驅動方法 中,可使用直接型或投射型之彩色影像顯示裝置及場序型 之彩色影像顯示裝置作爲影像顯示裝置。注意到組態影像 顯示裝置之發光元件的數S可依據影像顯示裝置所需的規 -44 - 201137841 格而定。此外’依據影像顯示裝置所需的規格,可組態影 像顯不裝置以包括光閥。 影像顯示裝置不限於彩色液晶顯示裝置,但可形成爲 有機電致發光顯示裝置,亦即,有機EL顯示裝置、無機 電致發光顯示裝置,亦即,無機EL顯示裝置、冷陰極場 電子發射顯示裝置(FED)、表面傳導型電子發射顯示裝 置(SED )、電漿顯示裝置(PDP )、包括繞射光柵光調 變元件(GLV )的繞射光柵光調變裝置、數位微鏡裝置( DMD ) 、CRT、或之類。並且,彩色液晶顯示裝置不限於 透射型的液晶顯示裝置,但可爲反射型液晶顯示裝置或半 透射型液晶顯示裝置。 可行範例1 可行範例1關於根據本發明之第一實施例的影像顯示 裝置之驅動方法及根據本發明之第一實施例的影像顯示裝 置組合之驅動方法,且尤其關於第1 A模式。 參照第2圖,可行範例1之影像顯示裝置1 〇包括影像顯 示面板3 0及信號處理區20。此外,可行範例1之影像顯示 裝置組合包括影像顯示裝置1 〇 ’及從後面側照亮影像顯示 裝置10 (尤其影像顯示面板30)之平面光源裝置50。 茲參照第1圖,其示意性繪示畫素的配置,可行範例1 之影像顯示面板30包括總共P〇 X Qo畫素Px排列在二維矩 陣中,其包括在第一方向中排列的PQ畫素px及在第二方向 中排列的Q〇畫素Ρχ。每一畫素Px包括顯示第一原色(如紅 -45- 201137841 色)之第一子畫素(標示成R)、顯示第二原色(如綠色 )之第二子畫素(標示成G)、及顯示第三原色(如藍色 )之第三子畫素(標示成B)、及顯示第四顏色(如白色 )之第四子畫素(標示成W)。每一畫素Px的所述子畫素 排列在第一方向中。畫素的配置繪示在第3圖中。每一子 畫素具有矩形且加以設置使得矩形之長側與第二方向平行 延伸且矩形之短側與第一方向平行延伸。 可行範例1之影像顯示裝置1 〇尤其形成自透射型的彩 色液晶顯示裝置,且影像顯示面板30形成自彩色液晶顯示 面板。影像顯示面板30包括設置在第一子畫素與影像觀賞 者之間用以穿過其透射第一原色的第一濾色器、設置在第 二子畫素與影像觀赏者之間用以穿過其透射第二原色的第 二濾色器、及設置在第三子畫素與影像觀賞者之間用以穿 過其透射第三原色的第三濾色器。注意到針對顯示白色之 第四子畫素不設置濾色器。可取代濾色器而設置透明樹脂 層。因此,可防止不設置濾色器所造成之在第四子畫素上 的大量偏置的形成。 參照回第2圖,在可行範例1中,信號處理區20包括驅 動影像顯示面板(尤其彩色液晶顯示面板)之影像顯示面 板驅動電路40,及驅動平面光源裝置50之平面光源裝置控 制電路60。影像顯示面板驅動電路40包括號輸出電路41 及掃描電路42。注意到藉由掃描電路42在開及關之間控制 用以控制影像顯示面板30之每一子畫素的操作(亦即光透 射因子)之切換元件,如薄膜電晶體(TFT )。同時,在600), XGA ( 1,024, 76 8 ), APRC ( 1,1 52, 900 ), S-XGA ( 1,280, 1,024 ) ' U-XGA ( 1,600, 1,200 ) , HD-TV -43- 201137841 (1,92 0, 1,0 80 ), and Q-XGA ( 2,04 8,1,5 3 6 ), and ( 1,92 0, 1,03 5 ), ( 720, 4 80 ), and (1,280, 960). However, the number of pixels is not limited to those numbers. Further, as the relationship between 値 of (P〇, Q) and 値 of (S, T), there may be, for example, such a relationship as listed in the following Table 1, although the relationship is not limited to these. As the number of pixels for configuring a display area unit, 20 X 20 to 320 X 240, preferably 5 0 X 5 0 to 200 X 200 can be used. The number of pixels in different display area units may be equal or unequal to each other. Table 1 値T of ST VGA (640, 480) 2~3 2 2-2 4 S-VGA (8 00, 600) 3~4 0 2~30 XG A (1 0 2 4. 7 6 8) 4~5 0 3~3 9 AP RC (1 1 5 2, 9 0 0) 4~ 5 8 3-4 5 S-XG A (1 2 8 0, 1 0 2 4) 4~ 6 4 4~5 1 U-XGA (1 600. 1 2 0 0) 6~8 0 4~60 HD-TV (1 9 20, 1 08 0) 6~8 6 4~54 Q-XGA (2 0 48, 1 5 3 6) 7~1 0 2 5~7 7 (1 9 2 0, 1 03 5) 7~6 4 4~5 2 (7 20.4 8 0) 3~3 4 2~2 4 (1 280, 960) 4 ~ 6 4 3 to 4 8 In the image display device and the image display device driving method of the present invention, a direct type or projection type color image display device and a field sequential type color image display device can be used as the image display device. It is noted that the number S of light-emitting elements of the configuration image display device can be determined according to the specifications of the image display device - 44 - 201137841. In addition, depending on the specifications required for the image display device, the image display device can be configured to include a light valve. The image display device is not limited to a color liquid crystal display device, but may be formed as an organic electroluminescence display device, that is, an organic EL display device, an inorganic electroluminescence display device, that is, an inorganic EL display device, and a cold cathode field electron emission display. Device (FED), surface conduction electron emission display device (SED), plasma display device (PDP), diffraction grating light modulation device including diffraction grating light modulation element (GLV), digital micromirror device (DMD) ), CRT, or the like. Further, the color liquid crystal display device is not limited to a transmissive liquid crystal display device, but may be a reflective liquid crystal display device or a transflective liquid crystal display device. Feasible Example 1 Possible Example 1 relates to a driving method of an image display device according to a first embodiment of the present invention and a driving method of the image display device combination according to the first embodiment of the present invention, and particularly to the first A mode. Referring to Fig. 2, the image display device 1 of the possible example 1 includes an image display panel 30 and a signal processing area 20. Further, the image display device combination of the possible example 1 includes the image display device 1 〇 ' and the planar light source device 50 that illuminates the image display device 10 (especially the image display panel 30) from the rear side. Referring to FIG. 1 , which schematically illustrates the configuration of pixels, the image display panel 30 of the possible example 1 includes a total of P 〇 X Qo pixels Px arranged in a two-dimensional matrix including PQs arranged in the first direction. The pixel px and the Q 〇 pixel 排列 arranged in the second direction. Each pixel Px includes a first sub-pixel displaying the first primary color (such as red-45-201137841 color) (labeled as R) and a second sub-pixel displaying the second primary color (such as green) (marked as G) And displaying a third sub-pixel of the third primary color (such as blue) (marked as B), and displaying a fourth sub-pixel of the fourth color (such as white) (labeled as W). The sub-pixels of each pixel Px are arranged in the first direction. The configuration of the pixels is shown in Figure 3. Each sub-pixel has a rectangular shape and is arranged such that the long side of the rectangle extends parallel to the second direction and the short side of the rectangle extends parallel to the first direction. The image display device 1 of the possible example 1 is particularly formed with a self-transmissive color liquid crystal display device, and the image display panel 30 is formed from a color liquid crystal display panel. The image display panel 30 includes a first color filter disposed between the first sub-pixel and the image viewer for transmitting the first primary color therethrough, and is disposed between the second sub-pixel and the image viewer. a second color filter passing through the second primary color and a third color filter disposed between the third sub-pixel and the image viewer for transmitting the third primary color therethrough. Note that the color filter is not set for the fourth sub-pixel that displays white. A transparent resin layer may be provided instead of the color filter. Therefore, it is possible to prevent the formation of a large amount of offset on the fourth sub-pixel caused by not setting the color filter. Referring back to Fig. 2, in a possible example 1, the signal processing area 20 includes an image display panel driving circuit 40 for driving an image display panel (particularly a color liquid crystal display panel), and a planar light source device control circuit 60 for driving the planar light source device 50. The image display panel drive circuit 40 includes an output circuit 41 and a scan circuit 42. It is noted that a switching element, such as a thin film transistor (TFT), for controlling the operation (i.e., light transmissive factor) of each sub-pixel of the image display panel 30 is controlled by the scanning circuit 42 between on and off. At the same time, at
S -46 - 201137841 信號輸出電路4 1中保有影像信號並將其接續輸出至影像顯 示面板30。信號輸出電路41及影像顯示面板3〇藉由佈線 DTL互相電連接,且掃描電路42及影像顯示面板3〇藉由佈 線SCL互相電連接。 注意到’在本發明之可行範例中,在顯示等級位元數 量爲「η」的情況中,n設定成n = 8。換言之,顯示控制 位元數量爲8位元’且顯示等級的値尤其介於從〇至255的 範圍。注意到顯示等級的最大値有時表示成2 n - 1。 信號處理區20依據第一子畫素輸入信號(亦即,第一 子畫素輸入信號値Χΐ·(ρ,q))計算至畫素Px(p,的第一子畫 素輸出信號(亦即,第一子畫素輸出信號値X^p ^), 並輸出判斷的第一子畫素輸出信號至第一子畫素。此外, 信號處理區2 0依據第二子畫素輸入信號(亦即,第二子畫 素輸入信號値X2.(p,q〗)計算至畫素PX(P,q)的第二子畫素輸 出信號(亦即,第二子畫素輸出信號値X2-(p,q)),並輸 出判斷的第二子畫素輸出信號至第二子畫素。信號處理區 20依據第三子畫素輸入信號(亦即,第三子畫素輸入信號 値X3-(p,q))計算至畫素Px(p,q)的第三子畫素輸出信號(亦 即,第三子畫素輸出信號値X 3 · ( p,q )),並輸出判斷的第 三子畫素輸出信號至第三子畫素。 在此,在可行範例1中,至信號處理區2 0,輸入 關於第(p, q)個畫素Px(p, q)(其中lgpgp。,ISq S Qo ), 具有的信號値之第一子畫素輸入信號, •47· 201137841 具有X2.(p,q)的信號値之第二子畫素輸入信號’以及 具有X3-ip,q)的信號値之第三子畫素輸入信號 此外,信號處理區20輸出,關於第Px ( p,q )個畫素 判斷第一子畫素R之顯示等級之具有Xhp, q)的信號値 之第一子畫素輸出信號, 判斷第二子畫素G之顯示等級之具有X2.(p, q)的信號値 之第二子畫素輸出信號, 判斷第三子畫素B之顯示等級之具有X3_(p,q)的信號値 之第三子畫素輸出信號,以及 判斷第四子畫素W之顯示等級之具有X4.(p,q)的信號値 之第四子畫素輸出信號。 此外,關於定位在第(P, q)個畫素旁之相鄰畫素’ 輸入 具有XI.(P,q·)的信號値之第一子畫素輸入信號’ 具有X2.(P,q,)的信號値之第二子畫素輸入信號’以及 具有X3.(P, q,)的信號値之第三子畫素輸入信號 此外,信號處理區20輸出,關於該相鄰畫素’ 判斷第一子畫素之顯示等級之具有Χι·(Ρ, β的信@値 之第一子畫素輸出信號, 判斷第二子畫素之顯示等級之具有Χ2·(Ρ, 的信號値 之第二子畫素輸出信號, 判斷第三子畫素之顯示等級之具有Χ3-(Ρ, 0·>的信^値 之第三子畫素輸出信號,以及 -48- 201137841 判斷第四子畫素之顯示等級之具有Χ4·(Ρ,⑺的 之第四子畫素輸出信號。 注意到,在可行範例1中,定位在第(p,q) 旁之相鄰畫素爲第(p,q-l)個畫素。這同樣亦適 他可行範例。然而,相鄰畫素不限於此’但可爲 q+Ι)個畫素或第(p,q-l)個畫素及第(P,9 + 1) 兩者。 此外’信號處理區2 0依據從至其中當沿著第二 數該些畫素時之第(p, q)個畫素(P爲丨、2、… 爲1、2、…、Q〇)之第一子畫素輸入信號、第二子 入信號、及第三子畫素輸入信號所判斷出之第四子 制第二信號以及從至沿著第二方向定位在該第(P, 畫素旁的相鄰畫素之第一子畫素輸入信號、第二子 入信號、及第三子畫素輸入信號計算出之第四子畫 第一信號來判斷第四子畫素輸出信號。接著,信號 20輸出已判斷的第四子畫素輸出信號至第(p,q ) 的第四子畫素。 詳言之,從至第(P,q)個畫素Px(p,q)之第一 輸入信號Xl-(P,q)、第二子畫素輸入信號X2_(P, q)、 子畫素輸入信號X3.(P, q)計算出第四子畫素控制第 SG2.(P,q>。同時,從至沿著第二方向定位在該第( 個畫素旁的相鄰畫素之第一子畫素輸入信號Χ1-(ρ> 二子畫素輸入信號X2-(P, q_)、及第三子畫素輸入信號χ3.(ρ 出第四子畫素控制第一信號SGhp,q>。接著,依據 信號値 個畫素 用於其 第(P, 個畫素 方向計 P〇且 q 畫素輸 畫素控 q )個 畫素輸 素控制 處理區 個畫素 子畫素 及第三 二信號 p,q) q,)、第 > 〇計算 第四子 -49- 201137841 畫素控制第二信號SG2_(P, q>及第四子畫素控制第一信號 SGi.u,q)計算第四子畫素輸出信號,並輸出已計算的第四 子畫素輸出信號Χ4·(ρ,q)至第(p,q)個畫素。 在可行範例1中,採用第1A模式。尤其,依據第(p, q)個畫素Px(p, q)之Min(p, q)計算第四子畫素控制第二信號 値SG2-(P, q)並依據在第(p, q)個畫素Px(p, q)旁之相鄰畫 素Px(p, 的Min(p,q.)計算第四子畫素控制第一信號値SGhp, q) ο 詳言之,從下列的式子(1-1-Α)及(1-1·Β )計算出 第四子畫素控制第二信號値SG2.(P> q)及第四子畫素控制第 一信號値SGhp, q)。然而,在可行範例1中’ ch = 1。注 意到針對第四子畫素控制第二信號値SG2-(P, q)及第四子畫 素控制第一信號値SG Hp,心的每一者之値該施加什麼値或 什麼式子可藉由製造影像顯示裝置1〇或影像顯示裝置組合 的原型並例如藉由影像觀賞者來進行影像之評估以適當地 加以判斷。 SG2-(p,a) = Cn (Mi n(p((l)) ^ S G i- (p, Q) = c ] 1 (M i n (Pi Q’))...(l-l-B) 此外,可從下列式子(3-A)計算第四子畫素輸出信 號値X 4 · ( p,q )。注意到,在可行範例1中’ C丨1 = C 1 2 = ' 1。 換言之,可從算術機構之下列式子(3_A')計算第四子畫 素輸出信號値Χ4·(Ρ, q) °S-46 - 201137841 The signal output circuit 4 1 holds an image signal and outputs it to the image display panel 30 in succession. The signal output circuit 41 and the image display panel 3 are electrically connected to each other by a wiring DTL, and the scanning circuit 42 and the image display panel 3 are electrically connected to each other by a wiring SCL. Note that in the possible example of the present invention, in the case where the number of display level bits is "η", n is set to n = 8. In other words, the number of display control bits is 8 bits' and the level of the display level is particularly in the range from 〇 to 255. Note that the maximum 値 of the display level is sometimes expressed as 2 n - 1. The signal processing area 20 calculates the first sub-pixel output signal of the pixel Px (p, according to the first sub-pixel input signal (that is, the first sub-pixel input signal 値Χΐ·(ρ, q)) (also That is, the first sub-pixel output signal 値X^p ^), and outputs the determined first sub-pixel output signal to the first sub-pixel. Further, the signal processing area 20 is based on the second sub-pixel input signal ( That is, the second subpixel input signal 値X2.(p, q) is calculated to the second subpixel output signal of the pixel PX(P, q) (ie, the second subpixel output signal 値X2) - (p, q)), and outputting the determined second sub-pixel output signal to the second sub-pixel. The signal processing area 20 is based on the third sub-pixel input signal (ie, the third sub-pixel input signal 値X3-(p, q)) calculates a third sub-pixel output signal to the pixel Px(p, q) (ie, the third sub-pixel output signal 値X 3 · ( p, q )), and outputs The determined third sub-pixel output signal to the third sub-pixel. Here, in the feasible example 1, to the signal processing area 20, input about the (p, q)th pixel Px(p, q) ( Where lgpgp., ISq S Qo ), has The first sub-pixel input signal of the signal ,, •47· 201137841 The second sub-pixel input signal 'with X2.(p,q) signal 以及 and the third signal with X3-ip,q) Subpixel Input Signal In addition, the signal processing area 20 outputs, for the first Px (p, q) pixels, the first subpixel output of the signal having Xhp, q) for determining the display level of the first subpixel R a signal, determining a second sub-pixel output signal of the signal of X2.(p, q) of the display level of the second sub-pixel G, and determining that the display level of the third sub-pixel B has X3_(p, q a third sub-pixel output signal of the signal ,, and a fourth sub-pixel output signal of the signal X having the display level of the fourth sub-pixel W having X4.(p, q). In addition, regarding the adjacent pixel located next to the (P, q)th pixel' input, the first sub-pixel input signal ' having the signal XI.(P, q·) has X2. (P, q , the second sub-pixel input signal of the signal ' and the third sub-pixel input signal of the signal X having X3. (P, q,), in addition, the signal processing area 20 outputs, regarding the adjacent pixel' Judging the display level of the first sub-pixel has a first sub-pixel output signal of Χι·(Ρ,β的信@値, and determining the display level of the second sub-pixel has Χ2·(Ρ, the signal 値a second sub-pixel output signal, determining a display level of the third sub-pixel having a third sub-pixel output signal of Χ3-(Ρ, 0·>, and -48- 201137841 determining the fourth sub- The display level of the pixel has a fourth sub-pixel output signal of Χ4·(Ρ, (7). Note that in the feasible example 1, the adjacent pixel positioned next to the (p, q) is the (p) , ql) a single pixel. This is also suitable for his feasible example. However, adjacent pixels are not limited to this 'but can be q + Ι) pixels or the (p, ql) pixels and the first (P, 9 + 1) two In addition, the 'signal processing area 20 depends on the (p, q)th pixel from the time when the pixels are along the second number (P is 丨, 2, ..., 1, 2, ..., Q〇) a first sub-pixel input signal, a second sub-input signal, and a fourth sub-picture second signal determined by the third sub-pixel input signal and positioned in the second direction from the second direction (P, Determining the fourth sub-pixel output signal by calculating a fourth sub-picture first signal calculated by the first sub-pixel input signal, the second sub-input signal, and the third sub-pixel input signal of the adjacent pixels next to the pixel Then, the signal 20 outputs the determined fourth sub-pixel output signal to the fourth sub-pixel of the (p, q). In detail, from the (P, q)th pixel Px (p, q) The first input signal Xl-(P, q), the second sub-pixel input signal X2_(P, q), and the sub-pixel input signal X3. (P, q) calculate the fourth sub-pixel control SG2 (P, q>. At the same time, the first sub-pixel input signal Χ1-(ρ> two sub-pixel input signal X2- positioned adjacent to the adjacent pixel in the second direction (P, q_), and third subpixel input No. 3. (ρ The fourth sub-pixel controls the first signal SGhp, q> Then, according to the signal, a pixel is used for its (P, pixel direction meter P〇 and q pixel transfer control q) a pixel of the pixel control processing area, the pixel element sub-pixel and the third two signals p, q) q,), the first _ calculate the fourth sub-49-201137841 pixel control second signal SG2_ (P, q> and the fourth sub-pixel control first signal SGi.u, q) calculate the fourth sub-pixel output signal, and output the calculated fourth sub-pixel output signal Χ4·(ρ, q) to the (p) , q) a picture. In the feasible example 1, the 1A mode is employed. Specifically, the fourth sub-pixel control second signal 値 SG2-(P, q) is calculated according to Min(p, q) of the (p, q)th pixel Px(p, q) and is based on the (p, q) adjacent pixels Px(p, q) next to the adjacent pixel Px (p, Min(p, q.) calculates the fourth sub-pixel control first signal 値 SGhp, q) ο In detail, from The following equations (1-1-Α) and (1-1·Β) calculate the fourth sub-pixel control second signal 値 SG2. (P > q) and the fourth sub-pixel control first signal 値 SGhp , q). However, in the feasible example 1, 'ch = 1. Note that for the fourth sub-pixel control second signal 値 SG2-(P, q) and the fourth sub-pixel control first signal 値 SG Hp, what is applied to each of the heart, or what formula The prototype of the image display device 1 or the image display device combination is manufactured and evaluated by the image viewer, for example, to appropriately judge. SG2-(p,a) = Cn (Mi n(p((l)) ^ SG i- (p, Q) = c ] 1 (M in (Pi Q'))...(llB) The fourth subpixel output signal 値X 4 · ( p,q ) is calculated from the following equation (3-A). Note that in the feasible example 1, 'C丨1 = C 1 2 = ' 1. In other words, Calculate the fourth subpixel output signal 値Χ4·(Ρ, q) from the following equation (3_A') of the arithmetic mechanism
S -50- 201137841 X4-(p,ql= (C".SG2-{p,〇)+ C!2.3 01-11),0}) / (C" + Ci2) …(3-A) =(SG2-(p,q> + SGhp,q,) /2".(3_a,) 此外,至少依據第一子畫素輸入信號値X|-(P, q)、 Max(p,、Min(p, q)、及第四子畫素控制第二信號値SG2-(p,q)計 算至第(p,q)個畫素Px(p,q)之第一子畫素輸出信號値 Xhp,q>。此外,至少依據第二子畫素輸入信號値X2.(p,q) 、MaX(p,q)、Min(p,q)、及第四子畫素控制第二信號値 SG2.(p,q)計算至第(P, q)個畫素Px(P, <〇之第二子畫素輸 出信號値Χ2·(ρ,q)。此外’至少依據第三子畫素輸入信號 値X3-(P, q)、Max(p,q)、Min(p,q>、及第四子畫素控制桌—. 信號値SG2.(P, q)計算至第(P,q )個畫素Px(p,之第三子 畫素輸出信號値X 3 · ( p,q )。在此’在可行範例1中’依據下 列計算第一子畫素輸出信號値X 1 · ( p,q ) [Xl_(p,q), Max(p,q)f ΜίΠ(ρ,ς), SG2-(p(q), χ] 依據下列計算第二子畫素輸出信號値Χ2·(Ρ, [X2-(p,q), Max (p,q> , Min (p, q) , SG2-(p,q)f X ] 並依據下列計算第三子畫素輸出信號値Χ3·(Ρ,q) [X3- (p,q) I MaX(p,q) r ΜΐΠ(ρ,ς) , SG2-(p,q>, X] 例如,假設,關於畫素Px(p, q),舉例而言,將具有由 下列式子(11 - A )所表示之輸入信號値的輸入信號輸入到 信號處理區20,並且關於相鄰畫素Px(p,q_)’舉例而言, 將具有由下列式子(Π -B )所表示之輸入信號値的輸入信 號輸入到信號處理區2 0。 -51 - 201137841 χ 3- (ρ, α) <χ 卜(ρ, (ι> χ2-(ρ. Q·} <Χ2-{ρ,(〇 ... (1ι_Α) 〈xHp,q’}…(11_Β} 在此例子中, Μ i η (P,Q) =X3-(p,q> ... (12_Α)S -50- 201137841 X4-(p,ql= (C".SG2-{p,〇)+ C!2.3 01-11),0}) / (C" + Ci2) ...(3-A) =( SG2-(p,q> + SGhp,q,) /2".(3_a,) In addition, at least according to the first sub-pixel input signal 値X|-(P, q), Max(p,, Min(p , q), and the fourth sub-pixel control second signal 値 SG2-(p, q) is calculated to the first sub-pixel output signal 値Xhp of the (p, q)th pixel Px(p, q), q> In addition, the second signal 値 SG2 is controlled according to at least the second sub-pixel input signals 値X2.(p,q), MaX(p,q), Min(p,q), and the fourth sub-pixel. (p, q) is calculated to the (P, q)th pixel Px (P, < 第二 second sub-pixel output signal 値Χ2·(ρ, q). In addition, at least according to the third sub-pixel input Signal 値X3-(P, q), Max(p,q), Min(p,q>, and fourth sub-pixel control table.. Signal 値SG2.(P, q) is calculated to the first (P, q) a pixel Px (p, the third sub-pixel output signal 値X 3 · ( p, q ). Here, in the feasible example 1 'the first sub-pixel output signal 値X 1 · p,q ) [Xl_(p,q), Max(p,q)f ΜίΠ(ρ,ς), SG2-(p(q), χ] Calculate the second subpixel output signal 値Χ2·(Ρ, [X2-(p,q), Max (p,q> , Min (p, q) , SG2-(p,q)f X ] and according to the following Calculate the third subpixel output signal 値Χ3·(Ρ,q) [X3- (p,q) I MaX(p,q) r ΜΐΠ(ρ,ς) , SG2-(p,q>, X] It is assumed that, with respect to the pixel Px(p, q), for example, an input signal having an input signal 由 represented by the following expression (11 - A) is input to the signal processing area 20, and with respect to adjacent pixels Px(p, q_)' For example, an input signal having an input signal 表示 represented by the following expression (Π -B ) is input to the signal processing area 20 - 51 - 201137841 χ 3- (ρ, α ) <χ卜(ρ, (ι> χ2-(ρ. Q·} <Χ2-{ρ,(〇... (1ι_Α) 〈xHp,q'}...(11_Β} In this example, Μ i η (P,Q) =X3-(p,q> ... (12_Α)
Mi η(ρ>αΊ=:χ2_(ρ>^) (i2B) 接著,依據Min (p, q)判斷第四子畫素控制第二信號値 SG2-(P, q) ’並依據Min (p, q.)判斷第四子畫素控制第一信號 値SGhp,q)。尤其 S G2-(p.a)=M i η (ρ,α) = Χ3-(ρ.α)2 ...(13-Α) S Gi-(p.a)=M i η (Ρ(αΊ 一 Χ2-(ρ,(Π (13·Β) 此外, Χ4-(ρ, Q) = (S G2-(p>q) + S G|-(P(q)) /2 =(x3-(p,q)+ X2-(p.q')) (14) 順帶一提,依據輸入信號之輸入信號値及輸出信號的 輸出信號値的輝度必須滿足下列的關係以滿足將色度維持 不變的需求。注意到,第四子畫素輸出信號値X4.(p, q)乘 以X ’這是因爲第四子畫素比其他子畫素亮X倍,此將於 後說明。 X(p.q) =(X卜(p.q) + X · SG2-(p,q>) / (Μ3χ(ΙΜ) + χ . SG2-<P,q!) ... (15-A) s -52- 201137841 χ 2-.ip. ti) /M a χ (ρ, ο =(X2-fp,Q) + X * SG2~(p,ci)) / CMax(p,a) + % · SG2-(p<q)) ... (15-B) X3-(p,q>/M a X (p.q) =(X3-(p.q) + X · SG2-(p.q)) / (M a X (p; q)-f % · SG2-(p,Q)) ... (15-C)Mi η(ρ>αΊ=:χ2_(ρ>^) (i2B) Next, it is judged according to Min (p, q) that the fourth sub-pixel controls the second signal 値 SG2-(P, q) ' and is based on Min (p , q.) Determine the fourth sub-pixel control first signal 値 SGhp, q). In particular, S G2-(pa)=M i η (ρ,α) = Χ3-(ρ.α)2 (13-Α) S Gi-(pa)=M i η (Ρ(αΊ一Χ2- (ρ,(Π (13·Β) In addition, Χ4-(ρ, Q) = (S G2-(p>q) + SG|-(P(q)) /2 =(x3-(p,q) + X2-(p.q')) (14) Incidentally, the luminance of the input signal 依据 and the output signal 输出 of the output signal according to the input signal must satisfy the following relationship to satisfy the requirement that the chromaticity is maintained. To, the fourth sub-pixel output signal 値X4.(p, q) is multiplied by X ' because the fourth sub-pixel is X times brighter than the other sub-pixels, which will be described later. X(pq) =( X卜(pq) + X · SG2-(p,q>) / (Μ3χ(ΙΜ) + χ . SG2-<P,q!) ... (15-A) s -52- 201137841 χ 2- .ip. ti) /M a χ (ρ, ο =(X2-fp,Q) + X * SG2~(p,ci)) / CMax(p,a) + % · SG2-(p<q)) ... (15-B) X3-(p,q>/M a X (pq) =(X3-(pq) + X · SG2-(pq)) / (M a X (p; q)-f % · SG2-(p,Q)) ... (15-C)
注意到,當具有相應於第一子畫素輸出信號的最大信 號値的信號輸入至第一子畫素及具有相應於第二子畫素輸 出信號的最大信號値的信號輸入至第二子畫素還有具有相 應於第三子畫素輸出信號的最大信號値的信號輸入至第三 子畫素時,組態一畫素(在此後所述之可行範例5及6中爲 一畫素群組)的一組第一、第二、及第三子畫素的輝度係 由BNL3表示,且當具有相應於第四子畫素輸出信號的最 大信號値的信號輸入至組態該畫素(在此後所述之可行範 例5及6中爲該畫素群組)之第四子畫素時,第四子畫素的 輝度係由BN4表示之情況中,可如下般表示常數X χ = ΒΝ4/ΒΝι-3 在此,常數X爲影像顯示面板30、影像顯示裝置 '或 影像顯示裝置組合獨特的値,且由影像顯示面板3 0、影像 顯示裝置、或影像顯示裝置組合獨特地加以判斷。尤其, 當假設輸入具有顯示等級的値255之輸入信號至第四子畫 素時之輝度ΒΝ4爲例如當輸入具有下列顯示等級之値的輸 入信號至該組第一、第二、及第三子畫素時之白色的輝度 BN!.3的1 .5倍般高 -53- 201137841Note that when a signal having a maximum signal 相应 corresponding to the first sub-pixel output signal is input to the first sub-pixel and a signal having a maximum signal 相应 corresponding to the second sub-pixel output signal is input to the second sub-picture When a signal having a maximum signal 相应 corresponding to the output signal of the third sub-pixel is input to the third sub-pixel, a pixel is configured (a pixel group in the feasible examples 5 and 6 described later) The luminance of a set of first, second, and third sub-pixels is represented by BNL3, and a signal having a maximum signal 相应 corresponding to the fourth sub-pixel output signal is input to the configured pixel ( In the case of the fourth sub-pixel of the pixel group in the possible examples 5 and 6 described later, in the case where the luminance of the fourth sub-pixel is represented by BN4, the constant X χ = ΒΝ 4 can be expressed as follows. /ΒΝι-3 Here, the constant X is a unique combination of the image display panel 30, the image display device', or the image display device, and is uniquely determined by the combination of the image display panel 30, the image display device, or the image display device. In particular, when it is assumed that the input signal having the display level 値255 is input to the fourth sub-pixel, the luminance ΒΝ4 is, for example, when an input signal having the following display level is input to the first, second, and third sub-sets of the group. The whiteness of the white color BN!.3 is 1.5 times as high -53- 201137841
Xl-(p,q) = 255 ^2-(p,q) = 255 ^3-(p,q) = 255 尤其,在可行範例1中,或在此後所述之可行範例中 X = 1.5 依此,從式子(15-A) 、( 15-B)、及(15-C),如 下般計算輸出信號値: } /Max(P<q, ..(16-Α) Χΐ-(ρ, q)= ίχ Ι-(ρ. α) β (Μ a χ (Ρι 〇) + χ · S 〇2-(Ρ, 〇)) 一 χ · S G2-㈣ } /Max tPiQ) …(16-B) Χ2-(ρ< d = { Χ2-(ιμ) · (Μ a χ (Ρι¢) + χ · S G2-(p.〇)) 一;C · s G2-(p.釤 X 3- (p. q}= (X3-(p,g) * (Max(IM> + x · SG2-(p,(0) -X * SG2-(p,q) } /U a X (p, Q, ...(16-C) 參照第4圖,至第一、第二、及第三子畫素的輸入値 繪示在[1]中。注意到SG2-(P,q) = SGup, q)。此外,藉由 從至第一、第二、及第三子I〖素的輸入値減掉第四子畫素 輸出信號値所得的値繪示在[2 ]中。另外,依據上述之式 子(16-Α) 、(16-B)、及(16-C)而得之第—、第二、 及第三子畫素的輸出信號値繪示在[3]中。注意到第4圖中 之橫座標的軸指示輝度,且第一、第二、及第三子畫素的 輝度BNio係由2n-l表示’且當添加第四子畫素時之輝度 BN〗.3+BN4係由(X+l) X (2n-l)表示。Xl-(p,q) = 255 ^2-(p,q) = 255 ^3-(p,q) = 255 In particular, in the feasible example 1, or in the feasible example described later, X = 1.5 Thus, from the equations (15-A), (15B), and (15-C), the output signal is calculated as follows: } /Max(P<q, ..(16-Α) Χΐ-(ρ , q)= ίχ Ι-(ρ. α) β (Μ a χ (Ρι 〇) + χ · S 〇2-(Ρ, 〇)) χ · S G2-(4) } /Max tPiQ) ...(16- B) Χ2-(ρ< d = { Χ2-(ιμ) · (Μ a χ (Ρι¢) + χ · S G2-(p.〇)) one; C · s G2-(p.钐X 3- (p. q}= (X3-(p,g) * (Max(IM> + x · SG2-(p,(0) -X * SG2-(p,q) } /U a X (p, Q , ...(16-C) Referring to Figure 4, the input to the first, second, and third sub-pixels is shown in [1]. Note that SG2-(P,q) = SGup, q). Further, the 値 obtained by subtracting the fourth sub-pixel output signal from the input 至 to the first, second, and third sub-units is shown in [2]. The output signals of the first, second, and third subpixels of the equations (16-Α), (16-B), and (16-C) are shown in [3]. The axis of the abscissa in Figure 4 Brightness, and the luminance BNio of the first, second, and third sub-pixels is represented by 2n-1, and the luminance BN when the fourth sub-pixel is added. 3+BN4 is (X+l) X (2n-l) is indicated.
S -54- 201137841 於下之中,計算第(p,q)個畫素Px(P, q)之輸出信號 値 Xl-(p, q)、X2-(p, q)、X3-(p, q)、及 X4-(p, q)的方法。注意 到進行下列程序以在每一畫素中保持由(第一子畫素+第 四子畫素)所顯示之第一原色的輝度、由(第二子畫素+ 第四子畫素)所顯示之第二原色的輝度、及由(第三子畫 素+第四子畫素)所顯示之第三原色的輝度之間的比例。 還有,進行下列程序以盡可能遠地保持或維持色調。此外 ,進行下列程序以保持或維持等級一輝度特性,亦即,伽 瑪特性或T特性。 步驟1 0 0 首先,信號處理區20根據下列式子(1-1-A1)及(1-1-B1)依據至畫素的子畫素輸入信號値針對複數畫素的每 一者計算第四子畫素控制第二信號値SG2-(P,q>及第四子畫 素控制第一信號値SG,-(P, q>。針對所有畫素進行此程序。 此外’根據下列式子(3-A1 )計算信號値X4_(p, 。 s G2-(p.q)=M i η (Ρ;α) i η (PtQ<) + S G卜㈣)/2 (3-A,) Χ4-(ρ. (〇 = (SG2-(p,q> 步驟1 10 接著,信號處理區20根據上述之式子(16-A)、( 16-B ) '及(16-C )從針對每一畫素所計算出的第四子畫 素輸出信號値X4-(p,q)計算輸出信號値Χηρ,q)、X2.(p, q)、 -55- 201137841 及 X3-(p,q)。 注意到由於,對於每一彳I素,輸出信號値之比例 ^1- (p,q) : X2-(p,q丨:X3-(p,q> 與輸入信號値的比例S -54- 201137841 In the following, calculate the output signals of the (p, q)th pixel Px(P, q) 値Xl-(p, q), X2-(p, q), X3-(p , q), and X4-(p, q) methods. Note that the following procedure is performed to maintain the luminance of the first primary color displayed by (first subpixel + fourth subpixel) in each pixel, by (second subpixel + fourth subpixel) The ratio between the luminance of the second primary color displayed and the luminance of the third primary color displayed by (the third subpixel + the fourth subpixel). Also, the following procedure is performed to maintain or maintain the hue as far as possible. In addition, the following procedure is performed to maintain or maintain the level-luminance characteristic, that is, the gamma characteristic or the T characteristic. Step 1 0 0 First, the signal processing area 20 calculates the first for each of the plural pixels according to the sub-pixel input signal to the pixel according to the following expressions (1-1-A1) and (1-1-B1). The four subpixels control the second signal 値 SG2-(P, q> and the fourth subpixel control the first signal 値SG, -(P, q>. This procedure is performed for all pixels. Further 'according to the following formula (3-A1) Calculate the signal 値X4_(p, .s G2-(pq)=M i η (Ρ;α) i η (PtQ<) + SG (4))/2 (3-A,) Χ4-( ρ. (〇=(SG2-(p,q> Step 1 10 Next, the signal processing area 20 is based on the above equations (16-A), (16-B)' and (16-C) from each picture The fourth subpixel output signal 値X4-(p, q) calculated by the element calculates the output signals 値Χηρ,q), X2.(p, q), -55-201137841, and X3-(p,q). Note that for each 彳I, the ratio of the output signal ^^1- (p,q) : X2-(p,q丨:X3-(p,q> is proportional to the input signal 値
Xl-(p,q) : X2-(p,q) · ^3-(p,q) 有一點差異,若單獨觀看每一畫素,則畫素之色調相 關於輸入信號會發生一些差異。然而,當觀看每一畫素爲 —畫素,畫素之色調不會發生問題。這同樣亦適用下列說 明。 在可行範例1之影像顯示裝置之驅動方法或影像顯示 裝置組合之驅動方法中,信號處理區20依據從第一、第二 、及第三子畫素輸入信號所計算出之第四子畫素控制第二 信號値SG2.(P, q)及從至相鄰畫素的第一、第二、及第三子 畫素輸入信號所計算出之第四子畫素控制第一信號値SG!. (p, q>計算第四子畫素輸出信號。在此,由於將至相鄰畫素 之輸入信號納入考量地計算第四子畫素輸出信號,實現至 第四子畫素之輸出信號的最佳化,且可肯定地實現輝度之 增加還可預期到顯示品質之改善。 例如,假設將在下表2中所示之第一、第二、及第三 子畫素輸入信號輸入到第(p, q)個畫素及第(p, q-1) 個畫素,其在第(p, q)個畫素旁,還有第(P,q-2)個 '第(p,q-3)個 '及第(p,q+Ι)個畫素。當依據式子 (3-A)計算至組態第(p,q-2 )個畫素、第(p,q-Ι )個 畫素、第(p,q)個畫素、及第(P, q+Ι)個畫素之每一Xl-(p,q) : X2-(p,q) · ^3-(p,q) There is a slight difference. If you look at each pixel separately, the hue of the pixels will be different with respect to the input signal. However, when viewing each pixel as a pixel, the color of the pixels will not cause problems. The same applies to the following instructions. In the driving method of the image display device of the first exemplary embodiment or the driving method of the image display device combination, the signal processing area 20 is based on the fourth sub-pixel calculated from the first, second, and third sub-pixel input signals. Controlling the second signal 値 SG2. (P, q) and the fourth sub-pixel control first signal 値 SG calculated from the first, second, and third sub-pixel input signals to the adjacent pixels! (p, q> calculating the fourth sub-pixel output signal. Here, since the fourth sub-pixel output signal is calculated by taking the input signal to the adjacent pixel into consideration, the output signal to the fourth sub-pixel is realized. Optimization, and positively achieving an increase in luminance can also anticipate improvement in display quality. For example, assume that the first, second, and third subpixel input signals shown in Table 2 below are input to (p, q) pixels and (p, q-1) pixels, next to the (p, q)th pixel, and the (P, q-2)th (p, Q-3) ' and the (p, q + Ι) pixels. When calculating according to the expression (3-A) to the configuration (p, q-2) pixels, the first (p, q- Ι) a single pixel, the first (p, q ) a single pixel, and each of the (P, q+Ι) pixels
S -56- 201137841 者的第四子畫素之第四子畫素輸出信號値之値時在此時的 結果係指不於表2中。注意到在計算中忽略源自於常數义 的第二畫素之輝度的增加。 同時,取代式子(3-A)而使用式子(17)來計算第 四子畫素輸出信號値X4.(P,q)的範例類似指示爲表2中之對 照範例1。 X 4- (P,Q) Μ ί Π (pp q) ί 1 "7、 表 2 畫素 輸入信號値 (P,q-3) (p,q-2) (P,q-1) (P,q) (P,q+1) Χι 0 0 255 255 255 X2 0 0 255 255 255 X3 0 0 255 255 255 輸出信號値 可行範例1 X4 0 127 255 255 對照範例1 X4 0 255 255 255 從表2,第(ρ, q)個畫素之第四子畫素輸出信號値 與第(P,q-Ι)個畫素之第四子畫素輸出信號値的差異在 可行範例1中比在對照範例1中更小。 若第(P, q)個畫素之第四子畫素輸出信號値與第( P,q-Ι)個畫素之第四子畫素輸出信號値的差異很大,則 第四子畫素的輝度爲高,可見度惡化。例如,若假設輸入 -57- 201137841 第20 A圖中所示之輸入信號値,則原始應該可肉眼上觀看 到所顯示之影像,使得由第(b )列中之一條畫素所顯示 之一條黑線夾在於水平方向中延伸並由第(a)列及第(c )列中之畫素條所顯示兩條白線之間。注意到第20A圖中 之「R」、「G」、「B」、及「W」分別代表第一、第二 、第三、及第四子畫素,且在每一()中之數値代表輸出 信號値。然而,由於事實上第四子畫素的輝度爲高,可肉 眼觀看到黑線具有變化的寬度(參照第20B圖)。由於, 在可行範例1中,第(P,q)個畫素之第四子畫素輸出信 號値與第(P,q-Ι)個畫素之第四子畫素輸出信號値的差 異減少,較不大可能觀察到剛才所述的這種現象。 可行範例2 可行範例2爲可行範例1之修改例但關於第1 B模式。 在可行範例2中, 其中;t爲取決於影像顯示裝置1〇的常數, 藉由信號處理區20來計算當藉由添加第四顔色而膨脹 之HSV色空間中之飽和度S爲變數時的亮度之最大値 Vmax(s),以及 信號處理區20 (a) 依據至複數畫素的子畫素輸入信號値計算複數 畫素之飽和度S及亮度V(S), (b) 至少依據關於複數畫素而計算的Vmax (S)/V(S) 的値之一計算膨脹係數α ο,以及 •58- 201137841 (C)至少依據第一子畫素輸入信號,亦即,第一 素輸入信號値XHP,q)、及第四子畫素控制第二信號, ,信號値3(}2·^,還有膨脹係數和常數%計算第 )個畫素之第一子畫素輸出信號,亦即,第一子畫素輸 號値 Xwp, q); 至少依據第二子畫素輸入信號,亦即,第二子畫 入信號値Χ2·(Ρ,q)、及第四子畫素控制第二信號,亦 信號値S G 2 - ( p,q ),還有膨脹係數α 〇和常數X計算第 畫素輸出信號,亦即,第二子畫素輸出信號値χ2_(ρ, 以及 至少依據第三子畫素輸入信號,亦即,第三子畫 入信號値X^p,q>、及第四子畫素控制第二信號,亦 信號値sg2_(p,q>,還有膨脹係數α 〇和常數Z計算第 畫素輸出信號,亦即,第三子畫素輸出信號値Χ3_(ρ, 注意到’在上述步驟(C )之後,依據膨脹係數α 〇減 面光源裝置的輝度。針對每一影像顯示訊框判斷膨脹 α 0 0 當由S(P,q)表示第(ρ,q)個畫素之飽和度並Ε Μ表示其之亮度,由s(p,q,)表示相鄰畫素之飽和度 V(p,q’)表示其之亮度,可分別以下列式子(21_A ) 21-B) 、(21-C)、及(21-D)表示它們: 子畫 亦即 (p,q 出信 素輸 即, 二子 q) ’ 素輸 即, 三子 q) ° 少平 係數 3 V(p, 並由 -59- 201137841 S(P,Q) = (Max(p>a)-M i n(P(Q)) /Maxjp.a) .·· (21-A) V(p,q) =Max(P>Q) ... (21-B) S (p, (Π = (M x (p.〇-M i n (p,〇) /M a x (M,) ··· (21-C) V{p, Q-)=Max(p(ll*) ... (21-D) 並且在可行範例2中,從下列(3 _ a,,)計算第四子畫 素輸出信號値Χ4·(Ρ, q)。尤其,藉由算術機構計算第四子 畫素輸出信號値X 4 - ( p , q )。注意到,在式子(3 - A '')中’ 雖然右邊包括之除法,但式子不限於此。 X4-(p.q)= (S G2-(P.q) + S Gi-(Pi(1)) (2χ). (3-α") 注意到依據Min (ρ, q)及膨脹係數α g計算第四子畫素 控制第二信號値SG2-(P, q),並依據Min (ρ, 0及膨脹係數α 〇計算第四子畫素控制第一信號値SG Hp, 。尤其,分別 依據下列式子(2-1-A)及(2·ι_Β)計算第四子畫素控制 第二信號値SG2-(P, q)及第四子畫素控制第一信號値SG^u, q)。 然而,注意到’在可行範例2中,C2I = 1。 S G2-(p,q) = C21 (M i n (¢.¾)) · 〇!〇 …(2-ι-α) SGmp.q} = C21 (Min(p,„·)) · α〇 门丄。、 同時,藉由下列的式子(5-Α) 、 ( 5-Β ) 、 ( 5-C ) 提出第一子畫素R、第二子畫素G、及第三子畫素Β的輸出 信號値Xi-(p,q)、X2-(p,q)、及χ3·(Ρ,ς)並分別於下提出。 -60- β ·.· (5-A) ... (5-B) …(5-C) 201137841 X 卜(P, q} — 〇ί 0 * X 1- (ρ, q) ~~ X * S G 2- (ρ, <j) 2-ίρ, q) — * X2-(p, q) 一 5C · S G2-(p,q} ^3-(p, a) =〇!〇· X3~(Ptq} —X * SG2-(P<Q) 在可行範例2中,亮度之最大値Vniax (S)(其包 添加諸如白色之第四顏色而膨脹之H S V色空間中的 S作爲變數)係儲存在信號處理區20中,不然就是 信號處理區20計算出來。換言之,添加諸如白色之 色的結果是HSV色空間中之亮度的動態範圍膨脹。 針對此提供下列說明。 在第(P,q)個畫素Px(p, <〇中,可從式子(21 (21-B ) 、 ( 21-C )及(21-D )依據第一子畫素輸 ,亦即,輸入信號値ΧΗρ,<〇、第二子畫素輸入信 即,輸入信號値χ2·(ρ,〇、及第三子畫素輸入信號 ,輸入信號値x3.(P, q)計算圓柱的HSV色空間之飽f q)及亮度V(p,q)。在此,圓柱之HSV色空間繪不在 中,且飽和度S及亮度V之間的關係示意性繪示在 中。注意到,在第5B及5D圖中,由「MAX_1」表 2n-1的値,且在5D圖中,由「MAX_2」表示亮度( x( Z+1)的値。飽和度S可具有介於從0至1的値, V可具有介於從〇至2n-l的値。 第5C圖繪示在可行範例2中之藉由添加白色或 色而膨脹之圓柱的HSV色空間,且第5D圖示意性繪 度S與亮度V之間的關係。針對顯示白色的第四子 不設置濾色器。 括藉由 飽和度 每次由 第四顔 •A )、 入信號 號,亦 ,亦即 口度 S ( p, 第5 A圖 第5B圖 示亮度 2n-l ) 且亮度 第四顏 示飽和 畫素, -61 - 201137841 順帶一提,可由下列式子表示Vmax (s)。 在s S So的情況中,The result of the fourth sub-pixel output signal of the fourth sub-pixel of S-56-201137841 at this time is not in Table 2. Note that the increase in luminance of the second pixel derived from the constant meaning is ignored in the calculation. Meanwhile, an example similarly indicated by using the equation (17) to calculate the fourth sub-pixel output signal 値X4.(P, q) in place of the equation (3-A) is the reference example 1 in Table 2. X 4 ( ( ( ( ( ( ( ( ( ( ( P,q) (P,q+1) Χι 0 0 255 255 255 X2 0 0 255 255 255 X3 0 0 255 255 255 Output signal 値 Feasible example 1 X4 0 127 255 255 Comparison example 1 X4 0 255 255 255 From the table 2, the difference between the fourth sub-pixel output signal 第 of the (ρ, q)th pixel and the fourth sub-pixel output signal 第 of the (P, q-Ι) pixel is compared in the feasible example 1 It is smaller in the comparison example 1. If the fourth sub-pixel output signal 第 of the (P, q)th pixel is significantly different from the fourth sub-pixel output signal 第 of the (P, q-Ι) pixels, the fourth sub-picture The luminance of the element is high and the visibility is deteriorated. For example, if you assume the input signal 所示 shown in Figure 20A of -57-201137841, the original image should be visible to the naked eye so that one of the pixels in column (b) is displayed. The black line clip extends between the two white lines extending in the horizontal direction and displayed by the pixel strips in the (a)th column and the (c)th column. Note that "R", "G", "B", and "W" in Figure 20A represent the first, second, third, and fourth sub-pixels, respectively, and the number in each ()値 represents the output signal 値. However, since the luminance of the fourth sub-pixel is actually high, the black line has a varying width as seen by the naked eye (refer to Fig. 20B). Because, in the feasible example 1, the difference between the fourth sub-pixel output signal 第 of the (P, q)th pixel and the fourth sub-pixel output signal 第 of the (P, q-Ι) pixel is reduced. It is less likely to observe the phenomenon just described. Feasible Example 2 Feasible Example 2 is a modification of the possible example 1 but with respect to the 1st B mode. In the feasible example 2, where t is a constant depending on the image display device 1〇, the signal processing region 20 calculates the saturation S in the HSV color space expanded by adding the fourth color as a variable. The maximum luminance 値Vmax(s), and the signal processing region 20 (a) calculates the saturation S and the luminance V(S) of the complex pixel according to the sub-pixel input signal to the complex pixel, (b) at least according to One of the Vmax (S)/V(S) calculated by the complex pixel calculates the expansion coefficient α ο, and •58- 201137841 (C) based on at least the first sub-pixel input signal, that is, the first prime input The signal 値XHP,q), and the fourth sub-pixel control the second signal, the signal 値3(}2·^, and the expansion coefficient and the constant % calculate the first sub-pixel output signal of the pixel), That is, the first sub-pixel input signal 値Xwp, q); at least according to the second sub-pixel input signal, that is, the second sub-input signal 値Χ2·(Ρ, q), and the fourth sub-pixel Controlling the second signal, also the signal 値 SG 2 - ( p, q ), and the expansion coefficient α 〇 and the constant X to calculate the first pixel output signal, that is, the second sub The output signal 値χ2_(ρ, and at least the third sub-pixel input signal, that is, the third sub-input signal 値X^p, q>, and the fourth sub-pixel control second signal, also signal 値Sg2_(p,q>, and the expansion coefficient α 〇 and constant Z calculate the first pixel output signal, that is, the third subpixel output signal 値Χ3_(ρ, note 'after step (C) above, based on The expansion coefficient α reduces the luminance of the surface light source device. For each image display frame, the expansion α 0 0 is expressed by S(P, q) indicating the saturation of the (ρ, q)th pixel and Μ Μ Luminance, where s(p, q,) indicates that the saturation of adjacent pixels V(p, q') indicates its brightness, which can be expressed by the following equations (21_A) 21-B), (21-C), And (21-D) means that they are: sub-pictures are (p, q, the output of the letter is the two, q), the prime input, the three sub-q) °, the flatness factor of 3 V (p, and by -59-201137841 S(P,Q) = (Max(p>a)-M in(P(Q)) /Maxjp.a) .. (21-A) V(p,q) =Max(P>Q) . .. (21-B) S (p, (Π = (M x (p.〇-M in (p,〇) /M ax (M,) ··· (21-C) V{p, Q- )=Max(p(ll*) ... (21-D) And in the feasible example 2, the fourth sub-pixel output signal 値Χ4·(Ρ, q) is calculated from the following (3 _ a,,). In particular, the fourth sub-pixel output signal 値X 4 - ( p , q ) is calculated by the arithmetic mechanism. Note that in the equation (3 - A ''), although the division is included on the right side, the expression is not limited to this. X4-(pq)= (S G2-(Pq) + S Gi-(Pi(1)) (2χ). (3-α") Note that the fourth is calculated according to Min (ρ, q) and the expansion coefficient α g The sub-pixel controls the second signal 値 SG2-(P, q), and calculates the fourth sub-pixel control first signal 値 SG Hp according to Min (ρ, 0 and the expansion coefficient α 〇. In particular, according to the following formula (2-1-A) and (2·ι_Β) calculate the fourth sub-pixel control second signal 値 SG2-(P, q) and the fourth sub-pixel control first signal 値 SG^u, q). , noted that 'in feasible example 2, C2I = 1. S G2-(p,q) = C21 (M in (¢.3⁄4)) · 〇!〇...(2-ι-α) SGmp.q} = C21 (Min(p, „·)) · α〇门丄. At the same time, the first sub-pixel R is proposed by the following formulas (5-Α), ( 5-Β), ( 5-C ), The output signals 値Xi-(p,q), X2-(p,q), and χ3·(Ρ,ς) of the second sub-pixel G and the third sub-pixel are respectively proposed below. - β ··· (5-A) ... (5-B) ...(5-C) 201137841 X 卜(P, q} — 〇ί 0 * X 1- (ρ, q) ~~ X * SG 2- (ρ, <j) 2-ίρ, q) — * X2-(p, q) -5C · S G2-(p,q} ^3-(p, a) =〇!〇· X3~ (Ptq} —X * SG2-(P< Q) In the feasible example 2, the maximum luminance 値Vniax (S) (the S is added as a variable in the HSV color space in which the fourth color of the white is expanded) is stored in the signal processing area 20, otherwise the signal is The processing area 20 is calculated. In other words, the result of adding a color such as white is the dynamic range expansion of the luminance in the HSV color space. The following description is provided for this. In the (P, q)th pixel Px (p, < In the equation, 21 (21-B), (21-C), and (21-D) are input according to the first sub-pixel, that is, the input signal 値ΧΗρ, <〇, the second sub-pixel Input signal, input signal 値χ2·(ρ, 〇, and third sub-pixel input signal, input signal 値x3. (P, q) calculate the saturation of the HSV color space of the cylinder fq) and brightness V (p, q Here, the HSV color space of the cylinder is not in the middle, and the relationship between the saturation S and the brightness V is schematically shown. Note that in the 5B and 5D diagrams, the table "2" from "MAX_1" 1 値, and in the 5D diagram, the luminance (x( Z+1) 値 is represented by "MAX_2". The saturation S may have a enthalpy from 0 to 1, and V may have a enthalpy from 〇 to 2n-1. Fig. 5C is a view showing the HSV color space of the cylinder expanded by adding white or color in the feasible example 2, and the relationship between the schematic drawing S and the luminance V is shown in Fig. 5D. The color filter is not set for the fourth sub-display white. Including the saturation by the fourth color • A), the input signal number, also, that is, the mouth S (p, the 5A picture 5B shows the brightness 2n-l) and the brightness of the fourth picture shows the saturation picture Prime, -61 - 201137841 By the way, Vmax (s) can be expressed by the following equation. In the case of s S So,
Vmax (S) = ( χ +1) · ( 2η-1 ) 同時,在SQ< SS 1的情況中, vmax (S) = ( 2n-l ) · (1/S ) 其中Vmax (S) = ( χ +1) · ( 2η-1 ) Meanwhile, in the case of SQ < SS 1, vmax (S) = ( 2n - l ) · (1/S )
So = \!{χ +1) 依照此方式並使用膨脹的HSV色空間中之飽和度S作 爲變數所得之亮度的最大値Vmax (S)係儲存爲一種査詢表 到信號處理區20中或每次由信號處理區20計算出來。 注意到在可行範例2中或在此後說明的可行範例3至6 的任何者中之影像顯示裝置及影像顯示裝置組合可與連同 可行範例1於上所述的那些類似,除了驅動電路中之差別 、畫素之組態中之差別、及一些其他的差別。尤其,可行 範例2之影像顯示裝置10還包括影像顯示面板及信號處理 區20。同時,可行範例2之影像顯示裝置組合包括影像顯 示裝置1 〇,及從後側照亮影像顯示裝置1 〇 (尤其,影像顯 示面板)之平面光源裝置5 0 »此外,可行範例2中之信號 處理區20及平面光源裝置50可分別與在可行範例1的上述 說明中之信號處理區20及平面光源裝置50類似。此同樣亦 適用此後所述之可行範例。 步驟200 首先,信號處理區20依據至複數畫素之子畫素輸入信 -62- 201137841 號値計算複數畫素之飽和度S與亮度v(s)。尤其,信號處 理區20從式子(21-A) 、 (21-B)、及(2i_c)依據至第 (P,q)個畫素Px(p,之第一子畫素輸入信號的輸入信號 値X卜(p,q)、第二子畫素輸入信號的輸入信號値x2-(pi q)、 及第三子畫素輸入信號的輸入信號値X3_(p,q)及至第(p, q-1)個畫素’亦即’相鄰畫素之第一子畫素輸入信號的 輸入信號値Xb(P, 、第二子畫素輸入信號的輸入信號値 X2-(P, q·)、及第三子畫素輸入信號的輸入信號値X3-(p> q.)分 別計算飽和度S(p,q>及S(p, 〇和亮度V(p, q)及V(p,q.)。針對 所有畫素進行此程序。據此,獲得P X ( Q - 1 )組的S ( p,q ) ' S (P,q,)、V(P,q)、及 V (P,fl,)。 步驟2 1 0 接著,信號處理區20至少依據關於畫素而計算的Vmax (S) /v(s)的値之一計算膨脹係數α 〇。 尤其,在可行範例2中,信號處理區2 0判斷關於所有 畫素(亦即,Ρ〇 X Q畫素)而計算的Vmax (S)/V(S)的値 中之最小値a min作爲膨脹係數α 〇。尤其,信號處理區20 計算關於所有Ρ〇 X Q畫素的 的値並判斷這些値中之a q)的最小値作爲最小値a min = 膨脹係數ο: 0。注意到,在第6 A及6B圖中,其示意性繪示 可行範例2中之藉由添加白色或第四顏色而膨脹之圓柱的 HSV色空間中的飽和度S與亮度V之間的關係,由「S«nin」 指示提供最小値a Wn之飽和度S的値,並且由「vmin」指 -63- 201137841 示在此時之亮度,同時由「Vmax (Smin)」指示在飽和度 Smin之vmax (s)。此外’在第6B圖中’由圓實心標記指示 V(S),並且由圓空心標記指示V(S) χα<),並且由三角形 空心標記指示飽和度S之V m a X ( S ) ° 步驟220 接著,信號處理區20依據上述式子(2·卜A) 、(2-1-B)、及(3-A',)計算第(P,q)個畫素Px(p,q)之桌四 子畫素輸出信號値Χ4·(Ρ, 。注意到關於p X (Q·1)畫素 ρχ(Ρ, q)計算第四子畫素輸出信號値Χ4·(ρ, q) °可同時履行 步驟210及步驟220。 步驟2 3 0 接著,信號處理區20依據輸入信號値χ!·^,q)、膨脹 係數α〇、及常數z計算第(P,q)個畫素Px(p,<n之第一子 畫素輸出信號値X^p,。此外,信號處理區20依據輸入 信號値Χ2·(ρ, q)、膨脹係數α〇、及常數χ計算第(p,q) 個畫素Ρχ(ρ,之第一子畫素輸出ίδ號値Χ:2·(ρ,q>’並且依 據輸入信號値Χ3·(Ρ,Ο、膨脹係數〇:〇、及常數χ計算第( p,q)個畫素Px(P,q)之第三子畫素輸出信號値X3.(p,q)。注 意到可同時履行步驟2 2 0及步驟2 3 0,或可在步驟2 3 0之後 履行步驟220。 尤其’信號處理區20分別依據上述提出之式子(5-A )、(5·Β)、及(5-C)計算第(P,q)個畫素 Px(p,q)之 β -64 - 201137841 輸出値 Xl-(p,q)、X2-<p,q)、及 X3-(p, q)。 第7圖繪示在可行範例2中添加第四顔色或白色之前相 關技藝的HSV色空間、藉由添加第四顏色或白色而膨脹之 HSV色空間、及輸入信號的飽和度s及亮度V的關係之一範 例。此外,第7圖繪示在可行範例2中添加第四顏色或白色 之前相關技藝的HSV色空間、藉由添加第四顏色或白色而 膨賬之HSV色空間、及在施加膨脹程序的狀態中之輸出信 號的飽和度s及亮度V的關係之一範例。注意到,雖然第7 及8圖中之橫座標的軸上之飽和度S的値原始保持在介於從 0至1的範圍內,在第7及8圖中,以乘以2 5 5的形式予以表 示。 在此重要的是在於第一子畫素R、第二子畫素G、及 第三子畫素B之輝度被膨脹係數α 〇膨脹,如式子(5-A ) 、(5-Β )、及(5-C)中所示。由於第一子畫素R、第二 子畫素G、及第三子畫素Β之輝度依照此方式被膨脹係數 α〇膨脹,不僅白色顯示子畫素(亦即’第四子畫素)的 輝度增加’但紅色顯示子畫素、綠色顯示子畫素、及藍色 顯示子畫素(亦即’第一、第二、及第三子畫素)的輝度 亦增加。因此’可肯定地防止顏色變暗的問題發生。尤其 ,相較於其中不膨脹第一子畫素R、第二子畫素G、及第 三子畫素Β之輝度的替代情況,整個影像之輝度增加至α 〇 倍。據此’例如’可合意地以高輝度進行靜止圖案或之類 的影像顯示。 假設,在;ί =1_5且2η- 1 =2 5 5的情況中,將下表3中所 -65- 201137841 不之値輸入作爲xl-(p, q)、χ2·(ρ, q)、及X3-(p, q)之輸入ίθ號 値。注意到SG2.(P, q)= SGhp,q)。此外,膨脹係數α 〇設定 至表3中所列之値。 表3 Χΐ-(ρ,α)-2 =2 4 0 ^ 2- (p, q) -2 — 2 5〇 X 3~ (p, q) -2 _ 16 0 M a x (p.u)-2= 2 5 5 M i n (p, 〇)-2= 16 0 S (p, Q) -2 = 0. 3 7 3 V (p, Q)-2 =255So = \!{χ +1) The maximum 値Vmax (S) of the brightness obtained in this way and using the saturation S in the expanded HSV color space as a variable is stored as a lookup table into the signal processing area 20 or per The calculation is performed by the signal processing area 20. It is noted that the image display device and the image display device combination in any of the possible examples 3 to 6 in the possible example 2 or described later may be similar to those described above in connection with the feasible example 1, except for the difference in the driving circuit. The difference in the configuration of the pixels, and some other differences. In particular, the image display device 10 of the second embodiment further includes an image display panel and a signal processing area 20. Meanwhile, the image display device combination of the feasible example 2 includes the image display device 1 and the planar light source device for illuminating the image display device 1 (in particular, the image display panel) from the rear side. The processing area 20 and the planar light source device 50 can be similar to the signal processing region 20 and the planar light source device 50 in the above description of the feasible example 1, respectively. This also applies to the possible examples described later. Step 200 First, the signal processing area 20 calculates the saturation S and the luminance v(s) of the complex pixel based on the sub-pixel input signal -62-201137841 to the complex pixel. In particular, the signal processing area 20 inputs from the equations (21-A), (21-B), and (2i_c) to the (P, q)th pixel Px (p, the input of the first sub-pixel input signal. The signal 値Xb (p, q), the input signal 値x2-(pi q) of the second sub-pixel input signal, and the input signal 値X3_(p, q) of the third sub-pixel input signal and to the (p) , q-1) a pixel's input signal 値Xb of the first sub-pixel input signal of the adjacent pixel PXb (P, the input signal of the second sub-pixel input signal 値X2-(P, q ·), and the input signal 値X3-(p> q.) of the third subpixel input signal respectively calculates the saturation S(p, q> and S(p, 〇 and luminance V(p, q) and V( p, q.). This procedure is performed for all pixels. According to this, S ( p,q ) ' S (P,q,), V(P,q), and V of the PX (Q - 1 ) group are obtained. (P, fl,) Step 2 1 0 Next, the signal processing area 20 calculates the expansion coefficient α 〇 based on at least one of Vmax (S) / v(s) calculated for the pixel. In particular, in the feasible example 2 In the signal processing area 20, it is judged that Vmax (S)/V(S) is calculated for all pixels (that is, Ρ〇XQ pixels). The minimum 値a min is used as the expansion coefficient α 〇. In particular, the signal processing area 20 calculates the 値 for all Ρ〇XQ pixels and determines the minimum 値 of these )) as the minimum 値a min = expansion coefficient ο: 0. It is noted that in FIGS. 6A and 6B, the relationship between the saturation S and the luminance V in the HSV color space of the cylinder expanded by adding the white or the fourth color in the feasible example 2 is schematically illustrated. , by "S«nin" indicating the saturation of the minimum 値a Wn saturation S, and by "vmin" -63-201137841 shows the brightness at this time, and is indicated by "Vmax (Smin)" at the saturation Smin Vmax (s). In addition, 'in Figure 6B' is indicated by a solid circle mark V(S), and the round hollow mark indicates V(S) χα<), and the triangular hollow mark indicates the saturation S of V ma X ( S ) ° Step 220 Next, the signal processing area 20 calculates the (P, q)th pixel according to the above equations (2·B A), (2-1-B), and (3-A',). Px(p,q) table four subpixel output signal 値Χ4·(Ρ, . Note that the fourth subpixel output signal is calculated for p X (Q·1) pixel ρχ(Ρ, q) Χ4·(ρ, q) ° can perform both step 210 and step 220. Step 2 3 0 Next, the signal processing area 20 calculates the first according to the input signal 値χ!·^, q), the expansion coefficient α〇, and the constant z ( P, q) pixels Px (p, <n first subpixel output signal 値X^p,. Further, the signal processing area 20 calculates the (p, q)th pixel Ρχ (ρ, the first sub-pixel output ίδ number according to the input signal 値Χ2·(ρ, q), the expansion coefficient α〇, and the constant χ Χ: 2·(ρ,q>' and calculate the (p, q)th pixel Px(P,q) according to the input signal 値Χ3·(Ρ,Ο, expansion coefficient 〇:〇, and constantχ The three subpixel output signals 値X3.(p, q). Note that step 2 2 0 and step 2 3 0 may be performed simultaneously, or step 220 may be performed after step 2 3 0. In particular, the 'signal processing area 20 is respectively based on The above-mentioned equations (5-A), (5·Β), and (5-C) calculate the (P, q) pixels Px(p, q) β -64 - 201137841 Output 値Xl-( p, q), X2-<p, q), and X3-(p, q). Figure 7 shows the HSV color space of the related art before adding the fourth color or white in the feasible example 2, by adding An example of the relationship between the fourth color or the white and expanded HSV color space, and the saturation s of the input signal and the brightness V. In addition, FIG. 7 illustrates the related art before adding the fourth color or white in the feasible example 2. HSV color space, by adding a fourth An example of the relationship between the saturation s and the brightness V of the output signal in the color or white and the HSV color space in the state in which the expansion program is applied. Note that although the axes of the abscissas in Figures 7 and 8 The 値 of the upper saturation S is originally maintained in the range from 0 to 1, and is represented in the form of multiplication by 2 5 5 in the 7th and 8th drawings. What is important here is the first sub-pixel. The luminance of R, the second sub-pixel G, and the third sub-pixel B is expanded by the expansion coefficient α , as shown in the equations (5-A), (5-Β), and (5-C). Since the luminances of the first sub-pixel R, the second sub-pixel G, and the third sub-pixel are expanded by the expansion coefficient α〇 in this manner, not only the white display sub-pixel (ie, the fourth sub-pixel) The luminance increases, but the luminance of the red display sub-pixel, the green display sub-pixel, and the blue display sub-pixel (that is, the 'first, second, and third sub-pixels') also increases. The problem of preventing darkening of the color occurs, in particular, compared to the luminance of the first sub-pixel R, the second sub-pixel G, and the third sub-pixel Alternatively, the luminance of the entire image is increased by α 〇. According to this, for example, a still pattern or the like can be desirably displayed with high luminance. It is assumed that at ί = 1_5 and 2η - 1 = 2 5 5 In the case, the input of -65-201137841 in Table 3 below is taken as the input ίθ of xl-(p, q), χ2·(ρ, q), and X3-(p, q). SG2.(P, q)= SGhp,q). In addition, the expansion coefficient α 〇 is set to the enthalpy listed in Table 3. Table 3 Χΐ-(ρ,α)-2 =2 4 0 ^ 2- (p, q) -2 — 2 5〇X 3~ (p, q) -2 _ 16 0 M ax (pu)-2= 2 5 5 M in (p, 〇)-2= 16 0 S (p, Q) -2 = 0. 3 7 3 V (p, Q)-2 =255
Vmax (S) =6 3 8 a〇 = 1. 5 9 2 例如,根據表3中所示之輸入信號値,在將膨脹係數 α〇納入考量的情況中,依據輸入信號(X|-(p,c〇,X2_(p,q), x3-(P, q)) = (240,255, 160)之將顯示的輝度値變成,遵 照8位元顯示, 第一子畫素之輝度値 =α〇·Χι-(Ρ/ς) = 1.592 X 240 = 382 . . . (22-Α) 第二子畫素之輝度値 =〇i〇.X2-(P,q) = 1.592 X 255 = 406 . . . (22-B) 第三子畫素之輝度値 =〇ί〇·Χ3-(ρ,ς) = 1.592 X 160 = 255 . . . (22-C) 第四子畫素之輝度値 =α〇·Χ4-(Ρ#ς) = 1.592 X 160 = 255 . . . (22-D) 據此,第一子畫素輸出信號値Xhp, q)、第二子畫素 輸出信號値X2.(p, q)、第三子畫素輸出信號値X3-(P, q)、第 -66- 201137841 四子畫素輸出信號値x 4 · (p,q >變成如下所列。Vmax (S) = 6 3 8 a〇 = 1. 5 9 2 For example, according to the input signal 所示 shown in Table 3, in the case of considering the expansion coefficient α〇, according to the input signal (X|-(p) , c〇, X2_(p, q), x3-(P, q)) = (240, 255, 160) will display the luminance 値, according to the 8-bit display, the luminance of the first sub-pixel 値 = 〇·Χι-(Ρ/ς) = 1.592 X 240 = 382 . . . (22-Α) The luminance of the second subpixel 値=〇i〇.X2-(P,q) = 1.592 X 255 = 406 . . . (22-B) The luminance of the third sub-pixel 値=〇ί〇·Χ3-(ρ,ς) = 1.592 X 160 = 255 . . . (22-C) The luminance of the fourth sub-pixel 値=α〇·Χ4-(Ρ#ς) = 1.592 X 160 = 255 . . . (22-D) According to this, the first subpixel output signal 値Xhp, q), the second subpixel output signal 値X2 (p, q), third subpixel output signal 値X3-(P, q), pp. -66-201137841 Four subpixel output signal 値x 4 · (p, q > becomes as follows.
Xl-(p,q)= =382 - 255 = 127 X2-(p,q)= =406 - 255 = 151 X3-(p,q)= =255 - 255 = 0 (p,q)= =255/X = 170 依照此方式’第一、第二、及第三子畫素的輸出信號 値XHP,q)、X2-(P, q)及Χ3.(Ρ, q)變成低於原始所需的値。 在可行範例2之影像顯示裝置組合或影像顯示裝置組 合的驅動方法中’第(p,q)個畫素群組PG(p,q)的輸出信 號値 Xl-(p, q)、Χ2·(Ρ,q>、X3-(P,q)、及 Χ4·(ρ,q)膨脹至 α 〇倍 。因此,爲了獲得等於無膨脹狀態中之影像輝度的影像輝 度,應依據膨脹係數《 〇減少平面光源裝置5 0的輝度。尤 其’平面光源裝置50之輝度應設定成ΐ/α()倍。藉此,可 預期到平面光源裝置之耗電量的減少。 參照第9圖說明可行範例2的影像顯示裝置之驅動方法 及影像顯示裝置組合之驅動方法中的膨脹程序。第9圖示 意性繪示輸入信號値及輸出信號値。參照第9圖,在[1 ]中 指示獲得o:min之一組第一、第二、及第三子畫素的輸入 信號値。同時,在[2]中指示藉由膨脹操作,亦即,藉由 計算輸入信號値及膨脹係數α c的乘積的操作而膨脹的輸 入信號値。此外,在[3 ]中指示在進行膨脹操作之後的輸 出信號値’亦即’在獲得輸出信號値Xi (p,q)、X2.(p, q)、 Χ3-(Ρ,q)、及Χ4·(ρ,q)的狀態。在第9圖中所示之範例中,藉 由第二子畫素獲得可實行之最大輝度。 -67- 201137841 注意到,由於,在每一畫素群組中’第一及第二畫素 之輸出信號値的比率Xl-(p,q)= =382 - 255 = 127 X2-(p,q)= =406 - 255 = 151 X3-(p,q)= =255 - 255 = 0 (p,q)= =255 /X = 170 In this way, the output signals 値XHP,q), X2-(P, q) and Χ3.(Ρ, q) of the first, second, and third sub-pixels become lower than the original requirements. Hey. In the driving method of the image display device combination or the image display device combination of the feasible example 2, the output signals of the (p, q)th pixel group PG(p, q) are 値Xl-(p, q), Χ2· (Ρ,q>, X3-(P,q), and Χ4·(ρ,q) swell to α 〇 times. Therefore, in order to obtain image luminance equal to the image luminance in the non-expanded state, the expansion coefficient should be based on 〇 The luminance of the planar light source device 50 is reduced. In particular, the luminance of the planar light source device 50 should be set to ΐ/α() times. Thereby, the power consumption of the planar light source device can be expected to be reduced. The driving method of the image display device of 2 and the expansion program of the driving method of the image display device combination. Fig. 9 is a schematic diagram showing the input signal 値 and the output signal 値. Referring to Fig. 9, the indication is obtained in [1]. :min is the input signal 第一 of the first, second, and third sub-pixels of one group. At the same time, the expansion operation is indicated in [2], that is, by calculating the input signal 値 and the expansion coefficient α c The input signal 膨胀 that is expanded by the operation of the product. In addition, the expansion is indicated in [3]. After the output signal 値 'that is, ' obtains the state of the output signals 値Xi (p, q), X2. (p, q), Χ3-(Ρ, q), and Χ4·(ρ, q). In the example shown in Fig. 9, the maximum luminance that can be achieved is obtained by the second sub-pixel. -67- 201137841 Note that since each pixel group is 'first and second pixels' Ratio of output signal 値
Xl-(p,q) · ^2-(p,q) · ^3-(p#q) 與輸入信號値的比率Xl-(p,q) · ^2-(p,q) · ^3-(p#q) ratio to input signal 値
Xl-(P,q) : X2-(p,q> : x3-<p,q> 有少許差異,若單獨觀看每一畫素群組,則相關於輸 入信號畫素群組的色調會發生一些差異。然而,當觀看每 —畫素群組爲一畫素群組時,畫素群組的色調不會發生問 題。 可行範例3 可行範例3爲第二可行範例2的修改例。針對平面光源 裝置,雖然可採用相關技藝中之直接型的平面光源裝置, 在可行範例3中,於下所述採用分區驅動型(亦即部分驅 動型)的平面光源裝置150,如第10圖中所示。注意到膨 脹程序本身可與連同可行範例2之上述者類似。 分區驅動型的平面光源裝置150形成自S X T平面光 源單元1 52,在假設組態彩色液晶顯示裝置的影像顯示面 板130的顯示區域131分成S X T虛擬顯示區域單元132,S X T平面光源單元152相應於顯示區域單元132。個別地控 制S X T平面光源單元152之發光狀態。 參照第1 〇圖,爲彩色液晶顯示裝置的影像顯示面板 130包括顯示區域131,其中總共PG X Q畫素排列在二維 矩陣中,包括沿著第一方向中設置的Ρο畫素及沿著第二方 3 -68- 201137841 向中設置的Q畫素。在此,假設將顯不區域131分成S χ Τ 虛擬顯示區域單元132。每一顯示區域單元132包括複數畫 素。尤其,若影像顯示解析度符合HD-TV標準且由(Ρ〇, Q )表示排列在二維矩陣中之畫素數量,則畫素數量爲( 1 920, 1080 )。此外,組態自排列於二維矩陣中之畫素並 藉由第10圖中之交替的長及短虛線指示的顯示區域131係 分成S X Τ虛擬顯示區域單元132,其之間的邊界由折線 指示。(S,Τ )的値爲例如(1 9,12 )。然而,爲了簡化 圖解,第10圖中之顯示區域單元132的數量,以及還有此 後所述之平面光源單元152,與此値不同。每一顯示區域 單元132包括複數畫素,且組態一個顯示區域單元132之畫 素數量爲例如近乎1〇,〇〇〇。通常,影像顯示面板130爲線 序列驅動。詳言之,影像顯示面板1 3 0具有沿著第一方向 延伸之掃描電極,及沿著第二方向延伸之資料電極,使得 它們像矩陣般互相交叉。從掃描電路輸入掃描信號至掃描 電極以選擇並掃描掃描電極,同時從信號輸出電路輸入資 料信號或輸出信號至資料電極,使得影像顯示面板1 3 0依 據資料信號顯示影像以形成螢幕影像。 直接型的平面光源裝置或背光1 5 0包括相應於S X Τ 顯示區域單元132之S X Τ平面光源單元152,且平面光源 單元1 52從後側照亮相應的顯示區域單元1 32。個別控制設 置在平面光源單元152中之光源。注意到,雖平面光源裝 置150定位在影像顯示面板130的下方,在第10圖中,影像 顯示面板130及平面光源裝置150顯示爲互相分離。 -69- 201137841 當組態自排列在二維矩陣中之畫素的顯示區域131分 成S X T顯示區域單元13 2時,若以「列」及「行」加以 表示,此狀態可視爲將顯示區域1 3 1分成設置在T列 X S 行中之顯示區域單元1 3 2。此外,雖顯示區域單元1 3 2組態 自複數(M〇 X N〇 )畫素,若以「列」及「行」表示此狀 態,則顯示區域單元132可視爲組態自設置在N〇列 X M〇 行中的畫素。 在第12圖中繪示平面光源單元152及平面光源裝置150 的配置陣列狀態。每一光源形成自依據脈寬調變(PWM ) 控制方法驅動之發光二極體1 53。.藉由增加或減少構成平 面光源單元152之發光二極體153的脈衝寬度調變控制的工 作比之控制來進行平面光源單元1 52的輝度之增加或減少 。從發光二極體153發射的照明光從平面光源單元152出去 經過光擴散板並接續通過光學功能片群組(包括光擴散片 、稜鏡片、及偏光轉換片(皆未顯示))直到其從後側照 亮影像顯示面板130。爲光二極體67的一光感測器設置在 每一平面光源單元152中。光二極體67測量發光二極體153 的輝度及色度》 參照第10及11圖,依據來自信號處理區20的平面光源 裝置控制信號或驅動信號驅動平面光源單元152之平面光 源裝置控制.電路160進行組態每一平面光源單元1 52的發光 二極體153之開/關控制。平面光源裝置控制電路160包括 計算電路61、儲存裝置或記憶體62、LED驅動電路63、光 二極體控制電路64、形成自FET之切換元件65、及爲恆定Xl-(P,q) : X2-(p,q> : x3-<p,q> There are a few differences. If you watch each pixel group separately, the color tone related to the input signal pixel group will be Some differences occur. However, when viewing each pixel group as a pixel group, the hue of the pixel group does not cause a problem. Possible Example 3 Possible Example 3 is a modification of the second possible example 2. For a planar light source device, although a direct type planar light source device of the related art can be employed, in a possible example 3, a partition-driven (ie, partially driven) planar light source device 150 is employed as described below, as in FIG. It is noted that the expansion procedure itself can be similar to that described above in connection with the possible example 2. The partition-driven planar light source device 150 is formed from the SXT planar light source unit 152, assuming that the image display panel 130 of the color liquid crystal display device is configured The display area 131 is divided into an SXT virtual display area unit 132, and the SXT planar light source unit 152 corresponds to the display area unit 132. The light-emitting state of the SXT-plane light source unit 152 is individually controlled. Referring to FIG. 1, a color liquid crystal display The image display panel 130 includes a display area 131 in which a total of PG XQ pixels are arranged in a two-dimensional matrix, including a Ρο pixel set along the first direction and a middle direction along the second side 3 -68-201137841 Here, it is assumed that the display area 131 is divided into S χ Τ virtual display area units 132. Each display area unit 132 includes a plurality of pixels. In particular, if the image display resolution conforms to the HD-TV standard and is Ρ〇, Q ) indicates the number of pixels arranged in the two-dimensional matrix, and the number of pixels is (1 920, 1080). In addition, configure the pixels that are self-aligned in the two-dimensional matrix and use Figure 10 The display area 131 indicated by the alternate long and short dashed lines is divided into SX Τ virtual display area units 132, and the boundary between them is indicated by a broken line. The 値 of (S, Τ) is, for example, (1 9,12). However, The simplified illustration, the number of display area units 132 in Fig. 10, and also the planar light source unit 152 described hereinafter, differs from this. Each display area unit 132 includes a plurality of pixels and configures a display area unit. The number of pixels in 132 is, for example Generally, the image display panel 130 is driven by a line sequence. In detail, the image display panel 130 has a scan electrode extending along the first direction and a data electrode extending along the second direction. So that they cross each other like a matrix. The scan signal is input from the scan circuit to the scan electrode to select and scan the scan electrode, and the data signal or the output signal is input from the signal output circuit to the data electrode, so that the image display panel 1 3 0 is based on the data signal. The image is displayed to form a screen image. The direct type planar light source device or backlight 150 includes an SX Τ planar light source unit 152 corresponding to the SX Τ display area unit 132, and the planar light source unit 152 illuminates the corresponding display area from the rear side Unit 1 32. The light source disposed in the planar light source unit 152 is individually controlled. It is noted that although the planar light source device 150 is positioned below the image display panel 130, in Fig. 10, the image display panel 130 and the planar light source device 150 are shown separated from each other. -69- 201137841 When the display area 131 of the pixel self-aligned in the two-dimensional matrix is divided into the SXT display area unit 13 2 , if it is represented by "column" and "row", this state can be regarded as the display area 1 3 1 is divided into display area units 1 3 2 set in the X column of the T column. In addition, although the display area unit 13 2 is configured from a complex number (M〇XN〇) pixel, if the status is represented by "column" and "row", the display area unit 132 can be regarded as a configuration self-set in the N column. The pixels in XM's execution. The arrangement array state of the planar light source unit 152 and the planar light source device 150 is shown in FIG. Each of the light sources is formed from a light-emitting diode 1 53 driven by a pulse width modulation (PWM) control method. The increase or decrease in the luminance of the planar light source unit 152 is performed by increasing or decreasing the duty ratio control of the pulse width modulation control of the light-emitting diode 153 constituting the planar light source unit 152. The illumination light emitted from the light-emitting diode 153 passes through the light diffusion plate from the planar light source unit 152 and continues through the optical function sheet group (including the light diffusion sheet, the cymbal sheet, and the polarization conversion sheet (all not shown)) until it The rear side illuminates the image display panel 130. A photo sensor for the photodiode 67 is disposed in each of the planar light source units 152. The photodiode 67 measures the luminance and chromaticity of the light-emitting diode 153. Referring to FIGS. 10 and 11, the planar light source device control unit of the planar light source unit 152 is controlled according to the planar light source device control signal or driving signal from the signal processing region 20. 160 performs on/off control of the light-emitting diode 153 of each of the planar light source units 1 52. The planar light source device control circuit 160 includes a calculation circuit 61, a storage device or memory 62, an LED drive circuit 63, an optical diode control circuit 64, a switching element 65 formed from the FET, and is constant
S -70- 201137841 電流源之發光二極體驅動電源6 6。組態平面光源裝置控制 電路160之電路元件可爲已知電路元件。 在一特定影像顯示訊框中的每一發光二極體153之發 光狀態係藉由相應的光二極體67加以測量,且光二極體67 的輸出係輸入至光二極體控制電路64並藉由光二極體控制 電路64及計算電路61轉換成表示發光二極體丨53之輝度及 色度之資料或信號。資料係發送至LED驅動電路63,藉此 可以該資料控制下一影像顯示訊框中之發光二極體1 5 3的 發光狀態。依照此方式,形成回饋機制。 在發光二極體1 5 3的下游將電流檢測用之電阻器r串聯 地插入至發光二極體1 5 3,並且將流經電阻器r之電流轉換 成電壓。接著,在LED驅動電路63的控制下控制發光二極 體驅動電源66之操作,使得跨電阻器r的壓降可呈現預定 値。雖第11圖顯示設置一個發光二極體驅動電源66來充當 恆定電流源,事實上設置這種發光二極體驅動電源66來驅 動發光二極體153的個別者。注意到在第11圖中顯示三個 平面光源單元152。雖第11圖顯示在一個平面光源單元152 中設置一個發光二極體153的組態,組態平面光源單元152 之發光二極體153的數量不限於一個。 每一畫素群組組態自四種子畫素,包括上述之第一、 第二、第三、及第四子畫素。在此,藉由8位元控制來進 行每一子畫素的輝度控制(亦即等級控制),以將輝度控 制在〇至2 5 5的2 8級別之中。並且,控制構成每一平面光源 單元152的每一發光二極體153之發光時期的脈寬調變輸出 -71 - 201137841 信號的値PS爲在0至25 5的28級別之中。然而’輝度的級別 不限於此,且可例如藉由1 0位元控制來進行輝度控制,以 將輝度控制在〇至1,023的2IQ級別之中。在此例子中,8位 元之數値的表示可例如爲乘以四。 下列定義適用於子畫素的光透射因子(亦稱爲數値孔 徑)Lt、相應於該子畫素之顯示區域的一部分之輝度y( 亦即,顯示輝度)、及平面光源單元1 5 2之輝度Y (亦即 ,光源輝度)。 Y 1 :例如,光源輝度之最大輝度,且此輝度此後有時 稱爲光源輝度第一指定値。S -70- 201137841 Current source LED driving power supply 6 6 . The circuit elements of the configuration planar light source device control circuit 160 can be known circuit components. The light-emitting state of each of the light-emitting diodes 153 in a specific image display frame is measured by the corresponding photodiode 67, and the output of the photodiode 67 is input to the photodiode control circuit 64 by The photodiode control circuit 64 and the calculation circuit 61 are converted into data or signals indicating the luminance and chromaticity of the LEDs 53. The data is sent to the LED drive circuit 63, whereby the data can be used to control the illumination state of the LEDs 153 in the next image display frame. In this way, a feedback mechanism is formed. A resistor r for current detection is inserted in series to the light-emitting diode 1 5 3 downstream of the light-emitting diode 1 5 3, and a current flowing through the resistor r is converted into a voltage. Next, the operation of the light-emitting diode driving power source 66 is controlled under the control of the LED driving circuit 63 so that the voltage drop across the resistor r can assume a predetermined threshold. Although Fig. 11 shows that a light-emitting diode driving power source 66 is provided to serve as a constant current source, the light-emitting diode driving power source 66 is actually provided to drive the individual of the light-emitting diode 153. It is noted that three planar light source units 152 are shown in Fig. 11. Although FIG. 11 shows a configuration in which one light-emitting diode 153 is disposed in one planar light source unit 152, the number of the light-emitting diodes 153 configuring the planar light source unit 152 is not limited to one. Each pixel group is configured from four seed pixels, including the first, second, third, and fourth sub-pixels described above. Here, the luminance control (i.e., level control) of each sub-pixel is performed by 8-bit control to control the luminance to be in the 28 level of 255. Further, the 値PS of the pulse width modulation output -71 - 201137841 signal for controlling the illumination period of each of the light-emitting diodes 153 of each of the planar light source units 152 is among 28 levels of 0 to 25 5 . However, the level of 'luminance is not limited thereto, and luminance control can be performed, for example, by 10 bit control to control the luminance to a 2IQ level of 〇1,023. In this example, the representation of the number of octets 可 can be, for example, multiplied by four. The following definitions apply to the light transmission factor (also referred to as the digital aperture) Lt of the sub-pixel, the luminance y corresponding to a portion of the display area of the sub-pixel (ie, the display luminance), and the planar light source unit 1 5 2 The luminance Y (i.e., the luminance of the light source). Y 1 : For example, the maximum luminance of the luminance of the light source, and this luminance is sometimes referred to as the first specified 値 of the luminance of the light source.
Lh :例如,顯示區域單元132的子畫素之光透射因子 或數値孔徑的最大値,且此値此後有時稱爲光透射因子第 —指定値。Lh: For example, the light transmission factor of the sub-pixel of the display area unit 132 or the maximum aperture of the number aperture, and this is sometimes referred to as the light transmission factor.
Lt2 :當假設供應相應於顯示區域單元信號最大値 XmaX-(S, t)(其爲輸入至影像顯示面板驅動電路40以驅動顯 示區域單元132的所有子畫素的信號處理區20之輸出信號 的値中之最大値)之控制信號至子畫素時,子畫素的透射 因子或數値孔徑,且此値此後有時稱爲光透射因子第二指 定値。注意到透射因子第二指定Lt2値滿足0 S Lt2 ^ Lt 1。 y2:當假設光源輝度爲光透射因子第一指定値γ,且子 畫素之光透射因子或數値孔徑爲光透射因子第二指定値 Lt2時所得的顯示輝度,且此顯示輝度此後有時稱爲顯示 輝度第二指定値。Lt2: when it is assumed that the supply corresponds to the display area unit signal maximum 値XmaX-(S, t) which is an output signal of the signal processing area 20 input to the image display panel drive circuit 40 to drive all the sub-pixels of the display area unit 132 The maximum 値) control signal to the sub-pixel, the transmission factor of the sub-pixel or the number of apertures, and this is sometimes referred to as the second specified 光 of the light transmission factor. Note that the transmission factor second specified Lt2値 satisfies 0 S Lt2 ^ Lt 1 . Y2: display luminance obtained when the luminance of the light source is assumed to be the first specified 値γ of the light transmission factor, and the light transmission factor or the number of apertures of the subpixel is the second specified 値Lt2 of the light transmission factor, and the display luminance is sometimes thereafter It is called the second specified 辉 of the display luminance.
S -72- 201137841 Υ2 :當假設供應相應於顯示區域單元信號最大値 Xmax-(s, t>之控制ίΒ號至子畫素’還有假設將此時之子畫素 的光透射因子或數値孔徑校正至光透射因子第一指定値 1^!時,使子畫素之輝度等於爲顯示輝度第二指定値y22 平面光源單元152的光源輝度。然而,可將每一平面光源 單元152的光源輝度對任何其他平面光源單元152的光源輝 度之影響納入考量來校正光源輝度Υ2。 在部分驅動或分區驅動平面光源裝置時,藉由平面光 源裝置控制電路160控制組態相應於顯示區域單元132之平 面光源單元1 5 2的發光元件的輝度,使得當假設供應相應 於顯示區域單元信號最大値Xlliax.(s,η之控制信號至子畫素 時’可獲得在光透射因子第一指定値Lni子畫素的輝度 ’亦即,顯示輝度第二指定値y2。尤其,例如,可控制( 例如,減少)光源輝度Y2,以在子畫素之光透射因子或數 値孔徑設定在例如光透射因子第一指定値Lt ^時,可獲得 顯示輝度D。尤其,可針對每一影像顯示訊框控制平面光 源單元1 52的光源輝度Y2,以例如滿足下列式子(a )。 注意到光源輝度Y2及光源輝度第一指定値Y,具有Y2 $ Υ 1之關係。在第1 3 Α及1 3 Β圖中示意性繪示這種控制。 Y2 Lt| = Yi -Lt2 ... (A) 爲了個別控制子畫素,從信號處理區20發信用於控制 個別子畫素之光透射因子Lt的輸出信號値Xhp,q>、X^p £〇、X3-(p, q)、及Χ4·(ρ,至影像顯示面板驅動電路40。在 -73- 201137841 影像顯示面板驅動電路40中,從輸出信號產生控制信號並 供應或輸出至子畫素。接著,依據控制信號之一相關者驅 動組態每一子畫素之切換元件並供應希望電壓至組態液晶 胞之透明第一電極及透明第二電極(未圖示)以控制子畫 素的光透射因子Lt或數値孔徑。在此,當控制信號的大小 增加時,子畫素之光透射因子Lt或數値孔徑增加,且相應 於子畫素的顯示區域之一部分的輝度(亦即,顯示輝度y )增加。尤其,組態自通過子畫素且通常爲點的一種之影 像很亮。 在影像顯示面板1 3 0之影像控制中,針對每一影像顯 示訊框、針對每一顯示區域單元、及針對的每一平面光源 單元進行顯示輝度y及光源輝度Y2的控制。此外,在一影 像顯示訊框內的影像顯示面板130之操作與平面光源裝置 1 5 0之操作互相同步。注意到一秒內發送至驅動電路作爲 電信號之影像資訊的數量(亦即每秒之影像數量)爲訊框 頻率或訊框率,且訊框頻率的倒數爲訊框時間,其之單位 爲秒。 在可行範例2中,針對所有畫素依據一膨脹係數〇〇進 行膨脹輸入信號以獲得輸出信號之膨脹程序。另一方面, 在可行範例3中,針對S X Τ顯示區域單元132每一者計算 一膨脹係數α。’並針對每一顯示區域單元! 3 2進行依據所 計算的膨脹係數〇; 〇之膨脹程序。 接著’在相應於第(s,t)個顯示區域單元132 (其之 已判斷的膨脹係數爲〇: Q.(s, t))之第(s,t )個平面光源單S -72- 201137841 Υ2: When it is assumed that the supply corresponds to the display area unit signal maximum 値Xmax-(s, t> control Β 至 to sub-pixels' and the light transmission factor or number of sub-pixels assumed to be at this time When the aperture is corrected to the light transmission factor first designation ^1^!, the luminance of the sub-pixel is equal to the luminance of the light source of the planar light source unit 152 for displaying the luminance second designation 値 y22. However, the light source of each planar light source unit 152 can be used. The effect of luminance on the luminance of the light source of any other planar light source unit 152 is taken into consideration to correct the luminance of the light source Υ 2. When the planar light source device is partially driven or partitioned, the control configuration corresponding to the display area unit 132 is controlled by the planar light source device control circuit 160. The luminance of the light-emitting element of the planar light source unit 152 is such that when it is assumed that the supply signal corresponding to the display area unit signal 値Xlliax.(s, η control signal to the sub-pixel is obtained, the light transmission factor is first specified 値Lni The luminance of the sub-pixels, that is, the second luminance y2 of the luminance is displayed. In particular, for example, the luminance Y2 of the light source can be controlled (for example, reduced) to be transparent in the sub-pixels. When the emission factor or the number of apertures is set to, for example, the light transmission factor first designation 値Lt ^, the display luminance D can be obtained. In particular, the light source luminance Y2 of the frame control plane light source unit 152 can be displayed for each image, for example, to satisfy The following equation (a) is noted. Note that the source luminance Y2 and the source luminance first specified 値Y have a relationship of Y2 $ Υ 1. This control is schematically illustrated in the 1 3 Α and 1 3 。 diagrams. Y2 Lt | = Yi -Lt2 (A) In order to individually control the sub-pixels, an output signal 値Xhp,q>, X^p £〇 for controlling the light transmission factor Lt of the individual sub-pixels is transmitted from the signal processing area 20. , X3-(p, q), and Χ4·(ρ, to the image display panel drive circuit 40. In the image display panel drive circuit 40 of -73-201137841, a control signal is generated from the output signal and supplied or output to the sub-pixel Then, according to one of the control signals, the driver switches the switching element of each sub-pixel and supplies the desired voltage to the transparent first electrode and the transparent second electrode (not shown) of the configuration liquid crystal cell to control the sub-pixel. Light transmission factor Lt or number 値 aperture. Here, when the control signal As the size increases, the light transmission factor Lt or the number of apertures of the sub-pixel increases, and the luminance (ie, the display luminance y) corresponding to a portion of the display region of the sub-pixel increases. In particular, the self-passing sub-pixel is configured. And the image of the type of the dot is very bright. In the image control of the image display panel 130, the display brightness is displayed for each image display frame, for each display area unit, and for each planar light source unit. And control of the light source luminance Y2. Further, the operation of the image display panel 130 in an image display frame is synchronized with the operation of the planar light source device 150. Note that the number of image information (ie, the number of images per second) sent to the driving circuit as an electrical signal within one second is the frame frequency or frame rate, and the reciprocal of the frame frequency is the frame time, and the unit is second. In the feasible example 2, the expansion input signal is expanded for all the pixels according to an expansion coefficient to obtain an expansion procedure of the output signal. On the other hand, in the feasible example 3, an expansion coefficient α is calculated for each of the S X Τ display area units 132. ‘And for each display area unit! 3 2 Based on the calculated expansion coefficient 〇; 〇 expansion procedure. Then, at the (s, t) plane light source corresponding to the (s, t)th display area unit 132 (the determined expansion coefficient is 〇: Q.(s, t))
S -74- 201137841 元152中,光源的輝度設定成i/α 〇。 或者,藉由平面光源裝置控制電路1 60控制組態相應 於每一顯示區域單元132之平面光源單元152的光源之輝度 ,使得當假設供應相應於顯示區域單元信號最大値Xmax-(s, t)(其爲輸入以驅動組態每一顯示區域單元1 3 2的所有 子畫素之信號處理區20的輸出信號値中的最大値)之控制 is號至子畫素時’可獲得在光透射因子第一指定値Lti之 子畫素的輝度’亦即,顯示輝度第二指定値y2。尤其,例 如’可控制(例如,減少)光源輝度Y2,以在子畫素之光 透射因子或數値孔徑設定在例如光透射因子第一指定値 [^時,可獲得顯示輝度y2。換言之,可尤其針對每一影 像顯示訊框控制平面光源單元1 52的光源輝度γ2,以例如 滿足上述提出之式子(Α)。 順帶一提,在平面光源裝置1 50中,在假設例如(s, t )=(1,1 )之平面光源單元1 5 2的輝度控制之情況中,會 有必須將來自其他S X T平面光源單元152的影響納入考 量的情形。由於從每一平面光源單元1 52的光發射曲線預 先得知其他平面光源單元152對該平面光源單元152的影響 ’可藉由反向計算來計算出差別,且因此影響之校正爲可 行。於下說明計算的一基本形式。 由矩陣[LpXQ]表不依據式子(a)之要求的s X T平 面光源單元1 52所需之輝度(亦即,光源輝度γ2 )。此外 ,關於S X Τ平面光源單元152預先判斷當僅驅動—特定 平面光源單元同時不驅動其他平面光源單元時所得之該特 -75- 201137841 定平面光源單元的輝度。由矩陣[L>Q]表示在此例子中之 輝度。此外,由矩陣[a pXQ]表示校正係數。因此,可藉由 下列式子(B -1 )表示諸矩陣之間的關係。可預先判斷校 正係數的矩陣[Cl pXQ]。 [Lpxq] = [L*pxq]· [apxq] · · · (B-1) 因此,可從式子(B-l )判斷矩陣[L’pxQ]。可藉由逆 矩陣之計算判斷矩陣[L'pxq]。尤其,可計算 [L5pxq] = [ L p X q ] · [ α p X q ] .·· (Β-2) 接著,可控制每一平面光源單元152中之光源,亦即 ,發光二極體153,以獲得由矩陣[L’pi<Q]表示之輝度。尤 其,可使用儲存在設置於平面光源裝置控制電路160中的 儲存裝置或記憶體62中之資訊或資料表來進行這種操作或 程序。注意到,在發光二極體1 53的控制中,由於矩陣 [I/p.Q]的値無法爲負値,理所當然地計算結果需維持在正 區域內。據此,式子(B-2 )的解答有時爲近似解答而非 精確解答。 依照此方式,如上所述依據根據由平面光源裝置控制 電路160所得之式子(A)的値所得之矩陣[LpxQ]及校正係 數的矩陣[〇: pXQ]來判斷當假設單獨驅動每一平面光源單元 時之矩陣[L'pxQ],並依據儲存在儲存裝置62中之轉換表將 矩陣[L>q]轉換成在〇至25 5的範圍內之相應的整數,亦即In S-74-201137841, element 152, the luminance of the light source is set to i/α 〇. Alternatively, the luminance of the light source corresponding to the planar light source unit 152 of each display area unit 132 is controlled by the planar light source device control circuit 160 so that when the supply corresponding to the display area unit signal is assumed to be the maximum 値Xmax-(s, t (which is the input to drive the maximum chirp in the output signal 値 of the signal processing region 20 of all sub-pixels of each display area unit 133). The transmission factor first specifies the luminance of the sub-pixel of 値Lti', that is, the luminance second designation 値y2 is displayed. Specifically, for example, 'the light source luminance Y2 can be controlled (e.g., reduced) so that the display luminance y2 can be obtained when the light transmission factor or the number aperture of the sub-pixel is set to, for example, the light transmission factor first designation ^. In other words, the light source luminance γ2 of the frame control plane light source unit 1 52 can be displayed, especially for each image, to satisfy, for example, the above-mentioned proposed equation (Α). Incidentally, in the case of the planar light source device 150, in the case of assuming that the luminance control of the planar light source unit 125 is, for example, (s, t) = (1, 1), there will be a necessity to source the light source from other SXT planes. The impact of 152 was taken into account. Since the influence of the other planar light source unit 152 on the planar light source unit 152 is known in advance from the light emission curve of each planar light source unit 152, the difference can be calculated by inverse calculation, and thus the correction is made feasible. A basic form of calculation is explained below. The luminance required by the s X T plane source unit 1 52 (i.e., the source luminance γ2) is not determined by the matrix [LpXQ] according to the requirement of the equation (a). Further, regarding the S X Τ planar light source unit 152, it is judged in advance that the luminance of the planar light source unit is obtained when only the specific planar light source unit is driven while the other planar light source unit is not driven. The luminance in this example is represented by a matrix [L > Q]. Further, the correction coefficient is represented by a matrix [a pXQ]. Therefore, the relationship between the matrices can be expressed by the following equation (B - 1). The matrix [Cl pXQ] of the correction coefficient can be determined in advance. [Lpxq] = [L*pxq]· [apxq] · · · (B-1) Therefore, the matrix [L'pxQ] can be judged from the equation (B-1). The matrix [L'pxq] can be judged by the calculation of the inverse matrix. In particular, it is possible to calculate [L5pxq] = [ L p X q ] · [ α p X q ] (Β-2) Next, the light source in each planar light source unit 152, that is, the light-emitting diode, can be controlled. 153, to obtain the luminance represented by the matrix [L'pi<Q]. In particular, such operations or procedures can be performed using information or data sheets stored in a storage device or memory 62 disposed in the planar light source device control circuit 160. Note that in the control of the light-emitting diode 153, since the [ of the matrix [I/p. Q] cannot be negative, it is a matter of course that the calculation result needs to be maintained in the positive region. Accordingly, the solution of equation (B-2) is sometimes an approximate solution rather than an exact solution. In this manner, as described above, it is judged based on the matrix [LpxQ] obtained from the 式(A) obtained by the planar light source device control circuit 160 and the matrix of the correction coefficient [〇: pXQ] when it is assumed that each plane is driven separately. a matrix [L'pxQ] of the light source unit, and converting the matrix [L>q] into a corresponding integer in the range of 〇25 to 25 according to the conversion table stored in the storage device 62, that is,
S -76- 201137841 ,脈寬調變輸出信號的値。依照此方式,組態平面光源裝 置控制電路1 6 0之計算電路6 1可獲得用於控制平面光源單 元152的發光二極體153之發光時期的脈寬調變輸出信號之 値。接著,依據脈寬調變輸出信號之値,可藉由平面光源 裝置控制電路160判斷組態平面光源單元152之發光二極體 153的開啓時間t〇N及關閉時間t〇FF。注意到: t〇N + t〇pF =固疋値 teonst 此外,可如下表示依據發光二極體之脈寬調變的驅動 中之工作比 t〇N / ( t〇N + t〇FF) = t〇N / teonst 接著,將相應於組態平面光源單元1 52之發光二極體 153的開啓時間t〇N的信號發送至LED驅動電路63,並依據 來自LED驅動電路63之相應於開啓時間t0N的信號之値, 僅在開啓時間t0N內將切換元件65控制至開啓狀態。因此 ,將來自發光二極體驅動電源6 6的L E D驅動電流供應至發 光二極體1 5 3。結果,每一發光二極體1 5 3僅針對一影像顯 示訊框內的開啓時間t0N發光。依照此方式,以預定輝度 照亮每一顯示區域單元1 3 2。 注意到連同可行範例3於上所述之分區驅動型或部分 驅動型平面光源裝置1 5 0亦可應用至可行範例1。 -77- 201137841 可行範例4 可行範例4亦爲可行範例2之修改例。在可行範例4中 ,使用下列的影像顯示裝置。尤其,可行範例4之影像顯 示裝置包括影像顯示面板,其中顯示彩色影像用的複數發 光元件單元UN排列在二維矩陣中,複數發光元件單元各 組態自相應於第一子畫素之藍光發射的第一發光元件、相 應於第二子畫素之綠光發射的第二發光元件、相應於第三 子畫素之紅光發射的第三發光元件、及相應於第四子畫素 之發射白光的第四發光元件。在此,組態可行範例4之影 像顯示裝置之影像顯示面板可例如爲具有下述的組態及結 構之影像顯示面板。注意到發光元件單元UN之數量可依 據影像顯示裝置所需之規格而定。 尤其,組態可行範例4之影像顯示裝置之影像顯示面 板爲被動矩陣型或主動矩陣型的直接視覺彩色影像顯示面 板,其中控制第一、第二、第三、及第四發光元件的發光 /不發光狀態,使得可直接視覺觀看到發光元件之發光狀 態以顯示影像。或者,影像顯示面板爲被動矩陣投射型或 主動矩陣投射型的的彩色影像顯示面板,其中控制第一、 第二、第三、及第四發光元件的發光/非發光狀態,使得 投射光至螢幕上以顯示影像。 例如,第1 4圖顯示組態主動矩陣型之直接視覺彩色影 像顯示面板之發光元件面板。參照第14圖,由「R」標示 紅光發射之發光元件(亦即,第一子畫素):由「G」標S-76-201137841, pulse width modulation output signal 値. In this manner, the calculation circuit 161 for configuring the planar light source device control circuit 160 can obtain a pulse width modulation output signal for controlling the illumination period of the light-emitting diode 153 of the planar light source unit 152. Then, the on-time t〇N and the off-time t〇FF of the light-emitting diode 153 of the planar light source unit 152 can be determined by the planar light source device control circuit 160 according to the pulse width modulation output signal. Note that: t〇N + t〇pF = solid 疋値 teonst In addition, the working ratio in the drive according to the pulse width modulation of the light-emitting diode can be expressed as follows: t〇N / ( t〇N + t〇FF) = t〇N / teonst Next, a signal corresponding to the turn-on time t〇N of the light-emitting diode 153 of the configuration plane light source unit 152 is sent to the LED drive circuit 63, and according to the corresponding turn-on time from the LED drive circuit 63 After the signal of t0N, the switching element 65 is controlled to the on state only during the on time t0N. Therefore, the L E D driving current from the light emitting diode driving power source 6 6 is supplied to the light emitting diode 1 53. As a result, each of the light-emitting diodes 1 5 3 emits light only for the turn-on time t0N within an image display frame. In this manner, each display area unit 1 3 2 is illuminated with a predetermined luminance. It is noted that the zone-driven or partially-driven planar light source device 150 described above in conjunction with the possible example 3 can also be applied to the feasible example 1. -77- 201137841 Feasible Example 4 Feasible Example 4 is also a modification of the possible example 2. In the possible example 4, the following image display device is used. In particular, the image display device of the feasible example 4 includes an image display panel, wherein the plurality of light-emitting element units UN for displaying the color image are arranged in a two-dimensional matrix, and the plurality of light-emitting element units are each configured to emit blue light corresponding to the first sub-pixel. a first illuminating element, a second illuminating element corresponding to the green light emission of the second subpixel, a third illuminating element corresponding to the red light emission of the third subpixel, and an emission corresponding to the fourth subpixel A fourth light-emitting element of white light. Here, the image display panel configuring the image display device of the possible example 4 can be, for example, an image display panel having the configuration and structure described below. It is noted that the number of light-emitting element units UN may depend on the specifications required for the image display device. In particular, the image display panel of the image display device of the feasible example 4 is a passive matrix or active matrix type direct visual color image display panel in which the illumination of the first, second, third, and fourth light-emitting elements is controlled/ The non-illuminated state makes it possible to directly visually view the light-emitting state of the light-emitting element to display an image. Alternatively, the image display panel is a passive image projection type or an active matrix projection type color image display panel, wherein the light-emitting/non-light-emitting states of the first, second, third, and fourth light-emitting elements are controlled such that the light is projected onto the screen Press to display the image. For example, Figure 14 shows a light-emitting component panel of a direct-visual color image display panel configured with an active matrix type. Referring to Fig. 14, the light-emitting element (i.e., the first sub-pixel) of the red light emission is indicated by "R": marked by "G"
S -78- 201137841 示綠光發射之發光元件(亦即,第二子畫素):由「B」 標示藍光發射之發光元件(亦即,第三子畫素):及由「 W」標示發射白光之發光元件(亦即,第四子畫素)。每 一發光元件2 1 0在其之一電極(亦即在p側電極或η側電極 )連接至驅動器233。這種驅動器233連接至行驅動器231 及列驅動器232。每一發光元件210在其之另一電極(亦即 在η側電極或ρ側電極)連接至接地線。藉由列驅動器2 3 2 之驅動器2 3 3的選擇來進行發光狀態與不發光狀態之間的 每一發光元件210,並且從行驅動器231供應驅動每一發光 元件210的輝度信號至驅動器233。由驅動器233進行紅光 發射之發光元件R (亦即,第一發光元件或第一子畫素) 、綠光發射之發光元件G (亦即,第二發光元件或第二子 畫素)、藍光發射之發光元件Β (亦即,第三發光元件或 第三子畫素)、及發射白光之發光元件W (亦即,第四發 光元件或第四子畫素)之任何者的選擇。可藉由時分控制 或同時控制紅光發射之發光元件R、綠光發射之發光元件 G、藍光發射之發光元件Β、及發射白光之發光元件W的發 光及不發光狀態。注意到,在影像顯示裝置爲直接視覺型 之情況中,直接觀看影像,但在影像顯示裝置爲投射型之 情況中,透過投射透鏡將影像投射至螢幕上。 注意到在第1 5圖中示意性顯示組態上述這種影像顯示 裝置的影像顯示面板。在影像顯示面板爲直接視覺型之情 況中,直接觀看影像顯示面板,但在影像顯示面板爲投射 型之情況中,從顯示面板透過投射透鏡2 03將影像投射至 -79- 201137841 螢幕上。 參照第1 5圖,發光元件面板200包括形成自例如印刷 電路板的基板211、附接至基板211的發光元件210、電連 接至發光元件210之一電極(如至p側電極或η側電極)並 連接至行驅動器231或列驅動器232的X方向佈線212、以 及電連接至發光元件2 1 0之另一電極(如至η側電極或ρ側 電極)並連接至列驅動器2 3 2或行驅動器2 3 1的Υ方向佈線 213 ◊發光元件面板200進一步包括覆蓋發光元件210之透 明支撐件214及設置在透明支撐件214上的微透鏡件215。 注意到發光元件面板200之組態不限於上述組態。 在可行範例4中,可依據連同可行範例2於上所述之膨 脹程序來獲得控制第一、第二、第三、及第四發光元件( 亦即,第一、第二、第三、及第四子畫素)的發光狀態之 輸出信號。接著,若依據藉由膨脹程序所得之輸出信號値 來驅動影像顯示裝置,則可將整個影像顯示裝置的輝度增 加至《〇倍。或者,若依據輸出信號値將第一、第二、第 三、及第四發光元件(亦即,第一、第二、第三、及第四 子畫素)的發光輝度控制至1 / α 〇倍,則可實現整個影像 顯示裝置之耗電量的減少而不導致影像品質之惡化。 若有需要,可藉由連同可行範例1於上所述之程序來 獲得控制第一、第二、第三、及第四孽光元件(亦即,第 —、第二、第三、及第四子氇素)的發光狀態之輸出信號S -78- 201137841 Light-emitting element for green light emission (ie, second sub-pixel): Light-emitting element (ie, third sub-pixel) with blue light emission indicated by "B": and marked by "W" A white light emitting element (ie, a fourth subpixel). Each of the light-emitting elements 210 is connected to the driver 233 at one of its electrodes (i.e., at the p-side electrode or the n-side electrode). This driver 233 is connected to the row driver 231 and the column driver 232. Each of the light-emitting elements 210 is connected to the ground line at the other electrode thereof (i.e., at the n-side electrode or the p-side electrode). Each of the light-emitting elements 210 between the light-emitting state and the non-light-emitting state is performed by the selection of the driver 2 3 3 of the column driver 2 3 2, and the luminance signal for driving each of the light-emitting elements 210 is supplied from the row driver 231 to the driver 233. a light-emitting element R (i.e., a first light-emitting element or a first sub-pixel) that emits red light by a driver 233, a light-emitting element G that emits green light (that is, a second light-emitting element or a second sub-pixel), The selection of any of the blue light emitting illuminating element Β (i.e., the third illuminating element or the third sub-pixel) and the white-emitting illuminating element W (i.e., the fourth illuminating element or the fourth sub-pixel). The light-emitting element R of the red light emission, the light-emitting element G of the green light emission, the light-emitting element 蓝光 emitted by the blue light, and the light-emitting and non-light-emitting state of the light-emitting element W emitting white light can be controlled by time division or simultaneously. It is noted that in the case where the image display device is of the direct vision type, the image is directly viewed, but in the case where the image display device is of the projection type, the image is projected onto the screen through the projection lens. It is noted that the image display panel configuring the image display apparatus described above is schematically shown in Fig. 15. In the case where the image display panel is a direct vision type, the image display panel is directly viewed, but in the case where the image display panel is a projection type, the image is projected from the display panel through the projection lens 203 to the -79-201137841 screen. Referring to FIG. 15, a light-emitting element panel 200 includes a substrate 211 formed from, for example, a printed circuit board, a light-emitting element 210 attached to the substrate 211, and an electrode electrically connected to one of the light-emitting elements 210 (eg, to a p-side electrode or an n-side electrode) And connected to the X-directional wiring 212 of the row driver 231 or the column driver 232, and the other electrode electrically connected to the light-emitting element 210 (such as to the η-side electrode or the ρ-side electrode) and connected to the column driver 2 3 2 or The Υ-direction wiring 213 of the row driver 2 3 1 further includes a transparent support member 214 covering the light-emitting element 210 and a micro-lens member 215 disposed on the transparent support member 214. Note that the configuration of the light-emitting element panel 200 is not limited to the above configuration. In a possible example 4, the first, second, third, and fourth illuminating elements can be obtained according to the expansion procedure described above with the feasible example 2 (ie, the first, second, third, and The output signal of the illumination state of the fourth sub-pixel. Then, if the image display device is driven in accordance with the output signal 所得 obtained by the expansion process, the luminance of the entire image display device can be increased to "〇 times. Alternatively, if the luminances of the first, second, third, and fourth light-emitting elements (ie, the first, second, third, and fourth sub-pixels) are controlled to 1 / α according to the output signal 値By double, the power consumption of the entire image display device can be reduced without causing deterioration in image quality. If desired, the first, second, third, and fourth illuminating elements (i.e., the first, second, third, and fourth) can be obtained by the procedure described above in conjunction with the possible example 1. Output signal of the illuminating state of the four sub-segment
S -80- 201137841 可行範例5 可行範例5關於根據本發明之第二實施例的的影像顯 示裝置之驅動方法及根據本發明之第二實施例的的影像顯 示裝置組合之驅動方法。可行範例5特別關於第2 A模式。 與參照第2圖於上所述之影像顯示裝置類似,可行範 例5之影像顯示裝置10包括影像顯示面板30及信號處理區 20。同時,可行範例5之影像顯示裝置組合包括影像顯示 裝置1 〇,及從後側照亮影像顯示裝置1 〇 (尤其,影像顯示 面板30 )之平面光源裝置50。影像顯示面板30包括總共P X Q畫素群組排列在二維矩陣中,包括排列在第一方向( 如水平方向)中之P畫素群組以及排列在第二方向(如垂 直方向)中之Q畫素群組。注意到在組態一畫素群組之畫 素的數量爲Pc的情況中,P。= 2 ° 尤其,從第1 6或1 7圖的畫素配置可見,在可行範例5 中之影像顯示面板3 0中,每一畫素群組沿著第—方向包括 第一畫素pXl及第二畫素PX2。第一畫素Pxi包括顯示第一 原色(如紅色)的標示爲「R」之第一子畫素、顯示第二 原色(如綠色)的標示爲「G」之第二子畫素、及顯示第 三原色(如藍色)的標示爲「B」之第三子畫素。同時, 第二畫素Px2包括顯示第一原色之第一子畫素R '顯示第二 原色的第二子畫素G、及顯示第四顏色(如白色)之第四 子畫素W。注意到,在第1 6及1 7圖中’由實線圍繞組態第 一畫素PXl之第一、第二、及第三子畫素’同時由折線圍 繞組態第二畫素Px2之第一、第二、及第四子畫素。詳言 • 81 - 201137841 之,在第一畫素PXl*,顯示第一原色之第一子畫素R、 示第二原色的第二子畫素G、及顯示第三原色的第三子 素B沿第一方向排列。同時,在第二畫素Px2中,顯示第 原色之第一子畫素R、顯示第二原色的第二子畫素G、 顯示第四顏色的第四子畫素W沿第一方向排列。組態第 畫素Ρχΐ之第二子畫素B及組態第二畫素Px2之第一子畫素 互相相鄰定位。同時,組態第二畫素Ρχ2之第四子畫素 及組態在該畫素群組旁之畫素群組中的第一畫素Ρχ,之 一子畫素R互相相鄰定位。注意到子畫素具有矩形形狀 設置使得其之長側與第二方向平行延伸且其之短側與第 方向平行延伸。 在第1 6圖中所示之範例中,沿著第二方向互相相鄰 置第一畫素及第二畫素。在此例子中,組態第一畫素之 一子畫素及組態第二畫素之第一子畫素可沿著第二方向 相相鄰設置或可不互相相鄰設置。類似地,組態第一畫 之第二子畫素及組態第二畫素之第二子畫素可沿著第二 向互相相鄰設置或可不互相相鄰設置。類似地,組態第 畫素之第三子畫素及組態第二畫素之第四子畫素可沿著 二方向互相相鄰設置或可不互相相鄰設置。另一方面, 第17圖中所示之範例中,沿著第二方向第一畫素及另一 —畫素互相相鄰設置且第二«素及另一第二畫素互相相 設置。並在此例子中,組態第一畫素之第一子畫素及組 第二畫素之第一子畫素可沿著第二方向互相相鄰設置或 不互相相鄰設置。類似地,組態第一畫素之第二子畫素 顯 畫 及 :R W 第 並 設 第 互 素 方 第 在 第 鄰 態 可 及S-80-201137841 Feasible Example 5 Possible Example 5 A driving method of a video display device according to a second embodiment of the present invention and a driving method of the image display device according to the second embodiment of the present invention. Feasible example 5 is particularly relevant to the 2A mode. Similar to the image display device described above with reference to Fig. 2, the image display device 10 of the possible example 5 includes an image display panel 30 and a signal processing region 20. Meanwhile, the image display device combination of the feasible example 5 includes the image display device 1 and the planar light source device 50 that illuminates the image display device 1 (particularly, the image display panel 30) from the rear side. The image display panel 30 includes a total of PXQ pixel groups arranged in a two-dimensional matrix, including a P pixel group arranged in a first direction (such as a horizontal direction) and a Q arranged in a second direction (such as a vertical direction). Pixel group. Note that in the case where the number of pixels configuring a pixel group is Pc, P. = 2 ° In particular, it can be seen from the pixel configuration of the 16th or 17th figure that in the image display panel 30 in the feasible example 5, each pixel group includes the first pixel pXl along the first direction and The second pixel PX2. The first pixel Pxi includes a first sub-pixel labeled "R" for displaying a first primary color (such as red), a second sub-pixel labeled "G" for displaying a second primary color (such as green), and a display. The third primary color (such as blue) is marked as the third sub-pixel of "B". Meanwhile, the second pixel Px2 includes a second sub-pixel G displaying the first sub-pixel of the first primary color, a second primary color, and a fourth sub-pixel W displaying the fourth color (e.g., white). Note that in the first 16 and 17 diagrams, 'the first, second, and third sub-pixels of the first pixel PX1 are configured by the solid line', and the second pixel Px2 is configured by the polyline. The first, second, and fourth sub-pixels. In detail, 81 - 201137841, in the first pixel PXl*, the first sub-pixel R of the first primary color, the second sub-pixel G of the second primary color, and the third sub-primary B of the third primary color are displayed. Arranged in the first direction. Meanwhile, in the second pixel Px2, the first sub-pixel R displaying the primary color, the second sub-pixel G displaying the second primary color, and the fourth sub-pixel W displaying the fourth color are arranged in the first direction. The second sub-pixel B of the first pixel is configured and the first sub-pixel of the second pixel Px2 is positioned adjacent to each other. At the same time, the fourth sub-pixel of the second pixel Ρχ2 and the first pixel 组态 configured in the pixel group next to the pixel group are configured, and one of the sub-pixels R is positioned adjacent to each other. It is noted that the sub-pixel has a rectangular shape such that its long side extends in parallel with the second direction and its short side extends in parallel with the first direction. In the example shown in Fig. 16, the first pixel and the second pixel are adjacent to each other along the second direction. In this example, configuring a sub-pixel of the first pixel and configuring the first sub-pixel of the second pixel may be disposed adjacent to each other along the second direction or may not be disposed adjacent to each other. Similarly, the second sub-pixel of the first picture and the second sub-picture of the second picture can be arranged adjacent to each other along the second direction or not adjacent to each other. Similarly, the third sub-pixel configuring the first pixel and the fourth sub-pixel configuring the second pixel may be disposed adjacent to each other in two directions or may not be disposed adjacent to each other. On the other hand, in the example shown in Fig. 17, the first pixel and the other pixel are disposed adjacent to each other along the second direction, and the second pixel and the other second pixel are disposed to each other. And in this example, the first sub-pixel configuring the first pixel and the first sub-pixel of the second pixel of the group may be disposed adjacent to each other along the second direction or not adjacent to each other. Similarly, configuring the second sub-pixel display of the first pixel and :R W and setting the first mutual prime side in the first neighbor state
S -82- 201137841 組態第二畫素之第二子畫素可沿著第二方向互相相鄰設置 或可不互相相鄰設置。類似地,組態第一畫素之第三子畫 素及組態第二畫素之第四子畫素可沿著第二方向互相相鄰 設置或可不互相相鄰設置。 在可行範例5中,第三子畫素形成爲顯示藍色的子畫 素。這是因爲藍色的視覺敏感度近乎爲綠色的1/6,且即 使顯示藍色的子畫素數量減少至畫素群中之一半,不會發 生明顯的問題。 is遗處理區2 0 (1)至少依據至第一畫素?^的第一子畫素輸入信號 判斷至第一畫素Px,之第一子畫素輸出信號,並輸出已判 斷的第一子畫素輸出信號至第一畫素Ρχι的第一子畫素R; (2 )至少依據至第一畫素Ρχι的第二子畫素輸入信號 判斷至該第一畫素pXl2第二子畫素輸出信號,並輸出已 判斷的第二子畫素輸出信號至第一畫素Ρχι的第二子畫素G » (3 )至少依據至第二畫素pX2的第一子畫素輸入信號 判斷至第二畫素Px2之第一子畫素輸出信號’並輸出已判 斷的第一子畫素輸出信號至第二畫素ΡΧ2的第一子畫素R ; (4 )至少依據至第二畫素Ρχ2的第二子畫素輸入信號 判斷至第二畫素Px2i第二子畫素輸出信號’並輸出已判 斷的第二子畫素輸出信號至第二畫素Ρχ2的第二子畫素G。 在此,在可行範例5中, -83- 201137841 關於組態第(p,q)個畫'素群組PG(p,q)(其中 P,lSqSQ)之第一畫素Px(p, q)-i’信號處理區20接收輸 入至其之 具有χ,-ίρ, «η-,的信號値之第—子畫素輸入信號’ 具有X2-(p, q)-!的信號値之第二子畫素輸入信號,以及 具有X3.(p,q).,的信號値之第三子畫素輸入信號 ,並且,關於組態第(p,q)個畫素群組pG(P, q)之第 二畫素Px(p,q)-2,信號處理區2〇接收輸入至其之 具有M-U,q)-2的信號値之第一子畫素輸入信號’ 具有X2-(p, q).2的信號値之第二子畫素輸入信號’以及 具有X3.(p, q).2的信號値之第三子畫素輸入信號。 此外,在可行範例5中, 關於組態第(p, q )個畫素群組pg(p, q>之第一畫素 Ρχ(ρ, <〇·!,信號處理區20輸出 判斷第一子畫素R之顯示等級之具有x^p,q).i的信號 値之第一子畫素輸出信號, 判斷第二子畫素G之顯示等級之具有X2.(p,的信號 値之第二子畫素輸出信號,以及 判斷第三子畫素B之顯示等級之具有X3.(p, 的信號 値之第三子畫素輸出信號。 此外,關於組態第(p,q )個畫素群組PG(p, .q)之第二 畫素Px(p, cn-2,信號處理區20輸出 判斷第一子畫素R之顯示等級之具有X^p, q)-2的信號 値之第一子畫素輸出信號,S -82- 201137841 The second sub-pixels configuring the second pixels may be arranged adjacent to each other along the second direction or may not be arranged adjacent to each other. Similarly, the third sub-pixel configuring the first pixel and the fourth sub-pixel configuring the second pixel may be disposed adjacent to each other along the second direction or may not be disposed adjacent to each other. In the feasible example 5, the third sub-pixel is formed to display a blue sub-pixel. This is because the visual sensitivity of blue is almost 1/6 of that of green, and even if the number of sub-pixels displaying blue is reduced to one-half of the pixel group, there is no obvious problem. Is legacy processing area 2 0 (1) at least according to the first pixel? The first sub-pixel input signal of the ^ is determined to the first pixel Px, the first sub-pixel output signal, and outputs the determined first sub-pixel output signal to the first sub-pixel of the first pixel Ρχι R; (2) determining, according to at least the second sub-pixel input signal to the first pixel Ρχι, the second sub-pixel output signal to the first pixel pXl2, and outputting the determined second sub-pixel output signal to The second sub-pixel of the first pixel Ρχι G » (3) determines the first sub-pixel output signal 'to the second pixel Px2' based on at least the first sub-pixel input signal to the second pixel pX2 and outputs The first sub-pixel output signal that has been determined is output to the first sub-pixel R of the second pixel ;2; (4) the second pixel Px2i is determined according to at least the second sub-pixel input signal to the second pixel Ρχ2 The second sub-pixel output signal 'and outputs the determined second sub-pixel output signal to the second sub-pixel G of the second pixel Ρχ2. Here, in the feasible example 5, -83-201137841 on the configuration of the (p, q)th painting 'prime group PG(p,q) (where P, lSqSQ) the first pixel Px(p, q The -i' signal processing area 20 receives the signal having the χ, -ίρ, «η-, the first sub-pixel input signal having the X2-(p, q)-! a sub-pixel input signal, and a third sub-pixel input signal having a signal of X3.(p, q)., and, regarding the configuration of the (p, q)th pixel group pG(P, q) the second pixel Px(p,q)-2, the signal processing area 2〇 receives the signal input to it with MU, q)-2, the first sub-pixel input signal 'has X2-(p , q).2, the second sub-pixel input signal of the signal 以及 and the third sub-pixel input signal of the signal X with X3.(p, q).2. In addition, in the feasible example 5, regarding the configuration of the first pixel of the (p, q) pixel group pg(p, q>(ρ, <〇·!, signal processing area 20 output judgment The first sub-pixel output signal of the signal 値 of the sub-pixel R having the display level of x^p, q).i, and the display level of the second sub-pixel G having the signal of X2. (p, 値) The second sub-pixel output signal, and the third sub-pixel output signal of the signal 値 having the display level of the third sub-pixel B having X3. (p, 。. Further, regarding the configuration (p, q) The second pixel Px of the pixel group PG(p, .q) (p, cn-2, the signal processing area 20 outputs X^p, q)-2 for determining the display level of the first sub-pixel R The first sub-pixel output signal of the signal,
S -84- 201137841 判斷第二子畫素G之顯示等級之具有Χ2·(ρ, ·2的信號 値之第二子畫素輸出信號’以及 判斷第四子畫素W之顯示等級之具有X3_(p, q) ·2的信號 値之第四子畫素輸出信號° 此外,關於定位在第(p,q)個第二畫素旁之相鄰畫 素,信號處理區20接收輸入至其之 具有Xl-(P,q,)的信號値之第一子畫素輸入信號’ 具有X2_(p,的信號値之第二子畫素輸入信號,以及 具有〇的信號値之第三子畫素輸入信號。 此外,在可行範例5中,信號處理區20依據至當沿著 第二方向計數時爲第(p,q)個之第二畫素Px(p,q)-2,其 中P爲1、2、…、P且q爲2、3、…、Q,之第四子畫素控制 第二信號(亦即,第四子畫素控制第二信號値SG2-(P, q)) 以及至第二畫素Ρχ(ρ, ο)·2旁的相鄰畫素之第四子畫素控制 第一信號(亦即,第四子畫素控制第一信號値SG,·^, q)) 來判斷第四子畫素輸出信號(亦即,第四子畫素輸出信號 値X4.(P, q).2 )。接著,信號處理區20輸出已判斷的第四子 畫素輸出信號至第(p,q)個第二畫素的第四子畫素。在 此,從第一子畫素輸入信號(亦即第一子畫素輸入信號値 Xl-(p, q)-2)、第二子畫素輸入信號(亦即第二子畫素輸入 {曰號値X2-(p,q)-2)、及弟二子畫素輸入信號(亦即第二子 畫素輸入信號値X3-(p, q)-2 )判斷第四子畫素控制第二信號 (亦即,第四子畫素控制第二信號値SG2.(p, q))。此外, 從至沿第二方向中在第二畫素PX(P,q)-2旁的相鄰畫素之第 -85- 201137841 一子畫素輸入信號(亦即第一子畫素輸入信號値Χ,^ρ,q.) )、第二子畫素輸入信號(亦即第二子畫素輸入信號値 x2-(p, q,)) '及第三子畫素輸入信號(亦即第三子畫素輸 入信號値X3_(P, q·))判斷第四子畫素控制第一信號(亦即 ,第四子畫素控制第一信號値SGhp, q))。 此外’信號處理區20至少依據至第(p,q)個第二畫 素Px(p, q)·2之第三子畫素輸入信號(亦即,第三子畫素輸 入信號値X3.(p,q)·2)及至第(p,q)個第一畫素之第三子 畫素輸入信號(亦即’第三子畫素輸入信號値Χ3·(ρ, ) 來判斷第三子畫素輸出信號(亦即,第三子畫素輸出信號 値 X 3 · ( p,q )-丨)。 注意到,在可行範例5中,將第(p,q )個第二畫素 Ρχ(ρ, ς)·2旁之相鄰畫.素表示成第(P,q-Ι)個畫素。此同 樣亦適用此後所述之其他可行範例。然而,相鄰畫素不限 於此,但可爲第(P,q+Ι )個畫素或可爲第(P,q-ι )個 畫素及第(P, q+O個畫素兩者。 在可行範例5中,採用第2A模式。尤其,從Min (p, q).2 獲得第(P,q )個第二畫素Px(P, <0-2之第四子畫素控制 第二信號値SG2.(P, q)。此外,從Min (p, q,)獲得定位在 第(p,q )個第二畫素Px(p, q).2旁之相鄰畫素的第四子畫 素控制第一信號値SGhp, q>。 尤其,從下列的式子(卜1 - A')及(1 -1 - B 1 )分別計 算出第四子畫素控制第二信號値SG2.(p, q)及第四子畫素控 制第一信號値SGhp,q)。然而’在可行範例5中,Cll = 1S -84- 201137841 Judging that the display level of the second sub-pixel G has Χ2·(the second sub-pixel output signal of the signal 値 of ρ, ·2) and the display level of the fourth sub-pixel W have X3_ (p, q) · 4th sub-pixel output signal of signal ° In addition, with respect to adjacent pixels positioned next to the (p, q)th second pixel, signal processing area 20 receives input thereto The first sub-pixel input signal having the signal of Xl-(P, q,) has a second sub-pixel input signal of X2_(p, the signal 値, and a third sub-picture with a signal of 〇 In addition, in the feasible example 5, the signal processing area 20 is based on the (p, q)th second pixel Px(p, q)-2 when counting along the second direction, where P The fourth sub-pixel is 1, 2, ..., P and q is 2, 3, ..., Q, and the second sub-pixel controls the second signal (that is, the fourth sub-pixel controls the second signal 値 SG2-(P, q) And the fourth sub-pixel of the adjacent pixel to the second pixel Ρχ(ρ, ο)·2 controls the first signal (that is, the fourth sub-pixel controls the first signal 値SG,·^, q)) to determine the fourth sub-pixel output letter (ie, the fourth subpixel output signal 値X4.(P, q).2). Next, the signal processing area 20 outputs the judged fourth subpixel output signal to the (p, q)th second. The fourth sub-pixel of the pixel. Here, the input signal from the first sub-pixel (ie, the first sub-pixel input signal 値Xl-(p, q)-2) and the second sub-pixel input signal ( That is, the second sub-pixel input {曰号値X2-(p,q)-2), and the second sub-pixel input signal (that is, the second sub-pixel input signal 値X3-(p, q)-2 Determining that the fourth sub-pixel controls the second signal (ie, the fourth sub-pixel controls the second signal 値 SG2. (p, q)). Further, from the second pixel to the second pixel PX (in the second direction) P-, q)-2 adjacent pixel -85-201137841 A sub-pixel input signal (that is, the first sub-pixel input signal 値Χ, ^ρ, q.), the second sub-pixel The input signal (ie, the second subpixel input signal 値x2-(p, q,))' and the third subpixel input signal (ie, the third subpixel input signal 値X3_(P, q·)) It is judged that the fourth sub-pixel controls the first signal (that is, the fourth sub-pixel controls the first signal 値 SGhp, q)). Furthermore, the 'signal processing area 20 is based at least on the third sub-pixel input signal to the (p, q)th second pixel Px(p, q)·2 (ie, the third sub-pixel input signal 値X3. (p, q)·2) and to the third (p, q) first pixel of the first subpixel input signal (ie, the 'third subpixel input signal 値Χ3·(ρ, )) to determine the third Subpixel output signal (ie, third subpixel output signal 値X 3 · ( p,q )-丨). Note that in feasible example 5, the (p, q )th second pixel will be The adjacent picture next to Ρχ(ρ, ς)·2 is expressed as the (P, q-Ι) pixel. This also applies to other possible examples described later. However, adjacent pixels are not limited to this. , but may be the (P, q+Ι) pixels or may be the (P, q-ι) pixels and the (P, q+O pixels. In the feasible example 5, In the 2A mode, in particular, the (P, q)th second pixel Px is obtained from Min (p, q).2 (P, < 4-2, the fourth sub-pixel control second signal 値 SG2. P, q). In addition, the fourth pixel adjacent to the (p, q)th second pixel Px(p, q).2 is obtained from Min (p, q,). The pixel controls the first signal 値SGhp, q>. In particular, the fourth sub-pixel control second signal 値 SG2 is calculated from the following equations (Bu 1 - A') and (1 -1 - B 1 ), respectively. (p, q) and the fourth subpixel control the first signal 値SGhp, q). However, in the feasible example 5, Cll = 1
S -86- 201137841 。此外,從下列的式子(1 - 1 -c,)計算出第三子畫素控制 信號SG3-(P,q)。注意到針對第四子畫素控制第二信號値 SG2-(P,㈧及第四子畫素控制第一信號値SGu(p,〇的每一者 之値該施加什麼値或什麼式子可藉由製造影像顯示裝置10 或影像顯示裝置組合的原型並例如藉由影像觀賞者來進行 影像之評估以適當地加以判斷。 i n (p.Q}-2 S G 卜(p>q) i n {P. S G3- (p. q) —Min (p, q) -i 此外’可藉由下列計算第四子畫素輸出信號値χ4·(ρ X4-(p,q)-2 = (SG2-(p,q) + SGi-(p,q) ) /2 ··· (4''A,) 換言之’藉由算術機構計算第四子畫素輸出信號値 X 4 - ( p , q ) - 2 此外,至少依據第一子畫素輸入信號(亦即,第一子 畫素輸入信號値 xi-(p, q) -2) 、Max(p,q).2、Min(p, <〇 ·2、及 第四子畫素控制第二信號(亦即,第四子竃素控制第二信 號値SG2-(P,q))計算第(p,q )個第二畫素Px(p,q)_2之第 一子畫素輸出信號(亦即,第一子畫素輸出信號値χ1Μρ, q)-2 )。此外’至少依據第二子畫素輸入信號(亦即,第 —•子畫素輸入信號値 x2-(p,q) -2) 、Max(p, q)_2、Min(p. q) .2 、及第四子畫素控制第二信號(亦即,第四子畫素控制第 二信號値SG2-(P,q))計算第(p,q )個第二畫素Px(p,q)_2 -87- 201137841 之第二子畫素輸出信號(亦即,第二子畫素輸出儐號値 X2-(ps q)-2)。在此,在可行範例5中,尤其依據下列計算 第一子畫素輸出信號値X^p, q>_2 [Χΐ-(ρ,φ-2,Max(p,q)_2, Min(p,q)-2, SG2- (p#q) / X ] 依據下列計算第二子畫素輸出信號値X2e(p,q).2 [x2-(p,q)-2/ MaX(p/q)_2, Min(P/q)-2/ SG2-(p,q), χ] 此外,至少依據第一子畫素輸入信號(亦即,第一子 畫素輸入 號値 Xl-(P, q) ·1) 、Max(p, q).i、Min(p, q) -1、及 第三子畫素控制信號(亦即,信號値SG3-(p, q))計算第(P, q)個第一畫素Ρχ(ρ, 之第一子畫素輸出信號(亦即’第 —子畫素輸出信號値X^P, 。此外,至少依據第二子畫 素輸入信號(亦即,第二子畫素輸入信號値X2.(p, q)-i )、 Max(p,qH、Min(p, q)·,、及第三子畫素控制信號(亦即, 信號値SG3.(P, q))計算第二子畫素輸出信號(亦即,第二 子畫素輸出信號値Χ2·(ρ, q).l )。在此,在可行範例5中, 尤其依據下列計算第一子畫素輸出信號値X^p, [Xl-(p,q)-l,Max<p,q)-1, Min(p,q)-1, SG3. (p#q) , χ] 依據下列計算第二子畫素輸出信號値X2_(p,q>_i [X2-(p, q)-1,MaX q)-1,Min (p, q), SG3- (p, q) f )(] 例如’假設’關於畫素群組PG(p,q)之第二畫素Px(p, (〇-2 ’將具有下列彼此之關係的輸入信號値之輸入信號輸 入到信號處理區20,並且關於相鄰畫素,將具有下列彼此 之關係的輸入信號値之輸入信號輸入到信號處理區2 〇。S -86- 201137841. Further, the third sub-pixel control signal SG3-(P, q) is calculated from the following equation (1 - 1 - c,). It is noted that the second signal 値 SG2-(P, (8) and the fourth sub-pixel control the first signal 値SGu for the fourth sub-pixel control (p, 値, each of the 施加 or what can be applied By making a prototype of the image display device 10 or the image display device combination and evaluating the image, for example, by an image viewer, it is appropriately judged. in (pQ}-2 SG (p>q) in {P. S G3- (p. q) —Min (p, q) -i In addition, the fourth sub-pixel output signal 値χ4·(ρ X4-(p,q)-2 = (SG2-(p) can be calculated by the following , q) + SGi-(p,q) ) /2 ··· (4''A,) In other words, the fourth sub-pixel output signal 値X 4 - ( p , q ) - 2 is calculated by the arithmetic mechanism. At least according to the first sub-pixel input signal (that is, the first sub-pixel input signal 値xi-(p, q) -2), Max(p, q).2, Min(p, <〇· 2. The fourth sub-pixel controls the second signal (ie, the fourth sub-halogen controls the second signal 値 SG2-(P, q)) to calculate the (p, q)th second pixel Px(p, q) the first sub-pixel output signal of 2 (ie, the first sub-pixel output signal 値χ1Μρ, q)-2). The two subpixel input signals (ie, the first---subpixel input signal 値x2-(p,q) -2), Max(p, q)_2, Min(p. q) .2, and the fourth sub- The pixel controls the second signal (that is, the fourth subpixel controls the second signal 値 SG2-(P, q)) to calculate the (p, q)th second pixel Px(p,q)_2 -87- The second sub-pixel output signal of 201137841 (that is, the second sub-pixel output 傧 値X2-(ps q)-2). Here, in the feasible example 5, the first sub-pixel is calculated according to the following, in particular The output signal 値X^p, q>_2 [Χΐ-(ρ,φ-2,Max(p,q)_2, Min(p,q)-2, SG2- (p#q) / X ] is calculated according to the following Second subpixel output signal 値X2e(p,q).2 [x2-(p,q)-2/ MaX(p/q)_2, Min(P/q)-2/ SG2-(p,q ), χ] In addition, at least according to the first sub-pixel input signal (that is, the first sub-pixel input number 値Xl-(P, q) ·1), Max(p, q).i, Min(p , q) -1, and the third sub-pixel control signal (ie, the signal 値 SG3-(p, q)) calculates the (P, q) first pixel Ρχ (ρ, the first sub-pixel Output signal (that is, 'the first sub-pixel output signal 値X^P, in addition, at least according to the second sub-pixel Input signal (ie, second subpixel input signal 値X2.(p, q)-i), Max(p, qH, Min(p, q)·, and third subpixel control signal (also That is, the signal 値 SG3. (P, q)) calculates the second sub-pixel output signal (that is, the second sub-pixel output signal 値Χ2·(ρ, q).l). Here, in the feasible example 5, the first sub-pixel output signal 値X^p, [Xl-(p, q)-l, Max<p, q)-1, Min(p, q) is calculated in particular according to the following )-1, SG3. (p#q) , χ] Calculate the second subpixel output signal 値X2_(p,q>_i [X2-(p, q)-1, MaX q)-1, Min according to the following (p, q), SG3- (p, q) f )(] For example, 'hypothetical' about the second pixel Px of the pixel group PG(p,q)(p, (〇-2 ' will have the following The input signal of the input signal 之 of the relationship is input to the signal processing area 20, and the input signal of the input signal 具有 having the following relationship with each other is input to the signal processing area 2 关于 with respect to the adjacent pixels.
S -88- 201137841 ... (51-A) …(51-B) ... (52-A) ... (52-B) χ 3- (p, q) -2< X 卜(p, g) X 2- (ρ, α) -2 χ2-(ρ. q’}〈X3-(p,q。〈X 卜{p, q。 在此例子中, ^ ΐ n (p. q.) -2 — X 3- (p, n) -2 M i n {p. q’)= X 2- (p. Q’) 接著,依據Min (p,q)_2判斷第四子畫素控制第二信號 値S G 2 · (p,q},並依據M i n (p,q.}判斷第四子竃素控制第—信 號値SG|.(P,q)。尤其,可分別藉由下列式子(53-A)及( 53-B )計算它們。 S G2-(p,q) =M i η (Ριή)_2 •·· (53-Α) ~ χ3- (ρ.α)-2 S G卜(ρ,q) = Μ i η (p,q·) •·· (53—Β) ~χ2-(ρ,αΊ 此外, Χ4-(ρ.α)-2= (S 〇2-(Ρι(1)+ S Gj-(p>q)) /2 =(x3-(p.q)-2+X2-(p.Q·)) /2 ^ {54) 順帶一提’關於依據輸入信號之輸入信號値及輸出信 號的輸出信號値的輝度’爲了滿足將色度維持不變的需求 ’必須滿足下列關係。注意到,第四子畫素輸出信號値 X4-(p,q】·2乘以χ ,這是因爲第四子畫素比其他子畫素亮χ 倍,此將於後說明。 X I - Ip, q) -2/Μ ίΐ X q) -2 =(Xi-(p,q)-2+z * / (Max(M}-2+X ♦ SG2-<P.山) ... (55-A) -89- 201137841 χ 2- <p. 〇) -2/Μ ίϊ X (p,q} -2 =(X2-(p, q)-2+X · SG2-(p.g)) / (M a X (p,q)-2+ χ * S〇2-(p. a) ... (55-B) X 卜(P> 丑 X (p, 〇}-l =(x 卜(P.qH+5C · SG3-(p,a>) / (Max(p,fl>-1+X · SG3-(p,q)) …(55-C) X· 2+-(p. q卜 l/M a X (¾ g) -1 —(X2-ip.q)-i+X * SG3-(P,q)) / (Ma x (P>α)-ι+χ · SG3-(p.q)) ... (55-D) X3-<P.Q)-i/Ma x (ρ,α)-ι =(X 3-(p.«)-!+Z * SG3-(P,q)) / (M a x (p.Q)-i+χ · SG:hp, Q)) ... (55-E) X 3- (p. ¢) ~2·^^ 3. X (p, q) -2 =(X* 3-(p.q)-2+X * SG2-(p,a)) / (M a X (P(fl)-2+χ * SG2-(p.q|) ... (55-F) 依此,從式子(55-A)至(55-F)如下般計算輸出信 號値:S -88- 201137841 ... (51-A) ...(51-B) ... (52-A) ... (52-B) χ 3- (p, q) -2< X 卜 (p , g) X 2- (ρ, α) -2 χ2-(ρ. q'}<X3-(p,q.<X 卜{p, q. In this example, ^ ΐ n (pq) -2 — X 3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( SG 2 · (p, q}, and according to M in (p, q.}, judge the fourth sub-halogen to control the first signal 値 SG |. (P, q). In particular, the following equation can be used respectively (53 -A) and (53-B) calculate them. S G2-(p,q) =M i η (Ριή)_2 •·· (53-Α) ~ χ3- (ρ.α)-2 SG (ρ ,q) = Μ i η (p,q·) •·· (53—Β) ~χ2-(ρ,αΊ In addition, Χ4-(ρ.α)-2= (S 〇2-(Ρι(1) + S Gj-(p>q)) /2 =(x3-(pq)-2+X2-(pQ·)) /2 ^ {54) By the way, 'about the input signal 依据 and the output signal according to the input signal The luminance of the output signal ' 'in order to satisfy the requirement of maintaining the chromaticity' must satisfy the following relationship. Note that the fourth sub-pixel output signal 値X4-(p,q]·2 is multiplied by χ because The fourth sub-picture is better than the other sub-pictures This is explained later. XI - Ip, q) -2/Μ ίΐ X q) -2 =(Xi-(p,q)-2+z * / (Max(M}-2+ X ♦ SG2-<P. Mountain) ... (55-A) -89- 201137841 χ 2- <p. 〇) -2/Μ ϊ ϊ X (p,q} -2 =(X2-(p , q)-2+X · SG2-(pg)) / (M a X (p,q)-2+ χ * S〇2-(p. a) ... (55-B) X 卜 (P> Ugly X (p, 〇}-l = (x Bu (P.qH+5C · SG3-(p, a>) / (Max(p,fl>-1+X · SG3-(p,q)) ...(55-C) X· 2+-(p. q卜l/M a X (3⁄4 g) -1 —(X2-ip.q)-i+X * SG3-(P,q)) / ( Ma x (P>α)-ι+χ · SG3-(pq)) (55-D) X3-<PQ)-i/Ma x (ρ,α)-ι =(X 3-( p.«)-!+Z * SG3-(P,q)) / (M ax (pQ)-i+χ · SG:hp, Q)) ... (55-E) X 3- (p. ¢) ~2·^^ 3. X (p, q) -2 =(X* 3-(pq)-2+X * SG2-(p,a)) / (M a X (P(fl)- 2+χ * SG2-(pq|) ... (55-F) According to this, the output signals are calculated from the equations (55-A) to (55-F) as follows:
Xl-{p.a)-2= {X|-(p,q)-2* (M a X (p>Q)-2+χ · SG2-(p.q)) ^ /M a x (Piq)-2—χ * SGo-jp.q) ... (56-A)Xl-{pa)-2= {X|-(p,q)-2* (M a X (p>Q)-2+χ · SG2-(pq)) ^ /M ax (Piq)-2— χ * SGo-jp.q) ... (56-A)
X 2-《p· Q) ™2 一 { X (p, q) _2 · 往父(p, -2 + X * S G 2- {p, ft)) I /Max(p,Q)-2—χ · SG2-(p.q) ... (56-B)X 2-“p· Q) TM2 a { X (p, q) _2 · to the parent (p, -2 + X * SG 2- {p, ft)) I /Max(p,Q)-2— χ · SG2-(pq) ... (56-B)
Xl~{p. q)-J— ( X l-(p. q.)-l * (M a X (p, Q)-1+χ · SG3-(p,q)) } /Ma x (p,q)-i- % · S G3-(Pi„) ... (56-C) X2-(p. q)-1= (X2-(p,q)-i* (M a X (P<(])-1+X · SG3«{p, a)) } /M a x (p,Q)-i—χ * SG3-(P,q) ... (56-D) X3-(p,q>-I= (X 3-〇).<i)-l + X’ 3-{m)-2) /2 ... (56-E) 其中 X 3Mp, αΜ = { X3-(p,)iH * (M a X (p( Q).1+χ · SG3-(p, q))) /Μ 3. X (p( q) 一 X * S O 3- {p,(]) ... (56-a) X 3-(p. q)-2= {^3-(p, αί-2" (M a X (Pjq)-9+z * SG2-(p.q)) } /"M a x (p, Q)-2- x · S G2-(p, 〇) ... (56-b) s -90- 201137841 於下之中’說明計算第(p, q )個畫素群組PG(p,c〇中之 輸出信號値 Xl-(p, q).l、X2-(P, q)-l、X3-(P,q).i、Xb(p,W.2、 X2-(P,<0-2及X4-(P, q)-2的方法。注意到進行下歹|J程序以保持 由(第一子畫素+第四子畫素)所顯示之第一原色的輝度 及由(第二子畫素+第四子畫素)所顯示之第二原色的輝 度之間的比例。還有,進行該程序以盡可能遠地保持或維 持色調。此外,進行該程序以保持或維持等級-輝度特性 ,亦即,伽瑪特性或r特性。 步驟5 〇 〇 首先,信號處理區20分別根據下列式子(1-1-A')、 (1-1-B')、及(1-1-C')依據一畫素群組的子畫素輸入 信號値計算第四子畫素控制第二信號値SG2-(P, q)、第四子 畫素控制第一信號値SG Hp,q)、及控制信號或第三子畫素 控制信號SG3Mp, q)。針對所有畫素進行此程序。此外’根 據式子(4-A')計算信號値X4-(P,q)-2°Xl~{p. q)-J—( X l-(pq)-l * (M a X (p, Q)-1+χ · SG3-(p,q)) } /Ma x (p,q )-i- % · S G3-(Pi„) ... (56-C) X2-(p. q)-1= (X2-(p,q)-i* (M a X (P<( ])-1+X · SG3«{p, a)) } /M ax (p,Q)-i—χ * SG3-(P,q) ... (56-D) X3-(p,q> ;-I= (X 3-〇).<i)-l + X' 3-{m)-2) /2 ... (56-E) where X 3Mp, αΜ = { X3-(p, iH * (M a X (p( Q).1+χ · SG3-(p, q))) /Μ 3. X (p( q) - X * SO 3- {p,(]) .. (56-a) X 3-(p. q)-2= {^3-(p, αί-2" (M a X (Pjq)-9+z * SG2-(pq)) } /" M ax (p, Q) -2- x · S G2-(p, 〇) ... (56-b) s -90- 201137841 In the following 'describes the calculation of the (p, q) pixel group Group PG (p, c〇 output signal 値Xl-(p, q).l, X2-(P, q)-l, X3-(P,q).i, Xb(p, W.2 X2-(P, <0-2 and X4-(P, q)-2. Note that the 歹|J program is kept to be displayed by (first subpixel + fourth subpixel) The luminance of the first primary color and the ratio between the luminance of the second primary color displayed by (the second subpixel + the fourth subpixel). Also, the program is performed to maintain or maintain the color tone as far as possible. In addition, the program is performed to maintain or maintain the level-luminance characteristic, that is, the gamma characteristic or the r characteristic. Step 5 〇〇 First, the signal processing area 20 is respectively according to the following equation (1-1-A'), ( 1-1-B'), and (1-1-C') calculate the fourth sub-pixel control second signal 値 SG2-(P, q) according to the sub-pixel input signal of the one pixel group The four subpixels control the first signal 値SG Hp,q), and the control signal or the third subpixel control signal SG3Mp, q). This procedure is performed for all pixels. In addition, 'according to the equation (4-A') Calculate the signal 値X4-(P,q)-2°
... ... (1-1-BM ... (l-l-CM S G2-(p,Q)=M i n (p,q)-2 s Gi-fp.a)=M i n (p,Q-) S G3-(p.i π (p,¢)-1 ^4-(p, q)-2= (S G2-(p,q) + S Gl-(p,q)) /2 _ (4-Af ) 步驟5 1 0 接著,信號處理區20根據上述之式子(56_A)至( 56-E ) 、56 ( a )及56 ( b )從針對該畫素群組所判斷出的 第四子畫素輸出信號値X4-(P,〇)·2計算輸出信號値Χ|·(ρ,Μ·2 -91 - 201137841 、X2-(P,q)-2、Χΐ·(ρ,q)-l、X2-(p, q)-|、及 X3-(P,q)-l。針對全 部的P X Q畫素進行此操作。 注意到由於在每一畫素群組中之第二畫素的輸出信號 値之比例 ^l-(p,q)-2 * X2-(p»q)-2 ^Ι-ίρ,ςϊ-Ι · ^2-{p#q)-l · ^3-(p#q)~l 與輸入信號値的比例... (1-1-BM ... (ll-CM S G2-(p,Q)=M in (p,q)-2 s Gi-fp.a)=M in (p, Q-) S G3-(pi π (p,¢)-1 ^4-(p, q)-2= (S G2-(p,q) + S Gl-(p,q)) /2 _ ( 4-Af) Step 5 1 0 Next, the signal processing area 20 determines from the above-mentioned equations (56_A) to (56-E), 56(a), and 56(b) for the pixel group. Four subpixel output signal 値X4-(P,〇)·2 calculates the output signal 値Χ|·(ρ,Μ·2 -91 - 201137841 , X2-(P,q)-2,Χΐ·(ρ,q )-l, X2-(p, q)-|, and X3-(P,q)-l. This operation is performed for all PXQ pixels. Note that due to the second painting in each pixel group The ratio of the output signal of the prime is ^l-(p,q)-2 * X2-(p»q)-2 ^Ι-ίρ,ςϊ-Ι · ^2-{p#q)-l · ^3- (p#q)~l ratio to input signal 値
Xl-(p,q)-2 · X2-(p,q)-2 ^l-(p,q)-l · ^2-(p,q)-l · ^3- (p# q) -1 有一點差異,若單獨觀看每一δ素,則畫素之間的色 調相關於輸入信號會發生一些差異。然而,當觀看畫素爲 一畫素群組,畫素群組之色調不會發生問題。這同樣亦適 用下列說明。 在可行範例5之影像顯示裝置之驅動方法或影像顯示 裝置組合之驅動方法中,信號處理區20依據從第一子畫素 輸入信號、第二子畫素輸入信號、及第三子畫素輸入信號 所判斷出之第四子畫素控制第二信號値SG2.(P, ^及第四子 畫素控制第一信號値SG^p, q)判斷第四子畫素輸出信號並 輸出已判斷的第四子畫素輸出信號。在此,由於依據互相 相鄰定位的第一畫素ρχι及第二畫素Px2判斷第四子畫素輸 出信號,實現至第四子畫素之輸出信號的最佳化。還有, 由於針對至少組態自第一畫素PXl及第二畫素Px2之一畫素 群組亦設置一第四子畫素,可抑制子畫素之孔徑區域的面 積之減少。結果,可肯定地實現輝度之增加並可實現顯示 -92-Xl-(p,q)-2 · X2-(p,q)-2 ^l-(p,q)-l · ^2-(p,q)-l · ^3- (p# q) - 1 There is a difference. If you look at each δ element separately, the hue between the pixels will be different from the input signal. However, when the viewing pixel is a pixel group, the color of the pixel group does not cause a problem. The same applies to the same. In the driving method of the image display device or the driving method of the image display device combination of the fifth aspect, the signal processing area 20 is input according to the first sub-pixel input signal, the second sub-pixel input signal, and the third sub-pixel input. The fourth sub-pixel determined by the signal controls the second signal 値 SG2. (P, ^ and the fourth sub-pixel control first signal 値 SG^p, q) determines the fourth sub-pixel output signal and outputs the determined The fourth subpixel output signal. Here, since the fourth sub-pixel output signal is judged based on the first pixel ρ χ and the second pixel Px2 positioned adjacent to each other, the output signal to the fourth sub-pixel is optimized. Further, since a fourth sub-pixel is also provided for at least one pixel group configured from the first pixel PX1 and the second pixel Px2, the area reduction of the aperture area of the sub-pixel can be suppressed. As a result, the increase in luminance can be surely achieved and the display can be realized.
S 201137841 品質之改善。 可行範例6 可行範例6爲可行範例5之修改例並關於第2B模式。 在可行範例6中, 其中%爲取決於影像顯示裝置10的常數, 信號處理區20判斷當藉由添加第四顏色而膨脹之HSV 色空間中之飽和度S爲變數時的亮度之最大値Vmax(S),以 及 信號處理區20 (a)依據至複數畫素的子畫素輸入信號値計算關於 複數畫素之飽和度S及亮度V(S), (b )至少依據關於複數畫素而計算的Vmax (S)/V(S) 的値之一計算膨脹係數α ο,以及 (c )依據第一子畫素輸入信號値Xl_(p,q)_2、膨脹係 數α〇、及常數Z計算第(p,q)個第二畫素pX2之第一子 畫素輸出信號値X|.(p,q>.2, 依據第二子畫素輸入信號値X2.(p,q)-2、膨脹係數(2 G、及 常數Z計算第二畫素PX2之第二子畫素輸出信號値X2.(p, q)-2 ;以及 依據第四子畫素控制第二信號値SG2-(p,q)、第四子畫 素控制第一信號値SG^p,q>、膨脹係數α 〇、及常數χ計 算第二畫素Ρχ2之第四子畫素輸出信號値X4.(p,q).2。針對 每一影像顯示訊框判斷膨脹係數α 〇。注意到分別根據式 -93- 201137841 子(2-1-A·)及(2-1·Β')計算第四子畫素控制第二 値SG2-(P, q)及第四子畫素控制第一信號値SGhp, q)。 ,從下列式子(2_ 1-C’)計算控制信號値或第三子畫 制信號値SG3.(P, q)。 信號 此外 素控 s G2-(p.q)= (M i η (ρ.α)-2) · α〇 SGh(p,Q}=(Min(p,Q”)*〇!〇 (Μ i η (PtQ)-|) · α〇 此外,當分別由S(p,…,及V(p, q)·!表示第(ρ,q) —畫素Pxi之飽和度及亮度時,且分別由S(p,q)_2& V(p 表示第(p,q)個第二畫素Px2之飽和度及亮度時,可 以下列式子(61-A )至(61-D )表示它們: 個第 » q ) · 2 分別 S(n.Q)-i= (M^ X (p.qj-1-M i n (p.Q)-i) /λίαχ^.^-, ... (61-A) V(p,Q)-i=Max(p(q).| ... (6i-B) S (p,q>-2_ (M 3. X (pt q)-2_M 1 Π (p, q)-2) £1 X (p, q)-2 V (p.〇)-2=M a x (p,q}-2 …(61-C) …(61-D) 在可行範例6中,從下列(4-A")計算第四子畫 出信號値X4-(P, (0.2。尤其,藉由算術機構計算第四子 輸出信號値Xqp, q>-2。注意到,在式子(4-A1’)中, 右邊包括X之除法,但式子不限於此。X^*(p,q>-2= (S d) + S G卜(p,〇)) / ( 2 χ) (4-A"、 素輸 畫素 雖然 同時,藉由下列的式子(5-a)至(5-f)及(6S 201137841 Quality improvement. Feasible Example 6 Feasible Example 6 is a modification of the possible example 5 and relates to the 2B mode. In the feasible example 6, where % is a constant depending on the image display device 10, the signal processing area 20 determines the maximum 値Vmax of the brightness when the saturation S in the HSV color space expanded by adding the fourth color is a variable (S), and the signal processing area 20 (a) calculates the saturation S and the luminance V(S) of the complex pixel according to the sub-pixel input signal to the complex pixel, (b) at least according to the complex pixel One of the calculated Vmax (S) / V (S) 计算 calculates the expansion coefficient α ο, and (c) according to the first sub-pixel input signal 値Xl_(p, q)_2, the expansion coefficient α〇, and the constant Z Calculating the first sub-pixel output signal 値X|.(p, q>.2 of the (p, q)th second pixel pX2, according to the second sub-pixel input signal 値X2.(p, q)- 2. The expansion coefficient (2 G, and the constant Z calculates the second sub-pixel output signal 値X2.(p, q)-2 of the second pixel PX2; and controls the second signal 値SG2- according to the fourth sub-pixel (p, q), the fourth sub-pixel controls the first signal 値 SG^p, q >, the expansion coefficient α 〇, and the constant χ calculates the fourth sub-pixel output signal 値X4 of the second pixel Ρχ 2 (p , q).2. For An image display frame judges the expansion coefficient α 〇. Note that the fourth sub-pixel control second SG2- is calculated according to the formula -93-201137841 sub (2-1-A·) and (2-1·Β'), respectively. (P, q) and the fourth sub-pixel control the first signal 値 SGhp, q). , from the following equation (2_ 1-C'), the control signal 値 or the third sub-picture signal 値 SG3. (P, q). The signal is further controlled by s G2-(pq)= (M i η (ρ.α)-2) · α〇SGh(p,Q}=(Min(p,Q”)*〇!〇(Μ i η (PtQ)-|) · α〇 In addition, when S(p,..., and V(p, q)·! respectively represent the saturation and brightness of the (ρ, q)-pixel Pxi, and When S(p,q)_2&V(p represents the saturation and brightness of the (p,q)th second pixel Px2, respectively, they can be expressed by the following expressions (61-A) to (61-D). : Item » q ) · 2 S(nQ)-i= (M^ X (p.qj-1-M in (pQ)-i) /λίαχ^.^-, ... (61-A) V(p,Q)-i=Max(p(q).| (6i-B) S (p,q>-2_ (M 3. X (pt q)-2_M 1 Π (p, q )-2) £1 X (p, q)-2 V (p.〇)-2=M ax (p,q}-2 (61-C) (61-D) In the feasible example 6, Calculate the fourth sub-signal from the following (4-A") 値X4- (P, (0.2. In particular, the fourth sub-output signal 値Xqp, q>-2 is calculated by the arithmetic mechanism. Note that in the equation (4-A1'), the right side includes the division of X, but the expression is not limited thereto. X^*(p,q>-2= (S d) + SG (p,〇)) / ( 2 χ) (4-A", 素素素, at the same time, by the following formula (5 -a) to (5-f) and (6
S -94- 201137841 計算第一子畫素R、第二子畫素G、及第三子畫素B的輸出 信號値 Xl-(p, q) —2、Χ2·(ρ’ ' Xl-(P,<〇·,、Χ2-(Ρ’ Ο·1、及 X3-(p, q)- 1 ° χν-(ρ.«)-1 = · X 卜{jxq卜 1一 χ · S G3-!P,q> ··. (5-a) X2-(p,q)-1 =0:〇· Χ2-(ρ.α}-1^ Z * SG3-(p. a) ... (5_b) X 3-tp, (1)-1= 0!〇 · X3-(p. a)-l~ % * SG3-(p, <|) ... (5-c) X>-(p.q)-2 = Qi〇 , X 卜(p,4)-2一 5C · S G2-(p,W .. (5_d) X2-(p. q) -2 =〇!〇* X2-{p, g)-2—% * SG2-(p, a) (5_e) X 3-(d. (0-2= 〇!〇 · X:j-(p. Q}-2—X · S 〇2-(|Μ> ·.. (5_f) X3-<p.(〇-l = (X’ :i~(Pn + X /2 ... (6_a,) 亦在可行範例6中,與可行範例2中類似地,亮度之最 大値Vmax (S)(其中藉由添加第四顏色(白色)而膨脹之 HSV色空間中的飽和度S爲變數)係儲存在信號處理區20 中,或每次由信號處理區20計算出來。換言之,藉由添加 第四顔色(白色),膨脹HSV色空間中之亮度的動態範圍 〇 於下之中,說明計算第(p,q )個畫素群組PG(p,q)中 之.輸出 號値 Xl-(p,q>-2、X2-(p,q)-2、Xl-(p, q).|、X2-(p, q>-| 、及X3-(p,q)-l的方法’亦即,膨脹程序。注意到進行該程 序以保持或維持漸變-輝度特性,亦即,伽瑪特性或r特 性。此外’在下列程序中,進行下列程序以在全部的第一 及第二畫素上’亦即,在全部的畫素群組上,盡可能遠地 -95- 201137841 保持輝度上的比例。還有,進行程序以盡可能遠地保持或 維持色調。 步驟600 首先’信號處理區20依據至複數畫素之子畫素輸入信 號値計算複數畫素之飽和度S與亮度V(S)。尤其,信號處 理區20從實質上與式子(21-A) 、(21-B) ' (21-C)、 及(21-D )相同的式子(亦即,從藉由分別以Max (p,q).2 及 Min (p,q)·]取代式子(21-A) 、(21-B) 、(21-C)、 及(21-D)中之^Iax(p,q)及Min(p,q)而得之式子)依據至 第(P,q)個第二畫素Px(p, ς>·2之第一子畫素輸入信號的 輸入信號値q>.2、第二子畫素輸入信號的輸入信號値 X2-(p,q^2、及第三子畫素輸入信號的輸入信號値X3_(p, q).2還 有至相鄰畫素之第三子畫素輸入信號的輸入信號値X3.(p,qj 分別計算飽和度s(p,。.,及s(p, q).2和亮度v(p,…,及V(p,q).2 。針對所有畫素進行此程序。 步驟6 1 0 接著’信號處理區20至少依據關於複數畫素群組而計 算的Vmax (S) /V(S)的値之一計算膨脹係數α 〇。 尤其’在可行範例6中,判斷關於所有畫素(亦即, 所有Ρ〇 X Q畫素)而計算的Vmax (S)/V(S)的値中之最低 値或最小値a min作爲膨脹係數α 〇。尤其,關於所有畫素 群組(亦即所有的PQ X Q畫素群組)計算α (p,q) = Vma> s -96- 201137841 (S)/V(p, q)(S)的値,並判斷a (p,q)的最小値作爲a min=膨 脹係數α 0。 步驟6 2 0 接著,信號處理區20從上述的式子(2-1-Α') ' (2_ 1-Β')、及(4-Α,’)計算第(p,q )個畫素群組PG(P,q)之 第四子畫素輸出信號値X4.(p, q)_2。注意到關於所有P X Q 畫素群組PG(p,q)計算X4.(p,q)-2。可同時履行步驟610及 步驟6 2 0。 步驟630 接著,信號處理區20依據輸入信號値X|-(P, q>.2、膨脹 係數α 〇、及常數;t從式子(5-a )至(5-f)及(6-a,)計 算第(p, q)個第二畫素Px(p,q)_22第一子畫素輸出信號 値Χ,-ίρ,q)-2。此外,信號處理區20依據輸入信號値X2-(P,q)-2 、膨脹係數〇:〇、及常數%計算第二子畫素輸出信號値 X2-(P,q)-2。此外,信號處理區20依據輸入信號値X丨-(P,qH 、膨脹係數α 〇、及常數;t計算第(p,q)個第一畫素Px(p, q)-d 第一子畫素輸出信號値X^p, q)-,。此外,信號處理區20依 據輸入信號値x2.(p,、膨脹係數α〇、及常數χ計算第二 子畫素輸出信號値X2.(p, qM,並依據輸入信號値χ3.(ρ,。.,及 χ3-(ρ, q).2、膨脹係數〇:〇、及常數Ζ計算第三子畫素輸出 信號値x3-(p, 。注意到可同時履行步驟620及步驟63 0, 或可在步驟630之後履行步驟620。 -97- 201137841 亦在可行範例6中,重要的是在於第—子畫素R、第一 子畫素G、及第三子畫素B之輝度被膨脹係數^(•膨脹’如 式子(5-a)至(5-f)、及(6-a’)中所示。在依照此方 式膨脹第一子畫素R及第二子遭素G之輝度的情況中’不 僅白色顯示子晝素(亦即,第四子畫素)的輝度增加’但 紅色顯示子畫素及綠色顯示子畫素(亦即’第一及第二子 畫素)的輝度亦增加。因此,可肯定地防止顏色變暗的問 題發生。尤其,相較於其中不膨脹第一子畫素R、第二子 畫素G、及第三子畫素B之輝度的替代情況,整個影像之 輝度增加至α 〇倍。依此方式,根據可行範例6的影像顯不 裝置組合或其之驅動方法,第(P,q)個畫素群組PG(p, q) 的輸出{@號値 Xl-(p,(|)·2、X2-(p,q)-2、Χ4·(ρ,q)-2、Xl-(p,q)-l 、X 2 · ( p , q ) · 1、及X 3 · ( p,q ) . 1膨脹〇倍。因此,爲了形成具 有等於不在膨脹狀態中之影像的輝度之輝度的影像,可依 據膨脹係數〇:〇減少平面光源裝置50之輝度。尤其,平面 光源裝置50可減少1/α〇倍。藉此,可預期平面光源裝置 之耗電量的減少。 注意到由於在每一畫素群組中之第一及第二畫素的輸 出信號値之比例S -94- 201137841 Calculate the output signal of the first sub-pixel R, the second sub-pixel G, and the third sub-pixel B 値Xl-(p, q) — 2, Χ 2·(ρ' ' Xl-( P, <〇·,,Χ2-(Ρ' Ο·1, and X3-(p, q)− 1 ° χν-(ρ.«)-1 = · X 卜{jxq卜1χ · S G3 -!P,q> ··. (5-a) X2-(p,q)-1 =0:〇· Χ2-(ρ.α}-1^ Z * SG3-(p. a) ... (5_b) X 3-tp, (1)-1= 0!〇· X3-(p. a)-l~ % * SG3-(p, <|) ... (5-c) X>- (pq)-2 = Qi〇, X 卜(p,4)-2-5C · S G2-(p,W .. (5_d) X2-(p. q) -2 =〇!〇* X2-{ p, g) -2 -% * SG2-(p, a) (5_e) X 3-(d. (0-2= 〇!〇· X:j-(p. Q}-2—X · S 〇 2-(|Μ> ·.. (5_f) X3-<p.(〇-l = (X' :i~(Pn + X /2 ... (6_a,) is also in feasible example 6, with Similarly, in the feasible example 2, the maximum luminance 値Vmax (S) of the luminance (where the saturation S in the HSV color space expanded by adding the fourth color (white) is a variable) is stored in the signal processing region 20, or Each time is calculated by the signal processing area 20. In other words, by adding a fourth color (white), the dynamic range of the brightness in the HSV color space is expanded 〇 In the following, the calculation of the (p, q)th pixel group PG(p,q) is performed. The output number 値Xl-(p,q>-2, X2-(p,q)-2, The method of Xl-(p, q).|, X2-(p, q>-|, and X3-(p,q)-l', that is, the expansion procedure. Note that the procedure is performed to maintain or maintain the gradient - Luminance characteristics, that is, gamma characteristics or r characteristics. In addition, 'in the following procedure, the following procedure is performed on all of the first and second pixels', that is, on all pixel groups, as much as possible Remote-95-201137841 Maintain the ratio on the brightness. Also, perform the program to maintain or maintain the color tone as far as possible. Step 600 First, the 'signal processing area 20 calculates the saturation of the complex pixels based on the sub-pixel input signal to the complex pixel. Degree S and luminance V(S). In particular, signal processing region 20 is substantially identical to equations (21-A), (21-B) ' (21-C), and (21-D) ( That is, by substituting Max (p,q).2 and Min (p,q)·] for the equations (21-A), (21-B), (21-C), and (21-, respectively) The formula of ^Iax(p,q) and Min(p,q) in D) is based on the second (P, q) second painting Px(p, ς>·2 the first sub-pixel input signal input signal 値q>.2, the second sub-pixel input signal input signal 値X2-(p, q^2, and the third sub-picture The input signal 値X3_(p, q).2 of the prime input signal and the input signal 値X3. (p, qj to the third sub-pixel input signal of the adjacent pixel respectively calculate the saturation s(p,. ., and s(p, q).2 and luminance v(p,..., and V(p,q).2. This procedure is performed for all pixels. Step 6 1 0 Next 'Signal processing area 20 is based at least on One of the Vmax (S) /V(S) 计算 calculated by the complex pixel group calculates the expansion coefficient α 〇. Especially in the feasible example 6, it is judged about all pixels (that is, all Ρ〇XQ pixels And the lowest or minimum 値a min of the calculated Vmax (S)/V(S) is used as the expansion coefficient α 〇. In particular, for all pixel groups (ie all PQ XQ pixel groups) Calculate the 値 of α (p,q) = Vma> s -96- 201137841 (S)/V(p, q)(S) and judge the minimum 値 of a (p,q) as a min=expansion coefficient α 0 Step 6 2 0 Next, the signal processing area 20 calculates the (p, q)th picture from the above equation (2-1-Α') '(2_ 1-Β'), and (4-Α, '). The fourth sub-pixel output signal 値X4.(p, q)_2 of the prime group PG(P,q). Note that X4.(p,q) is calculated for all PXQ pixel groups PG(p,q). -2. Step 610 and step 6 2 0 can be performed simultaneously. Step 630 Next, the signal processing area 20 is based on the input signal 値X|-(P, q> The coefficient α 〇, and a constant; t calculates the (p, q)th second pixel Px(p,q)_22 from the equations (5-a) to (5-f) and (6-a,) The sub-pixel output signal 値Χ, -ίρ, q) - 2. In addition, the signal processing area 20 calculates the second sub-portion based on the input signal 値X2-(P,q)-2, the expansion coefficient 〇:〇, and the constant %. The pixel output signal 値X2-(P, q)-2. Further, the signal processing area 20 calculates the (p, q)th according to the input signal 値X丨-(P, qH, the expansion coefficient α 〇, and the constant; t; The first pixel Px(p, q)-d first subpixel output signal 値X^p, q)-. Further, the signal processing region 20 is based on the input signal 値x2. (p, the expansion coefficient α〇, And the constant χ calculates the second sub-pixel output signal 値X2.(p, qM, and according to the input signal 値χ3.(ρ, .., and χ3-(ρ, q).2, expansion coefficient 〇:〇, And the constant Ζ calculates the third sub-pixel output signal 値x3-(p, . Note that step 620 and step 63 0 may be performed simultaneously, or step 620 may be performed after step 630. -97- 201137841 Also in feasible example 6 It is important that the luminance of the first sub-pixel R, the first sub-pixel G, and the third sub-pixel B are The expansion coefficient ^(•expansion' is as shown in the equations (5-a) to (5-f), and (6-a'). The first sub-pixel R and the second sub-sugar are expanded in this manner. In the case of the luminance of G, 'not only the white shows that the luminance of the sub-element (ie, the fourth sub-pixel) increases, but the red shows the sub-pixel and the green display sub-pixel (that is, the first and second sub-pictures) The brightness of the prime also increased. Therefore, it is possible to surely prevent the problem of color darkening. In particular, the luminance of the entire image is increased to α 〇 times as compared with the case where the luminance of the first sub-pixel R, the second sub-pixel G, and the third sub-pixel B is not expanded. In this way, according to the image display device combination of the feasible example 6 or the driving method thereof, the output of the (P, q) pixel group PG(p, q) {@号値Xl-(p,(| )·2, X2-(p,q)-2, Χ4·(ρ,q)-2, Xl-(p,q)-l, X 2 · ( p , q ) · 1 , and X 3 · ( p, q ) . 1 is expanded by a factor of 2. Therefore, in order to form an image having a luminance equal to the luminance of the image which is not in the expanded state, the luminance of the planar light source device 50 can be reduced according to the expansion coefficient 。: 尤其. 50 can be reduced by 1/α〇. Thereby, the power consumption of the planar light source device can be expected to be reduced. Note that the ratio of the output signals of the first and second pixels in each pixel group is
Xl-(p,q)-2 * X2-(p#q)-2 與輸入信號値的比例 ^l-(p,q)-2 · x2-(p#q)-2The ratio of Xl-(p,q)-2 * X2-(p#q)-2 to the input signal ^ ^l-(p,q)-2 · x2-(p#q)-2
Xl-(p,q)-l : X2-(p,q)-l : X3-(p,q)-lXl-(p,q)-l : X2-(p,q)-l : X3-(p,q)-l
S 98- 201137841 有一點差異’若單獨觀看每一畫素,則畫素之間的色 調相關於輸入信號會發生一些差異。然而,當觀看畫素爲 一畫素群組’畫素群組之色調不會發生問題。這同樣亦適 用下列說明。 雖以連同本發明的較佳可行範例於上說明本發明,本 發明不限於可行範例。在上述範例中所述之彩色液晶顯示 裝置組合、彩色液晶顯示裝置、平面光源裝置、平面光源 單元的組態及結構和驅動方法爲例示性,且組態這些之構 件、材料、及之類爲例示性且可適當變更。 同時,在可行範例2及6中,複數畫素,或一組之第一 子畫素、第二子畫素、及第三子畫素,其之飽和度S及亮 度V(S)應加以計算,爲所有的p X q畫素,或所有組的第 一子畫素、第二子畫素、及第三子畫素,這類畫素的數量 不限於此。尤其,複數畫素,或該組之第一子畫素、第二 子畫素、及第三子畫素,其之飽和度S及亮度V(S)應加以 計算’可例如每四個或每八個設定成一。 同時,在可行範例2或6中,依據第一子畫素輸入信號 、第二子畫素輸入信號、及第三子畫素輸入信號計算膨脹 係數〇:〇,可替代地依據第一、第二、及第三輸入信號之 —、或依據來自一組第一、第二、及第三子畫素內的子畫 素輸入信號之一、不然依據第一、第二、及第三畫素輸入 信號之一來加以計算。尤其,作爲這種輸入信號之一的輸 入信號値’可使用’例如,針對綠色之輸入信號値X2_(p,q: 或Χ2·(Ρ, q>·2。接著,可以和可行範例中類似的方式從已計 -99- 201137841 算出的膨脹係數α 〇計算輸出信號値。注意到,在此例子中 ,不使用式子(21-C )及之類中的飽和度S(p,q)或s(p, q)-2 ’ 可使用「1」作爲飽和度S (p, q)或S (p, q>_2的値。換言之, 式子(21-C )及之類中的Min (p, “或Min (p,設定成 「0」。不然,可依據第一、第二、及第三子畫素輸入信 號的兩個不同者之輸入信號値、或依據來自一組第一、第 二、及第三子畫素的子畫素輸入信號之中的兩個不同的輸 入信號、不然依據來自第一、第二、及第三畫素子畫素輸 入信號之中的兩個不同之輸入信號來計算膨脹係數 詳言之,例如,可使用針對紅色的輸入信號値xu<P,<0-2及 針對綠色的輸入信號値x2-(P, q)-2。接著,以和可行範例中 類似的方式從已計算出的膨脹係數α 〇計算輸出信號値。 注意到,在此例子中,不使用式子(2 1-C ) 、( 21-D)、 .及之類中的 S (Ρ,q)、V (ρ,q)、S (Ρ,q>-2、及 V (ρ,q).2,例如 ,作爲s (p,q)的値,在XHp, q)2 X2-(P,q)的情況中,可使用 S(p,q} = (Xl-(p,q) ** X2-(p,q) ) /x2-(p,q) V(P,q) = xl-(p,q) 但在Xl.(P, q) < X2.(p, q)的情況中’可使用 S(p,q) = (χ2-(p,q) — Xl-(p,q> ) /χ2-(p,q) ^(p,q) = x2-(p#q) 例如,在彩色影像顯示裝置上將顯示單色影像的情況 中,進行由上述式子所提出之這種膨脹程序已足夠。 或者,亦可採用一種形式,使得膨脹程序在其中觀賞 者察覺不到圖像品質變異的範圍內進行。尤其’關於具有 高可見度之黃色的漸變中之亂序很明顯。據此’較佳進行 -100-S 98- 201137841 There is a difference. If you look at each pixel individually, the color tone between the pixels is related to the input signal. However, when viewing the pixels as a pixel group, the hue of the pixel group does not cause a problem. The same applies to the same. Although the present invention has been described above in connection with the preferred embodiments of the present invention, the present invention is not limited to the possible examples. The configuration, structure, and driving method of the color liquid crystal display device combination, the color liquid crystal display device, the planar light source device, and the planar light source unit described in the above examples are exemplary, and the components, materials, and the like are configured. It is illustrative and can be changed as appropriate. Meanwhile, in the feasible examples 2 and 6, the complex pixel, or a group of the first sub-pixel, the second sub-pixel, and the third sub-pixel, the saturation S and the brightness V(S) thereof should be The calculation is for all p X q pixels, or the first sub-pixel, the second sub-pixel, and the third sub-pixel of all groups, and the number of such pixels is not limited thereto. In particular, the complex pixels, or the first sub-pixel, the second sub-pixel, and the third sub-pixel of the group, the saturation S and the luminance V(S) thereof should be calculated 'for example, every four or Every eight is set to one. Meanwhile, in the feasible example 2 or 6, the expansion coefficient 〇: 计算 is calculated according to the first sub-pixel input signal, the second sub-pixel input signal, and the third sub-pixel input signal, which may alternatively be based on the first And the second, third, and third input signals are based on one of the sub-pixel input signals from the first, second, and third sub-pixels, or are based on the first, second, and third pictures One of the input signals is used to calculate. In particular, the input signal 値' as one of such input signals can be used, for example, for the green input signal 値X2_(p, q: or Χ2·(Ρ, q>·2. Then, it can be similar to the feasible example The way of calculating the output signal 从 from the expansion coefficient α 已 calculated from -99- 201137841. Note that in this example, the saturation S(p, q) in the equation (21-C) and the like is not used. Or s(p, q)-2 ' can use "1" as the saturation S (p, q) or S (p, q> _2 値. In other words, the expression (21-C) and the like Min (p, "or Min (p, set to "0". Otherwise, depending on the input signal of the two different inputs of the first, second, and third subpixel inputs, or based on a set of first Two different input signals among the sub-pixel input signals of the second, third, and third sub-pixels, or two different from the first, second, and third pixel sub-pixel input signals The input signal is used to calculate the expansion coefficient. For example, the input signal 値xu<P, <0-2 for red and the input signal 値x2-(P for green) can be used. , q) - 2. Next, the output signal 値 is calculated from the calculated expansion coefficient α 〇 in a similar manner to the feasible example. Note that in this example, the equation (2 1-C ) is not used, ( S (Ρ, q), V (ρ, q), S (Ρ, q > -2, and V (ρ, q). 2 in 21-D), . and the like, for example, as s (p , q), in the case of XHp, q) 2 X2-(P, q), S(p,q} = (Xl-(p,q) ** X2-(p,q) ) can be used) /x2-(p,q) V(P,q) = xl-(p,q) But in the case of Xl.(P, q) < X2.(p, q) 'S(p, q) = (χ2-(p,q) — Xl-(p,q> ) /χ2-(p,q) ^(p,q) = x2-(p#q) For example, on a color image display device In the case where a monochrome image is to be displayed, it is sufficient to perform the expansion procedure proposed by the above formula. Alternatively, a form may be employed such that the expansion procedure is performed within a range in which the viewer does not perceive the image quality variation. In particular, the disorder in the gradient of yellow with high visibility is obvious. According to this, 'preferably -100-
S 201137841 膨脹程序,使得來自具有特定色相(如黃色)的輸入信號 之膨脹輸出信號絕不超過Vmax。或者,在具有特定色相( 如黃色)的輸入信號的率爲低的情況中,亦可將膨脹係數 α 〇設定成高於最小値的値。 亦可採用邊緣光型(亦即側光型)的平面光源裝置。 在此例子中,如第1 9圖中所示,從例如聚碳酸酯樹脂所形 成之導光板510具有爲底面之第一面511、爲與第一面511 相對之頂面的第二面5 1 3、第一側面5 1 4 '第二側面5 1 5、 與第一側面5 1 4相對之第三側面5 1 6、及與第二側面5 1 5相 對之第四側面。導光板5 1 0之一更特定形狀爲大致楔形截 面四角錐形狀,且截面四角錐之兩相對面相應於第一面 511及第二面513,同時截面四角錐之底面對應至第一側面 514。此外。在第一面511之表面部上設置凹一凸部512。 當沿著至導光板510的第一原色光入射方向中並與第一面 51 1垂直地延伸之虛擬平面切割導光板510時,連續的凹-凸部之剖面形狀爲三角形。換言之,設置在第一面511之 表面部上的凹-凸部512具有錐形。導光板510的第二面 5 1 3可具有平順,亦即,可形成爲鏡面,或可具有噴射浮 雕,其有光擴散之效果,亦即,可形成爲經細緻粗糙化的 面。在與導光板510之第一面511相對的關係中設置光反射 件5 2 0。此外,在與導光板5 1 0之第二面5 1 3相對的關係中 設置影像顯示面板,例如,彩色液晶顯示面板。此外’可 在影像顯示面板與導光板5 1 0之第二面5 1 3之間設置光擴散 片531及稜片5 3 2。從光源5 00所發射的第一原色光經由導 -101 - 201137841 光板510之第一側面514(其爲相應於截面四角錐的底面之 面)進入導光板510。接著,第一原色光衝擊並被第一面 511之凹一凸部512散射,並從第一面511出去,之後被光 反射件520反射並再次進入第一面511。之後,第一原色光 從第二面513出來,穿過光擴散片531及稜片532,並照射 例如可行範例1之影像顯示面板。 作爲光源,可取代發光二極體而採用藍光發射作爲第 一原色光的螢光燈或半導體雷射。在此例子中,將從螢光 燈或半導體雷射發射的相應於第一原色(藍色)之第一原 色光的波長λ ,可例如爲45 0 nm。同時,由螢光燈或半導 體雷射所激發的相應於第二原色發光粒子之綠光發射粒子 可例如爲以如SrGa2S4 : Eu所製成之綠光發射磷粒子。此 外,相應於第三原色發光粒子之紅光發射粒子可例如爲以 如CaS : Eu所製成之紅光發射磷粒子。不然,當使用半導 體雷射時,將從螢光燈或半導體雷射發射的相應於第一原 色(藍色)之第一原色光的波長又!可例如爲45 7 nm。在 此例子中,由半導體雷射所激發的相應於第二原色發光粒 子之綠光發射粒子可例如爲以如SrGa2S4 : Eu所製成之綠 光發射磷粒子,且相應於第三原色發光粒子之紅光發射粒 子可例如爲以如CaS : Eu所製成之紅光發射磷粒子。不然 ,可使用冷陰極型螢光燈(CCFL )、熱陰極型螢光燈( HCFL )、外部電極型螢光燈(外部電極螢光燈;EEFL ) 〇 若第四子畫素控制第二信號値SG2.(p, q>及第四子畫素S 201137841 The expansion procedure so that the expanded output signal from an input signal with a particular hue (such as yellow) never exceeds Vmax. Alternatively, in the case where the rate of the input signal having a specific hue (e.g., yellow) is low, the expansion coefficient α 〇 may be set to be higher than the minimum chirp. An edge light type (i.e., side light type) planar light source device can also be used. In this example, as shown in FIG. 9, the light guide plate 510 formed of, for example, a polycarbonate resin has a first surface 511 which is a bottom surface, and a second surface 5 which is a top surface opposite to the first surface 511. 1 3, a first side surface 5 1 4 'the second side surface 5 1 5 , a third side surface 5 16 opposite the first side surface 5 1 4 , and a fourth side surface opposite to the second side surface 5 15 . One of the light guide plates 510 has a shape of a substantially wedge-shaped quadrangular pyramid shape, and two opposite faces of the cross-section quadrangular pyramid correspond to the first surface 511 and the second surface 513, and the bottom surface of the cross-sectional quadrangular pyramid corresponds to the first side surface 514. . Also. A concave convex portion 512 is provided on the surface portion of the first surface 511. When the light guide plate 510 is cut along a virtual plane extending into the first primary color light incident direction of the light guide plate 510 and perpendicular to the first surface 51 1 , the cross-sectional shape of the continuous concave-convex portions is a triangle. In other words, the concave-convex portion 512 provided on the surface portion of the first face 511 has a taper shape. The second face 513 of the light guide plate 510 may have a smooth shape, i.e., may be formed as a mirror surface, or may have a spray embossing effect which has a light diffusing effect, that is, may be formed as a finely roughened face. The light reflecting member 520 is disposed in a relationship opposed to the first face 511 of the light guide plate 510. Further, an image display panel, for example, a color liquid crystal display panel, is disposed in a relationship opposed to the second surface 5 1 3 of the light guide plate 510. Further, a light diffusion sheet 531 and a rib 5233 may be disposed between the image display panel and the second surface 5 1 3 of the light guide plate 51. The first primary color light emitted from the light source 500 enters the light guide plate 510 via the first side 514 of the light guide plate 510, which is the surface corresponding to the bottom surface of the pyramid of the cross section. Then, the first primary color light is shocked and scattered by the concave convex portion 512 of the first surface 511, and exits from the first surface 511, and is then reflected by the light reflecting member 520 and again enters the first surface 511. Thereafter, the first primary color light emerges from the second surface 513, passes through the light diffusion sheet 531 and the rib 532, and illuminates, for example, the image display panel of the feasible example 1. As the light source, a fluorescent lamp or a semiconductor laser which emits light as the first primary color can be used instead of the light-emitting diode. In this example, the wavelength λ of the first primary light corresponding to the first primary color (blue) emitted from the fluorescent lamp or the semiconductor laser may be, for example, 45 0 nm. Meanwhile, the green light-emitting particles corresponding to the second primary color luminescent particles excited by the fluorescent lamp or the semiconductor laser may be, for example, green light-emitting phosphor particles made of, for example, SrGa2S4: Eu. Further, the red light-emitting particles corresponding to the third primary color light-emitting particles may be, for example, red light-emitting phosphor particles made of, for example, CaS:E. Otherwise, when a semiconductor laser is used, the wavelength of the first primary light corresponding to the first primary color (blue) emitted from the fluorescent or semiconductor laser is again! It can be, for example, 45 7 nm. In this example, the green light-emitting particles corresponding to the second primary color luminescent particles excited by the semiconductor laser may be, for example, green light-emitting phosphor particles made of, for example, SrGa 2 S 4 : Eu, and corresponding to the third primary color luminescent particles. The red light emitting particles may be, for example, red light emitting phosphor particles made of, for example, CaS:E. Otherwise, a cold cathode type fluorescent lamp (CCFL), a hot cathode type fluorescent lamp (HCFL), an external electrode type fluorescent lamp (external electrode fluorescent lamp; EEFL) may be used. If the fourth subpixel controls the second signal値SG2.(p, q> and fourth sub-pixel
S -102- 201137841 控制第一信號値SG^p,q)之間的關係自特定條件偏離,則 可在每一可行範例中改變相鄰畫素。尤其,當相鄰畫素爲 第(p,q-1 )個畫素時,可改變成第(P,q+1 )個畫素或 可改變成第(p, q-Ι)個畫素及第(p,q+l)個畫素。 不然,若第四子畫素控制第二信號値SG2-(P, q)及第四 子畫素控制第一信號値SG^p, q)之間的關係自特定條件偏 離,則可使用不進行每一可行範例中之程序的操作。例如 ,當將進行下列這種程序時 X4-(p,q)-2 = (SG2-(p,q) + SGl-(p>q))/2 若|SG2-(p>q) + SGhp, q)丨的値變成等於或高於或低於預 定値△ X! ’可採用僅依據SG2.(p,q)之値或可採用僅依據 SG^p.q)之値作爲應用每一可行範例的X4_(p,q)_2値。或者 ’若SG2-(p,q) + SGhp, q>的値變成等於或高於另一預定値 △ X2且若SG2-(p,q) + SGhp,q)的値變成等於或低於又另一 預定値ΔΧ3,可履行進行與每一可行範例中之不同的程序 之這種操作。 若有需要,可如所述以一種方式改變連同可行範例5 或6於上說明的畫素群組之陣列,以履行連同可行範例5或 6實質上於上說明的影像顯示裝置之驅動方法或影像顯示 面板組合之驅動方法。尤其,可採用第1 8圖中所示的影像 顯示裝置之驅動方法’該影像顯示裝置包括影像顯示面板 ’其中總共Ρ X Q畫素排列在二維矩陣中,包括在第一方 向中排列的Ρ畫素及在第二方向中排列的q畫素,以及信 -103- 201137841 號處理區® 影像顯示面板組態自包括沿著第一方向排列之第一畫 素的複數第一畫素行,及交替及相鄰設置在第一畫素旁並 包括沿著第一方向排列之第二畫素的複數第二畫素行; 第一畫素包括顯示第一原色之第一子畫素、顯示第二 原色之第二子畫素、及顯示第三原色之第三子畫素; 第二畫素包括顯示第一原色之第一子畫素、顯示第二 原色之第二子畫素、及顯示第四顔色之第四子畫素; 信號處理區能夠: 至少依據至第一畫素的第一子畫素輸入信號及膨脹係 數計算至第一畫素之第一子畫素輸出信號,並輸出第 一子畫素輸出信號至第一畫素的第一子畫素; 至少依據至第一畫素的第二子畫素輸入信號及膨脹係 數計算至第一畫素之第二子畫素輸出信號,並輸出第 二子畫素輸出信號至第一畫素的第二子畫素; 至少依據至第二畫素的第一子畫素輸入信號及膨脹係 數《0計算至第二畫素之第一子畫素輸出信號,並輸出第 一子畫素輸出信號至第二畫素的第一子畫素; 至少依據至第二畫素的第二子畫素輸入信號及膨脹係 數αο計算至第二畫素之第二子畫素輸出信號,並輸出第 二子畫素輸出信號至第二畫素的第二子畫素; 驅動方法包括進一步由信號處理區所進行之下列步驟 依據至當沿著第二方向計數些畫素時之第(p, q)個S -102- 201137841 Controlling the relationship between the first signal 値 SG^p, q) deviates from a specific condition, and adjacent pixels can be changed in each feasible example. In particular, when the adjacent pixels are the (p, q-1)th pixels, they can be changed to the (P, q+1)th pixel or can be changed to the (p, q-Ι) pixels. And the (p, q + l) pixels. Otherwise, if the relationship between the second sub-pixel control second signal 値 SG2-(P, q) and the fourth sub-pixel control first signal 値 SG^p, q) deviates from a specific condition, then no Perform the operation of the program in each of the possible examples. For example, when the following procedure is to be performed, X4-(p,q)-2 = (SG2-(p,q) + SGl-(p>q))/2 if |SG2-(p>q) + SGhp , q) 値 値 becomes equal to or higher than or lower than the predetermined 値 △ X! ' can be used only according to SG2. (p, q) or can only be based on SG ^ pq) as a feasible example of each application X4_(p,q)_2値. Or 'if SG2-(p,q) + SGhp, q> becomes equal to or higher than another predetermined 値△ X2 and if SG2-(p,q) + SGhp,q) becomes equal to or lower than Another predetermined 値ΔΧ3 can perform such an operation of a program different from each of the possible examples. If necessary, the array of pixel groups together with the feasible example 5 or 6 can be changed in a manner as described to perform the driving method of the image display device substantially as described above with the feasible example 5 or 6. The driving method of the image display panel combination. In particular, the driving method of the image display device shown in FIG. 18 can be employed. The image display device includes an image display panel in which a total of XQ pixels are arranged in a two-dimensional matrix, including Ρ arranged in the first direction. The pixel and the q pixel arranged in the second direction, and the letter-103-201137841 processing area® image display panel are configured from a plurality of first pixel lines including the first pixel arranged along the first direction, and Alternatingly and adjacently disposed adjacent to the first pixel and including a plurality of second pixels of the second pixel arranged along the first direction; the first pixel includes a first sub-pixel displaying the first primary color, and displaying the second a second sub-pixel of the primary color, and a third sub-pixel displaying the third primary color; the second pixel includes a first sub-pixel displaying the first primary color, a second sub-pixel displaying the second primary color, and displaying the fourth The fourth sub-pixel of the color; the signal processing area can: calculate the first sub-pixel output signal of the first pixel according to at least the first sub-pixel input signal and the expansion coefficient of the first pixel, and output the first Subpixel output signal to the first painting a first sub-pixel; calculating a second sub-pixel output signal of the first pixel according to at least a second sub-pixel input signal and an expansion coefficient to the first pixel, and outputting the second sub-pixel output signal to a second sub-pixel of the first pixel; calculating the first sub-pixel output signal to the second pixel according to at least the first sub-pixel input signal to the second pixel and the expansion coefficient “0”, and outputting the first The sub-pixel output signal to the first sub-pixel of the second pixel; the second sub-pixel output signal of the second pixel is calculated according to at least the second sub-pixel input signal to the second pixel and the expansion coefficient αο And outputting the second sub-pixel output signal to the second sub-pixel of the second pixel; the driving method includes the following steps performed by the signal processing area to be based on when the pixels are counted along the second direction (p, q)
S -104- 201137841 第二畫素,其中p爲1、2'…' p且q爲1、2'…、q,之第 一子畫素輸入信號 '第二子畫素輸入信號、及第三子畫素 輸入信號計算出之第四子畫素控制第二信號以及從至沿著 第二方向定位在第(p,q)個第二畫素旁的相鄰畫素之第 一子畫素輸入信號、第二子畫素輸入信號、及第三子畫素 輸入信號計算出之第四子畫素控制第—信號來計算第四子 畫素輸出信號,並輸出已計算的第四子畫素輸出信號至第 (p, q)個第二畫素;以及 進一步至少依據至第(p,q)個第二畫素之第三子畫 素輸入信號及至第(P,q)個第二畫素旁的第一畫素之第 三子畫素輸入信號來計算第三子畫素輸出信號,並輸出第 三子畫素輸出信號至第(P,q)個第一畫素。 本申請案含有關於揭露在於2010年1月28日向日本專 利局提出申請之日本優先權專利申請案JP 20 1 0-0 1 7296之 標的,其全部內容以引用方式倂入此。 雖已使用特定術語來敘述本發明之較佳實施例,這種 說明僅爲例示用,且可了解到可做出改變及變化而不背離 下列申請專利範圍的精神與範疇。 【圖式簡單說明】 第1圖爲示意性繪示在本發明之可行範例1之影像顯示 面板上的畫素及畫素群組的配置; 第2圖爲可行範例1之影像顯示裝置的區塊圖; 第3圖爲第2圖之影像顯示裝置的影像顯示面板及影像 -105- 201137841 顯示面板驅動電路的電路圖; 第4圖爲繪示在第2圖之影像顯示裝置的驅動方法中之 輸入信號値及輸出信號値的圖解圖; 第5A及5B圖爲示意性繪示飽和度(S )及亮度(v ) 之間的關係之圓柱的HSV (色相、飽和度、及明度)色空 間的圖解圖以及第5 C及5 D圖爲示意性繪示飽和度(S )及 亮度(V )之間的關係之本發明的可行範例2中之圓柱的 膨脹HSV色空間的圖解圖; 第6A及6B圖爲示意性繪示在可行範例2中之藉由添加 白色之第四顏色而膨脹之圓柱的HSV色空間中的飽和度( S)及亮度(V)之間的關係之圖解圖; 第7圖爲繪示在過去在可行範例2中添加白色之第四顏 色之前的HSV色空間、藉由添加白色之第四顔色而膨脹之 HSV色空間、以及一輸入信號的飽和度(S)及亮度(V) 之間的關係的圖; 第8圖爲繪示在過去在可行範例2中添加白色之第四顏 色之前的HSV色空間、藉由添加白色之第四顏色而膨脹之 HSV色空間、以及在膨脹程序中之一輸出信號的飽和度( S )及亮度(V )之間的關係的圖; 第9圖爲示意性繪示根據可行範例2的影像顯示裝置之 驅動方法及影像顯示裝眞組合之驅動方法在膨脹程序中之 輸入信號値及輸出信號値的圖解圖; 第1 0圖爲組態根據本發明之可行範例3的影像顯示裝 置組合之影像顯示面板及平面光源的區塊圖;S -104- 201137841 Second pixel, where p is 1, 2'...'p and q is 1, 2'..., q, the first subpixel input signal 'second subpixel input signal, and The third sub-pixel is calculated by the third sub-pixel input signal to control the second signal and the first sub-picture from the adjacent pixel positioned next to the (p, q)th second pixel along the second direction The fourth sub-pixel control first signal calculated by the prime input signal, the second sub-pixel input signal, and the third sub-pixel input signal calculates a fourth sub-pixel output signal, and outputs the calculated fourth sub-signal a pixel output signal to the (p, q)th second pixel; and further to at least a third subpixel input signal to the (p, q)th second pixel and to the (P, q)th The third sub-pixel input signal of the first pixel next to the two pixels calculates a third sub-pixel output signal, and outputs a third sub-pixel output signal to the (P, q)th first pixel. The present application contains the subject matter of the Japanese Priority Patent Application No. JP 20 1 0-0 1 7296, filed on Jan. While the invention has been described with respect to the preferred embodiments of the embodiments of the present invention, it is to be understood that the modifications and changes may be made without departing from the spirit and scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the arrangement of pixels and pixel groups on the image display panel of the feasible example 1 of the present invention; FIG. 2 is a view showing the area of the image display device of the feasible example 1. Figure 3 is a circuit diagram of the image display panel and image of the image display device of Fig. 2 - 105-201137841, and FIG. 4 is a circuit diagram of the image display device of FIG. Diagram of input signal 値 and output signal ;; Figures 5A and 5B are HSV (hue, saturation, and lightness) color spaces of the cylinder schematically showing the relationship between saturation (S) and brightness (v) Diagrams and 5C and 5D are diagrams schematically showing the expanded HSV color space of the cylinder in the feasible example 2 of the present invention, schematically showing the relationship between saturation (S) and brightness (V); 6A and 6B are diagrams schematically showing the relationship between saturation (S) and brightness (V) in the HSV color space of a cylinder expanded by adding a fourth color of white in the feasible example 2. Figure 7 shows the addition of white in the feasible example 2 in the past. A diagram of the relationship between the HSV color space before the fourth color, the HSV color space expanded by adding the fourth color of white, and the saturation (S) and brightness (V) of an input signal; The HSV color space before the addition of the fourth color of white in the feasible example 2, the HSV color space expanded by adding the fourth color of white, and the saturation of one of the output signals in the expansion program (S FIG. 9 is a diagram schematically showing an input signal of the driving method of the image display device and the driving method of the image display device according to the feasible example 2 in the expansion process; FIG. 1 is a block diagram of an image display panel and a planar light source configured to combine the image display device according to the feasible example 3 of the present invention;
S -106- 201137841 第1 1圖爲可行範例3的影像顯示裝置組合之平面光源 裝置的平面光源裝置控制電路的區塊電路圖; 第1 2圖爲示意性繪示可行範例3的影像顯示裝置組合 之平面光源裝置的平面光源單元及之類的配置及陣列狀態 的圖: 第13A及13B圖爲繪示,在平面光源裝置控制電路的 控制下,平面光源單元之光源輝度的增加或減少之狀態的 示意圖,所以當假設相應於顯示區域單元信號最大値之控 制信號供應至子畫素時可藉由平面光源單元來獲得顯示輝 度第二指定値; 第1 4圖爲本發明之可行範例4的影像顯示裝置之等效 電路圖; 第1 5圖爲構成可行範例4的影像顯示裝置之影像顯示 面板的示意圖; 第1 6 ' 1 7、及1 8圖爲示意性繪示本發明之可行範例5 的影像顯示面板上的畫素及畫素群組之不同配置的圖; 第19圖爲邊緣光型或側光型之平面光源裝置的示意圖 :以及 第20 A及20B圖爲繪示影像顯示裝置之相關技藝驅動 方法的問題之圖。 .【主要元件符號說明】 1 〇 :影像顯示裝置 2 0 :信號處理區 -107 201137841 3 0 :影像顯示面板 40 :影像顯示面板驅動電路 4 1 :信號輸出電路 42 :掃描電路 5 0 :平面光源裝置 60 :平面光源裝置控制電路 6 1 :計算電路 62 :儲存裝置或記憶體 6 3 : L E D驅動電路 64 :光二極體控制電路 6 5 :切換元件 66 :發光二極體驅動電源 67 :光二極體 1 3 0 :影像顯示面板 1 3 1 :顯示區域 1 3 2 :顯示區域單元 1 5 0 :平面光源裝置 1 5 2 :平面光源單元 153 :發光二極體 160 :平面光源裝置控制電路 200 :發光元件面板 203 :投射透鏡 2 1 0 :發光元件 2 U :基板 -108- 201137841 2 1 2 : X方向佈線 213 : Y方向佈線 2 1 4 :透明支撐件 2 1 5 :微透鏡件 2 3 1 :行驅動器 2 3 2 :列驅動器 2 3 3 :驅動器 500 :光源 5 1 0 :導光板 5 1 1 :第一面 5 1 2 :凹一凸部 513 :第二面 5 1 4 :第一側面 5 1 5 :第二側面 5 1 6 ··第三側面 5 20 :光反射件 5 3 1 :光擴散片 532 :稜片S-106-201137841 FIG. 1 is a block circuit diagram of a planar light source device control circuit of a planar light source device combined with the image display device of the third example; FIG. 1 is a schematic diagram showing the image display device combination of the feasible example 3. FIG. 13A and FIG. 13B are diagrams showing the state of increase or decrease of the luminance of the light source of the planar light source unit under the control of the control circuit of the planar light source device. Schematic diagram, so when it is assumed that the control signal corresponding to the maximum value of the display area unit signal is supplied to the sub-pixel, the second luminance of the display luminance can be obtained by the planar light source unit; FIG. 14 is a feasible example 4 of the present invention. An equivalent circuit diagram of the image display device; FIG. 15 is a schematic diagram of an image display panel constituting the image display device of the feasible example 4; FIGS. 1 6 '1, 7 and 18 are schematic diagrams showing the feasible example 5 of the present invention. The image display panel has a different arrangement of pixels and pixel groups; Figure 19 is a schematic diagram of the edge light type or side light type planar light source device: And Figs. 20A and 20B are diagrams showing the problem of the related art driving method of the image display device. [Description of main component symbols] 1 〇: Image display device 2 0: Signal processing area -107 201137841 3 0 : Image display panel 40 : Image display panel drive circuit 4 1 : Signal output circuit 42 : Scan circuit 5 0 : Planar light source Device 60: planar light source device control circuit 6 1 : calculation circuit 62 : storage device or memory 6 3 : LED drive circuit 64 : optical diode control circuit 6 5 : switching element 66 : LED driving power supply 67 : photodiode Body 1 3 0 : Image display panel 1 3 1 : Display area 1 3 2 : Display area unit 1 5 0 : Planar light source device 1 5 2 : Planar light source unit 153 : Light-emitting diode 160 : Planar light source device control circuit 200 : Light-emitting element panel 203 : Projection lens 2 1 0 : Light-emitting element 2 U : Substrate - 108 - 201137841 2 1 2 : X-directional wiring 213 : Y-directional wiring 2 1 4 : Transparent support 2 1 5 : Microlens member 2 3 1 : row driver 2 3 2 : column driver 2 3 3 : driver 500 : light source 5 1 0 : light guide plate 5 1 1 : first face 5 1 2 : concave one convex portion 513 : second surface 5 1 4 : first side 5 1 5 : second side 5 1 6 · third side 5 20 : light reflecting member 5 3 1 : Light diffuser 532 : ribs
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010017296A JP5619429B2 (en) | 2010-01-28 | 2010-01-28 | Driving method of image display device and driving method of image display device assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201137841A true TW201137841A (en) | 2011-11-01 |
TWI550583B TWI550583B (en) | 2016-09-21 |
Family
ID=44308637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100101438A TWI550583B (en) | 2010-01-28 | 2011-01-14 | Driving method for image display apparatus and driving method for image display apparatus assembly |
Country Status (5)
Country | Link |
---|---|
US (2) | US8810613B2 (en) |
JP (1) | JP5619429B2 (en) |
KR (1) | KR101753400B1 (en) |
CN (1) | CN102142222B (en) |
TW (1) | TWI550583B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI457888B (en) * | 2011-12-16 | 2014-10-21 | Au Optronics Corp | Display panel |
TWI506605B (en) * | 2014-03-28 | 2015-11-01 | Macroblock Inc | Display structure |
TWI559275B (en) * | 2015-02-09 | 2016-11-21 | 財團法人工業技術研究院 | Pixel driving method and associated display device |
TWI685248B (en) * | 2017-07-28 | 2020-02-11 | 北京集創北方科技股份有限公司 | Data encoding method and encoder |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5481323B2 (en) * | 2010-09-01 | 2014-04-23 | 株式会社ジャパンディスプレイ | Driving method of image display device |
JP5635463B2 (en) | 2011-07-29 | 2014-12-03 | 株式会社ジャパンディスプレイ | Driving method of image display device |
JP2013195869A (en) * | 2012-03-22 | 2013-09-30 | Japan Display West Co Ltd | Liquid crystal display apparatus, method of driving liquid crystal display apparatus, and electronic apparatus |
WO2014155900A1 (en) * | 2013-03-29 | 2014-10-02 | 日本電気株式会社 | Integrated light source and light output control method |
TWI502262B (en) * | 2013-06-28 | 2015-10-01 | Au Optronics Corp | Pixel array |
JP2015082024A (en) | 2013-10-22 | 2015-04-27 | 株式会社ジャパンディスプレイ | Display device, driving method of display device, and electronic apparatus |
JP6533656B2 (en) * | 2013-10-22 | 2019-06-19 | 株式会社ジャパンディスプレイ | Image processing apparatus, image display apparatus, electronic apparatus, and image processing method |
TWI490849B (en) * | 2013-12-23 | 2015-07-01 | Au Optronics Corp | Method for controlling display |
JP6395434B2 (en) * | 2014-05-15 | 2018-09-26 | 株式会社ジャパンディスプレイ | Display device, display device driving method, and electronic apparatus |
US9691338B2 (en) | 2014-11-25 | 2017-06-27 | Japan Display Inc. | Liquid crystal display device |
JP6514495B2 (en) * | 2014-12-03 | 2019-05-15 | 株式会社ジャパンディスプレイ | Image display device |
JP2016126307A (en) | 2015-01-08 | 2016-07-11 | 株式会社ジャパンディスプレイ | Display device and electronic device |
JP6450195B2 (en) * | 2015-01-08 | 2019-01-09 | 株式会社ジャパンディスプレイ | Display device and electronic device |
JP2017207581A (en) * | 2016-05-17 | 2017-11-24 | 株式会社ジャパンディスプレイ | Display device |
JP2018072676A (en) * | 2016-11-01 | 2018-05-10 | 株式会社ジャパンディスプレイ | Display device |
CA3045596C (en) | 2016-12-02 | 2022-08-23 | Daiichi Sankyo Company, Limited | Endo-.beta.-n-acetylglucosaminidase |
JP2018180333A (en) * | 2017-04-14 | 2018-11-15 | 株式会社ジャパンディスプレイ | Display device and display module |
US20190005903A1 (en) * | 2017-06-30 | 2019-01-03 | HKC Corporation Limited | Display device and driving method thereof |
JP7455521B2 (en) * | 2019-06-20 | 2024-03-26 | エルジー ディスプレイ カンパニー リミテッド | Display control device, display device, and display control method |
US11317486B2 (en) * | 2020-03-19 | 2022-04-26 | Apogee Lighting Holdings, Llc | Color correction lighting control |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3167026B2 (en) | 1990-09-21 | 2001-05-14 | キヤノン株式会社 | Display device |
JPH05241551A (en) * | 1991-11-07 | 1993-09-21 | Canon Inc | Image processor |
JP3805150B2 (en) * | 1999-11-12 | 2006-08-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Liquid crystal display |
KR100878280B1 (en) * | 2002-11-20 | 2009-01-13 | 삼성전자주식회사 | 4-color driving liquid crystal display and display panel for use |
KR100493165B1 (en) * | 2002-12-17 | 2005-06-02 | 삼성전자주식회사 | Method and apparatus for rendering image signal |
KR100915238B1 (en) * | 2003-03-24 | 2009-09-02 | 삼성전자주식회사 | Liquid crystal display |
KR100943273B1 (en) * | 2003-05-07 | 2010-02-23 | 삼성전자주식회사 | 4-color conversion method and apparatus and organic light emitting display device using the same |
US6885380B1 (en) | 2003-11-07 | 2005-04-26 | Eastman Kodak Company | Method for transforming three colors input signals to four or more output signals for a color display |
WO2005057532A2 (en) * | 2003-12-15 | 2005-06-23 | Genoa Color Technologies Ltd. | Multi-primary liquid crystal display |
US20070159492A1 (en) | 2006-01-11 | 2007-07-12 | Wintek Corporation | Image processing method and pixel arrangement used in the same |
JP2008170692A (en) * | 2007-01-11 | 2008-07-24 | Toshiba Matsushita Display Technology Co Ltd | Pixel signal processing method and processing circuit of flat panel display device |
TWI385638B (en) * | 2007-12-21 | 2013-02-11 | Wintek Corp | Method for processing image, method and device for converting data of image |
JP5386211B2 (en) * | 2008-06-23 | 2014-01-15 | 株式会社ジャパンディスプレイ | Image display device and driving method thereof, and image display device assembly and driving method thereof |
CN101620844B (en) | 2008-06-30 | 2012-07-04 | 索尼株式会社 | Image display panel, image display apparatus driving method, image display apparatus assembly, and driving method of the same |
JP5377057B2 (en) | 2008-06-30 | 2013-12-25 | 株式会社ジャパンディスプレイ | Image display apparatus driving method, image display apparatus assembly and driving method thereof |
-
2010
- 2010-01-28 JP JP2010017296A patent/JP5619429B2/en active Active
-
2011
- 2011-01-14 TW TW100101438A patent/TWI550583B/en active
- 2011-01-14 US US13/006,831 patent/US8810613B2/en active Active
- 2011-01-20 KR KR1020110005915A patent/KR101753400B1/en active Active
- 2011-01-21 CN CN201110025447.0A patent/CN102142222B/en active Active
-
2014
- 2014-07-02 US US14/322,307 patent/US9666114B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI457888B (en) * | 2011-12-16 | 2014-10-21 | Au Optronics Corp | Display panel |
TWI506605B (en) * | 2014-03-28 | 2015-11-01 | Macroblock Inc | Display structure |
TWI559275B (en) * | 2015-02-09 | 2016-11-21 | 財團法人工業技術研究院 | Pixel driving method and associated display device |
US9613558B2 (en) | 2015-02-09 | 2017-04-04 | Industrial Technology Research Institute | Pixel driving method and associated display device |
TWI685248B (en) * | 2017-07-28 | 2020-02-11 | 北京集創北方科技股份有限公司 | Data encoding method and encoder |
Also Published As
Publication number | Publication date |
---|---|
US8810613B2 (en) | 2014-08-19 |
CN102142222B (en) | 2015-10-21 |
US9666114B2 (en) | 2017-05-30 |
KR101753400B1 (en) | 2017-07-03 |
US20140313246A1 (en) | 2014-10-23 |
US20110181633A1 (en) | 2011-07-28 |
JP5619429B2 (en) | 2014-11-05 |
TWI550583B (en) | 2016-09-21 |
CN102142222A (en) | 2011-08-03 |
JP2011154322A (en) | 2011-08-11 |
KR20110088398A (en) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201137841A (en) | Driving method for image display apparatus and driving method for image display apparatus assembly | |
TWI455101B (en) | Driving method for image display apparatus and driving method for image display apparatus assembly | |
CN105225641B (en) | The driving method of image display device | |
CN101620844B (en) | Image display panel, image display apparatus driving method, image display apparatus assembly, and driving method of the same | |
TWI410952B (en) | Image display panel, image display apparatus driving method, image display apparatus assembly, and driving method of the same | |
CN102903342B (en) | The method driving image display device | |
CN102385845B (en) | Driving method for image display apparatus | |
CN106898318B (en) | The driving method of image display | |
CN101615385B (en) | Image display apparatus and image display apparatus assembly and driving method thereof | |
JP6289550B2 (en) | Driving method of image display device | |
JP5784797B2 (en) | Driving method of image display device and driving method of image display device assembly | |
JP5965443B2 (en) | Driving method of image display device |