TW201137630A - Distance computing apparatus, lens correcting system and method applying the distance computing apparatus - Google Patents
Distance computing apparatus, lens correcting system and method applying the distance computing apparatus Download PDFInfo
- Publication number
- TW201137630A TW201137630A TW99112864A TW99112864A TW201137630A TW 201137630 A TW201137630 A TW 201137630A TW 99112864 A TW99112864 A TW 99112864A TW 99112864 A TW99112864 A TW 99112864A TW 201137630 A TW201137630 A TW 201137630A
- Authority
- TW
- Taiwan
- Prior art keywords
- distance
- approximation
- error
- estimator
- pixel
- Prior art date
Links
Landscapes
- Studio Devices (AREA)
Abstract
Description
201137630 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種間距計算裝置,特別是指一種間 距計算裝置與應用其之透鏡修正系統及方法。 【先前技術】 一般多媒體應用中,經常利用一透視鏡片來擷取影像 ,以供後級電路做進一步的處理。這類的應用例如是隨身 數位相機、網路相機,或行動電話的相機。 為了取得所需視角的影像,透視鏡片常是以非平面來 呈現,因此鏡片上每一相對位置的透光性能不一。舉例來 說,呈凸面狀的相機鏡頭所榻取到的影像,會因為鏡頭的 f光行為而產生亮度不均句的現象,且通f影像亮度會隨 著與影像中心的距離」愈大而遞減。 然而,對於追求高品質的應用,這樣的亮度差異是不 被允許的,所以習知技術會再以一修正裝置來校正該影像 ’且校正幅度決定於「與影像中㈣距離」。這也提示著, 修正裝置的首要工作就是計算「與影像中心的距離」。 般來說,在計算二維座標的任兩點 距離時,通常會採用:距離,這時會需 要:個加法器、二個乘法器和一個開方器。但是,修正裝 依此距離计算方式來為影像的所有畫素—取得「盥 景^中心的轉」,那麼_電路成本將會相纽大。” 【發明内容】 此本發明之一目的,即在提供一種可以簡化運算 201137630 並節省電路成本的間距計算裝置。 而本發明之另—目的,即在提供一種應用-間距計算 裝置之透鏡修正系 系統及方法,能使擷取影像呈現均勻亮度 〇 於是,本發明間距計算裝置,適用於計算一平面上的 一點到一基準點的距離,句杠. 匕括.一參考距離產生器,為該 千面上的-參考點,計算其到該基準點的一精確距離,且 將該精確距離逼近到一整數以得到-參考距離’·-參考誤 差產生器,計算該參考距離與該精確距離間的一參考誤差 及推測窃,依據該參考點的該參考距離和該參考誤差 ’將相鄰於該參考點的_ 、 — ‘的點到該基準點的一類推距離,設 疋為該參考距離、該參考 離加上該預.核離減去L或該參考距 :本發明透鏡修正系統,適心接收—透鏡所操取的 影像具有一基準晝素及-參考畫素,該透鏡 ‘=:一間距計算裝置,包括:一參考距離產生 :將計算其到該基準畫素的-精確距離, 精 逼近到—整數以得到一參考距離;一參考 一 旦素之>考距離與精確距離間的 茶考誤差,及一推測器,其认―A心 春以I於該參考畫素的參考距離和 翏考誤差,將相鄰於該參考書 _ |素的一晝素到該基準晝素的 類推距離,設定為該參考 n二、 離或疋為該參考距離減去 番疋、或是為該參考距離加上該預定值;及一校正裝 置,根據該類推距離,以 校正因子來調整對應晝素。 201137630 且本發明透鏡修正方法, _ ^ , P ^ . k用於接收—透鏡所擷取的 啟T:古、土—人 素及一參考畫素,該透鏡 马該參考晝素,計算其到該基 準畫素的一精確距離,且將哕 5,, °Χ Β確距離逼近到一整數以得201137630 VI. Description of the Invention: [Technical Field] The present invention relates to a pitch calculating device, and more particularly to a pitch calculating device and a lens correcting system and method using the same. [Prior Art] In general multimedia applications, a see-through lens is often used to capture images for further processing by the subsequent circuits. Applications of this type are, for example, portable digital cameras, web cameras, or mobile phone cameras. In order to obtain an image of the desired viewing angle, the see-through lenses are often rendered in a non-planar manner, so that the light transmission properties of each relative position on the lens are different. For example, the image taken by the convex camera lens may cause uneven brightness due to the f-light behavior of the lens, and the brightness of the image will increase with the distance from the center of the image. Decrement. However, for high quality applications, such brightness differences are not allowed, so conventional techniques will again correct the image with a correction device and the correction amplitude is determined by "distance from the image (4)." This also suggests that the primary task of the correction device is to calculate the "distance from the image center." In general, when calculating the distance between any two points of a two-dimensional coordinate, the distance is usually used. In this case, an adder, two multipliers, and a squarer are required. However, if the correction is based on this distance calculation method for all the pixels of the image - the "turn of the scene" is obtained, then the cost of the circuit will be large. SUMMARY OF THE INVENTION It is an object of the present invention to provide a pitch computing device that can simplify the operation 201137630 and save circuit cost. Another object of the present invention is to provide a lens correction system for an application-spacing computing device. The system and method enable the captured image to exhibit uniform brightness. Therefore, the pitch calculating device of the present invention is suitable for calculating a distance from a point to a reference point on a plane, a sentence bar, a reference distance generator, and the like a reference point on the thousand faces, calculating a precise distance to the reference point, and approximating the exact distance to an integer to obtain a reference distance '·- reference error generator, calculating the reference distance and the precise distance a reference error and speculative stealing, according to the reference distance of the reference point and the reference error 'the distance between the point of the reference point _, — ' to the reference point is set to the reference distance The reference subtraction plus the pre-nuclear subtraction L or the reference distance: the lens correction system of the present invention, the image received by the telecentric receiving lens has a reference And - reference pixel, the lens '=: a spacing calculation device, comprising: a reference distance generation: the exact distance to the reference pixel will be calculated, and the near-integer is approximated to obtain a reference distance;素之>The tea test error between the test distance and the precise distance, and a estimator, which recognizes the reference distance and the reference error of the reference pixel in the A-spring, will be adjacent to the reference book _ | The analogy distance of the element from the element to the reference element is set to the reference n, the distance or the 疋 is the reference distance minus the pan, or the predetermined distance is added to the reference distance; and a correction device, According to the analogy distance, the corresponding element is adjusted by the correction factor. 201137630 And the lens correction method of the present invention, _ ^ , P ^ . k is used for receiving-lens: T, ancient, earth-human and reference The pixel, the reference lens, calculates a precise distance to the reference pixel, and approximates the distance between 哕5, and °Χ to an integer.
到一參考距離;(Β)計算該H Π6ί? . 畫素之參考距離與精確距離 曰、 > 考s、差,(C)基於該參考書辛的兔去 可里常的參考距離和參考誤 差,將相鄰於該參考畫素的一畫 旦京幻該基準書素的一類推 距離’設定為該參考距離、或 ,B . A 次疋為該參考距離減去一預定 值、或疋為該參考距離加上該預宕枯.口 /γν 上忑預疋值,及(D)根據該類推距 離,以一校正因子來調整對應晝素。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中將可 清楚的呈現。 在以下的說 在本發明被詳細描述之前,要注意的是 明内容中,類似的元件是以相同的編號來表示 第一較佳實施例 適用於接收 本發明透鏡修正系統之第一較佳實施例〜…… -經透鏡擁取的影像,且該影像具有複數個呈矩陣排歹: 晝素。 為了方便描述影|上各晝素的相對位置,纟例擬以具 有一橫軸X和一縱軸y的座標平面模型為參考如圖1。此 座標平面模型的原點會對應影像最左上角的晝素,稱p(〇〇) ,且沿著橫軸X往右為正,沿著縱軸y往下為正。並且,「 201137630 证衣彩课甲心」點的畫素稱作基準晝素p(x〇,y〇),其中 妁>〇,,〇。此外,通過P(x0,y0)的一橫假想線與一縱假想 線更將該影像分隔成一第一象限I、一第二象限„、一第三 象限III和一第四象限iv。 參閱圖2,本例的透鏡修正系統100包含一間距計算裝 置1、-查表單元2及一校正裝置3。間距計算裝置i會: 算出「其中一畫相p⑽,y〇)的距離」,再據以設定「其他 畫素到P(x〇,yO)的距離」。查表單元2會為每一可能的距離 ,錄-:校正因子。校正裝£ 3則根據每一設定的距離, 從查表單it 2中取出-適合的校正因子來調整對應畫素, 而使得整個影像呈現均勻的畫素亮度。鑒於一般邏輯電路 的運算通常是保留到整數位,所以這裡所稱的距離其實是 一種逼近後距離。 本例中,間距計算裝置i包括—參考距離產生器u、 一參考誤差產生器12,以及一具有一第一估計器13及一第 二估計器14的推測器10,能為所有象限的晝素進行 設定。在此,先針對位於象限r、„的第—列晝素p(i〇)做 說明。並且,下文是以D(i,j)來表示「叫)到影像中心的逼 近後距離」’ 〈影像寬度,〇<)<影像高度。 第一列畫素的處理方法 參閱圖2和圖3,本發明透鏡修正方法之第—較佳實施 例包含以下步驟: 步驟81:參考距離產生器114第—參考畫素ρ(〇,_ 201137630 算一參考距離D(〇,〇)和一精確距離Dist(〇 〇)。且Di叫〇 〇)是 根據方程式(1)來產生: D W,力=^[(i-^f+ij-yO)2 m 為了實現方程式(1) ’參考距離產生器n具有二個減法 器SUB、一個乘法器MUL、一個加法器ADD及一個開方 逼近器SML。其中一減法器SUB會計算p(〇〇)和p(x〇y〇) 於橫軸的間距,來供其中一乘法器MUL算出該間距的平方 值且另一減法器SUB會計算P(〇,〇)和P(x0,y0)於縱軸的 間距,來供另一乘法器MUL算出該間距的平方值。接著, 加法器ADD會加總該等乘法器MUL輸出的平方值,再由 開方逼近器SML進行開方運算得到該精確距離Dist(〇,〇), 並將其逼近至該參考距離D(〇,〇)。 請注意’在保留D(〇,〇)至整數的原則下,開方逼近器 SML會將Dist(0,0)逼近到相鄰的整數,以有效控制 Dist(0,0)、D(0,0)的誤差不超過卜較佳地,用於第二象限 Π第一列的橫向逼近是選用「無條件捨去法」,原因會於稍 後說明。 步驟82 :參考誤差產生器12基於d(0,0)和Dist(0,0), 計算一如方程式(2)的參考誤差Err(〇,〇)。To a reference distance; (Β) calculate the H Π6ί? . The reference distance and the exact distance of the pixel &, > s, 差, (C) based on the reference book Xin's rabbit to the usual reference distance and reference The error is set to a reference distance of a reference pixel of the reference pixel adjacent to the reference pixel, or B. A times the reference distance minus a predetermined value, or 疋For the reference distance, the pre-deflection value of the pre-exhaustion port/γν is added, and (D) according to the analog distance, the corresponding element is adjusted by a correction factor. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. In the following description, before the present invention is described in detail, it is to be noted that the same elements are denoted by the same reference numerals. The first preferred embodiment is suitable for receiving the first preferred embodiment of the lens correction system of the present invention. Example ~... - An image captured by a lens, and the image has a plurality of matrix rows: 昼素. In order to facilitate the description of the relative positions of the pixels on the image, the example is to refer to the coordinate plane model having a horizontal axis X and a vertical axis y as shown in Fig. 1. The origin of this coordinate plane model corresponds to the top left corner of the image, called p(〇〇), and is positive along the horizontal axis X to the right and positive along the vertical axis y. In addition, the pixel of the "201137630 card-painting class" is called the reference element p (x〇, y〇), where 妁>〇,,〇. In addition, the image is separated into a first quadrant I, a second quadrant, a third quadrant III, and a fourth quadrant iv by a transverse imaginary line of P(x0, y0) and a vertical imaginary line. 2. The lens correction system 100 of this example includes a spacing calculation device 1, a look-up table unit 2, and a correction device 3. The spacing calculation device i will: calculate the "distance of one of the phases p(10), y〇), and then To set the "distance of other pixels to P(x〇, yO)". Lookup unit 2 will record the -: correction factor for each possible distance. Correction Pack 3 is based on each set distance, and the appropriate correction factor is taken from the check form it 2 to adjust the corresponding pixels, so that the entire image exhibits uniform pixel brightness. Since the operation of a general logic circuit is usually reserved to an integer number, the distance referred to here is actually an approximate distance. In this example, the spacing calculation means i comprises a reference distance generator u, a reference error generator 12, and a estimator 10 having a first estimator 13 and a second estimator 14, which can be used in all quadrants. Set the prime. Here, the first description will be given to the first column of p-i, which is located in the quadrant r, and the following is the D^i, j) to indicate the "approaching distance to the center of the image" by D(i, j)" Image width, 〇 <) < image height. The processing method of the first column of pixels refers to FIG. 2 and FIG. 3. The first preferred embodiment of the lens correction method of the present invention comprises the following steps: Step 81: Reference distance generator 114 - reference pixel ρ (〇, _ 201137630 Calculate a reference distance D (〇, 〇) and a precise distance Dist (〇〇) and Di is called 〇〇) is generated according to equation (1): DW, force = ^ [(i-^f+ij-yO 2 m To implement equation (1) 'The reference distance generator n has two subtractors SUB, one multiplier MUL, one adder ADD and one square approximator SML. One of the subtractors SUB calculates the spacing of p(〇〇) and p(x〇y〇) on the horizontal axis for one of the multipliers MUL to calculate the square of the spacing and the other subtractor SUB calculates P(〇 , 〇) and P(x0, y0) are spaced apart from each other on the vertical axis for another multiplier MUL to calculate the square of the pitch. Then, the adder ADD sums the square value of the output of the multiplier MUL, and then performs the square root operation by the square approximator SML to obtain the precise distance Dist(〇, 〇), and approximates it to the reference distance D ( Hey, hehe). Please note that under the principle of retaining D(〇,〇) to an integer, the square approximator SML will approximate Dist(0,0) to an adjacent integer to effectively control Dist(0,0), D(0 Preferably, the error of 0) is not exceeded. Preferably, the lateral approximation for the first column of the second quadrant is an "unconditional rounding method", which will be explained later. Step 82: The reference error generator 12 calculates a reference error Err(〇, 〇) as in Equation (2) based on d(0, 0) and Dist(0, 0).
Err(i, j) = D(i, j)2 - Dist(i, j)2 (2) 201137630 因此,參考誤差產生器12具有二個乘法器MUl及一 減法器SUB。其中一乘法器MUL用以計算d(〇麟平方, 另-乘法器MUL用以計算胸_的平方。接著,減法器 SUB會將兩者相減來得到參考誤差Err(〇,〇卜Err(i, j) = D(i, j)2 - Dist(i, j)2 (2) 201137630 Therefore, the reference error generator 12 has two multipliers MU1 and one subtractor SUB. One of the multipliers MUL is used to calculate d (Kylin squared, and the other multiplier MUL is used to calculate the square of the chest _. Then, the subtractor SUB subtracts the two to obtain the reference error Err (〇, 〇卜
具體來說,如圖4所示,若是以影像中心為圓心,並 以「無條件捨去法」求出的_,〇)為半徑來畫出一個圓A, 那麼P(〇,〇)會落於ffl A夕卜,且精確距離此御)會大於圓 半徑,造成七Err(i,_〇。而為更突顯表達内容,圖4和稍 後介紹的類似圖式都僅以部分圓弧來示意。 差 步驟83 :第-估計器13利用參考距離D(〇,〇)和參考誤 E_’0),循序一一為「第二象限„中其他畫素」設定一 類推距離D(i+l,〇),,且D(i+1,〇)會符合「無條件捨 去法」’即第一逼近法。Specifically, as shown in FIG. 4, if a circle A is drawn with the radius of the image center as the center and the _, 〇) obtained by the "unconditional rounding method", P(〇, 〇) will fall. In ffl A, and the exact distance is greater than the radius of the circle, resulting in seven Err (i, _ 〇. And to highlight the expression, Figure 4 and similar drawings introduced later are only partially arc The difference step 83: the first-estimator 13 uses the reference distance D (〇, 〇) and the reference error E_'0) to sequentially set a type of push distance D (i+ for the other pixels in the second quadrant „ l, 〇),, and D(i+1, 〇) will comply with the "unconditional rounding method", that is, the first approximation method.
第一估計器13具有一設定單元131、一判斷單元132 及一更新單元133,而步驟83包括圖5的以下子步驟: 子步驟831 :設定單元131為該第一參考畫素的相鄰畫 素,將該類推距離D(i+1,0)設定為一第一逼近距離,且追隨 方程式(1)和⑺’利用參考誤差Err(i,〇)算出—第一逼近誤差 En:(i+l,〇) ’其中第一逼近距離=參考距離D(i,〇)。The first estimator 13 has a setting unit 131, a judging unit 132 and an updating unit 133, and the step 83 includes the following sub-steps of FIG. 5: Sub-step 831: the setting unit 131 is an adjacent drawing of the first reference pixel. The analogy distance D(i+1,0) is set to a first approximation distance, and the following equations (1) and (7)' are calculated using the reference error Err(i, 〇) - the first approximation error En: (i +l,〇) 'The first approach distance = reference distance D(i, 〇).
Err(i +1,〇) = /)(i +1,〇)2 - Dist(i +Err(i +1,〇) = /)(i +1,〇)2 - Dist(i +
=D(i,0)2 - [(/ +1 _ + (〇 _ jo)2 J = Err(i,0) + 2(x〇-i)-\ ⑺ 子步驟 832 :判斷單元132檢驗第一逼近誤差 9 201137630=D(i,0)2 - [(/ +1 _ + (〇_jo)2 J = Err(i,0) + 2(x〇-i)-\ (7) Sub-step 832: The judgment unit 132 checks the first An approach error 9 201137630
Err(i+l,〇)是否落於—指定範圍 ι,υ\進而判斷該類推距離 D(i+1,0)是否符合「無條件捨去法」。若是,則確定 D(i+l,0)=D(i,0),跳到子步驟834 ;若否,則跳到子步驟 833。 觀察方程式(3),對於位在第二象限H的晝素p(i+i〇) 來說,Err(i+1,0)肯定會大於「介於的Err(i〇)」。再配 合圖4,更可理解:隨著Err(i+1〇)的增大,如果Err(i+i 〇) 還沒大到超出G’ P(i+1,G)會從圓A外慢慢接近圓本身;如 果Err(i+1,0)增大為〇,p(i+1〇)會在圓A上;如果 Eir(i+l,〇)超出〇,P(i+1〇)則會自圓a慢慢移動到圓内此 時那個圓半徑已不能滿足「無條件捨去法」。 子步驟833 :更新單元133使該類推距離D(i+1,〇)更新 為一第二逼近距離,並追隨方程式(1)和(2),利用參考誤差 Err(i’O)來計算一第二逼近誤差Err(i+1〇) ’其中第二逼近距 離=參考距離減去一預定值,即D(i,〇)_i。Whether Err(i+l,〇) falls within the specified range ι,υ\ and then determines whether the analogy distance D(i+1,0) meets the "unconditional rounding method". If so, it is determined that D(i+l, 0) = D(i, 0), skipping to sub-step 834; if not, skipping to sub-step 833. Looking at equation (3), for a pixel p(i+i〇) located in the second quadrant H, Err(i+1,0) must be greater than "internal Err(i〇)". With Figure 4, it can be understood that as Err(i+1〇) increases, if Err(i+i 〇) is not large enough to exceed G' P(i+1, G), it will be outside the circle A. Slowly approach the circle itself; if Err(i+1,0) increases to 〇, p(i+1〇) will be on circle A; if Eir(i+l,〇) exceeds 〇, P(i+1 〇) will slowly move from the circle a to the circle. At this time, the radius of the circle cannot satisfy the "unconditional rounding method". Sub-step 833: The updating unit 133 updates the analogy distance D(i+1, 〇) to a second approximation distance, and follows equations (1) and (2), and calculates a reference error Err(i'O). Second approximation error Err(i+1〇) 'where the second approximation distance=reference distance is subtracted by a predetermined value, ie D(i, 〇)_i.
Err{i +1,〇) = D{i +1〇)2 _ Disf(i +1〇)2Err{i +1,〇) = D{i +1〇)2 _ Disf(i +1〇)2
=[Z)(i,0) — l]2 — [(¾ +1 — λ:〇)2 + (〇 — _y0)2 J =Err(i,〇) - 2 · Z)(/,0) + 2(x0 - i) (4) 相較於該設定單元131所設定的值,更新單元133是 使更新後的D(i+l,〇)少1。原因有二: 一’因為第二象限Π中,畫素P(i+1,0)比P(i,0)更接近 影像中心’所以D(i+l,〇)會SD(i,0)。 二’針對P(x0,y0)、P(i,〇)和p(i+l,〇)所構成的三角形, 根據三角定理所述的「任二邊長的總和大於第三邊」,所 以 Dist(i+l,〇)、Dist(i,0)的差異會小於 i。 10 201137630 子步驟834 :此時,第—估計器13已為第一參考晝素 的相鄰晝素完成類推距離D(i+1,〇)的設定,捿著以該相鄰晝 素當做更新後的第一參考晝素。 也就是說,使設定出的類推距離D(i+1,〇)當做下一個參 考距離,並使對應的逼近誤差當做下一個參考誤差,然後 跳回子步驟8 31 ’直到設定4*楚-姿去+主 且又疋出第一參考畫素Ρ(χ0,0)的類推 距離 D(x0,0)。 請注意’ Ρ(χ0,0)相當於:第一列畫素中,位在象限卜 II交界的那一個。 進一步地,推測器10也會設定屬於其他象限 IV的類推距離D(i,j) ’只是運算方式稱有不同。舉例來說, 如果P(i’o)、P(i+l,〇)是屬於第一象限I的晝素,p(i+i 〇)較 P(i’〇)更遠離影像中^,當兩者都落於「無條件捨去法」所 得的圓外’那麼Επ·(ί+1,〇)將會大於E邮,〇),且逼近誤差的 絕對值可能不會收斂在1内。=[Z)(i,0) — l]2 — [(3⁄4 +1 — λ:〇)2 + (〇— _y0)2 J =Err(i,〇) - 2 · Z)(/,0) + 2 (x0 - i) (4) The update unit 133 causes the updated D(i+1, 〇) to be one less than the value set by the setting unit 131. There are two reasons: one because 'the second quadrant ,, the pixel P(i+1,0) is closer to the image center than P(i,0)' so D(i+l,〇) will SD(i,0 ). Two 'for a triangle composed of P(x0, y0), P(i, 〇), and p(i+l, 〇), according to the triangle theorem, "the sum of any two sides is greater than the third side", so The difference between Dist(i+l,〇) and Dist(i,0) will be less than i. 10 201137630 Sub-step 834: At this time, the first-estimator 13 has completed the setting of the analogy distance D(i+1, 〇) for the neighboring pixels of the first reference element, and then updates the neighboring element as the neighboring element After the first reference element. That is to say, the set analog distance D(i+1, 〇) is taken as the next reference distance, and the corresponding approximation error is taken as the next reference error, and then jump back to sub-step 8 31 ' until the setting 4* Chu- The pose goes to + and the analogy distance D(x0, 0) of the first reference pixel χ (χ0, 0) is extracted. Please note that Ρ(χ0,0) is equivalent to the one in the first column of pixels, at the junction of quadrants. Further, the estimator 10 also sets the analogy distance D(i,j)' belonging to the other quadrants IV only because the operation method is different. For example, if P(i'o), P(i+l, 〇) are pixels belonging to the first quadrant I, p(i+i 〇) is farther away from the image than P(i'i). When both fall outside the circle obtained by the "unconditional rounding method" then Επ·(ί+1,〇) will be greater than E-mail, 〇), and the absolute value of the approximation error may not converge in 1.
因此,本例在橫向處理第一象限〗的畫素時,第二估計 器14是採用「無條件進入法」,且適時地將D(i+1,⑴設定為 D(i,〇)或D(i,〇)*M’以有效控制逼近誤差介於。 ,,依循同樣的道理,表格i為每—象限歸納出:適用的 逼近法’以及可能的逼近後距離。其中,卩 條件進人法,以「捨」代表無録捨衫。 … 外如:在第—象限1進行橫向類推時,選用無條件進入 法;而在第-象限ί進行縱向類推時,選用無條件捨去法。 201137630 又,在第二象限π不論橫向或縱向類推,都選用無條件捨 去法再者,在第二象限HI進行橫向類推時,選用無條件 捨去法;而在第三象限ΠΙ進行縱向類推時,選用無條件進 法此外’在第四象限iv不論橫向或縱向類推,都選用 ___ 表一 —- --- P(i,j)所在象限 橫向設定D(i+l,j) 縱向設定D(i,彳+ 1) 第一象限I 進 D(i,j) /D(i,j)+l 捨 D(i,j) / D(i,j)-1 第二象限II 捨 D(i,j)/D(i,j)-l 捨 D(i,j) / D(i,j)-1 第三象限III 捨 D(i,j) / D(i,j)-l 進 D(i,j) / D(i,j)+1 第四象限IV 進 D(i,j)/D(i,j)+l 進 D(i,j)/D(i,j)+1 無條件進入法。 步驟84:第二估計器14將第二參考畫素Ρ(χ〇,〇)的參 考距離D(x〇,〇)設定為y〇 ’並將其參考誤差Err(x〇,〇)設定為 〇,且據以一一為「第一象限I中其他晝素」設定一類推距 離D(i+1,0),奶9<(畫面寬度-1) ’且D(i + 1,0)會符合「無條 件進入法」,即第二逼近法。 鲁 第二估計器14具有一設定單元141、一判斷單元142 及一更新單元143,而步驟84包括圖7的以下子步驟: 子步驟841 :設定單元141為該第二參考畫素的相鄰畫 素’將該類推距離D(i+1,0)設定為第一逼近距離,並根據方 程式(3) ’利用參考誤差Err(i,〇)來計算第一逼近誤差 £Mi + l,0)= £rr(i,〇)+2〇cO-〇-l,其中第一逼近距離=參考距 離 D(i,〇)。 12 201137630 子步驟842 :判斷單元142檢驗第一逼近誤差 ⑽是否落於另一指定範圍[叫,進而判斷該類推距 離D(i+1,0)是否符合「無條件進入法」。若是,則確定 D(i+1,〇)=D(i,0),跳到子步驟m ;若否,則跳到子步驟 843。 觀察圖8,其為位在第一象限工的p(i,〇),喻出了一個 符合「無條件進入法」的圓c,且p(i,〇)會落於圓c内, 0SErr(i’0)Sl。因為P(i+1,0)較p(i,〇)更遠離影像中心所以 Err(1+l’〇)肯定會小於Err(i 〇)。隨著Err(i+1〇)的減小,如 果Ειτ(ι+1,〇)還沒小到低於〇,p(i+1,〇)會從圓c内慢慢接近 圓本身;如果Err(i+l,〇)減小為〇時,p(i+1,〇)會在圓c上 ,如果Err(i+l,〇)低於〇,P(i+1,〇)則會自圓c慢慢移動到圓 外,此時那個圓半徑已不能滿足「無條件進入法」。 子步驟843 :更新單元143使該類推距離D(i+l,〇)更新 為第二逼近距離,並利用參考誤差Err(i,0)來計算一第二逼 近誤差Err(i+l,〇),其中第二逼近距離=參考距離加上一預 定值,即 D(i,〇) + l。Therefore, in this example, when the pixels of the first quadrant are processed laterally, the second estimator 14 adopts the "unconditional entry method", and D(i+1, (1) is set to D(i, 〇) or D in time. (i, 〇) *M' is effective to control the approximation error between , and, according to the same principle, the table i is generalized for each quadrant: the applicable approximation method and the possible approximation distance. The law, "she" represents the unrecorded shirt. ... Outside: In the first-quadrant 1 horizontal analogy, the unconditional entry method is used; and in the first-quadrant ί for the vertical analogy, the unconditional rounding method is used. In the second quadrant π regardless of the horizontal or vertical analogy, the unconditional rounding method is used. In the second quadrant HI, the unconditional rounding method is used. In the third quadrant, the longitudinal analogy is used. In addition, in the fourth quadrant iv, regardless of the horizontal or vertical analogy, ___ Table 1 is used. --- P(i,j) is in the quadrant lateral setting D(i+l,j) Vertical setting D(i,彳+ 1) First quadrant I enter D(i,j) /D(i,j)+l She D(i,j) / D(i,j)-1 Second quadrant II D(i,j)/D(i,j)-l She D(i,j) / D(i,j)-1 Third quadrant III Shear D(i,j) / D( i,j)-l into D(i,j) / D(i,j)+1 fourth quadrant IV into D(i,j)/D(i,j)+l into D(i,j)/ D(i,j)+1 unconditional entry method. Step 84: The second estimator 14 sets the reference distance D(x〇,〇) of the second reference pixel χ〇(χ〇,〇) to y〇' and The reference error Err(x〇, 〇) is set to 〇, and one type of push distance D(i+1, 0) is set for "the other elements in the first quadrant I", milk 9 < (screen width - 1) 'And D(i + 1,0) will comply with the "unconditional entry method", that is, the second approximation method. The second estimator 14 has a setting unit 141, a judging unit 142 and an updating unit 143, and the steps 84 includes the following sub-steps of FIG. 7: Sub-step 841: setting unit 141 sets the analog-like distance D(i+1, 0) as the first approximation distance for the adjacent pixel of the second reference pixel, and according to Equation (3) 'Use the reference error Err(i, 〇) to calculate the first approximation error £Mi + l,0)= £rr(i,〇)+2〇cO-〇-l, where the first approximation distance = Reference distance D (i, 〇). 12 201137630 Sub-step 842: The judging unit 142 checks whether the first approximation error (10) falls within another specified range [calling, and further determines whether the analog-like distance D(i+1, 0) conforms to the "unconditional entry method". If so, it is determined that D(i+1, 〇) = D(i, 0), skipping to sub-step m; if not, skipping to sub-step 843. Looking at Figure 8, which is p(i,〇) located in the first quadrant, it is a circle c that conforms to the "unconditional entry method", and p(i,〇) will fall within the circle c, 0SErr( I'0)Sl. Since P(i+1,0) is farther away from the image center than p(i,〇), Err(1+l’〇) will definitely be smaller than Err(i 〇). As Err(i+1〇) decreases, if Ειτ(ι+1,〇) is not below 〇, p(i+1,〇) will slowly approach the circle itself from circle c; When Err(i+l,〇) is reduced to 〇, p(i+1,〇) will be on the circle c, if Err(i+l,〇) is lower than 〇, P(i+1,〇) It will move slowly from the circle c to the outside of the circle. At this time, the radius of the circle can no longer satisfy the "unconditional entry method". Sub-step 843: the updating unit 143 updates the analogy distance D(i+l, 〇) to the second approximation distance, and uses the reference error Err(i, 0) to calculate a second approximation error Err(i+l, 〇 ), where the second approximation distance = reference distance plus a predetermined value, ie D(i, 〇) + l.
Err(i +1,〇) = D{i +1,〇)2 - Dist(i +1,0)2Err(i +1,〇) = D{i +1,〇)2 - Dist(i +1,0)2
=[D(i,0) + if - [(/ +1 - χ〇)2 + (〇 - ^0)2 J = £rr(/,0) + 2D(/,0) + 2(jc0-〇 (7) 其中’本子步驟是基於三角定理,且基於P(i+1,0)離影 像中心較遠,而讓D(i+l,0)=D(i,0) + l。如此,圖9中,具有 半徑D(i,〇)+l的圓d,就能滿足P(i+1,0)落於圓内,並且 〇2Err(i + l,〇)<l 〇 13 201137630 子步驟844:此時,.第二估計器14已為第二參考畫素 的相鄰畫素完成類推距離D(i + 1,_設定,接著以該相鄰畫· 素當做更新後的第二參考畫素。 - 也就是說,使設定出的類推距離D(i+1,〇)當做下一個參 考距離,並使對應#逼近誤差當做下一個參考誤差,然後 跳回子步驟841,直収定出所有屬於第__象限!同一列的 D(i + l,〇) 〇 此外’推測器10還包括一多工器16,其會執行步驟 85 ’根據-代表採用「無條件進入法」或「無條件捨去法⑩ 」的多工指示’以選取哪一估計ϋ 13、14輸出的類推距離 =+1,〇)來供校正裝置3對應調整目前畫素。且該多工指示 疋從-查詢表所查出,該查詢表例如是表一的象限歸納表 值得注意的是’參考距離產生器η也是根據該象限歸 納表,使用無條件捨去法,來將該精確距離此肌⑴逼近 到該,考距離D(〇,〇)。當然:,在其他實施例中,如果第一參 考畫素是落在第-象限! ’那麼較佳地横向類推是使用無條 件進入法來逼近。 以上流帛,雖然僅是針對第—列畫㈣逼近後距離 D(i+1’0)做說明’但已^以讓本發明具有通常知識者輕易地 以相鄰晝素橫向類抽厘_fc 貝推屬於同一列的逼近後距離,或是以相 鄰畫素縱向類推屬於同—行的逼近後距離,而獲取「所有 象限1〜1V内畫素」至,J p(x〇,y〇)的距離。如此,校正裝置3 便可從查表單A 2令取出一適合的校正因子來調整對應畫 14=[D(i,0) + if - [(/ +1 - χ〇)2 + (〇- ^0)2 J = £rr(/,0) + 2D(/,0) + 2(jc0- 〇(7) where 'this substep is based on the triangle theorem, and based on P(i+1,0) farther from the center of the image, let D(i+l,0)=D(i,0) + l. In Fig. 9, a circle d having a radius D(i, 〇) + l can satisfy that P(i+1, 0) falls within the circle, and 〇 2Err(i + l, 〇) <l 〇13 201137630 Sub-step 844: At this time, the second estimator 14 has completed the analogy distance D (i + 1, _ setting for the adjacent pixels of the second reference pixel, and then updates the adjacent picture element as the adjacent picture element The second reference pixel - that is, the set analog distance D(i+1, 〇) is taken as the next reference distance, and the corresponding #approximation error is taken as the next reference error, and then jumps back to sub-step 841, Directly determine all D(i + l, 〇) that belong to the __ quadrant! The same column. In addition, the estimator 10 also includes a multiplexer 16, which performs step 85 'based on behalf of the unconditional entry method. Or the multiplex indication of "unconditional rounding method 10" to select which estimate ϋ 13, 14 output analogy distance = +1, 〇) The correction device 3 adjusts the current pixel correspondingly, and the multiplex indication is detected from the lookup table, for example, the quadrant induction table of Table 1. It is worth noting that the reference distance generator η is also based on the quadrant induction table. Use the unconditional rounding method to approximate the exact distance to the muscle (1) to the distance D (〇, 〇). Of course: in other embodiments, if the first reference pixel falls in the first quadrant! 'The better lateral analogy is to use the unconditional entry method to approximate. The above flow, although only for the first-column (four) approximation distance D (i+1'0) to illustrate 'but has to let the invention have Usually, the knowledger easily pushes the _fc of adjacent pixels to the approximate distance of the same column, or approximates the distance of the adjacent pixels by the adjacent pixels, and obtains "all quadrants 1". The distance from ~1V internal pixels to J p(x〇, y〇). Thus, the correcting device 3 can extract a suitable correction factor from the check form A 2 to adjust the corresponding painting 14
201137630 素’達到影像呈現均句亮度的目的。 用「=件:::的縱向類推為例,第-估計…採 多工器16擇=:"法」,^(—你再由 第二較佳實施例 同處=於ί:::!施例’圖10之第二較佳實施例的不 、 计态53和第二估計器54的作動。 第一估計器53中,今定| q t a ^ ,,°又疋早疋531會為畫素P(i + 1,〇), 计异當類推距離D(i+〗m-笙 、s α i’0)一第一迫近距離D(i,0)時的第一逼 近象差,並計算類推距離D(i+1,〇)=第二逼近距離⑽,㈣ 時的第一錢誤差。判斷單& 532選取具有較小「絕對值 」的逼近誤差’並以對應的逼近距離來更新該類推距離 D(1+l’〇)。然後,再送回給設定單元531,提供下—個晝素 的設定依據。 旦、 第二估計器54的運作方式類似第一估計器53,僅差別 在:設^單元541是為晝素p(i+1,G),計算當類推距離 D(i+l,〇)=第一逼近距離D(i,0)時的第一逼近誤差,並計算類 推距離D(1 + l,〇)=第二逼近距離(D(i,〇)+1)時的第二逼近誤差 具體來說,第二較佳實施例的間距計算裝置5是選取 較接近P(i+l,〇)且具有正整數半徑的那個圓,並以圓半徑當 作類推距離D(i+1,0)。而不是依據p(i+1〇)位於圓内或圓外 15 201137630 來判定。 值得注意的是’前述較佳實施例的設定單元131、141 、531、541、判斷單元 132、142、532、542、更新單元 133、143或其他元件,只要滿足時序不衝突,都是可以共 用資源的。 且值得注意的是’本較佳實施例中,透鏡修正系統1〇〇 500所接收的影像是透過一凸面透鏡擷取得到的,所以越 遠離影像中心的晝素亮度相對較暗。因此,校正裝置3會籲 使距離D(i’j)越長者對應較大的校正因子,這樣影像的整體 亮度才會越趨均勻。而其他應用中,也可以視實際使用透 鏡的透光性能來改變校正因子。 再者,屬於同一影像的畫素是由左而右且由上而下地 依序傳入透鏡修正系統100、5〇〇,所以,較佳地,本例是 利用P(i,j)來設定?〇+1,』)、1>(丨,』+ 1)到影像中心的距離。當 然,本發明領域具有通常知識者也可以理解:在其他實施 例中,是可以改由P(i,j)來設定ρ(ί_1υ、p(ij l)到影像中心籲 的距離,或其他。在這樣的情況下,參考距離產生器u和 參考誤差產生器12也就不用專為p(0,0)做運算。 此外,以上實施例中的間距計算裝置丨、5是可獨立出 於透鏡修正系統100、500。 綜上所述,本實施例透鏡修正系統1〇〇、5〇〇的間距計 算裝置1、5,可以利用相鄰畫素橫向類推屬於同一列的逼 近後距離,或縱向類推屬於同一行的逼近後距離,而不需 16 201137630 付出如習知般的魔大電路成本。並且’校正裝S 3還可根 據這些逼近後的距離來調整影像的亮度均勻性,故確實能 達成本發明之目的。 b 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明中請二利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一不意圖,以一座標模型描述影像上各晝素的 相對位置; —’ 圖2是-方塊圖,說明本發明透鏡修正系統的第一較 佳實施例; 圖3是一流程圖,說明本發明透鏡修正方法的第一較 佳實施例; 圖4是一示意圖’說明兩相鄰晝素都落於圓A外側; 圖5是一流程圖,說明第-估計器的設定方法; 圖6是一示意圖’說明兩相鄰晝祕於圓A的兩側; 圖7是-流程圖,說明第二估計器的設定方法; 圖8是-示意圖’說明兩相鄰畫素都落於圓c内側; 圖9是一不思圖’說明兩相鄰晝素落於圓C的兩側; 及 圖10是-方塊圖’說明本發明透鏡修正系統的第二敉 佳實施例。 17 201137630 【主要元件符號說明】 100 ... •…透鏡修正系統 2 .......... 查表單元 500… •…透鏡修正系統 3 .......... 校正裝置 1、5 · •…間距計算裝置 53......... 第一估計器 10·.... •…推測器 531 ....... 設定单元 11 ·.··· •…參考距離產生器 532 ....... 判斷單元 12····. •…參考誤差產生器 54......... 第二估計器 13…… •…第一估計器 541 ....... 設定单元 131 ... •…設定單元 542 ....... 判斷單元 132 ... •…判斷單元 81 ~ 8 5 . · · · 步驟 133… •…更新單元 831-834 子步驟 14…… •…第二估計器 841-844 子步驟 141… ADD ··.·· 加法器 142… •…判斷單元 MUL ··... 乘法器 143 ... •…更新單元 SML…… 開方逼近器 16…… …·多工器 SUB…… 減法器 18201137630 primed to achieve the purpose of the image to show the brightness of the sentence. Using the vertical analogy of "=:::", the first - estimate... multiplexer 16 choose =: " method, ^ (- you are the same as the second preferred embodiment = ί::: The operation of the second preferred embodiment of Fig. 10, the meter 53 and the second estimator 54. In the first estimator 53, the current | qta ^ , , ° 疋 疋 疋 疋 会Pixel P(i + 1,〇), the first approximation aberration when the distance D (i+) m-笙, s α i'0) is a first impending distance D(i, 0), and Calculate the analogy distance D(i+1, 〇) = the first approximation distance (10), (4) the first money error. The judgment list & 532 selects the approximation error with a smaller "absolute value" and the corresponding approximation distance The analogy distance D(1+l'〇) is updated, and then sent back to the setting unit 531 to provide a setting basis for the next pixel. The second estimator 54 operates in a similar manner to the first estimator 53, only The difference is: the unit 541 is a pixel p(i+1, G), and the first approximation error when the analogy distance D(i+l, 〇)=the first approximation distance D(i, 0) is calculated, And calculate the analogy distance D (1 + l, 〇) = second approach distance (D (i, The second approximation error when +1) is specifically, the pitch calculating device 5 of the second preferred embodiment selects the circle which is closer to P(i+l, 〇) and has a positive integer radius, and has a radius of a circle As the analogy distance D(i+1, 0), it is not determined based on whether p(i+1〇) is inside or outside the circle 15 201137630. It is worth noting that the setting unit 131, 141 of the foregoing preferred embodiment , 531, 541, the determining unit 132, 142, 532, 542, the updating unit 133, 143 or other components, can share resources as long as the timing is not conflicted, and it is worth noting that in the preferred embodiment, The image received by the lens correction system 1〇〇500 is obtained through a convex lens ,, so the brightness of the pixel away from the center of the image is relatively dark. Therefore, the correction device 3 will call the distance D(i'j) The elders correspond to a larger correction factor, so that the overall brightness of the image becomes more uniform. In other applications, the correction factor can also be changed depending on the actual light transmission performance of the lens. Furthermore, the pixels belonging to the same image are Left and right and from top to bottom 100,5〇〇 lens correction system, therefore, preferably, the present embodiment is the use of P (i, j) is set to 1 billion +, "), 1 >? (Shu, from" + 1) to the center of the image. Of course, those skilled in the art can also understand that in other embodiments, P(i,j) can be used to set ρ(ί_1υ, p(ij l) to the distance of the image center, or other. In such a case, the reference distance generator u and the reference error generator 12 do not have to operate exclusively for p(0, 0). Furthermore, the pitch calculating means 丨, 5 in the above embodiment are independent of the lens. The correction system 100, 500. In summary, the pitch calculation devices 1 and 5 of the lens correction system 1〇〇, 5〇〇 of the present embodiment can use the adjacent pixels to laterally analog to the same column, or the vertical distance. The analogy belongs to the same line of approximation distance, and does not need to pay the conventional magic circuit cost. And the 'correction device S 3 can also adjust the brightness uniformity of the image according to the distance after the approximation, so it can indeed The present invention has been achieved. b. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, according to the scope of the invention and the description of the invention. It The equivalent changes and modifications of the single are still within the scope of the patent of the present invention. [Simple description of the figure] Figure 1 is a non-intentional description of the relative position of each element on the image by a standard model; Is a block diagram illustrating a first preferred embodiment of the lens correction system of the present invention; FIG. 3 is a flow chart illustrating a first preferred embodiment of the lens correction method of the present invention; FIG. 4 is a schematic diagram illustrating two adjacent The pixels are all on the outside of the circle A; Fig. 5 is a flow chart illustrating the setting method of the first-estimator; Figure 6 is a schematic view showing the two adjacent sides on the sides of the circle A; Figure 7 is a flow chart , the setting method of the second estimator is illustrated; FIG. 8 is a schematic diagram showing that both adjacent pixels fall on the inner side of the circle c; FIG. 9 is an unintentional view illustrating that two adjacent elements fall on both sides of the circle C. And Fig. 10 is a block diagram showing the second preferred embodiment of the lens correction system of the present invention. 17 201137630 [Major component symbol description] 100 ... •...Lens correction system 2 ......... . Lookup unit 500... •...Lens correction system 3 .......... Correction device 1, 5 · • Spacing calculation device 53......... First estimator 10·.... •... estimator 531 ....... Setting unit 11 ····· •...reference distance generation 532....... Judging unit 12····.....Reference error generator 54......Second estimator 13...?...first estimator 541 ... .... setting unit 131 ... • ... setting unit 542 ......... judging unit 132 ... • ... judging unit 81 ~ 8 5 . · · · step 133... • updating unit 831-834 Sub-step 14... •...Second estimator 841-844 Sub-step 141... ADD ····· Adder 142... •...Judgement unit MUL··... Multiplier 143 ... •...Update unit SML... ... square approximator 16... ...· multiplexer SUB... subtractor 18
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99112864A TWI427488B (en) | 2010-04-23 | 2010-04-23 | Distance computing apparatus, lens correcting system and method applying the distance computing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99112864A TWI427488B (en) | 2010-04-23 | 2010-04-23 | Distance computing apparatus, lens correcting system and method applying the distance computing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201137630A true TW201137630A (en) | 2011-11-01 |
TWI427488B TWI427488B (en) | 2014-02-21 |
Family
ID=46759582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99112864A TWI427488B (en) | 2010-04-23 | 2010-04-23 | Distance computing apparatus, lens correcting system and method applying the distance computing apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI427488B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW589875B (en) * | 2002-10-23 | 2004-06-01 | Veutron Corp | Apparatus and method for linear correcting |
US7355639B2 (en) * | 2003-11-06 | 2008-04-08 | Omnivision Technologies, Inc. | Lens correction using processed YUV data |
KR20070092430A (en) * | 2006-03-10 | 2007-09-13 | 삼성전자주식회사 | Pixel repair device of display device |
TWI279526B (en) * | 2006-04-11 | 2007-04-21 | Ming-Chih Lu | Distance measurement system and method |
KR100897768B1 (en) * | 2007-05-01 | 2009-05-15 | 삼성전자주식회사 | Auto focusing method and devices that can use the method |
TWI374401B (en) * | 2007-07-09 | 2012-10-11 | Pixart Imaging Inc | Detection method for displacements with sub-pixel accuracy and apparatus using the same |
KR101429906B1 (en) * | 2007-07-11 | 2014-08-14 | 엘지디스플레이 주식회사 | Liquid Crystal Lens Electrically Driven and Stereoscopy Display Device |
TW201009389A (en) * | 2008-08-27 | 2010-03-01 | E Pin Optical Industry Co Ltd | Shared image scanning method and picture scanner thereof |
JP4629131B2 (en) * | 2008-09-03 | 2011-02-09 | 大日本印刷株式会社 | Image converter |
-
2010
- 2010-04-23 TW TW99112864A patent/TWI427488B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI427488B (en) | 2014-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI537875B (en) | Image fusion method and image processing apparatus | |
EP3213290B1 (en) | Data processing apparatus, imaging apparatus and data processing method | |
TWI602152B (en) | Image capturing device and image processing method thereof | |
WO2014012364A1 (en) | Method and device for correcting multi-exposure motion image | |
CN108833785A (en) | Multi-view image fusion method, device, computer equipment and storage medium | |
JP6172935B2 (en) | Image processing apparatus, image processing method, and image processing program | |
JP6020471B2 (en) | Image processing method, image processing apparatus, and image processing program | |
WO2015124212A1 (en) | System and method for processing input images before generating a high dynamic range image | |
WO2018163843A1 (en) | Imaging device and imaging method, and image processing device and image processing method | |
CN115866394A (en) | Method and electronic device for switching between first lens and second lens | |
EP3447722B1 (en) | Two-dimensional image depth-of-field generating method and device | |
CN104954776A (en) | Image correction method and image capturing device thereof | |
JP6282133B2 (en) | Imaging device, control method thereof, and control program | |
TW201137630A (en) | Distance computing apparatus, lens correcting system and method applying the distance computing apparatus | |
CN104811688A (en) | Image acquisition device and image deformation detection method thereof | |
CN102193194A (en) | Space calculation device and lens correction system and method using same | |
KR20150091717A (en) | Method and apparatus for interpolating color signal of image and medium record of | |
KR101265021B1 (en) | Method and apparatus for generating fast high resolution disparity map for fixed or variable frame rate | |
EP2656311B1 (en) | Method for producing a panoramic image and implementation apparatus. | |
JP2005229166A (en) | Apparatus and method for measuring noise amount in video signal | |
JP5325135B2 (en) | Color correction device, video display device, and color correction method | |
JP6514577B2 (en) | IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND IMAGING APPARATUS | |
JP6637242B2 (en) | Image processing apparatus, imaging apparatus, program, and image processing method | |
JP6354217B2 (en) | Image processing apparatus, system, image processing method, and program | |
JP2014154977A (en) | Image processing apparatus, image processing method, and imaging device |