201137328 六、發明說明: ’ 【發明所屬之技術領域】 本發明是有關於一種微型光譜儀之光學機構,且特別 是有關於一種讓光學訊號可以在一波導之中傳遞以避免 該光學訊號發散之微型光譜儀之光學機構。 【先前技術】 光譜儀係一種非破壞性的檢測儀器,其例如可應用於 辨認物質之成份組成與特性。於將光線打到物質上之後, 利用光反射的原理’以及物質内組成結構對光不同頻段的 反射、吸收或穿透的差卩,光譜儀接收從此物質反射的光 線之後’會呈現對應之光譜。由於不同物質會顯現個別特 徵的光譜,如此進而得以辨認物質之成份組成與特性。 請參照第1圖,其綠示乃一種傳統光譜儀之示意圖。 光線射入光譜儀500之後,在自由空間之中射向一準直面 鏡502使光線轉為平行光並射向光拇5〇4。經由光拇⑽ 分光後之光線再由聚焦鏡5〇6聚焦後,射向偵測器5〇8以 债測不同波長之光強度的大小,以產生對應之影像。㈣ 統之光譜儀5 0 0很容易因為多次的反射、發散的自由空間 ”過長的光行進路彳! ’而造成光線不集中與發散的狀況, 甚且’於傳統之光譜儀不易被消除乾淨之雜散光將會造成 對應影像的背景雜訊過多。以上兩種缺點都將會影響偵測 益508所產生的影像品質,而使後級電路於對不同波長之 光強度的大小進行判斷時的正讀度降低。 201137328201137328 VI. Description of the invention: 'Technical field to which the invention pertains. The present invention relates to an optical mechanism of a miniature spectrometer, and more particularly to a miniature that allows an optical signal to be transmitted in a waveguide to avoid divergence of the optical signal. The optical mechanism of the spectrometer. [Prior Art] A spectrometer is a non-destructive detecting instrument which can be applied, for example, to the composition and characteristics of a substance. After the light is applied to the material, the principle of light reflection and the difference in the reflection, absorption or penetration of the different frequency bands of the light within the composition of the material are used, and the spectrometer receives the light reflected from the material and then presents a corresponding spectrum. Since different substances will reveal the spectrum of individual characteristics, the composition and characteristics of the substance can be identified. Please refer to Figure 1, which is a schematic diagram of a conventional spectrometer. After the light is incident on the spectrometer 500, it is directed in a free space to a collimating mirror 502 which converts the light into parallel light and strikes the optical head 5〇4. The light split by the optical thumb (10) is then focused by the focusing mirror 5〇6, and then directed to the detector 5〇8 to measure the intensity of the light of different wavelengths to generate a corresponding image. (4) The spectroscopy of the spectroscopy is very easy because of the multiple reflections and divergent free space "too long light travels!" and the light is not concentrated and diverged, and even the traditional spectrometer is not easy to be cleaned. The stray light will cause too much background noise in the corresponding image. Both of the above shortcomings will affect the image quality produced by the detection benefit 508, and the latter circuit will judge the light intensity of different wavelengths. The degree of reading is reduced. 201137328
1 I 【發明内容】 本發明主要係提供一種微型光譜儀之光學機構’其利 用一光通道,使得光譜儀之光線更為集中,不易發散’可 使提高後級電路於對不同波長之光強度的大小進行判斷 時的正確度。 所謂的微型光譜儀,其中具有一微型繞射光栅’該微 型繞射光柵一般係由微機電製程(MEMS)、半導體製程、光 刻電鑄模造(Lithographie GaVanoformung Abformung, • LIGA)或其他製程所製造出來,微型繞射光柵的光柵高度 -般約有數十微米至數百《 ’ —般而S,其光柵輪廊係 為一曲面可以將被分光後的光學訊號聚焦於後端的影像 擷取元件之上而省去傳統光譜儀的聚焦鏡(當然如果採用 平面的微型繞射光柵,則聚焦鏡即不能省略,否則影像擷 取元件就要變得很寬才足以接收到完整的訊號),但也因 為微型繞射光栅的高度一般比傳統光譜儀小很多,能夠抵 達微型繞射光栅而被分光的光學訊號的量當然就很少,為 •使進光量可以充分被利用,建構—個適當的光通道以集中 入射光線便成為微型光譜儀之重大挑戰。 根據本發明之一方面,提出一種微型光譜儀之光學 構’包括-輸人部、-上波導板、—下波導板及一微型繞 射光栅。輸入部係用來接收一光學訊號。另外,上波導板 具有一第一反射面。下波導板實質上平行於上波 置,並具有一第二反射面,其中第—反射面與第二反射面 係相對。在第一反射面與第二反射面之間係形成一光通 道,使來自於輸入部之光學訊號在光通道内行進。微型繞 2011373281 I 【 SUMMARY OF THE INVENTION The present invention mainly provides an optical mechanism of a micro spectrometer, which utilizes an optical channel to make the spectrometer's light more concentrated and less divergent, which can increase the intensity of the subsequent stage circuit at different wavelengths. The accuracy of the judgment. The so-called miniature spectrometer has a micro-diffractive grating. The micro-diffractive grating is generally fabricated by microelectromechanical process (MEMS), semiconductor process, Lithographie GaVanoformung Abfig (LIGA) or other processes. The grating height of the micro-diffraction grating is generally about tens of micrometers to hundreds of ''. Generally, the grating wheel corridor is a curved surface, and the optical signal after being split can be focused on the image capturing component of the rear end. Eliminate the focusing mirror of the traditional spectrometer (of course, if a planar micro-diffraction grating is used, the focusing mirror can not be omitted, otherwise the image capturing component will become wide enough to receive the complete signal), but also because The height of the micro-diffraction grating is generally much smaller than that of the conventional spectrometer. Of course, the amount of optical signals that can be split into the micro-diffraction grating is very small, so that the amount of light can be fully utilized to construct an appropriate optical channel. Concentrating incident light becomes a major challenge for miniature spectrometers. According to an aspect of the invention, an optical structure of a miniature spectrometer is provided, including an input portion, an upper waveguide plate, a lower waveguide plate, and a micro-radiation grating. The input unit is configured to receive an optical signal. Further, the upper waveguide plate has a first reflecting surface. The lower waveguide plate is substantially parallel to the upper wave and has a second reflecting surface, wherein the first reflecting surface is opposite to the second reflecting surface. An optical channel is formed between the first reflective surface and the second reflective surface to cause optical signals from the input portion to travel within the optical channel. Micro-winding 201137328
i w^vozrA 射光栅用以將於光通道中傳送之伞與 、灸九學矾號分離為多個光 譜分量’並使該些光譜分量射向影像擷取元件。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 以下係提出實施例進行詳細說明,實施例僅用以作為 範例說明,並不會限縮本發明欲保護之範圍。此外,實施 例中之圖式係省略不必要之元彳,以冑楚顯示本發明之技 術特點。 第一實施例 請參照第2圖及第3圖,第2圖係本發明第一實施例 之微型光譜儀之光學機構之立體分解圖,而第3圖繪示光 線於第2圖微型光谱儀之光學機構之光通道中行進的示意 圖。以下關於本實施例之說明請參照第2圖與第3圖。微 型光谱儀之光學機構100包括一輸入部11〇、一上波導板 120、一下波導板130及一微型繞射光柵16〇。微型光譜儀 之光學機構100後端可更包含一影像擷取元件15〇。本實 施例各元件更詳細的說明如下。 微型光譜儀之光學機構100中之輸入部110係用來接 收一光學訊號50。上波導板120具有一第一反射面122, 下波導板130係實質上平行於上波導板120設置,並具有 一第二反射面132,其中第一反射面122與第二反射面132 係相對。第一反射面122與第二反射面132之間係形成一 201137328 1 VV f\ 光通道140’使來自於輸入部11〇之光學訊號5〇在光通道 140内行進,如第3圖所示,上述第一反射面122與第二 反射面132間形成之光通道14〇 一般為空腔式,有別於光 線在光纖中傳送所採用的全反射原玉里,本發明係將光學訊 號限制在该些反射面間反覆反射而向前傳送,但亦可填滿 適當的介質(例如玻璃、塑膠、或壓克力等)供光學訊號在 當中反覆反射而向前傳送、同時防止落塵或其他污染物累 積在上下波導板之上而影響波導板之平整度與反射率。微 • 型繞射光栅160用以將於光通道140中傳送之光學訊號5〇 分離為多個光譜分量51,並使此些光譜分量51射向影像 操取元件150以取得對應之影像。 如上所述之微型光譜儀之光學機構1〇〇,其中上波導 板120與下波導板13〇必須具有良好的平整度與反射率, 才可使光學訊號50在上波導板120與下波導板13〇之間 行進時,達到最低的損耗與最佳的光源集中效果。因此, 上波導板120及下波導板130之材質例如是不鏽鋼、矽晶 籲片、玻璃、光碟片或硬碟片。此外,如果上波導板12〇及 下波導板130所使用之材料反射率未達所需之標準,可在 第一反射面122與第二反射面132上分別設置一層高反射 膜以解決此問題,較佳地高反射膜之材料為鋁膜。 —為了防止第一反射面122與第二反射面132之表面隨 耆時間發生氧化、鑛姓、粗糖等情形,而降低反射面表面 之平整度與反射率’可在第一反射面122與第二反射面132 之高反射膜上分別設置第一保護膜與第二保護膜,保護膜 的材料例如是二氧化矽。茲以上波導板12〇為例說明之, 201137328 I wjy〇zr/\ 1 4 上波導板120上可以具有高反射膜12〇a與第一保護膜 12〇b,如第4圖所示。本實施例所舉例之材料非用以限縮 本發明之精神與範圍,任何可以達到相同目的與效果之材 料皆可應用於本實施例中。 上述之影像操取元件15〇例如為一電荷搞合元件 (Charge Coupled Device,CCD)或互補式金氧半元件 (Complementary Metal-Oxide-Semiconductor, CMOS)0 而輸入部lio例如包含一狹縫板134,狹縫板134具有一 狹縫136’如第5圖所示。光學訊號5〇由狹縫136射入後, 係經由光通道140射向微型繞射光柵ι6〇。 狹縫136之寬度例如約為25微米(;wm),高度例如約 為150微米(#m),而第一反射面122與第二反射面132 之間距例如約為1〇〇至150微米(#m)。第一反射面122 與第一反射面132之局部最高點與局部最低點的高度差例 如為十分之一波長至三十分之一波長左右,以達到高平整 度的要求,而第一反射面122與第二反射面132之反射率 則例如為90%。光學訊號50從狹縫板134行進至微型繞射 光柵160的光行進路徑例如為28毫米(mm),而從微型繞 射光柵160行進至影像擷取元件15〇的光行進路徑則約為 40 毫米(mm)。 本實施例之微型光譜儀之光學機構1〇〇與第丨圖所示 之傳統光譜儀500相較,傳統光譜儀5〇〇之光線於光譜儀 500内之腔體傳送,很可能有發散而造成光訊號太弱致受 到雜散光過度干擾的問題,而且光譜儀5〇〇佔用的體積較 大。藉由使光學汛號50於光通道行進,可使得光譜 201137328 * I w^yozrn 儀之光線更為集中,不易發散,可以有效地提高微型光譜 儀之先學機構100之效率。此外,由於本實施例之微型光 儀之光學機構1GQ可以另外加上適當的雜散光消除機構 (洋下-述)因而較不會受到雜散光之影響,故更可讓影像 擷取元件150產生更精確的影像,當對應影像傳給後級電 路時,後續以不同波長之光強度進行光學訊號所代表的物 理或生化意義之判斷的正確度可以更加提高。 • 第二實施例 請參照第6圖及第7圖,第6圖緣示乃本發明第二實 施例之微型光譜儀之光學機構之立體分解圖,第7圖係第 6圖中’肖光元件之〉肖光機制的示意圖。以下說明請同時參 照第6圖與第7圖。本實施例與第-實施例不同之處在 於’微型光譜儀之光學機構200更包括一第一消光元件27〇 與一第二消光元件272。第一消光元件27〇與第二消光元 件272之橫切面之一側邊係呈鋸齒狀,該些鋸齒狀側邊係 •面向光通道140。例如第一消光元件270之一側邊27〇a與 第二消光元件272之一側邊272a係面向光通道! 4〇。第」 肩光元件270與第二消光元件272係分別配置於光通道 140之兩側’用以吸收從輸人部UG射出之射出角度大於 特疋角度之光學訊號。舉例來說,此特定角度例如為角 度Θ,其係與第一消光元件27〇與第二消光元件272之鋸 齒狀結構相關。假設偏離光學訊號52之行進角度係大於 角度β。當偏離光學訊號52之行進角度係大於角度θ 時,偏離光學訊號52可能會射入鋸齒狀結構之其中一個 9 201137328 I vvjy〇^r/\ 三角形凹口中。消光元件之銀齒狀結構可以讓如第7圖中 =偏離光學訊號52在鑛齒狀結構之凹口中來回反射而耗 ^如此-來,原本會造成雜散光訊號之偏離光學訊號^ s可由鑛齒狀結構而消砰’進而使所欲得到之光譜分量更 為清楚分明。本實施例其餘部分皆與第一實施例相同,因 此不予贅述。 本發明上述實施例所揭露之微型光譜儀之光學機 構,規範從輸入部進入之光學訊號,於上下波導板之間之 先通道中行進,如此可讓光學訊號更為集中且不易發散。 再搭配上㈣狀之消光元件更可讓人㈣度過大之光學 訊號被消许,進而減少到達影像操取元件之雜散光,使得 所欲得到之光譜分量不會受到雜散光之干擾,得到更清晰 綜上所述,雖然本發明已以較佳實施例揭露如上,缺 其並非用以蚊本發明。本發明所屬技術領域中具有通常 知識者’在我離本發明之精神和範_,當可作各種之 更動與潤飾。因此’本發明之保護範圍當視後附之申 利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示乃-種傳統光譜儀之示意圖。 第2圖係繪示本發明第—實_之微型光譜儀之光 學機構之立體分解圖。 第3圖繪示光線於第2圖微型光譜儀之光學機構之光 通道中行進的示意圖。 圖 第4圖繪示乃上波導板之一例之示意 201137328 弟5圖纟會示狹縫板之一例的示意圖。 弟6圖 '纟會示乃本發明第二實施例之微型光譜儀之光 學機構之立體分解圖。 第7圖係繪示第6圖中消光元件之消光機制的示意 圖。 【主要元件符號說明】 5〇 :光學訊號 ® 51 :光譜分量 52 :偏離光學訊號 100、200 ·•微型光譜儀之光學機構 110 :輸入部 120 ··上波導板 120a :高反射膜 120b :第一保護膜 122·第一反射面 • 130 :下波導板 132.第二反射面 134 .狹縫板 136 :狹縫 14 0 :光通道 150 :影像擷取元件 160 :微型繞射光柵 2 7 0 :第一消光元件 270a :第一消光元件之一側 201137328 272 :第二消光元件 272a ··第二消光元件之一側 500 :光譜儀 502 :準直面鏡 504 :光栅 506 :聚焦鏡 508 :偵測器 0 :角度The i w^vozrA grating is used to separate the umbrella and the moxibustion nucleus transmitted in the optical channel into a plurality of spectral components and direct the spectral components toward the image capturing component. In order to make the above description of the present invention more comprehensible, the preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. By way of example, it is not intended to limit the scope of the invention. In addition, the drawings in the embodiments are omitted to omit the technical features of the present invention. For the first embodiment, please refer to FIG. 2 and FIG. 3, FIG. 2 is an exploded perspective view of the optical mechanism of the micro spectrometer according to the first embodiment of the present invention, and FIG. 3 is a view showing the light of the micro spectrometer of FIG. Schematic diagram of travel in the optical path of an optical mechanism. Please refer to FIG. 2 and FIG. 3 for the description of this embodiment below. The optical mechanism 100 of the microspectrometer includes an input portion 11A, an upper waveguide plate 120, a lower waveguide plate 130, and a micro diffraction grating 16A. The rear end of the optical mechanism 100 of the micro spectrometer may further include an image capturing element 15A. The components of this embodiment are described in more detail below. The input 110 in the optical mechanism 100 of the micro spectrometer is used to receive an optical signal 50. The upper waveguide plate 120 has a first reflective surface 122. The lower waveguide plate 130 is disposed substantially parallel to the upper waveguide plate 120 and has a second reflective surface 132. The first reflective surface 122 is opposite to the second reflective surface 132. . A 201137328 1 VV f\ optical channel 140 ′ is formed between the first reflective surface 122 and the second reflective surface 132 to cause the optical signal 5 来自 from the input portion 11 to travel within the optical channel 140 , as shown in FIG. 3 . The optical channel 14 形成 formed between the first reflective surface 122 and the second reflective surface 132 is generally a cavity type, which is different from the total reflection original jade used for transmitting light in the optical fiber. The present invention limits the optical signal to The reflective surfaces are reflected back and forwarded, but may also be filled with a suitable medium (such as glass, plastic, or acrylic) for the optical signals to be reflected and forwarded while preventing dust or other contamination. The matter accumulates on the upper and lower waveguide plates to affect the flatness and reflectivity of the waveguide plate. The micro-type diffraction grating 160 is used to separate the optical signal 5 传送 transmitted in the optical channel 140 into a plurality of spectral components 51 and direct the spectral components 51 to the image manipulation component 150 to obtain a corresponding image. The optical mechanism of the micro spectrometer as described above, wherein the upper waveguide plate 120 and the lower waveguide plate 13 must have good flatness and reflectivity, so that the optical signal 50 can be in the upper waveguide plate 120 and the lower waveguide plate 13 When traveling between 〇, the lowest loss and the best concentration of light source are achieved. Therefore, the material of the upper waveguide plate 120 and the lower waveguide plate 130 is, for example, stainless steel, twin crystal, glass, optical disk or hard disk. In addition, if the material reflectance of the upper waveguide plate 12 and the lower waveguide plate 130 is less than the required standard, a high-reflection film may be disposed on the first reflective surface 122 and the second reflective surface 132 to solve the problem. Preferably, the material of the highly reflective film is an aluminum film. - in order to prevent the surface of the first reflecting surface 122 and the second reflecting surface 132 from oxidizing, mineral surname, raw sugar, etc., and reducing the flatness and reflectivity of the surface of the reflecting surface, the first reflecting surface 122 and the first reflective surface 122 A first protective film and a second protective film are respectively disposed on the high-reflection film of the two reflecting surfaces 132, and the material of the protective film is, for example, cerium oxide. Taking the above waveguide plate 12 as an example, 201137328 I wjy〇zr/\1 4 The upper waveguide plate 120 may have a high reflection film 12〇a and a first protection film 12〇b as shown in FIG. The materials exemplified in the present embodiment are not intended to limit the spirit and scope of the present invention, and any material that can achieve the same purpose and effect can be applied to the present embodiment. The image capturing device 15 is, for example, a charge coupled device (CCD) or a complementary metal-oxygen-semiconductor (CMOS) 0, and the input portion lio includes, for example, a slit plate. 134, the slit plate 134 has a slit 136' as shown in FIG. After the optical signal 5 is incident by the slit 136, it is directed to the micro-diffraction grating ι6〇 via the optical channel 140. The width of the slit 136 is, for example, about 25 micrometers (Wm), and the height is, for example, about 150 micrometers (#m), and the distance between the first reflective surface 122 and the second reflective surface 132 is, for example, about 1 to 150 micrometers ( #m). The difference between the height of the local maximum point and the local minimum point of the first reflecting surface 122 and the first reflecting surface 132 is, for example, about one tenth of a wavelength to about one tenth of a wavelength to achieve a high flatness requirement, and the first reflection The reflectance of the face 122 and the second reflecting surface 132 is, for example, 90%. The optical path of the optical signal 50 traveling from the slit plate 134 to the micro-diffraction grating 160 is, for example, 28 millimeters (mm), and the light traveling path from the micro-diffraction grating 160 to the image capturing member 15 is approximately 40. Millimeter (mm). The optical mechanism of the micro spectrometer of this embodiment is compared with the conventional spectrometer 500 shown in the figure. The light of the conventional spectrometer is transmitted in the cavity of the spectrometer 500, and there is a possibility that the light is diverged and the optical signal is too Weakly suffer from the problem of excessive interference of stray light, and the volume occupied by the spectrometer is larger. By making the optical mark 50 travel in the optical path, the light of the spectrum 201137328 * I w^yozrn is more concentrated and less divergent, which can effectively improve the efficiency of the first mechanism 100 of the micro spectrometer. In addition, since the optical mechanism 1GQ of the micrometer of the embodiment can be additionally added with a suitable stray light eliminating mechanism (the lower part to the description), it is less affected by the stray light, so that the image capturing element 150 can be generated. For more accurate images, when the corresponding image is transmitted to the subsequent circuit, the accuracy of the subsequent judgment of the physical or biochemical meaning of the optical signal at different wavelengths of light intensity can be further improved. • For the second embodiment, please refer to FIG. 6 and FIG. 7. FIG. 6 is an exploded perspective view showing the optical mechanism of the micro spectrometer according to the second embodiment of the present invention, and FIG. 7 is a schematic diagram of the optical component of FIG. Schematic diagram of the Xiaoguang mechanism. Please refer to Figure 6 and Figure 7 for the following instructions. The present embodiment differs from the first embodiment in that the optical mechanism 200 of the 'micro spectrometer further includes a first extinction element 27' and a second extinction element 272. One side of the cross-section of the first extinction element 27 and the second extinction element 272 is serrated, and the zigzag sides are facing the optical channel 140. For example, one side 27〇a of the first matting element 270 and one side 272a of the second extinction element 272 face the optical channel! 4〇. The shoulder light element 270 and the second light extinction element 272 are respectively disposed on both sides of the light tunnel 140 for absorbing an optical signal emitted from the input portion UG by an angle greater than a characteristic angle. For example, this particular angle is, for example, an angle Θ associated with the sawtooth structure of the first extinction element 27A and the second extinction element 272. It is assumed that the angle of travel from the optical signal 52 is greater than the angle β. When the angle of travel from the optical signal 52 is greater than the angle θ, the offset optical signal 52 may be incident on one of the jagged structures 9 201137328 I vvjy〇^r/\ triangular recess. The silver-toothed structure of the extinction element allows the optical signal 52 to be reflected back and forth in the notch of the orthodontic structure as shown in Fig. 7 to be such that it would cause the stray light signal to deviate from the optical signal. The dentate structure eliminates the 'and the spectral components to be obtained are more clearly defined. The rest of the embodiment is the same as the first embodiment, and therefore will not be described again. The optical mechanism of the micro spectrometer disclosed in the above embodiments of the present invention regulates the optical signal entering from the input portion and travels in the first channel between the upper and lower waveguide plates, so that the optical signal is more concentrated and less divergent. Combined with the (four) shape of the extinction component, the optical signal can be dissipated (4), and the stray light reaching the image manipulation component is reduced, so that the desired spectral component is not interfered by the stray light, and the In summary, although the invention has been disclosed above in the preferred embodiments, it is not intended to be used in the invention. Those skilled in the art to which the present invention pertains will be able to make various changes and modifications in the spirit and scope of the present invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Simple description of the diagram] Figure 1 shows a schematic diagram of a conventional spectrometer. Fig. 2 is a perspective exploded view showing the optical mechanism of the micro-spectrometer of the first embodiment of the present invention. Figure 3 is a schematic illustration of the travel of light in the optical path of the optical mechanism of the microspectrometer of Figure 2. Figure 4 is a schematic diagram showing an example of the upper waveguide plate. 201137328 Figure 5 shows a schematic view of an example of a slit plate. Figure 6 is a perspective exploded view of the optical mechanism of the microspectrometer of the second embodiment of the present invention. Fig. 7 is a schematic view showing the extinction mechanism of the extinction element in Fig. 6. [Main component symbol description] 5〇: Optical signal® 51: Spectral component 52: Off-axis optical signal 100, 200 • Optical mechanism of micro spectrometer 110: Input section 120 · Upper waveguide plate 120a: High-reflection film 120b: First Protective film 122·first reflective surface•130: lower waveguide plate 132. second reflective surface 134. slit plate 136: slit 14 0 : optical channel 150: image capturing element 160: micro-diffractive grating 2 7 0 : First extinction element 270a: one side of the first extinction element 201137328 272: second extinction element 272a · one side of the second extinction element 500: spectrometer 502: collimation mirror 504: grating 506: focusing mirror 508: detector 0: angle
1212