[go: up one dir, main page]

TW201135287A - Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer - Google Patents

Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer Download PDF

Info

Publication number
TW201135287A
TW201135287A TW099129669A TW99129669A TW201135287A TW 201135287 A TW201135287 A TW 201135287A TW 099129669 A TW099129669 A TW 099129669A TW 99129669 A TW99129669 A TW 99129669A TW 201135287 A TW201135287 A TW 201135287A
Authority
TW
Taiwan
Prior art keywords
grid
width
ratio
satisfies
grids
Prior art date
Application number
TW099129669A
Other languages
Chinese (zh)
Inventor
Young-Jae Lee
Jin-Su Kim
Jun Lee
Ki-Cheol Kim
Original Assignee
Lg Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Innotek Co Ltd filed Critical Lg Innotek Co Ltd
Publication of TW201135287A publication Critical patent/TW201135287A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention relates to a wire grid polarizer capable of securing a high brightness and reducing the number of processes, a liquid crystal device including the wire grid polarizer, and a method of manufacturing the wire grid polarizer. According to the present invention, the wire grid polarizer, including first grids arranged in parallel at certain intervals over a substrate and second grids formed on the first grids, can be formed using only an imprint process, a deposition process, and a wet etch process. Accordingly, the number of processes and the process costs and time can be reduced, and high reliability can be guaranteed.

Description

201135287 六、發明說明: 【發明所屬之技術領域】 本發明主張於2010年04月12日所申請之韓國專利申請 案號10-2010-0033340的優先權,此全文將併入本案以作為炱 考。 ‘ 本發明係關於一種能提高亮度及減少製程數的線柵極 化器及其製作方法、及一種包含該線柵極化器的液晶裝置。 Ο 【先前技術】 極化器(polarizer)或極化元件通常是指能從非極化 光,如自然光,中提取出電磁場沿一特定方向振動的線性 極化光之光學元件。線拇極化器(wjre grid p〇iarjzer)即屬於 此類光學元件’其係使用導線柵格以產生極化光。相較於 其他類型的極化器,線柵極化器具有較高的極化隔離特 〇 性,因此已被用於紅外光波段的反射型極化器。 製作線栅極化器的習知技術,至少須要六至七道的製 程步驟,例如:沉積金屬於基板上、光阻塗佈、光微影蝕 刻、光阻顯影、金屬蝕刻、及去除光阻等製程;因而面臨 製程時間及成本過高的問題。 此外’決定線柵極化器性能的最主要因素為:入射光 波長與線柵間距(interval)的關係。若線栅的節距(pitch) 4 201135287 不夠小,則入射光將被折射而非被極化,因而難以達成所 要的效果。纟示上所述’線拇極化極化特性的重要因素包 括線拇的節距、寬度、及高度。然而’採用現有的技術卻 難以調控線栅的寬度及高度。 【發明内容】 為了解決以上所述習知技術的缺失,本發明之一目的 〇係提供一種藉由形成線柵極化器而能減少製程數、製程成 本及日卞間、並能保證可靠度的製程技術;該線橋極化器係 包含在膜片或基板上平行排列的第—栅格及位於該 -第一柵格上之第二栅格,且其製作技術只須使用轉印 (imprint)、沉積、及溼蝕刻的製程。 本發明之另-目的特別是提供—種包含第二拇格的 線柵極化器’該第二柵格只須澄蚀刻的製程即可達成改善 〇冗度及使極化效率最大的效果,並藉此改善其透光性。 根據本發明的一方面,揭示一種線拇極化器,其包 括:一第-栅格層,其包括至少—第—栅格且位於一基板 之上;及-第二柵格層,其包括至少一第二拇格且位於該 第樹才。之上,其中,該第一柵格具有一特定的節距及高 度,該第二栅格具有一特定的節距及高度,該第-栅格與 該第二柵格的寬度比率滿足1:(0.2至15)。 5 201135287 . 在此實施例中,該線柵極化器之該第一柵格及該第一 ‘ 柵格層可為高分子材料所製成,且其該第二柵格可為金屬 材料所製成。 特別是在上述的實施例中,該第二柵格結構的形成可 以使得:該第二栅格的寬度與該第二柵格之間的間距之比 率滿足1 : (0.2至1.5)、該第二柵格的寬度與其高度之比 率滿足1 :(1至5)、或該第二柵格的節距與其高度之比率 〇 滿足1 : ( 1至5 )。 此外,根據本發明,上述結構之線柵極化器的形成可 使得:該第一柵格的寬度與該第一柵格之間的間距之比率 滿足1:(0.2至1.5)、或該第一柵格的寬度與其高度之比 率滿足1 : (0.2至5)。 在上述的任一情況,該第一柵格或該第二栅格的節距 可介於50nm至Ιμιη之間。 〇 此外,根據本發明的每一個該第一及第二柵格的截面 可為圓形、橢圓、或多邊形。 具有上述結構之線柵極化器可以下列程序來製作,特 別是一種根據本發明的製作方法,其可包括:第一步驟, 於一基板上之一第一柵格基礎層上,形成複數個第一柵 格,每一個該第一柵格具有一特定的節距;第二步驟,形 成一第二柵格基礎層於該第一柵格之上;以及第三步驟, 201135287 姓刻該第二栅格基礎層,以形錢數個第二柵格;其中, 該第一栅格與該第二柵格的寬度比率滿足丨:⑽至15)。 在此實施例的第-㈣中,該複數個第-栅格可以具 :複數個4槽的—轉印模具(_如mQld)祕並形成於 =第栅格基礎層上;其巾’該複數個第一柵格係分別形 士二各相對應的該複數個溝槽内,且該第一栅格基礎層係 由高分子材料所製成。The present invention claims the priority of Korean Patent Application No. 10-2010-0033340 filed on Apr. 12, 2010, the entire disclosure of which is hereby incorporated by reference. . The present invention relates to a line gater capable of improving brightness and reducing the number of processes, a method of fabricating the same, and a liquid crystal device including the line gater. Ο [Prior Art] A polarizer or a polarizing element generally refers to an optical element that extracts linearly polarized light whose electromagnetic field vibrates in a specific direction from unpolarized light, such as natural light. A wire thumb polarizer (wjre grid p〇iarjzer) belongs to such an optical component, which uses a wire grid to generate polarized light. Compared to other types of polarizers, line gaters have higher polarization isolation characteristics and have been used in reflective polarizers in the infrared band. Conventional techniques for fabricating wire gaters require at least six to seven process steps, such as depositing metal on a substrate, photoresist coating, photolithography, photoresist development, metal etching, and photoresist removal. Process; thus facing the problem of process time and cost. In addition, the most important factor determining the performance of the line gater is the relationship between the wavelength of the incident light and the inter-gate spacing. If the pitch of the wire grid 4 201135287 is not small enough, the incident light will be refracted rather than polarized, making it difficult to achieve the desired effect. The important factors that indicate the polarization polarization characteristics of the above-mentioned lines include the pitch, width, and height of the line thumb. However, it is difficult to control the width and height of the grid using existing technology. SUMMARY OF THE INVENTION In order to solve the above-mentioned deficiencies of the prior art, it is an object of the present invention to provide a method of forming a line gater that can reduce the number of processes, process costs, and inter-daytimes, and can ensure reliability. Process technology; the line bridge polarizer comprises a first grid arranged in parallel on the diaphragm or the substrate and a second grid on the first grid, and the manufacturing technique only needs to use transfer ( Imprint), deposition, and wet etching processes. Another object of the present invention is to provide a wire grid conditioner comprising a second frame, wherein the second grid can be etched only to achieve an improvement in redundancy and maximum polarization efficiency. And thereby improving its light transmission. According to an aspect of the invention, a linear thumb polarizer is disclosed, comprising: a first grid layer comprising at least a first grid and located above a substrate; and a second grid layer comprising At least a second thumb is located in the first tree. Above, wherein the first grid has a specific pitch and height, the second grid has a specific pitch and height, and the ratio of the width of the first grid to the second grid satisfies 1: (0.2 to 15). 5 201135287. In this embodiment, the first grid and the first grid layer of the line gater can be made of a polymer material, and the second grid can be a metal material. production. In particular, in the above embodiment, the second grid structure may be formed such that the ratio of the width of the second grid to the spacing between the second grids satisfies 1: (0.2 to 1.5), the first The ratio of the width of the two grids to its height satisfies 1: (1 to 5), or the ratio of the pitch of the second grid to its height 〇 satisfies 1: (1 to 5). Further, according to the present invention, the line gater of the above structure may be formed such that a ratio of a width of the first grid to a pitch between the first grids satisfies 1: (0.2 to 1.5), or the The ratio of the width of a grid to its height satisfies 1: (0.2 to 5). In either case, the pitch of the first grid or the second grid may be between 50 nm and Ιμιη. Further, each of the first and second grids according to the present invention may have a circular, elliptical, or polygonal cross section. The wire gater having the above structure can be fabricated by the following procedure, in particular, a fabrication method according to the present invention, which can include: a first step of forming a plurality of layers on a first grid base layer on a substrate a first grid, each of the first grids has a specific pitch; a second step of forming a second grid base layer on the first grid; and a third step, 201135287 The second grid base layer is shaped by a plurality of second grids; wherein the width ratio of the first grid to the second grid satisfies 丨: (10) to 15). In the fourth-fourth embodiment of the embodiment, the plurality of first grids may have: a plurality of 4-slot-transfer molds (such as mQld) secretly formed on the = grid base layer; A plurality of first grids are respectively formed in the plurality of grooves corresponding to each of the two grids, and the first grid base layer is made of a polymer material.

此外,其中該第二步驟進—步包括:藉由—沉積製程, 开j成一金屬材料層。 抑疋仕上迷製作程序的第—步驟中,該第一拇格較 二的形成可使得:該第一柵格的寬度與該第一柵格之間的 距之比率滿& 1.(〇.2至15),或該第—栅格的寬度盘 “向度之比率滿足1 : (0.2至5)。 、 此外,根據本發明的製作程序,該第三步驟可包括: 進仃祕刻製程、及進行—㈣製程,使得:該第二橋 格的寬度與該第二栅格之_間距之比率滿足i 至 15)、該第二柵格的寬度與其高度之比率滿足至〇、 或該第二柵格的節距與其高度之比率滿足1:(1至5)。 根據本發明之具有上述結構的線拇極化器,可以應用 於液晶裝置’特別是—種液晶裝置,其包括:-液晶顯示 面板、-用以提供光源給該液晶顯示面板的背光單元、及 201135287 根據本發明之線栅極化器;其中,該線柵極化器形成於該 液晶顯示面板的上面或下面、或於該背光單元所内含之一 複數個光學膜片的任一個表面上,用以增加光效率。 如上所述之包含於該液晶裝置内的該線柵極化器,其 形成可使得:該第一柵格的寬度與該第一柵格之間的間距 之比率滿足1 : (0.2至1·5),或該第一柵格的寬度與其高 度之比率滿足1 : (0.2至5)。 除了上述的液晶裝置之外,根據本發明之線柵極化器 亦可以應用於3D立體影像顯示裝置。 【實施方式】 為使熟知此技藝者能對本發明之特徵、目的及功能有 更進一步的認知與瞭解,茲配合圖式詳細說明其實施例如 後: 請參照圖一及圖二。根據本發明之複數個線柵,形成 於至少二個薄層(layer)的結構中;此二個薄層包含:一第 一柵格層,其包括一以特定間距(interval)平行排置於基板 100之上的複數個第一柵格110,及一第二柵格層,其包括 一形成於該第一柵格層的第一柵格110之上的複數個第二 柵格112。也就是在較佳的情況下,形成於基板100上之 第一柵格層係包括至少一個第一棚格110,其具有一特定 201135287 的節距(pitch)H、寬度F、及高度E,而形成於第一柵格110 上之第二柵格層係包括至少一個第二柵格112,其具有一 特定的節距A、寬度C、及高度D。較佳的,該第一栅格 與該第二柵格的形成,將使得該第一柵格的寬度F與該第 二柵格的寬度C之比率滿足F : C = 1 : (0.2至1.5)。 在此實施例中,該第二柵格112可為金屬材料所製 成,且其形成將使得該第二柵格112的寬度C與該第二柵 〇 格112之間的間距B之比率滿足C : B = 1 : ( 0.2至1 _5 )、 該第二柵格112的寬度C與其高度D之比率滿足C:D=1: (1至5)、或該第二柵格112的節距A與其高度D之比率 滿足A:D = 1:(1至5)。藉由上述之結構,將能使穿透 度(transmittance)、亮度(brightness)、及極化效率 (polarization efficiency)達到最大。 以下將參照相關的圖示,進一步詳述本發明的構造及 〇操作。對於圖示的描述,相同的單元或組件將指定以相同 的參考編號,並省略多餘的贅述。類似第一或第二等描述 性的術語,只用以區別某一單元或組件與其他單元或組件 的分屬不同,但此等單元或組件並不因此受到該術語的限 制。 圖一為根據本發明一實施例之線栅極化器的操作原理 透視示意圖,而圖二為如圖一之線柵極化器每一第一和第 201135287 二柵格的高度與寬度的刮面結構示意圖。 請參照圖一及圖二,本實施例之線栅極化器包括有複 數個線栅(也就是栅格結構)以一特定的間距平行排置於基 板100之上;若其節距(也就是單一栅格的寬度加上柵格之 間的間距)遠小於入射光的波長,則對於非極化的入射光, 該線柵極化器將穿透向量正交於導線栅格的一分量 (component)(例如P極化光),而反射向量平行於該導線拇 Ο 格的一分量(例如s極化光)。 線柵極化器的光學性質可藉由穿透度、極化效率、及 極化消光比(polarization extinction ratio)等來評價。極化效 率定義為(Tp-Ts)/(Tp+Ts),極化消光比定義為Tp/Ts,其中 Tp為P極化光的穿透度、Ts為S極化光的穿透度。我們將 透過上述三個特性參數來評價線柵極化器的性能。 本發明具有複數個線柵,其係形成於至少二個薄層的 C)結構中。如圖一所示之實施例,其包含二個薄層:第—柵 格層包括一以特定間距平行排置於基板100之上的複數個 第一柵格110,及第二柵格層包括一形成於該第一柵格層 的第一栅格110之上的複數個第二柵格112。 線柵極化器的光學性質將隨著以下的結構參數而變 動.第一柵格110的寬度F、高度E、及節距11、第二柵格 112的寬度c、高度D、及節距A。此節距係指每一個柵格 201135287 之寬度加上其與比鄰柵·格之距離。在圖示的結構中,設定 第一柵格110的節距H為該第一柵格之間的距離G加上該 第一柵格的寬度F,且第二柵格112的節距Α為該第二柵 格之間的距離B加上該第二柵格的寬度c。 此線栅極化器的穿透度可藉由柵格的高度及寬度加以 調控。對於相同的節距,若柵格的寬度增加,則穿透度減 低且極化,肖光比(polarization extinction ratio)增加。In addition, the second step further comprises: forming a metal material layer by a deposition process. In the first step of the fascinating production process, the first thumb lattice is formed such that the ratio of the width of the first grid to the distance between the first grid is full & 1. .2 to 15), or the ratio of the width of the width of the first grid to the ratio of 1: (0.2 to 5). Further, according to the production procedure of the present invention, the third step may include: Process, and performing - (d) process such that the ratio of the width of the second bridge to the spacing of the second grid satisfies i to 15), the ratio of the width of the second grid to its height satisfies to 〇, or The ratio of the pitch of the second grid to its height satisfies 1: (1 to 5). The linear thumb polarizer having the above structure according to the present invention can be applied to a liquid crystal device, particularly a liquid crystal device, which includes a liquid crystal display panel, a backlight unit for providing a light source to the liquid crystal display panel, and a wire gater according to the present invention; wherein the wire gate is formed above or below the liquid crystal display panel Or one of a plurality of optical films contained in the backlight unit Surfacely, for increasing light efficiency. The wire gater included in the liquid crystal device as described above is formed such that a width between the width of the first grid and the first grid is The ratio satisfies 1: (0.2 to 1.5), or the ratio of the width of the first grid to its height satisfies 1: (0.2 to 5). In addition to the liquid crystal device described above, the wire gater according to the present invention It can also be applied to a 3D stereoscopic image display device. [Embodiment] In order to enable those skilled in the art to further understand and understand the features, objects and functions of the present invention, the implementation of the present invention will be described in detail with reference to the drawings: Figure 1 and Figure 2. A plurality of wire grids according to the present invention are formed in at least two layers; the two layers comprise: a first grid layer comprising a specific pitch ( Interval) a plurality of first grids 110 arranged in parallel on the substrate 100, and a second grid layer including a plurality of first layers formed on the first grid 110 of the first grid layer Two grids 112. That is, in the preferred case, forming The first grid layer on the substrate 100 includes at least one first sash 110 having a pitch H, a width F, and a height E of a specific 201135287 formed on the first grid 110. The second grid layer includes at least one second grid 112 having a particular pitch A, width C, and height D. Preferably, the formation of the first grid and the second grid will result in The ratio of the width F of the first grid to the width C of the second grid satisfies F: C = 1 : (0.2 to 1.5). In this embodiment, the second grid 112 may be made of a metal material. And forming such that the ratio of the width C of the second grid 112 to the spacing B between the second grids 112 satisfies C: B = 1 : (0.2 to 1 _5 ), the second grid The ratio of the width C of 112 to its height D satisfies C: D = 1: (1 to 5), or the ratio of the pitch A of the second grid 112 to its height D satisfies A: D = 1: (1 to 5) . With the above structure, the transmittance, brightness, and polarization efficiency can be maximized. The construction and operation of the present invention will be further described in detail below with reference to the associated drawings. For the description of the figures, the same elements or components will be designated by the same reference numerals, and the redundant description will be omitted. Terms such as the first or second descriptive terms are only used to distinguish one unit or component from the subunits of other units or components, but such units or components are not so limited by the term. 1 is a perspective view showing the operation principle of a line gater according to an embodiment of the present invention, and FIG. 2 is a plan view of the height and width of each of the first and the 201135287 two grids of the line gater of FIG. Schematic diagram of the surface structure. Referring to FIG. 1 and FIG. 2, the line gater of the embodiment includes a plurality of wire grids (ie, grid structures) arranged in parallel on the substrate 100 at a specific pitch; if the pitch is That is, the width of a single grid plus the spacing between the grids) is much smaller than the wavelength of the incident light. For non-polarized incident light, the line gater will penetrate the vector orthogonal to a component of the wire grid. (component) (e.g., P-polarized light), and the reflection vector is parallel to a component of the conductor's thumb lattice (e.g., s-polarized light). The optical properties of the line gater can be evaluated by transmittance, polarization efficiency, and polarization extinction ratio. The polarization efficiency is defined as (Tp-Ts)/(Tp+Ts), and the polarization extinction ratio is defined as Tp/Ts, where Tp is the transmittance of P-polarized light and Ts is the transmittance of S-polarized light. We will evaluate the performance of the line gater through the above three characteristic parameters. The present invention has a plurality of wire grids formed in at least two thin layers of C) structures. In the embodiment shown in FIG. 1, it comprises two thin layers: the first grid layer comprises a plurality of first grids 110 arranged in parallel at a specific pitch on the substrate 100, and the second grid layer comprises A plurality of second grids 112 formed on the first grid 110 of the first grid layer. The optical properties of the wire gater will vary with the following structural parameters: width F, height E, and pitch 11 of the first grid 110, width c, height D, and pitch of the second grid 112. A. This pitch is the width of each grid 201135287 plus its distance from the adjacent grid. In the illustrated structure, the pitch H of the first grid 110 is set to be the distance G between the first grids plus the width F of the first grid, and the pitch 第二 of the second grid 112 is The distance B between the second grids is added to the width c of the second grid. The penetration of this line gater can be controlled by the height and width of the grid. For the same pitch, if the width of the grid is increased, the penetration is reduced and the polarization, and the polarization extinction ratio is increased.

若節距減小以確保最大的極化效率,則極化特性將會 增兩。若栅格具有相同的間距及寬度,則增加柵格的高产 將會改善其極化特性。若柵格具有㈣的間距及高度= 增加柵格的寬度亦可改善其極化特性。 X 、 如上所述,》了達成最大的亮度,柵格的節距、高产、 及寬度應施以最佳的調控。考量以上所述的各條件冋又一、 :格1H)的寬度F、高度E、及節距H、及第二拇格ιΐ2的 寬度C、高度D、及節距A可總結囊整如下之表―,其中 B為該第二栅格之間的距離’且〇為該第一栅格之間的距 離0 【表一】If the pitch is reduced to ensure maximum polarization efficiency, the polarization characteristics will increase by two. If the grids have the same pitch and width, increasing the grid's high yield will improve its polarization characteristics. If the grid has (4) spacing and height = increasing the width of the grid, it can also improve its polarization characteristics. X, as mentioned above, has achieved the maximum brightness, and the pitch, high yield, and width of the grid should be optimally adjusted. Considering the conditions described above, the width F, height E, and pitch H of the lattice 1H, and the width C, the height D, and the pitch A of the second thumb ΐ2 can be summarized as follows. Table - where B is the distance between the second grids and 〇 is the distance between the first grids 0 [Table 1]

11 201135287 柵格寬度:間距 C.B 1 :0.2 〜1.5 F: G 1 : 0.2 〜 栅格寬度:高度 C.D ---— 1 : 1 〜5 1.5 f:e 1 : 0.2 〜5 節距··高度 A:D ---— 1 : 1 〜5 第一柵格寬度:第二柵格寬度 F ·· C = 1 : --- ~~-_1 〕.2 〜1.5 請參照表-及圖二,㈣本發明之—較佳實施例,該 線柵極化器包括有:位於基板100上之第一拇格層,其包 〇括至少-個第一栅格110,且具有一特定的節㈣、寬度F、 及高度E,及位於第一柵格11〇上之第二拇格層,其包括 至少一個第二柵格112,且具有一特定的節距A、寬度匸、 及南度D。較佳的,該第一栅格11〇與該第二拇格⑴的 形成,將使得該第-栅格110的寬度F與該第二概格ιΐ2 的寬度C之比率滿足F: c=l :( 〇·2至1 5 )。 此外,該第二栅格112可為金屬材料所製成,且其形 〇成將使得該第二栅格U2的寬度C與該第二柵格112之間 的間距Β之比率滿足C : B = j : (〇 2至15)、該第二拇格 Π2的寬度c與其高度D之比率滿足c : D = 1 : ( 1至5)、 或該第二柵格112的節距A與其高度D之比率滿足a:d = 1 : ( 1至5)。藉由上述之結構,將能使穿透度、亮度、及 極化效率達到最大。在此實施例中,第二栅格112之較佳 的節距係介於50nm至1 之間。 12 201135287 特別地,當只考量第二柵格112的節距A與其高度D 之比率,其穿透度改善程度的量測結果如圖三所示。 圖三為本發明之一較佳實施例的量測結果,其第二柵 格112的節距A與其高度D之比率滿足A:D = 1:( 1至5)。 當第二柵格112的高度D為100nm至150nm且節距A 為lOOnm至200nm時,其寬度C減小對穿透度的影響如圖 三(a)所示。11 201135287 Grid Width: Spacing CB 1 : 0.2 ~ 1.5 F: G 1 : 0.2 〜 Grid Width: Height CD --- — 1 : 1 ~ 5 1.5 f:e 1 : 0.2 〜5 Pitch ·· Height A :D ---— 1 : 1 ~5 First grid width: Second grid width F ·· C = 1 : --- ~~-_1 〕.2 ~1.5 Please refer to Table - and Figure 2, (4) In a preferred embodiment of the present invention, the line gater includes: a first thumb layer on the substrate 100, including at least one first grid 110, and having a specific section (four), The width F, and the height E, and the second layer of the top layer on the first grid 11 包括 include at least one second grid 112 and have a specific pitch A, a width 匸, and a south degree D. Preferably, the first grid 11 〇 and the second thumb (1) are formed such that the ratio of the width F of the first grid 110 to the width C of the second grid ι 2 satisfies F: c=l :( 〇·2 to 1 5 ). In addition, the second grid 112 may be made of a metal material and shaped such that the ratio of the width C between the width C of the second grid U2 and the second grid 112 satisfies C: B = j : (〇 2 to 15), the ratio of the width c of the second thumb Π 2 to its height D satisfies c : D = 1 : (1 to 5), or the pitch A of the second grid 112 and its height The ratio of D satisfies a:d = 1 : (1 to 5). With the above structure, the penetration, brightness, and polarization efficiency can be maximized. In this embodiment, the preferred pitch of the second grid 112 is between 50 nm and 1. 12 201135287 In particular, when only the ratio of the pitch A of the second grid 112 to its height D is considered, the measurement result of the degree of improvement in the penetration degree is as shown in FIG. Figure 3 is a measurement result of a preferred embodiment of the present invention, wherein the ratio of the pitch A of the second grid 112 to its height D satisfies A: D = 1: (1 to 5). When the height D of the second grid 112 is 100 nm to 150 nm and the pitch A is 100 nm to 200 nm, the effect of the decrease in the width C on the transmittance is as shown in Fig. 3(a).

〇 當第二栅格112的高度D為151nm至200nm且節距A 為lOOnm至200nm時,其寬度C減小對穿透度的影響如圖 三(b)所示。 當第二柵格112的高度D為201nm至300nm且節距A 為lOOnm至200nm時,其寬度C減小對穿透度的影響如圖 三(c)所示。 由圖三(a)、三(b)、及三(c),可觀察到:當在A: D = 1 : Ο ( 1至5)的比率範圍中,使第二柵格112的高度D保持固 定,則穿透度隨著第二柵格寬度C的逐漸減小而得到改善。 舉例來說,圖四顯示:當穿透度為40%至60%所得到 的高亮度,尤其在穿透度為50%的情況。由上可知,若第 一栅格110與第二柵格112具有如上所述之高度E與D、 及寬度F與C、或第二柵格112具有如上所述之節距A, 則將可得到的高穿透度。 13 201135287 表二列示本實施例的穿透度及極化效率隨第二栅格 112節距A的變化趨勢。 【表二】 第二拇格節距(A) 100 nm 120 nm 150 nm 200 ran 250 nm 穿透度(%) 57.66 57.42 56.60 52.4 66.9 極化效率 99.9933 99.9853 99.9733 99.7735 99.279 除了調控第二栅格的結構之外,本發明亦可藉由調控 第一柵格的結構來實現最大的光學效果。在此,值得注音 的是,本實施例之第一柵格Π0係為高分子材料所製成:〇 When the height D of the second grid 112 is 151 nm to 200 nm and the pitch A is from 100 nm to 200 nm, the effect of the decrease in the width C on the transmittance is as shown in Fig. 3(b). When the height D of the second grid 112 is from 201 nm to 300 nm and the pitch A is from 100 nm to 200 nm, the effect of the decrease in the width C on the transmittance is as shown in Fig. 3(c). From Figures 3(a), 3(b), and 3(c), it can be observed that the height D of the second grid 112 is made in the ratio range of A: D = 1 : Ο (1 to 5) Keeping fixed, the penetration is improved as the width of the second grid C is gradually reduced. For example, Figure 4 shows the high brightness obtained when the penetration is 40% to 60%, especially when the penetration is 50%. As can be seen from the above, if the first grid 110 and the second grid 112 have the heights E and D, and the widths F and C as described above, or the second grid 112 has the pitch A as described above, The high penetration obtained. 13 201135287 Table 2 shows the tendency of the penetration and polarization efficiency of the present embodiment to vary with the pitch A of the second grid 112. [Table 2] The second box pitch (A) 100 nm 120 nm 150 nm 200 ran 250 nm Transmittance (%) 57.66 57.42 56.60 52.4 66.9 Polarization efficiency 99.9933 99.9853 99.9733 99.7735 99.279 In addition to regulating the structure of the second grid In addition, the present invention can also achieve maximum optical effects by adjusting the structure of the first grid. Here, it is worth noting that the first grid Π0 of the embodiment is made of a polymer material:

並使得:該第一栅格的寬度F與該第一栅格之間的間距G 之比率滿足F : G = 1 : (0.2至1.5)、或該坌,^ 又通第—柵格的寬度 F與其高度E之比率滿足f:E=1:(〇2$ 〇 z主5)。此外,本 實施例之第一柵格具有節距Η介於^(^瓜至〗,, Ba 土 1 .um之間。 根據本發明之第一概格及第二桃格亦可梦成各種的形 式,例如:線條狀、曲線、四邊形、及二备;— 人一月形。每一個第 一栅格及第二栅格的截面可為各種的形式,例如:圓步、 橢圓、或多邊形。 根據本發明之線柵極化器的製作程序將參照圖五至七 之描述。圖五至七為根據本發明之線柵極化器的製作程 序。下述的實施例將以線條形狀為例來實現第一拇格及第 14 201135287 二柵格。 根據本發明之線柵極化器的製作程序包括:第一步 驟,於一基板100上之一第一栅格基礎層122上,形成複 數個第一柵格110’每一個該第一柵格u〇具有一特定的節 距;第二步驟,形成一第二栅格基礎層124於該第一栅格 110之上;及第三步驟,餘刻該第二柵格基礎層124,以形 成複數個第二柵格112。 〇 在本實施例的第三步驟中’該第一柵格的寬度F與第 二柵格的寬度C之較佳比率為F : c = 1 : (0.2至1.5)。 請參照圖五,在本實施例的第一步驟中,該第一柵格 基礎層122係由高分子材料塗佈於基板1〇〇上所製成,且 該高分子材料可為UV樹脂(UV resin)。又,具有溝槽126 及突出部128的一轉印模具(imprint mold) 120對準於覆蓋 有第一栅格基礎層122的基板1〇〇上,其中,轉印模具120 〇 的複數個溝槽126係彼此以一特定的間隔相分離並重複形 成,其複數個突出部128亦為彼此以一特定的間隔相分離 並重複形成,且該溝槽126分別對應於第一栅格11〇所欲 形成的位置。 在本實施例中,轉印模具120的每一個溝槽126的高 度與寬度分別對應於第一栅格110的高度E與寬度F。較 佳地’轉印模具120的溝槽126的高度與寬度會滿足F : 15 201135287 :(0·2至5),這也是第一柵袼的寬度1?與高度e之比 ^£1 〇 在本實施例中,第一栅格係藉由轉印模具來製作,該 第一柵格及該轉印溝槽的結構經適當的調控,使得第一拇 格的寬度F與第一柵格之間的間距G之比率滿足F.G= Γ (〇·2至1.5)、或該第一柵格的寬度F與其高度£之比率 滿足 F : Ε = 1 : (0.2 至 5)。 〇 更進一步’轉印模具120的溝槽I%係為線條狀(stripe shape)。當構成第一柵格基礎層的高分子材料122受到施壓 而接觸到轉印模具120的溝槽126,接著再施以紫外光照 射。由此,複數個第一柵格11〇將在高分子材料122中, 相對應於轉印模具120溝槽126的位置形成。 接著如圖六所示,第二柵格基礎層124(即一金屬層) 沉積於覆蓋有第一栅格110的基板1〇〇上。如圖七所示, C)姑刻該第二柵格基礎層124,以形成第二栅格η]於該第 一栅格110之上。 更特別地’對於沉積於覆蓋有第一柵格11〇的基板1〇〇 上的第一柵格基礎層124(即一金屬層)的姓刻,係採用渔钱 刻製程’藉此形成該第二栅格U2。 此外,在較佳的情況下,該溼蝕刻製程將使得:該第 二柵格的寬度C與該第二柵格之間的間距B之比率滿足 16 201135287 C : B =1 : (0.2至1.5)、該第二柵格的寬度C與其高度D 之比率滿足C : D =1 : ( 1至5)、或該第二柵格的節距A 與其高度D之比率滿足A:D = 1:(1至5)。藉此,在基 板100上的第一柵格110之上形成第二柵格112,而完成此 線柵極化器的製程。 如上所述並參照圖五至七可知:本發明之具有第一柵 格110及第二柵格112的線柵極化器的製程只用到轉印、 〇 沉積、及溼蝕刻的製程技術。由於其製程步驟數可因此而 減少,使得製程成本降低且量產是可能的。 在另一方面,圖八為另一實施例之線拇極化器的剖面 結構示意圖,其第一柵格140為半圓曲線(semi-circular curve),而不是線條形狀。圖九至Η--繪示圖八所述之線柵 極化器的製作程序示意圖。圖九至十一所示之結構與製程 皆與圖二及圖五至七的描述相同,在此不再贅述。然而在 〇 此實施例中,其第一柵格的剖面為半圓形或半橢圓形,且 其外表面為曲面。該第一柵格的寬度F與該第一柵格之間 的間距G之定義係以其高度Ε的一半為基礎,針對柵格曲 面與其半高度1/2Ε的截面或截點,拉下垂直線以便量取其 相對應的寬度。 另外,如圖十二所示之結構,第一柵格110為線條形 狀,而第二柵格的剖面可能為圓形或橢圓形。此線栅極化 17 201135287 益可在第一栅格π〇及第一柵格基礎層形成之後,調控渥 蝕刻製程而實現之。 圖十三為本發明之另一較佳實施例,其第一栅格的寬 度F與第二栅格的寬度C之比率滿足F : c == 1 ·· (0 2至 1.5),如圖十三所示,第二栅格的寬度c可能大於第—栅 格的寬度F;也就是說,此結構之第二栅格的寬度c為第 一柵格的寬度F的1至1.5倍。在此實施例中,第二栅格 〇 的外表面可為橢圓曲面、線條形狀、或多邊形。 圖十四為具有本發明包含線柵極化器之液晶裝置的 剖面結構示意圖,其包括:液晶顯示面板200、用以提供 光源給該液晶顯不面板200的背光早元23〇、及根據本發 明之線栅極化器。該線栅極化器設置於該液晶顯示面板2〇〇 的上面或下面、或於該背光單元230所内含光學膜片的任 一個表面上。背光單元230包含光源232、用以擴散光源 Ο 232所發出的光的擴散膜片236、以及設置於光源232的下 方的反射膜片234。 光源232可為任何一種冷陰極螢燈管(Cold Cathode Fluorescent Lamp, CCFL)、外電極螢燈管(External Electrode Fluorescent Lamp, EEFL)、或發光二極體(LED)。光源 232 產生光,並朝擴散膜片236發射出。 反射膜片234係由高反射效率的材料所製成,而反射 18 201135287 膜片234的功能是將與液晶顯示面板200反方向行徑的光 反射回擴散膜片236,以減少光損失。 擴散膜片236接收來自光源232所發出的光,將其導 向液晶顯示面板200的前端,並擴散該光,使其在進入液 晶顯示面板200前,能在一廣角内呈均勻分布。較佳的擴 散膜片236是兩面被覆有具擴散功能膜層的透明樹脂膜片 所構成。 Ο 該液晶顯示面板200包括有:彩色濾光基板212(color filter substrate)、薄膜電晶體基板210、及介於上述二基板 之間的液晶層202。 彩色濾光基板212的上基板上形成有彩色濾光器陣列 其包含黑矩陣以防止光洩漏、用以完成色彩的濾光片、用 以沿著像素電極形成垂直電場的共電極(c〇mm〇n electr〇de)、以及被覆於該像素電極之上以調控液晶方向的 〇上定向層(orientati〇nfilm)。而薄膜電晶體基板21〇的下基 板上形成有帛膜電晶體陣列纟包含互相交叉的閘極線與資 料,、位於閘極線與資料線交叉處的薄膜電晶體、連接至 5蓴獏電日日體的像素電極、及被覆於該像素電極及膜 晶體之上以調控液晶方向的下定向層。 、 唯以上所述者,僅為本發明之較佳實施例,當不能以 限制本發明的範圍。即大凡依本發明巾請專⑽圍所做 19 201135287 之均等變化及修飾,仍將不失本發明之要義所在,亦不脫 離本發明之精神和範圍,故都應視為本發明的進一步實施 狀況。 如圖十四所示,根據本發明之線栅極化器可設置於該 液晶顯示面板200的上面或下面、或於該背光單元230所 内含之光學膜片的任一個表面上。 又,根據本發明之線柵極化器亦可附著於液晶模組的 〇 表面。多個線柵極化器亦可以特定的間距排列。此外,該 第二柵格可以朝上或朝下。 又,根據本發明之線柵極化器亦包括:以特定的間距 平行設置於該液晶顯示面板200下面的第一柵格110、及 形成於該第一柵格110之上的第二柵格112。 除了上述的液晶裝置之外,根據本發明之線柵極化器 亦可以應用於3D立體影像顯示裝置。由此,根據本發明 〇之線柵極化器可廣泛用於實現高亮度及高可靠度。 根據本發明之具有以特定的間距平行設置於基板上的 第一柵格及形成於其上的第二柵格之線柵極化器,其製作 只須用到轉印、沉積、及溼蝕刻的製程技術。由此,其製 程步驟數可因此而減少,使得製程成本及時間減少,且能 保證可靠度。 又,藉由溼蝕刻製程,該第二柵格可製得最佳的高度 20 201135287 及寬度。由此,具有改善透光度及亮度,並增加極化效率 的優點。 唯以上所述者,僅為本發明之較佳實施例,當不能以 之限制本發明的範圍。即大凡依本發明申請專利範圍所做 之均等變化及修飾,仍將不失本發明之要義所在,亦不脫 離本發明之精神和範圍,故都應視為本發明的進一步實施 狀況。 【圖式簡單說明】 圖一為根據本發明一實施例之線栅極化器操作原理的透視 示意圖。 圖二為如圖一之線柵極化器每一第一和第二柵格的高度與 寬度的剖面結構示意圖。 圖三為本發明之根據線柵極化器的第二柵格的高度與寬度 的光特性量測結果。 圖四為本發明之線柵極化器的亮度及穿透度量測結果圖 形。 圖五至七為根據本發明之線栅極化器的製作程序示意圖。 圖八為根據本發明另一實施例之線柵極化器其第一柵格具 有半球形圖案的剖面結構示意圖。 圖九至十一為圖八所繪示之線柵極化器的製作程序示意 圖。 圖十二為根據本發明又另一實施例之線柵極化器的剖面結 21 201135287 構不意圖。 圖十三為根據本發明再另一實施例之線柵極化器的剖面結 構不意圖。 圖十四為本發明包含線柵極化器之液晶裝置的剖面結構示 意圖。 【主要元件符號說明】 100基板 110/140第一柵格 ❹ 112/142第二柵格 122/152第一栅格基礎層 124/154第二柵格基礎層 120/150轉印模具 126/156 溝槽 128/158突出部 200液晶顯不面板 Q 202液晶層 210薄膜電晶體基板 212彩色濾光基板 230背光單元 232光源 234反射膜片 236擴散膜片 22And such that the ratio of the width F of the first grid to the spacing G between the first grids satisfies F: G = 1 : (0.2 to 1.5), or the width of the grid The ratio of F to its height E satisfies f:E=1: (〇2$ 〇z main 5). In addition, the first grid of the embodiment has a pitch Η between ^(^瓜至〗, Ba soil1.um. According to the first frame of the present invention and the second peach grid can also dream of various Forms such as: lines, curves, quadrilaterals, and two preparations; - human shape. The cross section of each of the first and second grids can be in various forms, such as round steps, ellipse, or polygons. The fabrication procedure of the wire gater according to the present invention will be described with reference to Figures 5 to 7. Figures 5 to 7 show the fabrication procedure of the wire gater according to the present invention. The following embodiment will be in the shape of a line. For example, the first thumb and the 14th 201135287 two grid are realized. The manufacturing procedure of the wire gater according to the present invention includes: a first step, forming on a first grid base layer 122 on a substrate 100 a plurality of first grids 110' each having a specific pitch; a second step of forming a second grid base layer 124 over the first grid 110; and a third Step, the second grid base layer 124 is left to form a plurality of second grids 112. In the third step of the embodiment, the preferred ratio of the width F of the first grid to the width C of the second grid is F: c = 1 : (0.2 to 1.5). Referring to Figure 5, in this embodiment In the first step, the first grid base layer 122 is made of a polymer material coated on the substrate 1 , and the polymer material may be a UV resin. An imprint mold 120 of the 126 and the protrusions 128 is aligned on the substrate 1 covered with the first grid base layer 122, wherein the plurality of grooves 126 of the transfer mold 120 系 are mutually A specific interval is phase-separated and repeatedly formed, and a plurality of protrusions 128 are also separated from each other at a specific interval and repeatedly formed, and the grooves 126 respectively correspond to positions to be formed by the first grid 11〇. In the present embodiment, the height and width of each of the grooves 126 of the transfer mold 120 correspond to the height E and the width F of the first grid 110, respectively. Preferably, the height of the groove 126 of the transfer mold 120 is The width will satisfy F : 15 201135287 : (0·2 to 5), which is also the ratio of the width 1 of the first grid and the height e. 1 In this embodiment, the first grid is made by a transfer mold, and the structure of the first grid and the transfer groove is appropriately adjusted so that the width F of the first thumb and the first The ratio of the spacing G between the grids satisfies FG = Γ (〇·2 to 1.5), or the ratio of the width F of the first grid to its height £ satisfies F : Ε = 1 : (0.2 to 5). Further, the groove I% of the transfer mold 120 is a stripe shape. When the polymer material 122 constituting the first grid base layer is pressed to contact the groove 126 of the transfer mold 120, and then Irradiated by ultraviolet light. Thus, a plurality of first grids 11〇 will be formed in the polymer material 122 at positions corresponding to the grooves 126 of the transfer mold 120. Next, as shown in FIG. 6, a second grid base layer 124 (i.e., a metal layer) is deposited on the substrate 1 covered with the first grid 110. As shown in FIG. 7, C) the second grid base layer 124 is engraved to form a second grid η] over the first grid 110. More particularly, the last name of the first grid base layer 124 (ie, a metal layer) deposited on the substrate 1 covered with the first grid 11 turns is formed by a fish engraving process The second grid U2. Moreover, in a preferred case, the wet etching process will be such that the ratio of the width C of the second grid to the spacing B between the second grids satisfies 16 201135287 C : B =1 : (0.2 to 1.5 The ratio of the width C of the second grid to its height D satisfies C: D =1 : (1 to 5), or the ratio of the pitch A of the second grid to its height D satisfies A: D = 1: (1 to 5). Thereby, a second grid 112 is formed over the first grid 110 on the substrate 100 to complete the process of the line gater. As described above and with reference to Figures 5 through 7, the process of the wire gridder having the first grid 110 and the second grid 112 of the present invention uses only process techniques of transfer, germanium deposition, and wet etching. Since the number of process steps can be reduced as a result, process cost reduction and mass production are possible. In another aspect, Fig. 8 is a schematic cross-sectional view of a linear thumb polarizer of another embodiment, the first grid 140 being a semi-circular curve rather than a line shape. Fig. 9 to Η-- show a schematic diagram of the manufacturing procedure of the wire grid polarizer described in Fig. 8. The structures and processes shown in Figures 9 through 11 are the same as those in Figure 2 and Figures 5 through 7, and are not described here. However, in this embodiment, the first grid has a semicircular or semi-elliptical cross section and its outer surface is a curved surface. The definition of the distance G between the width F of the first grid and the first grid is based on half of its height ,, and the vertical line is pulled down for the cross section or the intercept point of the grid surface and its half height 1/2 Ε In order to measure its corresponding width. Further, as shown in the structure shown in Fig. 12, the first grid 110 has a line shape, and the cross section of the second grid may be circular or elliptical. This line gated 17 201135287 can be realized by adjusting the etch process after the first grid π 〇 and the first grid base layer are formed. Figure 13 is another preferred embodiment of the present invention, wherein the ratio of the width F of the first grid to the width C of the second grid satisfies F: c == 1 ·· (0 2 to 1.5), as shown in the figure As shown in the thirteenth, the width c of the second grid may be greater than the width F of the first grid; that is, the width c of the second grid of the structure is 1 to 1.5 times the width F of the first grid. In this embodiment, the outer surface of the second grid 可 may be an elliptical surface, a line shape, or a polygon. 14 is a cross-sectional structural diagram of a liquid crystal device including a wire gridizer according to the present invention, comprising: a liquid crystal display panel 200, a backlight for providing a light source to the liquid crystal display panel 200, and according to the present invention The wire gater of the invention. The line gate is disposed above or below the liquid crystal display panel 2 or on any surface of the backlight unit 230 containing the optical film. The backlight unit 230 includes a light source 232, a diffusion film 236 for diffusing light emitted from the light source 232, and a reflective film 234 disposed below the light source 232. The light source 232 can be any type of Cold Cathode Fluorescent Lamp (CCFL), External Electrode Fluorescent Lamp (EEFL), or Light Emitting Diode (LED). Light source 232 produces light and is emitted toward diffusion diaphragm 236. The reflective diaphragm 234 is made of a highly reflective material, and the reflection 18 201135287 diaphragm 234 functions to reflect light in a direction opposite to the liquid crystal display panel 200 back to the diffusion diaphragm 236 to reduce light loss. The diffusion film 236 receives the light emitted from the light source 232, directs it to the front end of the liquid crystal display panel 200, and diffuses the light so as to be evenly distributed over a wide angle before entering the liquid crystal display panel 200. The preferred diffusion film 236 is composed of a transparent resin film coated on both sides with a diffusion function film layer. The liquid crystal display panel 200 includes a color filter substrate 212, a thin film transistor substrate 210, and a liquid crystal layer 202 interposed between the two substrates. The upper substrate of the color filter substrate 212 is formed with a color filter array including a black matrix to prevent light leakage, a filter for completing color, and a common electrode for forming a vertical electric field along the pixel electrode (c〇mm Electn electr〇de), and an upper orientation layer overlying the pixel electrode to regulate the direction of the liquid crystal. On the lower substrate of the thin film transistor substrate 21, a bismuth film transistor array is formed, and the gate lines and data intersecting each other are formed, and the thin film transistor at the intersection of the gate line and the data line is connected to the 5 莼貘 battery. a pixel electrode of the solar body and a lower alignment layer coated on the pixel electrode and the film crystal to regulate the direction of the liquid crystal. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. It is to be understood that the present invention is not limited to the spirit and scope of the present invention, and should be regarded as further implementation of the present invention without departing from the spirit and scope of the present invention. situation. As shown in FIG. 14, the wire gater according to the present invention may be disposed above or below the liquid crystal display panel 200 or on any surface of the optical film contained in the backlight unit 230. Further, the wire gater according to the present invention may be attached to the surface of the liquid crystal module. Multiple line gaters can also be arranged at specific pitches. Additionally, the second grid can be facing up or down. Moreover, the wire gater according to the present invention further includes: a first grid 110 disposed in parallel below the liquid crystal display panel 200 at a specific pitch, and a second grid formed on the first grid 110 112. In addition to the above liquid crystal device, the line gater according to the present invention can also be applied to a 3D stereoscopic image display device. Thus, the wire gater according to the present invention can be widely used for achieving high luminance and high reliability. According to the present invention, a wire grid having a first grid disposed parallel to a substrate at a specific pitch and a second grid formed thereon is formed by transfer, deposition, and wet etching. Process technology. As a result, the number of process steps can be reduced, resulting in reduced process cost and time, and reliability. Moreover, by the wet etching process, the second grid can produce an optimum height of 20 201135287 and a width. Thereby, there is an advantage of improving light transmittance and brightness and increasing polarization efficiency. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as a further implementation of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective schematic view showing the principle of operation of a line gater according to an embodiment of the present invention. Figure 2 is a schematic cross-sectional view showing the height and width of each of the first and second grids of the line gater of Figure 1. Figure 3 is a measurement result of light characteristics of the height and width of the second grid of the wire gridder of the present invention. Figure 4 is a graph showing the results of luminance and penetration measurement of the wire gridder of the present invention. 5 to 7 are schematic views showing the fabrication procedure of the wire gater according to the present invention. Figure 8 is a schematic cross-sectional view showing a first grid having a hemispherical pattern in accordance with another embodiment of the present invention. Figures 9 through 11 are schematic diagrams showing the fabrication of the line gater shown in Figure 8. Figure 12 is a cross-sectional view of a wire gater according to still another embodiment of the present invention. Figure 13 is a cross-sectional view of a wire gridder according to still another embodiment of the present invention. Figure 14 is a cross-sectional view showing the structure of a liquid crystal device including a wire gater of the present invention. [Main component symbol description] 100 substrate 110/140 first grid ❹ 112/142 second grid 122/152 first grid base layer 124/154 second grid base layer 120/150 transfer mold 126/156 Trench 128/158 protrusion 200 liquid crystal display panel Q 202 liquid crystal layer 210 thin film transistor substrate 212 color filter substrate 230 backlight unit 232 light source 234 reflective film 236 diffusion film 22

Claims (1)

201135287 七、申請專利範圍: 1. 一種線栅極化器,其包括: 一第一柵格層,其包括至少一第一栅格且位於一基板 之上;以及 一第二柵格層,其包括至少一第二柵格且位於該第一 柵格之上; 其中該第一柵格的寬度與該第二栅格的寬度之比率滿 Ο 足 1 : (0.2 至 1.5)。 2. 如凊求項1所述之線栅極化器’其中該第一栅格及該第 一柵格層係由高分子材料所製成,且該第二柵格係由金 屬材料所製成。 3. 如請求項2所述之線柵極化器,其中該第二柵格的寬度 與該第二栅格之間的間距之比率滿足1 : (0.2至1.5)。 4. 如請求項2所述之線柵極化器,其中該第二柵格的寬度 〇 與其高度之比率滿足1 : ( 1至5)。 5. 如請求項2所述之線柵極化器,其中該第二柵格的節距 與其高度之比率滿足1 : (1至5)。 6. 如請求項1 5中任一項所述之線柵極化器’其中該第 一柵格的寬度與該第一柵格之間的間距之比率滿足1 : (0.2 至 1.5)。 7. 如請求項6所述之線栅極化器,其中該第一柵格的寬度 23 201135287 與其向度之比率滿足1 : (0.2至5)。 8.如請求項1所述之線柵極化器,其中該第一栅格或該第 一概格的節距係介於5 Onm至1 μιη之間。 9.如請求項8所述之線柵極化器,其中每一個該第一柵格 及該第二柵格的截面為圓形、橢圓、或多邊形。 10·一種製作線柵極化器的方法,其包括: 一第一步驟:於一基板上之一第一柵格基礎層上,形 成複數個第一栅格,每一個該第一柵格具有一特定 的節距; 一第二步驟:形成一第二栅格基礎層於該第一柵格之 上;以及 第二步驟.蝕刻該第二栅格基礎層,以形成複數個 第二栅格;201135287 VII. Patent Application Range: 1. A wire gridizer comprising: a first grid layer comprising at least one first grid and located on a substrate; and a second grid layer, The at least one second grid is included and located above the first grid; wherein the ratio of the width of the first grid to the width of the second grid is equal to 1: (0.2 to 1.5). 2. The wire gater of claim 1, wherein the first grid and the first grid layer are made of a polymer material, and the second grid is made of a metal material. to make. 3. The line gater of claim 2, wherein a ratio of a width of the second grid to a spacing between the second grids satisfies 1: (0.2 to 1.5). 4. The line gater of claim 2, wherein the ratio of the width 〇 of the second grid to its height satisfies 1: (1 to 5). 5. The line gater of claim 2, wherein the ratio of the pitch of the second grid to its height satisfies 1: (1 to 5). 6. The line gater of any one of claims 15 wherein the ratio of the width of the first grid to the spacing between the first grids satisfies 1: (0.2 to 1.5). 7. The line gater of claim 6, wherein the ratio of the width 23 201135287 of the first grid to its dimension satisfies 1: (0.2 to 5). 8. The line gater of claim 1, wherein the pitch of the first grid or the first grid is between 5 Onm and 1 μιη. 9. The line gater of claim 8, wherein each of the first grid and the second grid has a circular, elliptical, or polygonal cross section. 10. A method of fabricating a line gater, comprising: a first step of forming a plurality of first grids on a first grid base layer on a substrate, each of the first grids having a specific pitch; a second step of: forming a second grid base layer over the first grid; and a second step of etching the second grid base layer to form a plurality of second grids ; 其中,該第一柵格與該第二栅格的 (0.2 至 1.5)。 寬度比率滿足i: u.如請求項10所述之方法,其中在該第一步驟 卜 數個第-柵格係以具有複數個溝槽的一轉 為设 並形成於該第一柵格基礎層上;其中,診狖、“知壓 格係分別形成於各相對應的該複數=數個第—柵 柵格基礎層係由高分子材料所製成。料内,且該第― 12.如請求項1G所述之方法,其中該第二 24 201135287 由一沉積製程,形成一金屬材料層。 13. 如請求項10至12中任一項所述之之方法,其中在該第 一步驟中,該第一柵格的形成使得:該第一柵格的寬度 與該第一柵格之間的間距之比率滿足1 : ( 0.2至1.5), 或該第一柵格的寬度與其高度之比率滿足1:(0.2至 5) ° 14. 如請求項13所述之方法,其中,該第三步驟包括: 進行一溼蝕刻製程;以及 進行一蝕刻製程,使得:該第二柵格的寬度與該第二 柵格之間的間距之比率滿足1 : (0.2至1.5)、該第 二柵格的寬度與其高度之比率滿足1 :(1至5)、或 該第二柵格的節距與其高度之比率滿足1:( 1至5)。 15. —種液晶裝置,其包括: 一液晶顯示面板; 一背光單元,用以提供光源給該液晶顯示面板;以及 如請求項1至5中任一項所述之線栅極化器; 其中,該線柵極化器形成於該液晶顯示面板的上面或 下面、或於該背光單元内含之一複數個光學膜片的任一 個表面上,用以增加光效率。 16. 如請求項15所述之液晶裝置,其中該線柵極化器的形 成使得:該第一柵格的寬度與該第一柵格之間的間距之 25 201135287 比率滿足1:(0.2至1·5),或該第一柵格的寬度與其高 度之比率滿足1 : (0.2至5)。 17.—種3D立體影像顯示裝置,其包括如請求項1至5中 任一項所述之線拇極化器。Wherein the first grid and the second grid are (0.2 to 1.5). The width ratio satisfies i: u. The method of claim 10, wherein in the first step, the plurality of first grids are set in a turn having a plurality of grooves and formed on the first grid base On the layer; wherein, the diagnosis, "the pressure grid is formed in each of the corresponding plural = several first grid grid layer is made of polymer material. In the material, and the first - 12. The method of claim 1 , wherein the second method of the present invention is the method of any one of claims 10 to 12, wherein the first step is The first grid is formed such that a ratio of a width of the first grid to a spacing between the first grids satisfies 1: (0.2 to 1.5), or a width of the first grid and a height thereof The ratio of 1:2 to 5). The method of claim 13, wherein the third step comprises: performing a wet etching process; and performing an etching process such that: the width of the second grid The ratio of the spacing between the second grid and the second grid satisfies 1: (0.2 to 1.5), the second grid The ratio of the degree to the height satisfies 1: (1 to 5), or the ratio of the pitch of the second grid to its height satisfies 1: (1 to 5). 15. A liquid crystal device comprising: a liquid crystal display panel a backlight unit for providing a light source to the liquid crystal display panel; and the line gater according to any one of claims 1 to 5; wherein the line gate is formed on the liquid crystal display panel Above or below, or on the surface of one of the plurality of optical films in the backlight unit for increasing the light efficiency. The liquid crystal device according to claim 15, wherein the wire aligner The ratio is such that the ratio of the width of the first grid to the first grid is 25 201135287, the ratio of the width of the first grid is 1: (0.2 to 1.5), or the ratio of the width of the first grid to its height satisfies 1: (0.2 to 5) 17. A 3D stereoscopic image display device comprising the linear thumb polarizer of any one of claims 1 to 5.
TW099129669A 2010-04-12 2010-09-02 Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer TW201135287A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100033340A KR101714035B1 (en) 2010-04-12 2010-04-12 A wire grid polarizer, liquid crystal display, 3d-display including the same and method of manufacturing the wire grid polarizer

Publications (1)

Publication Number Publication Date
TW201135287A true TW201135287A (en) 2011-10-16

Family

ID=45029128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099129669A TW201135287A (en) 2010-04-12 2010-09-02 Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer

Country Status (2)

Country Link
KR (1) KR101714035B1 (en)
TW (1) TW201135287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112241038A (en) * 2019-07-17 2021-01-19 莫克斯泰克公司 High index, curved-cap wire grid polarizer
CN113867032A (en) * 2020-06-30 2021-12-31 京东方科技集团股份有限公司 Wire grid polarizer and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413970B1 (en) 2015-04-08 2022-06-28 삼성디스플레이 주식회사 Wire grid polarizer and method for fabricating the same
KR20190055283A (en) 2017-11-13 2019-05-23 삼성디스플레이 주식회사 Polarizer and display device including the same
KR102504162B1 (en) 2020-12-22 2023-02-28 한국광기술원 polarized light emitting diode, method of making the same and 3 dimensional display having the same
KR20230143216A (en) 2022-04-01 2023-10-12 주식회사 애즈랜드 Polarization light emitting diode module, manufacturing method thereof, and stereoscopic image display device having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1952700B (en) * 2005-10-17 2010-06-09 旭化成电子材料株式会社 Wire grid polarizer and manufacturing method of the same
JP5206029B2 (en) * 2008-03-04 2013-06-12 ソニー株式会社 Liquid crystal display
KR100952137B1 (en) * 2008-04-18 2010-04-09 실리콘 디스플레이 (주) Stereoscopic image display device and manufacturing method thereof
KR20100041525A (en) * 2008-10-14 2010-04-22 주식회사 코오롱 Wire grid polarizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112241038A (en) * 2019-07-17 2021-01-19 莫克斯泰克公司 High index, curved-cap wire grid polarizer
CN112241038B (en) * 2019-07-17 2024-04-12 莫克斯泰克公司 High index, curved cap wire grid polarizer
CN113867032A (en) * 2020-06-30 2021-12-31 京东方科技集团股份有限公司 Wire grid polarizer and manufacturing method thereof
US12248247B2 (en) 2020-06-30 2025-03-11 Boe Technology Group Co., Ltd. Wire grid polarizer and fabrication method therefor

Also Published As

Publication number Publication date
KR101714035B1 (en) 2017-03-22
KR20110113968A (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US9599762B2 (en) Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer
WO2017071404A1 (en) Optical structure and manufacturing method thereof, display substrate and display device member
CN103842862B (en) Wire grid polarizer and projection type image display device
JP5937170B2 (en) Liquid crystal display
TW201135287A (en) Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer
WO2017084175A1 (en) Liquid crystal display device and method for manufacturing same
CN104777659B (en) In-cell polarizer, liquid crystal display, and method of making a liquid crystal display
KR20150024985A (en) Wire grid polarizer and liquid crystal display panel and liquid crystal display device having the same
TW594237B (en) Light guide plate having anti-reflection layer, method of manufacturing the same, illumination device, and liquid crystal display
KR101823680B1 (en) A wire grid polarizer, liquid crystal display including the same and method of manufacturing the wire grid polarizer
US9488764B2 (en) Wire grid polarizer and backlight unit using the same
US9080748B2 (en) Display panel having improved light-use efficiency, display device including the display panel, and method of manufacturing the display panel
US20150070762A1 (en) Polarizer, display device having the same, and method of manufacturing the same
WO2024040751A1 (en) Display panel, preparation method therefor, and display apparatus
US11022736B2 (en) Metal wire grid and its manufacturing method, and display panel
CN107505794A (en) A kind of display device and backlight
CN111816789A (en) Display substrate and manufacturing method thereof
US9594206B2 (en) Complex substrate for display apparatus, display apparatus having the same and method of manufacturing the same
US20190096918A1 (en) An array substrate, mask plate and array substrate manufacturing method
WO2023065871A1 (en) Display module and display device
CN109244200B (en) Flip chip, surface light source and display device using the surface light source
WO2021174392A1 (en) Polarizer, electronic device, and method for preparing polarizer
WO2021031434A1 (en) Encapsulation structure, display panel and display apparatus
KR20130015271A (en) Optical sheet for condensing light and back light unit comprising the same
KR20110107694A (en) Nano wire grid polarizer and liquid crystal display device comprising the same