201134662 六、發明說明: 【發明所屬之技術領域】 本發明有關光學用消光薄膜(matte film)。 【先前技術】 於薄膜表面具有凹凸形狀(無光粗糙層(matte )形 狀)之消光薄膜,係利用爲光擴散薄膜(light diffusion film )或偏光分離片材保護薄膜(polarization separating sheet protection film)等的光學用途,而爲防止因與其他 構件的接觸所引起之薄膜表面的擦傷起見,對此種薄膜要 求其表面具有高的硬度。 又,例如,當將此消光薄膜作爲保護液晶顯示裝置.上 之偏光分離片材而層合於偏光分離片材的出射面上使用時 ,則爲防止從偏光分離片材所出射之偏光的偏光方向( direction of polarized light)有所改變起見,需要降低其 光學歪斜(optical strain )。再者,由於消光薄膜,係將 在液晶裝置內長期間暴露在發熱中之故,需要具有對此種 _ 發熱的耐性。 可利用爲此種光學用途之消光薄膜而言,提案有:於 由聚碳酸酯樹脂所成之薄膜表面,藉由壓紋輥輪轉寫( embossed roller transcription)而形成有既定的凹凸形狀 者(專利文獻1、2)、或於由聚碳酸酯樹脂所成之層表面 ,塗佈有經分散球狀熔珠(ball sized beads)之丙烯酸系 熱硬化性樹脂者(專利文獻3 )。 -5- 201134662 〔先前技術文獻〕 〔專利文獻〕 〔專利文獻1〕日本專利特開2004-5 3 998號公報 〔專利文獻2〕國際公開第200 8/0 8 1 95 3號 〔專利文獻3〕日本專利特開200 1 -42 1 08號公報 【發明內容】 〔發明所欲解決之課題〕 然而,如上述之專利文獻1至3所記載之消光薄膜,則 在薄膜的表面硬度、光學歪斜、以及耐熱性方面並非爲令 人滿意者。 於是,本發明之課題在於提供一種在薄膜的表面硬度 、光學歪斜、耐熱性的任一方面均良好的光學用薄膜。 〔用以解決課題之手段〕 本發明人等,爲解決上述課題而專心硏究之結果發現 ’如使用於由含有聚碳酸酯系樹脂之聚碳酸酯系熱塑性樹 脂組成物所成層(A)的至少一邊的面上,層合有由含有 丙烯酸系樹脂之丙烯酸系熱塑性樹脂組成物所成層(B ) ’而至少1個層(B)表面爲消光面之消光薄膜,則可解決 上述課題之事贲,終於完成本發明。 亦即,本發明係由下列之構成而成。 (1) 一種光學用消光薄膜,係於由含有聚碳酸酯系 樹脂之聚碳酸酯系熱塑性樹脂組成物所成層(A )的至少 -6- ⑧. 201134662 一邊的面上,層合有由含有丙烯酸系樹脂之丙烯酸系熱塑 性樹脂組成物所成層(B ),而至少1個層(B )表面爲消 光面之光學用消光薄膜,其特徵爲:薄膜全體的厚度爲30 至3 00 μηι、層(A )的厚度係對薄膜全體的厚度爲30%以上 、層(B)的厚度爲8μιτι以上,而薄膜的波長590nm的入射 光(incident light)的阻滯値(retardation value)爲 3 Onm以下。 (2) 如前述(1)記載之光學用消光薄膜,其中前述 丙烯酸系熱塑性樹脂組成物,係含有橡膠粒子者。 (3) 如則述(2)記載之光學用消光薄膜,其中前述 橡膠粒子,係丙烯酸橡膠粒子。 (4) 如前述(1)至(3)之任一項中記載之光學用 消光薄膜,其中前述消光面係經由無光粗糙輥輪轉寫( matte roll transcription)所形成者。 (5) 如前述(1)記載之光學用消光薄膜,其中前述 丙稀酸系熱塑性樹脂組成物’係含有消光化劑(mutting agent)者 ° (ό)如前述(5)記載之光學用消光薄膜,其中前述 消光化劑,係以選自甲基丙烯酸甲酯系聚合物粒子、苯乙 嫌系聚合物粒子、矽氧烷系聚合物粒子所成群之至少1種 作爲主體之透明微粒子。 (7)如前述(1)至(6)之任一項中記載之光學用 消光薄膜,其中前述聚碳酸酯系熱塑性樹脂組成物和前述 丙稀酸系熱塑性樹脂組成物係經由共擠壓成型(c〇_ 201134662 extruding moulding )所成者 0 (8) 如前述(1)至(7)之任一項中記載之光學用 消光薄膜,其中係爲液晶顯示裝置中所使用者。 (9) 如前述(8)記載之光學用消光薄膜,其中係爲 前述液晶顯示裝置中之偏光分離片材的保護所使用者。 本發明之光學用消光薄膜,係由於光學歪斜小之故, 不致於改變偏光的偏光方向,又,由於薄膜的表面硬度高 之故’不會因與其他構件的接觸等而擦傷,再者,由於對 發熱的耐性高、收縮或尺寸變化係數低之故,如在液晶裝 置內使用時,則能耐長期間之使用。 〔發明之最佳實施形態〕 以下’將就本發明加以詳細說明。本發明之光學用消 光薄膜’係於由含有聚碳酸酯系樹脂之聚碳酸酯系熱塑性 樹脂組成物所成層(A)的至少一邊的面上,層合有由丙 稀酸酯樹脂及需要時含有橡膠粒子之丙烯酸系熱塑性樹脂 組成物所成層(B ),而至少1個層(B )表面將成爲消光 面者。 <聚碳酸酯系熱塑性樹脂組成物> 作爲層(A )的形成材料之前述聚碳酸酯系熱塑性樹 脂組成物’係作爲樹脂成分而含有聚碳酸酯系樹脂者。 該聚酸酯系樹脂而言,例如,耐熱性、機械性強度、 透明性等優異的芳香族聚碳酸酯樹脂很適合使用。芳香族 -8 - ⑧ 201134662 聚碳酸醋樹脂,通常係除使二元酚與碳酸酯先質( Precursor)依界面縮聚法(interfacial polycondensation) 、溶態_父換法(molten ester interchange)進行反應所 之外’尙使聚碳酸醋預聚物(prep〇lymer)依固相酯交 換法(solid phase ester interchange)進行聚合者、或者 依環狀碳酸酯化合物的開環聚合法(ring_opening polymerization)使其聚合所得者。 前述二元酚而言,可例舉:氫醌 '間苯二酚( resorcinol) 、4,4’-二羥基二苯基、雙(4_羥基苯基)甲 烷、雙{(4 -羥基-3, 5 -二甲基)苯基}甲烷、1,丨-雙(4_羥 基苯基)乙烷、1,1-雙(4·羥基苯基)-1_苯基乙烷、2,2-雙(4-羥基苯基)丙烷(通稱雙酚a) 、2,2-雙{(4-羥基-3 -甲基)苯基}丙烷、2,2-雙{ (4 -羥基-3,5 -二甲基)苯基} 丙烷、2,2-雙{ (4-羥基_35_二溴代)苯基}丙烷、22_雙{ (3-異丙基-4-經基)苯基}丙烷、2,2_雙{ (4_羥基_3·苯基 )苯基}丙烷、2,2-雙(4_羥基苯基)丁烷、2,2_雙(4_羥 基苯基)-3-甲基丁烷、2,2_雙(4_羥基苯基)-3,3_二甲基 丁烷、2,4·雙(4-羥基苯基)-2_甲基丁烷、2,2_雙(4_羥 基苯基)戊院、2,2-雙(心羥基苯基)-4_甲基戊烷、n 雙(4-羥基苯基)-3-環己烷、^-雙(4·羥基苯基)_4-異 丙基環己院、Μ·雙(4-羥基苯基)-3,3,5-三甲基環己烷 、9,9·雙{ (4-經基·3-甲基)苯基丨莽、99·雙{ (4_羥基-3_ 甲基)苯基}葬、α,α,-雙(4_羥基苯基)·鄰-二異丙基苯、 α,α’-雙(4-羥基苯基)-間-二異丙基苯、α,α’-雙(4-羥基 -9- 201134662 苯基)-對-二異丙基苯、1,3-雙(4-羥基苯基)-5,7-二甲 基金剛烷(adamantane) 、4,4’-二羥基二苯基颯(sulf0ne )、4,4’-二羥基二苯基亞颯、4,4’-二羥基二苯基硫化物、 4,4’-二羥基二苯基酮、4,4’-二羥基二苯基醚以及4,4’-二 羥基二苯基酯等,而此等可以單獨或混合2種以上後使用 〇 其中,較佳爲將選自雙酚A、2,2-雙{(4·羥基-3-甲基 )苯基}丙烷、2,2-雙(4-羥基苯基)丁烷、2,2-雙(4-羥 基苯基)-3,3-二甲基丁烷、2,2-雙(4-羥基苯基)-4-甲基 戊烷、1,1-雙(4-羥基苯基)-3, 3,5-三甲基環己烷以及 α,α’-雙(4-羥基苯基)-間-二異丙基苯所成群之二元酚按 單獨方式或2種以上之方式使用,特佳爲雙酚Α的單獨使用 ,或1,1-雙(4-羥基苯基)-3,3,5-三甲基環己烷與選自雙 酚A、2,2-雙{(4-羥基-3-甲基)苯基}丙烷以及α,α’-雙( 4-羥基苯基)-間-二異丙基苯所成群之1種以上的二元酚的 倂用。 前述碳酸酯先質而言,可使用羰基鹵化物、碳酸酸酯 或二元酚的二鹵化甲酸酯等。 <丙烯酸系熱塑性樹脂組成物> 屬於層(Β)的形成材料之前述丙烯酸系熱塑性樹脂 組成物,係作爲樹脂成分而含有丙烯酸酯樹脂者。 該丙烯酸酯樹脂而言,例如,可採用甲基丙烯酸酯樹 脂。甲基丙烯酸酯樹脂,係以甲基丙烯酸酯作爲主體之聚 ⑧ -10- 201134662 合物,而可爲甲基丙烯酸酯的單獨聚合物,亦可爲甲基丙 烯酸酯5 0重量%以上與此外的單體5 0重量%以下的共聚物 。在此,甲基丙烯酸酯而言,通常可採用甲基丙烯酸的烷 基酯。 甲基丙烯酸酯樹脂之較佳的單體組成,係以全單體作 爲基準,甲基丙烯酸烷酯爲50至100重量%、丙烯酸烷酯爲 〇至50重量%,此等以外的單體爲0至49重量%,更佳爲甲 基丙烯酸烷酯爲50至99.9重量%、丙烯酸烷酯爲0.1至50重 量%、此等以外的單體爲0至49重量%。 在此,甲基丙烯酸烷酯的例而言,可舉:甲基丙烯酸 甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸2-乙基己酯等,其烷基的碳數通常爲1至8、較佳爲1至4。其 中甲基丙烯酸甲酯很適合使用。 又,丙烯酸烷酯的例而言,可舉:丙烯酸甲酯、丙烯 酸乙酯、丙烯酸丁酯、丙烯酸2-乙基己酯等,其烷基的碳 數通常爲1至8、較佳爲1至4。 又,甲基丙烯酸烷酯及丙烯酸烷酯以外的單體的例而 言’可爲單官能單體,亦即,於分子內具有聚合性的碳· 碳雙鍵(double bond ) 1個之化合物、亦可爲多官能單體 、亦即,於分子內具有聚合性的碳-碳雙鍵至少2個之化合 物’惟單官能單體很適合使用。 此種單官能單體的例而言,可舉:苯乙烯、α-甲基苯 乙烯、乙烯基甲苯等的苯乙烯系單體,丙烯腈、甲基丙烯 腈等的氰基化烯基,丙烯酸、甲基丙烯酸 '無水馬來酸、 -11 - 201134662 N-取代馬來醯亞胺等。 又,多官能單體的例而言,可舉:乙二醇二甲基丙烯 酸醋、丁二醇二甲基丙烯酸酯、三羥甲基丙烷三丙烯酸酯 等的多元醇的聚不飽和羧酸酯、丙烯酸烯丙酯、甲基丙烯 酸烯丙酯、桂皮酸二烯丙酯等的不飽和羧酸的烯基酯’酞 酸二烯丙酯、馬來酸二烯丙酯、三烯丙酯三環氰酸酯、三 烯丙基異三聚氰酸酯等的多元酸(polybasic acid)的聚烯 基酯,二乙烯基苯等的芳香族聚烯基化合物等。 在此,上述的甲基丙烯酸烷酯、丙烯酸烷酯、以及除 此等以外的單體,分別在需要時,亦可使用其等的2種以 上。 甲基丙烯酸酯樹脂,從耐熱性的觀點來看,較佳爲其 玻璃化溫度在70 °C以上、更佳爲80 °C以上、再佳爲90 °C以 上者。此種玻璃化溫度,如調整單體的種類或其比例,則 可適當加以設定。 甲基丙烯酸酯樹脂,如將上述單體成分藉由懸浮聚合 (suspension polymerization ) 、乳化聚合(emulsion polymerization )、塊狀聚合(b u 1 k ρ ο 1 y m e r i zat i ο η )等的 方法而聚合·,則可調製。此時,爲獲得很合適的玻璃化溫 度起見,或爲獲得能顯示合適的對層合薄膜的成型性之熔 化黏度(melt viscosity)起見,轉佳爲在聚合時使用適當 的連鎖轉移劑(chain-transfer agent) »連鎖轉移劑的添 加量’係按照單體的種類或其比例而適當決定即可。 -12- ⑧ 201134662 <橡膠粒子> 丙烯酸系熱塑性樹脂組成物中,亦可調配橡膠粒子。 在此,橡膠粒子而言,例如,可採用:丙烯酸系橡膠粒子 、丁二烯系橡膠粒子、苯乙烯-丁二烯系橡膠粒子等者, 惟其中,從耐候性、耐久性的觀點來看,丙烯酸橡膠粒子 很適合使用。 丙烯酸橡膠粒子,係作爲橡膠成分而以丙烯酸酯作爲 主體之含有彈性聚合物之粒子,亦可爲僅由此彈性聚合物 所成之單層構造的粒子,亦可爲具有此種彈性聚合物的層 、與例如,以甲基丙烯酸酯作爲主體之聚合物的層之多層 構造的粒子,惟從丙烯酸系熱塑性樹脂所成層(B)的表 面硬度的觀點來看,較佳爲多層構造的粒子。 又,此種彈性聚合物,可爲丙烯酸酯的單獨聚合物、 亦可爲丙烯酸酯5 0重量%以上與除此以外的單體5 0重量% 以下所成共聚物。在此,丙烯酸酯而言,通常,可採用丙 烯酸的烷基酯。 以丙烯酸酯作爲主體之彈性聚合物之較佳的單體組成 ,係以全單體作爲基準,丙烯酸烷酯爲50至99.9重量%、 甲基丙烯酸烷酯爲0至49.9重量%、除此等以外的單官能單 體爲0至49.9重量%、以及多官能單體爲0.1至10重量%。 在此,於上述彈性聚合物中之丙烯酸烷酯的例而言, 係與先前作爲甲基丙烯酸酯樹脂的單體成分所舉出之丙烯 酸烷酯的例相同者,其烷基的碳數通常爲1至8、較佳爲4 至8。 -13- 201134662 又,於上述彈性聚合物中之甲基丙烯酸烷酯的例而言 ,係與先前作爲甲基丙烯酸酯樹脂的單體成分所舉出之甲 基丙烯酸烷酯的例相同者,其烷基的碳數通常爲1至8、較 佳爲1至4。 除上述彈性聚合物中之丙烯酸烷酯及甲基丙烯酸烷酯 以外的單官能單體的例而言,係與先前作爲甲基丙烯酸酯 樹脂的單體成分所舉出之甲基丙烯酸烷酯及丙烯酸烷酯以 外的單官能單體的例相同者。其中,苯乙烯、α_甲基苯乙 烯、乙烯基甲苯等的苯乙烯系單體很適合使用。 於上述彈性聚合物中之多官能單體的例而言,係與先 前作爲甲基丙烯酸酯樹脂的單體成分所舉出之多官能單體 的例相同者,其中,不飽和羧酸的烯基酯或多元酸的聚烯 基酯很適合使用。 於上述的彈性聚合物中之丙烯酸烷酯、甲基丙烯酸烷 酯、除此等以外的單官能單體、以及多官能單體,可分別 按照需要使用其等的2種以上。 如作爲橡膠粒子而使用多層構造者之情形,其合適的 例而言,可舉:將於以上述之丙烯酸酯作爲主體之彈性聚 合物的層的外側,具有以甲基丙烯酸酯作爲主體之聚合物 的層者,亦即將以上述之丙烯酸酯作爲主體之彈性聚合物 作爲內層,將以甲基丙烯酸酯作爲主體之聚合物作爲外層 之至少2層構造者。在此,作爲外層的聚合物的單體成分 之甲基丙烯酸酯而言,通常可採用甲基丙烯酸烷酯。 又,外層的聚合物,係對內層的彈性聚合物1 0 〇重量 -14- ⑧ 201134662 份,通常爲按10至400重量份、較佳爲按20至200重量份的 比例形成爲宜。如將外層的聚合物,對內層的彈性聚合物 1 〇〇重量份所成1 0重量份以上時,則該彈性聚合物將難於 產生凝聚,結果丙烯酸系樹脂層的透明性即成爲良好者。 上述外層的聚合物的較佳的單體組成,係以全單體作 爲基準,甲基丙烯酸烷酯爲50至100重量%、丙烯酸烷酯爲 〇至5 0重量%,此等以外的單體爲〇至5 0重量。/。、以及多官 能單體爲0至10重量%。 於上述外層的聚合物中之甲基丙烯酸烷酯的例而言, 係與先前作爲甲基丙烯酸酯樹脂的單體成分所舉出之甲基 丙烯酸烷酯的例相同者,其烷基的碳數通常爲1至8、較佳 爲1至4。其中,甲基丙烯酸甲酯很適合使用。 於上述外層的聚合物中之丙烯酸烷酯的例而言,係與 先前作爲甲基丙烯酸酯樹脂的單體成分所舉出之丙烯酸烷 酯的例相同者,其烷基的碳數通常爲1至8、較佳爲1至4。 於上述外層的聚合物中之除甲基丙烯酸烷酯及丙烯酸 烷酯以外的單體的例而言,係除與先前作爲甲基丙烯酸酯 樹脂的單體成分所舉出之甲基丙烯酸烷酯及丙烯酸烷酯以 外的單官能單體的例相同者,又,多官能單體的例而言, 係與先前作爲甲基丙烯酸酯樹脂的單體成分所舉出之多官 能單體的例相同者。 在此,於上述的外層的聚合物中之甲基丙烯酸烷酯、 丙烯酸烷酯、此等以外的單體、以及多官能單體,可分別 按照需要使用其等的2種以上。 -15- 201134662 又,多層構造的丙烯酸橡膠粒子的合適的例而言,亦 可舉··將於屬於上述2層構造的內層之以上述之丙烯酸酯 作爲主體之彈性聚合物的層的內側,再具有以甲基丙烯酸 酯作爲主體之聚合物的層者,亦即,將以此甲基丙烯酸酯 作爲主體之聚合物作爲內層,將以上述之丙烯酸酯作爲主 體之彈性聚合物作爲中間層,將以先前的甲基丙烯酸酯作 爲主體聚合物作爲外層之至少3層構造者。在此,作爲外 層的層合物的單體成分之甲基丙烯酯配而言,通常可採用 甲基丙烯酸烷酯。又,內層的聚合物,係對中間層的彈性 聚合物100重量份,通常爲按10至400重量份,較佳爲按20 至2 00重量份的比例形成爲宜。 上述內層的聚合物的較佳的單體組成,係以考單體作 爲基準,甲基丙烯酸烷酯爲70至100重量%、丙烯酸烷酯爲 0至3 0重fl %、此等以外的單體爲〇至3 0重量%、以及多官 能單體爲〇至1〇重量%。 於上述內層的聚合物中之甲基丙烯酸烷酯的例方面, 係與先前所舉作爲甲基丙烯酸酯樹脂的單體成分之甲基丙 烯酸烷酯的例同樣,其烷基的碳數通常爲1至8、較佳爲1 至4。其中,係以使用甲基丙烯酸甲酯爲佳。 又,於上述內層的聚合物中之丙烯酸烷酯的例方面, 係與之前所舉作爲甲基丙烯酸樹脂之單體成分的丙烯酸烷 酯之例相同,且其烷基的碳數通常爲1至8、較佳爲1至4。 於上述內層的聚合物中之除甲基丙烯酸烷酯及丙烯酸 烷酯以外的單體的例方面,係與先前所舉作爲甲基丙烯酸 -16- ⑧ 201134662 酯樹脂的單體成分之甲基丙烯酸烷酯及丙烯酸烷酯以外的 單官能單體的例相同者,又,多官能單體的例方面,係與 先前所舉作爲甲基丙烯酸酯樹脂的單體成分之多官能單體 的例相同。 在此,於上述的內層的聚合物中之甲基丙烯酸烷酯、 丙烯酸烷酯、此等以外的單體、以及多官能單體,可分別 按照需要使用其等的2種以上。 丙烯酸橡膠粒子,如使先前所述之以丙烯酸酯作爲主 體之彈性聚合物的單體成分,藉由乳化聚合法等,並利用 至少1段的反應進行聚合,則可調製。此時,如先前所述 ’如欲於上述彈性聚合物的層的外側,形成以甲基丙烯酸 酯作爲主體之聚合物的層時,則使該外層的聚合物的單體 成分’在上述彈性聚合物的存在下,藉由乳化聚合法等, 而利用至少1段的反應進行聚合,以對上述彈性聚合物進 行接枝(g r a f t )即可。 又,如先前所述’如欲於上述彈性聚合物的層的內側 ’再形成以甲基丙烯酸酯作爲主體之聚合物的層時,則首 先’使該內層的聚合物的單體成分,藉由乳化聚合法等, 而利用至少1段的反應進行聚合,接著,在所得聚合物的 存在下’使上述彈性聚合物的單體成分,藉由乳化聚合法 寺’而利用至少1段的反應進彳了聚合,以對上述內層的聚 合物進行接枝’再在所得彈性聚合物的存在下,使上層的 聚合物的單體成分,藉由乳化聚合法等,而利用至少1段 的反應進行聚合,以對上述彈性聚合物進行接枝即可。在 -17- 201134662 此’如將各層的聚合分別利用2段以上的反應進行時,則 均非爲各段的單體組成,而作爲整體的單體組成能在既定 的範圍內即可。 丙烯酸橡膠粒子的粒徑而言,該橡膠粒子中之以丙烯 酸酯作爲主體之彈性聚合物的層的平均粒徑,較佳爲0.01 至0.4 μιη、更佳爲0.05至0.3 μιη、再佳爲0.07至0.25 μιη。如 該彈性聚合物的層的平均粒徑爲0.4 μηι以上時,則由於由 丙烯酸系熱塑性樹脂組成物所成層(Β )的透明性會降低 並引起穿透率降低之故,不宜。又,如該彈性聚合物的層 的平均粒徑爲0.01 μιη以下時,則由於層(Β)的表面硬度 會降低以致容易被擦傷之故不合適。 再者,上述平均粒徑,係將丙烯酸橡膠粒子與甲基丙 烯酸酯樹脂混合並使其薄膜化,並於其剖面施加利用氧化 釕(Ruthenium Oxide)之上述彈性聚合物的層的染色後, 使用電子顯微鏡加以觀察,並從被染色之部分的直徑求得 〇 亦即,由於將丙烯酸橡膠粒子混合於甲基丙烯酸酯樹 脂中,並將其剖面使用氧化釕加以染色時,母相(mother phase )的甲基丙烯酸酯樹脂並不被染色,而於上述彈性 聚合物的層的外側存在有以甲基丙烯酸酯作爲主體之聚合 物的層之情形,則該外層的聚合物亦不被染色而僅上述彈 性聚合物的層會被染色之故,可從被如此方式所染色,且 由電子顯微鏡觀察爲略圓形狀之部分的直徑,求得粒徑。 如於上述彈性聚合物的層的內側存在有以甲基丙烯酸酯作 ⑧ -18- 201134662 爲主體之聚合物的層之情形,將以該內層的聚合物亦不會 被染色’其外側的上述彈性聚合物的層則被染色之2層構 造的狀態所觀察,惟在此情形,則按2層構造的外側,亦 即’按上述彈性聚合物的外徑加以認定即可。 對丙烯酸系熱塑性樹脂組成物全體之橡膠粒子的含有 比例’爲丙烯酸系熱塑性樹脂組成物全體的4 0重量。/。以下 ’較佳爲3 0重量%以下。如橡膠粒子的含有比例爲丙烯酸 系熱塑性樹脂組成物全體的4 0重量%以上時,則層(B ) 的表面硬度會降低,以致容易被擦傷。 再者,聚碳酸酯系熱塑性樹脂組成物及丙烯酸系熱塑 性樹脂組成物中,需要時,亦可調配例如,紫外線吸收劑 、有機系染料、無機系染料、顏料、抗氧化劑、抗靜電劑 、表面活性劑等。 <光學用消光薄膜之製造過程> 本發明之光學用消光薄膜而言,係於上述之由聚碳酸 酯系熱塑性樹脂組成物所成層(A )的至少一邊的面上, 層合有由丙烯酸系熱塑性樹脂組成物所成層(B ),而至 少1個層(B )表面將成爲消光面者。 該消光面的形成方法而言,可例舉:藉由在共擠壓成 型時採用外周面形成有凹凸形狀之本身爲金屬輥輪之所謂 無光粗糙輥輪之轉寫之方法、或於共擠壓成型中採用作爲 表層材料而在丙烯酸系熱塑性樹脂組成物中含有成爲消光 化劑之透光微粒子之組成物以使表面形成凹凸之方法等。 -19- 201134662 <採用輕輪之無光粗糖面(matte surface)之形成方法 > 採用所謂無光粗糙輥輪之無光粗糙面的形成方法而言 ,係藉由在共擠成型時採用外周面形成有凹凸形狀之金屬 輥輪之轉寫方法,可例舉:日本專利特開2009- 1 96327號 公報、日本專利特開2009-202 3 82號公報中所載之方法等 〇 第1圖,係表示本發明之光學用消光薄膜的製造過程 (以下,簡稱本發明之製造過程)的一例之槪略說明圖。 如該圖所示,該製造過程,係準備2台熔融擠壓機( molten extruder ) 1、2,經分別飼入於擠壓機中之聚碳酸 酯系熱塑性樹脂組成物及丙烯酸系熱塑性樹脂組成物則被 熔融混煉(m ο 11 e n k n e a d i n g ),並經分別供給於給料部件 (feed block) 3且熔融積合使其一體化後,介由單支管式 口模頭(single manifold die) 4(T型口模頭)而擴張樹 脂,並從口模頭前端成爲薄膜狀後被擠出。 本發明之製造過程中,係按口模頭前層合方式( before-die laminating)將層(Β)層合於層(Α)上,並 使其一體化者。具體而言,例如,經供給於作成2種3層及 2種2層分配式之給料部件3中之聚碳酸酯系熱塑性樹脂組 成物及丙烯酸系熱塑性樹脂組成物,則將在給料部件3內 作成於層(A)的兩面上層合有層(B)之3層構造、或者 於層(A)的一邊的面上層合有層(B)之2層構造以使其 -20- ⑧ 201134662 一體化。 上述的製造過程’係採用給料部件3及口模頭4之例, 惟亦可不用此等’而採用例如’屬於口模頭內層合方式( inside-die laminating )之多支管式 口模頭(multimanifold die) 、屬於口模頭外層合方式(〇utside-die laminating)之雙縫 口模頭(dual slot die)等。 接著’從口模頭4所擠出之樹脂,即被夾介於經略水 平方向按相對向所配置之第1冷卻輕輪(cooling roll) 5與 第2冷卻輥輪6之間’而於由丙烯系熱塑性樹脂組成物所成 層(B)的至少1個表面形成無光粗糙面,藉由第3冷卻輥 輪7而使其緩慢冷卻,則可製得光學用消光薄膜8。 第1冷卻輥輪5,係直徑在25至l〇〇cm程度者,而由橡 膠輥輪或金屬彈性輥輪所成。 前述橡膠輥輪而言,可例舉:聚矽氧橡膠輥輪或含氟 橡膠輥輪等,亦可採用爲提升脫模性而摻混有砂者。橡膠 輥輪的硬度,較佳爲準照JIS K625 3所測定之A。(埃)60 至A°9〇的範圍內。如欲將橡膠輥輪的硬度作成前述範圍內 時,則可例如,調整構成橡膠輥輪之橡膠的交聯度( degree of cross linking)或組成而任意實施。 前述金屬彈性輥輪,係指輥輪內部爲由橡膠所構造者 ,或灌注有流體者,而其外周部爲由具有撓曲性之金屬製 薄膜所構成者。可具體例舉:輥輪內部爲由聚矽氧橡膠輥 輪所構成’並〇·2至1mm程度的圓筒形的不銹鋼製薄膜爲經 被覆於該輥輪的外周部者,或在輥輪內部灌注有水或油等 -21 - 201134662 流體者,則將厚度2至5mm程度的不銹鋼製的圓筒形薄膜 在輥輪端部加以固定’並於內部封入有流體者等。 此種第1冷卻輥輪5而言,採用經以金屬材料或彈性體 所構成者且利用鍍金等方式精加工爲鏡面狀者。在此,金 屬彈性輥輪的金屬製薄膜或橡膠輥輪表面則並不一定需要 平滑者,如按下述中所說明之第2冷卻輥輪6同樣在表面設 置凹凸形狀亦可行。 第2冷卻輥輪6,係直徑在25至100cm程度者,而由在 外周面形成有凹凸形狀之金屬輥輪所成。可具體例舉:對 經切削金屬塊之鑽孔形壓輥(drilled roll )、或對中空構 造之盤旋型壓輥(spiral roll)的內部通入流體、蒸氣等 藉以能控制輥輪表面的溫度之金屬輥輪等,而可使用在此 等金屬輥輪的外周面藉由噴砂(sand blast )或雕刻等而 形成有所需凹凸形狀者。 可形成於第2冷卻輥輪6的外周面之凹凸形狀而言,可 例舉:以算術平均粗糙度(Ra )計爲0.1至ΙΟμηι程度的無 光粗糙形狀等、或具有特定間距(pitch )或高度之凹凸形 狀等。前述算術平均粗糙度(Ra ),係準照JIS B060 1 -200 1利用表面粗糙計測定所得之値。 從口模頭所擠出之樹脂,係屬於層(A )兩面上層合 有層(B)之層合樹脂,而欲於該層(B)的一邊的表面形 成無光粗糖面之情形、或屬於層(A)的一邊的面上層合 有層(B)之層合樹脂,而欲於該層(B)表面形成無光粗 糙面之情形,則挾介於此種第1冷卻輥輪5與第2冷卻輥輪6 -22- 201134662 之間,藉以轉寫第2冷卻輥輪6的前述凹凸形狀,並成型爲 薄膜。此時,消光薄膜的層(B)側將成爲能與第2輥輪6 相接觸之側之方式被擠出。 再者,屬於層(A)的兩面上層合有層(B)之層合樹 脂,而欲於層(B )的雙方的表面形成無光粗糙面之情形 ,則將該層合樹脂挾介於經將上述凹凸形狀形成於外周面 之冷卻輥輪互相之間即可。 轉寫有凹凸形狀之樹脂薄膜,在被第2冷卻輥輪6所捲 取之後,被牽引輥輪所牽引後加以捲取。此時,亦可於第 2冷卻輥輪6後設置第3冷卻輥輪7。如此,由於樹脂薄膜將 被緩慢冷卻之結果,能減少樹脂薄膜的光學歪斜(optical strain )、再能穩定確保與第2冷卻輥輪6之間的接觸時間 之故,能將第2冷卻輥輪6上所具有之凹凸形狀穩定地轉寫 。第3冷卻輥輪7而言,並不別加以限定,可採用在來擠壓 成型中所使用之通常的金屬輥輪。具體例而言,可舉:鑽 孔型壓輥或盤旋型壓輥等。第3冷卻輥輪7的表面狀態,較 佳爲鏡面者。 將經捲掛於第2冷卻輥輪6上之樹脂薄膜,作成通過第 2冷卻輥輪6與第3冷卻輥輪7之間並捲掛於第3冷卻輥輪之 方式。第2冷卻輥輪6與第3冷卻輥輪7之間,可設置既定的 間隙以作成解放狀態,亦可挾介於兩輥輪中。再者,爲更 緩慢方式冷卻樹脂薄膜起見,亦可在第3冷卻輥輪7以後設 置第4冷卻輥輪、第5冷卻輥輪.......等複數支冷卻輥輪, 並作成將經捲掛於第3冷卻輥輪7上之消光薄膜依序捲掛於 -23- 201134662 下一個冷卻輥輪之方式。 <採用消光化劑之無光粗糙面的形成方法> 又,作爲無光粗糙面的其他形成方法,可舉:使用作 爲表層材料而含有成爲消光化劑之粒子之丙烯酸系熱塑性 樹脂組成物而於共擠壓成型中在表面形成凹凸之方法。此 時的共濟壓成型(Co-extruding moulding)方法而言,可 例舉:日本專利特開2009- 1 963 2 7號公報、日本專利特開 2〇09-2023 82號公報中所記載之方法,而在此情形,由於 因消光化劑之效果而形成表面凹凸之故,第2冷卻輥輪6亦 可採用通常的表面狀態爲鏡面之金屬輥輪。 又,此時所使用之消光化劑,通常使用所謂光擴散劑 (light diffusing agent)之粒子之作法係一般性作法,而 光擴散劑而言,可例舉:甲基丙烯酸甲酯系聚合物粒子、 苯乙烯系聚合物粒子、矽氧烷系聚合物粒子等的有機系粒 子、碳酸鈣、硫酸鋇、氧化鈦、氫氧化鋁、矽氧(氧化矽 )、無機玻璃、滑石、雲母、超微粒砂(white carbon) 、氧化鎂、氧化鋅等的無機系粒子等。在此,無機系粒子 ’從能均勻分散於熱塑性樹脂中起見,可爲經以脂肪酸等 的表面處理劑所處理者。 本發明之光學用消光薄膜,係由於作爲光學特性而常 需要局的光線穿透率(丨ight ray permeability)之故,作 爲消光化劑而言,透明性良好的粒子很適合使用。又,從 添加能確保表面的凹凸感覺之程度的消光化劑,且爲確保 -24- 201134662 高的光線穿透率的觀點來看,與作爲基材樹脂之丙烯酸系 樹脂的折射率差不太大的粒子較適合,通常,折射率差在 〇.1程度以內爲宜。從如上述之觀點來看,於本發明中之 消光化劑而言,很適合採用:甲基丙烯酸甲酯系聚合物粒 子、苯乙烯系聚合物粒子、矽氧烷系聚合物粒子等的有機 系粒子。此等粒子,可以單獨方式使用,亦可使用2種以 上。 可作爲上述消光化劑使用之甲基丙烯酸甲酯系聚合物 粒子,係以甲基丙烯酸甲酯作爲主體之聚合物的粒子,而 此種聚合物,係使甲基丙烯酸甲酯、與除此以外之分子的 具有1個能進ί了自由基聚合(radical polymerization)之雙 鍵(double bond )之單官能單體、與分子內具有2個以上 能進行自由基聚合之雙鍵之多官能單體進行共聚合所成之 交聯聚合物(cross-linked polymer)爲宜。 於上述甲基丙烯酸甲酯系聚合物粒子中之除甲基丙烯 酸甲酯以外的單官能單體的例而言,可舉:除先前作爲甲 基丙烯酸甲酯系樹脂的單體的例所舉之甲基丙烯酸甲酯以 外的(甲基)丙烯酸酯、苯乙烯系單體、以及與除(甲基 )丙烯酸酯及苯乙烯系單體以外的單體同樣者,其中苯乙 烯很適合使用。 於上述甲基丙烯酸甲酯系聚合物粒子中之多官能單體 的例而言,可舉:1,4-丁二醇二甲基丙烯酸酯、新戊二醇 二甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、二乙二醇二甲 基丙烯酸酯、四乙二醇二甲基丙烯酸酯、丙烯乙二醇二甲 -25- 201134662 基丙烯酸酯、四丙烯乙二醇二甲基丙烯酸酯、三羥甲基丙 烷三甲基丙烯酸酯、異戊四醇四甲基丙烯酸酯等的多元醇 的甲基丙烯酸酯類;1,4-丁二醇二丙烯酸酯、新戊二醇二 丙烯酸酯、乙二醇二丙烯酸酯、二乙二醇二丙烯酸酯、四 乙二醇二丙烯酸酯、丙烯乙二醇二丙烯酸酯、四丙烯乙二 醇二丙烯酸酯、三羥甲基丙烷三丙烯酸酯、異戊四醇四丙 烯酸酯等的多元醇的甲基丙烯酸酯類;二乙烯基苯、二烯 丙基酞酸酯等的芳香族多官能化合物等。此種多官能單體 ,可分別以單獨方式、或組合2種以上之方式使用。 此種甲基丙烯酸甲酯系聚合物粒子的折射率,係通常 在1.46至1.55程度’而有苯骨架或鹵素原子的含量愈多愈 會顯示大的折射率之傾向。此種甲基丙烯酸甲酯系聚合物 粒子’可例如’依懸浮聚合法(suspension polymerization )、微懸浮聚合法(microsuspension polymerization)、 乳化聚合法(emulsion polymerization)、分散聚合法( dispersion polymerization)等而製造。 可作爲上述消光化劑使用之苯乙烯系聚合物粒子,係 以苯乙烯作爲主體之聚合物的粒子,而此種聚合物,係使 苯乙烯、與除此以外之分子內具有1個能進行自由基聚合 之雙鍵之單官能單體、與分子內具有2個以上能進行自由 基聚合之雙鍵之多官能單體進行共聚合所成之交聯聚合物 爲宜。 於上述苯乙烯系聚合物粒子中之除苯乙烯以外的單官 能單體的例而言’可舉:除甲基丙烯酸甲酯以外,先前作 -26- 201134662 爲甲基丙烯酸甲酯系樹脂的單體的例所得之甲基丙烯 酯以外的(甲基)丙烯酸酯、苯乙烯系單體、以及與 甲基)丙烯酸酯及苯乙烯系單體以外的單體同樣者, 甲基丙烯酸甲酯很適合使用。 於上述苯乙烯系聚合物粒子中之多官能單體的例 ,可舉:與先前作爲甲基丙烯酸甲酯系聚合物粒子的 能單體的例所舉者同樣者,可以分別單獨方式使用, 組合2種以上之方式使用。 此種苯乙烯系聚合物粒子的折射率,係通常在1 1_61程度,而有苯骨架或齒素原子的含量愈多愈會顯 的折射率之傾向。此種苯乙烯系聚合物粒子,可例如 懸浮聚合法、微懸浮聚合法、乳化聚合法、分散聚合 而製造。 可作爲上述消光化劑使用之甲基丙烯酸甲酯系聚 粒子及苯乙烯系聚合物粒子中所用之多官能單體的比 係以全單體爲基準計,通常爲0.05至15質量%程度、 爲〇. 1至1 〇質量%。如多官能單體的量過少時,則粒子 聯程度不足夠’在擠壓成型中施加熱或剪切(shear ) 容易大變形,其結果能於獲得所需要的光擴散效果。 如多官能性單體的量過多時,則在擠壓成型中容易發 觀不良。 可作爲上述消光化劑使用之矽氧烷系聚合物粒子 例如’藉由使氯矽烷類進行水解(h y d r ο 1 y s i s )並進 合(condensation)之方法而製造之聚合物的粒子。 酸甲 除( 其中 而言 多官 亦可 .53至 示大 ,依 法等 合物 例, 較佳 的交 時, 又, 生外 ,係 行縮 -27- 201134662 氯矽烷類而言,可例舉:二甲基二氯矽烷、二苯基二 氯矽烷、苯基甲基二氯矽烷、甲基三氯矽烷、苯基三氯矽 烷等。矽氧烷系聚合物可爲經交聯者。如欲使其交聯時, 例如’對矽氧烷系聚合物使過氧化苯甲醯、過氧化2,4-二 氯苯甲醯、過氧化對氯苯甲醯、過氧化二茴香基、過氧化 二第三丁基-2,5 -二甲基-2,5-(第三丁基過氧化)己烷進行 作用即可。又’如在末端具有矽醇基時,則亦可使其與烷 氧基矽烷類進行縮合交聯。經交聯之聚合物,較佳爲對每 1個矽原子’結合有2至3個程度之有機殘基(organic residue )之構造。 此種矽氧烷系聚合物,係一種亦稱聚矽氧橡膠、聚矽 氧樹脂之聚合物,在常溫下爲固態者較適合使用。矽氧烷 聚合物粒子,可由此種矽氧烷聚合物之粉碎而製得。亦可 將具有線形有機砂氧院塊(linear organo siloxane block) 之硬化性聚合物或其組成物在噴霧狀態下使其硬化,藉以 作成粒狀粒子。又,亦可將烷基三烷氧基矽烷或其部分水 解縮合物,在氨或胺類的水溶液中使其水解縮合藉以作爲 粒狀粒子而製得。 此種矽氧烷系聚合物粒子的折射率,通常在1.40至 1.47程度。 可作爲消光化劑使用之粒子的重量平均粒徑,係按照 所需要的表面凹凸形狀而適當選定即可,惟爲具有所需要 的表面凹凸形狀,且具有優異的光學特性起見,較佳爲 0.5至50μηι,更佳爲1至40μιη,再佳爲2至30μηι。又,粒子 -28- ⑧ 201134662 ,一般係球狀者,惟亦可採用矩形狀、鱗片狀、針狀、板 狀等的形狀者。 對丙烯酸系熱塑性樹脂組成物之作爲消光劑所用之粒 子的含有比例,爲丙烯酸系熱塑性樹脂組成物全體的3 5重 量%以下,較佳爲30重量%以下。所作爲消光化劑所用之 粒子的含有比例爲丙烯酸系熱塑性樹脂組成物全體的35重 量%以上時,則由於組成物的熔融擠壓成型會發生困難之 故不宜。 <光學用消光薄膜> 本發明之光學用消光薄膜的厚度,爲30至300 μηι,較 佳爲30至200μηι,更佳爲30至ΙΟΟμπι。如厚度爲30μιη以下 時,則由於薄膜本體的剛性會降低之故,薄膜容易發生皺 紋、或在凝固之狀態下容易發生發花(floating )。如厚 度爲3 00μηι以上時,則入射光的阻滯値(retardati〇n value )增高而不宜。 本發明之光學用消光薄膜,係薄膜在波長5 9 Onm下的 入射光的阻滯値較佳爲30nm以下,更佳爲20nm以下者。 如作爲光學用消光薄膜,例如,在液晶顯示裝置中所用之 消光膜的情形,由於爲液晶顯示所利用之光爲偏光( polarized light)之故,作爲消光薄膜需要光學歪斜小的 薄膜’較佳爲3 0nm以下的阻滯値。在液晶顯示裝置用之中 ’用爲偏光分離片材保護之偏光分離片材保護薄膜而言’ 由於下述理由’阻滯値更佳爲20nm以下。 -29- 201134662 液晶顯示裝置,如第2圖所示,係於背光板組件( backlight unit) 9 上設置有液晶面板(liguid crystal panel )1 2,而按從背光板9所射出之光能入射於液晶面板1 2之 方式所構成。偏光分離片材1 〇,通常係配置於背光板組件 9與液晶面板1 2之間者,作成將從背光板組件9所出射過來 之無偏光光線分離爲互相垂直關係之2個偏光光線,並僅 將一邊的偏光光線選擇性穿透後出射於液晶面板1 2側,另 一邊的偏光光線則返回背光板組件9側,以使在背光板組 件內反射後,再度,使其入射於偏光分離片材1 〇以資再利 用,藉以提升光的利用效率之方式者。因而,爲保護偏光 分離片材10起見,層合或貼合於該片材10的兩邊或一邊的 面上所用之偏光分離片材保護薄膜11而言,按儘量防止從 該片材1 0所出射過來之偏光之偏光方式之攪亂著想,阻滞 値較低爲宜,更佳爲20nm以下的阻滯値。 本發明之光學用消光薄膜,係於層(B)表面的消光 面依照JIS K5600所測定之表面鉛筆硬度(surface pencil hardness ),較佳爲B以上。如消光面的表面鉛筆爲B以下 時,則在薄膜的生產中或薄膜的操作處理中等或與其他部 材相接觸時等,容易在薄膜表面受傷。又,爲防止受傷起 見’亦能在消光面貼合保護薄膜,惟需要保護薄膜貼合過 程以致過程成爲煩雜,且在成本上亦會不利。 本發明之光學用消光薄膜,係依照JIS K 7 3 6 1所測定 之全先線穿透係數(total light transmission factor),較 佳爲9 0 %以上。如該消光薄膜的全光線穿透係數過低時, -30- 201134662 則對消光薄膜的入射光量’來自消光薄膜的出射光量的比 例減少,結果從光的利用效率的觀點來看,會成爲不利者 0 本發明之光學用消光薄膜,係層(A)的厚度,較佳 爲對薄膜全體的厚度成爲30%以上的厚度,更佳爲40%以 上的厚度。如層(A)的厚度爲對薄膜全體的厚膜成爲 3 0 %以下時,則薄膜的耐熱性會降低,以致可能於高溫保 持評價(120 °C的烘箱內保持30分鐘)中,因該薄膜的收 縮所引起之尺寸變化增大。依照ASTM D-648所測定之熱 變形溫度(thermal deformation temperature) ( Th ),係 在作爲層(A)的樹脂成分之聚碳酸酯系樹脂爲140 °C程度 ,相對之,作爲層(B)的樹脂成分之丙烯酸系樹脂爲1〇〇 t程度之故,從耐熱性的觀念來看,以具有更高的Th之聚 碳酸酯系樹脂作爲樹脂成分之層(A)的厚度,較佳爲 9μηι以上。 實施本發明之光學用消光薄膜之高溫保持評價時的尺 寸變化率(收縮率)而言,薄膜的擠出方向(MD)、寬 幅方向(TD ),以均爲7·0%以下爲佳,較佳爲均在6.0% 以下、更佳爲均在5.0%以下》如尺寸變化率大時,則在液 晶顯示裝置內使用該薄膜時,可能因液晶顯示裝置內的發 熱,而發生薄膜的尺寸變化,以致發生薄膜的發花或表面 波紋(external waviness ) 〇 又,層(B)的厚度,較佳爲8μιη以上、更佳爲ΙΟμηι 以上。如厚度爲8μΐΏ以下時,則可能該層(Β)的表面硬 -31 - 201134662 度會降低。 由於本發明之光學用消光薄膜,係在表面形成有凹凸 形狀’而賦與有使光散射之功能之故,例如,於液晶顯示 裝置中,可使用爲:組裝爲背光板組件中之光擴散片材、 光擴散薄膜、偏光板(polarizer)保護薄膜、相位差薄膜 (phase difference film)、亮度(luminance)改善薄膜 等或偏光分離片材的保護薄膜等。又,亦可適用於光碟( optical disk )或汽車內裝用薄膜,照明用薄膜、建材用薄 膜時’惟本發明並不因此等用途而有所限定。 【實施方式】 〔實施例〕 以下,將舉示本發明之實施例,惟本發明並不因此等 15施例而有所限定。在此,下述實施例中,表示含量或使 用量之份’除非特別備註,爲重量基準。 下述實施例及比較例中所使用之擠壓裝置的構成,係 如下所示。 擠壓機1 :附有通風孔(vent)之螺旋直徑115mm單軸 濟壓機(東芝機械(股)製) 擠壓機2 :附有通風孔之螺旋直徑90mm單軸擠壓機( 東芝機械(股)製) 給料部件3 : 2種3層及2種2層分配型給料部件(東芝 機械(股)製) 口模頭:T型口模頭 -32- ⑧ 201134662 將擠出機1及2、給料部件3、口模頭4、第1至第3冷卻 輥輪5至7按第1圖所示方式配置,並將各冷卻輥輪5至7按 如下述方式構成。 <輥輪構成1> 將第1冷卻輥輪5及第2冷卻輥輪6、第3冷卻輥輪7按如 下述方式構成。 第1冷卻輥輪5 :外徑45 0mm φ且硬度A· 70的聚矽氧橡 膠輥輪 第2冷卻輥輪6:外徑450ηιηιφ且藉由噴砂處理而形成 有算術平均粗糙度(Ra) 3·5μπι的凹凸形狀之不銹鋼的金 屬輥輪(鑽孔型壓輥) 第3冷卻輥輪7 ··外徑4 5 0 m m φ且鏡面精加工的不銹鋼 製的金屬輥輪(鑽孔型壓輥) <輥輪構成2> 將第1冷卻輥輪5及第2冷卻輥輪6、第3冷卻輥輪7按如 下述方式構成。 第1冷卻輥輪5:外徑450ηιιηφ且硬度八。70的聚矽氧橡 膠輥輪 第2冷卻輥輪6 :外徑4 5 0mm φ且鏡面精加工的不绣鋼 製的金屬輥輪(鑽孔型壓輥) 第3冷卻輥輪7 :外徑450mm 0且鏡面精加工的不錄鋼 製的金屬輥輪(鑽孔型壓輥) -33- 201134662 於實施例及比較例中,作爲甲基丙烯酸酯樹脂、消光 化劑(透明微粒子)以及丙烯酸橡膠,使用如下述者。 <甲基丙烯酸酯樹脂> 作爲甲基丙烯酸酯樹脂,採用藉由由甲基丙烯酸甲酯 97.8重量%與丙烯酸甲酯2.2重量%所成單體成分的聚合所 得之熱變形溫度(Th )爲1 0 0 °C之熱塑性聚合物的顆粒。 <消光化劑(透明微粒子)> 作爲消光化劑(透明微粒子),採用藉由甲基丙烯酸 甲酯95 %與二乙烯基苯5% (質量比)的聚合所得之折射率 爲1.49、重量平均粒徑爲5μηι之甲基丙烯酸甲酯系熱塑性 聚合物粒子。 <丙烯酸橡膠拉子> 作爲丙烯酸橡膠粒子,採用依下述製造方法所得3層 構造的丙烯酸橡膠粒子。 準照日本專利特公昭5 5 -2 75 76號的實施例所記載之方 法’首先,於內容積5公升的玻璃製反應容器中,飼給離 子交換水1 700g、碳酸鈉〇.7g、過硫酸鈉0.3g,在氮氣氣流 下攪拌後,飼給陪列克斯OT-P (花王(股)製)4.46g、 離子交換水150g、甲基甲基丙烯酸酯150g、烯丙基甲基丙 烯酸酯0.3g後,升溫爲75°C,並繼續攪拌150分鐘。 接著,從另一個入口耗費90分鐘之方式添加丁基丙烯 ⑧ -34- 201134662 酸酯689g、苯乙烯162g、烯丙基甲基丙烯酸酯I7g之混合 物及過硫酸鈉〇.85g、陪列克斯〇T-P7.4g與離子交換水50g 的混合物,再繼續聚合9 0分鐘。 聚合完成後,再從各入口耗費30分鐘之方式添加甲基 丙烯酸酯3 26g、乙基丙烯酸酯14g之混合物及溶解有過硫 酸鈉〇.34g之離子交換水30g。. 添加完成後,再保持60分鐘以完成聚合。將所得之乳 膠(latex )投入於0.5%氯化鋁水溶液中以使聚合物凝聚。 使用約50°C的溫水將此洗滌5次後乾燥,製得3層構造的丙 烯酸橡膠粒子。 (實施例1、實施例7以及比較例1 ) 作爲層(A ),將聚碳酸酯樹脂(住友陶(股)製的 「嘉利巴3 03 - 1 0」、(Th ) 140°C )加以熔融混煉,並從 擠壓機1供給於給料部件3,作爲層(B ),將甲基丙烯酸 酯樹脂及消光化劑(透明微粒子)及丙烯酸橡膠粒子按表 1中所示比例所含有之丙烯酸系熱塑性樹脂組成物加以熔 融混煉,從擠壓機2供給於給料部件3,按能成爲層(B ) / 層(A) /層(B)的3層構成之方式使其熔融層合一體化, 並從口模頭4擠出。在此,就比較例1而言,停止對給料部 件3之從擠壓機2的供給,僅將層(A )加以擠壓成型。接 著,將冷卻輥輪的構成作成前述輥輪構成1,將從口模頭4 所擠出之薄膜狀樹脂,夾介於第1冷卻輥輪5 (設定溫度: 45 °C )與第2冷卻輥輪6 (設定溫度:1 0(TC )之間,並捲 -35- 201134662 掛於第3冷卻輥輪7 (設定溫度:l〇〇°C ) ’製得經於一邊 的面上轉爲有凹凸形狀之光學用消光薄膜8。 (實施例2至6,比較例2及3 ) 就實施例2至6以及比較例3而言,除將冷卻輥輪的構 成作成前述輥輪構成2以外,其餘則按與實施例1同樣方法 製得光學用消光薄膜8。再者,就比較例4而言,停止對給 料組件3的從擠壓機1的供給,以成型僅由層(B )所成之 單層薄膜。 -36- ⑧ 201134662 【一撇】 薄膜全體 之厚度※ (μπι) 〇 〇 »—1 〇 Ο ο Ο Ο 層(Β) 厚度 (μπι) Ή κη r—Η 12.5 ο in ο 消光化劑 (重量%) 〇 ο Ο Ο ο ο ο 丙烯酸橡膠粒子 (重量%) 〇 〇 ο ο ο ο ο ο ο ο 種類 甲基丙烯酸酯樹月旨 層(Α) 對薄膜全體之厚度 之比例(%) 〇 〇 ο ΟΝ ν〇 ο ο ο ο 厚度 (μπι) 〇 〇 <χ> ο <χ> κη (Ν ο ο cn ΓΟ ο 種類 1 聚碳酸酯樹脂 1 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 比較例1 比較例2 比較例3 鹋暖-Nil制鲣概链苌(s) 1ί/ (V) ¢/ (S)㈣扭※ -37- 201134662 就所得各光學用消光薄膜,實施如下的評價。將其結 果表示於表2中。 <表面硬度(鉛筆硬度)> 依照JIS K5 600,測定所得消光薄膜的最外層的凹凸 形狀面的表面硬度。 <表面光澤度> 依照JIS Z874 1,測定所得消光薄膜的最外層的凹凸形 狀面,與其面成爲相反側的面的60度光澤度。 <表面粗糙度> 依照JIS B 060 1 - 1 994,使用表面粗糙計(三豊(股) 製的「莎扶特斯德SJ-201」),測定所得消光薄膜的最外 層的凹凸形狀面的算術平均粗糙度(Ra)及十點平均粗糙 度(Rz)。 <阻滯値> 從所得消光薄膜,裁切50mm四方尺寸之試片,使用 微小面積雙折射率計(microarea double refraction meter )(王子計測機器(股)製的「KOBRA-CCO/X」)以測 定於590nm下之阻滯値。 〔全光線穿透係數(Tt)及霧狀(laze) ( Η)〕 201134662 依照JI S Κ 7 3 6 1 - 1所測定者。 <收縮係數(coefficient of contraction) > 首先,從所得消光薄膜,裁切約10cmK方尺寸之試片 ’分別測定該試片的擠出方向的尺寸(MD〇 )及寬幅方向 的尺寸(TD〇 )。接著,於金屬製的大盆(vat)中舖敷嬰 兒痱子粉(baby powder )(和光堂(股)製的「高級爽 身粉(Siccaro卜high )」),於其上放置前述試片後,置 入120 °C的烘箱中30分鐘。 然後,分別測定經自然冷卻之試片的擠出方向的尺寸 (MD )及寬幅方向的尺寸(TD ) ’將所得各尺寸代入式 :收縮係數S,{1- ( MD/MD〇 ) } X 100、式:收縮係數 S2 = {l-(TD/TD〇) }χ100中,以算出收縮係數S,、S2。又 ,從所算出之收縮係數S^Sz,算出比(S,/S2)。 -39- 201134662 CNls 霧狀 V—✓ 1 73.5 1 66.1 58.3 1 52.3 46.7 1 L 46.2 I 丨 72.6 1 00 L41-6 I 45.3 全光線 穿透率 (%) L91-0 1 I 90.4 I 90.5 90.6 丨 90.7 1 90.9 91.1 I 88.7 I 91.1 91.4 m 1§ 迪 RzX4 (U m) <Νί σ> 00 C9 q c6 CO csi 00 c>i ο σ> \n a> eg CO csi B 撇 Ra5K3 (//m) <〇 m 〇_ <〇 d d CO 〇_ 寸 d <〇 CO 〇 o 1 60度表面光澤度 消光面之背面 另 s CO CD (D 00 <〇 04 CO CO CM (D <〇 <〇 CO 消光面 CD σ> vr> C*4 σ> CM in co in 卜 in o \f> n 熱收縮率 TDX2 (%) d d 5 5 o 节 o CVJ p d 〇 csi IV^I (%) d d 〇 d d 兮 o' p 々’ o d C>J d Γ ΟΟ 阻滯値 (nm) o 00 <〇 00 <〇 〇> V" 00 CO csi 消光面之 鉛筆硬度 00 I__HB__I m CQ m CQ \L· ffl CO CD OJ I 握 _ 侯 驷 CO 堤 驷 寸 逞 |i v〇 1 逞 _ v〇 隹 _ r- 逞 _ i aj cn 孽 逾 M^mirdz^+^w璐苌-S-寸 661-I090CPSK 寸※ «越©切降^«^识^钜-8-寸661-0903闰8 廿^^俚^廳械㈡※ 廿欠^厄枳田铤I※ -40 ⑧ 201134662 【圖式簡單說明】 〔第1圖〕係表示本發明之光學用消光薄膜之製造過 程的一例之槪略說明圖。 〔第2圖〕係表示將本發明之光學用消光薄膜作爲於 液晶顯示裝置中之偏光分離片材保護薄膜使用之一例之槪 略說明圖。 【主要元件符號說明】 1、2 :熔融擠壓機 3 :給料部件 4 : 口模頭 5 :第1冷卻輥輪 6 :第2冷卻輥輪 7 :第3冷卻輥輪 8 =光學用消光薄膜 9 =背光板組件 I 〇 :偏光分離片材 II :偏光分離片材保護薄膜 1 2 :液晶面板 -41 -201134662 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a matte film for optics. [Prior Art] A matte film having a concavo-convex shape (matte shape) on the surface of a film is used as a light diffusion film or a polarization separation sheet protection film. For optical use, in order to prevent scratching of the surface of the film caused by contact with other members, the film is required to have a high hardness on its surface. Further, for example, when the matte film is used as a polarizing separation sheet for protecting a liquid crystal display device and laminated on the exit surface of the polarized separation sheet, the polarized light for preventing polarization from the polarized separation sheet is prevented. The direction of polarized light has changed and it is necessary to reduce its optical strain. Further, since the matte film is exposed to heat during the long period of the liquid crystal device, it is necessary to have resistance to such heat generation. In the case of a matte film for such an optical use, it is proposed to form a predetermined uneven shape by embossed roller transcription on a film surface made of a polycarbonate resin (patent) In the documents 1, 2) or the surface of the layer formed of the polycarbonate resin, an acrylic thermosetting resin in which spherical sized beads are dispersed is applied (Patent Document 3). [5] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2004-5 3 998 (Patent Document 2) International Publication No. 200 8/0 8 1 95 3 [Patent Document 3] [Problems to be Solved by the Invention] However, the matte film described in Patent Documents 1 to 3 above has surface hardness and optical skew on the film. And heat resistance is not satisfactory. Accordingly, an object of the present invention is to provide an optical film which is excellent in any of surface hardness, optical distortion, and heat resistance of a film. [Means for Solving the Problems] As a result of intensive research to solve the above problems, the present inventors have found that the layer (A) is formed by using a polycarbonate-based thermoplastic resin composition containing a polycarbonate resin. A matte film having a layer (B)′ formed of an acrylic thermoplastic resin composition containing an acrylic resin and having a matte surface on at least one layer (B) is laminated on at least one surface, and the above problem can be solved. Oh, finally completed the present invention. That is, the present invention is constituted by the following. (1) A matte film for optics, which is laminated on a surface of at least -6- 8.201134662 layered (A) of a polycarbonate-based thermoplastic resin composition containing a polycarbonate resin. The acrylic thermoplastic resin composition of the acrylic resin is layered (B), and at least one layer (B) is an optical matte film having a matte surface, and the thickness of the entire film is 30 to 300 μm. The thickness of (A) is 30% or more for the entire film, and the thickness of the layer (B) is 8 μm or more, and the retardation value of the incident light having a wavelength of 590 nm of the film is 3 Onm or less. . (2) The optical matte film according to the above (1), wherein the acrylic thermoplastic resin composition contains rubber particles. (3) The optical matte film according to (2), wherein the rubber particles are acrylic rubber particles. (4) The optical matte film according to any one of (1) to (3) wherein the matte surface is formed by matte roll transcription. (5) The optical matte film according to the above (1), wherein the acrylic acid-based thermoplastic resin composition contains a matting agent, and the optical extinction described in (5) above is used. In the film, the matting agent is at least one selected from the group consisting of methyl methacrylate polymer particles, styrene-based polymer particles, and siloxane polymer particles. The optical matte film according to any one of the above-mentioned (1), wherein the polycarbonate-based thermoplastic resin composition and the acrylic-based thermoplastic resin composition are co-extruded. (10) The optical matte film according to any one of the above (1) to (7), which is a user of the liquid crystal display device. (9) The optical matte film according to the above (8), which is a user of the protection of the polarized separation sheet in the liquid crystal display device. The optical matte film of the present invention does not change the polarizing direction of the polarized light because of the small optical skew, and because the surface hardness of the film is high, it is not scratched by contact with other members, etc. Since it has high resistance to heat generation, shrinkage, or a small coefficient of dimensional change, it can be used for a long period of time when used in a liquid crystal device. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The matte film for optics of the present invention is formed by laminating an acrylate resin on a surface of at least one layer (A) of a polycarbonate-based thermoplastic resin composition containing a polycarbonate resin. The acrylic thermoplastic resin composition containing rubber particles is layered (B), and at least one layer (B) surface is a matte surface. <Polycarbonate-based thermoplastic resin composition> The polycarbonate-based thermoplastic resin composition as a material for forming the layer (A) is a resin component and contains a polycarbonate-based resin. In the polyacrylate resin, for example, an aromatic polycarbonate resin excellent in heat resistance, mechanical strength, transparency, and the like is suitably used. Aromatic -8 - 8 201134662 Polycarbonate resin, usually in addition to the reaction of the diphenol and carbonate precursors (interfacial polycondensation), melt state ester interchange (molten ester interchange) In addition, 'prep〇lymer' is polymerized by solid phase ester interchange or by ring_opening polymerization of cyclic carbonate compound. Aggregate the winner. The aforementioned dihydric phenol may, for example, be hydroquinone resorcinol, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)methane or bis{(4-hydroxy-)- 3,5-Dimethyl)phenyl}methane, 1, fluorene-bis(4-hydroxyphenyl)ethane, 1,1-bis(4.hydroxyphenyl)-1-phenylethane, 2, 2-bis(4-hydroxyphenyl)propane (commonly known as bisphenol a), 2,2-bis{(4-hydroxy-3-methyl)phenyl}propane, 2,2-bis{(4-hydroxy-) 3,5-Dimethyl)phenyl}propane, 2,2-bis{(4-hydroxy-35-dibromo)phenyl}propane, 22_double {(3-isopropyl-4-yl) Phenyl}propane, 2,2_bis{(4-hydroxy-3-phenyl)phenyl}propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2_bis (4_ Hydroxyphenyl)-3-methylbutane, 2,2-bis(4-hydroxyphenyl)-3,3-dimethylbutane, 2,4.bis(4-hydroxyphenyl)-2_ Methyl butane, 2,2-bis(4-hydroxyphenyl)pentanthene, 2,2-bis(cardiohydroxyphenyl)-4-methylpentane, n-bis(4-hydroxyphenyl)-3 -cyclohexane, ^-bis(4.hydroxyphenyl)_4-isopropylcyclohexan, bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 9, 9·double { (4- · 3-methyl)phenylhydrazine, 99·double {(4-hydroxy-3-methyl)phenyl}, α,α,-bis(4-hydroxyphenyl)·o-diisopropylbenzene , α,α'-bis(4-hydroxyphenyl)-m-diisopropylbenzene, α,α'-bis(4-hydroxy-9- 201134662 phenyl)-p-diisopropylbenzene, 1 , 3-bis(4-hydroxyphenyl)-5,7-dimethyladamantane, 4,4'-dihydroxydiphenyl sulfonium (sulf0ne), 4,4'-dihydroxydiphenyl Azulene, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl ether, and 4,4'-dihydroxydiphenyl Ester or the like, and these may be used singly or in combination of two or more kinds, and preferably selected from bisphenol A, 2,2-bis{(4.hydroxy-3-methyl)phenyl}propane, 2 , 2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)-3,3-dimethylbutane, 2,2-bis(4-hydroxyphenyl)- 4-methylpentane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and α,α'-bis(4-hydroxyphenyl)-inter-di The dihydric phenol in which isopropylbenzene is grouped is used in a single mode or in a combination of two or more types. Preferably used as bisphenol hydrazine alone, or 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and selected from bisphenol A, 2,2-double {(4) -Hydroxy-3-methyl)phenyl}propane and one or more kinds of dihydric phenols in the group of α,α'-bis(4-hydroxyphenyl)-m-diisopropylbenzene. As the carbonate precursor, a carbonyl halide, a carbonate or a dihalogenated formic acid of a dihydric phenol can be used. <Acrylic thermoplastic resin composition> The acrylic thermoplastic resin composition which is a material for forming a layer is an acrylate resin as a resin component. For the acrylate resin, for example, a methacrylate resin can be used. The methacrylate resin is a poly 8 -10- 201134662 compound mainly composed of methacrylate, and may be a single polymer of methacrylate, or may be 50% by weight or more of methacrylate and The monomer is less than 50% by weight of the copolymer. Here, as the methacrylate, an alkyl ester of methacrylic acid can be usually used. The preferred monomer composition of the methacrylate resin is based on the total monomer, the alkyl methacrylate is 50 to 100% by weight, and the alkyl acrylate is 〇 to 50% by weight, and the monomers other than 0 to 49% by weight, more preferably 50 to 99.9% by weight of alkyl methacrylate, 0.1 to 50% by weight of alkyl acrylate, and 0 to 49% by weight of monomers other than these. Here, examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and the like, and alkyl carbons thereof. The number is usually from 1 to 8, preferably from 1 to 4. Among them, methyl methacrylate is very suitable for use. Further, examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like, and the alkyl group has a carbon number of usually 1 to 8, preferably 1 To 4. Further, examples of the monomer other than the alkyl methacrylate and the alkyl acrylate may be a monofunctional monomer, that is, a compound having a polymerizable carbon-carbon double bond in the molecule. Further, it may be a polyfunctional monomer, that is, a compound having at least two carbon-carbon double bonds in a molecule, and a monofunctional monomer is preferably used. Examples of such a monofunctional monomer include a styrene monomer such as styrene, α-methylstyrene or vinyltoluene, and a cyanated alkenyl group such as acrylonitrile or methacrylonitrile. Acrylic acid, methacrylic acid 'anhydrous maleic acid, -11 - 201134662 N-substituted maleimide and the like. Further, examples of the polyfunctional monomer include polyunsaturated carboxylic acids of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, and trimethylolpropane triacrylate. Alkenyl ester of unsaturated carboxylic acid such as ester, allyl acrylate, allyl methacrylate, diallyl cinnamate, diallyl citrate, diallyl maleate, triallyl ester A polyalkenyl ester of a polybasic acid such as a tricyclic cyanate or a triallyl isocyanurate, or an aromatic polyalkenyl compound such as divinylbenzene. Here, the above-mentioned alkyl methacrylate, alkyl acrylate, and other than the above may be used in two or more types as needed. The methacrylate resin preferably has a glass transition temperature of 70 ° C or more, more preferably 80 ° C or more, and still more preferably 90 ° C or more from the viewpoint of heat resistance. Such a glass transition temperature, such as adjusting the kind of the monomer or its ratio, can be appropriately set. The methacrylate resin is polymerized by a method such as suspension polymerization, emulsion polymerization, or bulk polymerization (bu 1 k ρ ο ymeri zat i ο η ). , can be modulated. At this time, in order to obtain a suitable glass transition temperature, or to obtain a melt viscosity which can exhibit a moldability to a laminated film, it is preferred to use an appropriate chain transfer agent during polymerization. (chain-transfer agent) » The amount of addition of the chain transfer agent' may be appropriately determined depending on the type of the monomer or the ratio thereof. -12- 8 201134662 <Rubber Particles> In the acrylic thermoplastic resin composition, rubber particles may be blended. Here, as the rubber particles, for example, acrylic rubber particles, butadiene rubber particles, styrene-butadiene rubber particles, or the like can be used, from the viewpoint of weather resistance and durability. Acrylic rubber particles are very suitable for use. The acrylic rubber particles are particles containing an elastic polymer mainly composed of acrylate as a rubber component, and may be particles having a single layer structure formed only of the elastic polymer, or may be a polymer having such an elastic polymer. For example, a layer having a multilayer structure of a layer of a polymer having a methacrylate as a main component is preferably a particle having a multilayer structure from the viewpoint of the surface hardness of the layer (B) of the acrylic thermoplastic resin. Further, the elastic polymer may be a single polymer of an acrylate, or may be a copolymer of 50% by weight or more of the acrylate and 50% by weight or less of the other monomer. Here, as the acrylate, an alkyl ester of acrylic acid is usually used. The preferred monomer composition of the elastomeric polymer having acrylate as the main component is 50 to 99.9% by weight of the alkyl acrylate and 0 to 49.9% by weight of the alkyl methacrylate, based on the total monomer. The monofunctional monomer other than the monomer is from 0 to 49.9% by weight, and the polyfunctional monomer is from 0.1 to 10% by weight. Here, the example of the alkyl acrylate in the above-mentioned elastic polymer is the same as the alkyl acrylate which is exemplified as the monomer component of the methacrylate resin, and the carbon number of the alkyl group is usually It is from 1 to 8, preferably from 4 to 8. Further, the example of the alkyl methacrylate in the above elastic polymer is the same as the example of the alkyl methacrylate exemplified as the monomer component of the methacrylate resin. The alkyl group has a carbon number of usually 1 to 8, preferably 1 to 4. Examples of the monofunctional monomer other than the alkyl acrylate and the alkyl methacrylate in the above elastic polymer are the alkyl methacrylates exemplified as the monomer components previously used as the methacrylate resin. The examples of the monofunctional monomer other than the alkyl acrylate are the same. Among them, styrene monomers such as styrene, α-methylstyrene, and vinyltoluene are suitable for use. Examples of the polyfunctional monomer in the above elastomeric polymer are the same as those exemplified as the polyfunctional monomer exemplified as the monomer component of the methacrylate resin, wherein the olefin of the unsaturated carboxylic acid A polyalkenyl ester of a base or polybasic acid is very suitable for use. In the above-mentioned elastic polymer, an alkyl acrylate, an alkyl methacrylate, a monofunctional monomer other than the above, and a polyfunctional monomer may be used in combination of two or more kinds as needed. In the case where a multilayer structure is used as the rubber particles, a suitable example is a polymerization of a methacrylate as a main component of a layer of an elastic polymer mainly composed of the above acrylate. The layer of the material also has an elastic polymer mainly composed of the above acrylate as an inner layer, and a polymer mainly composed of methacrylate as at least a two-layer structure of the outer layer. Here, as the methacrylate of the monomer component of the polymer of the outer layer, an alkyl methacrylate can be usually used. Further, the polymer of the outer layer is preferably 10 to 400 parts by weight of the elastomeric polymer of the inner layer, and is usually used in an amount of 10 to 400 parts by weight, preferably 20 to 200 parts by weight. When the polymer of the outer layer is 10 parts by weight or more based on 1 part by weight of the elastic polymer of the inner layer, the elastic polymer is less likely to be aggregated, and as a result, the transparency of the acrylic resin layer becomes good. . The preferred monomer composition of the above outer layer polymer is based on the total monomer, the alkyl methacrylate is 50 to 100% by weight, the alkyl acrylate is 〇 to 50% by weight, and the monomers other than these It is 5 to 50 weight. /. And the multi-functional monomer is 0 to 10% by weight. An example of the alkyl methacrylate in the polymer of the outer layer is the same as the alkyl methacrylate exemplified as the monomer component of the methacrylate resin, and the carbon of the alkyl group. The number is usually from 1 to 8, preferably from 1 to 4. Among them, methyl methacrylate is very suitable for use. The example of the alkyl acrylate in the polymer of the outer layer is the same as the alkyl acrylate which is exemplified as the monomer component of the methacrylate resin, and the carbon number of the alkyl group is usually 1 Up to 8, preferably 1 to 4. Examples of the monomer other than the alkyl methacrylate and the alkyl acrylate in the polymer of the outer layer are the alkyl methacrylate exemplified as the monomer component previously used as the methacrylate resin. Examples of the monofunctional monomer other than the alkyl acrylate are the same as those of the polyfunctional monomer exemplified as the monomer component of the methacrylate resin. By. Here, the alkyl methacrylate, the alkyl acrylate, the monomer other than the above, and the polyfunctional monomer in the above-mentioned polymer of the outer layer may be used in combination of two or more kinds as needed. -15-201134662 Further, a suitable example of the acrylic rubber particles having a multilayer structure may be an inner side of a layer of an elastic polymer mainly composed of the above acrylate as an inner layer belonging to the above two-layer structure. And a layer having a polymer mainly composed of methacrylate, that is, a polymer having the methacrylate as a main component as an inner layer, and an elastic polymer mainly composed of the above acrylate as a middle The layer will have at least a three-layer structure of the outer layer using the previous methacrylate as the host polymer. Here, as the methacrylic ester of the monomer component of the laminate of the outer layer, an alkyl methacrylate can be usually used. Further, the inner layer polymer is preferably formed in an amount of from 10 to 400 parts by weight, preferably from 20 to 200 parts by weight, based on 100 parts by weight of the elastomeric polymer of the intermediate layer. The preferred monomer composition of the inner layer polymer is based on the test monomer, the alkyl methacrylate is 70 to 100% by weight, the alkyl acrylate is 0 to 30 weight percent, and the like. The monomer is 〇 to 30% by weight, and the polyfunctional monomer is 〇 to 1% by weight. Examples of the alkyl methacrylate in the polymer of the inner layer are the same as those of the alkyl methacrylate which is a monomer component of the methacrylate resin, and the carbon number of the alkyl group is usually It is from 1 to 8, preferably from 1 to 4. Among them, methyl methacrylate is preferred. Further, an example of the alkyl acrylate in the polymer of the inner layer is the same as the alkyl acrylate which is a monomer component of the methacrylic resin, and the carbon number of the alkyl group is usually 1 Up to 8, preferably 1 to 4. Examples of the monomer other than the alkyl methacrylate and the alkyl acrylate in the polymer of the inner layer are methyl groups as previously described as the monomer component of the methacrylic acid-16-8 201134662 ester resin. Examples of the monofunctional monomer other than the alkyl acrylate and the alkyl acrylate are the same as those of the polyfunctional monomer, and examples of the polyfunctional monomer which is a monomer component of the methacrylate resin. the same. Here, the alkyl methacrylate, the alkyl acrylate, the monomer other than the above, and the polyfunctional monomer in the above-mentioned polymer may be used in combination of two or more kinds as needed. The acrylic rubber particles can be prepared by subjecting a monomer component of an elastomeric polymer having acrylate as a main body as described above to polymerization by at least one stage reaction by an emulsion polymerization method or the like. At this time, as described above, when a layer of a polymer mainly composed of methacrylate is formed on the outer side of the layer of the above elastic polymer, the monomer component of the polymer of the outer layer is made to be elastic. In the presence of a polymer, polymerization may be carried out by at least one reaction by an emulsion polymerization method or the like to graft the above elastic polymer. Further, when a layer of a polymer having a methacrylate as a main component is formed as described above in the 'inside of the layer of the above elastic polymer', the monomer component of the polymer of the inner layer is first The polymerization is carried out by at least one stage reaction by an emulsion polymerization method or the like, and then, in the presence of the obtained polymer, the monomer component of the above elastic polymer is subjected to at least one stage reaction by emulsion polymerization method. Polymerization is carried out to graft the polymer of the inner layer, and in the presence of the obtained elastic polymer, the monomer component of the upper polymer is utilized by emulsion polymerization or the like, and at least one stage is utilized. The reaction is carried out by polymerization to graft the above elastic polymer. When the polymerization of each layer is carried out by a reaction of two or more stages, the polymerization of each layer is not the monomer composition of each stage, and the monomer composition as a whole can be within a predetermined range. The average particle diameter of the layer of the elastomeric polymer having acrylate as a main component in the rubber particles is preferably 0.01 to 0.4 μm, more preferably 0.05 to 0.3 μm, and still more preferably 0.07. Up to 0.25 μηη. When the average particle diameter of the layer of the elastic polymer is 0.4 μη or more, the transparency of the layer formed by the acrylic thermoplastic resin composition is lowered, and the transmittance is lowered, which is not preferable. Further, when the average particle diameter of the layer of the elastic polymer is 0.01 μm or less, the surface hardness of the layer is lowered to be easily scratched. In addition, the average particle diameter is obtained by mixing and pulverizing the acryl rubber particles and the methacrylate resin, and applying a layer of the above elastic polymer using ruthenium oxide (Ruthenium Oxide) to the cross section. Observed by an electron microscope and obtained from the diameter of the dyed portion, that is, since the acrylic rubber particles are mixed in the methacrylate resin and the cross section is dyed with yttrium oxide, the mother phase The methacrylate resin is not dyed, and in the case where a layer of a polymer having a methacrylate as a main component exists on the outer side of the layer of the above elastic polymer, the polymer of the outer layer is not dyed but only The layer of the above-mentioned elastic polymer is dyed, and the particle diameter can be determined from the diameter of a portion which is slightly rounded by an electron microscope. If a layer of a polymer mainly composed of methacrylate as 8-18-201134662 is present on the inner side of the layer of the above elastic polymer, the polymer of the inner layer will not be dyed. The layer of the above-mentioned elastic polymer is observed in the state of the two-layer structure of the dyed layer. However, in this case, the outer side of the two-layer structure, that is, the outer diameter of the elastic polymer may be identified. The content ratio of the rubber particles in the entire acrylic thermoplastic resin composition is 40% by weight of the entire acrylic thermoplastic resin composition. /. The following ' is preferably 30% by weight or less. When the content ratio of the rubber particles is 40% by weight or more of the entire acrylic thermoplastic resin composition, the surface hardness of the layer (B) is lowered, so that it is easily scratched. Further, in the polycarbonate-based thermoplastic resin composition and the acrylic thermoplastic resin composition, if necessary, an ultraviolet absorber, an organic dye, an inorganic dye, a pigment, an antioxidant, an antistatic agent, or a surface may be blended. Active agent, etc. <Production Process of Optical Matting Film> The matte film for optics of the present invention is laminated on at least one side of the layer (A) formed of the polycarbonate-based thermoplastic resin composition described above. The acrylic thermoplastic resin composition is layered (B), and at least one layer (B) surface is a matte finish. In the method of forming the matte surface, a method of transferring a so-called matte-free roll which is itself a metal roll by forming an uneven surface on the outer peripheral surface by co-extrusion molding, or a total of In the extrusion molding, a method of forming a composition of the light-transmitting fine particles to be a matting agent in the acrylic thermoplastic resin composition as a surface layer material to form irregularities on the surface is used. -19- 201134662 <Formation method of a matte surface using a light wheel> A method of forming a matte rough surface using a so-called matte rough roller is formed by using an outer peripheral surface at the time of co-extrusion The method of transferring the metal roller of the concavo-convex shape is exemplified by the method of Japanese Patent Laid-Open Publication No. 2009- 1 96327, and the Japanese Patent Laid-Open Publication No. 2009-202 3 82. A schematic illustration of an example of a process for producing an optical matte film of the present invention (hereinafter, simply referred to as a manufacturing process of the present invention). As shown in the figure, the manufacturing process consists of preparing two molten extruders 1, 2, which are respectively fed into a polycarbonate-based thermoplastic resin composition and an acrylic thermoplastic resin which are fed into an extruder. The material is melt-kneaded (m ο 11 enkneading) and supplied to the feed block 3 separately and melted and integrated to be integrated, and then passed through a single manifold die 4 (T-die) The resin was expanded and extruded from the tip end of the die to a film shape. In the manufacturing process of the present invention, the layer is laminated on the layer in a front-die laminating manner and integrated. Specifically, for example, the polycarbonate-based thermoplastic resin composition and the acrylic thermoplastic resin composition which are supplied to the feed member 3 of the two types of three-layer and two-layer two-layer distribution type are supplied to the feed member 3 A three-layer structure in which the layer (B) is laminated on both surfaces of the layer (A), or a two-layer structure in which the layer (B) is laminated on one surface of the layer (A) to make the -20-8 201134662 integrated Chemical. The above-mentioned manufacturing process is based on the example of the feeding member 3 and the die head 4, but it is also possible to use a multi-tube die which is, for example, an inside-die laminating method. Multimanifold die, a dual slot die that belongs to the 〇utside-die laminating. Then, the resin extruded from the die 4 is sandwiched between the first cooling roller 5 and the second cooling roller 6 disposed in the opposite horizontal direction. The matte film 8 is formed of at least one surface of the layer (B) of the propylene-based thermoplastic resin composition, and is slowly cooled by the third cooling roll 7, whereby the optical matte film 8 can be obtained. The first cooling roller 5 is formed to have a diameter of 25 to 10 cm and is made of a rubber roller or a metal elastic roller. The rubber roller may, for example, be a poly-xylene rubber roller or a fluorine-containing rubber roller, or may be a mixture of sand for improving the mold release property. The hardness of the rubber roller is preferably A as measured by JIS K625 3. (A) 60 to A°9〇. When the hardness of the rubber roller is to be within the above range, for example, the degree of cross linking or composition of the rubber constituting the rubber roller can be adjusted and arbitrarily carried out. The metal elastic roller means that the inside of the roller is made of rubber or filled with a fluid, and the outer peripheral portion is made of a metal film having flexibility. Specifically, the inside of the roller is a cylindrical stainless steel film having a thickness of about 2 to 1 mm, which is formed by a poly-xylene rubber roller, and is coated on the outer peripheral portion of the roller, or in a roller. In the case where a fluid such as water or oil is injected into the body, a stainless steel cylindrical film having a thickness of 2 to 5 mm is fixed at the end of the roller, and a fluid is sealed inside. The first cooling roll 5 is made of a metal material or an elastomer and is finished by mirror plating to form a mirror shape. Here, the surface of the metal film or the rubber roller of the metal elastic roller does not necessarily need to be smooth. For example, the second cooling roller 6 described below may have a concave-convex shape on the surface. The second cooling roll 6 is formed of a metal roll having a concavo-convex shape formed on the outer peripheral surface with a diameter of 25 to 100 cm. Specifically, the temperature of the surface of the roller can be controlled by drilling a drilled roll of the cut metal block or by introducing a fluid, a vapor, or the like into the inside of the spiral roll of the hollow structure. For the metal roller or the like, a desired embossed shape can be formed by sand blasting or engraving on the outer circumferential surface of the metal roller. The uneven shape of the outer peripheral surface of the second cooling roll 6 can be, for example, a matte roughness of about 0.1 to ΙΟμηι in terms of arithmetic mean roughness (Ra), or a specific pitch (pitch). Or height bump shape, etc. The arithmetic mean roughness (Ra) is measured by a surface roughness meter in accordance with JIS B060 1 -200 1 . The resin extruded from the die head is a layered resin in which the layer (B) is laminated on both sides of the layer (A), and a matte raw sugar surface is to be formed on the surface of one side of the layer (B), or The layered resin of the layer (B) is laminated on the surface of one side of the layer (A), and the matte resin is formed on the surface of the layer (B). Between the second cooling roller 6 -22- 201134662, the uneven shape of the second cooling roller 6 is transferred and formed into a film. At this time, the layer (B) side of the matte film is extruded so as to be in contact with the second roller 6 . Further, the laminated resin of the layer (B) is laminated on both sides of the layer (A), and if the surface of both layers (B) is to be formed with a matte rough surface, the laminated resin is interposed. The uneven shape may be formed between the cooling rolls of the outer peripheral surface. The resin film having the uneven shape is transferred, and after being taken up by the second cooling roll 6, it is pulled by the pulling roll and then taken up. At this time, the third cooling roller 7 may be provided after the second cooling roller 6. As a result, since the resin film is slowly cooled, the optical strain of the resin film can be reduced, and the contact time with the second cooling roll 6 can be stably ensured, so that the second cooling roll can be used. The uneven shape on the 6 is stably transferred. The third cooling roll 7 is not limited, and a normal metal roll used for extrusion molding can be used. Specific examples include a drill press type roll or a spiral type press roll. The surface state of the third cooling roller 7 is preferably a mirror surface. The resin film wound around the second cooling roll 6 is wound between the second cooling roll 6 and the third cooling roll 7 and wound around the third cooling roll. A predetermined gap may be provided between the second cooling roller 6 and the third cooling roller 7 to be in a liberated state, or may be interposed between the two rollers. Further, in order to cool the resin film in a slower manner, a plurality of cooling rollers may be provided after the third cooling roller 7 and the fourth cooling roller, the fifth cooling roller, and the like. The matting film wound on the third cooling roller 7 is sequentially wound around the next cooling roller of -23-201134662. <Formation method of matte rough surface using a matting agent> Further, as another method of forming the matte rough surface, an acrylic thermoplastic resin composition containing a particle which is a matting agent as a surface layer material is used. A method of forming irregularities on a surface in co-extrusion molding. In this case, the Co-extruding moulding method is exemplified by the Japanese Patent Laid-Open Publication No. 2009- 1 963 257, and the Japanese Patent Publication No. Hei. In this case, since the surface unevenness is formed by the effect of the matting agent, the second cooling roll 6 can also be a metal roll having a mirror surface in a normal surface state. Further, in the case of the matting agent used at this time, a general method of using a particle of a light diffusing agent is generally used, and in the case of the light diffusing agent, a methyl methacrylate-based polymer is exemplified. Organic particles such as particles, styrene polymer particles, and siloxane polymer particles, calcium carbonate, barium sulfate, titanium oxide, aluminum hydroxide, barium oxide (cerium oxide), inorganic glass, talc, mica, super Inorganic particles such as white carbon, magnesium oxide, or zinc oxide. Here, the inorganic particles ‘ can be uniformly dispersed in the thermoplastic resin, and can be treated with a surface treatment agent such as a fatty acid. The matte film for optics of the present invention is often used as a matting agent because it is often required to have a light ray permeability as an optical property. In addition, from the viewpoint of ensuring a high light transmittance of -24-201134662, the refractive index difference from the acrylic resin as the base resin is not large from the viewpoint of the addition of the matting agent which can ensure the unevenness of the surface. Large particles are suitable, and usually, the refractive index difference is preferably within a range of 〇.1. From the viewpoint of the above, the matting agent in the present invention is preferably organic using methyl methacrylate polymer particles, styrene polymer particles, and siloxane polymer particles. Line particles. These particles may be used singly or in combination of two or more. The methyl methacrylate polymer particles which can be used as the above-mentioned matting agent are particles of a polymer mainly composed of methyl methacrylate, and such a polymer is methyl methacrylate and the like. A monofunctional monomer having one double bond capable of radical polymerization and a polyfunctional single having two or more double bonds capable of radical polymerization in the molecule Preferably, the cross-linked polymer is formed by copolymerization of the body. An example of a monofunctional monomer other than methyl methacrylate in the above methyl methacrylate polymer particles is exemplified by a monomer which has been previously used as a methyl methacrylate resin. The (meth) acrylate other than methyl methacrylate, the styrene monomer, and the same as the monomer other than the (meth) acrylate and the styrene monomer, styrene is very suitable. Examples of the polyfunctional monomer in the above methyl methacrylate polymer particles include 1,4-butanediol dimethacrylate, neopentyl glycol dimethacrylate, and ethylene. Alcohol Dimethacrylate, Diethylene Glycol Dimethacrylate, Tetraethylene Glycol Dimethacrylate, Propylene Glycol Dimethyl-25- 201134662 Acrylate, Tetrapropylene Glycol Dimethacrylate a methacrylate of a polyol such as an ester, trimethylolpropane trimethacrylate or isoamyl alcohol tetramethacrylate; 1,4-butanediol diacrylate, neopentyl glycol diacrylate Ester, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, propylene glycol diacrylate, tetrapropylene glycol diacrylate, trimethylolpropane triacrylate a methacrylate of a polyhydric alcohol such as pentaerythritol tetraacrylate; an aromatic polyfunctional compound such as divinylbenzene or diallyl phthalate. These polyfunctional monomers may be used singly or in combination of two or more. The refractive index of such a methyl methacrylate polymer particle is usually in the range of 1.46 to 1.55', and the larger the content of the benzene skeleton or the halogen atom, the more the refractive index tends to be exhibited. Such methyl methacrylate polymer particles can be, for example, "suspension polymerization, microsuspension polymerization, emulsion polymerization, dispersion polymerization, etc." Manufacturing. The styrene polymer particles which can be used as the above-mentioned matting agent are particles of a polymer mainly composed of styrene, and such a polymer has one of styrene and one of the other molecules. A cross-linking polymer obtained by copolymerizing a monofunctional monomer having a double bond of a radical polymerization and a polyfunctional monomer having two or more double bonds capable of radical polymerization in a molecule is preferred. In the example of the monofunctional monomer other than styrene in the above styrene polymer particles, it is exemplified that, in addition to methyl methacrylate, -26-201134662 is a methyl methacrylate resin. The (meth) acrylate other than the methacrylic ester obtained by the monomer example, the styrene monomer, and the monomer other than the methyl acrylate and the styrene monomer, methyl methacrylate Very suitable for use. Examples of the polyfunctional monomer in the styrene polymer particles described above may be used in the same manner as those of the conventional monomer as the methyl methacrylate polymer particles. It is used in combination of two or more types. The refractive index of such styrene polymer particles is usually about 1 to 61, and the higher the content of the benzene skeleton or the dentate atom, the more the refractive index tends to be. Such styrene polymer particles can be produced, for example, by a suspension polymerization method, a microsuspension polymerization method, an emulsion polymerization method or dispersion polymerization. The ratio of the polymethyl methacrylate-based polymer particles used in the above-mentioned matting agent to the polyfunctional monomer used in the styrene polymer particles is usually from 0.05 to 15% by mass based on the total monomer. It is 1. 1 to 1 〇 mass%. If the amount of the polyfunctional monomer is too small, the degree of particle bonding is insufficient. In the extrusion molding, heat or shear is applied to easily cause large deformation, and as a result, a desired light diffusion effect can be obtained. If the amount of the polyfunctional monomer is too large, it is likely to be poor in extrusion molding. The siloxane-based polymer particles which can be used as the above-mentioned matting agent are, for example, particles of a polymer produced by a method in which chlorosilanes are hydrolyzed (h y d r ο 1 y s i s ) and condensed. Acids are removed (in which case more officials can also be .53 to show large, according to the law, etc., better time, and, outside, the line is -27-201134662 chlorodecane, for example, : dimethyldichlorodecane, diphenyldichlorodecane, phenylmethyldichlorodecane, methyltrichlorodecane, phenyltrichlorodecane, etc. The fluorene-based polymer may be a cross-linker. When it is desired to crosslink, for example, 'p-oxane-based polymer makes benzamidine peroxide, 2,4-dichlorobenzidine peroxide, p-chlorobenzamide peroxide, difenyl peroxide, Dibutyl butyl-2,5-dimethyl-2,5-(t-butylperoxy)hexane can be used for the action, and if it has a sterol group at the end, it can also Condensation crosslinking with alkoxy decane. The crosslinked polymer is preferably a structure in which 2 to 3 organic residues are bonded to each ruthenium atom. An alkane-based polymer, which is also a polymer of polyoxyxylene rubber or polyoxyxylene resin, is preferably used as a solid at room temperature. The pulverization of the siloxane polymer can be carried out. The sclerosing polymer having a linear organo siloxane block or a composition thereof can be hardened in a spray state to form a granulation. Further, the alkyltrialkoxy decane or a partially hydrolyzed condensate thereof may be obtained by hydrolyzing and condensing it in an aqueous solution of ammonia or an amine to obtain as a granulated particle. The refractive index of the particles is usually about 1.40 to 1.47. The weight average particle diameter of the particles which can be used as the matting agent can be appropriately selected according to the desired surface unevenness, but has the desired surface unevenness. And having excellent optical properties, preferably from 0.5 to 50 μm, more preferably from 1 to 40 μm, and even more preferably from 2 to 30 μm. Further, the particles are from 28 to 8 201134662, generally spherical, but may also be used. In the shape of a rectangular shape, a scaly shape, a needle shape, a plate shape, etc. The content ratio of the particle used as a matting agent of the acrylic thermoplastic resin composition is an acrylic thermoplastic resin composition. When the content of the particles used as the matting agent is 35 wt% or more of the total amount of the acrylic thermoplastic resin composition, the composition is melted and extruded by the composition, and is preferably 30% by weight or less. It is not appropriate for molding to be difficult. <Opacifying Film for Optical Use> The matte film for optical use of the present invention has a thickness of 30 to 300 μη, preferably 30 to 200 μm, more preferably 30 to ΙΟΟμπ. When the thickness is 30 μm or less, the rigidity of the film body is lowered, so that the film is likely to wrinkle or float in a state of being solidified. If the thickness is more than 300 μm, the retardation of the incident light is not suitable. In the matte film for optics of the present invention, the retardation of incident light at a wavelength of 5 9 Onm is preferably 30 nm or less, more preferably 20 nm or less. For example, in the case of a matte film for optical use, for example, in the case of a matte film used in a liquid crystal display device, since the light used for liquid crystal display is polarized light, a film having a small optical distortion is required as the matte film. It is a blocker of 30 nm or less. In the liquid crystal display device, the polarizing separation sheet protective film which is protected by the polarized separation sheet is more preferably 20 nm or less for the following reasons. -29- 201134662 The liquid crystal display device, as shown in Fig. 2, is provided with a liquid crystal panel (liguid crystal panel) 12 on the backlight unit 9, and is incident on the light emitted from the backlight panel 9. It is constituted by the mode of the liquid crystal panel 12. The polarizing separation sheet 1 is usually disposed between the backlight panel assembly 9 and the liquid crystal panel 12, and is configured to separate the unpolarized light rays emitted from the backlight panel assembly 9 into two mutually polarized rays in a mutually perpendicular relationship, and Only one side of the polarized light selectively penetrates and exits the liquid crystal panel 1 2 side, and the polarized light on the other side returns to the backlight panel assembly 9 side, so that after being reflected in the backlight panel assembly, it is again incident on the polarized light. Sheet 1 is used to re-use, in order to improve the efficiency of light utilization. Therefore, in order to protect the polarized light separating sheet 10, the polarizing separation sheet protective film 11 used for laminating or bonding to the both sides or one side of the sheet 10 is prevented from being as far as possible from the sheet 10 The polarization mode of the polarized light that is emitted is disturbing, and it is better to block the enthalpy, and it is better to block the enthalpy below 20 nm. The matte film for optics of the present invention is preferably a B or more on the matte surface of the layer (B) in accordance with the surface pencil hardness measured in accordance with JIS K5600. When the surface pencil of the matte side is B or less, it is likely to be injured on the surface of the film during the production of the film or during the handling of the film or when it is in contact with other parts. Moreover, in order to prevent injury, it is also possible to apply a protective film to the matte surface, but it is necessary to protect the film lamination process so that the process becomes complicated and disadvantageous in terms of cost. The matte film for optics according to the present invention is preferably a total light transmission factor measured in accordance with JIS K 7 3 6 1 or more, preferably 90% or more. If the total light transmittance of the matte film is too low, -30-201134662 reduces the ratio of the amount of incident light of the matte film to the amount of light emitted from the matte film, and as a result, it is disadvantageous from the viewpoint of light use efficiency. In the matte film for optics of the present invention, the thickness of the layer (A) is preferably a thickness of 30% or more for the entire film, more preferably 40% or more. If the thickness of the layer (A) is less than 30% of the thickness of the entire film, the heat resistance of the film may be lowered, so that it may be evaluated at a high temperature (for 30 minutes in an oven at 120 ° C), The dimensional change caused by the shrinkage of the film increases. The thermal deformation temperature (Th) measured according to ASTM D-648 is about 140 °C in the polycarbonate resin as the resin component of the layer (A), and is used as the layer (B). The acrylic resin of the resin component is about 1 〇〇t, and from the viewpoint of heat resistance, the thickness of the layer (A) having a polycarbonate resin having a higher Th content as a resin component is preferably 9μηι or more. In the dimensional change rate (shrinkage ratio) at the time of high-temperature retention evaluation of the optical matte film of the present invention, the extrusion direction (MD) and the width direction (TD) of the film are preferably 7·0% or less. Preferably, both of them are 6.0% or less, more preferably 5.0% or less. When the dimensional change rate is large, when the film is used in a liquid crystal display device, film may be generated due to heat generation in the liquid crystal display device. The size is changed so that the film is embossed or external waviness, and the thickness of the layer (B) is preferably 8 μm or more, more preferably ΙΟμηι or more. If the thickness is 8 μΐΏ or less, the surface hardness of the layer (Β) may be reduced to -31 - 201134662. The optical matte film of the present invention has a function of scattering light by forming an uneven shape on the surface. For example, in a liquid crystal display device, it can be used as light diffusion in a backlight assembly. A sheet, a light diffusing film, a polarizer protective film, a phase difference film, a luminance improving film, or a protective film of a polarized separation sheet. Moreover, it can also be applied to an optical disk, a film for automotive interior, a film for lighting, and a film for building materials. However, the present invention is not limited to such applications. [Embodiment] [Embodiment] Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto. Here, in the following examples, the contents indicating the content or the amount used are based on weight unless otherwise noted. The constitution of the extrusion apparatus used in the following examples and comparative examples is as follows. Extruder 1: Spiral diameter 115mm single-axis press with vent (vented by Toshiba Machine Co., Ltd.) Extruder 2: Spiral diameter 90mm single-axis extruder with venting holes (Toshiba Machine) (Feature) system Feeding unit 3: Two types of three-layer and two types of two-layer distribution type feeding parts (manufactured by Toshiba Machine Co., Ltd.) Mouth head: T-die die-32- 8 201134662 Extruder 1 and 2. The feeding member 3, the die head 4, and the first to third cooling roller wheels 5 to 7 are arranged as shown in Fig. 1, and each of the cooling rollers 5 to 7 is constructed as follows. <Roller Configuration 1> The first cooling roller 5, the second cooling roller 6, and the third cooling roller 7 are configured as follows. The first cooling roll 5: the second cooling roll 6 having an outer diameter of 45 0 mm φ and a hardness of A·70 and a second cooling roll 6 having an outer diameter of 450 ηηηιφ and having an arithmetic mean roughness (Ra) by sandblasting 3 ·Metal roller with a concave-convex shape of 5μπι (drill-type pressure roller) 3rd cooling roller 7 ··Outer diameter 4 5 0 mm φ and mirror-finished stainless steel metal roller (drilled roller) ) <Roll wheel configuration 2> The first cooling roller 5, the second cooling roller 6, and the third cooling roller 7 are configured as follows. The first cooling roller 5 has an outer diameter of 450 ηιηηφ and a hardness of eight. 70th polyoxygen rubber roller 2nd cooling roller 6: outer diameter 4 5 0mm φ and mirror-finished stainless steel metal roller (drill-type pressure roller) 3rd cooling roller 7: outer diameter 450mm 0 and mirror-finished non-recorded metal roll (drill-type press roll) -33- 201134662 In the examples and comparative examples, as a methacrylate resin, a matting agent (clear particles) and acrylic acid For rubber, use the following. <Methacrylate resin> As the methacrylate resin, a heat distortion temperature (Th) obtained by polymerization of a monomer component composed of 99.8% by weight of methyl methacrylate and 2.2% by weight of methyl acrylate was used. A pellet of a thermoplastic polymer of 100 °C. <Detering agent (transparent fine particles)> As a matting agent (clear fine particles), a refractive index obtained by polymerization of 95% of methyl methacrylate and 5% by weight of divinylbenzene (mass ratio) is 1.49. The methyl methacrylate-based thermoplastic polymer particles having a weight average particle diameter of 5 μm. <Acrylic rubber puller> As the acrylic rubber particles, acrylic rubber particles having a three-layer structure obtained by the following production method were used. The method described in the examples of Japanese Patent Publication No. Sho 5 5 - 2 75 76 'Firstly, 1700 g of ion-exchanged water and 7 g of sodium carbonate were fed to a glass reaction vessel having an internal volume of 5 liters. 0.3 g of sodium sulfate, stirred under a nitrogen stream, and fed to Lex OT-P (manufactured by Kao), 4.46 g, ion-exchanged water 150 g, methyl methacrylate 150 g, allyl methacrylic acid After the ester was 0.3 g, the temperature was raised to 75 ° C and stirring was continued for 150 minutes. Next, a mixture of butyl propylene 8-34-201134662 acid ester 689 g, styrene 162 g, allyl methacrylate I7g, and sodium persulfate 〇.85 g, lyx was added from another inlet for 90 minutes. A mixture of 〇T-P7.4g and 50g of ion-exchanged water was further polymerized for 90 minutes. After completion of the polymerization, a mixture of 3 26 g of methacrylate, 14 g of ethyl acrylate, and 30 g of ion-exchanged water in which 34 g of sodium persulfate was dissolved was added from each inlet for 30 minutes. After the addition is completed, hold for another 60 minutes to complete the polymerization. The obtained latex (Latex) was placed in a 0.5% aqueous solution of aluminum chloride to coagulate the polymer. This was washed 5 times with warm water of about 50 ° C and dried to obtain a three-layer structure of acrylic rubber particles. (Example 1, Example 7, and Comparative Example 1) As the layer (A), a polycarbonate resin ("Jia Li Ba 3 03 - 1 0", (Th ) 140 ° C) manufactured by Sumitomo Toki Co., Ltd. It is melt-kneaded and supplied from the extruder 1 to the feeding member 3, and as the layer (B), the methacrylate resin and the matting agent (clear particles) and the acrylic rubber particles are contained in the ratio shown in Table 1. The acrylic thermoplastic resin composition is melt-kneaded, supplied to the feeding member 3 from the extruder 2, and melted to have a three-layer structure of the layer (B) / layer (A) / layer (B). Integrated, and extruded from the die 4 . Here, in Comparative Example 1, the supply of the feed member 3 from the extruder 2 was stopped, and only the layer (A) was extrusion molded. Next, the configuration of the cooling roller is the above-described roller configuration 1, and the film-like resin extruded from the die 4 is sandwiched between the first cooling roller 5 (setting temperature: 45 ° C) and the second cooling. Roller 6 (set temperature: 1 0 (TC), and roll -35- 201134662 hanging on the 3rd cooling roller 7 (set temperature: l〇〇 °C) 'The surface is turned to one side The optical matte film 8 having a concavo-convex shape. (Examples 2 to 6, Comparative Examples 2 and 3) In Examples 2 to 6 and Comparative Example 3, except that the configuration of the cooling roller was set as the above-described roller configuration 2 The rest of the optical matte film 8 was obtained in the same manner as in Example 1. Further, in the case of Comparative Example 4, the supply of the feed unit 3 from the extruder 1 was stopped to form only the layer (B). Single layer film made -36- 8 201134662 【一撇】 Thickness of the whole film ※ (μπι) 〇〇»—1 〇Ο ο Ο Ο Layer (Β) Thickness (μπι) Ή κη r—Η 12.5 ο in ο Extinction agent (% by weight) 〇ο Ο Ο ο ο ο Acrylic rubber particles (% by weight) 〇〇ο ο ο ο ο ο ο ο May acrylate purpose tree layer ([alpha]) of all the comparative film thickness (%) square square ο ΟΝ ν〇 ο ο ο ο thickness (μπι) billion billion <χ> ο <χ> κη (Ν ο ο cn ΓΟ 种类 Type 1 Polycarbonate Resin 1 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 1 Comparative Example 2 Comparative Example 3暖 暖 ( ( ( s s s s s ( ( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <Surface hardness (pencil hardness)> The surface hardness of the uneven-shaped surface of the outermost layer of the obtained matte film was measured in accordance with JIS K5 600. <Surface Gloss> The uneven surface of the outermost layer of the matte film obtained was measured in accordance with JIS Z874 1, and the surface of the opposite side of the matte film was 60 degrees gloss. <Surface roughness> The surface roughness of the outermost layer of the matte film was measured by using a surface roughness meter ("Shafusted SJ-201" manufactured by Sanken Co., Ltd.) in accordance with JIS B 060 1 - 1 994. Arithmetic mean roughness (Ra) and ten point average roughness (Rz). <blocking 値> From the obtained matte film, a 50 mm square test piece was cut, and a microarea double refraction meter ("KOBRA-CCO/X" manufactured by Oji Scientific Instruments Co., Ltd.) was used. ) to determine the block 値 at 590 nm. [Through light penetration coefficient (Tt) and haze (Η)] 201134662 According to JI S Κ 7 3 6 1 -1. <coefficient of contraction> First, from the obtained matte film, a test piece having a square size of about 10 cmK was cut out, and the size (MD〇) and the size in the width direction of the test piece were measured. TD〇). Next, a baby powder (a "senior body powder (Siccaro)") made of a baby vat is placed in a metal vat, and the test piece is placed thereon. Enter the oven at 120 °C for 30 minutes. Then, the size (MD) of the extrusion direction of the naturally cooled test piece and the size (TD) of the width direction were respectively measured. The obtained size was substituted into the formula: shrinkage coefficient S, {1-(MD/MD〇) } X 100, formula: Shrinkage coefficient S2 = {l-(TD/TD〇) }χ100, to calculate the contraction coefficients S, S2. Further, the ratio (S, /S2) is calculated from the calculated contraction coefficient S^Sz. -39- 201134662 CNls Fog V—✓ 1 73.5 1 66.1 58.3 1 52.3 46.7 1 L 46.2 I 丨72.6 1 00 L41-6 I 45.3 Total light transmittance (%) L91-0 1 I 90.4 I 90.5 90.6 丨90.7 1 90.9 91.1 I 88.7 I 91.1 91.4 m 1§ Di RzX4 (U m) <Νί σ> 00 C9 q c6 CO csi 00 c>i ο σ> \n a> eg CO csi B 撇 Ra5K3 (//m) <〇 m 〇_ <〇 d d CO 〇_ inch d <〇 CO 〇 o 1 60 degree surface gloss The back of the matte side s CO CD (D 00 <〇 04 CO CO CM (D <〇 <〇CO matte surface CD σ>vr> C*4 σ> CM in co in 卜 in o \f> n heat shrinkage rate TDX2 (%) dd 5 5 o knot o CVJ pd 〇csi IV^I (%) Dd 〇dd 兮o' p 々' od C>J d Γ ΟΟ Block 値(nm) o 00 <〇 00 <〇〇>V" 00 CO csi Matte hardness of the matte surface 00 I__HB__I m CQ m CQ \L· ffl CO CD OJ I Grip _ Hou Yu CO Dike 驷 逞 〇 〇 〇隹 〇隹 v v - 逞 _ i aj cn 孽 Over M^mirdz^+^w璐苌-S-inch 661-I090CPSK inch ※ «越©切降^«^^^-8-inch 661-0903闰8 廿^^俚。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Fig. 2] is a schematic view showing an example in which the optical matte film of the present invention is used as a polarizing separation sheet protective film in a liquid crystal display device. [Explanation of main component symbols] 1, 2: Melt extruder 3: Feeding member 4: Die die 5: First cooling roller 6: Second cooling roller 7: Third cooling roller 8 = Optical matting film 9 = Backlight panel assembly I 〇: Polarized separation sheet II: Polarized separation sheet protective film 1 2 : Liquid crystal panel - 41 -