[go: up one dir, main page]

TW201134295A - Apparatus, method and system for providing AC line power to lighting devices - Google Patents

Apparatus, method and system for providing AC line power to lighting devices Download PDF

Info

Publication number
TW201134295A
TW201134295A TW99141677A TW99141677A TW201134295A TW 201134295 A TW201134295 A TW 201134295A TW 99141677 A TW99141677 A TW 99141677A TW 99141677 A TW99141677 A TW 99141677A TW 201134295 A TW201134295 A TW 201134295A
Authority
TW
Taiwan
Prior art keywords
led
current
series
voltage
segment
Prior art date
Application number
TW99141677A
Other languages
Chinese (zh)
Other versions
TWI475922B (en
Inventor
Anatoly Shteynberg
Dongsheng Zhou
Harry Rodriguez
Mark Eason
Bradley M Lehman
Stephen F Dreyer
Thomas J Riordan
Original Assignee
Exclara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/729,081 external-priority patent/US8410717B2/en
Application filed by Exclara Inc filed Critical Exclara Inc
Publication of TW201134295A publication Critical patent/TW201134295A/en
Application granted granted Critical
Publication of TWI475922B publication Critical patent/TWI475922B/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

An apparatus, method and system are disclosed for providing AC line power to lighting devices such as light emitting diode (''LEDs'').An exemplary apparatus comprises: a plurality of LEDs coupled in series to form a first plurality of segments of LEDs; a plurality of switches coupled to the plurality of segments of LEDs to switch a selected segment into or out of a series LED current path in response to a control signal; a current sensor; and a controller which, in response to a first parameter and during a first part of an AC voltage interal, generates a first control signal to switch a corresponding segment of LEDs into the series LED current path; and during a second part of the AC voltage interval, generates a second control signal to switch a corresponding segment of LEDs out of the first series LED current path.

Description

201134295 # 六、發明說明: 【相關申請案之交互參照】 本申凊案係為Anatoly Shteynberg等人於2009年6月 4曰提出申請之美國專利申請案序號12/478,293號的部份 連續申請案與申請優先權,標題為、、用於提供AC線電力至 .發光裝置的設備、方法及系統,,,其係一般同此被受讓, ”王4内谷在此以引用的方式併入,其係具有如同在此完 全被表達—樣的相同權力與效果,其係並且具有為了所有 一般已揭露發明内容而申請的優先權。 【發明所屬之技術領域】 本發明一般係關於功率轉換,且更特別關於用於提供 AC線功率到譬如發光二極體(、、LED〃)之發光裝置的系 統、設備與方法。 【先前技術】 固恕發光系統(半導體、以]^ED為主的發光源)的廣 泛增加已經造成高效率功率轉換器的需求,譬如led驅動 器,其係具有輸入對輸出電壓的高轉換比率,以提供對應 的能量儲存。離線LED驅動器的廣泛變化係為已知,但卻 不適合直接取代在典型、、Edis〇n〃型插座中應用的白熾燈泡 或小型營光燈泡’譬如燈或家用發光設備,其係可被耦合 到交流電(、、AC〃 )輸入電壓,譬如使用於家庭或企業中 的典型(單相)AC線(或AC交流主線)。 201134295 早期嘗試的解法已經造成先前技術LED驅動器,其係 為非隔離性、具有低效率、傳送相當低功率、其係並且在 沒有溫度補償、沒有以現有先前技術調光切換器的調光排 列或互適性以及沒有用於LED之電壓或電流保護之下,至 多傳送固定電流到LED。為了減少該元件總數,此些轉換 器可在沒有隔離變壓器之下被架構,其係藉由使用兩階段 轉換器’第:階段係在非m循環上運行(同等地視 為-工作循環),從而限制最大操作循環,而導致轉換器 尺寸的增力π (由於相當低操作頻率)並且最後使移動麵合 變壓器之目的失敗。在其他實例中,led 度咖,其係需要比較大的電流來產生希望的 造成系統效率的減少以及能量成本的增加。 其他先前技術LED驅動器係過度複雜。有些需要複雜 的控制方法,冑些難以設計與實施,其他則需許多電子設 備。非常多元件會造成成本增加及可靠度減少。許多驅動 :應用在脈寬調變(、、PWM”電路中具有斜波補償的電 流椒式調節此電流模式㈣器需要相當多的功能性電 路,然而卻可在使用於具有超過5〇%之工作循環或比率的 連續電=模式中持續顯示穩定性問題。許多先前技術嘗試 應用固定關閉冑間升麼轉換器或遲滞脈衝列升逐器來解決 此些問題。當這些先前技術方法解決不穩定問題時,這此 遲滞脈衝列轉換器則會呈現其他困難(譬如提高的電= 擾不穩定性)以符合其他電磁相容性需求與相對的無效 率。其他嘗試則提供方法於原先功率轉換器台外' 添加額 201134295 外的反饋與其他電路而使LED驅動器甚至更大且更複雜。 卜提出的方法提供可重組態電路,以依據感測電壓 提供較佳數㈣咖於每―電路中,但卻也過度複雜,其 係具有每-電流路徑用的個別電流調整器,其效率會被很 大數量❹m二極體的規格所連累^此些複雜咖驅動写 電路會造成成本的增加,其係使它們不適合被消f者使用 當做典型白熾燈泡或小型螢光燈泡的替代物。 -其他先前技術LED燈泡替代辦法無法回應不同輸入電 [拎平反而,複數個不同產品是必要且每一個用於不同 輸入電壓水平(110伏特.、11〇伏特、22〇伏特、23.〇.伏特)。 在这個世界的許多部份,這是個明顯的問題,不過, 其係因為典型@ AC輸入電麈水平具有高變化(均方根水 準)3如範圍從85伏特至135伏特,假定是i 1〇伏特。 結果,在此些先前技術裝置中,輸出亮度會明顯變化,其 係具有85伏特i 135伏特的變化,其係造成輸出光通量的 3倍改隻%出売度的此些變化係不受典型消費者的歡迎。 …使用標準Ac冑入電壓之先前技術裝置的其他顯著問 題係明顯未充分使用:由於可變AC施加電壓,LED不會在 整個AC循環期間内被實施。更明確地,當在AC循環期間 内的輸入電壓較低時,不會有任何的LED電流且沒有任何 光線被發射。例如’在大約中間三分之—的整流ac循環内 僅有LED電流,而在18〇度整流AC循環的第一與最後 度内則沒有任何LED電流。在這些情況中,LED應用可低 到20% ’其係相當低且尤其包含相當高的成本。 · 201134295 就消費者應用而言,在LED驅動器的先前技術嘗試上 會有無數的其它爭議。例如:有些需要使用大型、昂貴的 電阻器以限制電流的漂移,而造成對應的功率損失,其係 非常明顯,而且可使切換到固態發光的一些目的失敗。 於是,仍需要一種供應AC線功率到一或更多個led 的設備、方法與系統,其係包括高亮度應用的LED,同時 提供LED驅動器尺寸與成本的全面減少,並增加led的效 率與應用。此一設備、方法與系統應該能夠在相當寬ac輸 入電壓範圍上適當地運行,同時提供希望的輸出電壓或電 流,其係並且不會在高或過度電壓應力下產生過度的内部 電壓或放置元件。此外,當連接到AC線以用於輸入功率 時,此一設備、方法與系統應該提供明顯的功率因子校準。 同樣地,提供此一設備、方法與系統以用來控制發光裝置 的亮度、色溫度與顏色將是令人希望的。 【發明内容】 本發明的示範性實施例提供用於供應功率到非線性負 載的種種優點,譬如LED。種種示範性實施例可供應A。線 功率到一或更多個LED,包括用於高亮度應用的led,同 時可提供LED驅動器尺寸與成本的全面性減少並且增加 LED的效率與應用。示範性設備、方法與系統可在一相當 寬的AC輸入電壓範圍上適當地改寫與運行,同時提供希望 的輸*電壓或電&,而且不會在冑或過度的電壓應力下產 生過度的内部電壓或放置元件。此外,種種示範性設備、 201134295 方法與系統實施㈣n 的時候提供昍舶λα 1 * 个卿入功率 :純供明顯的功率因子校正。示範性 少在咖輸出點上的電容,從而明顯地改善可靠性實最:減 設備、方法與系統實施例則提供用來控制發光 置之冗度、色溫與顏色的能力。 當然^範性實施例的許多明顯優點應該會被強調。 質辨加:二生貫施例能夠實施功率因子校正,其係造成實 利用曰率:=亮度與明顯的能量儲存兩者。第二,㈣的 循環至少—*LED在絕大多數之每—部份AC 被減+ 由於此局程度的利用率,LED的全部數目可 / ϋ相較具有更多LED的其他裝置卻可產生光輸出。 收方法實施例可被揭露以提供功率到可輕合以接 電壓的複數個發光二極體,該複數個發光二極體可被 形成複數段發光二極體,每-段均包含至少 數個切換/體,该複數段發光二極體會被耗合到對應複 以將所選段發光二極體切換入或出-串聯發 彔數·在第 '路搜。此不範性方法實施例包含:監視第- 數平:第—部份AC電壓區間内,當第一參數達到第一預 電將對應段發光二極體切換入該串聯發光二極體 电机路搜;而且在第二部 少到第1〜 電壓區間内,當第-參數減 發光=疋水平時,將對應段發光二極體切換出該串聯 赞九—極體電流路徑。 電流2範性實施例中,第一參數係為該串聯發光二極體 L的電流水平。在種種示範性實施例中,該方法進 201134295 步^ 3將4串獅發光二極體電流路徑的電流水平實質維 持固定於第一預定太单μ 上 。同樣在種種示範性實施例中, 該方法進一步包合.Α▲ .在第—。卩份AC電壓區間内,當第一朱 數達到第三預定水平時, > Α 吟將下一對應段發光二極體切換入 該串«光二極體電流路#;而且在第二部份ac電壓區間 内’ S第一參數減少到第 — ^^ 第四預疋水平時,將對應段發光二 極體切換出該串聯發光二極體電流路徑。201134295 # VI. Invention Description: [Reciprocal References for Related Applications] This application is a partial application for US Patent Application Serial No. 12/478,293 filed by Anatoly Shteynberg et al. And the application priority, titled, the apparatus, method and system for providing AC line power to the illuminating device, which are generally accepted as such, "Wang 4 Neigu is incorporated herein by reference. The present invention has the same powers and effects as those fully expressed herein, and has the priority claimed for all of the generally disclosed inventions. [Technical Field of the Invention] The present invention generally relates to power conversion, More particularly, it relates to a system, apparatus, and method for providing an AC line power to a light-emitting device such as a light-emitting diode (LED). [Prior Art] A forgiveness illumination system (semiconductor, mainly ED) The widespread increase in light sources has led to the need for high efficiency power converters, such as led drivers, which have a high conversion ratio of input to output voltage to provide a corresponding Energy storage. Extensive changes to offline LED drivers are known, but they are not suitable for directly replacing incandescent bulbs or small camp light bulbs such as lamps or home lighting devices used in typical, Edis〇n〃 sockets. It is coupled to an alternating current (, AC〃) input voltage, such as a typical (single-phase) AC line (or AC mains line) used in a home or business. 201134295 Early attempts have resulted in prior art LED drivers, which are Non-isolated, with low efficiency, delivering relatively low power, and without temperature compensation, without the dimming arrangement or interoperability of prior art dimming switches, and without voltage or current protection for LEDs, At most, a fixed current is delivered to the LED. In order to reduce the total number of components, these converters can be constructed without an isolation transformer, which is operated by a two-stage converter, which is operated on a non-m cycle (equivalently Treated as a -working cycle), thereby limiting the maximum operating cycle, resulting in a boosting force of the converter size π (due to the relatively low operating frequency) And finally the purpose of moving the face-to-face transformer failed. In other instances, the LEDs require a relatively large current to produce the desired reduction in system efficiency and an increase in energy costs. Other prior art LED drivers are overly complex. Some require complex control methods, which are difficult to design and implement, others require many electronic devices. Many components will cause cost increase and reliability reduction. Many drives: used in pulse width modulation (, PWM) circuits Current-mode adjustment with ramp compensation This current mode requires a considerable amount of functional circuitry, but can continue to exhibit stability problems in continuous electrical = modes with duty cycles or ratios greater than 5〇%. Many prior art attempts to solve these problems by applying a fixed off-turn converter or a hysteresis pulse trainer. When these prior art methods address the instability problem, the hysteretic pulse trainer presents other difficulties (such as increased electrical = disturbance instability) to meet other electromagnetic compatibility requirements and relative inefficiencies. Other attempts have provided methods to externally power converters outside the 'additional amount of feedback outside of 201134295 with other circuits to make LED drivers even larger and more complex. The proposed method provides a reconfigurable circuit to provide a better number (four) according to the sensing voltage, but is also too complicated, and has an individual current regulator for each current path, the efficiency of which is Will be affected by a large number of ❹m diode specifications ^ These complex coffee-driven write circuits will increase the cost, which makes them unsuitable for use as a substitute for typical incandescent bulbs or small fluorescent bulbs. - Other prior art LED bulb alternatives are unable to respond to different input powers [拎 而 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , volt). This is an obvious problem in many parts of the world, but it is because the typical @AC input power level has a high variation (root mean square) 3 such as ranging from 85 volts to 135 volts, assuming i 1 〇伏特. As a result, in these prior art devices, the output brightness will vary significantly, with a variation of 85 volts i 135 volts, which causes three variations of the output luminous flux to change only the % enthalpy, which is not subject to typical consumption. Welcome. ... Other significant problems with prior art devices that use standard Ac-input voltages are clearly underutilized: LEDs are not implemented throughout the AC cycle due to variable AC applied voltage. More specifically, when the input voltage during the AC cycle is low, there is no LED current and no light is emitted. For example, there is only LED current in the rectified ac cycle of 'about three-thirds of the middle, and no LED current in the first and last degrees of the 18-degree rectified AC cycle. In these cases, LED applications can be as low as 20%', which is quite low and especially involves considerable cost. · 201134295 For consumer applications, there are countless other controversies in prior art attempts at LED drivers. For example, some require the use of large, expensive resistors to limit the drift of the current, resulting in a corresponding power loss, which is very noticeable and can fail to switch to solid-state lighting for some purposes. Thus, there remains a need for an apparatus, method and system for supplying AC line power to one or more LEDs, including LEDs for high brightness applications, while providing overall reduction in LED driver size and cost, and increasing the efficiency and application of LEDs. . The apparatus, method and system should be capable of operating properly over a relatively wide range of ac input voltages while providing a desired output voltage or current that does not create excessive internal voltage or placement of components under high or excessive voltage stresses. . In addition, this device, method and system should provide significant power factor calibration when connected to an AC line for input power. As such, it would be desirable to provide such an apparatus, method and system for controlling the brightness, color temperature and color of the illumination device. SUMMARY OF THE INVENTION Exemplary embodiments of the present invention provide various advantages for supplying power to a nonlinear load, such as an LED. Various exemplary embodiments may supply A. Line power to one or more LEDs, including LEDs for high brightness applications, provides a comprehensive reduction in LED driver size and cost and increases LED efficiency and application. Exemplary devices, methods and systems can be suitably rewritten and operated over a relatively wide range of AC input voltages while providing the desired voltage or voltage and without excessive overvoltage or excessive voltage stress. Internal voltage or placement of components. In addition, a variety of exemplary equipment, 201134295 method and system implementation (four) n provide the λ λα 1 * 卿 ing power: pure for obvious power factor correction. An exemplary less capacitance at the coffee output point, which significantly improves reliability. The device, method, and system embodiments provide the ability to control the luminosity, color temperature, and color of the illumination. Of course, many of the obvious advantages of the exemplary embodiment should be emphasized. Qualitative addition: The second embodiment can implement power factor correction, which results in the use of 曰 rate: = brightness and significant energy storage. Second, (4) the cycle at least - * LED in most of the - part AC is reduced + due to the degree of utilization of this degree, the total number of LEDs can be generated compared to other devices with more LEDs Light output. Embodiments of the receiving method can be disclosed to provide power to a plurality of light emitting diodes that can be lightly coupled to a voltage, the plurality of light emitting diodes can be formed into a plurality of light emitting diodes, each segment comprising at least a plurality of Switching/body, the plurality of light-emitting diodes are consumed to correspond to the switching of the selected segment of the LEDs into or out of the series. The embodiment of the non-standard method includes: monitoring the first-level: in the first part of the AC voltage interval, when the first parameter reaches the first pre-electricity, the corresponding segment LED is switched into the series LED motor circuit. Searching; and in the second part less than the first to the voltage range, when the first parameter minus the illuminance = 疋 level, the corresponding segment LED is switched out of the series tributary nine-pole current path. In the current mode embodiment, the first parameter is the current level of the series LED L. In various exemplary embodiments, the method substantially maintains the current level of the four-string lion LED current path on the first predetermined singular μ in accordance with step 201134295. Also in various exemplary embodiments, the method further includes .Α▲. at the first. In the AC voltage range, when the first number of times reaches the third predetermined level, > 吟 切换 switches the next corresponding segment of the LED into the string «light diode current path#; and in the second part When the first parameter of the s voltage range is reduced to the -^^ fourth pre-turn level, the corresponding segment LED is switched out of the series LED current path.

:種示範性方法實施例亦進一步包含:在第一部份AC °°間内’當發光二極體電流連續達到預定峰值水平 時,將對應段發光二極艚Α认 體相繼切換入該串聯發光二極體電 4徑;且在第二部份AC電壓區間内,當整流AC電Μ水 平減少到對應的電壓水平時 將對應奴發先二極體切換出 該串聯發光二極體電流路徑。 對應段發光二極體切換出談串不1&性貫施例中’將 亥串聯發光二極體電流路徑係盥 將子應段發光:極體切換人該㈣發^極體電流呈、 相反順序。 王 :示範性方法實施例中,時間或時間區間可被使用當 作參數。例如:第—參數與第二參數係為時間或-個或更 Γ時間區間’或以時間為主,或-個或更多個時脈循^ 數。同樣例如,示範性方法實施例進一步包含:決衣 複數個時間區間,其係對應許多段發光二極體以用於= =份的AC電壓區間;以及決定第二複數段時間區間,、复 係對應許多段發光二極體’以用於第二部份的AC電壓;: 間。就此-示範性實施例而言,該方法進-步二:; 10 201134295 ^伤AC電壓區間内,當第一複數個時間區間之每一個時 間區間屆滿時,將下一段發光二極體切換入該串聯發光二 極體電流路徑;且在第二部份AC電壓區間内,當第二複數 7時間區間之每_個時間區間屆滿時,以相反順序將下一 段發光二極體切換出該串聯發光二極體電流路徑。 β種種示範性方法實施例亦可進一步包含決定Ac電壓 是=被相位調變,其係譬如藉由調光開關。此—示範性方 法實施例進-步包含,當AC電壓被相位調變時,將一段發 光二極體切換入該串聯發光二極體電流路徑,其係對應相 位調I AC電壓水平,或者當AC電壓被相位調變時,將一 段發光二極體切換入該串聯發光二極體電流路徑,其係對 應相位調變AC電壓的時間區間。此外,當ac電壓被相位 調變時,示範性方法實施例進一步包含經過第—切換器維 持-並聯發光二極體電流路徑,同時經過第二切換器將下 一段發光二極體切換入該串聯發光二極體電流路徑。 種種示範性方法實施例亦可進—步包含決$ Ae電壓 是否被相位調變。該方法進一步包含,當AC電壓被相位調 變時,將-段發光二極體切換入該串聯發光二極體電流路 徑,其係對應相位調冑AC電壓水平;# AC電壓被相位調 變時’將-段發光二極體切換入該串聯發光二極體電流路 徑,其係對應·相位調變AC電流水平;當AC電壓被相位調 變時,將一段發光二極體切換入該串聯發光二極體電流路 徑,其係對應相位調變AC電壓的時間區間;或者當Ac電 壓被相位調變時,經過第一切換器維持一並聯發光W二極體 11 201134295 電流路徑,同時經過第二切換器將下—段發光二極體切換 入該串聯發光二極體電流路徑。 種種示範性實施例亦可提供用於功率因子校正。此一 示範性方法實施例進-步包含在假如下-段發光二極體被 切換入該串聯發光二極體電流路徑下,決定是否有充分時 間留在第-部份的AC電壓區間以供發光二極體電流達到 預定峰值水平’且當有充分時間留在第_部份的AC電壓區 間以供發光二極體電流達到預定峰值水平時,將下一段發 光二極體切換入該串聯發光二極體電流路徑。同樣當沒有 充分時間留在第一部份AC電壓區間以供發光二極體電流 達到預定峰值水平時,該示範性方法實施例進一步包括不 將下一段發光二極體切換入該串聯發光二極體電流路徑。 同樣在種種示範性實施例中,該方法進一步包含:切 換複數·ί又發光二極體以形成第一串聯發光二極體電流路 徑,以及切換複數段發光二極體,以形成第二串聯發光二 極體電流路徑,其係與第一串聯發光二極體電流路徑並聯。 在一示範性實施例中,複數段發光二極體之所選段發 光二極體中每一個均包含具有不同顏色或波長之發光頻譜 的發光二極體。就此一示範性實施例而言,該方法進一步 包含將所選段發光二極體選擇性切換入該串聯發光二極體 電流路徑’以提供對應的發光效果,及/或將所選段發光二 極體選擇性切換入該串聯發光二極體電流路徑,以提供對 應的顏色溫度。 在示範性實施例中,其係揭露可耦合以接收AC電壓的 12 201134295 設備’該設傷包含:一替汽哭 _ 整机益,提供—整合AC電壓丨複數 =¾ :極體’其係被串聯耦合以形成複數段發光二極 2 4H ’其係被對應㈣合到複數段發光二極 體,以將—所選段的發光二極體切換入或出一串聯發光二 極體電流路徑;—雷、,*式Μ 電/瓜感測盗,感測一發光二極體電流水 平,以及一控制器,耦合到 流感測器,在第一部份整流 内:二及到該電 电澄Ε間内且當發光二極體 二;:增加到一第一預定電流水平0夺,該控制器會將對 2 極體切換入該串聯發光二極體電流路徑;而且 部份整& AC電壓區間内且當發光二㈣電^平 ^一第二預定電流水平時,控制器可將對應段的發光 -極體切換出該串聯發光二極體電流路徑。 在性實施例中,該控制器進一步、該發光 實質維持較於第_狀水平上。在第—部份Μ 士内,當發光二極體電流水平達到第三預定水平 制器會進一步將下一對應段發光二極體切換入該 :聯=極體電流路徑;而且在第二料八。電壓區間 :二ΓΓ體電流水平減少到第四預定水平時,該控 2:進-步將對應段發光二極體切換出料聯 體電流路徑。 在此—不範性設備實施例中’該設備進-步包含複數 該複數個電阻器的每-個電阻器會被串聯耦合 一㈣切換器的一對應切換器。每一電阻 在該對應切換器的一高電壓側上,或者每一電阻器會 13 201134295 合在該對應切換器的一低電壓側上。該示範性設備進一步 包a切換器與一電阻器’其係串聯耦合該複數段發光二 極體的至少—段發光二極體。 在不範性實施例中,該複數段發光二極體的最終段 發光一極體總是會被耦合在該串聯發光二極體電流路徑 中。戎控制器會被進一步耦合到複數段發光二極體,以接 收對應節點的電壓水平。在另—示範性實施例巾,該複數 個切換器的至少一個切換器會被耦合到該整流器,以接收 該整流AC電壓。 在另一示範性設備實施例中,在第一部份整流AC電壓 區間内,當發光二極體電流水平達到預定峰值水平時,該 控制器進步可決疋並且儲存一對應的整流AC電壓水平 值並且將對應段發光二極體相繼地切換人該串聯發光二極 體電机路徑在第二部份整& AC錢區間0,當整流 AC電壓水平減少到—對應值時,該控制器進—步會將對應 段發光二極體切換出該串聯發光二極體電流路徑,並且; 以將對應段發光二極體切換人料聯發光二極體電流路徑 的相反順序來如此進行。 在種種示範性實施例中,該控制器進一步可決定是 將該整流AC電壓相位調變。在此—示範性實施例中,當 整流AC電壓被相位調變時,該控制器進一步可將—段^ 二極體切換入該串聯發光二極體電流路徑,其係對應該 流AC電壓水平’或者將一段發光二極體切換入該_聯發 二極體電流路徑’其係對應該整& AC f壓水平的時間, 14 201134295 間。在另一示範性設備實施例中,者 變時,該控制器進一步經由田電壓相位調 極體電流路徑,同時經由第第:广維持-並聯發光二 切拖入^ τ由第一切換器將下-段發光二極體 切換入该串聯發光二極體電流路徑。 在種種示範性實施例, 該控制态亦可實施一種型式的 ' 、正。在此-示範性設備實施例,假如下一段發 光二極體被切換人該串聯發光二極體電流路徑,該控制器 可進步決疋是否有充分時間留在第一部份整流A。電壓 區間以供發光二極體電流水平達預定峰值水平。就此一示 範性實施例,當有.充分時間留在第—部份整流AC電壓區間. 以供發光二極體電流水平達到預定峰值水平時,該控制器 進一步將下-段發光二極體切換入該串聯發光二極體電流 路徑;且當沒有充分時間留在第一部份整流ac電壓區間以 供發光二極體電流水平達預定峰值水平時,該控制器不會 進一步將下一段發光二極體切換入該串聯發光二極體電流 路徑。 在另一個示範性實施例中,該控制器進一步切換複數 段發光二極體以形成第一串聯發光二極體電流路徑,以及 切換複數段發光二極體,以將並聯第一串聯發光二極體電 流路徑的第二串聯發光二極體電流路徑形成。 在種種示範性實施例中’該設備在實質大約i 〇〇赫茲、 120赫兹、300赫兹、360赫兹或400赫兹的整流AC電壓 頻率上操作。此外’該設備進一步包含複數個磷光體塗層 或層’每一磷光體塗層或層會被耦合到該複數個發光二極 15 201134295 體的一對應發光二極體’且每一磷光體塗層或層則具有在 大約2至3毫秒之間的明亮或發光衰變時間常數。 另一種示範性設備亦可耦合以接收一 AC電壓,該設備 包含:第一複數個發光二極體’其係被串聯麵合,以形成 第一複數段發光二極體;第一複數個切換器,其係被耦合 到第一複數段發光二極體,以應一控制訊號,將一所選段 的發光二極體切換入或出一第一串聯發光二極體電流路 徑;一電流感測器,決定一發光二極體電流水平;以及一 控制器’其係被耦合到該複數個切換器與到該電流感測 器,在第一部份一整流AC電壓區間内且對應該發光二極體 電流水平,該控制器會產生一第一控制訊號以將第一複數 段發光二極體的一對應段發光二極體切換入第一串聯發光 二極體電流路徑;而且在一第二部份AC電壓區間内且對應 該發光二極體電流水平’可將第一複數段發光二極體的一 對應段發光二極體切換出第一串聯發光二極體電流路徑。 在示範性設備實施例中,該設備可進一步包含:第二 複數個發光二極體,其係被串聯耦合以形成第二複數段發 光二極體;以及第二複數個切換器,其係被耦合到第二複 數段發光二極體,以將第二複數段發光二極體的一所選段 切換入或切換出一第二串聯發光二極體電流路徑;其中該 控制器可進一步耦合到第二複數個切換器,並且進一步產 生對應控制訊號以切換第二複數段發光二極體的複數段, 以將並聯第一串聯發光二極體電流路徑的第二串聯發光二 極體電流路徑形成。第二_聯發光二極體電流路徑的極性 16 201134295 與第一串聯發光二極體電流路徑相反,或者流經第一串聯 發光一極體電流路徑的第一電流方向相反流經第二_聯發 光一極體電流路徑的第二電流。 在種種示範性實施例的又另一者,該設備進一步包含 一電流限制電路;一調光界面電路;一直流(DC)電源電 路,其係耦合到控制器,及/或一溫度保護電路》 另一示範性方法實施例可被揭露以提供功率到可耦合 以接收AC電壓的複數個發光二極體,該複數個發光二極體 可被串聯耦合,以形成複數段發光二極體,每一段均包含 至個發光一極體,該複數段發光二極體會被耗合到對 應複數個切換器,以將所選段發光二極體切換入或出一串 聯發光二極體電流路徑。此示範性方法實施例包含:應在 第一部份AC電壓區間内的第一參數,決定與儲存一第二參 數值,並且將一對應段發光二極體切換入該串聯發光二極 體電流路徑;而且在第二部份AC電壓區間内,監視第二參 數並且當第二參數的電流值實質等於該儲存值時,將對應 段發光二極體切換出該串聯發光二極體電流路徑。 在一示範性實施例中’ Ac電壓包含一整流AC電壓, 且該不範性方法進一步包含:決定該整流AC電壓何時實質 接近零,並且產生一同步訊號。該示範性方法亦進一步包 含.從该整流AC電壓何時實質接近零的至少—個決定來決 定該AC電壓區間。 在種種示範性實施例中,該方法進一步包含將ac電壓 整流,以提供整流AC電壓。例如,在此一示範性實施例中, 17 201134295 第-參數係為發光二極體電流水平,且第二參數係為整流 AC輸入電壓水平。其他參數组合同樣地在本發明的申請專 利範圍内,其係例如包括led電流水平、峰值LED電流水 平電壓水平、光學亮度水平。在此示範性實施例中,該 方法進一步包含,在第一部份整流AC電壓區間内,當發光The exemplary method embodiment further includes: during the first portion of the AC °°, when the LED current continuously reaches the predetermined peak level, the corresponding segment LEDs are successively switched into the series. The light-emitting diode has a diameter of 4; and in the second part of the AC voltage interval, when the level of the rectified AC power is reduced to a corresponding voltage level, the corresponding slave diode is switched out of the series LED current path. . Corresponding section of the light-emitting diode switching out of the string is not 1 & in the example of the case of the series of LED light-emitting diode current path system 盥 sub-section of the light: the polar body switching person (four) hair body current, opposite order. Wang: In an exemplary method embodiment, a time or time interval can be used as a parameter. For example, the first parameter and the second parameter are time or - or more time intervals ' or time-based, or - or more clock cycles. Also for example, the exemplary method embodiment further includes: a plurality of time intervals of the finals, which correspond to a plurality of segments of the LED for the == part of the AC voltage interval; and the second plurality of time intervals, Corresponding to a plurality of segments of the LEDs for the second portion of the AC voltage; In this regard, the exemplary embodiment proceeds to step 2:; 10 201134295 ^ In the AC voltage range, when each time interval of the first plurality of time intervals expires, the next segment of the light-emitting diode is switched into The series-connected LED current path; and in the second partial AC voltage interval, when each time interval of the second complex 7 time interval expires, the next segment of the light-emitting diode is switched out of the series in reverse order Light-emitting diode current path. The various exemplary method embodiments of beta may further comprise determining that the Ac voltage is = phase modulated, such as by a dimmer switch. The exemplary method embodiment includes, when the AC voltage is phase-modulated, switching a segment of the LED into the series LED current path, which corresponds to a phase-adjusted I AC voltage level, or When the AC voltage is phase-modulated, a length of the LED is switched into the series LED current path, which corresponds to the time interval of the phase-modulated AC voltage. In addition, when the ac voltage is phase-modulated, the exemplary method embodiment further includes: maintaining the parallel-light-emitting diode current path through the first-switch, while switching the next-stage light-emitting diode into the series through the second switch Light-emitting diode current path. Various exemplary method embodiments may further include whether or not the A Ae voltage is phase modulated. The method further includes: when the AC voltage is phase-modulated, switching the segment-emitting diode into the series-connected LED current path, which corresponds to the phase-adjusted AC voltage level; #AC voltage is phase-modulated 'Switching-segment LEDs are switched into the series LED current path, which corresponds to the phase modulation AC current level; when the AC voltage is phase-modulated, a segment of the LED is switched into the series illumination a diode current path corresponding to a phase interval of the phase-modulated AC voltage; or when the Ac voltage is phase-modulated, maintaining a parallel-lighting W diode 11 201134295 current path through the first switch while passing through the second The switch switches the lower-segment LED into the series LED current path. Various exemplary embodiments may also be provided for power factor correction. The method of the exemplary method further comprises: if the following-stage LED is switched into the series LED current path, determining whether there is sufficient time to remain in the AC voltage range of the first portion for The illuminating diode current reaches a predetermined peak level' and when there is sufficient time to remain in the AC voltage interval of the _th portion for the illuminating diode current to reach a predetermined peak level, the next segment of the illuminating diode is switched into the series illuminating Diode current path. Also, when there is insufficient time to remain in the first portion of the AC voltage interval for the LED current to reach a predetermined peak level, the exemplary method embodiment further includes not switching the next segment of the LED into the series dipole Body current path. Also in various exemplary embodiments, the method further includes: switching a plurality of illuminating diodes to form a first series illuminating diode current path, and switching the plurality of illuminating diodes to form a second series illuminating A diode current path is coupled in parallel with the first series-connected LED current path. In an exemplary embodiment, each of the selected segment of light emitting diodes of the plurality of light emitting diodes comprises a light emitting diode having an emission spectrum of a different color or wavelength. In this exemplary embodiment, the method further includes selectively switching the selected segment of the LED to the series LED current path to provide a corresponding illumination effect, and/or to emit the selected segment The polar body is selectively switched into the series light-emitting diode current path to provide a corresponding color temperature. In an exemplary embodiment, it discloses a device that can be coupled to receive an AC voltage. 12 201134295 The device contains: a set of steaming crying _ whole machine benefits, providing - integrating AC voltage 丨 complex number = 3⁄4: polar body' Coupled in series to form a plurality of segments of light-emitting diodes 4 4H 'which are correspondingly (four) coupled to a plurality of segments of light-emitting diodes to switch the light-emitting diodes of the selected segment into or out of a series-connected LED current path ;-Ray, *-type Μ electric / melon sensing thief, sensing a light-emitting diode current level, and a controller, coupled to the flu detector, in the first part of the rectification: two and to the electric In the Ε Ε 且 当 当 当 当 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光During the AC voltage interval and when the light is emitted by the second predetermined voltage level, the controller may switch the light-emitting body of the corresponding segment out of the series light-emitting diode current path. In an embodiment, the controller further maintains the illumination substantially above the __ level. In the first part of the squad, when the current level of the illuminating diode reaches the third predetermined level, the next corresponding segment of the illuminating diode is further switched into the: ==polar current path; and in the second material Eight. Voltage interval: When the diode current level is reduced to the fourth predetermined level, the control 2: the step-by-step will switch the discharge diode current path of the corresponding segment LED. In this embodiment of the non-standard device, the device further includes a plurality of resistors of the plurality of resistors coupled in series to a corresponding switch of the (four) switch. Each resistor is on a high voltage side of the corresponding switch, or each resistor 13 201134295 is coupled to a low voltage side of the corresponding switch. The exemplary apparatus further includes a switcher coupled to a resistor' in series coupled to at least a segment of the plurality of LEDs of the plurality of light emitting diodes. In an exemplary embodiment, the final segment of the plurality of light emitting diodes is always coupled in the series LED current path. The 戎 controller is further coupled to the plurality of illuminating diodes to receive the voltage level of the corresponding node. In another exemplary embodiment, at least one switch of the plurality of switches is coupled to the rectifier to receive the rectified AC voltage. In another exemplary apparatus embodiment, the controller progresses and stores a corresponding rectified AC voltage level value when the LED current level reaches a predetermined peak level within the first portion of the rectified AC voltage interval. And the corresponding segment LEDs are successively switched. The series LED motor path is in the second part of the & AC money interval 0. When the rectified AC voltage level is reduced to the corresponding value, the controller enters Steps switch the corresponding segment LEDs out of the series LED current path, and do so in the reverse order of switching the corresponding segment LEDs to switch the human LED output current path. In various exemplary embodiments, the controller may further determine to phase change the rectified AC voltage. In this exemplary embodiment, when the rectified AC voltage is phase-modulated, the controller further switches the segment diode into the series LED current path, which corresponds to the AC voltage level 'Or switch a light-emitting diode into the _binary diode current path', which is the time between the whole & AC f pressure level, 14 201134295. In another exemplary device embodiment, the controller further passes the field voltage phase-modulated current path through the field: while the first: wide sustain-parallel light-emitting two-way drag-in is generated by the first switch The lower-segment LED is switched into the series LED current path. In various exemplary embodiments, the control state can also implement a type of ', positive. In this exemplary device embodiment, the controller can progress to determine if there is sufficient time to remain in the first portion of rectification A, assuming that the diode is switched to the series dimming diode current path. The voltage interval is for the LED current level to reach a predetermined peak level. In this exemplary embodiment, the controller further switches the lower-segment LED when there is sufficient time to remain in the first-part rectified AC voltage range for the illuminating diode current level to reach a predetermined peak level. Entering the series LED current path; and when there is insufficient time to remain in the first portion of the rectified ac voltage range for the LED current level to reach a predetermined peak level, the controller does not further move the next segment The pole body switches into the series LED current path. In another exemplary embodiment, the controller further switches the plurality of LEDs to form a first series LED current path, and switches the plurality of LEDs to connect the first series LEDs in parallel A second series-connected LED current path of the bulk current path is formed. In various exemplary embodiments, the device operates at a rectified AC voltage frequency substantially at approximately i Hz, 120 Hz, 300 Hz, 360 Hz, or 400 Hz. Furthermore, the device further comprises a plurality of phosphor coatings or layers each of which is coupled to a plurality of light-emitting diodes of a plurality of light-emitting diodes 201134295 and each phosphor coating The layer or layer then has a bright or luminescent decay time constant between about 2 and 3 milliseconds. Another exemplary device can also be coupled to receive an AC voltage, the device comprising: a first plurality of light emitting diodes 'separated in series to form a first plurality of light emitting diodes; the first plurality of switching The device is coupled to the first plurality of light-emitting diodes to switch a selected segment of the light-emitting diode into or out of a first series-connected LED current path; a sense of current a detector that determines a light-emitting diode current level; and a controller that is coupled to the plurality of switches and to the current sensor, in a first portion of a rectified AC voltage interval and corresponding to illumination a diode current level, the controller generates a first control signal to switch a corresponding segment of the first plurality of LEDs into the first series LED current path; A corresponding partial-segment LED of the first plurality of LEDs can be switched out of the first series LED current path in the two partial AC voltage intervals and corresponding to the LED current level. In an exemplary device embodiment, the apparatus may further include: a second plurality of light emitting diodes coupled in series to form a second plurality of light emitting diodes; and a second plurality of switches Coupled to the second plurality of light emitting diodes to switch a selected segment of the second plurality of light emitting diodes into or out of a second series light emitting diode current path; wherein the controller is further coupled to a second plurality of switches, and further generating a corresponding control signal to switch the plurality of segments of the second plurality of LEDs to form a second series LED current path in parallel with the first series LED current path . The polarity of the second-coupled diode current path 16 201134295 is opposite to the first series-connected LED current path, or the first current flowing through the first series-connected one-pole current path is opposite to the second_link A second current that illuminates the one-pole current path. In still another of the various exemplary embodiments, the apparatus further includes a current limiting circuit; a dimming interface circuit; a direct current (DC) power supply circuit coupled to the controller, and/or a temperature protection circuit Another exemplary method embodiment can be disclosed to provide power to a plurality of light emitting diodes that are coupleable to receive an AC voltage, the plurality of light emitting diodes being coupled in series to form a plurality of segments of light emitting diodes, each Each segment includes a light-emitting diode, and the plurality of light-emitting diodes are depleted to a corresponding plurality of switches to switch the selected segment light-emitting diodes into or out of a series light-emitting diode current path. The exemplary method embodiment includes: determining and storing a second parameter value in a first parameter within a first portion of the AC voltage interval, and switching a corresponding segment LED to the series LED current And wherein in the second partial AC voltage interval, the second parameter is monitored and when the current value of the second parameter is substantially equal to the stored value, the corresponding segment LED is switched out of the series LED current path. In an exemplary embodiment, the 'Ac voltage includes a rectified AC voltage, and the non-standard method further includes determining when the rectified AC voltage is substantially near zero and generating a synchronization signal. The exemplary method also further includes determining the AC voltage interval from at least one of a decision of when the rectified AC voltage is substantially near zero. In various exemplary embodiments, the method further includes rectifying the ac voltage to provide a rectified AC voltage. For example, in this exemplary embodiment, 17 201134295 the first parameter is the light emitting diode current level and the second parameter is the rectified AC input voltage level. Other combinations of parameters are equally within the scope of the present patent application, including, for example, LED current levels, peak LED current level levels, and optical brightness levels. In this exemplary embodiment, the method further includes, when the first portion of the rectified AC voltage interval is illuminated

二極體電流水平達到預定峰值時,決定並且儲存該整流AC 輸入電壓水平的第一值並且將第一段發光二極體切換入該 串聯發光二極體電流路徑;監視該發光二極體電流水平; 而且在第一部份AC電壓區間内,當發光二極體電流相繼達 到預定峰值時,決定並且儲存該整流AC輸入電壓水平的第 二值並且將第二段發光二極體切換入該串聯發光二極體電 流路徑。(此預定值可以許多不同方式來決定,譬如事先 離線所明確說明或在該電路運作時之時間以前所明確說明 或計算,譬如在先前AC循環期間内)。該示範性方法同樣 進一步包含:監視該整流AC電壓水平;在第二部份ac電 壓區間内,當該整流AC電壓水平達到第二值時,將第二段 發光二極體切換出該串聯發光二極體電流路徑;而且在第 二部份AC電壓區間内,當該整流AC電壓水平達到第一值 時,將第一段發光二極體切換出該串聯發光二極體電流路 徑。 同樣在種種示範性實施例中,該方法進一步包含,在 AC電壓區間之第一部份内,當發光二極體電流相繼達到一 預定峰值水平時,決定且儲存該整流AC電壓水平的一對應 值並相Μ將發光二極體的一對應段切換入該串聯發光二極 18 201134295 體電流路徑;以;9 + A p γ 在AC電壓區間之第二部份内,當該整流 AC電麼水平減少到一 對應電I水千時,將該發光二極體的 對應#又切換出該串聯發光-搞辦Φ、ώ " 甲%Ρ啜尤一極體電流路徑。就此一示範性 一 Ο而σ,將該對應段發光二極體切換出該串聯發 光-極體電流路徑’其係與將該對應段發光二極體切換入 該串聯發光二極體電流路徑呈一相反順序。 在另一示範性實施例中,該方法進一步包含:在AC電 壓區間之第一部份内’當發光二極體電流達到一預定峰值 水平時,决疋且儲存該整流AC輸入電壓水平的一第一值; 以及當該整流AC電壓的苐一值實質等於或大於一預定電 壓臨限時,將該發光二極體的對應段切換入該串聯發光二 極體電流路徑。 在種種示範性實施例中,該方法進一步包含監視一發 光二極體電流水平;在第二部份AC電壓區間内,當發光二 極體電流水平比一預定峰值水平大一預定幅度時,決定並 且儲存新的第二參數值並且將該對應段發光二極體切換入 該串聯發光二極體電流路徑。 在另一示範性方法實施例中,該方法進一步包含:切 換複數段發光二極體,以形成第一串聯發光二極體電流路 控;以及切換複數段發光二極體,以形成並聯第—串聯發 光二極體電流路徑的一第二串聯發光二極體電流路徑。 種種示範性實施例亦可提供用於第二串聯發光二極體 電流路徑,其所具有的方向或極性相反第一串聯發光二極 體電流路徑,譬如以用來在AC循環的負部份内傳導電流, 19 201134295 ^第串秘發光二極體電流在AC循環的正部份内傳 導電"_L時。就此_示範性實施例而言,在AC電壓區間的第 三部分内,該方法進一步包含切換第二複數段發光二極體 以形成第二串聯發光二極體電流路徑,其係具有與形成在 第伤AC電壓區間中之串聯發光二極體電流路徑相反 的極性,且在第四部份AC電壓區間内,將第二複數段發光 二極體切換出第二串聯發光二極體電流路徑。 另一示範性實施例係為被耦合以接收AC電壓的一設 備。一示範性設備包含:一整流器,提供一整流AC電壓; 複數個發光二極體,被串聯耦合以形成複數段發光二極 體;複數個切換器,其係相應地耦合到該複數段發光二極 體,以將一所選段發光二極體切換入或出一串聯發光二極 體電流路徑;一電流感測器,感測一發光二極體電流水平; 一電壓感測器,感測一整流AC電壓水平;一記憶體,儲存 複數個參數;以及一控制器,耦合到該複數個切換器、到 該記憶體、到該電流感測器且到該電壓感測器,在第一部 伤整流AC電壓區間内且當發光二極體電流水平達到預定 峰值發光二極體電流水平時,該控制器可決定並將整流ac 電壓水平的對應值儲存在記憶體中,並可將對應段發光二 極體切換入該串聯發光二極體電流路徑;且在第二部份整 流AC電壓區間内,該控制器可監視該整流AC電壓水平並 且當整流AC電壓水平的電流值實質等於該整流AC電壓水 平之所儲存對應值時’將對應段發光二極體切換出該串聯 發光二極體電流路徑。 20 201134295 在此一示範性設備實施例中,當整流AC電壓水平實質 接近零時’該控制器進一步可產生一對應同步訊號。在種 種不範性實施例中,該控制器進一步從該整流AC電壓水平 實質接近零的至少一個決定來決定該整流Ac電壓區間。 在一示範性實施例中,當在整流AC電壓區間之第一部 份内,發光二極體電流水平達到該預定峰值發光二極體電 流水平時,該控制器進一步決定並且儲存該整流AC電壓水 平的第一值於該記憶體_,並將第一段發光二極體切換入 該孝聯發光二極體電流路徑,監視該發光二㈣電流水 平,以及當在整流Ac _電壓區間之第一部份内,該.發光二極 體電流水平隨後達到該預^峰值發光二極體電流水平時, 該控制器進一步決定並且將該整》AC電壓水平的第二值 儲存在記憶體中,並將第二段發光二極體切換入該串聯發 光二極體電流路徑。 示範性設備實施例中,該控制器進—步監視該 "電屋水平’並且當在該整流AC電壓區間之第 份内’該整流AC電壓水平達到所儲存第二值時 : 體:換出該串聯發光二極體電流路徑 所儲存弟-值時’將第—段發光二極體 = 二極體電流路徑。 /申聯發先 在另一不軏性設備實施例中,該控制器進— 發光二極體電流水平,並且當在整流AC電壓區門⑽ 份内,該發光二極體電流水平再 ::-部 攻頂疋峰值水平 21 201134295 時,該控制器進一步決定且儲存該整流AC電壓水平的一對 應下一值於記憶體中,並且將下一段發光二極體切換入該 串聯發光二極體電流路徑。在此一示範性設備實施例中, 該控制器進一步監視該整流AC電壓水平,並且在整流ac 電壓區間之第二部份内,當該整流AC電壓水平達到下一整 流AC電壓水平時,將該對應下一段發光二極體切換出該串 聯發光二極體電流路徑》 在種種示範性實施例中,該控制器進一步監視一發光 一極體電流水平;且在第二部份整流AC電壓區間内當發 光二極體電流水平比一預定峰值水平大一預定幅度時,該 控制器進一步可決定並儲存該整流AC電壓水平的另一對 應值,並且將該對應段發光二極體切換入該串聯發光二極 體電流路徑。 同樣在種種示範性實施例中,該控制器進一步切換複 數段發光二極體,以形成第一串聯發光二極體電流路徑, 以及切換複數段發光二極體,以形成並聯第一 _聯發光二 極體電流路徑的一第二串聯發光二極體電流路徑。 如以上所提及,在種種示範性實施例中,複數段發光 二極體之所選段發光二極體中每一個均包含具有不同顏色 或波長之發光頻譜的發光二極體。在此一示範性設備實施 例中,該控制器進-步將該所選段發光二極體選擇性切換 入該串聯發光二極體電流路#,以提供—對應的發光效 果’以及/或者將該所選段發光二極體選擇性切換入該串聯 發光二極體電流路徑’以提供—對應的顏色溫度。 22 201134295 另種示範性設備實施例亦可被麵合以接收一 a C電 壓,該示範性設備包含:第一複數個發光二極體,被串聯 耗&以形成第一複數段發光二極體;第一複數個切換器, 被耦合到第—複數段發光二極體,以響應一控制訊號而將 所選心發光二極體切換入或切換出一第一串聯發光二極 體電机路杈,一記憶體;以及一控制器,被耦合到該複數 個切換器及該記憶體,響應一第一參數且在AC電壓區間之 =第一部份内,該控制器決定一第二參數值並將它儲存在 心體中並產生一第一控制訊號,以將第一複數段發光 二^體的一對應段發光二極聽切換入第一串聯發光二極體 電机路彳二,且在交流電電壓區間之一第二部份内,當第二 參數的一目前值實質等於該儲存值時,可產生一第I控Z 訊號以將第—複數段發光二極體的一對應段發光二極體切 換出第一争聯發光二極體電流路徑。 在示範性實施例中,第一參數與第二參數包含以下至 夕-個·-時間參數、或者—或更多時間區間、或以時間 為主的參數、或者一或更多時脈循環數。在此一示範性設 備實施例中,該控制器進一步決定對應第一複數段發光: 極體中許多段發光二極體之第一複數個時間區間,以用於 AC電壓區間之第一部份,並且決定對應該許多段發光二極 體之第二複數個時間區間,以用於交流電電壓 : 部份。 心罘一 在另不範性設備實施例中,該控制器進一步… 記憶體取得對應第-複數段發光二極體中許多段發光= 23 201134295 體之第複數個時間區間,以用於AC電壓區間之第一部 份,以及對應許多段發光二極體之第二複數個時間區間, 以用於交流電電壓區間之第二部份。 就此示範性實施例而言,在交流電電壓區間之第一部 份内,在第一複數個時間區間之每一個時間區間期滿時, 該控制器進一步產生一對應的控制訊號以將下一段發光二 極體切換入該串聯發光二極體電流路徑;以及在交流電電 壓區間之第二部份内,在第二複數個時間區間之每一個時 間區間期滿時以相反順序產生-對應的控制訊號,以將該 下一段發光二極體切換出該串聯發光二極體電流路徑。 在種種示範性實施例中,該設備進一步包含一整流器 以k供整*IL AC電壓◎就此些示範性實施例而言,當整流 AC電壓實質接近零時,該控制器可產生一對應同步訊號。 同樣就此些示範性實施例而言’該控制器進一步從該整流 AC電壓水平實質接近零的至少一個決定來決定該整流 電壓區間。 同樣在種種示範性實施例中,該設備進一步包含耦合 到控制器的一電流感測器;以及耦合到該控制器的一電壓 感測器。例如,第一參數係為發光二極體電流水平,且第 二參數係為電壓水平。 就此些示範性實施例而言,當在交流電電壓區間之第 部份内’ 一發光二極體電流達到一預定峰值水平時,該 控制器進一步決定並且儲存該交流電電壓水平的第一值於 該s己憶體中,並產生第一控制訊號以將第一複數段發光二 24 201134295 極體的-第-段切換入第一串聯發光二極體電流路徑·,以 及當在交流電電壓區間之第_部份内,該發光二極體電流 隨後達到該職峰值水平時,該控制器進_步決定並且將 父流電電壓水平的下一值儲存在記憶體中,並產生一下一 控制訊號以將第一複數段發光二極體的下一段切換入第一 串聯發光一極體電流路徑。當在整流交流電電壓區間之第 二部份内’交流電電壓水平達到下—值時,該控制器進一 步產生另一控制訊號以將下一段切換出第—串聯發光二極 體電流路徑;以及當在整流交流電電壓區間之第二邙份 内’該交流電電壓水平達到卜值時可產生第二括制訊 唬,以將第-段切換出第一串聯發光二極體電流路徑。 在種種示範性實施例中,在交流電電壓區間之第一部 份内,當發光二極體電流相繼達到一預定峰值水平時,:亥 7器進-步^且儲存交流電電壓水平的—對應值並相 繼產生-對應控制訊號,以將卜複數段發光二極 對應段切換入第一串聯發光二極體電流路徑; 六士 Φ Φ /Si- I— no ^及在交流 i品4之第二部份内,當該交流電電壓水平減,丨、 對應電壓水平時,該控制器進一步相繼 ^ 王對應控制訊 ,,以將第一複數段發光二極體的對應段切換出 發光二極體電流路徑。例如,該控制器 " 吐_[ # J進—步相繼地產 生對應控制訊號,以將該對應段切換出第_串*表一 極體電流路徑,其係與將該對應段切換 &丨心光 極體電流路徑呈-減順^ .^串聯發光二 在種種示範性實施例中,該控制器進一牛 v决弋AC電壓 25 201134295 是否被相位調變。就此些示範性實施例而言,當交流電電 塵被相位調變時,該控制器進—步產生一對應控制訊號, 以將第一複數段發光二極體的一段切換入第一串聯發光二 極體電流路徑,其係對應一相位調變交流電電壓水平以及/ 或者該相位調變AC電麼水平的—時間區間。就此些示範性 實施例而言,當將交流電電壓作相位調變時,該控制器進 一步會產生對應的控制訊號以經由第一切換器維持一並聯 第二發光二極體電流路徑,同時將第一複數段發光二極體 的下-段經由第二切換器而切換入第一串聯發光二極體電 流路徑。 在種種示範性實施例的另一個巾,在假如第一複數段 發光二極體的下一段被切換入第—串聯發光二極體電流路 役下’該控制器進一步可決定是否有充分時間維持在交流 電電壓區間的第一部份’以供一發光二極體電流達到一預 定峰值水平,且假如如此的話’進—步產生—對應控制訊 唬,以將第-複數段發光二極體的下一段切換入第一串聯 發光二極體電流路徑。 在種種示範性實施例的仍另-個中,在交流電電壓區 間之第二部份内,且當該發光二極體電流水平比一預定峰 值水平大-預定幅度時,㈣制器進一步決定並且儲存第 二參數的-新值並產生一對應的控制訊號,以將第一複數 段發光二極體的對應段切換入該第—串聯發光二極體電流 路控。 在種種示範性實施例中,該控制器進一步產生對應控 26 201134295 制2號以切換第一複數段發光二極體的複數段,以形成並 聯第一串5餘1 ϊ 冲發光二極體電流路徑的第二串聯發.光二 流路徑。 電 在種種示範性實施例中,該設備進一步包含第二複數 個發光二極體,其係被串聯柄合以形成第二複數段發光二 極體,以及第二複數個切換器,其係被耦合到第二複數段 發光一極體以將第二複數段發光二極體的—所選段切換入 或切換出一第二串聯發光二極體電流路徑;其中該控制器 進步耦σ到第二複數個切換器,並且進_步產生對應控 :號玖切換第二複數段發光二極體的複數段,.以形成 並2第一串聯發光二極體電流路徑的第二串聯發光二極體 電流路徑。例如,第二串聯發光二極體電流路徑所具有的 極性與第一串聯發光二極體電流路徑相反。同樣地例如, 流經第一串聯發光二極體電流路徑所具有的第一電流之方 向與流經第二串聯發光二極體電流路徑的第二電流相反。 同樣例如,该控制器進一步產生對應的控制訊號以切換第 複數奴發光二極體的複數段,以在交流電電壓的正極性 内形成第一串聯發光二極體電流路徑,並且進一步產生對 應的控制訊號以切換第二複數段發光二極體的複數段,以 在父流電電壓的一負極性内形成第二串聯發光二極體電流 路徑。 & 在種種示範性設備實施例中,第一複數個切換器包含 複數個雙極性接面電晶體或複數個場效電晶體。同樣在種 種不範性設備實施例中,該設備同樣進一步包含複數個三 27 201134295 態切換器’其係包含:複數個運算放大器,對應地耦合到 第一複數個切換器;第二複數個切換器,對應地耦合到第 複數個切換器;以及第三複數個切換器,對應地耦合到 第一複數個切換器。 種種示範性實施例亦可提供用於種種切換配置或結 構。在種種示範性實施例中,第一複數個切換器的每一切 換器會被耦合到第一複數段發光二極體之一對應段的第一 ^ ’並且耦合到第一複數段發光二極體之最後段的第二 端。在種種示範性實施例的另一個中,第一複數個切換器 的每一切換器會被耦合到第一複數段發光二極體之對應段 的第一端’並且耦合到第一複數段發光二極體之對應段的 第二端。 在種種示範性實施例的仍另一個中,該設備可進一步 包含第二複數個切換器。就此一示範性實施例而言,第— 複數個切換器的每一切換器會被耦合到第一複數段發光二 極體之第一段的第一端,並且耦合到第一複數段發光二極 體之一對應段的第二端;且其中第二複數個切換器的每一 切換器會被耦合到第一複數段發光二極體之一對應段的第 二端並耦合到第一複數段發光二極體之最後一段的第二 端。 在仍另一個示範性實施例中,複數段發光二極體之所 選段發光二極體中每一個均包含具有不同顏色發光頻譜的 發光二極體。就此些示範性實施例而言,該控制器進—步 產生對應的控制訊號’以將該所選段發光二極體選擇性切 28 201134295 換入第一串聯發光二極體電流 4里 S M徒供一對應的發光 效果,及/或提供—對應的顏色溫度。 ’元 在種種示範性實施例中,該控制器進一步包含 一類比至數位轉換器,可耗合到-第-感測器;-第二類 比至數位轉換器,可麵合到一第二感測器; ::::γτ驅動器,一到第-複= 比較器。 r $控制益包含複數個類比 在種種示範性實施例中,第—參數 小一侗& 丁全也. ,、弟一參數包含至 時間週期、一峰值電流水平、-平均 一平均電壓水平、-移動平均電…、: ρ.,塾水千、—平均輸出光學亮度水平、—移動平均輸 出光學亮度水平、一峰值輸出光學亮度水平、或者—即日; 輸度水平”b外’在另-個示範性實施例,,第 平。 相门參數,譬如電壓水平或電流水 另一種示範性設備實祐 壓,該設備包含:第—複H 收—交流電電 個發光一極體,被串聯耦合 形複t段發光二極體;第—複數個切換器,被輕合 到-複數段發光二極體,以響應—控制訊號而將 段發光二極體切換入或切換出-第-串聯發光二極體電! 路徑;至少-個感測器;以及一控制電路,被輕合到= 數個切換15及該至少一個感測器,響應一第一參數且在交 29 201134295 流電電邀區間之-第-部份内,該控制器決卜第二參數 值並產生第控制讯號,以將第一複數段發光二極體的 一對應段發光二極體切換入第一串聯發光二極體電流路 徑,且在交流電電壓區間之一第二部份内,當第二參數的 -目前值實質等於—對應決定值時,可產生_第二控制訊 號以將第-複數段發光二極體的一對應段發光二極體切換 出第一串聯發光二極體電流路徑。 在一示範性實施例中,該控制電路進一步計算或從— 記憶體得到對應第-複數段發光二極體中許多段發光二極 體之第複數個時間區間,以用於交流電電壓區間之第一 朴,並且計算4從—記憶冑得到對應該許多段發光二極 體之第一複數個時間區間,以用於交流電電壓區間之第二 ,份。在此-示範性實施例中,在交流電電壓區間之第一 部份内,在第—複數個時間區間之每__個時間區間期滿 時’該控制電路進—步產生—對應的控制訊號以將下一段 發光一極體切換入該串聯發光二極體電流路徑,以及在交 ••電電壓區間之第二部份内,在第二複數個時間區間之每 個時間區間期滿時以相反順序產生_對應的控制訊號, 以將該下—段發光二極體切換出該串聯發光二極體電流路 徑。 在另一示範性實施例中,該設備進一步包含一記憶 體,以儲存複數個決定值。在種種示範性實施例令,第: 參數係為—發光二極 >数饰為—電壓水 八中在交流電電壓區間之第一部份内,當一發光二 30 201134295 極體電流相繼这&丨_ … 預疋水平時,該控制電路進一步決定 並將交流電電壓水平 、 4 丁们對應值儲存在該記憶體中,並相 繼地產生-對應控制訊號’以將第—複數段發光二極體的 對應&切換入第-串聯發光二極體電流路徑;且在交流 電電壓區間之第-却j a & ^ 第一邛伤内,當交流電電壓水平減少到一對 應電壓水平時,兮·把> 也丨# π 、 °控制裔進一步相繼地產生一對應控制訊 唬以將第-複數段發光二極體的對應段切寺矣出第一串聯 發光-極體電流路徑。在另—個示範性實施例中,第一參 數與第二參數係相同參數,其係包含一電壓或一電流水 平,且其中在交流電電壓區間之第一部份内,當該電壓或 電流水平相料到—預定水平肖,該㈣電路進一步相繼 產生一對應的控制訊號以將第一複數段發光二極體的一對 應段切換入第-串聯發光二㈣電流路徑;且纟交流電電 壓區間之第二部份内,當該電壓或電流水平減少到一對應 水平時’ β玄控制ϋ進一步相繼地產生-對應控制訊號,以 將第一複數段發光二極體的對應段切換出第一串聯發光二 極體電流路徑。 另一示範性設備實施例,其係可耦合以接收一交流電 電壓的設備,該設備包含:一整流器,提供—整合交流電 電[,複數個發光一極體,其係被串聯搞合以形成複數段 發光二極體;複數個切換器,該複數個切換器的每一切換 器會耦合到第一複數段發光二極體之對應段的第一端並且 耦合到第一複數段發光二極體之最後一段的第二端;一電 流感測器’感測一發光二極體電流水平;一電壓感測器, 31 201134295 感測-整流交流電電愿水平;一記憶體,儲存複數個參數; 以及一控制器,輕合到該複數個切換器、到該記憶體、到 該電流感測器且到該電壓感測器,在整流交流電電壓㈣ 之一第一部份内且當該發光二極體電流水平達到一預定峰 值發光二極體電流水平時,該控制器會決定並將該整流交 "_L電電壓水平的—對應值儲存在該記憶體中並產生對應控 制虎以將_應段發光二極體切換入該串聯發光二極體 電流路徑;而且在整流交流電電壓區間之-第二部份内, 且當該整流交流電電麼水平的目前值實質等於該整流交流 電電壓水平之所儲存對應值時,該控制器可產生對應控制 訊號以將該對應段發光二極體切換出該申聯發光二極體電 流路徑。 本發明種種其他優點與特徵將從以下本發明與其實施 例的詳細說明、申請專利範圍與附圖而變得更容易明瞭。 【實施方式】 雖然本發明易受許多不同形式的實施例所影響,這些 均被顯示於圖式中並且在此將詳細地說明於特定示範性實 施例中,吾人將理解本揭露可被視為本發明原理的範例且 不打算將本發明限制於所顯示的特定實施例。在此態樣 中在洋細解釋與本發明一致的至少一個實施例以前,吾 了里解本發明在其應用上不受限於以上與以下所陳述、 顯不於圖式中、或說明於實例中之結構的細節與元件的排 列情形。與本發明一致的方法與設備能夠有其它實施例, 32 201134295 其係並且能夠以種種方式來實杆 頁仃與貫施。同樣地,吾人可 理解到,在此所使用的措辭愈 拉…… 辭,以及在以下所包括的 摘要’其係為了說明之目的,而 j且不應该被視為有限制性。 圖1係為根據本發明教示所設钟夕笛_ t ^ 7又寸之第一不範性系統50 ^、第一示範性設備100的電路盥 _ 一乃塊圖。第一示範性系统 5〇包含第一示範性設備100( ,When the diode current level reaches a predetermined peak value, determining and storing the first value of the rectified AC input voltage level and switching the first segment of the LED to the series LED current path; monitoring the LED current Level; and in the first partial AC voltage interval, when the LED current reaches a predetermined peak value successively, determining and storing the second value of the rectified AC input voltage level and switching the second segment LED into the Series LED current path in series. (This predetermined value can be determined in a number of different ways, such as explicitly stated beforehand offline or explicitly stated or calculated before the time the circuit is operational, such as during the previous AC cycle). The exemplary method also includes: monitoring the rectified AC voltage level; and switching the second-stage light-emitting diode out of the series-emitting light when the rectified AC voltage level reaches a second value in the second partial ac voltage interval a diode current path; and in the second portion of the AC voltage interval, when the rectified AC voltage level reaches a first value, the first segment of the LED is switched out of the series LED current path. Also in various exemplary embodiments, the method further includes determining and storing a correspondence of the rectified AC voltage level when the illuminating diode current successively reaches a predetermined peak level in the first portion of the AC voltage interval The value and the corresponding segment of the LED are switched into the series current dipole 18 201134295 body current path; to 9 + A p γ in the second part of the AC voltage range, when the rectified AC power When the level is reduced to a corresponding electric water, the corresponding # of the light-emitting diode is switched out of the series light--the Φ, ώ " In this exemplary manner, σ, the corresponding segment LED is switched out of the series LED-current path and the current path of the corresponding LED is switched into the series LED current path. In reverse order. In another exemplary embodiment, the method further includes: determining, during the first portion of the AC voltage interval, a one of the rectified AC input voltage levels when the LED current reaches a predetermined peak level a first value; and when a value of the rectified AC voltage is substantially equal to or greater than a predetermined voltage threshold, the corresponding segment of the light emitting diode is switched into the series LED current path. In various exemplary embodiments, the method further includes monitoring a light-emitting diode current level; and determining, during the second partial AC voltage interval, when the light-emitting diode current level is greater than a predetermined peak level by a predetermined amplitude And storing a new second parameter value and switching the corresponding segment LED to the series LED current path. In another exemplary method embodiment, the method further includes: switching a plurality of segments of the light emitting diode to form a first series LED current path; and switching the plurality of LEDs to form a parallel phase - A second series-connected LED current path of the series LED current path. Various exemplary embodiments may also provide for a second series-connected LED current path having a direction or polarity opposite the first series-connected LED current path, such as for use in the negative portion of the AC cycle Conduction current, 19 201134295 ^ The first string of light-emitting diode current conducts electricity in the positive part of the AC cycle. In this regard, in a third portion of the AC voltage interval, the method further includes switching the second plurality of light emitting diodes to form a second series light emitting diode current path, the The series LED current path in the first AC voltage interval has an opposite polarity, and in the fourth portion AC voltage interval, the second plurality of LEDs are switched out of the second series LED current path. Another exemplary embodiment is a device that is coupled to receive an AC voltage. An exemplary apparatus includes: a rectifier that provides a rectified AC voltage; a plurality of light emitting diodes coupled in series to form a plurality of segments of light emitting diodes; and a plurality of switches coupled to the plurality of segments of light a polar body for switching a selected segment of the light emitting diode into or out of a series of LED current paths; a current sensor for sensing a current level of the LED; a voltage sensor, sensing a rectified AC voltage level; a memory storing a plurality of parameters; and a controller coupled to the plurality of switches, to the memory, to the current sensor, and to the voltage sensor, at the first The controller may determine and store the corresponding value of the rectified ac voltage level in the memory in the rectified AC voltage range and when the illuminating diode current level reaches the predetermined peak illuminating current level, and may correspondingly The segment light emitting diode switches into the series light emitting diode current path; and in the second partial rectified AC voltage interval, the controller can monitor the rectified AC voltage level and when rectifying the AC voltage level When the current value corresponding to a value substantially equal to the level of the rectified AC voltage stored in 'section corresponding to the light emitting diodes of the series switches the light-emitting diode current path. 20 201134295 In this exemplary device embodiment, the controller further generates a corresponding synchronization signal when the rectified AC voltage level is substantially near zero. In various non-limiting embodiments, the controller further determines the rectified Ac voltage interval from at least one decision that the rectified AC voltage level is substantially near zero. In an exemplary embodiment, the controller further determines and stores the rectified AC voltage when the LED current level reaches the predetermined peak LED current level in the first portion of the rectified AC voltage interval. The first value of the level is in the memory _, and the first-stage light-emitting diode is switched into the xiaolian light-emitting diode current path, and the light-emitting two (four) current level is monitored, and when the rectified Ac_voltage interval is In one part, when the current level of the LED is subsequently reached to the pre-peak LED current level, the controller further determines and stores the second value of the AC voltage level in the memory. And switching the second LED to the series LED current path. In an exemplary device embodiment, the controller further monitors the "house level' and when the rectified AC voltage level reaches the stored second value within the first portion of the rectified AC voltage interval: When the series-connected LED current path stores the value-value, the first-stage light-emitting diode = the diode current path. / Shenlian sends the first in another embodiment of the device, the controller enters the LED current level, and when in the rectified AC voltage region gate (10), the LED current level is again::- When the attack peak level 21 201134295, the controller further determines and stores a corresponding next value of the rectified AC voltage level in the memory, and switches the next segment of the light emitting diode into the series LED current path. . In this exemplary apparatus embodiment, the controller further monitors the rectified AC voltage level and, within a second portion of the rectified ac voltage interval, when the rectified AC voltage level reaches a next rectified AC voltage level, The corresponding one-stage light-emitting diode switches the current-sense diode current path. In various exemplary embodiments, the controller further monitors a light-emitting diode current level; and in the second portion of the rectified AC voltage range The controller further determines and stores another corresponding value of the rectified AC voltage level, and switches the corresponding segment LED into the current when the current level of the LED is greater than a predetermined peak level by a predetermined amplitude Series LED current path in series. Also in various exemplary embodiments, the controller further switches the plurality of light emitting diodes to form a first series light emitting diode current path, and switches the plurality of light emitting diodes to form a parallel first light. A second series-connected LED current path of the diode current path. As mentioned above, in various exemplary embodiments, each of the selected segments of the plurality of light-emitting diodes comprises a light-emitting diode having an emission spectrum of a different color or wavelength. In this exemplary device embodiment, the controller further selectively switches the selected segment LEDs into the series LED current path # to provide a corresponding illumination effect and/or The selected segment of light emitting diodes is selectively switched into the series light emitting diode current path 'to provide - a corresponding color temperature. 22 201134295 Another exemplary device embodiment can also be surfaced to receive an a C voltage, the exemplary device comprising: a first plurality of light emitting diodes, serially consuming & to form a first plurality of light emitting diodes The first plurality of switches are coupled to the first plurality of light emitting diodes to switch the selected cardiac light emitting diodes into or out of a first series light emitting diode motor in response to a control signal a switch, a memory coupled to the plurality of switches and the memory, responsive to a first parameter and within the first portion of the AC voltage interval, the controller determines a second The parameter value is stored in the core body and generates a first control signal to switch a corresponding segment of the first plurality of segments of the light-emitting diode into the first series-connected LED motor circuit. And in a second part of the alternating current voltage interval, when a current value of the second parameter is substantially equal to the stored value, a first control Z signal may be generated to connect a corresponding segment of the first plurality of light emitting diodes The light-emitting diode switches out the first competition Diode current path. In an exemplary embodiment, the first parameter and the second parameter include the following time-to-day parameters, or—or more time intervals, or time-based parameters, or one or more clock cycles . In an exemplary device embodiment, the controller further determines to correspond to the first plurality of segments of illumination: a first plurality of time intervals of the plurality of segments of the polar body for use in the first portion of the AC voltage interval And determine the second plurality of time intervals corresponding to the plurality of segments of the light-emitting diode for the alternating current voltage: part. In another embodiment of the device, the controller further... the memory obtains a plurality of segments of the corresponding plurality of segments of the first-complex segment of the light-emitting diode = 23 201134295 for a plurality of time intervals for the AC voltage The first portion of the interval and the second plurality of time intervals corresponding to the plurality of segments of the LED are used for the second portion of the AC voltage range. In this exemplary embodiment, during the first portion of the first plurality of time intervals, the controller further generates a corresponding control signal to illuminate the next segment in the first portion of the alternating current voltage interval. The diode is switched into the series LED current path; and in the second portion of the alternating current voltage interval, the corresponding control signal is generated in the reverse order when each of the second plurality of time intervals expires And switching the next segment of the light emitting diode out of the series LED current path. In various exemplary embodiments, the apparatus further includes a rectifier to provide a full *IL AC voltage. For the exemplary embodiments, the controller can generate a corresponding sync signal when the rectified AC voltage is substantially near zero. . Also for such exemplary embodiments, the controller further determines the rectified voltage interval from at least one decision that the rectified AC voltage level is substantially near zero. Also in various exemplary embodiments, the apparatus further includes a current sensor coupled to the controller; and a voltage sensor coupled to the controller. For example, the first parameter is the LED current level and the second parameter is the voltage level. For such exemplary embodiments, the controller further determines and stores a first value of the alternating current voltage level when the 'one light emitting diode current reaches a predetermined peak level in the first portion of the alternating current voltage interval. s in the body, and generate a first control signal to switch the first-stage illuminating two 24 201134295 polar body - the first segment into the first series illuminating diode current path, and when in the alternating current voltage interval In the _ portion, when the LED current reaches the peak value, the controller determines and stores the next value of the parent current voltage level in the memory, and generates a control signal to Switching the next segment of the first plurality of segments of the LED into the first series of LED body current paths. When the 'AC voltage level reaches the lower value' in the second part of the rectified AC voltage range, the controller further generates another control signal to switch the next segment out of the first-series LED current path; In the second portion of the rectified AC voltage range, the second shunt signal may be generated when the AC voltage level reaches the b value to switch the first segment out of the first series LED current path. In various exemplary embodiments, in the first portion of the alternating current voltage interval, when the light-emitting diode current successively reaches a predetermined peak level, the corresponding value of the alternating current voltage level is stored. And successively generate-corresponding control signals to switch the corresponding segments of the light-emitting diodes into the first series-connected LED current path; Six Φ Φ /Si-I- no ^ and the second in the AC product 4 In some parts, when the AC voltage level is reduced, 丨, corresponding to the voltage level, the controller further controls the corresponding signal to switch the corresponding segment of the first plurality of LEDs out of the LED current path. . For example, the controller "吐_[#J step-by-step generates corresponding control signals successively to switch the corresponding segment out of the _string* table one-pole current path, and switches the corresponding segment & The 光 光 光 电流 电流 电流 电流 . 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在For the exemplary embodiments, when the AC electric dust is phase-modulated, the controller further generates a corresponding control signal to switch a segment of the first plurality of LEDs into the first series LED. The polar body current path corresponds to a phase-modulated alternating current voltage level and/or a time interval of the phase-modulated AC power level. For the exemplary embodiments, when the alternating current voltage is phase-modulated, the controller further generates a corresponding control signal to maintain a parallel second light-emitting diode current path via the first switch, and simultaneously The lower segment of the plurality of segments of the LED is switched into the first series LED current path via the second switch. In another of the various exemplary embodiments, if the next segment of the first plurality of LEDs is switched into the first-series light-emitting diode current circuit, the controller can further determine whether sufficient time is maintained. The first portion of the alternating current voltage interval 'for a light-emitting diode current to reach a predetermined peak level, and if so, 'progressively generated-corresponding to the control signal, to the first-multi-segment light-emitting diode The next segment switches into the first series LED current path. In still another of the exemplary embodiments, in the second portion of the alternating current voltage interval, and when the light emitting diode current level is greater than a predetermined peak level by a predetermined amplitude, the (four) controller further determines and The new value of the second parameter is stored and a corresponding control signal is generated to switch the corresponding segment of the first plurality of light emitting diodes into the first series-connected LED current path. In various exemplary embodiments, the controller further generates a corresponding control 26 201134295 system No. 2 to switch the plurality of segments of the first plurality of segments of the LED to form a parallel first string of 5 1 1 发光 LED output current The second series of paths of the path. The optical two-stream path. In various exemplary embodiments, the apparatus further includes a second plurality of light emitting diodes that are coupled in series to form a second plurality of light emitting diodes, and a second plurality of switches that are Coupling to the second plurality of segments of the light-emitting body to switch the selected segment of the second plurality of light-emitting diodes into or out of a second series-connected LED current path; wherein the controller advances the coupling to the first a plurality of switches, and a corresponding control is generated: the plurality of segments of the second plurality of light-emitting diodes are switched to form a second series-connected diode of the first series-connected LED current path Body current path. For example, the second series-connected LED current path has a polarity opposite to that of the first series-connected LED current path. Similarly, for example, the direction of the first current flowing through the first series-connected LED current path is opposite to the second current flowing through the second series-connected LED current path. Similarly, for example, the controller further generates a corresponding control signal to switch the plurality of segments of the plurality of slave light-emitting diodes to form a first series-connected LED current path within the positive polarity of the alternating current voltage, and further generate corresponding control The signal switches the plurality of segments of the second plurality of segments to form a second series LED current path within a negative polarity of the parent current voltage. & In various exemplary apparatus embodiments, the first plurality of switches comprise a plurality of bipolar junction transistors or a plurality of field effect transistors. Also in various embodiments of the non-standard device, the device further includes a plurality of three 27 201134295 state switchers, the system comprising: a plurality of operational amplifiers, correspondingly coupled to the first plurality of switches; and a second plurality of switches Correspondingly coupled to the plurality of switches; and a third plurality of switches, correspondingly coupled to the first plurality of switches. Various exemplary embodiments may also be provided for various switching configurations or configurations. In various exemplary embodiments, each switch of the first plurality of switches is coupled to the first portion of the corresponding segment of the first plurality of light-emitting diodes and coupled to the first plurality of light-emitting diodes The second end of the last segment of the body. In another of the various exemplary embodiments, each of the first plurality of switches is coupled to the first end of the corresponding segment of the first plurality of light emitting diodes and coupled to the first plurality of segments The second end of the corresponding segment of the diode. In still another of the various exemplary embodiments, the apparatus can further include a second plurality of switches. In this exemplary embodiment, each switch of the first plurality of switches is coupled to the first end of the first segment of the first plurality of segments and coupled to the first plurality of segments One of the pole bodies corresponds to the second end of the segment; and wherein each switch of the second plurality of switches is coupled to the second end of the corresponding segment of one of the first plurality of light emitting diodes and coupled to the first plurality The second end of the last segment of the segmented LED. In still another exemplary embodiment, each of the selected segment light emitting diodes of the plurality of light emitting diodes includes a light emitting diode having a different color light emitting spectrum. For the exemplary embodiments, the controller further generates a corresponding control signal 'to selectively switch the selected segment LEDs to the first series of LEDs 4 Provide a corresponding illuminating effect, and/or provide - a corresponding color temperature. In various exemplary embodiments, the controller further includes an analog to digital converter that can be consuming to the -th sensor; the second analog to digital converter can be combined to a second sense Detector; :::: γτ driver, one to the first - complex = comparator. r $ control benefits include a plurality of analogies in various exemplary embodiments, the first parameter is a small parameter & Ding Quan also., the first parameter is included to the time period, a peak current level, - an average voltage level, - moving average electric...,: ρ., 塾水千, - average output optical brightness level, - moving average output optical brightness level, a peak output optical brightness level, or - day; volume level "b outside" in another - An exemplary embodiment, the first phase parameter, such as voltage level or current water, another exemplary device actual pressure, the device comprises: a first-re-H-receiving-electrical electric light-emitting body, coupled in series Forming a t-segment LED; the first plurality of switches are lightly coupled to the plurality of LEDs to switch the segment LEDs into or out of the first-series illumination in response to the control signal Diode power! path; at least one sensor; and a control circuit that is lightly coupled to = several switches 15 and the at least one sensor, responding to a first parameter and at the intersection 29 201134295 - the first - In some parts, the controller determines the second parameter value and generates a first control signal to switch a corresponding segment of the first plurality of LEDs into the first series LED current path. And in the second part of one of the alternating current voltage intervals, when the current value of the second parameter is substantially equal to the corresponding decision value, the second control signal may be generated to connect a corresponding segment of the first-complex illumination diode The light emitting diode switches out the first series light emitting diode current path. In an exemplary embodiment, the control circuit further calculates or obtains from the memory - a plurality of segments of the corresponding plurality of light emitting diodes in the first plurality of light emitting diodes The first plurality of time intervals of the body are used for the first voltage of the alternating current voltage interval, and the calculation 4 obtains the first plurality of time intervals corresponding to the plurality of segments of the light-emitting diode for the alternating current voltage interval Second, in the exemplary embodiment, in the first part of the alternating current voltage interval, the control circuit is generated step by step when every __ time interval of the first plurality of time intervals expires - a corresponding control signal for switching the next segment of the light-emitting diode into the series LED current path, and in the second portion of the intersection/voltage range, at each of the second plurality of time intervals When the interval expires, the corresponding control signal is generated in the reverse order to switch the lower-segment LED to the series LED current path. In another exemplary embodiment, the device further includes a memory. Body, in order to store a plurality of decision values. In various exemplary embodiments, the parameter: the parameter is - the light-emitting diode > the number is decorated - the voltage water is in the first part of the alternating current voltage range, when a light 2 30 201134295 When the polar current is successively this & 丨 _ ... pre-level, the control circuit further determines and stores the AC voltage level, the corresponding value in the memory, and successively generates a corresponding control signal Switching the correspondence between the first and second-segment LEDs into the first-series light-emitting diode current path; and in the first-to-the-current ja & When the electric voltage level is reduced to a corresponding voltage level, the control unit further generates a corresponding control signal to successively cut out the corresponding segment of the first-complex segment of the light-emitting diode. The first series of illuminating-polar body current paths. In another exemplary embodiment, the first parameter and the second parameter are the same parameter, and the method includes a voltage or a current level, and wherein the voltage or current level is within the first portion of the alternating current voltage interval. Receiving a predetermined level, the (4) circuit further sequentially generates a corresponding control signal to switch a corresponding segment of the first plurality of light-emitting diodes into the first-series light-emitting two (four) current path; and the alternating current voltage interval In the second part, when the voltage or current level is reduced to a corresponding level, the 'β ϋ control ϋ further generates a corresponding control signal to switch the corresponding segment of the first plurality of light-emitting diodes out of the first series Light-emitting diode current path. Another exemplary apparatus embodiment is an apparatus that is coupled to receive an alternating current voltage, the apparatus comprising: a rectifier providing - integrating alternating current [, a plurality of light emitting poles, which are coupled in series to form a plurality a segmented light emitting diode; a plurality of switches, each switch of the plurality of switches being coupled to a first end of a corresponding segment of the first plurality of light emitting diodes and coupled to the first plurality of light emitting diodes a second end of the last segment; a current sensor' senses a light-emitting diode current level; a voltage sensor, 31 201134295 sensing-rectifying alternating current power level; a memory, storing a plurality of parameters; And a controller that is lightly coupled to the plurality of switches, to the memory, to the current sensor, and to the voltage sensor, in a first portion of the rectified alternating current voltage (4) and when the light is When the polar body current level reaches a predetermined peak light-emitting diode current level, the controller determines and stores the corresponding value of the rectified intersection "_L electric voltage level in the memory and generates a corresponding control tiger. Switching the singular light-emitting diode into the series LED current path; and in the second portion of the rectified AC voltage range, and when the current value of the rectified AC current is substantially equal to the rectified AC When the voltage level stores the corresponding value, the controller may generate a corresponding control signal to switch the corresponding segment LED to the SINA LED current path. Other advantages and features of the present invention will become more apparent from the detailed description of the invention and the appended claims. [Embodiment] While the present invention is susceptible to various embodiments of the invention, these are shown in the drawings and will be described in detail in the specific exemplary embodiments. The present examples are not intended to limit the invention to the particular embodiments shown. In this aspect, prior to explaining at least one embodiment consistent with the present invention, it is to be understood that the invention is not limited by the foregoing and the following description, The details of the structure in the example and the arrangement of the components. The method and apparatus consistent with the present invention are capable of other embodiments, 32 201134295 and are capable of being implemented in a variety of ways. Similarly, it is to be understood that the phrase "a", "an" and "comprises" are used herein for the purpose of description and should not be construed as limiting. 1 is a block diagram of a first exemplary device 100 in accordance with the teachings of the first embodiment of the present invention. The first exemplary system 5A includes a first exemplary device 100 (

、J像寺同被視為離線AC LED 驅動器),其被耦合到交流(、、 、)線1〇2 ,在此同樣 等同被視為AC功率線或ΑΓ ®、、s , ^ 電源,譬如電器用品所提供的 豕用AC線或其它AC主電源。維妙-# ω虚 电你雖然不範性實施例參考此 ACfg或電㈣說明’但應該理解本巾請發明可應用於任 何隨時間而變的電壓或電流,其係被更詳細地定義如下。 第一示範性設備1〇〇包含複數個LED14〇、複數個切換器ιι〇 (例如,以金氧半導體場效電晶體顯示)、控制器12〇、(第 一)電流感測器1 15、整流器1〇5、以及任選的電壓感測器 195與直流功率(、、Vcc,,)以用來提供功率到控制器12〇 與其它所選元件。示範性DC電源電路125可在許多不同組 態中被貫施且被提供於種種示範性設備内(丨〇〇、2〇〇、3 〇〇、 400、500、600、700、800、900、1〇〇〇、11〇〇、12〇〇、13〇〇) 的許多不同位置,許多示範性DC電源電路125係參考圖 1 8-20來顯示與討論◦同樣例如,示範性dc電源丨25可以 。午夕不同方式被耦合入示範性設備内,例如且不限於譬如 在即點13 1與1 1 7之間或在節點1 3 1與1 34之間。示範性 電麗感測器1 95亦可以許多不同組態來實施且可被提供在 種種示範性設備内(1〇〇、200、3〇〇、4〇〇、5〇〇、600、700、 33 201134295 删、"〇〇、1200、1300 )的許多不同位置, 示範性電壓感測器195A係被實施當作分壓器電路,其係參 考圖4與5來顯示與討論。同樣例如’示範性電壓感測器 m可以許多不同方式被麵合入示範性設備内,例如且不限 於譬如在節點131與117之間或在其它位置中。同樣任選, 記憶體185可被包括在内’譬如以儲存種種時間時期、電 流或電壓水平;在種種示範性實施例中,控制$ 12〇已經 包括種種型態的記憶體185 (例如:暫存器),以致於記憶 體185無法為各別元件。使用者界面19〇(例如用於種種選 擇的使用者輸入’譬如光線輸出)亦可任選的被包括在種 種示範性實施例中’譬如以用於希望或選擇的發光效果輸 入。沒有被各別顯示於圖式中,等同的實施情形亦可包括 隔離’譬如經由使用隔離轉換器,其係並且在本中請發明 的範圍内。 110的任一切換器110係為 晶體’除了所示n—通道金氧 應該注意:複數個切換器 任何型態或種類的切換器或電 半導體場效電晶體外係亦包括但不限於雙極接面電晶體 (、、BJT〃)、p-通道金氧半導體場效電晶體、種種增強或 耗盡模組FETs等等’且複數個任何㈣或種類的其它功率 切換器亦可被使用於電路中,其係取決於所選的實施例。 以橋接整流器顯示之整流器1〇5係被耦合到ac線1〇2 以提供全(或半)波整流輸入電壓(、、Vin〃)與電流到以 LED140,、14〇2、14〇3至14〇11顯示之複數個串聯耦合發光二 極體(、、LED”)140的第一發光二極體14〇],被安排或架 34 201134295 構為複數個串聯耦合段(或串)i 75 (以led段1 751、1 752、 1 753至175n顯不)。(整流器1〇5係全波整流器、·全波橋 接器、半波整流器、機電整流器或其它型態橋接器。)雖 然每一 LED段1 75均顯示於圖i,為簡化顯示僅具有一個 對應的LED 140’但應該理解每一此LED段175基本上包含 對應複數個串聯_合LED 14〇,在每一 LED段175中一個至 個LED 140係被相繼地串聯耦合。同樣應該理解種種 LED段175包含相同(相等)數目的LED14〇或不同(不相 等)數目的LED 140,且所有此些變化均視為相等且在本發 明範圍内。例如且不受限在示範性實施例中,多到5至.7 個的LED 140會被包括在9個LED段175的每一個中。種 種LED段175與包含它們的對應LED14〇會被彼此相繼串 财耦合,第一 LED段175!串聯搞合到第二;lED段I?、, 接著串聯耦合到第三LED段1 753等等,倒數第二個led 段175η」則串聯耦合到最後或最終的led段I75n。 如所例示,整流器105會被直接耦合到第一 LEm4〇i 的陽極,雖然其它耦合排列同樣在本發明範圍内,譬如耦 合經過電阻或其它元件,譬如耦合到電流限制電路28〇、或 界面電路240、或DC電源125,其係在下面會更詳細顯示 與討論。等同實施過程在沒有使用整流器1〇5下亦同樣有 用並且討論如下。電流感測器115係以電流感測電阻器165 來顯示並實施,其係作為電流感測器的示範性型態,且所 有電流感測器變化均被視為等同且在本申請發明的範圍 内。此一電流感測器115可同樣被提供在設備1〇〇内的其 35 201134295 它位置中,所有此些架構變化可被視為等同且在所申請的 發明範圍内。當電流感測器11 5以耦合到接地電位丨丨7來 顯示時,經過LED段175及/或切換器1 10之電流水平的反 饋()則可使用控制器120的僅僅一個輸入16〇來提 供;在其它實施例中’額外的輸入可同樣地被應用,例如 且不限於譬如用於被應用於電流感測之兩或更多電壓水平 的輸入。其它型態的感測器亦可被應用,例如且不限於譬 如光學亮度感測器(譬如在圖7中的第二感測器225 ),以 代替或除了電流感測器115及/或電壓感測器195以外。此 外,電流感測電阻器1 65亦可作為電流限制感測器地運行。 種種控制器120用的DC電源125可被實施,且所有此些變 化均可被視為等同且在本申請發明範圍内。 控制器120(及在以下討論的其它控制器12〇Α—ΐ2〇ι) 可以已知被實施或在該技藝中變為已矣。,其係使用任何型 態的電路,誠如在以下更詳細討論,…一般地係亦可 被視為控制電路e例如且不受限地’控制器12〇 (與其它控 制器12〇A—12〇1)或等同控制電路可在具有或不具有記: 體電路之下使用數位電路、類 朗比電路、或數位與類比電路 兩者之組合來實施。主要地 k制器120可被應用以提供 切換控制、監視且回應參數變 多秋I化(例如led 140電流水平、 電麼水平、光學亮度水平等 寻寻),並且可同樣被利用以實 施種種發光效果的任一者,链 ^ &如凋光或色溫控制。 以切換器1 1 〇丨、1 1 0 Μ 〇3、至1 10η-1顯示之切換器 Π 0係任何型態的切換器,链 s如所顯示的金氧半導體場效電 36 201134295 晶體為示範性型態的切換器 則更詳細討論如下,而且所右“4同型態的切換器⑽ 本申請發明的範圍内。切^, 心見為寻时 1S 山 奐器U0可對應地耦合到LED段 175的一 &。如所示,對施μ 被耦入刭才卷 Ώ …,刀換器110以一對一的對應性 被祸σ到在每一 LED段〗7C a Ύ w ,, τ 之一端上LED 140的陰極,除 了最後LED段175η外。#姓,,士丄 于、 更特別在本不範性實施例中,每一 切換器1 1 0的第一媸「仓,上 母J is considered to be an off-line AC LED driver), which is coupled to the AC (, , , ) line 1〇2, where it is equally considered to be an AC power line or ΑΓ®, s, ^ power supply, such as Use electrical cords or other AC mains power supplies provided by electrical appliances.妙妙-# ω virtual power, although the non-standard embodiment refers to this ACfg or electricity (four) instructions 'But it should be understood that the invention should be applied to any voltage or current that changes with time, which is defined in more detail as follows . The first exemplary device 1A includes a plurality of LEDs 14A, a plurality of switches ιι (for example, displayed by a MOSFET), a controller 12A, and a (first) current sensor 1 15 Rectifier 1〇5, and optional voltage sensor 195 and DC power (, Vcc, ,) are used to provide power to controller 12 and other selected components. The exemplary DC power circuit 125 can be implemented in a number of different configurations and provided within a variety of exemplary devices (丨〇〇, 2〇〇, 3〇〇, 400, 500, 600, 700, 800, 900, Many different locations of 1〇〇〇, 11〇〇, 12〇〇, 13〇〇), many exemplary DC power circuits 125 are shown with reference to Figures 18-20, as discussed, for example, an exemplary dc power supply 丨25 can. Different ways of midnight are coupled into the exemplary device, such as, but not limited to, between points 13 1 and 1 17 or between nodes 1 3 1 and 1 34. The exemplary galvanic sensor 1 95 can also be implemented in a number of different configurations and can be provided in a variety of exemplary devices (1, 200, 3, 4, 5, 600, 700, The exemplary voltage sensor 195A is implemented as a voltage divider circuit, which is shown and discussed with reference to Figures 4 and 5, in many different locations of the 2011, 314, 1200, 1300. Also, for example, the 'exemplary voltage sensor m' can be integrated into an exemplary device in many different ways, such as, for example, and without limitation, between nodes 131 and 117 or in other locations. Also optionally, the memory 185 can be included as such for storing various time periods, currents or voltage levels; in various exemplary embodiments, controlling $12 〇 already includes various types of memory 185 (eg, temporarily The memory 185 is such that the memory 185 cannot be a separate component. User interface 19(e.e., for various selected user inputs, such as light output) may also optionally be included in various exemplary embodiments' for example, for a desired or selected illumination effect input. Not necessarily shown in the drawings, equivalent implementations may also include isolation, such as via the use of an isolated converter, which is within the scope of the invention. Any switch 110 of 110 is a crystal 'in addition to the n-channel gold oxide shown, it should be noted that any type of switch or any type of switch or electric semiconductor field effect external crystal also includes but is not limited to bipolar Junction transistors (, BJT〃), p-channel MOSFETs, various enhancement or depletion module FETs, etc.' and any other (four) or other types of power switches can also be used In the circuit, it depends on the chosen embodiment. A rectifier 1〇5, shown as a bridge rectifier, is coupled to the ac line 1〇2 to provide a full (or half) wave rectified input voltage (,, Vin〃) and current to LEDs 140, 14〇2, 14〇3 to 14 〇 11 shows a plurality of series-connected light-emitting diodes (, LEDs) 140 of the first light-emitting diodes 14 〇], arranged or frame 34 201134295 as a plurality of series coupling segments (or strings) i 75 (The led segments are 1 751, 1 752, 1 753 to 175n.) (Rectifier 1〇5 is a full-wave rectifier, full-wave bridge, half-wave rectifier, electromechanical rectifier or other type bridge.) Although each An LED segment 1 75 is shown in Figure i, with only one corresponding LED 140' for simplicity of display, but it should be understood that each such LED segment 175 basically includes a corresponding plurality of series-integrated LEDs 14 〇 at each LED segment 175. One of the LEDs 140 is sequentially coupled in series. It should also be understood that the various LED segments 175 comprise the same (equal) number of LEDs 14 or different (unequal) number of LEDs 140, and all such variations are considered equal and Within the scope of the invention, for example and without limitation in an exemplary implementation In the example, up to 5 to .7 LEDs 140 will be included in each of the 9 LED segments 175. The various LED segments 175 and corresponding LEDs 14 including them will be serially coupled to each other, the first LED segment 175! Series is merged to the second; lED segment I?, then coupled in series to the third LED segment 1 753, etc., and the penultimate LED segment 175n" is coupled in series to the last or final led segment I75n. As illustrated, the rectifier 105 will be directly coupled to the anode of the first LEm4〇i, although other coupling arrangements are also within the scope of the invention, such as coupling through a resistor or other component, such as to a current limiting circuit 28, or an interface circuit. 240, or DC power source 125, which is shown and discussed in more detail below. The equivalent implementation process is equally useful without the use of rectifiers 1 and 5 and is discussed below. Current sensor 115 is shown and implemented with current sense resistor 165 as an exemplary form of current sensor, and all current sensor variations are considered equivalent and within the scope of the present invention Inside. This current sensor 115 can likewise be provided in its position in the device 1 2011 2011 2011 2011 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 When the current sensor 115 is coupled to the ground potential 丨丨7, the feedback () of the current level through the LED segment 175 and/or the switch 110 can be used with only one input 16 of the controller 120. Provided; in other embodiments 'additional inputs may be equally applied, such as, but not limited to, inputs such as for two or more voltage levels applied to current sensing. Other types of sensors may also be employed, such as, but not limited to, optical brightness sensors (such as second sensor 225 in FIG. 7) in place of or in addition to current sensor 115 and/or voltage. Outside the sensor 195. In addition, the current sense resistor 1 65 can also operate as a current limit sensor. A variety of DC power supplies 125 for the controller 120 can be implemented, and all such variations can be considered equivalent and within the scope of the present invention. Controller 120 (and other controllers 12〇Α-ΐ2〇ι discussed below) may be known to be implemented or become obscured in the art. It is used in any type of circuit, as discussed in more detail below, ... in general, it can also be considered as a control circuit e, for example and without limitation, 'controller 12' (with other controllers 12A- The 12〇1) or equivalent control circuit can be implemented using a digital circuit, a analog-like ratio circuit, or a combination of digital and analog circuits with or without a body circuit. Mainly, the controller 120 can be applied to provide switching control, monitoring, and response parameter doubling (eg, LED 140 current level, electrical level, optical brightness level, etc.), and can be utilized to implement various Any of the illuminating effects, chain ^ & such as withered or color temperature control. The switcher shown in the switch 1 1 〇丨, 1 1 0 Μ 〇3, to 1 10η-1 is any type of switch, the chain s is as shown in the MOSFET 36 201134295 crystal is The exemplary type of switcher is discussed in more detail below, and the right "4-type switcher (10) is within the scope of the present invention. Cut, the mind is the time-seeking 1S-mounter U0 can be correspondingly coupled to One & of the LED segment 175. As shown, the application of the μ is coupled to the Ώ ..., the cutter 110 is smashed in a one-to-one correspondence to each LED segment 〖7C a Ύ w , The cathode of the LED 140 on one end of τ, except for the last LED segment 175n. #姓,,士丄,, more particularly in the present embodiment, the first port of each switch 1 1 0 Upper mother

防 (幻如.汲極端)會被耦合到每一 LEDAnti (illusion. 汲 extreme) will be coupled to each LED

段175之對應LEDl4〇 』母LED — 于應鳊(在此圖式中的陰極),且 母一切換器110的第二矬 • 士忐。(例如·源極端)會被耦合到電 々比感測态U 5 (或例如到接地 ㈠禪地電位1 1 7,或到另一咸 電流限制器(討論如下) 外 ^則益 — 次到另一卽點(例如:132))。 母一切換器1 1 〇的閘極 會被耦合到(且在其控制下)控制 ° 對應輸出150,其係以輸出150】、15〇2、15〇3至 BOw顯示。在此第一示範 a °又備100中,母一切換器110 進仃電流旁通功能,譬如者 _ . 田切換态H0被開啟且實施時, 2就會流經對應的切換器並且旁通到其餘(或對應)的 m® LED段175。例如’當切換器i 1〇】開啟與實施 而且其餘切換11 U〇關閉時,電流則會流經LED段175,並 ^通到LED段1 752至175n;當切換器n〇2開啟與實施 且八餘切換器no關閉時,電流則會流經1^〇段175〗與 二旁通到LED丰又1 753至Π5η ;當切換器11〇3開啟與實 施而且其餘切換器i 1G關閉時,電流則會流經⑽段1乃1、 1752與1 753並且旁通到其餘LED段(經過175」;且當沒 有任何切換器no開啟與實施時(所有切換器ιι〇均關 37 201134295 閉),電流則流經所有LED段175,、1 752、1 753至175n。 於是,複數個LED段175,、1752、1753至175n會被串 聯柄合’並且對應地被耦合到複數個切換器11 〇 ( 11 〇 t至 11 On-ι )。依據種種切換器狀態’所選LED段1 75可被耦合 以形成一串聯LED 140電流路徑,在此亦等同視為—串聯 LED 140路徑,以致於電流能夠流經所選led段175且旁通 至其餘(未選)的LED段175 (技術上,當流到它們的電 流被旁通或轉向時仍可物理串聯耦合到所選Led段1 75, 但不再電性耦合串聯到所選LED段175 ) ^依據電路架構, 假如所有切換器11 〇均被關閉,那麼複數個Led段1 75的 所有LED段1 75則會被耦合以形成該串聯LED電流路徑, 亦即沒有任何到LED段175的電流會被旁通或轉向。就所 示電路架構而言且依據電路架構(例如:種種切換器i 1〇 的位置),複數個LED段1 75的至少一個[ED段1 75會被 耦合以形成該串聯LED140電流路徑,亦即當有電流流動時 係總是經過至少一個LED段175,以用於此架構。 在控制器120的控制下,複數個切換器丨1〇隨後從電 流流動的觀點可被視為將所選LED段175切換入或切換出 該串聯LED 140電流路徑,亦即LED段175會當沒有被切 換器110旁通時被切換入該串聯LED14〇電流路徑,且LED 段Π5 #當被旁通或經過切換器11〇時被切換出該串聯 lED140電流路徑。以另一方式陳述,㈣段175會被切換 入該串聯L E D14 0電流路徑’其係當所接收的電流沒有藉由 切換器no被旁通或在別處被路由繞送時,且led段 38 201134295 會被切換出該串聯led 140電流路徑,其係當因為電流藉由 切換裔1 1 〇在別處被路由繞送而沒有接收到電流時。 同樣吾人可理解’控制器會產生對應的控制信號到複 數個切換器110以將複數個LED段175的對應LED段175 選擇性切換入或出該串聯LED140電流路徑,譬如到以FET 或BJT實施時切換器11〇之對應閘極或基極的比較高電壓 訊號(二元邏輯1),及譬如到同樣當以FET或BJT實施 時切換器1 1 0之對應閘極或基極的比較低電壓訊號(二元 邏輯〇)。於是,控制器i 10將LED段175、、切換,,入或出 4串聯LED14G電流路徑的參考·係可被理解為隱含地意指 與包括該控制器產生對應控制訊號到複數個切換器110及/ '或到任—干涉驅動器或緩衝器電路(在21以切換驅動 器405顯示),以將LED段175切換入或出該串聯LED14〇 電流路徑。 本切換架構的優點係為由於内定而在開路切換失效事 件中,LED段175可被電性耗合入該串聯LEDM〇電流路徑 而不需電流流經切換器以使LED段175在該串聯ledi4〇 電流路徑’以便該發光裝置能夠持續操作且提供輸出光線。 不過譬如以下參考圖6討論的設備400之種種其它示 範性實施例亦提供用於將LED段175切換入與出並聯與串 聯lED140電流路徑兩者,譬如一或更多㈣段π被切 換入第一串聯LED140電流路徑,一或更多LED段175被 切換入第二串聯LED140電流路徑,例如且不限於可隨後被 切換為彼此並聯。於是,為容納示範性實施例的種種電路 39 201134295 結構與切換組合,、、LED 140電流路徑"將意指且包括一串 聯LED140電流路徑或一並聯LED14〇電流路徑任一者或兩 者及/或者其任一組合。依據種種電路結構,那些熟諳電子 技術者將承認哪一 LED 140電流路徑是串聯LED 140電流路 徑,以及哪一是並聯LED140電流路徑,或兩者之組合。 假設此切換架構,種種切換計畫是可能,其係具有對 應的電流被提供到在任何數目對應模式、數目、持續期間 與時間中的-或更乡LED段1 75,而電流則被提供到任何 數目的LED段175,從一個LED段Π5至數個LED段175 到所有LED段175。例如就一時間期間ti而言(例如:所 選起始時間與持續期間),切換器"〇丨會被開啟與實施且 剩餘切換器U 0會被關閉,且電流會流經LED段1 75丨並且 旁通至LED段1752至175n;就-時間期間t2而言,切換器 "〇2會開啟與實施且剩餘切換_ i 1〇會關閉,且電流會流 經!^0段1751與1 752且旁通至LED段1753至η%;就一 夺’期間t3而5,切換器i i 〇3會開啟與實施且剩餘切換器 U0會關閉,且電流會流經LED段175丨、1752與丨乃3且旁 通至剩餘LED段(經由175n);且就一時間期間“而言, 沒有任何切換3 110會開啟與實施(所有切換器均關閉) 且電流會流經所有LED段175ι、1 752與m3至Μ〆 在第不範性貫施例中,複數個時間期間ti至tn及/或 對應的輸入電壓水平卩v — 十(VIN) ( V丨N1、VIN2 至 VlNn)及/或其 匕士數水平係可被決定用來切換電流(經由切換器110), 其貫質對應或另外追蹤(在預定變化或其它容差或希望規 40 201134295 格内)整抓AC電壓(由AC線1〇2經由整流器ι〇5所提供) 或更-般AC電壓,以致當整流从電壓比較高日 提供經過大部分或全部咖段m,及當整流从電壓比較 T或接近零時將電流提供經過更少、-個或沒有任一 led & 175。那些已經熟諳電子技術者將承認且理解許多不同參 數水平可被等同利用,例如且不限於譬如時間時期、峰值 電流或電壓水平、平均電流或電壓水平、移動平均.電流或 電壓水平、即時電流或電壓水平、輸出(平均、峰值或即 時)々光學亮度水平’综何與所有此些變化均在本申請發 月範圍内。在第二示範性實施例中’複數個時間時期(】至 L及/或對應的輸入電壓水平(Vin) ( 或其它參數水平(例如:輸出光學亮度水平)係可被決 疋用來切換電流(經由切換器11〇),其對應希望的發光效 果,譬如調光(經由麵合到調光切換器而被選擇或輸入到 -備100 β ’或經由(選擇性)使用者界面190的使用者 輸入),以致於當整流AC電壓比較高且更 问冗度被選出時 可將電流提供經過大部分或全部LED R 175,以及 =度被選出時將電流提供經過更少、—個或沒有任—田咖 奴175。例如,當選出比較低亮度水平時可在一已知或 的時間區間内將電流提供經過比較少或沒有任何一個L 段 1 7 5。 在另—示範性實施例中,複數個lED段175包含具 =同發光頻譜的不同型態LE_,譬如具有波長=、’綠、 色等等可見光範圍中的發光。例如,咖段m 41 201134295 包含紅色LED 140 ’ LED段1 752包含綠色LED 140,LED段 1753包含藍色LED14〇,另—LED段175“包含號王白色或白 色LED140等等。在此示範性實施例中,複數個時間時期^ 至%及/或對應的輸入電壓水平(Vin) (Vini、v ' IN n y 或其它參數水平可被決定用來切換電流(經由切換器 u〇),錢應另-希望&、建築發光效果,譬如周圍或輸 出顏色控制,以致於電流可被提供經過對應的led段1 ^, 以提供在對應波長上的對應發光,譬如紅色、綠色、藍色、 琥王白色及此些波長的對應組合(例如:黃色為紅色與綠色 的組合)° _些熟諸該技#者將承認可被利用$得到任何 選擇發光效果的無數切換模式與型態的LED14〇,其任一者 與全部均在本申請發明範圍内。 在以上所提及的第-示範性實施例中,其中複數個時 間期間或對應輸入電虔水平(ViN) d、v㈣ 至vINn)及/或其它參數水平係可被決定用來切換電流(經 由切換窃110) ’其實質對應或者另外追蹤(在預定變化或 其匕谷差或希望規格内)整流AC電壓(由AC源1〇2經由 瓜器105所提供),控制器12〇週期性調整提供電流之 串聯耦σ LED段175的數目以致當整流AC電壓比較高時 可將電流提供經過大部分或全部LED段175,且當整流ac 電壓比較低或接近零時將電流提供經過更少、一個或沒有 LED奴175。例如在所選實施例中,經過[ED段175 的峰值電流(、、1’)被實質維持固定以致當整流ac電壓 水平增加且當電流經由現在以串聯路徑來連接的一或更多 42 201134295 LED段175而増加到預定或所選岭值電流水平時,額外咖 段m可被切換入該串聯路徑;反之,當整流AC電壓水平 減少時現在以串聯路徑來連接的LED& 175被相繼切換出 該串聯路徑且被旁通。由於切換入_段Μ (入 電流路徑)、接著切換出LED段175 (從該串聯 LEirno電流路徑)之此些經過LEDi4〇的電流水平係被顯 不於圖2與3中。更特別地,圖2係為顯示根據本發明教 不所设计之第一示範性負載電流波形(例如:全亮度水平) 與輸入電壓水平的曲線圖,且圖3係為顯示根據本發明教 二二不範性負載電流波形(例*:較低或調光 冗度水千)與輸入電壓水平的曲線圖。 P 2與3 ’經由所選咖段Μ的電流水平係在 係:赫兹AC循環的第一半循環内被顯示(輸入電壓〜 、、、’ 142顯不)’其進-步被分為第-時間時期(被 ΓΓ1象限»),其係做為μ(電壓)區間的 ==rrAc線電壓會從大約零伏特增加到 盆水千,及第二時間時期(被稱為時間象限、、Q2”47),The corresponding LED l4 〇 』 mother LED of the segment 175 is the 阴极 阴极 (the cathode in this figure), and the second 矬 忐 忐 of the parent-switch 110. (eg source terminal) will be coupled to the electrical 感 sense state U 5 (or for example to ground (1) Zen potential 1 1 7 or to another salt current limiter (discussed below) A trick (for example: 132)). The gate of the parent-to-switch 1 1 会 is coupled (and under its control) to control the corresponding output 150, which is displayed with outputs 150], 15〇2, 15〇3 to BOw. In this first exemplary a ° device 100, the parent-to-switch 110 enters the current bypass function, for example, when the field switching state H0 is turned on and implemented, 2 flows through the corresponding switch and bypasses Go to the remaining (or corresponding) m® LED segment 175. For example, 'when the switch i 1〇 is turned on and implemented and the remaining switches 11 U〇 are turned off, current flows through the LED segment 175 and passes to the LED segments 1 752 to 175n; when the switch n〇2 is turned on and implemented When the eight switches are turned off, the current flows through the 1^〇 segment 175 and the two bypasses to the LED abundance and 1 753 to Π5η; when the switch 11〇3 is turned on and implemented and the remaining switches i 1G are turned off The current will flow through (10) segments 1 and 1, 1752 and 1 753 and bypass to the remaining LED segments (via 175); and when no switcher is turned on and implemented (all switches ιι〇 are off 37 201134295 closed) The current then flows through all of the LED segments 175, 1, 752, 1 753 to 175n. Thus, the plurality of LED segments 175, 1752, 1753 through 175n are coupled in series and are correspondingly coupled to a plurality of switches 11 〇 (11 〇t to 11 On-ι). According to various switcher states, the selected LED segments 1 75 can be coupled to form a series LED 140 current path, which is equivalent to being considered as a series LED 140 path. The current can flow through the selected led segment 175 and bypassed to the remaining (unselected) LED segments 175 (technically, when flowing The currents can be physically coupled in series to the selected Led segment 1 75 when they are bypassed or turned, but are no longer electrically coupled in series to the selected LED segment 175) ^According to the circuit architecture, if all switches 11 are Off, then all of the LED segments 1 75 of the plurality of Led segments 1 75 are coupled to form the series LED current path, i.e., no current to the LED segment 175 is bypassed or turned. Depending on the circuit architecture (eg, the location of the various switches i 1 )), at least one of the plurality of LED segments 1 75 [ED segment 1 75 will be coupled to form the series LED 140 current path, ie when current is flowing The system always passes through at least one LED segment 175 for this architecture. Under the control of the controller 120, a plurality of switches 〇1〇 can then be viewed as switching the selected LED segment 175 into or from the point of view of current flow. The series LED 140 current path is switched out, that is, the LED segment 175 is switched into the series LED 14 current path when not bypassed by the switch 110, and the LED segment Π5 # is bypassed or passed through the switch 11 Switched out of the series lED140 current path Stated another way, the (iv) segment 175 will be switched into the series LE D14 0 current path 'when the received current is not bypassed by the switch no or routed elsewhere, and the led segment 38 201134295 will be switched out of the series led 140 current path, which is when the current is not being routed because the current is routed elsewhere by switching the 1 1 〇. As can be understood, the controller will generate corresponding control signals to the plurality of switches 110 to selectively switch the corresponding LED segments 175 of the plurality of LED segments 175 into or out of the series LED 140 current path, such as to implement with FET or BJT. The relatively high voltage signal (binary logic 1) of the corresponding gate or base of the switch 11〇, and, for example, to the corresponding gate or base of the switch 1 10 when implemented as FET or BJT Voltage signal (binary logic 〇). Thus, the controller i 10 can switch the LED segment 175, the switch, and the reference to the LED 14G current path of the series LED 14G can be understood as implicitly meaning that the corresponding control signal is generated to include the controller to the plurality of switches. 110 and / or 'or to the interference driver or buffer circuit (shown at 21 to switch driver 405) to switch LED segment 175 into or out of the series LED 14 current path. The advantage of the switching architecture is that during the open-switching failure event due to the default, the LED segment 175 can be electrically consumed into the series LEDM〇 current path without current flowing through the switch to cause the LED segment 175 to be in the series ledi4. The 〇 current path 'to enable the illuminating device to continue to operate and provide output light. However, other exemplary embodiments of apparatus 400 as discussed below with respect to FIG. 6 also provide for switching LED segments 175 into and out of parallel and series lED 140 current paths, such as one or more (four) segments π being switched into A series LED 140 current path, one or more LED segments 175 are switched into the second series LED 140 current path, for example and without limitation, can then be switched into parallel with each other. Thus, in order to accommodate the various circuits 39 201134295 structure and switching combination of the exemplary embodiment, the LED 140 current path " will mean and include either a series LED 140 current path or a parallel LED 14 current path or both / or any combination of them. Depending on the circuit configuration, those skilled in the art will recognize which LED 140 current path is the series LED 140 current path, and which is the parallel LED 140 current path, or a combination of the two. Assuming this switching architecture, various switching schemes are possible, with corresponding currents being provided to any number of corresponding modes, numbers, durations and times - or more LED segments 1 75, while current is provided to Any number of LED segments 175, from one LED segment Π5 to several LED segments 175 to all of the LED segments 175. For example, for a time period ti (eg, selected start time and duration), the switch "〇丨 will be turned on and implemented and the remaining switch U 0 will be turned off, and current will flow through the LED segment 1 75丨 and bypass to the LED segments 1752 to 175n; for the time period t2, the switch "〇2 will be turned on and implemented and the remaining switching _i 1〇 will be turned off, and the current will flow through! ^0 segment 1751 and 1 752 and bypassed to the LED segment 1753 to η%; for a period of 't3 and 5, the switch ii 〇3 will be turned on and implemented and the remaining switch U0 will be turned off, and the current will flow through the LED Segments 175丨, 1752 and 丨3 and bypass to the remaining LED segments (via 175n); and for a period of time “without any switching 3 110 will be turned on and implemented (all switches are turned off) and current will flow Through all LED segments 175ι, 1 752 and m3 to 第 in the non-standard embodiment, a plurality of time periods ti to tn and/or corresponding input voltage levels 卩v - ten (VIN) (V丨N1 VIN2 to VlNn) and/or its gentleman level can be determined to switch current (via switch 110) with its quality corresponding or otherwise tracked (in predetermined variations or other tolerances or desired specifications 40 201134295) Grab the AC voltage (provided by the AC line 1〇2 via the rectifier ι〇5) or the more general AC voltage, so that when the rectification is relatively high, the voltage is supplied through most or all of the coffee segments m, and when the rectified slave voltage is compared When T or near zero, the current is supplied through less, one or none of the led & 175. Those already cooked谙Electronics will recognize and understand that many different parameter levels can be used equally, such as, but not limited to, time periods, peak current or voltage levels, average current or voltage levels, moving averages, current or voltage levels, instantaneous current or voltage levels. , output (average, peak or instantaneous) 々 optical brightness level 'all and all of these variations are within the scope of the present application. In the second exemplary embodiment, 'a plurality of time periods () to L and / or The corresponding input voltage level (Vin) (or other parameter level (eg, output optical brightness level) can be used to switch the current (via switch 11 〇), which corresponds to the desired illuminating effect, such as dimming (via Faced to the dimmer switch and selected or input to the device 100 β 'or via the user input of the (selective) user interface 190) such that when the rectified AC voltage is relatively high and more redundancy is selected Current can be supplied through most or all of the LEDs R 175, and when the degree is selected, the current is supplied through less, one, or none of them - 175. When a relatively low brightness level is selected, the current may be supplied through a relatively small or no L segment 175 in a known or time interval. In another exemplary embodiment, the plurality of lED segments 175 include = different types of luminescence spectrum LE_, such as luminescence in the visible range of wavelength =, 'green, color, etc.' For example, coffee section m 41 201134295 contains red LED 140 'LED segment 1 752 contains green LED 140, LED segment 1753 contains a blue LED 14 〇, and the other - LED segment 175 "includes a king white or white LED 140 and so on. In this exemplary embodiment, a plurality of time periods ^ to % and/or corresponding input voltage levels (Vin) (Vini, v ' IN ny or other parameter levels may be determined to switch currents (via switch u〇) ), money should be - hope &, architectural lighting effects, such as ambient or output color control, so that current can be supplied through the corresponding led segment 1 ^ to provide corresponding illumination at the corresponding wavelength, such as red, green, Blue, Amber White and the corresponding combination of these wavelengths (for example: yellow is a combination of red and green) ° _ Some people who are familiar with this technology will recognize the innumerable switching modes and types that can be used to obtain any selected lighting effect. The LEDs 14 of the state, any and all of which are within the scope of the invention of the present application. In the above-mentioned first exemplary embodiment, wherein a plurality of time periods or corresponding input power levels (ViN) d, v (four) Up to vINn) and/or other parameter levels may be determined to switch current (via switching 110) 'reacting or otherwise tracking (within a predetermined change or its valley difference or desired specification) rectifying the AC voltage ( The controller 12 〇 periodically adjusts the number of series coupled σ LED segments 175 that provide current so that current can be supplied through most or all of the LEDs when the rectified AC voltage is relatively high, as provided by the AC source 1〇2 via the melon 105 Segment 175, and provides current through fewer, one or no LED slaves 175 when the rectified ac voltage is relatively low or near zero. For example, in selected embodiments, the peak current (, 1 ') through [ED segment 175 is substantially maintained fixed such that when the rectified ac voltage level is increased and when current is now connected via a series path, one or more 42 201134295 When the LED segment 175 is applied to the predetermined or selected ridge current level, the additional slab m can be switched into the series path; conversely, when the rectified AC voltage level is reduced, the LED & 175 now connected in series is switched successively. The series path is taken out and bypassed. The current levels through LEDi4〇 due to switching into the segment Μ (input current path) and then switching out of the LED segment 175 (from the series LEirno current path) are shown in Figures 2 and 3. More specifically, FIG. 2 is a graph showing a first exemplary load current waveform (eg, full brightness level) and an input voltage level that are not designed according to the present invention, and FIG. 3 is a diagram showing teaching according to the present invention. A graph of two non-normal load current waveforms (eg, *low or dimming redundancy) and input voltage levels. The current levels of P 2 and 3 ' via the selected coffee section are displayed in the first half cycle of the Hertz AC cycle (input voltage ~ , , , ' 142 is not displayed) 'the step is divided into - Time period (ΓΓ1 quadrant »), which is the μ (voltage) interval == rrAc line voltage will increase from about zero volts to basin water, and the second time period (called time quadrant, Q2 "47),

線:::AC (電墨)區間的第二部或部份,其中整流AC 产時^^峰值水平減少到大約零伏特。當AC電塵被整 、'Qr 1⑽6〇赫兹从循環的第二半循環内,時間象限 46與時間象限'、Q2”47與對應的 :實=要注意的是,整流AC電〜以理想、教科 玲實例來顯示,而在真眘 圖改變)參考圖2,就每: 其係幾乎會竭 . 就母一時間象限QI與Q2而言,例如 43 201134295 且不又限七個時間區間可被顯示’其係對應將七個LED段 175切換入或出該串聯LED140電流路徑。在時間區間145ι 内’當AC循環開始時,㈣器nGi會開啟 切換器U0會關閉,電流(、、v,)則流經咖段17 = 升到預疋或所選峰值電流水+ Ip。由於使用電流感測器 ⑴,當電流達到1?時,控制器120會藉由開啟切換器11〇2、 關閉切換器11〇1與使剩餘切換器110持續關閉而切換入下 ED段1 752,從而開始時間區間1452。控制器12〇亦可 測量或者另外決定時間區@ M5i的持續時間,或一等同參 $ ’譬如線電壓水平,在此會達到Ip以用於此特別串聯組 α led敌175,(在此情形中係僅是第一 LED段^ | )其 係譬如藉由使用在種種示範性實施例中所顯示的電壓感測 器丨95’以及將對應的資訊儲存在記憶體185或另一暫存器 或記憶體中。用於所選LED⑨175組合的此區間資訊,不 論是時間參數、電壓參數或另一測量參數,其係可在第二 時間象限、、Q2’’ 147内被應用,以用來將對應的LED段175 切換出該串聯LED140電流路徑(通常呈相反順序)。 持續參考圖2 ’在時間區間14 52内係在A C循環中的稍 微後面,切換器11〇2會開啟並實施且剩餘切換器11〇會關 閉,電流(、'ιγ )會流經LED段175]與175z且再度上升 到預疋或所選峰值電流水平Ip。由於使用電流感測器1 , 當電流達到Ip時,控制器12〇會藉由開啟切換器丨1〇3、關 閉切換器11〇2與使剩餘切換器11〇持續關閉而切換入下一 LED段1 753,從而開始時間區間1453。控制器12〇亦可測 44 201134295 量或另外決定時間區間145z的持續時間或—等同參數,譬 如線電壓水平’在此會達到1?以用於此特別串聯組合⑽ 段175 (在此情形縣識段175丨與1 752 )及將對應資訊 儲存在記憶體185或另-暫存器或記憶體中。用於所選薦 段Π5組合的此區間資訊,不論是時間參數、電壓參數或 另一測量參數,其係可在第二時間象限、、Q2,,i47内被應用’ 以用來將對應LED段i 75切換出該串聯咖刚電流路徑。 當整流AC電壓水平増加時,此過程會持續直到所有識 段175已被切換入㈣LEm4〇電流路經(亦即·所有切換 器11〇會關閉直沒有任何咖段-175被旁通.),時間區間 M5n所具有對應的區間資訊係被儲存於記憶體185中。 於是,當整流AC線電壓(在圖2與3中的%,M2) 增加時,被利料LED140數目則會藉由切換入額外的漏 段175而對應地增加。以此方式,LEm4〇應用則實質會追 蹤或對應AC,線電壓,以致於可將適當電流維持㈣ ㈣刚(例如:纟LED裝置規格内),其係在沒有複雜能 篁储存裝置與沒有複雜功率轉換裝置之下允許整流^線 電廢的全應用。此設備1〇〇架構與切換方法從而提供更高 效率、增加LED140利用率,並且允許許多、通常更小 LED140的使用,其係可同樣地提供更高效率的光輸出盘更 好的熱耗散與管理。此外,由於切換頻率,經由LED段m 切換=或出該串聯LEDl4〇電流路徑所改變的輸出亮度,其 係通常不被一般的人眼觀察者所察覺。 备’又有平衡電阻時,在時間象限'、Q1146 0 (整流 45 201134295 AC電壓y 刀換前到切換後的電流躍變係(方程 AJ- /A;V /切換Line::: The second or part of the AC (Electrical Ink) interval, where the rectified AC production time ^^ peak level is reduced to approximately zero volts. When the AC dust is integrated, 'Qr 1 (10) 6 Hz from the second half of the cycle, time quadrant 46 and time quadrant ', Q2' 47 and corresponding: real = note that rectified AC power ~ ideal, The example of the textbook is shown, but in the case of the change of the map, as shown in Figure 2, each: its system is almost exhausted. For the mother time quadrant QI and Q2, for example, 43 201134295 and not limited to seven time intervals can be The display shows that the seven LED segments 175 are switched into or out of the series LED 140 current path. In the time interval 145 ι 'When the AC cycle starts, the (4) nGi will turn on the switch U0 will turn off, current (,, v, ) Flow through the coffee section 17 = rise to pre-expansion or selected peak current water + Ip. Due to the use of the current sensor (1), when the current reaches 1?, the controller 120 will turn off by turning on the switch 11 The switch 11〇1 and the remaining switch 110 are continuously turned off to switch to the next ED segment 1 752, thereby starting the time interval 1452. The controller 12〇 can also measure or otherwise determine the duration of the time zone @M5i, or an equivalent parameter. $ '譬 as the line voltage level, here Ip will be reached for this special string Group α led enemy 175, (in this case only the first LED segment ^ | ), such as by using the voltage sensor 丨 95' shown in various exemplary embodiments and storing the corresponding information In memory 185 or another register or memory. This interval information for the selected LED 9175 combination, whether it is a time parameter, a voltage parameter or another measurement parameter, can be in the second time quadrant, Q2 '' 147 is applied to switch the corresponding LED segment 175 out of the series LED 140 current path (usually in reverse order). Continuing to refer to Figure 2 'in the time interval 14 52 is slightly behind the AC cycle, The switch 11〇2 will be turned on and implemented and the remaining switch 11〇 will be turned off, and the current (, 'ιγ ) will flow through the LED segments 175] and 175z and rise again to the pre- or the selected peak current level Ip. The sensor 1 , when the current reaches Ip, the controller 12 切换 switches to the next LED segment 1 753 by turning on the switch 丨 1 〇 3, turning off the switch 11 〇 2, and keeping the remaining switch 11 〇 continuously turned off. , thus starting the time interval 1453. Controller 1 2〇 can also measure 44 201134295 quantity or otherwise determine the duration of time interval 145z or – equivalent parameters, such as line voltage level 'here will reach 1? for this special series combination (10) paragraph 175 (in this case county section 175丨 and 1 752) and store the corresponding information in the memory 185 or another register or memory. This interval information for the selected recommendation Π5 combination, whether it is time parameter, voltage parameter or another measurement A parameter, which can be applied in the second time quadrant, Q2, i47, is used to switch the corresponding LED segment i 75 out of the tandem current path. When the rectified AC voltage level is increased, the process continues until all segments 175 have been switched into (4) LEm4 〇 current path (ie, all switches 11 关闭 will be turned off and no café segment - 175 is bypassed). The corresponding section information of the time zone M5n is stored in the memory 185. Thus, as the rectified AC line voltage (%, M2 in Figures 2 and 3) increases, the number of benefit LEDs 140 is correspondingly increased by switching into additional drains 175. In this way, the LEm4〇 application will essentially track or correspond to the AC, line voltage, so that the appropriate current can be maintained (4) (four) just (for example: within the LED device specifications), which is in the absence of complex energy storage devices and no complexity The full application of the rectification electric waste is allowed under the power conversion device. This device architecture and switching approach provides greater efficiency, increases LED 140 utilization, and allows for the use of many, typically smaller, LEDs 140, which can provide higher efficiency light output disks for better heat dissipation. And management. In addition, due to the switching frequency, the output brightness that is changed via the LED segment m = or the current of the series LED l4 〇 current path is generally not perceived by a typical human eye observer. When there is a balance resistor, in the time quadrant ', Q1146 0 (rectifier 45 201134295 AC voltage y knife before the switch to the current jump system (equation AJ- / A; V / switch

N + AN{NRd) , NV ’其中v 〆係當切換發生時的線電壓, Rd係-個LED140的動態阻抗,、、Ν"係在將另一 led 段175切換以前在該串聯LED140電流路徑中的LED14〇數 目,且ΔΝ係被切換入該串聯LEm4〇冑流路徑之額外 LED140的數目。相似的方程式可當電壓在時間象限'、Qy 147内減少時被取得。(當然,電流躍變從未使電流變為負, 其因為在此情形中二極體電流將只跳到零。)方程式丄章 指藉由相較實施LED140的數目而使ΔΝ變小,或:由: ED ν、有比較同的動態阻抗’或兩者而可將電流躍變減少。 在示範性實施例中,在第二時間象限、、Q2„ 147中,當 整流AC線電壓減少,被儲存的區間、電壓或其它參數資: 則可被應用以呈相反順序(例如:、、反射")將對應㈣ 段175相繼切換出該串聯LEDM〇電流路徑其係以將所有 lem 175切換入該串聯LED14〇電流路徑(在結束時) 並且將對應咖段175切換出開始,直到只有一個ued 段I75l)留在該串聯LED14〇電流路徑為止。持續參考圖2, 在時間區間148„内係為接在Ac猶環之♦值或波峰後的區 間’所有LED & 1 75會被切換人該串聯LEm4G電流路徑 (所有切換器11 〇會關閉且沒有任何LED段i 75會被旁 通)’電流(、、Is”)會流經所有LED段175並從其預定 或所選峰值電流水平Ip減少4於制該儲存區間,電壓 或其它參數資訊’譬如對應的時間區間或電塵水平,當對 〜的時間數量已經消逝或者整流AC輸入電塵已經減少到 46 201134295 儲存電壓水平或 會藉由開啟切換;ηΓ:Γ平已被達到時,控制器120 而開始時間區間°148 :: 切換器U〇維持關閉、從 時間區間u8n :: 出下一㈣段Π5η。在下- 1 牙'了乙£1)段175η外的所有LED段175 仍被切換入該串聯LEDM0 又 電机路I,電流Is會流經這些 又且再度從預定或所選峰值電流水 於使用所儲存區間資訊,回掙辟^ P由 樣S如對應的時間區間或電壓 對應的時間數量已經消逝,電壓水平已經達到或 . 控制窃12〇藉由開啟切換器 ㈠閉切換器1 lOq與使剩餘切換-器i 1〇 從而開始時間區間⑷„.2而切換出下一㈣段ΐ75ι\ 整流AC電壓水平減少時’此過程會持續直到只有一個二 奴175,留在該串聯LEDm〇電流路徑,時間區間⑷1且該 切換過程可再度開始’其在下-第-時間象限、、Q1„ 146 内將額外咖段175相繼切換入該串聯LED140t流路徑。 如上述,許多不同參數可被應用以提供被用來在第二 時間象限Q2 ’ 147中切換控制的區間資訊,譬如時間區間 (以時間為單位或以裝置時脈循環數為單位等)、電壓水 平、電流水平等。此外,使用於時間象限、、Q2" 147的區間 資訊係在最近先前第-時間象限、、Q1M46所決定的資訊, 或根據其它示範性實施例可被調整或修改,如以下參考圖 23的更詳細討論,譬如以提供增加的功率因子校正、當 LEDMO之溫度在使用期間内增加時來改變臨界值、數位^ 濾以減少在所提供AC線電壓中的雜訊、不對稱性、令人不 47 201134295 欲電壓增加或減少、在平食、A ^ ^ ^ 贾過程的其它電壓變化等等。此 外,種種計算亦可被進扞, s如時間計算與估計,例如為 功率因子校正目的譬如是否有充分時間留在已知區間中以 使测4〇電流水平達到Ip。種種其它過程亦可發生,譬如 限制在該事件的電流I係 P係為或變传超前,或其它電流管 理’譬如用於吸取足夠雷声 电危以連接·#如調光切換的種種裝 置。 此外,額外切換計畫亦可被應用於示範性實施例中, 除顯示於® 2的相繼切換外。例如依據真實時間資訊,錄 如在整流AC電壓水平中所測量到的增加,額外的㈣段 175可被切換入’例如且不限於譬如從兩個led段⑺躍 變^個LED & 175 ’相似非連續性的切換係可用於電壓 降專·#卩致於任何型態的切換、連續、非連續等等以及 就任何型態發光效果而t,譬如全亮度、調光亮度、特殊 效果與色溫,其係均在本申請發明的範圍内。 另一切換變化則顯示於圖3中,譬如用於調光應用。 如圖所示,並沒有進行在下一第一時間象限、'Q「146内將 額外LED段175連續切換入該串聯LED14〇電流路徑,而 種種LED段175的組合則會被省略。就此一應用而言,整 流AC輸入電壓可被相位調變,例如在第一部份或部份的 (例如:30-70度)每一半循環AC循環内沒有任何電壓被 提供,而更實質的電壓躍變則隨後發生在那相位上(在圖3 的143)。替代地,在時間區間145ni内,除了 led段η、 外的所有LED段175會被切換入該串聯LED 140電流路徑, 48 201134295 電L Is則會比較非常緩慢地增加到,從而改變平均 -,曰\電流並且減少輸出亮度水平。雖然沒有被個別顯 不:疋LED段175的類似省略則可在Q2中進行,其係 同樣=成輪出亮度水平的減少。那些熟諳該電子技藝者將 無數不同切換組合係可被實施以得到此亮度調光, ’、了斤.'、、員不外,而且所有此些變化均在所申請發明的範圍 内包括修改每一區間内的平均電流值、或每一區間内的 脈衝寬度調變,除了所顯示的切換方法以外。 那二热諳電子技術者將承認可在本申請發明範圍内實 施的無數不同切換區間計畫與對應的切換方法。例如,可 個别將已知切換區間預定或另外事先決定以用於每一 lEd 奴1 75 ’其係且相等或不等於其它切換區間;切換區間可被 k擇或私式化為相等以用於每一 LED段i 75 :切換區間可 被動態地決定以用於每一 LED段175,譬如用於希望或所 選的發光效果;依據測量參數的反饋,譬如電壓或電流水 平,切換區間可被動態決定以用於每一 LED段175 ;切換 區間可被動態決定或預定以提供每一 led段175的相等電 流;切換區間可被動態決定或預定以提供不相等的電流給 每一LED段175,譬如用於希望或所選發光效果等等。 同樣應該注意.種種示範性設備實施例可被顯示為包 括整流器1 05,其係一種選擇但非必要。那些熟諳該技藝者 將承認該示範性實施例可使用非整流AC電壓或電流來實 施。此外,示範性實施例亦可使用呈相反極性(或相反方 向)連接的一或更多LED段175、或以呈第一極性(方向) 49 201134295 來連接的一組LED段175與呈第二極性(相反或反並聯方 向)來連接的另一組LED段175來架構,以致例如且不受 限的每一個均可在不同半循環的非整流AC循環内接收電 流。以該實例來持續,第一組LED段175可被切換(例如: 連續或呈其它順序),以在第一半循環非整流AC循環内形 成第-脑4〇電流路徑’且呈相反方向或極性來排列的第 二組LED段175可被切換(例如:連續或呈其它順序), 以在第二半循環非整流AC循環内形成第二ledi4〇電流路 徑。 進一步以該實例來持續,就非整流AC輸入電壓,就第 一半循環AC循環係現在被分為Q1與Q2,在做為第—部份 或部份AC電壓區間的Q1期間内,種種實施例可提供用來 切換第-複數段發光二極體以形成第—串聯發光二極體電 流路徑,且在做為第二部或部份AC電廢區間的Q2期間 内,將第-複數段發光二極體切換出第一串聯發光二極體 電流路徑。然後,就第二半循環AC#環而言,其係現在可 對應地分為Q3部或部份與Q4部或部份(個別等於^丨與 Q2’但卻具有相反極性),纟AC電壓區間的第三部分内 (Q3) ’種種實施例可提供用來切換第二複數段發光二極 體以形成第二串聯發光二極體電流路徑,其係具有盥形成 在第-部份AC電壓區間中之串聯發光二極體電流路徑相 反的極性’且在第四部份(q4) AC電壓區間内將第二複數 段發光二極體切換出第二串聯發光二極體電流路徑。所有 此些變化均可被視為等同並且在本中請發明的範圍内。 50 201134295 如上述,示範性實施例亦可裎 提供貫質或明顯的功率因 子校正。再度參考圖2,示範性杳 ‘ 靶f貫她例提供LED140電流可 與輸入電壓水平VIN( 149)大約實皙々 貝質同時達到峰值(141)。 在種種實施例中,在切換入下一 $ ^ 又則’譬如可造成電流減 少的LED段175η,可決定假設將下— 了广[ΕΙ)段175切換入該 串聯LED 140電流路徑下是否有充 疋刀時間維持在象限Q1以 達到Ip。假如有充分時間維持在q卜 ΤϋτΛ ^ # Vi ’下一 LED段175則會 被切換入該串聯LED 140電流路泸,B^ ή 峪仫且假如沒有則沒有任何 額外的LED段175被切換入。在稍德产 他仴便信形,LED 140電流會 超過峰值IP(沒有被個別顯示於_ 2) ’其所提供真實峰值 L刪40電流被維持㈣應臨界值或其它規格水平下,譬如 以避免對LEm4〇或其它電路元件的潛在傷害。避免此:過 量電流水平的種種電流限制電路係在下文有更詳細討論。 圖4係為顯示根據本發明教示所設計的第二示範性系 統250、第二示範性設備200及第—示範性電壓感測器195A 之方塊與電路圖。第二示範性系、統25〇包含被耦合到交流 (''ACT')線102之第二示範性設備2〇〇(也被等同稱為 離線ACLED驅動器)。第二示範性設備2⑻亦包含複數個 LED140、複數個切換器11〇 (例如 主孔千導體場效電晶 體顯示)、控制器120A、電流感測器115、整流器1〇5、電 流調整益1 80 (顯示做為一示範性實施例之運算放大器實 施)、互補切換器i i i與i 12、及任選 = 〇〇 矛不範性電壓感 測器195A (以使用電阻器13〇與135分 刀匕态顯不)以用 來提供感測輸入電壓水平到控制器j 2〇A。 N樣任選,記憶 51 201134295 體185及/或使用者界面19〇亦可如上述被包括。為簡化說 明’ D C電源電路12 5並沒有被個別顯示於圖4,但卻被包 括在上述且在下文有更詳細討論的任何電路位置中。 第二示範性系統250與第二示範性設備2〇〇會類似以 上所討論第一系統5〇與第一設備1〇〇來操作,直到LED段 175切換入或出該串聯LED14〇電流路徑為止,但卻應用不 同反饋機制與不同切換實施情形以允許對每一組led段 1 75之峰值電流的個別控制(例如:LED段1 75 i的第一峰 值電流;LED段1751與1 752的第二峰值電流;LEE^^ 175丨、 2與1 753的第二峰值電流;經由所有[ED段1 75 1至1 75n 的第11峰值電流水平)。更特別,來自電流感測器"5 ‘ 所測到或另外決定的電流水+ Is較饋會被提供到電流調 整器180的對應反相端,其係以電流調整器18…、18〇2、18化 至18〇„來顯示以提供電流調整的運算放大器來實施。每一 對應組LED 175用的所希或所選峻值電流水平以、 IP2、至Ipn來顯示,其係藉由控制器l2〇A被提供(經由 輸出H 17〇2、17〇3至17Μ到電流調整器刚的對應 非反相端。每—電流調整器⑽i、刚2、1 803至18〇„的輪 出會被耦合到對應切換器11〇1、11〇2、⑽至n〇n的閘極 此外,互補切換器⑴(⑴】、1112、⑴3至川^與u (J U22、1123至U2n)每一個所具有的閘極均被耦4 又到控制器1 20A所控制(經由用於切換器ii的輸g 172]、172·?、1 7? s 1 3至72"以及經由用於切換器1 1 2的輪 171, ^ 1712 . 17K 5 171 ^ , 3主)’從而提供三態控制以及更細啦 52 201134295 7電f1 —線性控制模組可被提供於沒有任何互補 、Γ 11與112開啟且切換器11 〇被對應電流調整器} 8〇 所控制的時候,其係將從電流感測器115反饋的電流Is與 控制态120所提供的組峰值電流水平相比較,從而使電流 出入經過切換器110與對應組LED段175。第二飽和控制 模組可被提供於互補切換器⑴開啟且對應切換器ιΐ2關 閉的時候。第二失效控制模組可被提供於互補切換器m 開啟且對應切換器ln關閉的時候,以致於電流無法流經 對應切換器UO。第二示範性㈣25G與第二示範性設備 2 〇 〇所提供的控制允許在驅動對應組L E D段! 7 5時的彈性, 其係具有電流與傳導時間的個別化設定,包括 一組LED段ι75全部省略。 Γ於將 圖5係顯示根據本發明教示所設計第三 與第三示範性設備300的方塊與電路圖。第三示二: ;35〇同樣包含耗合到交流(、、Acr )線1()2的第三示範性 設備30G (等同亦稱為離線AC LED驅動器)。第三示範性 »又備300包含複數個LED14〇、複數個切換器"〇 (例如以 金氧半導體場效電晶體顯示)、控制器_、電流感測器 "5、整流器105及任選的電壓感測器19”以電壓感測器 195A顯示’使用電阻器13〇與135之,器)係用來提 供感測輸人電Μ水平到控制器議。同樣任選,記憶體⑻ 及/或使用者界面19〇亦可如以上討論被包括。為能輕易顯 示,DC電源電路125並沒有被個別顯示於圖5,卻被包括 在以上討論且在下面有更詳細討論的任何電路位置中。 53 201134295 雖然僅以三個切換器no與三個LED段175顯示但 此系統350與設備300架構則可被輕易延伸到額外led段 175或減少到較少數目的LED段175。此外,雖然分別以^ 呵徊興四個LED 140來 LED 段 175丨、1 752 與 1753 顯示’但在任何已知LED段175中的LED 140數目則更高 更低、相等或不相等,且所有此些變化均在本申請發明範 圍内。在此示範性設備300與系統350中,每一切換器i 1( 會被耦合到對應LED段175的每一對應端,亦即切換器ll〇i 的汲極會被耦合到[£〇段丨751的第一端(在LED14〇i的陽 極)且切換器110!的源極會被耦合到LED段17\的第二端 (在LED140!的陰極),切換器1 1〇2的汲極會被搞合到[ED 段Π52的第一端(在LED14〇2的陽極)且切換器u心的源 極會被耦合到LED段1 752的第二端(在LED14〇3的陰極); 且切換器11 〇3的汲極會被耦合到LED段175〗的第一端(在 LED 14〇4的%極)且切換器丨丨I的源極會被耦合到段 1 753的第二端(在LED14〇7的陰極)。在此電路架構中, 切換器110允許將所㉟LED& 175 #通及户且斷電流流動兩 者,僅造成使用三個切換器110而非七個切換器的七個電 路狀態此外,切換區間可被事先選出或動態決定以提供 任何所選利用率或工作負荷,譬如用於每一 LED段1 75的 實質平衡或相等的工作負荷,每一 LED段i 75係被耦合入 。亥串聯LED 140電流路徑以用於AC半循環内的相同區間, 且每一 LED段175則承載實質或大約相同電流。 表1概述示範性設備300與系統35〇的不同電路狀態。 54 201134295 在表1中,如更普通情形,其中、、N"等於LED丨40的某個 整數數目’ LED段175丨具有、、個數目的[ED 140,LED 段1 752具有、、2『個數目的LED140且LED段1 753具有、γ 個數目的LED140’最後一列則提供圖5所示的更明確情形 (Ν-1 ),其中 LED 段 175!具有一個 LED14〇,LED 段 Η、 具有兩個LED 140 ’且LED段1753具有四個LED 140。 表1 : 狀態 切換器開啟 切換器關閉 LED 段 175 開啟 當 N1=N、 N2=2N、 N3=4N 時, LED 140開啟 的全部數目 就圖5而 言,LED 140開—啟 的全部數 a 1 11〇2、1103 11〇! 175ι N ---- 1 2 110, ' 11〇3 11〇2 1752 —_ 2N 2 3 11〇3 11〇! ' 11〇2 175, + 1752 3N ~------ 3 4 11〇1 、 1102 11〇3 1753 4N 4 5 11〇2 110, ' 11〇3 175! + 1753 5N 5 6 11〇! 11〇2、11〇3 1752+1753 6N 6 7 無 11〇! ' 11〇2' 175i + 1752 7N 7 11〇3 + 1753 在狀態一時’電流會流經LED段175i (當在旁通路徑 中’切換器11(^關閉且電流被阻斷)以及經切換器11〇2、 π〇3。在狀態二時,電流會流經切換器11〇i、lEd段1752 與切換器11 〇3。在狀態三時,電流會流經LED段175 ,、LED 段1 752與切換器丨1〇3等,如表1所提供。應注意:如以上 55 201134295 關於圖1與2所說明’切換區間與切換狀態可被提供用於 示範性狀態300與系統350 ’以致當整流AC電壓增加時, 有更多LED 140會被耦合入該串聯LED 140電流路徑,且當 整流AC電壓減少時’對應數目的led 140會被旁通(切換 出該串聯LED140電流路徑),電流變化亦可使用方程式i 來成形。同樣應注意:藉由改變LED段175的數目及在每 一此LED段175内LED14〇的數目以用於示範性設備3〇〇 與系統350,事實上任何組合與數目的led 140可如必要或 所希被切換為開啟與關閉’以用於任何對應的發光效果、 電路參數(例如:電壓或電流水平)等。同樣應注意:就 此示範性架構的所有切換器丨1〇均不應被同時開啟與實施。 圖6係顯示根據本發明教示所設計第四示範性系統45〇 與第四示範性設備400之方塊與電路圖。第四示範性系統 45〇亦包含被輕合到交流(、、ACe )線1〇2之第四示範性 設備400 (同樣等同稱為離線AC LED驅動器)。第四示範 性設備4〇〇亦包含複數個LED140、複數個(第一或、、高側,,) 切換器110 (如以金氧半導體場效電晶體顯示)' 控制器 1 20C電流感測器11 5、整流器1 05、複數個(第二或、、低 側)切換器21 〇、複數個隔離(或阻斷)二極體2〇5、及 :選的電壓感測器195(以電壓感測器195Α||示,分壓 器),用來提供感測輸入電壓水平到控制器120B。同樣任 選,記憶體185及/或使用者界面190亦可如上討論被包括。 在無數組合中,第四示範性系統45〇與第四示範性設 備400提供用於LED段175串聯與並聯架構兩者。雖然為 56 201134295 能夠輕易地說明與解釋,在圖6中以每一 LED段175中四 個LED段175與兩個LED14〇來顯示,然那些熟諳電子技 術者將承認該架構可被輕易地延伸到額外的段丨75或 咸y到較)數目的LED段1 75,且在任何已知LEd段】 中的LED140數目可以更高、更低、相等或不等,且所有此 些,化均可在本申請發明範圍内。不管怎樣就此些組合 而言具有偶數個LED段175是令人所希。 以切換器110丨、11〇2與11〇3顯示之(第一)切換器【1〇 如所示係被對應耦合到對應LED& 175的第一 ledi4〇盥 隔離二極體2〇5。以切換器210丨、2丨〇2與2彳〇3顯示之(_第. 二)切換器210係對應地耦合到對應LED段175的最後 ED 1 40與電流感測器i i 5 (或例如到接地電位η 7、或到 另一感測器、或到另一節點)。每一切換器21〇的開極被 耦合到(且在控制下)控制器12〇c之以22〇丨、22〇2與22心 顯示的對應輸出220。在此第四示範性系統45〇與第四示範 性設備400’每一切換器11〇與21〇皆進行電流旁通功能以 *刀換器1 10及/或210開啟並實施時,電流會流經對應 切換器且旁通到剩餘(或對應)的—或更多LED段17.5。 在第四不範性系統45〇與第四示範性設備4⑻中,任 —LED段175可被個別控制或結合其它LED段175。例如 且不受限,當切換器210]開啟且剩餘切換器11〇與21〇關 閉時’電流僅會被提㈣LED段17^;當切換器 2102開啟且剩餘切換器110肖2H)關閉時,電流僅會被提 供到led段1 752;當切換器叫與21〇3開啟且剩餘切換 57 201134295 器11 〇與21 〇關閉時,電流僅會被提供到LED段1 753 ;且 當切換器11〇3開啟且剩餘切換器丨10與21〇關閉時,電流 僅會被提供到LED段1 754。 同樣例如且不受限,任一 LED段丨75可被架構在任— 串聯組合以形成串聯LED140電流路徑,譬如:當切換器 21〇2開啟且剩餘切換器丨1〇與21〇關閉時,電流則僅會被 提供到串聯的LED段175〗與LED段1752 ;當切換器11〇2 開啟且剩餘切換器11〇與210關閉時,電流則僅會被提供 到串聯的LED段π、與LED段π、;當切換器11〇〗與 2103開啟且剩餘切換器11〇與210關閉時,電流則僅會被 提供到串聯的LED段1 753與LED段1 753等等。 此外’許多種類的並聯與串聯組合LED段1 75亦為有 效。例如且同樣不受限’當所有切換器丨丨〇與2丨〇開啟時, 所有LED段175會被並聯架構,從而提供複數個並聯的 LED140電流路徑;當切換器丨丨〜與21〇2開啟且剩餘切換 器no與210關閉時,LED段175ι與LED段1752會被彼 此串聯以形成第一串聯LED 140電流路徑,LED段1 753與 LED段1 754會被彼此串聯以形成第二串聯led 140電流路 徑’且這兩串聯組合可進一步彼此並聯(Led段175,與LED 段1752的串聯組合會並聯串聯組合led段1 753與LED段 Π54 )以形成並聯LED140電流路徑,其係包含兩串聯 LED140電流路徑的並聯組合;且當所有切換器11 〇與21 〇 關閉時’所有LED段175會被架構以形成一串聯LED 140 電流路徑’以作為連接到整流AC電壓的一串LED 1 40。 58 201134295 同樣應注意:藉由改變led段175的數目及在每—此 LED段175内LED 140的數目以用於示範性設備4〇〇與系統 450,事實上,任何組合與數目的LED14〇可如必要或所希 望被切換為開啟與關閉,以用於任何對應的發光效果、電 路參數(例如:電壓或電流水平)等等,如以上所討論, 譬如用於藉由增加在串聯、並聯、或兩者、在任何組合中 耦合的LED140數目來實質追蹤整流AC電壓水平。 圖7係顯示根據本發明教示所設計之第五示範性系統 550與第五示範性設備5〇〇的方塊與電路圖。第五示範性系 統5 50與第五不範性設備5〇〇在結構上類似且操作上實質 類似第一示範性系統5〇與第一示範性設備1〇〇,且在範圍 内彼此不同,.第五不範性系統55〇與第五示範性設備 則進步包合(第二)感測器225(除了電流感測器1 1 $外), 其係經由控制器輸入230而提供所選反饋到控制器12〇D, 並且同樣包含DC電源電路125C以顯示另一示範性電路位 置以用於譬如電源。圖7同樣一般顯示輸入電壓感測器 195。輸入電壓感測器195亦可以分壓器來實施,其係使用 電阻器130肖135。就此示範性實施例而言,DC電源電路 U5C係以串聯最後LED段17、來實施且示範性第三示 範性DC電源電路125C則參考圖2〇討論如下。 例如且不受限,第二感測器225係為光學感測器或轨 感測器。持續該實例,在示範性實施例中,第二感測器奶 係提供反饋到控制器120D的光學感測器,其係有關於從 LED140發出的光線’該複數個LED段175包含不同型態的 59 201134295 LED140 ’其係具有不同發光頻譜,譬如具有波長在紅色、 、:色、藍色、琥ί白色等可見光範圍中的發光。例如:㈣ 段175,包含紅色LEDl4〇,LEEMi η、包含綠色 LED段I%包含藍色LED14〇,另一 _段17、包含玻 拍或白色LED140等等。同樣例如:LED段%包含玻拍 或紅色LED140,同時其它led段lb包含白色LED14〇等 等。如上述,在此些示範性實施例中,由於使用來自光學 第一感測H 225的反饋,複數個時間期間q至tn可藉由控 制器120D來決定以用於切換電流(經過切換器【i㈧其 係對應所希或所選建築發光效果,#如周圍或輸出顏色控 制(亦即:對色溫的控制),以致於電流能夠被提供經過 對應的LED段175以提供在對應波長的對應發光,譬如紅 色綠色、藍色、破轴色、白色與此些波長的對應組合(例 如:黃色為紅色與綠色的組合)。那些熟諳該技藝者將承 認無數切換模式與型態的LED係可被應用以得到任何所選 發光效果,其中任一者或全部均在所申請發明範圍内。 圖8係顯示根據本發明教示所設計之第六示範性系統 650與第六不範性設備6〇〇的方塊與電路圖。第六示範性系 統650包含耦合到入0線1〇2的第六示範性設備6〇〇 (亦等 同地稱為離線AC LED驅動器)。第六示範性設備6〇〇亦包 含複數個LED140、複數個切換器11〇 (例如,亦以金氧半 導體場效電晶體顯示)、控制器12〇E、(第一)f流感測 器1 1 5、整流器1 05、及任選的的電壓感測器1 95,以用來 提供感測輸入電壓水平到控制器12〇。同樣任選,記憶體 60 201134295 185及/或使用者界面19G亦可如以上所討論被包括。 作為任選性元件,第六示範性設備_ 流限制電路·、27〇或·,亦可包含界面電路24〇,亦 可包含電壓感測器195,且亦可包含溫度保護電路29〇。電 流限制電路260、270或280可被應用來避免在LEm4〇電 流中的潛在大幅增加,譬如假如整流AC電壓變得異常高, 同時複數個LED140被切換入該串聯LEm 在控制器議控制下,電流限制電路26〇、=或 主動且可具有偏壓或運算„,或為被動^依賴控制= ⑽㈣何偏.壓或運算電壓。雖顯示三個位置與電流限制 電路260、27G或28〇的許多不同實施例,但應該理解:電 流限制電路260、270或280中只選出一個用於任何已知裝 置實施過程。電流限制電路26(M立於第六示範性設備_ 的、、低側,,,其在電流感測器115(節點134)及切換器ιι〇 來源(且同樣最終LED140n的陰極)(節點132)間;等同 地,此電流限制電路260亦可被放置在電流感測器115與 接地電位117 (或整流器} 〇5的回波路徑)間。替代地,電 抓限制電路280放置在第六示範性實施例6〇〇的、、高側", 在節點131與串聯LED14〇電流路徑之第一 LED14〇i的陽 極間。當作另一替代物,電流限制電路27〇可被應用於第 八不範性設備600的、、高側”與、、低側,/間,其被耦合於 頂軌(節點13 1 )與接地電位11 7 (或電流感測器1 15的低 或高(節點134)侧或另一電路節點,包括節點ι31 )間。 電机限制電路260、270與280可被實施於許多不同架構, 61 201134295 且可被提供於第六示範性設備600内的許多不同位置(或 任一其它設備 100、200、300、400、500、700、800、900、 1000、1100、1200、1300 ),許多示範性電流限制電路260、 2 70與280係參考圖9-12來顯示與討論。 界面電路240係被應用來以先前技術切換器來提供向 後(或回歸)相容性’譬如可提供相位調變調光控制並需 要最小的握持或閂鎖電流之調光切換器285以用於適當操 作。在AC循環内的種種狀況與不同時間上,一或更多 LED 140會或不吸引此最小握持或閂鎖電流,其造成此一調 光切換器285的不適當操作。因為裝置製造器一般不會事 先知道譬如第六示範性設備600的發光裝置是否將以調光 切換器285應用,所以界面電路240則可被包括在發光裝 置。示範性界面電路240 —般將監視LED 140電流,且假如 小於預定臨界值(例如:5 0毫安)係將吸引更多電流經過 第六示範性設備600 (或者任一個其它設備1〇〇、200、300、 400 、 500 、 700 、 800 、 900 、 1000 、 1100 、 1200 、 1300) » 示範性界面電路240可在種種不同架構中被實施,其係並 且可被提供在第六示範性設備600内(或任一其它設備 100、200、300、400、500、700、800、900、1000、1100、 1200、1300)的許多不同位置,數個示範性界面電路24〇 參考圖13 -17來顯示與討論。 電壓感測器· 195可被應用來感測來自整流器1 〇5之整 流AC電壓的輸入電壓水平。示範性輸入電壓感測器195亦 可以使用電阻器130與135之分壓器來實施,誠如以上討 62 201134295 淪。電壓感測器19 5可在許多不同架構中被實施,且可被 提供在如該電子技術中已知或變為已知之第六示範性設備 600 (或任一其它設備 1〇〇、200、30〇、4〇〇、5〇〇、7〇〇、8〇〇、 900、1〇〇〇、1100、1200、13〇0)的種種不同位置中,除了 先前所示分壓器外,所有此些架構與位置均可被視為等同 與在本申請發明的範圍内。 溫度保護電路290可被應用以檢測預定臨界值上溫度 的增加,且假如此一溫度增加發生,則為減少LED14〇電流 並從而提供某種程度的保護以使示範性設備6〇〇免於潛在 的溫度相關傷害。示範性溫度保護電路29〇可破實施於種. 種不同架構中,並可被提供於第六示範性設備6〇〇(或任一 其它設備 100、200、300、400、500、700、800、900、1〇〇〇、 1100、1200、1300 )内的種種不同位置,示範性溫度保護 電路290A係參考圖11來顯示與討論。 圖9係顯示根據本發明教示所設計第一示範性電流限 制器260A的方塊與電路圖。示範性電流限制器26〇a可被 實施於第六示範性設備600 (或任一其它設備1〇〇 2〇〇、 300、400、500、700、8〇〇、9〇〇、1〇〇〇、ll〇〇、i2〇〇、13〇〇) 的、、低侧"而在節點134與132間,其係、、主動,,電流限 制電路。預定或動態決定的第一臨界電流水平(、、Ιτη/,) (例如:用於所選規格的高或最小電流水平)藉由控制器 120Ε(輸出265 )被提供到誤差放大器ΐ8ΐ的非反相端,其 係比較臨界電流1ΤΗΙ (相較對應電壓)對經過LED140 (來 自電流感測器115)的電流Is (同樣相較對應電壓)。當來 63 201134295 自LED140的電流Is小於臨界電流卜⑴時,誤差放大器ΐ8ι 的輸出會增加且高到足以將切換器114 (亦稱為通過元件) 維持在開啟狀態並允許電流Is流動,當經過LED14〇的電 流Is增加到大於臨界電流卜⑴時,誤差放大器i8i的輸出 …、到線性模式,以控制(或出入)呈線性模式的切換 器U 4且提供一減少水平的電流Is流過。 圖1〇係顯示根據本發明教示所設計第二示範性電流限 制器270A的方塊與電路圖。示範性電流限制器膽係被 實施於第六示範性設備6〇〇(或任一其它設備1〇〇 2〇〇、 3〇〇、400、50〇、70〇、8〇〇、9〇〇、1〇〇〇、11〇〇、12〇〇、13〇〇) 的、、高側"(節點131)與、、低伯厂而在節點117(電流感 測器115的低側)與在節,點132(最後串聯LEDi4〇n的陰極) 間’且為 ''被動”電流限制電路。第一電阻器271與第二 電阻态272會被串聯耦合以形成被耦合於節點m (例如: 整流器U)5的正端點)與切換器"6閉極(亦稱為通過元 件)間的-偏壓網路’且在基本操作偏屋期間内,該切換 器116呈傳導模式。卿電晶體m係在其集極上被搞合 到第二電阻器272’且經過其基極·射極接點而㈣合到電 爪感測器11 5。在該事件中’經過電流感測器1 1 5 (例如電 ,器!65)的電屋降會達到電晶體m之基極射極接點的 擊穿電塵,電晶體274會開始實施、控制(或出入)呈線 f模:的切換态i i 6 ’且提供以使減少水平的電流Is流過。 應注意:此第二示範性電流限制器27GA並不需任何操作性 (偏壓)電壓來操作。齊納二極冑”3則用來限制電晶體 64 201134295 (FET) 116的閘極對源極電壓。 圖1 1係顯示根據本發明教示所設計第三示範性電流限 制器電路270B與溫度保護電路290 A的方塊與電路圖。示 範性電流限制器270B亦可被實施於第六示範性設備600 (或任一其它設備 100、200、300、400、500、700、800、 900、1000、1100、1200、1300)的、、高側”(節點 131 ) 與、'低側"而在節點11 7 (電流感測器1 1 5的低側)、節點 13<電流感測器115的高側)與節點132(最後串聯LED140n 的陰極)間’且為、、被動"電流限制電路。第三示範性電 流杈制器270B包含電阻器283 ;齊納二極體.287 ;與d電 晶體(FET) 291與NPN雙極接面電晶體(BJT) 293顯示 的兩切換器或電晶體。操作時,電晶體(FET ) 291通常開 啟並實施LED140電流(在節點132與134間),偏壓則由 電阻器283與齊納二極體287提供。經過電流感測器i i 5 (在節點1 34與117間)的電壓會使電晶體293的基極射 極接面產生偏壓,且在LED140電流超過預定界限時,此電 壓將會高到足以開啟電晶體293,其將節點288 (與電晶體 (FET ) 29 1的閘極.)拉向接地電位並減少經過電晶體(fet ) 291的傳導,從而限制LED14〇的電流。齊納二極體287用 來限制電晶體(FET ) 291的閘極至源極電壓。 示範性溫度保護電路290A包含第一電阻器281與第 ”刀壓器架構之溫度相依電阻器2 8 2 ;齊納二極體2 8 9 二287,及以FET292與291顯示之兩切換器或電晶體。當 知作恤度增加時,電阻器282的電阻會増加以增加被施加 65 201134295 到電晶體(FET) 292閘極的電壓,其亦將節點288 (與電 晶體(FET ) 29 1的閘極)拉向接地電位且減少經過電晶體 (FET) 291的傳導,從而限制LED i 4()電流。齊納二極體 2 89亦用來限制電晶體(FET ) 292的閘極至源極電壓。 圖12係顯示根據本發明教示所設計第四示範性電流限 制器280A的方塊與電路圖。電流限制電路28〇A位於第六 示範性设備600 (或任—其它設備1〇〇、2〇〇、3〇〇、4〇〇、 500、700、800、900、1〇〇〇、11〇〇、12〇〇、13〇〇)的 '、高 側"上而在節點131與串聯LED140電流路徑之第一 LED140,的陽極間’且進一步被耦合到節點134 (電流感測 器11 5的高側)。第四示範性電流限制器28〇A包含以電阻 器301實施之第二電流感測器;齊納二極體3〇6 ;與以電晶 體(P-型FET) 308與電晶體(PNP BJT) 3〇9顯示之兩切 換器或電晶體(以及任選的第二電阻器3〇2,被耦合到節點 134 (電流感測器115的高側))^經過第二電流感測器3〇 i 的電壓會使電晶體309的射極-基極接面產生偏壓,且在 LED 140電流超過預定限制的事件中,此電壓將高到足以開 啟電晶體309,其係將節點307 (以及電晶體(FET ) 308 的閘極)拉向更高的電壓並且減少經過電晶體(FET) 308 的傳導’從而限制LED 140電流。齊納二極體306則用來限 制電晶體(FET) 308的閘極-至-源極電壓。 如上述’界面電路240係被用來以先前技術切換器提 供向後(或回歸)相容性,譬如調光切換器285可提供相 位調變調光控制並需要最小的握持或閂鎖電流以用於適當 66 201134295 操作。示範性界面電路240可被實施於許多種種不同架構, 並且可被提供於示範性設備1〇〇、200、3〇〇、400、500、600、 700、800、900、1〇〇〇、11〇〇、1200、13〇〇 内的許多種種不 同位置’包括那些在以下顯示與討論者。 圖1 3係顯示根據本發明教示所設計第一示範性界面電 路240A的方塊與電路圖。示範性界面電路24〇A可被實施 於第六示範性設備600 (或任一其它設備1〇〇、200、300、 400 、 500 、 700 、 800 、 900 、 1〇〇〇 、 11〇〇 、 1200 ' 1300)的 、、高側"(節點131 )與、、低側,,而在節點134 (電流感測 盗1 1 5的高側)或在另一低側.節點丨3 2間.。第一示範性界 面電路240 A包含第一與第二切換器118與119及誤差放大 器(或比較器)183。以切換器(FET) 119顯示的傳輸元件 會被麵合到額外的一或更多LED 140(其並聯該串聯[ED 140 電流路徑),其以LED 14〇w至I40pn顯示以當被傳導時能 夠提供有用的光線輸出且避免切換器119中無效的功率耗 損。預定或動態決定的第二臨界電流水平(、、Ith2〃)(例 如·用於調光器2 8 5的最小握持或閂鎖電流水平)係藉由 控制器120Ε (輸出275 )被提供到誤差放大器(或比較器) 183的非反相端,其比較臨界電流(相較對應電壓)與 經過LED140(來自電流感測器115)的電流水平Is (亦相 較對應電壓)。控制器120E亦接收來自電流感測器115之 電流水平Is的資訊(例如:如電壓水平)。當經過ledi4〇 的電流Is大於臨界電流IT„2時,譬如最小握持或閃鎖電流, 控制器120Ε會開啟切換器118(連接到切換器U9的閘 67 201134295 極),將切換器Π9有效關閉並使第一示範性界面電路24〇A 的電流汲取能力失效,以致於第一示範性界面電路24〇a無 法吸取任何額外電流。當經過LED14〇的電流Is小於臨界 電流Ith2時,譬如小於最小握持或閂鎖電流,控制器i2〇e 會關閉切換器11 8且切換器119會藉由誤差放大器(或比 較器)1 83的輸出而呈線性模式操作,其係允許額外電流is 流經LED140P1至i4〇Pn與切換器! 19。 圖1 4係顯示根據本發明教示所設計第二示範性界面電 路240B的電路圖。示範性界面電路24〇B可被實施於第六 示範性設備600 (或任一其它設備1〇〇、2〇〇、3〇()、4〇〇、 500、700、800、900、1〇〇〇、11〇〇、1200、1300 )的、、高 侧(節點13 1 )與、、低側"間,譬如耦合經過在節點134 與11 7上的電流感測器1丨5 (以電阻器165實施)。第二示 範性界面電路240B包含第一與第二與第三電阻器316、 3 1 7 ;齊納二極體3丨丨(來箝位電晶體3丨9的閘極電壓); 及以N型FET319與電晶體(NPN BJT) 314顯示之兩切換 器或電晶體。當經過LED 140的電流Is比臨界電流ITH2大 時’譬如最小握持或閂鎖電流,電壓可產生經過電流感測 器11 5 (以電阻器165來實施),以使電晶體3 14的基極_ 射極接面產生偏壓,使或維持電晶體3丨4開啟與實施而將 節點3 1 8拉至節點丨丨7的電壓,在此情形中係為接地電位, 以有效使或維持電晶體3 19關閉且沒有實施,以使第二示 範性界面電路240B的電流吸取能力失效而無法汲取任何額 外電流。當經過LED140的電流Is小於臨界電流ITH2時, 68 201134295 譬如小於最小握持或閂鎖電流,經過電流感測器u 5 (以電 阻器165來實施)所產生的電壓則不足以使電晶體314的 基極-射極接面產生偏壓,且無法開啟電晶體3 14或將它維 持於一個開啟且實施的狀態。經過電阻器3〗6產生的電壓 會將節點3 1 8向上拉到高電壓,開啟電晶體3丨9,其係允許 額外電流Is流經電阻器3 17與電晶體3 1 9。 圖1 5係顯示根據本發明教示所設計第三示範性界面電 路240C的電路圖。示範性界面電路24〇c可如上所說明地 被架構與放置以用於第二示範性界面電路24〇B,其係並且 包含額外電阻器333與阻斷二極體336,以避免經過二極體 311的潛在放電路徑及避免允許電流路徑不會經過電流感 測器115 (以電阻器165實施)。 圖1 6係顯示根據本發明教示所設計第四示範性界面電 路240D的方塊與電路圖。示範性界面電路24〇d亦被實施 於第六示範性設備600 (或任一其它設備1〇〇、200、300、 400 、 500 、 700 、 800 、 900 、 1000 、 1100 、 1200 、 1300)的 、咼側"(節點1 3 1 )與、、低側"間’譬如耦合經過在節點 134與117上的電流感測器115 (以電阻器165實施)。第 四示辄性界面電路240D包含第一、第二與第三電阻器 321、322與323;齊納二極體324(來箝位電晶體328的閘 極電壓);阻斷二極體326 ;運算放大器(、、op amp,,)325 及以N型FET328與NPN BJT329顯示之兩切換器或電晶 體。運算放大器325將產生經過電流感測器11 5 (以電阻器 16 5實施)的電壓差放大’並允許使用具有比較低阻抗或電 69 201134295 阻的電流感測器11 5。當經過LED 140的電流is比臨界電流 ΙτΗ2大時,譬如最小握持或閂鎖電流,此放大電壓(使電晶 體329的基極-射極接面產生偏壓)會使或維持電晶體314 開啟與實施’其係將節點327拉向節點117的電壓,在此 情形中係為接地電位,以有效地使或維持電晶體328關閉 並且沒有實施’以使第二示範性界面電路240C的電流吸取 能力失效而無法沒取任何額外電流。當經過LED 140的電流 Is小於臨界電流ιΤΗ2時’譬如小於最小握持或閃鎖電流, 放大電壓則不足以使電晶體329的基極-射極接面產生偏 壓’並且無法開啟電晶體3 2 9或將它維持在一個開啟且傳 導的狀態。經過電阻器321產生的電壓會將節點327向上 拉到高電壓,開啟電晶體328,其係允許額外電流Is流經 電阻器322與電晶體328。 圖17係顯示根據本發明教示所設計第五示範性界面電 路240E的方塊與電路圖。示範性界面電路240E可如上述 被架構與放置以供第四示範性界面電路24〇d,且包含額外 電阻器341與切換器35丨(由控制器ι2〇控制)。就此第五 示範性界面電路240E ’種種LED段175亦可被用以汲取充 分電流而導致經過LED140的電流Is大於或等於臨界電流 Ith2。當操作時,;lED14〇峰值電流(Ip)比臨界電流Ith2 大一明顯或合理幅度,譬如2-3倍的臨界電流ιΤΗ2。當lED 段175被切換入該串聯LED 140電流路徑時,不管怎樣, LED140電流最初會小於臨界電流Ith2。於是,當led段 175〆不需任何剩餘LED段ι75)最初被實施且具有小於臨 70 201134295 界電流Ith2的電流時’控制器120關閉切換器3 5 i且允許 電晶體328將額外電流放射經過電晶體322,直到LED 140 電流大於臨界電流Ith2且電晶體329將節點327往回拉到 低電位為止。因此,控制器將切換器35丨維持在開啟位置 且LED #又175丨則k供足夠的電流以維持經過[ED段1 75。 於疋,為避免LED 140電流水平隨著下一 [ED段1 75 ‘ 被切換入該串聯LED140電流路徑而落到臨界電流Ith2以 下,當此下一 LED段175被切換入該串聯LED14〇電流路 徑時,譬如LED段1 752,控制器12〇會允許兩切換器11〇 開啟並且實施,在此情形中切換器丨1όι與11〇2兩者允許充 分的LED電流140持續流經LED段175],同時使電流在 LED段1 752中增加。當充分電流同樣流經led段1752時, 切換器110丨會關閉而只有切換器丨1〇2持續開啟,且該過程 會持續用於每一剩餘的LED段175。例如:當此下一 LED 段1 75被切換入該串聯[ED 140電流路徑時,譬如[ED段 1 753 ’控制器12〇會允許兩切換器丨1〇開啟且實施,在此情 形中切換器11〇2與11〇3兩者允許充分的LEd電流140持續 流經LED段1 752,同時使電流在LED段1 753中增加。 沒有個別顯示’可被應用的另一型態界面電路24〇可 以固定電流源來實施,其係會在與經過LED 140之電流ls 無關之下汲取大於或等於臨界電流ΙτΗ2的電流,譬如最小 握持或閂鎖電流。 圖1 8係顯示根據本發明教示所設計第一示範性dc電 源電路125A的電路圖。如上述,示範性DC電源電路125 71 201134295 可被用以提供DC功率,譬如Vcc,以由示範性設備1 〇〇、 200、300、400、500 及 / 或 600、700、800、900、1〇〇〇、11〇〇、 1200 ' 1300的其它元件使用。示範性DC電源電路125可 被實施於種種不同架構,且可被提供於第六示範性設備6〇〇 (或任一其它設備 100、200、300、400、500、700、800、 900、1000、1100、1200、1300 )的種種不同位置,除了在 此所顯示與討論種種架構外’其中任一與全部均被等同考 慮且在所申請發明範圍内。 示範性DC電源電路125A可實施於第六示範性實施例 600(或任一其它設備 1〇〇、200、300、400、500、700、800、 900、1000、11〇〇、1200、1300 )的、高側"(節點 131) 與、、低側"間,譬如在節點134 (電流感測器丨15的高側) 或另一低側節點132或117。示範性DC電源電流125Α包 含以LED140vl、140V2至14〇vz顯示的複數個LED140、複數 個二極體361、3 62與3 63、一或更多電容器3 64與365及 任選切換器3 67 (由控制器12〇控制)。當整流AC電壓(來 自整流器105 )增加時,電流會提供經過二極體361以將電 谷器365充電,經過1^〇140”至140VZ且經過二極體362 以將電容器364充電。輸出電壓Vcc會被提供於節點366 上(亦即在電容器364上)。LED140vn至140vz會被選出以 k供貫為穩疋或預定壓降,譬如18伏特,且提供另一發光 源。s整流AC電壓(來自整流器1〇5 )減少時,電容器365 會具有較高電壓,且經由[丑⑴钩以至14〇vm來放電,其係 同樣提供另一發光源且應用可另外被耗散的發光能量以用 72 201134295 來增加光線輸出效率。在輸出電壓vcc變得比預定電壓水平 或臨界值更而時’過電壓保護可藉由控制器丨2〇提供以關 閉切換器3 6 7來減少電壓水平。 圖19係顯示根據本發明教示所設計第二示範性dc電 源電路125B的電路圖。示範性DC電源電路125B亦被實 施於第六不範性設備6〇〇(或任一其它設備1〇〇、2〇〇、3〇〇、 400、500、700、800、900、1〇〇〇、hoo、1200、13〇〇)的 向側"(節點13 1 )與、、低側"間,譬如在節點丨34 (電 流感測器1 1 5的高側)或另一低側節點丨32或i丨7。示範性 DC電源電路1 25B包含一切換器或電晶體(以N型金氧半 導體場效電晶體顯示)374、電阻器371、二極體373、齊 納二極體372、電容器376與任選切換器377 (控制器12〇 控制)。切換器或電晶體(金氧半導體場效電晶體)3 74被 偏壓以由經過電阻器371產生的電壓傳導(並由齊納二極 體372箝位),以致於電流能夠提供經過二極體373而將 電容器376充電。輸出電壓Vcc會被提供於節點378 (亦即 電谷器376 )。在該事件中,輸出電壓Vcc會變得比預定電 壓水平或臨界值更高,過電壓保護亦可由控制器12〇所提 供以將切換器377關閉以減少電壓水平。 圖20係顯示根據本發明教示所設計第三示範性dc電 源電路125C的電路圖。示範性DC電源電路125(:如上參 考圖5所論可串聯最後led段175n來實施。示範性DC電 源電路125C包含切換器或電晶體(以N型金氧半導體場效 電晶體顯示)381、比較器(或誤差放大器)382、隔離二 73 201134295 極體386、電容器385、電阻器383與384(以分壓器架構)、 與齊納二極體387,並且使用控制器1 20所提供的參考電壓 VREF。在操作期間,電流會流經隔離二極體386並將電容器 385充電’輪出電壓vcc則提供在節點388 (電容器385 ), 齊納二極體387則用來抑制瞬變並在開始時避免電容器385 溢流’其係通常具有匹配最大LED 140電流的電流額定。以 分壓器架構的電阻器383與384可被用來感測輸出電壓Vcc 以由比較器382使用。當輸出電壓Vcc小於預定水平時(對 應控制器120所提供的參考電壓Vref),比較器382將電 晶體(或切換器)38 1關閉以致大部分LED 140電流可將電 容器385充電。當輸出電壓Vcc達到預定水平(對應參考 電壓vREF)時,比較器382將開啟電晶體(或切換器)1 以允許LED140電流旁通到電容器385。當電容器385提供 5給偏壓源(輸出電壓Vcc)的時候,其係可被架構以在 貫質小於充電速率的速率上放電。此夕卜,當在許多時間上 電晶體(或切換器)381被切換成關閉以開始新循環時,比 較益382亦可以某些遲滯現象架構以避免高頻率切換,且 經過電容器385的AC漣波可藉由電容值與比較器的遲滯現 象來縮小,其可由那些熟諳該電子技術者所輕易決定。 圖21係顯不根據本發明教示所設計示範性控制器η肿 的方塊圖。示範性控制器i肅包含數位邏輯電路_、複 動器電路4〇5、類比至數位(、、a/d。轉換器 ϋ與415、及任選亦可包括記憶體電路乜5 (例如: 代替記憶體185)、調光控制電路㈣、比較器化與同時 74 201134295 (同步)信號產生器430、Vcc產生器435 (當另一 DC功 率電路沒有被提供在別處時)、啟動重設電路445、過低電 壓檢測器450、過電壓檢測器455及時脈440 (亦可被提供 於晶片外或其它電路)。沒有個別顯示,額外元件(例如 充電泵)可被用來供以切換器驅動器電路4〇5電力,其可 例如以緩衝器電路實施。種種選擇性元件可如必要或所希 被實施,譬如在重設電路445、Vcc產生器435、過低電壓 檢測器450與過電壓檢測器455上的功率,譬如除了或替 代如以上討論的其它DC功率產生、保護與限制電路。 A7D轉換器410可被耦合到電流感測器丨丨5以接收對應 LED 1 40電流的參數測量(例如:電壓水平),並予以轉換 成數位值以供數位邏輯電路460在決定時使用,除了別的 以外還不論LED 140電流是否達到預定峰值z^a/d轉換器 415可被耦合到輸入電壓感測器195以接收對應整流ac輸 入電壓V1N的參數測量(例如··電壓水平),並予以轉換為 數位值以同樣供數位邏輯電路46〇在決定時使用,除了別 的以外還在將LED段175切換入或出該串聯LED14〇電流 路徑時,如上所論》記憶體465 (或記憶體i 85 )可被用來 儲存區間、電壓或被使用來在Q2期間内決定LED段175 切換的其它參數資tfL。由於使帛LED14〇冑流的數位輸入 值、整流AC輸入電壓VlN及/或時間區間資訊(經由時脈 440 ),數位邏輯電路460提供控制給複數個切換驅動器電 路405 (以切換驅動器電路4〇5ι、4〇5ζ、4〇53至4〇、顯示, 其在控制器120的控制下對應每一切換器i 1〇、2ι〇或任一 75 201134295 種種其它切換器),以抑制搞# T p 以拉制種種LED段175切換入. 串聯LED14。電流路徑(或入或出種種並聯路徑),= 所討論,譬如以實質追蹤Vin或提供所希發光效果(例如. 調光或色溫控制),其係參考圖23而討論如下。 例如以上所述,㈣-方法而言,當整流AC輸入電壓 〜大約或實質接近零(其另外可為從負至正的零交又而反 之亦然,以用於非整流AC輸入電壓)(以在圖2與3中的 H4顯示,其在此可等同稱為實質零電壓或零交又),並將 對應時脈循環數或時間值儲存在記憶體465(或記憶體⑻) 中時’控制器120 (使用比較器425、同步訊號產生器43〇 與數位邏輯電路46〇)可決^象限Q1的開始並且提供對應 的同步訊號(或同步脈衝)。在象限Q1 $,控制器12〇 (使 用數位邏輯電路460)可將當LED14〇電流達到預定峰值汴 時所發生之整流AC輸入電壓νΙΝ用的數位值儲存在記憶體 465 (或記憶體185)中,以用於在串聯ledi4〇電流路徑 中的或更多LED段1 75,並且提供對應訊號給複數個切 換驅動器電路405以控制下一 LED段1 75的切換,並重複 這些測量與資訊儲存以供連續切換入每一 Led段175。於 是’電壓水平可被儲存以在切換入下一 LED段1 75前對應 當前(或第一)組LED段175的最高電壓水平,其亦實質 等於包括所切換入下一 LED段1 75之該組LED段1 75的最 低電壓水平(以形成第二組LED段1 75 )。在象限Q2内, 當整流AC輸入電壓vIN減少時,LED 140電流會從給定組 LED段175的預定峰值ιρ減少,接著當每一 led段175連 76 201134295 續切換出該串聯LED140電流路徑時,LED14〇電流會回升 到預定峰值Ip。於是在象限Q2内,控制器12〇 (使用數位 邏輯電路460 )可從記憶體465 (或記憶體185)汲取整流 AC輸入電壓Vin用的數位值,其發生於當ledi4〇電流事 先達到第一組LED段175之預定峰值Ip時,對應第二組 led段175的最低電壓水平,且提供對應訊號給複數個切 換驅動器電路405以控制LED段175從第二組LED段175 切換出,以致於第一組LED段175現在能夠被連接且 LED140電流能夠回到在電壓水平的預定峰值ip,並且重複 這二/則量與資汛擁取,以用來連續切換出每一段^ 7.5。 同樣例如以上所述,就第二、以時間為主的方法而言, 控制?§ 120 (使用比較器425、同步訊號產生器43〇與數位 邏輯電路460)亦可當整流AC輸入電壓Vin大約或實質接 近零時決定象限Q1的開始並提供對應的同步訊號,並且將 對應的時脈循環數或時間值儲存於記憶體465 (或記憶體 185)中。在象限Q1内,控制器12〇 (使用數位邏輯電路 460)可將數位值儲存在記憶體465 (或記憶體μ”中’ 以用於LED 140電流達到在串聯LED14〇電流路徑中一或更 夕 ^又1 75之預疋峰值1P的時間(例如:時脈循環數) 或時侯並且&供對應的訊號到複數個切換驅動電路405 以控制下一 LED段175的切換入’並重複這些測量、時間 數與資訊儲存以用於連續切換入每一 LEd段丨75。控制器 (使用數位邏輯電路46())可進一步計算與儲存對應的 區間資訊’譬如一給定组咖段175達到Ιρ所需的切換後 77 201134295 時間區間(時脈循環數目或時間區間),譬如藉由從達到 Ip時的時脈數減去在切換時的時脈數1是,時間與區間 資訊可被儲存,其係對應給定(第一)組LED段175的切 換時間及已知(第-)組LED段175達到Ip的時間,後者 係對應下-(第二)組LED段的切換時間。在象限Q2内, 當整流AC輸人電M VlN減少時,LED14G電流會從已知組 LED段175的預定峰值Ip減少,接著當每—㈣段175連 續切換出該串聯led 140電流路徑時,LED14〇電流會回升 到預疋峰值Ip。於是在象限Q2内,控制器^ (使用數位 邏輯電路460 )可從記憶體465 (或記憶體185 )汲取對應 的區間資Λ „十算下__ LED段i 75被切換出該串冑刚 電μ路彳二的時間或時脈循環數、及提供對應訊號到複數個 切換驅動為電路405以控制LED段175從第二組LED段175 切換出’以致於第-組LED段175現在可被連接,且LED140 電流會回到預定峰i Ip ’並且重複這些測量、計算與資訊 擷取以用於連續切換出每- LED段1 75。 就以示範性電壓為主與以時間為主的兩方N + AN{NRd) , NV 'where v is the line voltage when the switching occurs, Rd is the dynamic impedance of the LED 140, and Ν" is in the series LED 140 current path before switching the other led segment 175 The number of LEDs 14 , and ΔΝ are switched into the number of additional LEDs 140 of the series LEm4 turbulence path. A similar equation can be obtained when the voltage is reduced in the time quadrant ', Qy 147'. (Of course, the current jump never makes the current negative, because in this case the diode current will only jump to zero.) The equation 指 means that ΔΝ is made smaller by comparing the number of LEDs 140, or : The current jump can be reduced by: ED ν, with the same dynamic impedance ' or both. In an exemplary embodiment, in the second time quadrant, Q2 „ 147, when the rectified AC line voltage is reduced, the stored interval, voltage, or other parameter: can be applied in the reverse order (eg, , , The reflection ") successively switches the corresponding (four) segment 175 out of the series LEDM current path to switch all lem 175 into the series LED 14 current path (at the end) and switches the corresponding coffee segment 175 out of the beginning until only A ued segment I75l) remains in the series LED 14 〇 current path. Continue to refer to Figure 2, in the time interval 148 „ is connected to the interval after the ♦ value or peak of the Aceus ring. All LED & 1 75 will be Switching the serial LEm4G current path (all switchers 11 〇 will be turned off and no LED segments i 75 will be bypassed) 'current (, Is)) will flow through all LED segments 175 and from their predetermined or selected peaks The current level Ip is reduced by 4 in the storage interval, voltage or other parameter information 'such as the corresponding time interval or electric dust level, when the number of times to ~ has elapsed or the rectified AC input dust has been reduced to 46 201134295 The stored voltage level may be switched by turning on; ηΓ: When the level has been reached, the controller 120 starts the time interval °148 :: the switch U〇 remains off, and the time interval u8n :: the next (four) segment Π 5η. In the lower - 1 tooth 'B1' segment 175n all the LED segments 175 are still switched into the series LEDM0 and motor circuit I, the current Is will flow through these and again from the predetermined or selected peak current water The stored interval information, back to earned ^ P by the sample S such as the corresponding time interval or the number of times the voltage has elapsed, the voltage level has reached or.  Controlling the thief 12 〇 by turning on the switch (1) closing the switch 1 lOq and making the remaining switch - i 1 〇 to start the time interval (4) „. 2 and switch out the next (four) segment ΐ75ι\ rectified AC voltage level decreases when 'this process will continue until there is only one second slave 175, stay in the series LEDm 〇 current path, time interval (4) 1 and the switching process can start again 'it is under - In the first time quadrant, Q1 146, the additional coffee segments 175 are successively switched into the series LED 140t flow path. As mentioned above, a number of different parameters can be applied to provide for switching control in the second time quadrant Q2 '147 Interval information, such as time interval (in units of time or device clock cycle, etc.), voltage level, current level, etc. In addition, the time information used in the time quadrant, Q2 " 147 is the most recent - time quadrant, information determined by Q1M46, or may be adjusted or modified in accordance with other exemplary embodiments, as discussed in more detail below with reference to Figure 23, such as to provide increased power factor correction, when the temperature of LEDMO is in use When the increase is made, the threshold value and the digits are filtered to reduce the noise, asymmetry, and the voltage in the supplied AC line voltage. Add or subtract, other voltage changes in the process of eating, A ^ ^ ^ Jia, etc. In addition, various calculations can also be performed, such as time calculation and estimation, for example, for power factor correction purposes, such as whether there is sufficient time to stay In the known interval, the current level of the measured current reaches Ip. Various other processes may also occur, such as limiting the current in the event, the current system is P or the transmission is advanced, or other current management 'such as for absorbing enough lightning Acoustic power is connected to various devices such as dimming switching. In addition, additional switching plans can also be used in the exemplary embodiment, except for the successive switching shown in ® 2. For example, based on real time information, In the increase measured in the rectified AC voltage level, the additional (four) segment 175 can be switched into 'for example and not limited to, for example, from two led segments (7) ^ LED & 175 'similar discontinuity switching system available In the voltage drop special ~ #卩 in any type of switching, continuous, non-continuous, etc. and in any type of lighting effect t, such as full brightness, dimming brightness, special effects and color temperature, all in this Please refer to the scope of the invention. Another switching change is shown in Figure 3, for example for dimming applications. As shown, there is no continuous LED segment 175 continuous in the next first time quadrant, 'Q' 146 Switching into the series LED 14 〇 current path, and the combination of various LED segments 175 will be omitted. For this application, the rectified AC input voltage can be phase modulated, for example in the first part or part (for example: 30-70 degrees) No voltage is supplied in each half cycle of the AC cycle, and a more substantial voltage jump then occurs on that phase (143 in Figure 3). Alternatively, in the time interval 145ni, in addition to led All of the LED segments 175 outside the segment η will be switched into the series LED 140 current path, 48 201134295 The electric L Is will increase very slowly to change the average -, 曰 \ current and reduce the output brightness level. Although not individually shown: a similar omission of the 疋LED segment 175 can be performed in Q2, which is the same = a reduction in the brightness level of the round. Those skilled in the art will be able to implement countless different switching combinations to achieve this brightness dimming, '. And, all such variations include modifying the average current value within each interval, or the pulse width modulation within each interval, in addition to the switching method shown, within the scope of the claimed invention. Those skilled in the art will recognize the myriad of different switching interval plans and corresponding switching methods that can be implemented within the scope of the present invention. For example, the known switching interval may be predetermined or otherwise determined in advance for each lEd slave to be equal or not equal to other switching intervals; the switching interval may be selected or privately equalized. In each LED segment i 75: the switching interval can be dynamically determined for each LED segment 175, such as for a desired or selected lighting effect; depending on feedback of the measured parameters, such as voltage or current levels, the switching interval can be Dynamically determined for each LED segment 175; the switching interval can be dynamically determined or predetermined to provide equal current for each led segment 175; the switching interval can be dynamically determined or predetermined to provide unequal current to each LED segment 175, for example, for a desired or selected lighting effect, and the like. The same should be noted. Various exemplary device embodiments can be shown to include a rectifier 105, which is a choice but not a requirement. Those skilled in the art will recognize that the exemplary embodiment can be implemented using a non-rectified AC voltage or current. Moreover, the exemplary embodiment may also use one or more LED segments 175 connected in opposite polarities (or opposite directions), or a set of LED segments 175 connected in a first polarity (direction) 49 201134295 and in a second Another set of LED segments 175 that are connected in polarity (reverse or anti-parallel direction) are architected such that, for example, and without limitation, each can receive current in a different half cycle of non-rectifying AC cycles. Continuing with this example, the first set of LED segments 175 can be switched (eg, continuous or in other order) to form a first-brain current path in the first half-cycle non-rectified AC cycle and in the opposite direction or The second set of LED segments 175 arranged in polarity can be switched (eg, continuous or in other order) to form a second ledi4 current path within the second half cycle non-rectifying AC cycle. Further continuing with this example, the non-rectified AC input voltage is now divided into Q1 and Q2 for the first half cycle of the AC cycle, and is implemented during the Q1 period as the first or part of the AC voltage interval. An example may be provided for switching the first-complex segment of the light-emitting diode to form a first-series light-emitting diode current path, and in the Q2 period as the second or part of the AC power-dissipation interval, the first-complex segment The light emitting diode switches out the first series light emitting diode current path. Then, in the case of the second half cycle AC# ring, the system can now be correspondingly divided into Q3 part or part and Q4 part or part (some are equal to ^丨 and Q2' but have opposite polarity), 纟AC voltage Within the third portion of the interval (Q3), various embodiments may be provided for switching the second plurality of segments of the LED to form a second series LED current path having a chirp formed at the first portion of the AC voltage The series-emitting diode current path in the interval has an opposite polarity 'and the second plurality of light-emitting diodes are switched out of the second series-connected LED current path in the fourth portion (q4) AC voltage interval. All such variations are considered equivalent and are within the scope of the invention. 50 201134295 As described above, the exemplary embodiment can also provide a quality or significant power factor correction. Referring again to Figure 2, an exemplary ‘ ‘target 提供 。 。 。 。 。 。 。 LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED In various embodiments, switching to the next $^ and then 'such as the LED segment 175n that can cause the current to decrease, can be determined to assume that the next-wide [ΕΙ] segment 175 is switched into the series LED 140 current path. The filling time is maintained in quadrant Q1 to achieve Ip. If there is sufficient time to maintain the q Τϋ Λ Λ ^ # Vi ' next LED segment 175 will be switched into the series LED 140 current path, B ^ ή 峪仫 and if not then no additional LED segments 175 are switched into . In a slightly German production, he will be convinced that the LED 140 current will exceed the peak IP (not shown separately in _ 2) 'The true peak value of the provided LED 40 is maintained (4) should be the critical value or other specifications, such as Avoid potential damage to LEm4〇 or other circuit components. Avoid this: A variety of current limiting circuits for excessive current levels are discussed in more detail below. 4 is a block and circuit diagram showing a second exemplary system 250, a second exemplary device 200, and a first exemplary voltage sensor 195A designed in accordance with the teachings of the present invention. The second exemplary system includes a second exemplary device 2 (also referred to as an off-line ACLED driver) coupled to an alternating current (''ACT') line 102. The second exemplary device 2 (8) also includes a plurality of LEDs 140, a plurality of switches 11 (for example, a main hole thousand conductor field effect transistor display), a controller 120A, a current sensor 115, a rectifier 1〇5, and a current adjustment benefit 1 80 (shown as an operational amplifier implementation of an exemplary embodiment), complementary switches iii and i 12, and optionally = 〇〇 sporads voltage sensor 195A (to use resistors 13 and 135 The state is shown to provide a sensed input voltage level to the controller j 2〇A. N-optional, memory 51 201134295 Body 185 and/or user interface 19〇 may also be included as described above. For simplicity of illustration, the D C power supply circuit 12 5 is not individually shown in Figure 4, but is included in any of the circuit locations discussed above and discussed in greater detail below. The second exemplary system 250 and the second exemplary device 2 will operate similarly to the first device 5 〇 and the first device 1 discussed above until the LED segment 175 switches into or out of the series LED 14 〇 current path. However, different feedback mechanisms are applied with different switching implementations to allow for individual control of the peak current of each group of led segments 1 75 (eg, the first peak current of LED segments 1 75 i; the first of LED segments 1751 and 1 752) Two peak currents; LEE^^ 175丨, 2 and 1 753 second peak currents; via all [ED segments 1 75 1 to 1 75n of the 11th peak current level). More specifically, the current water + Is feed from the current sensor "5' is supplied to the corresponding inverting terminal of the current regulator 180, which is tied to the current regulators 18..., 18〇 2, 18 to 18 〇 to display to provide current adjustment of the operational amplifier to implement. Each corresponding group of LEDs 175 used to select or select the peak current level, IP2, to Ipn to display, by The controller l2〇A is provided (via the output H 17〇2, 17〇3 to 17Μ to the corresponding non-inverting terminal of the current regulator. Each - current regulator (10)i, just 2, 1 803 to 18〇's wheel The gate is coupled to the gates corresponding to the switches 11〇1, 11〇2, (10) to n〇n. In addition, the complementary switches (1) ((1)], 1112, (1) 3 to Chuan ^ and u (J U22, 1123 to U2n) Each of the gates is coupled to controller 1 20A (via via g 172 for switch ii), 172·?, 1 7? s 1 3 to 72" and via Wheel 1 of 2 1 2, ^ 1712 .  17K 5 171 ^ , 3 main)' thus provides three-state control and more fine 52 201134295 7 electric f1 - linear control module can be provided without any complement, Γ 11 and 112 are turned on and the switch 11 〇 is adjusted by the corresponding current When the controller is controlled, it compares the current Is fed back from the current sensor 115 with the group peak current level provided by the control state 120, thereby causing current to flow in and out of the switch 110 and the corresponding group of LED segments 175. . The second saturation control module can be provided when the complementary switch (1) is turned on and the corresponding switch ι 2 is turned off. The second fail-safe module can be provided when the complementary switch m is turned on and the corresponding switch ln is turned off so that current cannot flow through the corresponding switch UO. The second exemplary (four) 25G and the second exemplary device 2 〇 〇 provide control that allows to drive the corresponding group L E D segment! The flexibility of 7 at 5 o'clock has an individualized setting of current and conduction time, including a set of LED segments ι75 all omitted. 5 is a block and circuit diagram showing third and third exemplary devices 300 designed in accordance with the teachings of the present invention. The third indication two: ; 35 〇 also includes a third exemplary device 30G (also referred to as an off-line AC LED driver) that is consuming the AC (, Acr) line 1 () 2 . The third exemplary » further 300 includes a plurality of LEDs 14 〇, a plurality of switches " 〇 (for example, display by MOS field effect transistor), controller _, current sensor " 5, rectifier 105 and any The selected voltage sensor 19" is shown with a voltage sensor 195A 'using resistors 13 〇 and 135' to provide a sense of the input power level to the controller. Also optionally, the memory (8) And/or user interface 19A may also be included as discussed above. For ease of display, DC power circuit 125 is not individually shown in Figure 5, but is included in any of the circuits discussed above and discussed in more detail below. 53 201134295 Although only three switchers no and three LED segments 175 are shown, this system 350 and device 300 architecture can be easily extended to additional led segments 175 or reduced to a smaller number of LED segments 175. Although the LED segments 175丨, 1 752 and 1753 are displayed respectively, the number of LEDs 140 in any known LED segment 175 is higher, lower, equal or unequal, and all These variations are within the scope of the invention In this exemplary device 300 and system 350, each switch i 1 (which will be coupled to each corresponding end of the corresponding LED segment 175, that is, the drain of the switch ll 〇 i will be coupled to [〇 The first end of the segment 751 (at the anode of the LED 14〇i) and the source of the switch 110! is coupled to the second end of the LED segment 17\ (at the cathode of the LED 140!), the switch 1 1〇2 The bungee will be merged to the first end of the [ED segment 52 (at the anode of the LED 14〇2) and the source of the switch u will be coupled to the second end of the LED segment 1 752 (at the cathode of the LED 14〇3) And the drain of the switch 11 〇3 will be coupled to the first end of the LED segment 175 (at the % pole of the LED 14〇4) and the source of the switch 丨丨I will be coupled to the segment 1 753 The second end (at the cathode of the LED 14 〇 7). In this circuit architecture, the switch 110 allows the 35 LED & 175 to pass through both the current and the current flow, resulting in the use of only three switches 110 instead of seven Seven circuit states of the switch In addition, the switching interval can be pre-selected or dynamically determined to provide any selected utilization or workload, such as for each LED segment 1 75 For balanced or equal workload, each LED segment i 75 is coupled in. The series LED 140 current path is used for the same interval within the AC half cycle, and each LED segment 175 carries substantial or approximately the same current. 1 summarizes the different circuit states of the exemplary device 300 and the system 35. 54 201134295 In Table 1, as in the more general case, where, N" is equal to an integer number of LEDs ' 40 'LED segments 175 丨 have, The number of [ED 140, LED segment 1 752 has, 2 "number of LEDs 140 and LED segment 1 753 has, γ number of LEDs 140' last column provides a clearer case (Ν-1) as shown in Figure 5, The LED segment 175! has one LED 14A, the LED segment has two LEDs 140' and the LED segment 1753 has four LEDs 140. Table 1: State Switcher On Switcher Off LED Segment 175 On When N1=N, N2=2N, N3=4N, the total number of LEDs 140 on is as shown in Figure 5, the number of LEDs 140-on and on a 1 11〇2, 1103 11〇! 175ι N ---- 1 2 110, ' 11〇3 11〇2 1752 —_ 2N 2 3 11〇3 11〇! ' 11〇2 175, + 1752 3N ~--- --- 3 4 11〇1 , 1102 11〇3 1753 4N 4 5 11〇2 110, ' 11〇3 175! + 1753 5N 5 6 11〇! 11〇2,11〇3 1752+1753 6N 6 7 None 11〇! ' 11〇2' 175i + 1752 7N 7 11〇3 + 1753 'At the state one' current will flow through the LED segment 175i (when in the bypass path 'switcher 11 (^ off and current is blocked) and Through the switch 11 〇 2, π 〇 3. In the state two, the current will flow through the switch 11 〇 i, lEd segment 1752 and the switch 11 〇 3. In the state three, the current will flow through the LED segment 175, LED segment 1 752 and switcher 丨1〇3, etc., as provided in Table 1. It should be noted that as described above with respect to Figures 1 and 2, the "switching interval and switching state" can be provided for the exemplary state 300 and system. 350' so that when the rectified AC voltage increases, there is Multiple LEDs 140 will be coupled into the series LED 140 current path, and when the rectified AC voltage is reduced, 'the corresponding number of LEDs 140 will be bypassed (switching out the series LED 140 current path), and the current change can also be shaped using equation i. It should also be noted that by varying the number of LED segments 175 and the number of LEDs 14 within each of the LED segments 175 for the exemplary device 3 and system 350, virtually any combination and number of LEDs 140 can be as It is necessary or desirable to switch to on and off 'for any corresponding lighting effect, circuit parameters (eg voltage or current level), etc. It should also be noted that all switches in this exemplary architecture should not be 6 is simultaneously turned on and implemented. Figure 6 is a block and circuit diagram showing a fourth exemplary system 45A and a fourth exemplary device 400 designed in accordance with the teachings of the present invention. The fourth exemplary system 45A also includes being lighted to AC ( , ACe) A fourth exemplary device 400 of line 1 (also referred to as an off-line AC LED driver). The fourth exemplary device 4A also includes a plurality of LEDs 140, a plurality (first or, High side,,) switcher 110 (as shown by MOSFETs) 'Controller 1 20C current sensor 11 5 , rectifier 159 , multiple (second or , low side ) switcher 21 〇, a plurality of isolated (or blocking) diodes 2〇5, and: a selected voltage sensor 195 (shown by a voltage sensor 195Α||, a voltage divider) for providing a sensed input voltage level Go to controller 120B. Also optionally, memory 185 and/or user interface 190 can also be included as discussed above. In a myriad of combinations, the fourth exemplary system 45A and the fourth exemplary device 400 provide both LED series and parallel architectures for the LED segments 175. Although it can be easily explained and explained for 56 201134295, in Figure 6 four LED segments 175 and two LEDs 14 are displayed in each LED segment 175, but those skilled in the art will recognize that the architecture can be easily extended. To an additional segment 或75 or salty y to a greater number of LED segments 1 75, and the number of LEDs 140 in any known LEd segment can be higher, lower, equal or unequal, and all of this, It is within the scope of the invention of the present application. In any case, having an even number of LED segments 175 for such combinations is desirable. The (first) switcher [1] shown by the switches 110A, 11〇2, and 11〇3 is correspondingly coupled to the first ledi4〇盥 isolation diode 2〇5 of the corresponding LED & 175. Displayed by switches 210丨, 2丨〇2 and 2彳〇3 (_第.  b) The switch 210 is correspondingly coupled to the last ED 1 40 of the corresponding LED segment 175 and the current sensor i i 5 (or to, for example, to the ground potential η 7, or to another sensor, or to another node). The open pole of each switch 21 被 is coupled (and under control) to the corresponding output 220 of the controller 12 〇 c with 22 〇丨, 22 〇 2 and 22 hearts. In this fourth exemplary system 45A and the fourth exemplary device 400', each of the switches 11A and 21〇 performs a current bypass function to turn on and implement the *knife changer 1 10 and/or 210, the current will Flow through the corresponding switch and bypass to the remaining (or corresponding) - or more LED segments 17. 5. In the fourth exemplary system 45A and the fourth exemplary device 4(8), any of the LED segments 175 can be individually controlled or combined with other LED segments 175. For example and without limitation, when the switch 210] is turned on and the remaining switches 11〇 and 21〇 are turned off, 'current will only be raised (four) LED segments 17^; when the switch 2102 is turned on and the remaining switchers 110 are closed 2H), The current will only be supplied to the led segment 1 752; when the switch is called with 21〇3 and the remaining switching 57 201134295 11 〇 and 21 〇 are turned off, current will only be supplied to the LED segment 1 753; and when the switch 11 When 〇3 is turned on and the remaining switches 丨10 and 21〇 are turned off, current is only supplied to the LED segment 1 754. Also for example and without limitation, any of the LED segments 75 can be architecturally combined in series to form a series LED 140 current path, such as when the switch 21〇2 is turned on and the remaining switches 丨1〇 and 21〇 are turned off, current Then it will only be supplied to the LED segment 175 and the LED segment 1752 in series; when the switch 11〇2 is turned on and the remaining switches 11〇 and 210 are turned off, the current will only be supplied to the LED segment π in series, with the LED The segment π, when the switches 11 与 and 2103 are turned on and the remaining switches 11 〇 and 210 are turned off, the current is only supplied to the LED segments 1 753 and the LED segments 1 753 and the like in series. In addition, many types of parallel and series combination LED segments 1 75 are also effective. For example and equally not limited 'When all switches 丨〇 and 2 丨〇 are turned on, all LED segments 175 will be paralleled to provide a plurality of parallel LED 140 current paths; when the switches 丨丨~ and 21〇2 When the remaining switches no and 210 are turned off, the LED segments 175i and the LED segments 1752 are connected in series to each other to form a first series LED 140 current path, and the LED segments 1 753 and the LED segments 1 754 are connected in series to each other to form a second series. Led 140 current path 'and the two series combinations can be further connected in parallel with each other (Led segment 175, in series with LED segment 1752, parallel combination of led segment 1 753 and LED segment Π 54) to form a parallel LED 140 current path, which includes two A parallel combination of current paths of LEDs 140 in series; and when all of the switches 11 〇 and 21 〇 are turned off 'all LED segments 175 are structured to form a series LED 140 current path' as a string of LEDs 1 40 connected to the rectified AC voltage . 58 201134295 It should also be noted that by varying the number of led segments 175 and the number of LEDs 140 in each of the LED segments 175 for exemplary devices 4 and system 450, in fact, any combination and number of LEDs 14 It can be switched on and off as necessary or desired for any corresponding lighting effect, circuit parameters (eg voltage or current level), etc., as discussed above, for example by increasing in series, parallel The number of LEDs 140, or both, coupled in any combination, substantially tracks the rectified AC voltage level. Figure 7 is a block and circuit diagram showing a fifth exemplary system 550 and a fifth exemplary device 5A designed in accordance with the teachings of the present invention. The fifth exemplary system 5 50 is structurally similar to the fifth non-standard device 5 且 and is substantially similar in operation to the first exemplary system 5 〇 and the first exemplary device 1 〇〇, and differs from each other within a range, . The fifth non-standard system 55A and the fifth exemplary device progressively incorporate (second) sensor 225 (other than current sensor 1 1 $), which provides selected feedback via controller input 230 The controller 12〇D is also included, and also includes a DC power supply circuit 125C to display another exemplary circuit location for, for example, a power supply. Figure 7 also generally shows an input voltage sensor 195. The input voltage sensor 195 can also be implemented as a voltage divider using a resistor 130 135. For this exemplary embodiment, DC power supply circuit U5C is implemented in series with the last LED segment 17, and an exemplary third exemplary DC power supply circuit 125C is discussed below with reference to Figure 2A. For example and without limitation, the second sensor 225 is an optical sensor or a rail sensor. Continuing with the example, in an exemplary embodiment, the second sensor milk system provides an optical sensor that is fed back to the controller 120D with respect to the light emitted from the LED 140. The plurality of LED segments 175 include different patterns. 59 201134295 LED140 'The system has different illuminating spectrum, such as illuminating in the visible range of wavelengths such as red, , color, blue, and white. For example: (4) Segment 175, containing red LEDl4〇, LEEMi η, containing green LED segment I% containing blue LED14〇, another _ segment 17, containing glass or white LED140, and so on. Similarly, for example, the LED segment % includes a glass frame or a red LED 140, while the other LED segments lb include white LEDs 14 and the like. As described above, in such exemplary embodiments, due to the feedback from the optical first sensing H 225, a plurality of time periods q to tn may be determined by the controller 120D for switching currents (via the switch [ i (8) corresponds to the illumination effect of the selected or selected building, such as ambient or output color control (ie, control of color temperature), so that current can be supplied through the corresponding LED segment 175 to provide corresponding illumination at the corresponding wavelength. For example, red green, blue, broken axis, white and corresponding combinations of such wavelengths (for example, yellow is a combination of red and green). Those skilled in the art will recognize that numerous switching modes and types of LEDs can be Application to obtain any selected illuminating effect, any or all of which are within the scope of the claimed invention. Figure 8 is a diagram showing a sixth exemplary system 650 and a sixth non-standard device 6 designed in accordance with the teachings of the present invention. The block diagram and circuit diagram. The sixth exemplary system 650 includes a sixth exemplary device 6A coupled to the 0 line 1〇2 (also equivalently referred to as an off-line AC LED driver). 6〇〇 also includes a plurality of LEDs 140, a plurality of switches 11〇 (for example, also displayed by a MOSFET), a controller 12〇E, a (first) f flu detector 1 1 5, a rectifier 1 05, and an optional voltage sensor 1 95 for providing a sensed input voltage level to the controller 12. Similarly, the memory 60 201134295 185 and/or the user interface 19G may also be as above The discussion is included. As an optional component, the sixth exemplary device_flow limiting circuit, 27〇 or · may also include an interface circuit 24A, may also include a voltage sensor 195, and may also include temperature protection Circuit 29. The current limiting circuit 260, 270 or 280 can be applied to avoid a potential large increase in LEm4 current, such as if the rectified AC voltage becomes abnormally high, while a plurality of LEDs 140 are switched into the series LEm at the controller Under the control of the current, the current limiting circuit 26〇, = or active and can have a bias or operation „, or passive ^ dependent control = (10) (four) what bias. Voltage or operation voltage. While many different embodiments of three positions and current limiting circuits 260, 27G or 28A are shown, it should be understood that only one of the current limiting circuits 260, 270 or 280 is selected for any known device implementation. The current limiting circuit 26 (M is located on the low side of the sixth exemplary device, and is at the current sensor 115 (node 134) and the switch ιι source (and also the cathode of the final LED 140n) (node 132) Equivalently, the current limiting circuit 260 can also be placed between the current sensor 115 and the ground potential 117 (or the echo path of the rectifier} 〇 5). Alternatively, the electric catch limiting circuit 280 is placed at the sixth The exemplary embodiment 6 〇〇, the high side is between the node 131 and the anode of the first LED 14 〇 i of the series LED 14 〇 current path. As another alternative, the current limiting circuit 27 〇 can be applied The eighth, non-parallel device 600, the high side, and the low side, /, are coupled to the top rail (node 13 1 ) and the ground potential 11 7 (or the current sensor 1 15 low or high) (node 134) side or another circuit node, including node ι31). Motor limiting circuits 260, 270, and 280 can be implemented in many different architectures, 61 201134295 and can be provided in many of the sixth exemplary devices 600 Different locations (or any other device 100, 200, 300, 400, 500, 700) 800, 900, 1000, 1100, 1200, 1300), many exemplary current limiting circuits 260, 270 and 280 are shown and discussed with reference to Figures 9-12. Interface circuit 240 is applied to provide with prior art switchers Backward (or regression) compatibility, such as dimming switch 285, which provides phase modulation dimming control and requires minimal holding or latching current for proper operation. Various conditions and different times within the AC cycle One or more of the LEDs 140 may or may not attract this minimum holding or latching current, which causes improper operation of the dimming switch 285. Because the device manufacturer generally does not know in advance, such as the sixth exemplary device 600. Whether the illumination device will be applied with the dimmer switch 285, the interface circuit 240 can then be included in the illumination device. The exemplary interface circuit 240 will typically monitor the LED 140 current, and if less than a predetermined threshold (eg, 50 millimeters) The system will draw more current through the sixth exemplary device 600 (or any other device 1〇〇, 200, 300, 400, 500, 700, 800, 900, 1000, 1100, 1200, 1) 300) The exemplary interface circuit 240 can be implemented in a variety of different architectures and can be provided within the sixth exemplary device 600 (or any other device 100, 200, 300, 400, 500, 700, 800) A number of different locations, 900, 1000, 1100, 1200, 1300), a number of exemplary interface circuits 24 are shown and discussed with reference to Figures 13-17. The voltage sensor 195 can be applied to sense the input voltage level of the rectified AC voltage from rectifier 1 〇5. The exemplary input voltage sensor 195 can also be implemented using voltage dividers of resistors 130 and 135, as discussed above. The voltage sensor 195 can be implemented in a number of different architectures and can be provided in a sixth exemplary device 600 (or any other device 1 , 200, as known or known in the art). Among the various positions of 30〇, 4〇〇, 5〇〇, 7〇〇, 8〇〇, 900, 1〇〇〇, 1100, 1200, 13〇0), except for the previously shown voltage dividers, all Such architectures and locations are considered equivalent and within the scope of the invention. The temperature protection circuit 290 can be applied to detect an increase in temperature over a predetermined threshold, and if such a temperature increase occurs, to reduce the LED 14 current and thereby provide some degree of protection to protect the exemplary device 6 from potential Temperature related damage. The exemplary temperature protection circuit 29 can be broken into the species.  In a different architecture, and can be provided in the sixth exemplary device 6 (or any other device 100, 200, 300, 400, 500, 700, 800, 900, 1〇〇〇, 1100, 1200, 1300) The various locations within the system, exemplary temperature protection circuit 290A are shown and discussed with reference to FIG. Figure 9 is a block and circuit diagram showing a first exemplary current limiter 260A designed in accordance with the teachings of the present invention. The exemplary current limiter 26A can be implemented in the sixth exemplary device 600 (or any other device 1〇〇2〇〇, 300, 400, 500, 700, 8〇〇, 9〇〇, 1〇〇) 〇, ll〇〇, i2〇〇, 13〇〇), low side " between nodes 134 and 132, its system, active, current limiting circuit. The predetermined or dynamically determined first critical current level (, Ιτη/,) (eg, the high or minimum current level for the selected specification) is provided to the error amplifier ΐ8ΐ by the controller 120Ε (output 265). The phase terminal compares the critical current 1 ΤΗΙ (compared to the corresponding voltage) to the current Is passing through the LED 140 (from the current sensor 115) (also compared to the corresponding voltage). When the current Is from the LED 140 is less than the critical current (1), the output of the error amplifier ΐ8ι will increase and be high enough to maintain the switch 114 (also known as the pass element) in the on state and allow the current Is to flow. When the current Is of the LED 14 增加 is increased to be greater than the critical current (1), the output of the error amplifier i8i... is in a linear mode to control (or go in and out) the switch U 4 in a linear mode and provide a reduced level current Is flowing. 1 is a block and circuit diagram showing a second exemplary current limiter 270A designed in accordance with the teachings of the present invention. An exemplary current limiter biliary system is implemented in a sixth exemplary device 6 (or any other device 1 〇〇 2 〇〇, 3 〇〇, 400, 50 〇, 70 〇, 8 〇〇, 9 〇〇) , , , , , , , , , , , , , , At the node, point 132 (finally the cathode of series LEDi4〇n) is a 'passive' current limiting circuit. The first resistor 271 and the second resistive state 272 are coupled in series to form coupled to node m (eg : The positive terminal of the rectifier U) 5 is connected to the -biased network between the switch "6 closed-pole (also known as the pass element) and the switch 116 is in the conduction mode during the basic operation partial house. The transistor m is tapped on its collector to the second resistor 272' and passes through its base/emitter junction and (4) to the claw sensor 11 5. In this event, 'current sensing The electrical house drop of the device 1 1 5 (eg, electric, device! 65) will reach the breakdown of the base emitter contact of the transistor m, and the transistor 274 will begin to implement, control (or access) The switching state ii 6 ' of the line f-mode: is provided to cause a reduced level of current Is to flow. It should be noted that this second exemplary current limiter 27GA does not require any operational (bias) voltage to operate. The diode 胄3 is used to limit the gate-to-source voltage of the transistor 64 201134295 (FET) 116. 1 is a block and circuit diagram showing a third exemplary current limiter circuit 270B and temperature protection circuit 290A designed in accordance with the teachings of the present invention. The exemplary current limiter 270B can also be implemented in the sixth exemplary device 600 (or any other device 100, 200, 300, 400, 500, 700, 800, 900, 1000, 1100, 1200, 1300), High side" (node 131) and "low side" and at node 11 7 (low side of current sensor 1 1 5), node 13 <High side of current sensor 115) and node 132 (last cathode of series connected LED 140n) and are, passive " current limiting circuit. The third exemplary current clamp 270B includes a resistor 283; a Zener diode. 287; and two switches or transistors shown by a d-transistor (FET) 291 and an NPN bipolar junction transistor (BJT) 293. . In operation, transistor (FET) 291 typically turns on and implements LED 140 current (between nodes 132 and 134), and bias is provided by resistor 283 and Zener diode 287. The voltage across current senser ii 5 (between nodes 1 34 and 117) causes the base emitter junction of transistor 293 to be biased, and this voltage will be high enough when the LED 140 current exceeds a predetermined limit. A transistor 293 is turned on which pulls node 288 (and the gate of transistor (FET) 29 1) to ground potential and reduces conduction through transistor 291, thereby limiting the current of LED 14 〇. Zener diode 287 is used to limit the gate to source voltage of transistor (FET) 291. The exemplary temperature protection circuit 290A includes a first resistor 281 and a temperature dependent resistor of the "squeezing device architecture 2 8 2 ; Zener diode 2 8 9 2287, and two switches shown as FETs 292 and 291 or The transistor, when the degree of tactile increase is increased, the resistance of the resistor 282 is increased by applying a voltage of 65 201134295 to the gate of the transistor (FET) 292, which also places the node 288 (with the transistor (FET) 29 1 The gate is pulled toward the ground potential and reduces conduction through the transistor (FET) 291, thereby limiting the LED i 4 () current. Zener diode 2 89 is also used to limit the gate of the transistor (FET) 292 to Source Voltage.Figure 12 is a block and circuit diagram showing a fourth exemplary current limiter 280A designed in accordance with the teachings of the present invention. Current limiting circuit 28A is located in a sixth exemplary device 600 (or any other device) , 2〇〇, 3〇〇, 4〇〇, 500, 700, 800, 900, 1〇〇〇, 11〇〇, 12〇〇, 13〇〇)', 'high side', and at node 131 Interconnected with the anode of the first LED 140 of the LED 140 current path in series and further coupled to node 134 (current sensing The high side of 11 5). The fourth exemplary current limiter 28A includes a second current sensor implemented by a resistor 301; a Zener diode 3〇6; and an transistor (P-type FET) 308 and transistor (PNP BJT) 3〇9 show two switches or transistors (and optional second resistor 3〇2, coupled to node 134 (high side of current sensor 115)) ^ The voltage of the second current sensor 3〇i causes the emitter-base junction of the transistor 309 to be biased, and in the event that the LED 140 current exceeds a predetermined limit, this voltage will be high enough to turn on the transistor 309. , which pulls node 307 (and the gate of transistor (FET) 308) to a higher voltage and reduces conduction through transistor (FET) 308, thereby limiting LED 140 current. Zener diode 306 is used To limit the gate-to-source voltage of the transistor (FET) 308. As described above, the 'interface circuit 240 is used to provide backward (or regression) compatibility with prior art switches, such as dimmer switch 285. Provides phase modulation dimming control and requires minimal holding or latching current for proper 66 201134295 The exemplary interface circuit 240 can be implemented in a wide variety of different architectures and can be provided in the exemplary devices 1, 200, 3, 400, 500, 600, 700, 800, 900, 1 Many different locations within 11〇〇, 1200, and 13〇〇' include those shown and discussed below. Figure 1 3 shows a block and circuit diagram of a first exemplary interface circuit 240A designed in accordance with the teachings of the present invention. The exemplary interface circuit 24A can be implemented in the sixth exemplary device 600 (or any other device 1 200, 200, 300, 400, 500, 700, 800, 900, 1 〇〇〇, 11 〇〇, 1200 ' 1300), high side " (node 131) and , low side, and at node 134 (current sensing stolen 1 1 5 high side) or at another low side. node 丨 3 2 . . . The first exemplary interface circuit 240A includes first and second switches 118 and 119 and an error amplifier (or comparator) 183. The transmission elements shown in switcher (FET) 119 will be surfaced to an additional one or more LEDs 140 (which are connected in parallel to the series [ED 140 current path), which are displayed with LEDs 14〇w to I40pn to be conducted when conducted It is possible to provide a useful light output and avoid ineffective power consumption in the switch 119. The predetermined or dynamically determined second critical current level (, Ith2〃) (eg, the minimum holding or latching current level for dimmer 285) is provided by controller 120 (output 275) to The non-inverting terminal of the error amplifier (or comparator) 183 compares the critical current (relative to the corresponding voltage) with the current level Is (which is also compared to the corresponding voltage) through the LED 140 (from the current sensor 115). Controller 120E also receives information from current level Is of current sensor 115 (e.g., such as voltage level). When the current Is passing through ledi4〇 is greater than the critical current IT„2, such as the minimum holding or flashing current, the controller 120 turns on the switch 118 (connected to the gate 67 201134295 pole of the switch U9), and the switch Π9 is valid. Turning off and deactivating the current draw capability of the first exemplary interface circuit 24A so that the first exemplary interface circuit 24a cannot pick up any additional current. When the current Is passing through the LED 14 is less than the critical current Ith2, such as less than With minimum holding or latching current, the controller i2〇e turns off the switch 118 and the switch 119 operates in linear mode by the output of the error amplifier (or comparator) 1 83, which allows additional current is flow Through LEDs 140P1 through i4〇Pn and switcher! 19. Figure 14 shows a circuit diagram of a second exemplary interface circuit 240B designed in accordance with the teachings of the present invention. Exemplary interface circuit 24B can be implemented in a sixth exemplary device 600 (or any other device, 1〇〇, 2〇〇, 3〇(), 4〇〇, 500, 700, 800, 900, 1〇〇〇, 11〇〇, 1200, 1300), high side ( Node 13 1) and , low side " For example, coupled through current sensors 1丨5 (implemented by resistor 165) on nodes 134 and 117. Second exemplary interface circuit 240B includes first and second and third resistors 316, 3 1 7 Zener diode 3丨丨 (gate voltage of clamped transistor 3丨9); and two switches or transistors shown by N-type FET319 and transistor (NPN BJT) 314. When passing LED 140 When the current Is is greater than the critical current ITH2, such as the minimum holding or latching current, the voltage can be generated by the current sensor 1 15 (implemented by the resistor 165) to make the base _ emitter of the transistor 3 14 The junction creates a bias voltage that causes or maintains the transistor 3丨4 on and off and pulls the node 3 1 8 to the voltage at node 丨丨7, in this case a ground potential to effectively enable or maintain the transistor 3 19 Turned off and not implemented to disable the current sink capability of the second exemplary interface circuit 240B to draw any additional current. When the current Is passing through the LED 140 is less than the critical current ITH2, 68 201134295 is, for example, less than the minimum holding or latching current, Passing current sensor u 5 (with resistor 165 The resulting voltage is insufficient to bias the base-emitter junction of transistor 314, and the transistor 3 14 cannot be turned on or maintained in an open and implemented state. The voltage pulls node 3 18 up to a high voltage, turning on transistor 3丨9, which allows additional current Is to flow through resistor 3 17 and transistor 3 1 9 . Figure 15 shows the teachings in accordance with the present invention. A circuit diagram of the third exemplary interface circuit 240C is designed. The exemplary interface circuit 24A can be architected and placed for use as described above for the second exemplary interface circuit 24A, and includes additional resistors 333 and blocking diodes 336 to avoid passing through the poles The potential discharge path of body 311 and avoiding the allowable current path does not pass through current sensor 115 (implemented with resistor 165). Figure 16 shows a block and circuit diagram of a fourth exemplary interface circuit 240D designed in accordance with the teachings of the present invention. The exemplary interface circuit 24〇d is also implemented in the sixth exemplary device 600 (or any other device 1〇〇, 200, 300, 400, 500, 700, 800, 900, 1000, 1100, 1200, 1300) The 咼 side " (node 1 3 1 ) and , the low side " is coupled, for example, via a current sensor 115 (implemented by resistor 165) at nodes 134 and 117. The fourth illustrative interface circuit 240D includes first, second and third resistors 321, 322 and 323; Zener diode 324 (to clamp the gate voltage of transistor 328); blocking diode 326 An operational amplifier (, op amp, 325) and two switches or transistors shown as N-type FET 328 and NPN BJT329. The operational amplifier 325 will produce a voltage difference amplification 'through the current sensor 1 15 (implemented by resistor 165) and allow the use of a current sensor 115 having a relatively low impedance or electrical resistance. When the current is passed through the LED 140 is greater than the critical current ΙτΗ2, such as a minimum holding or latching current, the amplified voltage (which biases the base-emitter junction of the transistor 329) causes or maintains the transistor 314. Turning on and implementing 'the voltage that pulls node 327 toward node 117, in this case, is the ground potential to effectively cause or maintain transistor 328 off and does not implement 'to make the second exemplary interface circuit 240C current The suction capacity failed and no additional current could be taken. When the current Is passing through the LED 140 is less than the critical current ιΤΗ2, such as less than the minimum holding or flashover current, the amplification voltage is insufficient to bias the base-emitter junction of the transistor 329 and the transistor 3 cannot be turned on. 2 9 or maintain it in an open and conductive state. The voltage generated by resistor 321 pulls node 327 up to a high voltage, turning on transistor 328, which allows additional current Is to flow through resistor 322 and transistor 328. Figure 17 is a block and circuit diagram showing a fifth exemplary interface circuit 240E designed in accordance with the teachings of the present invention. The exemplary interface circuit 240E can be constructed and placed for the fourth exemplary interface circuit 24〇d as described above, and includes additional resistors 341 and switchers 35 (controlled by controller 〇2〇). In this regard, the fifth exemplary interface circuit 240E' various LED segments 175 can also be used to draw a sufficient current to cause the current Is through the LED 140 to be greater than or equal to the critical current Ith2. When operating, the peak current (Ip) of lED14 is greater than the critical current Ith2 by a significant or reasonable amplitude, such as 2-3 times the critical current ιΤΗ2. When the lED segment 175 is switched into the series LED 140 current path, the LED 140 current will initially be less than the critical current Ith2, however. Thus, when the led segment 175 〆 does not require any remaining LED segments ι 75) to be initially implemented and has a current less than the current current Ith2 at 70 201134295, the controller 120 turns off the switch 3 5 i and allows the transistor 328 to radiate additional current. The transistor 322 is until the LED 140 current is greater than the critical current Ith2 and the transistor 329 pulls the node 327 back to a low potential. Therefore, the controller maintains the switch 35 在 in the on position and the LED # 175 丨 is then supplied with sufficient current to maintain the [ED segment 1 75]. In order to avoid the LED 140 current level falling below the critical current Ith2 as the next [ED segment 1 75 ' is switched into the series LED 140 current path, when the next LED segment 175 is switched into the series LED 14 〇 current In the case of a path, such as LED segment 1 752, controller 12 will allow both switches 11 to be turned on and implemented, in which case both switches ό1 and 11 允许 2 allow sufficient LED current 140 to continue to flow through LED segment 175. ], while increasing the current in the LED segment 1 752. When sufficient current also flows through the led segment 1752, the switch 110 turns off and only the switch 丨1〇2 continues to turn on, and the process continues for each remaining LED segment 175. For example, when this next LED segment 1 75 is switched into the series [ED 140 current path, for example [ED segment 1 753 'controller 12〇 will allow both switches to be turned on and implemented, in this case switch Both 11〇2 and 11〇3 allow sufficient LEd current 140 to continue to flow through LED segment 1 752 while causing current to increase in LED segment 1 753. There is no separate display that another type interface circuit 24 that can be applied can be implemented by a fixed current source, which draws a current greater than or equal to the critical current ΙτΗ2 regardless of the current ls passing through the LED 140, such as a minimum grip. Hold or latch current. Figure 18 shows a circuit diagram of a first exemplary dc power supply circuit 125A designed in accordance with the teachings of the present invention. As described above, the exemplary DC power supply circuit 125 71 201134295 can be used to provide DC power, such as Vcc, by the exemplary device 1 200, 200, 300, 400, 500, and/or 600, 700, 800, 900, 1 〇〇〇, 11〇〇, 1200 '1300 other components used. The exemplary DC power circuit 125 can be implemented in a variety of different architectures and can be provided in the sixth exemplary device 6 (or any other device 100, 200, 300, 400, 500, 700, 800, 900, 1000) The various locations of 1,100, 1200, 1300), except where shown and discussed herein, are considered equivalent and are within the scope of the claimed invention. The exemplary DC power circuit 125A can be implemented in the sixth exemplary embodiment 600 (or any other device 1〇〇, 200, 300, 400, 500, 700, 800, 900, 1000, 11〇〇, 1200, 1300) , high side " (node 131) and , low side ", for example, at node 134 (the high side of current sensor 丨15) or another low side node 132 or 117. Exemplary DC supply current 125A includes a plurality of LEDs 140, LEDs 361, 3 62, and 63, one or more capacitors 3 64 and 365, and optional switches 3 67, shown as LEDs 140v1, 140V2 through 14〇vz. (Controlled by controller 12). As the rectified AC voltage (from rectifier 105) increases, current is supplied through diode 361 to charge grid 365, passing through 140" to 140VZ and passing through diode 362 to charge capacitor 364. Output voltage Vcc will be provided on node 366 (i.e., on capacitor 364). LEDs 140vn through 140vz will be selected to provide a steady or predetermined voltage drop, such as 18 volts, and provide another source of illumination. When (from rectifier 1〇5) is reduced, capacitor 365 will have a higher voltage and will discharge via [ugly (1) hook to 14〇vm, which also provides another source of illumination and applies additional radiant energy that can be dissipated The light output efficiency is increased with 72 201134295. When the output voltage vcc becomes more than a predetermined voltage level or threshold, the overvoltage protection can be provided by the controller 以2〇 to turn off the switch 3 6 7 to reduce the voltage level. 19 is a circuit diagram showing a second exemplary dc power supply circuit 125B designed in accordance with the teachings of the present invention. An exemplary DC power supply circuit 125B is also implemented in a sixth non-standard device 6 (or any other device, 2〇 , 3〇〇, 400, 500, 700, 800, 900, 1〇〇〇, hoo, 1200, 13〇〇) to the side " (node 13 1) and , low side ", for example, at the node丨 34 (high side of current sensor 1 15 5) or another low side node 丨 32 or i 丨 7. Exemplary DC power supply circuit 1 25B includes a switch or transistor (with N-type MOSFET) The transistor displays 374, resistor 371, diode 373, Zener diode 372, capacitor 376 and optional switch 377 (controller 12 〇 control). Switch or transistor (metal oxide semiconductor field effect) The crystal 374 is biased to be conducted by the voltage generated by the resistor 371 (and clamped by the Zener diode 372) so that the current can be supplied through the diode 373 to charge the capacitor 376. The output voltage Vcc will Provided at node 378 (i.e., battery 376). In this event, output voltage Vcc may become higher than a predetermined voltage level or threshold, and overvoltage protection may also be provided by controller 12 to switch 377 is turned off to reduce the voltage level. Figure 20 is a diagram showing a third exemplary dc power design in accordance with the teachings of the present invention. Circuit diagram of source circuit 125C. An exemplary DC power supply circuit 125 (which can be implemented in series with the last led segment 175n as discussed above with reference to Figure 5. The exemplary DC power supply circuit 125C includes a switch or transistor (with N-type MOSFET) Crystal display) 381, comparator (or error amplifier) 382, isolation two 73 201134295 polar body 386, capacitor 385, resistors 383 and 384 (with voltage divider architecture), with Zener diode 387, and using the controller 1 20 provides the reference voltage VREF. During operation, current will flow through the isolation diode 386 and charge the capacitor 385. The turn-off voltage vcc is provided at node 388 (capacitor 385), and the Zener diode 387 is used to suppress transients and avoid at the beginning. The capacitor 385 overflows typically has a current rating that matches the maximum LED 140 current. Resistors 383 and 384 in a voltage divider architecture can be used to sense the output voltage Vcc for use by comparator 382. When the output voltage Vcc is less than a predetermined level (corresponding to the reference voltage Vref provided by the controller 120), the comparator 382 turns off the transistor (or switch) 38 1 so that most of the LED 140 current can charge the capacitor 385. When the output voltage Vcc reaches a predetermined level (corresponding to the reference voltage vREF), the comparator 382 will turn on the transistor (or switch) 1 to allow the LED 140 current to bypass to the capacitor 385. When capacitor 385 provides 5 to a bias source (output voltage Vcc), it can be configured to discharge at a rate that is less than the charge rate. Furthermore, when the transistor (or switch) 381 is switched off for a number of times to begin a new cycle, the comparator 382 can also have some hysteresis architecture to avoid high frequency switching and pass through the AC of the capacitor 385. The wave can be reduced by the capacitance value and the hysteresis of the comparator, which can be easily determined by those skilled in the art. Figure 21 is a block diagram showing an exemplary controller um swollen that is not designed in accordance with the teachings of the present invention. The exemplary controller includes a digital logic circuit, a resetter circuit 4〇5, an analog to digital (, a/d, a converter ϋ and 415, and optionally a memory circuit 乜5 (eg: Instead of memory 185), dimming control circuit (4), comparator and simultaneous 74 201134295 (synchronous) signal generator 430, Vcc generator 435 (when another DC power circuit is not provided elsewhere), start reset circuit 445, over-voltage detector 450, over-voltage detector 455 and pulse 440 (can also be provided off-chip or other circuits). Without individual display, additional components (such as a charge pump) can be used to provide a switch driver Circuitry 4〇5 power, which may be implemented, for example, in a snubber circuit. A variety of optional components may be implemented as necessary or desired, such as in reset circuit 445, Vcc generator 435, over-voltage detector 450, and over-voltage detection. The power on the device 455 is, for example, in addition to or in place of other DC power generation, protection and limiting circuits as discussed above. The A7D converter 410 can be coupled to the current sensor 丨丨5 to receive a parameter measurement of the corresponding LED 1400 current. (eg, voltage level) and converted to a digital value for use by digital logic circuit 460 at decision time, regardless of whether LED 140 current reaches a predetermined peak value, z^a/d converter 415 can be coupled to the input. The voltage sensor 195 measures a parameter (eg, a voltage level) corresponding to the rectified ac input voltage V1N and converts it to a digital value for use by the digital logic circuit 46 at the time of the decision, among others When LED segment 175 is switched into or out of the series LED 14 current path, memory 465 (or memory i 85) as discussed above can be used to store intervals, voltages, or used to determine LED segment 175 switching during Q2. Other parameters tfL. The digital logic circuit 460 provides control to the plurality of switching driver circuits 405 due to the digital input value of the 帛LED 14 turbulence, the rectified AC input voltage VlN and/or the time interval information (via the clock 440) Switching driver circuits 4〇5ι, 4〇5ζ, 4〇53 to 4〇, display, corresponding to each switch i 1〇, 2ι〇 or any 75 201134295 under the control of the controller 120 It switches) to suppress #Tp to pull various LED segments 175 to switch in. Series LED14. Current path (or in parallel or out of various paths), = discussed, for example, to track Vin in essence or provide illumination Effects (eg, dimming or color temperature control), which are discussed below with reference to Figure 23. For example, as described above, (iv)-method, when rectifying the AC input voltage ~ approximately or substantially close to zero (which may additionally be from negative to Positive zero crossing and vice versa for non-rectified AC input voltage) (shown as H4 in Figures 2 and 3, which may be equivalently referred to herein as substantially zero voltage or zero crossing) and will correspond When the clock cycle number or time value is stored in the memory 465 (or the memory (8)), the controller 120 (using the comparator 425, the sync signal generator 43 and the digital logic circuit 46) can determine the start of the quadrant Q1 and Provide the corresponding sync signal (or sync pulse). In quadrant Q1$, controller 12 (using digital logic circuit 460) can store the digital value of the rectified AC input voltage ν 发生 that occurs when LED 14 〇 current reaches a predetermined peak 在 in memory 465 (or memory 185) Medium, for LED segments 1 75 in the series ledi4 current path, and provide corresponding signals to a plurality of switching driver circuits 405 to control the switching of the next LED segment 1 75, and repeat these measurements and information storage For continuous switching into each Led segment 175. The 'voltage level can then be stored to correspond to the highest voltage level of the current (or first) set of LED segments 175 before switching to the next LED segment 175, which is also substantially equal to including the switch to the next LED segment 175. The lowest voltage level of the group of LED segments 1 75 (to form a second set of LED segments 1 75 ). In quadrant Q2, as the rectified AC input voltage vIN decreases, the LED 140 current decreases from a predetermined peak ιρ of a given set of LED segments 175, and then as each led segment 175 connects 76 201134295 to continue switching the series LED 140 current path , LED14 〇 current will rise back to the predetermined peak Ip. Thus, in quadrant Q2, controller 12 (using digital logic circuit 460) can retrieve the digital value for rectifying AC input voltage Vin from memory 465 (or memory 185), which occurs when ledi4 current reaches first When the predetermined peak Ip of the LED segment 175 is set, it corresponds to the lowest voltage level of the second group of led segments 175, and provides corresponding signals to the plurality of switching driver circuits 405 to control the LED segments 175 to be switched out from the second group of LED segments 175, so that The first set of LED segments 175 can now be connected and the LED 140 current can be returned to a predetermined peak ip at the voltage level, and the second/then amount and asset grabs are repeated for successively switching out each segment 7.5. Also for example, as described above, in terms of the second, time-based approach, control? § 120 (using comparator 425, sync signal generator 43A and digital logic circuit 460) may also determine the start of quadrant Q1 and provide a corresponding sync signal when the rectified AC input voltage Vin is approximately or substantially close to zero, and will correspond The number of clock cycles or time values is stored in memory 465 (or memory 185). Within quadrant Q1, controller 12 (using digital logic circuit 460) can store the digital value in memory 465 (or memory μ" for LED 140 current to reach one or more of the series LED 14 current paths. At the same time, the peak value of 1P (for example, the number of clock cycles) or time and the corresponding signal to the plurality of switching drive circuits 405 to control the switching of the next LED segment 175 into and repeat These measurements, time counts, and information are stored for continuous switching into each LEd segment 丨 75. The controller (using digital logic circuit 46()) can further calculate the interval information corresponding to the store 'eg a given group of coffee segments 175 After the switch is reached, the 77 201134295 time interval (number of clock cycles or time interval) required by Ιρ, for example, by subtracting the number of clocks at the time of switching from the number of clocks reaching Ip, the time and interval information can be The storage corresponds to the switching time of the given (first) group of LED segments 175 and the time at which the (-)th group of LED segments 175 reaches Ip, which corresponds to the switching time of the lower-(second) group of LED segments. In quadrant Q2, when rectifying AC input When the electric M VlN is reduced, the LED 14G current will decrease from the predetermined peak Ip of the known set of LED segments 175, and then when each of the (four) segments 175 continuously switches out the series led 140 current path, the LED 14 current will rise back to the pre-peak peak Ip. Then, in the quadrant Q2, the controller ^ (using the digital logic circuit 460) can extract the corresponding interval from the memory 465 (or the memory 185). „10 __ LED segment i 75 is switched out of the string 胄The time or the number of clock cycles of the power circuit, and the corresponding signal to the plurality of switching drivers for the circuit 405 to control the LED segment 175 to switch from the second group of LED segments 175 so that the first group of LED segments 175 are now Can be connected, and the LED140 current will return to the predetermined peak i Ip ' and repeat these measurements, calculations and information capture for continuous switching out of each - LED segment 1 75. Based on exemplary voltage and time Two sides

… ,….一一〜,…v 成叩 B 制盗12G(使用數位邏輯電路46G )亦可實施功率因子校j 广以上參考圖2與3所述,當在Q1結束、整流AC輸入 ^ VlN達到峰值(149)時,為功率效率,吾人希望使LED1 電流也實皙1^1 n主、* 達到預定峰值Ip〇於是,在切換入下一段( 如LED段175〆 nJ月,』係可造成電流減少,控制器120 (使用 位邏輯電路46〇、 ^可決定在假如當現有組LED段1 75達 %時將那段(例如 %如· LED段175„ )切換入的情形下是否 78 201134295 充分時間留在Q1以供下一組LED段175達到Ip。假如由 控制器1 20所計算有充分時間留在q j的話(使用數位邏輯 電路460 ),控制器120將產生對應的訊號到複數個切換驅 動器電路405以致下一 LED段175能夠被切換入該串聯 LED 1 40電流路徑,且假如沒有則沒有任何額外LED段丨75 被切換入。在稍後情形中,LED 1 40電流會超過峰值ip (沒 有被個別顯示於圖2 )’其所提供的真實峰值LED 140電流 被維持於對應臨界值或其它規格水平以下,以便能夠避免 對LED 140或其它電路元件的潛在傷害,其亦可受到種種電 流限制電路的限制以如上所論避免此些過量電流水平。 控制器120亦可實施為隨著應用於q2的時間、區間、 電壓與其它參數所調適,一般依據先前Qi中所進行最近組 測量與決定。於是,當LED段175被切換出該串聯LED 140 電流路徑時,在LED140電流增加太多的情形中,譬如超過 預定峰值Ip或超過預定幅度,LED段i75可被切換回到該 串聯LED140電流路徑以使LED14〇電流回到低於Ip或低 於Ip加上預定幅度的水平。實質同時,控制器12〇 (使用 數位邏輯電路460 )將調整時間、區間、電壓或其它參數資 訊,譬如LED段175將切換出該串聯LED丨4〇電流路徑以 使用於下一 Q2之增加(增量)時間區間或減少(減量)電 壓水平。 在示範性實施例中,隨後控制器12〇可感測整流AC電 壓VIN且產生同步脈衝,其對應實質為零(或零交叉)的整 流AC電壓VIN。控制器12〇(使用數位邏輯電路46〇)可 79 201134295 測量或計算兩同步脈衝間的時間(整流時期,大約或通常 與兩倍公共設施線頻率的倒數有關),且隨後可將整流時 期除以二以決定每一象限Q1與Q2的持續時期及Q1將結 束的近似點。就一實施例而言,當達到Ip時不一定切換LED 段丨75’在另一實施例中,該些象限可被大約或實質區分成 相等區間以對應LED段175數、、n〃,以致於每—切換區間 實質相同。在㈣間内,控制器12〇隨後將對應訊號產生 到複數個切換驅動器電路4〇5,以致於連續[£〇段能 被切換入該串聯LED14〇電流路徑以供對應區間,且就Ο] ,言’控制器120隨後將對應訊號產生到複數個切換驅動 器電路4G5 ’以致於能夠以相反(或鏡射)順序將連續[ED 段175切換出該串聯LEm4〇電流路徑以供對應區間,如以 上所討論,而新的Q1則會在下一同步脈衝開始。 除產生或指派對應LED段175之數目、、n〃的實質相等 區間外’還有許多不同其它方式可指派此些區間,其中任 一或全部均可在所中請發明範@内,例如且不限於種種LED 段1 75 #不相f區間時期以得到任何所希發光效果;如上 述使用電流或電壓反饋之動態指定;提供用於每_ _ & 175用的實質相等電流,以致於每-段通常皆可大約對等被 應用;提供用於每-咖段175的不相等電流,以得到任 何所希發S效果或將Ac線性能或效率最佳化或改善。 其它調光方法亦可在本中請發明範圍内。從圖3顯然 可見’使用實質為零(或零交又)的整流AC電壓VIN來決 定象限Q1與Q2的持續期間,其將在相位調變調光情況中 80 201134295 連續同步脈衝:零二份的整流AC電〜於是’...,....一一~,...v 成叩B thief 12G (using digital logic circuit 46G) can also implement power factor calibration j. Refer to Figures 2 and 3 above, when ending at Q1, rectifying AC input ^ VlN When the peak value (149) is reached, for power efficiency, we want to make the LED1 current also be 1^1 n main, * reach the predetermined peak Ip, then switch to the next segment (such as LED segment 175〆nJ months) Causing a decrease in current, controller 120 (using bit logic circuit 46 〇, ^ can determine if the segment (eg, % LED segment 175 „) is switched in if the existing group LED segment 1 75 reaches %. 201134295 A sufficient time is left at Q1 for the next set of LED segments 175 to reach Ip. If sufficient time is left by the controller 1 20 to remain in qj (using digital logic circuit 460), controller 120 will generate a corresponding signal to the complex number Switching driver circuit 405 so that the next LED segment 175 can be switched into the series LED 1 40 current path, and if not, then no additional LED segments 丨 75 are switched in. In later cases, LED 1 40 current will exceed Peak ip (not shown separately in Figure 2)' The true peak LED 140 current provided is maintained below a corresponding threshold or other specification level to avoid potential damage to the LEDs 140 or other circuit components, which may also be limited by various current limiting circuits to avoid such Excessive current level. The controller 120 can also be implemented to adapt to the time, interval, voltage, and other parameters applied to q2, generally based on the most recent set of measurements and decisions made in the previous Qi. Thus, when the LED segment 175 is switched out In the case of the series LED 140 current path, in the case where the current of the LED 140 increases too much, such as exceeding a predetermined peak Ip or exceeding a predetermined amplitude, the LED segment i75 can be switched back to the series LED 140 current path to cause the LED 14 current to return below Ip is either below Ip plus a predetermined amplitude level. Essentially, controller 12 (using digital logic circuit 460) will adjust time, interval, voltage or other parameter information, such as LED segment 175 will switch out of the series LED 丨 4 〇 Current path to use for the increase (increment) time interval or decrease (decrement) voltage level of the next Q2. In an example, controller 12A can then sense rectified AC voltage VIN and generate a sync pulse that corresponds to a substantially zero (or zero crossing) rectified AC voltage VIN. Controller 12A (using digital logic circuit 46A) can be 79 201134295 Measure or calculate the time between two sync pulses (rectification period, approximately or usually related to twice the reciprocal of the utility line frequency), and then divide the rectification period by two to determine the duration of each quadrant Q1 and Q2 and The approximate point at which Q1 will end. In one embodiment, the LED segments 丨75' are not necessarily switched when Ip is reached. In another embodiment, the quadrants may be approximately or substantially divided into equal intervals to correspond to the number of LED segments 175, n〃, such that In each-switching interval is substantially the same. In the (4) interval, the controller 12 〇 then generates the corresponding signal to the plurality of switching driver circuits 4〇5, so that the continuous section can be switched into the series LED 14 〇 current path for the corresponding interval, and then Ο] The controller 120 then generates a corresponding signal to the plurality of switching driver circuits 4G5' so that the continuous [ED segment 175 can be switched out of the series LEm4 current path for the corresponding interval, such as in the opposite (or mirror) order, such as As discussed above, the new Q1 will start at the next sync pulse. In addition to generating or assigning the number of corresponding LED segments 175, substantially equal intervals of n〃, there are many different ways to assign such intervals, any or all of which may be within the scope of the invention, for example and Not limited to various LED segments 1 75 #不相 f interval period to obtain any desired illuminating effect; dynamic designation using current or voltage feedback as described above; providing substantially equal current for each _ & 175, so that each The segments can generally be applied approximately equally; the unequal currents for each coffee segment 175 are provided to achieve any desired S effect or to optimize or improve the Ac line performance or efficiency. Other dimming methods are also within the scope of the invention. It can be seen from Figure 3 that the rectified AC voltage VIN, which is essentially zero (or zero-crossing), is used to determine the duration of the quadrants Q1 and Q2, which will be in the phase modulation dimming case. 80 201134295 Continuous Synchronization Pulse: Zero Divided Rectified AC power ~ then '

(或記㈣1心2的時間可與儲存在記憶體465 ㈣10毫秒或互相比較,譬如用於50赫兹AC 步脈衝(零六叉、、 AC線的8.36毫秒。當連續同 _ 185) φ 乂 之間的時間與儲存在記憶體465 (或記憶 並中的相關或所選值大約或實質相同時(在預定變化 調光應用則可被顯示且操作可如先前所論 ‘連續同步脈衝(零交又)之間的時間小於儲存 在㈣體465中(或記憶體185)的相關或所選值時(加或 數或臨界值),-調光應用則可被顯示。依據在 、…V脈衝(零交又)間時間與儲存在記憶體465 (或記 憶體185)中相關或所選值之間的比較或差,㈣段⑺的 :應切換順序則可從記憶體奶(或記憶體185)被決定或 。取。例如顯示於且以上參考圖3所論,該比較可顯示一 :5相位調變,其隨後可顯示有多少區間應被省略。如另一 #代方式’-疋整組LED段175可被切換入該串聯[刪⑽ 電机路控’而㈣調光則可直接由所選相位調變提供。 ^同樣應注意:譬如高亮度LED之種種型態的LED14〇 係可被相當深刻描述以用於此些調光應用。更特別,LED 可,選擇以具有一特徵,亦即當其LED電流從零改變到允 許最大電流時電壓則會改變超過2: i (假如可能),以允 +猎由AC、線的相位調變來調光發光裝置。m"個㈣ 被傳導,整流AC電壓VlN則會上升,且當電流達到L時, 下LED段175則會被切換入該串聯LED14〇電流路徑, 81 201134295 隨後剛剛在切換以前的電壓係為(方程式2 ): VLed=Vin:=N (VFD+IP*Rd) 其中吾人使用LED以電壓(vFD)加電阻器模式來成型 之事實。在開啟△ N更多LED切換後,電壓會變為(方程 式3):(Or (4) 1 heart 2 time can be compared with 10 milliseconds stored in memory 465 (four) or compared with each other, for example for 50 Hz AC step pulse (zero hexadecimal, 8.36 milliseconds of AC line. When continuous _ 185) φ 乂The time between the time and the memory 465 (or the correlation or selected value in the memory sum is approximately the same or substantially the same (the predetermined change dimming application can be displayed and the operation can be as described previously). The time between is less than the correlation or selected value stored in (4) body 465 (or memory 185) (plus or number or critical value), - dimming application can be displayed. According to the ..., V pulse ( Zero crossing and time between the time and the correlation or difference stored in the memory 465 (or memory 185) or the selected value, (4) paragraph (7): the switching order can be from the memory milk (or memory 185) The decision is taken or taken. For example, as shown above and discussed above with reference to Figure 3, the comparison may show a: 5 phase modulation, which may then show how many intervals should be omitted. For example, another #代方式'-疋整组LED segment 175 can be switched into the series [deleted (10) motor path control] and (four) dimming Directly provided by the selected phase modulation. ^ It should also be noted that LEDs such as high-brightness LEDs can be quite well described for these dimming applications. More specifically, LEDs can be selected to have one The characteristic, that is, when its LED current changes from zero to the maximum allowable current, the voltage will change by more than 2: i (if possible) to allow the tuned to adjust the illuminating device by the phase modulation of the AC and line. m" (4) Conducted, the rectified AC voltage VlN will rise, and when the current reaches L, the lower LED segment 175 will be switched into the series LED14〇 current path, 81 201134295 and then immediately before the switching voltage system is (Equation 2) : VLed=Vin:=N (VFD+IP*Rd) The fact that we use LEDs to form in voltage (vFD) plus resistor mode. After turning on △ N more LED switching, the voltage will change (Equation 3) :

Vm=(N + AN)(vFD+IaftcrRd) 設定(方程式2與3 )兩線電壓VlN相等而導致(方程 式4): j _ (NIPRd -ANVFn)( 1Vm=(N + AN)(vFD+IaftcrRd) Set (Equations 2 and 3) The two-wire voltage VlN is equal to result (Equation 4): j _ (NIPRd -ANVFn) ( 1

A 因此,為在下一 LED段175 @ LED140被開啟以後, 使電流為正,然後NIpRd>AnVfd,且更進一步地假如 我們希望電流能夠維持在住宅調光器的閂鎖電流(“幻以 上的話’那麼(方程式5): {NIpRd~ANVFD) r η n+an 、Rd > \ a yA Therefore, after the next LED segment 175 @LED140 is turned on, the current is positive, then NIpRd> AnVfd, and further if we want the current to maintain the latch current in the residential dimmer ("magic above" Then (Equation 5): {NIpRd~ANVFD) r η n+an , Rd > \ ay

• « 50mA 火從方程式5’我們可得到卜值,被稱為、、U ,其係 當下一 LED段175被切換時可提供希望的^電 式6): / _ + AiV) + anv Λ max ' -------- NRd 從方程式⑴,我們將隨後發現在段切換時Ιρ=ι“ 電流的值(方程式7 ): /tox=Jv^ 伙將方程式 6 與 7 "^5· hl· ·!ΐ:η 、°又疋為彼此相荨,我們隨後可決定 臣品界輸入電壓、、V, ,/ A A τ _ ,, 堅V〖NT產生I㈣電流於LED段175的值(方 82 201134295 程式8 ): V!NT = NiFFD + 方程式2至8呈現在沒有額外分洩電阻下以牆壁調光 器來控制驅動器界面之過程的理論性背景,其可在控制器 120(與其變化12〇A_12〇E)的控制下被實施於種種不同 示範性設備内(1〇〇、200、300、400、500、6〇0)。為了 實施此控制方法,該設備(1〇〇、2〇〇、3〇〇、4〇〇、5〇〇、6〇〇) 的種種一或更多個參數或特徵可被儲存於記憶體185中, 其係譬如藉由該裝置製造器、分配器或末端使用者,包括 但不限於例如在該段中包含種種LED段175的ledi4〇數 目、正向電壓降(用於每一 LED14〇或每一所選led段175 的全部降)、動態電阻Rd、以及該設備(1〇〇、2〇〇、3〇〇、 、5〇0、6〇〇)的一或更多個操作參數或特徵,其係包括 但不限於同樣例如’譬如調光器(285 )閂鎖電流ι㈣的操 作參數、a ιρ的峰值電流以及LED段175的最大電流,其 2提供(在下一 LED段175切換以後)等於^的最小電 抓。此外,用於每一 LED段175及led段175組合(當它 們被切換入LEDl4〇電流路徑時)之輸入電壓Vim的值可 :用方程式8什算且儲存於記憶豸185中’或可藉由控制 盗120在操作期間内被動態決定,並且亦可 中(如以下所討論,當作部份的第-示範性方法)\ = 種種參數及/或特徵(譬如峰值與最大電流)就每一 [ED段 175而5係相同’或就每- led段175而言係明確。 圖22係顯示根據本發明教示所設計第一示範性方法的 83 201134295 流程圖’纟係實施此控㈣方法以用纟維持足以適當操作調 光切換器285 (可與一或更多設備(1〇〇、2〇〇、3〇〇、4〇〇、 5〇〇、600 )耦合)的最小電流。該方法開始於起始步驟6〇ι 在這二種種參數中有一個或更多基本上可藉由控制器 從記憶體1 85擷取或另外得到,步驟6〇5,譬如用於現在主 動LED段175之輸入電壓Vint的值。控制器隨後可將led 段175切換入LED140電流路徑(除了在第一 175ι 的情形巾,其係取決於電路架構,其係總是在LED140電流 路徑中)’步驟61〇’且監視經過LED14〇電流路徑的電流, 步驟615。當經過LED14〇電流路徑的電流達到峰值電流b 時(使用電流感測器115來決定),步驟62〇,該輸入電壓P VlN會被測量或感測(其亦使用電壓感測器195來決定), 步驟625,且該測量輸人電壓ViN會與臨界輸人電塵V㈣相 比較(其中一個參數可事先儲存在記憶體185中並可從其 操取)’步驟630。依據此種比較情%,當測量到的輸入電 壓VIN大於或等於臨界輸入電壓Aw的時候,步驟,控 制器uo則將下_ LED段175切換aLedm〇電流路徑f ^驟640。當在步驟635中測量輸入㈣%不大於或等於 臨界輸入電壓VINT時’控制器12〇則不將下-段 切換入LED140電流路徑(亦即:持續使用目前在led刚 電伙路徑中的LED & 175來操作該設備),並持續監視輸 ^電壓VIN,回到步驟625,以當測量輸入電壓Vin變得相 =或大於臨界輸入電壓ViNT時(步驟635 ),將下一⑽ 奴175切換入LED14G電流路經(步驟64〇)。在步驟6如 84 201134295 l且田功率被關閉時’步驟645,該方法會重複另—Led 段175,回到步驟615,不然該方法會結束,回到步驟65(^ 、七圖23係顯不根據本發明教示所設計第二示範性方法的 机知圖’且提供追蹤整流AC電壓V1N或實施譬如調光所希 發光效果之方法的有用概述。該方法的決定、計算與控制 步驟可例如以控制器丄2〇的狀態機來實施。許多㈣亦可 同時及/或以任何數目的不同順序、許多各種不同方式來發 而開始°玄切換方法,除了在圖23中所顯示順序外,其中 任-與全部均可被視為相等且在本巾請發明範圍内。 更特別,為能輕易解釋,在圖23中所顯示方法係以一 或更一夕零交又開始,亦即:_或更多連續決定整流从電壓 V二實質等於零。在此決定期間内,所有、沒有、或者一或 ^多LED段175可被切換入。那些熟諳電子技術者將承認 會以無數其它方法開始,其中數個亦將討論如下。 該方法以起始步驟501開始,譬如藉由啟動,且決定 整流AC電壓VIN是否實質等於零(例如:零交又),步驟 :二。假如如此’該方法會開始時間測量(例如··計數時脈 敫%)及/或提供同步訊號或脈衝,步驟別。當在步驟505 整流AC_電麼VlN實質不等於零時,該方法會等待下一零交 又。在示範性實施例中,步 筮,驟505與510會被重複以用於 将或更夕)零乂又’當整流AC電屋實質等於零時 =輕㈣量決定’步驟515。該方法隨後可決定整流A。 :(時期),步驟520,且決定第一半循環整“c區間 期)的持續期間,亦即第-象限Qi,及任何切換區間, 85 201134295 譬如當Q1被分為對應LED段175數目之許多相等時間區 間時,如以上討論,步驟525。該方法隨後亦可決定是否會 發生亮度調光,譬如當由以上所討論之零交叉資訊來顯示 時,步驟530 〇假如調光發生,該方法會決定lEd段175 的起始組,步驟535,譬如參考圖3討論之省略的許多組段, 及在零交又後的區間(對應相位調變),以用於切換入所 選數目的LED段175’步驟54〇。在步驟⑽後或當調光沒 有發生時或假如調光發生但將追蹤整流AC電壓να時該 方法會進行到步驟545與55卜其一般可實質同時被進行: •步驟545巾’该方法決定時間(例如:時脈循環數) 或電壓或其它測量參數,並將對應值儲存在例如記憶體465 (或-己it體185)中。如上所提,這些值可被應用於中。 =驟Η1中’該方法會將許多咖段175切換入該串聯 40電⑻路從,以對應所希順序或時間區間、電塵水平、 測量參數或所希發光效果。該方法隨後可決定是否該 於…「「 (亦即:該時間充分接近或等 m主 循環,譬如在從Q1端點起預 疋數直的時間内),步 被切換人^ μ # 疋否會有剩餘LED段175 破刀換入β亥串聯LED 140雷泣牧〆 μ 处束時且典古, 步驟560。當Q1尚未 、.口朿時且田有剩餘led LED140 f . 75時’该方法可決定是否 達到預疋峰值Ip (或者使 制,不論該電流水平是否已㈣、:、者使用以時間為主的控 電流沒有達到預定^ ,步驟565 °當LED14〇 .. 峰值1P時(或當電流區間沒有消逝時) 在步驟565中,續士a , 另嘀逝時), 方法會回到步驟555。當在步驟565中, 86 201134295 MO電^達到預定峰值Ip (或當電流區間消逝時),該 方法可決定在假如將下一 LED段175切換入該串㈣顧 電流路徑之情形下是否有充分的電流留在φ以達到^,步 驟谓。當有充分時間留在Q1以達到化時,步驟別,該 方法會回到步驟54…51並且重複以決定時間(例如: 時脈循環數)或電壓或其它測量參數,及儲存對應值(步 驟545 ),以及切換人下—咖段叫步驟551)。 當時間或時間區間顯示出Q1結束時(亦即,時間充分 接近或等於整流AC區間(時期)的半循環),步驟…, 或當沒有任何更多剩餘LED段175切換入時步驟则, 或當沒有任何充分時間剩餘在⑴以切換入下—⑽段175 :使咖40電流達到1?時,步驟57〇,方法會開始Q2, 第-+循環的整流AC區間(時期)。在步驟…、則或 I70以後,該方法可決定電壓水平、時間區間、其它測量參 ,步驟575。該方法隨後可決定目前決定的電壓水平、時 間區間、其它測量參數是否達到對應的儲存值以用於對應 組L E D段1 7 5,步驟5 8 0,壁An敕、☆ a η 7郑580譬如整流AC電壓V1N是否減少 =儲存在記憶體中的„水平,其係對應到切換人最後㈣ 5n例如且假如如此,該方法會將對應_ LED段⑺ 切換出該串聯LEDl4〇電流路徑,步驟585。 該方法隨後可決定LED14G電流是否已增加到大於& 的預定臨界值(亦即:Ip加一預定幅度),步驟—假如 如此’該方法會將最近被切換出的對應咖段Μ切換回 遠串聯LED140電流路徑,步驟奶,且決定與儲存用於此 87 201134295 2段175或時間區間的新參數,步驟6〇2,譬如電 時間區間、其它測量參數用 千、 電_的減上所討論(例如: 门m )。再度切換出咖段175 别(回到步驟585),該方法隨後 又175 驟_ ’或代替牛驟60“ 疋時間時期,步 '代替步驟606而回到步驟58〇, 的電壓水平、時間區間、其它測量參:疋 的新储存值’ q於對應組LED段175且該 當在步驟590, LED140電&〜y 會重複。 界值時,該方…二:Γ Ιρ更大的預定臨 間巴門/ ο, , 剩餘咖段175或剩餘時 “’在Q2中’步驟611’且假如如此,該方法 且重複以持續切換出下—l LED妒17m 田沒有任何剩餘 多二 該串聯咖4°電流路徑或沒有任何更 多剩餘時間區間在Q2的時候,該方法可決定是否有零ΐ :,亦即是否整流ac«Vin實質等於零,步驟6ΐ6。當 交又發生時且當功率沒有被關閉時,步驟62卜該方法會 2複以開始下一 Q1 ’回到步驟510 (另或者,步驟520或 ,驟45與55 1 ),否則該方法會結束回到步驟626。 “如上述’該方法不限於在零交又發生時開始。例如: m可決定整流ac電壓、水平及/或來自實質零整流 AC電廢VlN的時間持續期間、時間區間其它測量參數, 對應那參數的LED|175數目。此外,依據連續 的電壓或時間測量’該方法可決定是否在整流Ac區間(時 期)的Q1 (增加電壓)或q2 (減少電麼)部份中,並且持 續個別切換入或切換出對應的LED段175。另或者,該方 88 201134295 法可被切換或耦合人續由m τ 串聯LED】40電流路徑的實質戶斤古 LED段175夾把私r点,, 只只尸/Γ百 起。(例如:經由重設時的功率),且 顯示整流AC電塵V,、杳g ^ %歷VIN實質等於零且Q1開始的一同步脈 衝,並且隨後進行種猶#曾 交琨仃種種计异及開始許多LED段175 以對應那電壓水平、蚌„ π „ # 、 f十時間區間 '其它測量參數或希望的發 光效果,其係以圖23方法的步驟52〇來進行。 沒有㈣顯示_23 ’步驟545肖551為調光應用可 〇 3額外特徵。存有其中沒有任何qi時間區間之調光環 境’以致該相位調變調光會切去或限幅九十度或更多的AC 區間。在此些環境下,Q2電壓或時間區間無法從在^中 知到的對應資汛取知。在種種示範性實施例中,控制器1 獲得來自記憶體(185、465 )的既定值,譬如對應㈣段 ⑺數目的時間㈣’使用最初在如中的這些既定值並 且精由監視經過該串聯LEDU〇電流路徑的A。輸入電壓與 LEDM0電流來修改或、、訓練,,在Q2内的這些值。例如, 以儲存在記憶體中的既定值來起始,控制胃12〇會增加這 些值直到在Q2内達到IP為止,且隨後儲存對應的新電麼 值以用於LED段175的每一個離出切換。 圖24係為顯示根據本發明教示所設計之第七示範性系 統750與第七示範性設備7〇〇的方塊與電路圖。第七示範 性系統750包含被輕合到AC線1〇2的第七示範性設備_ (亦等同地被視為離線AC LED驅動器)。第七示範性設備 700同樣包3複數個LED14G、複數個切換器則(以卜通 道增強FET顯示’以為實例)、控制器120G、(第-)電 89 201134295 流感測器1 1 5與整流器1 05。同樣可選並且沒有被各別顯示 於圖24中’記憶體185與/或使用者介面180亦可如以上所 論地被包括。第七示範性設備7〇〇並沒有要求額外的電壓 感測器(譬如感測器195 )或電源供應器(vcc 1 25 ),雖然 這些元件可如所希地被應用。 第七示範性設備700 (以及如以下所討論的其他設備 800、900、1000、1100、12〇〇、13〇〇)係主要地被應用來 提供串聯LED 140電流路徑的電流調節,以及應用電流參 數’以將每一 LED段175切換入或出該串聯LED 140電流 路徑。第七示範性設備700 (以及如以下所討論的其他設備 800 ' 900、1〇〇〇、1100 ' 12〇〇、13〇〇)與第一設備 ι〇〇 的 不同主要關於控制器丨2〇的位置以及被提供到控制器i 2〇 的反饋型態,且數個设備(1100、12〇〇與13〇〇)則應用不 同切換電路配置。更特別地,控制器120(3具有不同電路位 置,除了接收來自電流感測器115的輸入(輸入160、161) 以外,還接收輸入電壓VlN的輸入(輸入162)、接收在LED 段175之間每一節點電壓的輸入(反饋)(輸入32〇)。在 此示範性實施例中,控制器120G可例如藉由或經由這些節 點電壓的任一個來啟動。由於使用此電壓與電流資訊,控 制器120G會產生閘極(或基極)電壓以用於FET切換器 310,其係可呈線性或切換任—模式(或兩者)來控制,以 產生任何電流波型’以最大化功率因子、光線產生亮度、 效率以及對以三極體為主調光切換器的界面接合。例^, 控制If 120G可產生FE丁切換器31〇的閑極電塵,以實質維 90 201134295 持在Ql# Q2兩者内之種種LED段175組合的固定電流水 平。持續該實例,控制器1 20G可產生一閘極電壓以用於FET 切換斋3l〇i以提供電流5〇mA於包含led段η、的串聯 LED 140電流路技,接著產生一閘極電壓以用於切換器 3102以提供電流75mA於包含LED段175丨與1^段1752 的串聯LED 140電流路徑,接著產生零或沒有任何閘極電壓 、用於FET切換器3 1 〇以提供電流i 〇〇mA於包含所有 段174的串聯led14q電流路徑。此所希電流水平的參數或 比敉水平可例如被儲存於記憶體185中(沒被各別顯示), 或者同樣例知經由類比電路而被提供。在本電路拓樸中; 控制器12GG因而可控制在該串聯LED i 4()電流路徑中的電 流水平,並提供FET切換器31〇的相應線性或切換控制, 以在Q1與Q2内維持任何所希的電流水平,譬如例如且不 限於直接追蹤輸入電壓/電流水平,或者步進式追蹤輸入電 壓/電流水平’或維持固定電流水平。此外,除了來自電流 感測器115的反饋以外,種種節點電壓亦可被應用,以提 供FET切換器310的此線性與/或切換控制。當使用心通道 阳來,示時,應該注意的是,任何其他㈣或種類的= 器、電晶體(例如p通道場效電晶體、雙極性接面電晶體 (npn或pnp ))、或切換器或電晶體組合(例如,達林頓 裝置)’其係亦可被等同地應用(包括相關於其他裝置8〇〇、 900、 1〇〇〇、 11〇〇、 12〇〇、 13〇〇)。 示範性系 第八示範 圖2 5係為顯示根據本發明教示所設計之第八 統850與第八示範性設備8〇〇的方塊與電路圖。 91 201134295 性設備800與第七示範性設備700不同,其係在於電阻器 340可串聯FET切換器3 1 〇,且相應電壓或電流水平可做為 反饋地被提供到控制器120H (輸入330 ),從而提供額外 資訊到控制器120H,譬如當LED段Π5被切換入或出串聯 LED 140電流路徑時經過每一 LED段1 75與切換器3丨〇的電 流水平。藉由測量在每—分支(LED段i 75 )的電流水平, 可有利地應用比較小的電阻340(譬如與電阻器165相較之 下),其係可用來減少功率損耗。依據該所選實施例,此 一電阻器165 (如電流電阻器115)因此則可被省略(沒有 被各別顯示)。 圖26係為顯示根據本發明教示所設計之第九示範性系 統950與第九示範性設備9〇〇的方塊與電路圖。第九示範 性設備900與第八示範性設帛_㈣,其係在於電阻器 345在、、高侧夕而非在低電壓側串聯fet切換器31(^在本 示範性實施例中,當相應FE丁切換器3 1〇被開啟時,串聯 電阻器345 (比起低側電阻器34〇,其係具有比較大的電阻) 可被應用以增加在它們分支上的阻抗,其係可被應用以改 善電磁干擾(emi〃)性能並且刪除額外EMI過濾器(沒 有被各別顯示)的潛在需要。 圖27係為顯示根據本發明教示所設計之第十示範性系 充1050與第十示範性設備的方塊與電路圖。第十示 範=設備1_與第八示範性設備綱不同,其係在於額外 電战控制可在所有LED段1 75被應用時被提供在串聯 D 14〇電圳·路杈中(沒有任何被旁通),以應用切換器3 1 〇n 92 201134295 (亦被顯不為η·通道FET)與串聯電阻器34〇n,兩者均與 在該串聯LED140電流路徑中的㈣段175 _聯耦合。切 換器31()n與串聯電阻器34Qn可被應用來提供電流限制, 除了串聯電阻器340η所提供的電流限制以外,控制器ΐ2〇ι 則可提供對應的閘極電壓(―般呈線性模< ,雖然切換器 模式亦可被應用)到切換器31〇η,以維持在串聯LED14〇 電流路徑中的希望電流水平。這在輸入電壓vin變太高的 隋形中特別有用;由於Vin的輸入(輸入1 62 )以及節點電 壓的反饋(從在輸入33〇n的串聯電阻34〇n),藉由調整切 換器31〇n的閘極電壓,控制器12〇1能夠避免過量電流流經 在串聯LED 140電流路徑中的led段175。此外,由於此電 路拓樸,其他電阻器(譬如165或其它電阻器340 )的值隨 ,會過多或減少’然而控制器12〇1仍會具有充分資訊,以 提供所希的性能,而且取決於所選實施例,此一電阻器165 (如電流感測器丨15 )因此則會被省略(沒有被各別顯示卜 同樣要注意的是,切換器310η與串聯電阻器340n亦可被 放置在第十示範性設備1〇〇〇的別處,譬如在其他LED段 1 ( 私 之間’或在串聯LED 140電流路徑頂部或開始,或在正 或負電壓軌道,而且沒有恰好在串聯LED丨4〇電流路徑的底 部或終點。 圖28係為顯示根據本發明教示所設計之第十一示範性 系先115〇與第十一示範性設備1100的方塊與電路圖。第 十一示範性設備1100與第七示範性設備700不同,其係在 於FET切換器31〇會被連接(在LED段175之第一 LED 140 93 201134295 的對應陽極),以致於該串聯led 140電流路徑總是包括最 後LED段175η。替代欲被開啟的最後LED段175,最後 LED段1 75η係為欲被開啟並且在串聯LED 140電流路徑中 傳導的弟一 LED段1 75。第十一示範性設備11 〇〇的電路拓 樸具有額外優點’亦即,用於控制器12〇G的功率可從在最 後LED段1 75η得到的節點電壓被提供,且種種電壓與電流 水平亦可在此節點上被監視,以潛在且任選地刪除來自在 串聯LED 140電流路徑之其他節點之電壓水平的反饋,以進 一步簡化控制器1 20G設計。 圖29係為顯示根據本發明教示所設計之第十二示範性 系統1250與第十一示範性設備12〇〇的方塊與電路圖。如 先前關於第八示範性設備800所討論,第十二示範性設備 1200與第十一示範性設備ποο不同,其係在於電阻器34〇 可串聯FET切換器310,且相應電壓或電流水平可做為反饋 地被提供到控制器120Η (輸入330 ),從而提供額外資訊 到控制器120H,譬如當LED段175被切換入或出串聯 LED140電流路徑時經過每一 LED段175與切換器31〇的電 流水平。藉由測量在每一分支(LED段175)的電流水平, 可有利地應用比較小的電阻34〇(譬如與電阻器165相較之 下),其係可用來減少功率損耗。此外,由於此電路拓樸, 其他電阻器(譬如165 )的值隨後會過多或減少,然而控制 器1201仍會具有充分資訊,以提供所希的性能,而且取決 於所選實施例,此一電阻器165 (如電流感測器ιΐ5)或其 它電阻器340因此則會被省略(沒有被各別顯示)。同樣 94 201134295 沒有被各別顯示,但如先前所討論,電阻器345可被應用 (替代電阻器340 )在切換器3 10的高側上。 圖30係為顯示根據本發明教示所設計之第十三示範性 系統1350與第十三示範性設備1300的方塊與電路圖。如 先前關於第十示範性設備1〇〇〇的討論,第十三示範性設備 1 300與第十二示範性設備丨2〇〇不同,其係在於額外電流控 制了在所有LED段1 75被應用時被提供在串聯[ED 140電 机路徑中(沒有任何被旁通),以應用切換器3丨(亦被 顯不為η-通道FET)與串聯電阻器34〇11,兩者均與在該串 聯LED140電流路徑中的LED段175串聯耦合。切換器3ι〇η 與串聯電阻器34〇n可被應用來提供電流限制,除了串聯電 阻器340η所提供的電流限制以外,控制器12〇1則可提供對 應的閘極電壓(一般呈線性模式,雖然切換器模式亦可被 應用)到切換器3 1 On,以維持在串聯LED 140電流路徑中 的希望電流水平。這在輸入電壓ViN變太高的情形中特別有 用,由於VIN的輸入(輸入162)以及節點電壓的反饋(從 在輸入330η的串聯電阻340n),藉由調整切換器3ι〇η的 閘極電壓,控制器12〇1能夠避免過量電流流經在串聯 LEIM40電流路徑中的1^1)段Π5β此外,由於此電路拓樸, 其他電阻器(譬如165或其它電阻器34〇)的值隨後會過多 或減少,然而控制器1201仍會具有充分資訊,以提供所希 的丨生忐,而且取決於所選實施例,此一電阻器i 65 (如電流 感測器Π5)因此則會被省略(沒有被各別顯示)。同樣^ 注意的是,切換器31011與串聯電阻器34〇n亦可被放置在 95 201134295 第十三示範性設備1 〇〇〇的別處,譬如在其他LED段1 75之 間,或在串聯LED 140電流路徑頂部或開始,或在正或負電 壓轨道’而且沒有恰好在串聯LED 1 40電流路徑的底部或終 點。 同樣應該注意的是,在此所說明種種設備的任一個亦 可提供用於兩或更多串聯LED 140電流路徑的並聯組合,第 一串聯LED 140電流路徑包含LED段175丨、LED段1752至 LED段175m的其中一個或更多個’第二串聯[ED 140電流 路徑包含LED段1 75m+丨、LED段1 75m+2至LED段1 75n的 其中一個或更多個荨荨。如先前關於圖6所討論,LED段 1 7 5的許多不同並聯組合係有效。那些熟諳電子技藝者將承 §忍,任一 LED段175架構可被輕易地延伸到額外並聯的 LED140串以及額外!^1)段175,或減少到較少數目的led •^又175’且在任一已知LED段1 75中的LED 140數目係為更 高、更低、相等或不相等,且所有此些變化均在本申請發 明的範圍内。 除了潛在增加被應用於單一串聯LEDl4〇電流路徑中 LED140的功率額定值以外,並聯排列的數串ledi4〇亦可 被使用來提供更高的功率給一系統。可切換串聯ledi4〇電 流路徑電路拓樸之此並聯組合的另一優點,係為藉由架構 每一 LED段175的不同數目LED14〇來偏斜該並聯led串 之電流波形的能力,以及種種感測電阻值,以得到在AC線 電流波型中譜波抑制的改善。此外,任一所選的串聯丨 電流路徑亦可在減少功率額定值的情形中被關閉與關機, 96 201134295 譬如以當達到最大操作溫度時減少功率。 在这些種種設備與系統實施例的任一個中,應該注意 的疋除了或替代白色LED14〇以外,光線顏色補償可藉由 使用種種顏色的LED140來得到。例如,在㈣段175内 的或更多個LED 140係為綠色、紅色或號玉白色,控制器 120則可提供顏色混和與顏色控制,其係為局部性或其係被 放置在偏遠或中間,其係經由將所選led & Μ連接入該 串聯LED14〇電流路徑内或旁通該所選咖段175。 同樣應該注意的是,以上所說明的種種設備與系統在 許多不同情況下係可操作。例如,以上所說明的種種設借 與系統亦能夠使用三個相位情況來操作,亦即使用一 36〇Hz 或3〇OHz整流器輸出,以及不僅僅是各別來自纏冗或遍冗 線的一個120Hz或100Hz整流器輸出。同樣地,以上所說 明的種種設備與系統亦可在其他系統中運作,馨如使用 彻Hz輸入電遂源的飛機。此外,比較長衰變型態的墙光 體’大約實質約2-3毫秒衰變時間常數,亦可結合LEm4〇 被應用,以致於來自賦能磷光體的發光能夠均分在複數個 AC循環中的LED刚光線輸出,從而可用來減少任何在光 輸出中所察覺到漣波的量值。 除了以上所說明的電流控制以外,種種設備7〇〇、8〇〇、 觸、膽、1100、1200與1300亦可如以上關於設備1〇〇、 200、300、400、5〇〇與6〇〇所說明地操作。例如,段 175切換入或出„ LED14()電流路徑,其係依據電^ 平’譬如在控制器輸入32〇上的種種節點電麗。同樣例如, 97 201134295 譬如為了功率因子校正,LED段175之切換入或出該串聯 LED140電流路徑,其係亦可依據是否有足夠的時間留在— 時間區間以達到峰值時間水平,如以上所說明。簡而言之, 用於設備100、200、300、400、5 00與600之以上所說明 種種控制方法的任一者,其係亦可以種種設備7〇〇、8〇〇、 900' 1〇〇〇、11〇〇、。(^與 13〇〇 的任一者來應用。 同樣應該注意的是,在此所說明之種種控制器120的 任一者可使用數位邏輯與/或使用自動、類比控制電路的任 一者或兩者來實施。此外,種種控制器12〇並不需要任何 i 的^己隐體18 5來儲存參數值。反而,使用於比較以決 疋LED段175切換入或出該串聯lED14〇電流路徑的參數, 其係可藉由被選擇用於種種元件的數值來實施或決定,譬 如例如且不限於電阻器的電阻值。譬如電晶體的元件亦可 進行一比較功能,當相應電壓被產生於耦合電阻器時開 啟,該耦合電阻則依次進行電流感測功能。 圖3 1係為顯示根據本發明教示所設計之第三示範性方 法的流程圖’其係並且提供有用的摘要。該方法開始於起 始步驟705 ’步驟710,將LED段175切換入該串聯LED140 電/;U路徑。當至少一個LED段175總是在串聯[ED 140電 飢路徑時,步驟71〇亦可被省略。經過串聯LED 14〇電流路 從的電流會被監視或感測,步驟715。當所測量或感測電流 不大於或等於預定電流水平時,步驟720,該方法會重複, 以回到步驟715 15當所測量或感測電流大於或等於預定電流 水平時’步驟720,下—個LED段175則會被切換入該串 98 201134295 聯LED140電流路徑,步驟725。當所有LED段175被切換 入該串聯LED140電流路徑時,步驟73〇,或當最大電壓或 電流水平已經達到或者整流AC區間的第一半(Q1)已經 消逝時(Q1 6經結束),步,驟735,該方法則會監視經過 串聯LED140電流路徑的電流水平,步驟74〇。當所測量或 感測電流不小於或等於預定電流水平時,步驟745,該方法 會重複’回到步驟740。當該測量或感測電流小於或等於預 定電流水平時,步驟745,下—LED& 175則被切換出該 串聯lED140電流路徑,步驟755。當超過一㈣咖段 175留在該串聯LED14()電流路徑的時候,該方法會重複, 回到步驟740。當有但卻只有—個咖段Μ已經切換出 該串聯LED140電流路徑時,步 0上丄* 時,步驟Μ,該方”重/ 且當功率沒有關閉 去會重複’回到步驟715,否則該方法 會、束,回到步驟770。 如以上所顯示,控制器12〇 (與12〇 曰 任何型態的控制器或處理器,、 。以疋 能的任何型態數位邏輯來實施广進行在此所討論功 使用在“玄 輯來貫施。當名詞控制器或處理器被 使用在此時,控制器或處理 的使用,·p匕括早一積體電路(、、IC") 白勺使用,或包括被連接、排 電路或1它#πΜπ 次聚集在一起之複數個積體 崎戎丹匕7G件的使用,嬖 號處理器(、、、 工j态、微處理器、數位信 亞、DSP )、並聯處理坊々 製型積體電路、特砝盗、夕重核心處理器、定 锻電路、特殊應用積體電路(、、 β 式化閘極陣列(FPGA) 、 C )、场可程 如隨機存取化詩“ 計算IC、相關記憶體(譬 取δ己憶體、動態隨機 子取记憶體與唯讀記憶體) 99 201134295 以及其它ic與元件。結果,如在此所使用的,控制器或處 理器之名詞應該被理解為等同地意指與包括單一 1C、或定 製型積體電路的排列、特殊應用積體電路、處理器、微處 理器、控制器、場可程式化閘極陣列、可適性計算〗c、或 些其匕聚集積體電路,以任何相關記憶體來進行在此所 討論功能,譬如微處理器記憶體或額外的隨機存取記憶 體、動態隨機存取記憶體、同步動態隨機存取記憶體、同 步隨機存取記憶體、磁性隨機存取記憶體、唯讀記憶體、 快閃、可抹除可程式唯讀記憶體或電子可抹除可程式唯讀 記憶體。控制器或處理器(譬如控制器120 (與120A— 120F )),具有其相關記憶體,其係可被修改或架構(經 由程式化、FPGA互連、或硬配線)以進行本發明方法,如 以上與以下所討論。例如:該方法可被程式化與儲存在具 有其相關記憶體465 (及/或記憶體! 85 )及其它等同元件的 控制器120中’以做為用來當控制器或處理器被操作時(亦 即:被啟動與運行)後續執行的一組程式指令或其它編碼 (或等同架構或其它程式)。等同地,當控制器或處理器 以FPGA、定製型積體電路及/或ASIC被整體或部份實施 時’ FPGA、定製型積體電路及/或ASIC亦可被設計、架構 及/或硬配線以實施本發明的方法。例士〇,該控制器或處理 器可以控制器、微處理器、DSp及/或ASIC的排列來實施, 其係可個別被程式化、設計、改建或架構以結合記憶體185 來實施本發明方法。 包括資料儲存庫(或資料庫)的記憶體185、465可以 100 201134295 任何數目的形式來實施,包括在任何電腦或其它機械可讀 取資料儲存媒體、記憶體裝置或其它儲存或溝通裝置内f 以用來儲存或溝通資訊,其目前為已知或在未來變得有 效,包括但不限於記憶體積體電路(、、IC")、或積體電 路的記憶體部份(譬如在控制器或處理器IC内的駐留記憶 體),無淪揮發或非揮發,無論可移除或非可移除,包括 但不限於隨機存取記憶體、快閃、動態隨機存取記憶體、 同步動態隨機存取記憶體、同步隨機存取記憶體、磁性隨 機存取圯憶體、鐵電隨機存取記憶體、唯讀記憶體、可抹 除可程式唯讀記憶體或電子可抹除可程式唯讀記憶體,或 ^八匕形式的5己憶體裝置,譬如磁性硬驅動器、光學驅 動盗、磁盤或帶驅動器、硬碟驅動器,其它機械可讀取儲 存或圯隱體媒冑’譬如軟磁碟、唯讀記憶光碟、可重寫光 碟數位光碟(dvd )、或其它光學記憶體、或任何其它 型態的記憶體、儲存媒介、<資料儲存設備或電路,其係 已知或變為已知決於所選實施例。此外,此電腦可讀 取媒體包括㈣形式的溝通媒體,其係實施電腦可讀取指 7資料結構、程式模式或在資料訊號或成型訊號中的其 它資料。記憶體185、465可被修改以儲存種種查閱表、參 數係S其匕資訊與(本發明軟體的 > 資_式或指 令、以及其它型態的表,譬如資料庫表。 、上所,、、、頁示,控制器或處理器可被程式化以使用例 如本發明的軟體與資料結構來進行本發明方法、结果,本 發明系統與方法可以提供此些程式化或其它指令的軟體來 101 201134295 實施,·#如如以上所討論實施於電腦可讀取媒體内的一組 指令及/或7L資料。此外,元資料亦可被應用以定義查閱表 或資料庫的種種資料結構。藉由實例且不受限地,此些軟 體可呈原始碼或目標碼形式。原始碼進一步可被編譯為某 種形式的指令或目標碼(包括組合語言指令或架構指令)。• «50mA Fire from Equation 5' we can get the value of Bu, called , , U, which provides the desired power when the next LED segment 175 is switched. 6): / _ + AiV) + anv Λ max ' -------- NRd From equation (1), we will then find the value of Ιρ=ι“ current during segment switching (Equation 7): /tox=Jv^ Let equations 6 and 7 "^5· Hl· ·!ΐ: η, ° and 疋 疋 彼此 荨 荨 荨 荨 荨 荨 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 我们 荨 我们 荨 荨 荨 荨 荨 荨 荨 荨 荨方82 201134295 Program 8 ): V!NT = NiFFD + Equations 2 through 8 present a theoretical background for the process of controlling the driver interface with a wall dimmer without additional bleed resistance, which can be varied at controller 120 Under the control of 12〇A_12〇E), it is implemented in various exemplary devices (1〇〇, 200, 300, 400, 500, 6〇0). In order to implement this control method, the device (1〇〇, 2) One or more parameters or features of 〇〇, 3〇〇, 4〇〇, 5〇〇, 6〇〇) may be stored in the memory 185, such as by the device Generator, dispenser or end user, including but not limited to, for example, the number of ledi4 turns, the forward voltage drop (for each LED 14〇 or each selected led segment 175) containing various LED segments 175 in the segment One or more operational parameters or features of the device (1, 2, 3, 5, 0, 6) including but not limited to the same For example, 'such as dimmer (285) latch current ι (four) operating parameters, a ιρ peak current and LED segment 175 maximum current, which 2 provides (after switching the next LED segment 175) equal to ^ minimum electric catch. The value of the input voltage Vim for each LED segment 175 and led segment 175 combination (when they are switched into the LED l4 current path) may be: calculated in Equation 8 and stored in the memory port 185' or may be used by The control thief 120 is dynamically determined during operation and may also be (as discussed below, as part of the first-exemplary method)\ = various parameters and/or features (such as peak and maximum current) [ED segment 175 and 5 are the same 'or for each - led segment 175 Figure 22 is a flow chart showing the first exemplary method of designing the first exemplary method in accordance with the teachings of the present invention, in accordance with the teachings of the present invention, in order to maintain sufficient control of the dimmer switch 285 (with one or more devices) The minimum current (1〇〇, 2〇〇, 3〇〇, 4〇〇, 5〇〇, 600) coupled). The method begins in the initial step 6〇. One or more of the two parameters can be substantially obtained by the controller from the memory 1 85 or otherwise obtained, step 6〇5, for example, for the active LED now. The value of the input voltage Vint of segment 175. The controller can then switch the led segment 175 into the LED 140 current path (except in the case of the first 175 ι, which is dependent on the circuit architecture, which is always in the LED 140 current path) 'step 61 〇' and monitors through the LED 14 〇 Current in the current path, step 615. When the current through the LED 14 〇 current path reaches the peak current b (determined using current sensor 115), step 62 〇, the input voltage P V1N is measured or sensed (which is also determined using voltage sensor 195) And step 625, and the measured input voltage ViN is compared with the critical input electric dust V(4) (one of the parameters can be stored in the memory 185 in advance and can be fetched therefrom) 'step 630. According to this comparison, when the measured input voltage VIN is greater than or equal to the critical input voltage Aw, the controller uo switches the lower_LED segment 175 to the aLedm〇 current path f^ 640. When it is measured in step 635 that the input (four)% is not greater than or equal to the critical input voltage VINT, the controller 12 does not switch the lower-segment into the LED 140 current path (ie, continuously uses the LED currently in the lead-only path). & 175 to operate the device), and continuously monitor the voltage VIN, returning to step 625 to when the measured input voltage Vin becomes phase = or greater than the critical input voltage ViNT (step 635), the next (10) slave 175 Switching into the LED14G current path (step 64〇). In step 6 such as 84 201134295 l and the field power is turned off, 'step 645, the method will repeat the other - Led segment 175, return to step 615, otherwise the method will end, return to step 65 (^, seven Figure 23 shows A useful overview of the method of designing the second exemplary method is not provided in accordance with the teachings of the present invention and provides a method of tracking the rectified AC voltage V1N or performing a dimming effect such as dimming. The decision, calculation and control steps of the method may for example be Implemented by a state machine of the controller 。 2 。. Many (four) can also start at the same time and / or in any number of different orders, in a variety of different ways to start the 玄 切换 switching method, except in the order shown in Figure 23, Any of them may be considered equivalent and within the scope of the invention. More particularly, for ease of explanation, the method shown in Figure 23 begins with one or one o'clock, namely: _ or more consecutively determines that the rectified slave voltage V is substantially equal to zero. During this decision period, all, none, or one or more LED segments 175 can be switched in. Those skilled in the art will recognize that they will start in countless other ways. Several of these will also be discussed as follows. The method begins with an initial step 501, such as by starting, and determines whether the rectified AC voltage VIN is substantially equal to zero (eg, zero crossing again), step: two. If so, the method will begin. Time measurement (eg, · count clock 敫%) and / or provide synchronization signal or pulse, step. When rectifying AC_ electric in step 505, VlN is not equal to zero, the method will wait for the next zero. In an exemplary embodiment, steps 505 and 510 are repeated for use in the process of determining whether or not the rectification AC powerhouse is substantially equal to zero = light (four) amount determination step 515. The method can then determine rectification A. : (period), step 520, and determine the duration of the first "half interval", that is, the first quadrant Qi, and any switching interval, 85 201134295 For example, when Q1 is divided into the number of corresponding LED segments 175 For many equal time intervals, as discussed above, step 525. The method can then also determine if brightness dimming will occur, such as when displayed by the zero-crossing information discussed above, step 530, if dimming occurs, the method The initial group of lEd segments 175 will be determined, step 535, such as the many groups omitted as discussed with reference to Figure 3, and the interval after zero crossing (corresponding to phase modulation) for switching into a selected number of LED segments. 175 'Step 54 〇. After step (10) or when dimming does not occur or if dimming occurs but the rectified AC voltage να will be tracked, the method proceeds to steps 545 and 55, which can generally be performed substantially simultaneously: • 545 towel 'This method determines the time (for example: number of clock cycles) or voltage or other measurement parameters, and stores the corresponding value in, for example, memory 465 (or - body 185). As mentioned above, these values can be application In the middle of the process, the method will switch a number of coffee segments 175 into the series of 40 electric (8) way slaves to correspond to the sequence or time interval, the electric dust level, the measured parameters or the desired illumination effect. Decide whether it should be... "" (that is: the time is close enough to wait for the m main loop, such as the time from the Q1 endpoint to the pre-tap period), the step is switched to the person ^ μ # 疋 No there will be remaining LEDs Section 175 breaks the knife into the β Hai series LED 140 thunder weeping 〆 μ at the time of the bundle and the ancient, step 560. When Q1 has not yet, the mouth has a residual led LED140 f. 75 when 'the method can decide whether to reach Pre-peak Ip (or make, regardless of whether the current level has been (4), :, use time-based control current does not reach the predetermined ^, step 565 ° when LED14 〇.. peak 1P (or when the current interval does not When it is lapsed, in step 565, the continuation of a, and the elapsed time, the method returns to step 555. When, in step 565, 86 201134295 MO electricity reaches a predetermined peak Ip (or when the current interval elapses), The method can be decided if the next LED segment 175 is switched into the string (d) In the case of the current path, whether there is sufficient current to stay in φ to reach ^, the step is said. When there is sufficient time to stay in Q1 to achieve, step, the method will return to step 54...51 and repeat to decide Time (for example: number of clock cycles) or voltage or other measurement parameters, and storing corresponding values (step 545), and switching people to the next section - step 551). When the time or time interval shows the end of Q1 (ie , the time is sufficiently close to or equal to the rectified AC interval (period of half cycle), step..., or when there are no more remaining LED segments 175 to switch in, or when there is not enough time remaining in (1) to switch into - (10) Section 175: When the current of the coffee 40 reaches 1?, in step 57, the method starts the rectification AC interval (period) of Q2, the -+ cycle. After step ..., then or I70, the method may determine voltage levels, time intervals, other measurement parameters, step 575. The method may then determine whether the currently determined voltage level, time interval, and other measured parameters reach the corresponding stored value for the corresponding group of LED segments 175, step 580, wall An敕, ☆ a η 7 Zheng 580 Whether the rectified AC voltage V1N is reduced = the level stored in the memory, which corresponds to the switcher last (4) 5n. For example and if so, the method switches the corresponding _LED segment (7) out of the series LED l4 〇 current path, step 585 The method can then determine if the LED 14G current has increased to a predetermined threshold greater than & (i.e., Ip plus a predetermined amplitude), step - if so - the method will switch back to the corresponding coffee segment that was recently switched out Far in series with the LED 140 current path, step milk, and determine and store the new parameters for this 87 201134295 2 paragraph 175 or time interval, step 6〇2, such as the electrical time interval, other measurement parameters with thousands, electricity _ reduction Discussion (eg: gate m). Switch again to the coffee section 175 (return to step 585), which then 175 _ ' or replace the cow 60 " 疋 time period, step ' instead of step 606 and back 58〇 step, voltage level, the time interval, other measured variables: Cloth new stored value is' q in the corresponding group when the LED segment 175 and at step 590, LED140 electrical & ~y repeated. When the boundary value, the party ... 2: Γ Ι ρ larger booking Promenade / ο, , the remaining coffee section 175 or the remaining "' in Q2 'step 611' and if so, the method and repeat to continue switching Out - l LED 妒 17m field does not have any remaining two or more of the serial coffee 4 ° current path or no more remaining time interval in Q2, the method can determine whether there is zero ΐ :, that is, whether to rectify ac «Vin Substantially equal to zero, step 6ΐ6. When the recurrence occurs and when the power is not turned off, step 62 will repeat the method to start the next Q1 'back to step 510 (otherwise, step 520 or step 45 and 55 1 ), otherwise the method will end back to step 626. "As above, the method is not limited to starting when the zero crossing occurs again. For example: m can determine the rectified ac voltage, level and / or time duration from the substantially zero rectified AC electric waste VlN, other measurement parameters in the time interval, corresponding to the number of LEDs | 175 of that parameter. In addition, based on continuous voltage or time measurement, the method can determine whether to rectify the input or switch out of the corresponding LED in the Q1 (increase voltage) or q2 (reduction) section of the Ac interval (period). Paragraph 175. Alternatively, the party 88 201134295 method can be switched or coupled to continue by m τ series LED] 40 current path of the actual account of the ancient LED segment 175 clip private r point, only corpse / Γ Γ. (for example: power through reset), and display rectified AC electric dust V, 杳g ^ % VIN is substantially equal to zero and a synchronization pulse starting from Q1, and then carry out a variety of different calculations The LED segment 175 corresponds to that voltage level, 蚌 π π #, f, ten time interval 'other measurement parameters or desired illuminating effect, which is performed in step 52 of the method of FIG. No (4) shows _23 'Step 545 Xiao 551 for dimming applications can 〇 3 additional features. There is a dimming environment in which there is no qi time interval so that the phase modulation dimming will cut or limit the AC interval of ninety degrees or more. In these environments, the Q2 voltage or time interval cannot be ascertained from the corresponding information known in ^. In various exemplary embodiments, controller 1 obtains a predetermined value from memory (185, 465), such as the number of times corresponding to the number of (4) segments (7) (four) 'uses the established values originally in, and is carefully monitored by the series LEDU 〇 current path A. Input voltage and LEDM0 current to modify or, train, these values in Q2. For example, starting with a predetermined value stored in the memory, controlling the stomach 12 will increase these values until IP is reached within Q2, and then store the corresponding new power value for each of the LED segments 175. Switch out. Figure 24 is a block and circuit diagram showing a seventh exemplary system 750 and a seventh exemplary device 7A designed in accordance with the teachings of the present invention. The seventh exemplary system 750 includes a seventh exemplary device _ (also equivalently considered an offline AC LED driver) that is lighted to the AC line 1 〇 2 . The seventh exemplary device 700 also includes a plurality of LEDs 14G, a plurality of switches (with a channel enhancement FET display 'as an example), a controller 120G, a (first) electric 89 201134295 influenza detector 1 1 5 and a rectifier 1 05. Also optional and not separately shown in Figure 24 'memory 185 and/or user interface 180 may also be included as discussed above. The seventh exemplary device 7 does not require an additional voltage sensor (such as sensor 195) or a power supply (vcc 1 25), although these components can be applied as intended. The seventh exemplary device 700 (and other devices 800, 900, 1000, 1100, 12A, 13A as discussed below) are primarily applied to provide current regulation of the series LED 140 current path, as well as application current The parameter 'to switch each LED segment 175 into or out of the series LED 140 current path. The seventh exemplary device 700 (and other devices 800 '900, 1 〇〇〇, 1100 ' 12 〇〇, 13 如 as discussed below) differs from the first device 主要 primarily with respect to the controller 丨 2 〇 The location and the feedback type that is provided to the controller i 2〇, and several devices (1100, 12〇〇, and 13〇〇) apply different switching circuit configurations. More specifically, controller 120 (3 has different circuit positions, in addition to receiving input from current sensor 115 (inputs 160, 161), receiving an input (input 162) of input voltage VlN, receiving in LED segment 175 Input (feedback) of each node voltage (input 32 〇). In this exemplary embodiment, controller 120G can be activated, for example, by or via any of these node voltages. Due to the use of this voltage and current information, The controller 120G generates a gate (or base) voltage for the FET switch 310, which can be controlled in a linear or switching mode (or both) to generate any current mode to maximize power. Factor, light produces brightness, efficiency, and interface bonding to the triode-based dimming switch. Example ^, Control If 120G can generate the idle electric dust of the FE switch 31〇, in the real dimension 90 201134295 Ql# Q2 The fixed current level of the combination of various LED segments 175. For this example, controller 1 20G can generate a gate voltage for FET switching 3l〇i to provide current 5〇mA to include led segments η, the series The LED 140 current path technique then generates a gate voltage for the switch 3102 to provide a current of 75 mA to the series LED 140 current path comprising the LED segments 175 and 1 segment 1752, followed by zero or no gate voltage, The FET switch 3 1 〇 is used to provide current i 〇〇 mA to the series led 14q current path including all segments 174. The parameter or ratio of the current current level can be stored, for example, in memory 185 (not being Not shown), or similarly provided via analog circuits. In this circuit topology; controller 12GG can thus control the current level in the series LED i 4 () current path and provide FET switch 31〇 Corresponding linearity or switching control to maintain any desired current level in Q1 and Q2, such as, for example and without limitation, directly tracking input voltage/current levels, or stepping through input voltage/current levels' or maintaining a fixed current level In addition, in addition to feedback from current sensor 115, various node voltages can be applied to provide this linear and/or switching control of FET switch 310. Yanglai, when showing, it should be noted that any other (four) or kind of =, transistor (such as p-channel field effect transistor, bipolar junction transistor (npn or pnp)), or switch or transistor Combinations (eg, Darlington devices) can also be equally applied (including related to other devices 8〇〇, 900, 1〇〇〇, 11〇〇, 12〇〇, 13〇〇). The eighth exemplary diagram 25 is a block and circuit diagram showing an eighth system 850 and an eighth exemplary device 8A designed in accordance with the teachings of the present invention. 91 201134295 Sex device 800 differs from seventh exemplary device 700 in that resistor 340 can be in series with FET switch 3 1 〇 and a corresponding voltage or current level can be provided as feedback to controller 120H (input 330) This provides additional information to the controller 120H, such as the current level through each LED segment 1 75 and switch 3 when the LED segment Π 5 is switched into or out of the series LED 140 current path. By measuring the current level at each branch (LED segment i 75 ), a relatively small resistor 340 (e.g., as compared to resistor 165) can be advantageously employed, which can be used to reduce power loss. In accordance with this selected embodiment, this resistor 165 (e.g., current resistor 115) can therefore be omitted (not shown separately). Figure 26 is a block and circuit diagram showing a ninth exemplary system 950 and a ninth exemplary device 9A designed in accordance with the teachings of the present invention. The ninth exemplary device 900 and the eighth exemplary device _(4) are in the case where the resistor 345 is connected to the fet switch 31 in the high side, not on the low voltage side (in the present exemplary embodiment, when When the corresponding FE DIP switch 3 1 〇 is turned on, the series resistor 345 (which has a relatively large resistance compared to the low side resistor 34 )) can be applied to increase the impedance on their branches, which can be Application to improve electromagnetic interference (emi〃) performance and remove the potential need for additional EMI filters (not shown separately). Figure 27 is a diagram showing a tenth exemplary charge 1050 and a tenth demonstration designed in accordance with the teachings of the present invention. Block and circuit diagram of the device. The tenth example = device 1_ is different from the eighth exemplary device, in that additional electric warfare control can be provided in series D 14 when all LED segments 1 75 are applied. In the middle of the road (without any bypass), to apply the switch 3 1 〇 n 92 201134295 (also shown as η · channel FET) and series resistor 34 〇 n, both with the current path in the series LED 140 (4) segment 175 _ coupling. Switch 31 () n and series Resistor 34Qn can be applied to provide current limiting. In addition to the current limit provided by series resistor 340n, controller ΐ2〇ι provides the corresponding gate voltage (“normal linear mode” < , although the switch mode can also be applied to the switch 31 〇 n to maintain the desired current level in the series LED 14 电流 current path. This is particularly useful in 隋 shapes where the input voltage vin becomes too high; due to the input of Vin (input 1 62 ) and the feedback of the node voltage (from the series resistance 34 〇 n at the input 33 〇 n), by adjusting the switch 31 The gate voltage of 〇n, the controller 12〇1 can avoid excessive current flow through the led segment 175 in the current path of the series LED 140. In addition, due to this circuit topology, the values of other resistors (such as 165 or other resistors 340) may be excessive or reduced. However, the controller 12〇1 will still have sufficient information to provide the desired performance, and In the selected embodiment, this resistor 165 (such as current sensor 丨15) will therefore be omitted (not shown separately. It is also noted that switch 310n and series resistor 340n can also be placed. Elsewhere in the tenth exemplary device, for example, in other LED segments 1 (between private or in series with the LED 140 current path at the top or beginning, or in a positive or negative voltage rail, and not exactly in the series LED丨4 底部 bottom or end point of the current path. Figure 28 is a block and circuit diagram showing an eleventh exemplary first 115 〇 and eleventh exemplary device 1100 designed in accordance with the teachings of the present invention. Eleventh exemplary device 1100 Unlike the seventh exemplary device 700, the FET switch 31 is connected (the corresponding anode of the first LED 140 93 201134295 of the LED segment 175) such that the series LED 140 current path always includes the last LED segment 175n. In place of the last LED segment 175 to be turned on, the last LED segment 1 75η is the LED segment 1 75 to be turned on and conducted in the series LED 140 current path. Eleventh exemplary device 11 〇〇 The circuit topology has the additional advantage that the power for the controller 12 〇 G can be supplied from the node voltage obtained at the last LED segment 1 75 η, and various voltage and current levels can also be monitored at this node. Feedback to potentially and optionally remove voltage levels from other nodes in the series LED 140 current path to further simplify the controller 1 20G design. Figure 29 is a diagram showing a twelfth exemplary system designed in accordance with the teachings of the present invention. A block and circuit diagram of the 1250 and the eleventh exemplary device 12A. As discussed previously with respect to the eighth exemplary device 800, the twelfth exemplary device 1200 differs from the eleventh exemplary device ποο in that it is a resistor 34〇 FET switch 310 can be connected in series, and a corresponding voltage or current level can be provided as feedback to controller 120 (input 330), providing additional information to controller 120H, such as when LED The current level through each of the LED segments 175 and the switch 31 is switched when the 175 is switched into or out of the series LED 140 current path. By measuring the current level at each branch (LED segment 175), a relatively small resistance can be advantageously applied. 34〇 (as compared to resistor 165), which can be used to reduce power loss. In addition, due to this circuit topology, the values of other resistors (such as 165) will then be excessive or reduced, however controller 1201 remains There will be sufficient information to provide the desired performance, and depending on the selected embodiment, this resistor 165 (e.g., current sensor ι 5) or other resistor 340 will therefore be omitted (not shown separately) . Again 94 201134295 is not shown separately, but as previously discussed, resistor 345 can be applied (instead of resistor 340) on the high side of switch 3 10 . 30 is a block and circuit diagram showing a thirteenth exemplary system 1350 and a thirteenth exemplary device 1300 designed in accordance with the teachings of the present invention. As previously discussed with respect to the tenth exemplary device 1〇〇〇, the thirteenth exemplary device 1 300 differs from the twelfth exemplary device ,2〇〇 in that the extra current is controlled at all of the LED segments 1 75 The application is provided in series [ED 140 motor path (without any bypass) to apply the switch 3丨 (also shown as η-channel FET) and series resistor 34〇11, both with LED segments 175 in the series LED 140 current path are coupled in series. The switch 3ι〇η and the series resistor 34〇n can be applied to provide current limiting, in addition to the current limit provided by the series resistor 340η, the controller 12〇1 can provide a corresponding gate voltage (generally in a linear mode) Although the switch mode can also be applied to the switch 3 1 On to maintain the desired current level in the series LED 140 current path. This is particularly useful in situations where the input voltage ViN becomes too high, due to the input of VIN (input 162) and the feedback of the node voltage (from the series resistor 340n at input 330n), by adjusting the gate voltage of the switch 3ι〇η The controller 12〇1 can avoid excessive current flowing through the 1^1) segment Π5β in the series current path of the LEIM 40. Furthermore, due to this circuit topology, the values of other resistors (such as 165 or other resistors 34 〇) will subsequently Too much or less, however, controller 1201 will still have sufficient information to provide the desired sputum, and depending on the selected embodiment, this resistor i 65 (such as current sensor Π 5) will therefore be omitted. (not shown separately). Similarly, it is noted that the switch 31011 and the series resistor 34〇n can also be placed elsewhere in the thirteenth exemplary device 1 of 95 201134295, such as between other LED segments 1 75, or in series with LEDs. The 140 current path starts at the top or ends, or in the positive or negative voltage track 'and does not happen to be at the bottom or end of the series LED 1 40 current path. It should also be noted that any of the various devices described herein may also provide for a parallel combination of two or more series LED 140 current paths, the first series LED 140 current path including LED segments 175 丨, LED segments 1752 to One or more of the LED segments 175m 'the second series [ED 140 current path includes one or more of the LED segments 1 75m+丨, LED segments 1 75m+2 to LED segments 1 75n. As previously discussed with respect to Figure 6, many different parallel combinations of LED segments 175 are effective. Those skilled in the art will be willing to endure, any LED segment 175 architecture can be easily extended to additional parallel LEDs 140 strings and extra! ^1) segment 175, or reduced to a smaller number of LEDs and 175' and the number of LEDs 140 in any known LED segment 1 75 is higher, lower, equal or unequal, and all of this Variations are within the scope of the invention of the present application. In addition to the potential increase in the power rating of the LEDs 140 in the single series LEDs, the parallel array of LEDs can also be used to provide higher power to a system. Another advantage of this parallel combination of switchable series ledi4〇 current path circuit topologies is the ability to skew the current waveform of the parallel led string by structuring a different number of LEDs 14 of each LED segment 175, and various sensations The resistance value is measured to obtain an improvement in spectral wave suppression in the AC line current mode. In addition, any selected series 丨 current path can also be turned off and shut down in the case of reduced power ratings, such as when the maximum operating temperature is reached. In any of these various apparatus and system embodiments, it should be noted that in addition to or in lieu of the white LED 14 turns, light color compensation can be obtained by using LEDs 140 of various colors. For example, if the LEDs 140 in the (four) segment 175 are green, red, or jade white, the controller 120 can provide color mixing and color control, which is local or its system is placed in a remote or intermediate By connecting the selected led & Μ into the series LED 14 〇 current path or bypassing the selected café 175. It should also be noted that the various devices and systems described above are operable in many different situations. For example, the various lending and systems described above can also be operated using three phase conditions, ie using a 36 〇 Hz or 3 〇 OHz rectifier output, and not just one from each of the tangled or multiplexed lines. 120Hz or 100Hz rectifier output. Similarly, the various devices and systems described above can also be operated in other systems, such as aircraft that use a Hz input power source. In addition, the relatively long decay type of wall body 'approx. about 2-3 milliseconds decay time constant can also be applied in combination with LEm4〇, so that the light from the energizing phosphor can be equally divided into multiple AC cycles. The LED is just light output and can be used to reduce the amount of chopping that is perceived in the light output. In addition to the current control described above, various devices 7〇〇, 8〇〇, touch, biliary, 1100, 1200, and 1300 can also be as described above with respect to devices 1〇〇, 200, 300, 400, 5〇〇, and 6〇. Operate as explained. For example, segment 175 switches into or out of the LED 14() current path, which is based on the electrical level, such as various node galvanies on the controller input 32. Also, for example, 97 201134295 For example, for power factor correction, LED segment 175 Switching into or out of the series LED 140 current path may also be based on whether there is sufficient time to stay in the time interval to reach the peak time level, as explained above. In short, for the device 100, 200, 300 Any of the various control methods described above, 400, 500, and 600, can also be used for various devices, 7〇〇, 8〇〇, 900' 1〇〇〇, 11〇〇, (^ and 13〇). It is also noted that any of the various controllers 120 described herein can be implemented using digital logic and/or using either or both of automatic, analog control circuitry. In addition, the various controllers 12 do not need any of the hidden entities 18 5 to store the parameter values. Instead, the parameters used to compare the LED segments 175 into or out of the series lED 14 〇 current path are used. Can be selected for use in a variety of The value of the component is implemented or determined, such as, for example, and not limited to, the resistance value of the resistor. For example, the component of the transistor can also perform a comparison function, and when the corresponding voltage is generated in the coupling resistor, the coupling resistor sequentially performs current. Sensing Function. Figure 31 is a flow diagram showing a third exemplary method designed in accordance with the teachings of the present invention and provides a useful summary. The method begins with an initial step 705 'Step 710, which sets the LED segment 175. Switching into the series LED 140 electric /; U path. When at least one LED segment 175 is always in series [ED 140 electric hung path, step 71 〇 can also be omitted. The current through the series LED 14 〇 current path will be monitored Or sensing, step 715. When the measured or sensed current is not greater than or equal to the predetermined current level, step 720, the method repeats to return to step 715 15 when the measured or sensed current is greater than or equal to the predetermined current level At step 720, the next LED segment 175 is switched into the string 98 201134295 LED 140 current path, step 725. When all LED segments 175 are switched into the series LED 140 current path Step 73, or when the maximum voltage or current level has been reached or the first half (Q1) of the rectified AC interval has elapsed (Q1 6 has ended), step 735, the method monitors the current path through the series LED 140 Current level, step 74. When the measured or sensed current is not less than or equal to the predetermined current level, step 745, the method repeats 'back to step 740. When the measured or sensed current is less than or equal to the predetermined current level Step 745, the lower-LED & 175 is switched out of the series lED140 current path, step 755. When more than one (four) coffee segment 175 remains in the series LED 14 () current path, the method repeats, returning to step 740. When there is only one coffee segment that has switched out the current LED140 current path, step 0 is up*, the step is Μ, the party is “heavy/and will repeat if the power is not turned off”, return to step 715, otherwise The method will, bundle, go back to step 770. As shown above, the controller 12 (with 12 〇曰 any type of controller or processor, 实施 can be implemented in any type of digital logic) The work discussed here is used in "the mystery is applied. When the noun controller or processor is used at this time, the controller or processing is used, · p匕 includes an integrated circuit (,, IC") white Spoon use, or the use of a number of integrated rugged 7G pieces that are connected, arranged, or 1#πΜπ times together, nickname processor (,,, j state, microprocessor, digital Xinya, DSP), parallel processing unit, integrated circuit, special thief, eccentric core processor, fixed forging circuit, special application integrated circuit (, β-type gate array (FPGA), C), Field process such as random access poetry "calculation IC, related memory (taken δ 忆 体 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Arrangement with a single 1C, or custom integrated circuit, special application integrated circuit, processor, microprocessor, controller, field programmable gate array, suitability calculation, or some convergence The integrator circuit performs the functions discussed herein in any associated memory, such as microprocessor memory or additional random access memory, dynamic random access memory, synchronous dynamic random access memory, synchronous random access memory. Memory, magnetic random access memory, read only memory, flash, erasable programmable read only memory or electronic erasable programmable read only memory. Controller or processor (such as controller 120) (and 120A- 120F)), with its associated memory, which can be modified or architected (via stylized, FPGA interconnect, or hardwired) to carry out the method of the present invention, as discussed above and below. : The method can be programmed and stored in controller 120 with its associated memory 465 (and/or memory! 85) and other equivalent components as being used when the controller or processor is operated ( That is, a set of program instructions or other code (or equivalent architecture or other program) that is subsequently executed and executed. Equivalently, when the controller or processor is FPGA, custom integrated circuit and/or ASIC The FPGA, custom integrated circuit and/or ASIC may also be designed, constructed, and/or hard wired to implement the method of the present invention, in whole or in part. In the example, the controller or processor may be a controller The microprocessor, DSp and/or ASIC arrangement is implemented, which can be individually programmed, designed, modified or architected to incorporate the memory 185 to implement the method of the present invention. The memory 185, 465, including the data repository (or database), can be implemented in any number of forms, including any computer or other mechanically readable data storage medium, memory device or other storage or communication device. Used to store or communicate information that is currently known or effective in the future, including but not limited to memory volume circuits (, IC"), or memory portions of integrated circuits (such as in controllers or Resident memory in the processor IC, no volatile or non-volatile, removable or non-removable, including but not limited to random access memory, flash, dynamic random access memory, synchronous dynamic random Access memory, synchronous random access memory, magnetic random access memory, ferroelectric random access memory, read only memory, erasable programmable read only memory or electronic erasable programmable only Read memory, or 5 gossip devices in the form of gossip, such as magnetic hard drives, optical drive pirates, disk or tape drives, hard disk drives, other mechanically readable storage or hidden Helmet medium 'such as floppy diskettes, read only memory CD, CD rewritable digital disc (DVD) or other optical memory, or any other type of memory, storage medium, <Data storage devices or circuits, which are known or become known in the alternative embodiment. In addition, the computer readable medium includes (4) a form of communication medium that implements a computer readable data structure, a program mode, or other data in a data signal or a shaped signal. The memory 185, 465 can be modified to store various look-up tables, parameter data, and information (of the software of the present invention) or instructions, and other types of tables, such as a database table. The controller, or processor, can be programmed to perform the methods and results of the present invention using, for example, the software and data structures of the present invention. The systems and methods of the present invention can provide software for such stylized or other instructions. 101 201134295 Implementation, ## A set of instructions and/or 7L data implemented in a computer readable medium as discussed above. In addition, metadata can be applied to define various data structures for lookup tables or databases. By way of example and not limitation, such software may be in the form of a source code or a target code. The source code may be further compiled into some form of instruction or object code (including a combination language instruction or architectural instruction).

本發月的軟體、原始碼或元資料可以任何型態的編碼來實 施,譬如 C、C + +、系統 c、USA、XML、Java、Brew、SQL 與其憂化(例如:SQL99或SQL的專屬版本)、DB2、奥 拉克爾或進行在此所討論功能的任何其它型態程式化語 言,包括種種硬體定義或硬體模擬語言(例如:Vedi〇g、 VHDL、RTL)與結果產生的資料庫檔案(例如:gdsii )。 結果,在此被等同使用的、、建構"、、、程式建構,,、、、軟 體建m體",其係意味與意指任何種類的任何程 式化語言’其係具有任何語法與符號’其係可提供或可被 般釋以提供具體明確的相關功能或方法(當被樣例化或載 入於處理器或電腦内並且被實施,例如包括控制器12〇)。 本發明軟體、元資料或其它原始碼與任何所產生位元 檑案(目標碼、資料座、为杰朗主、 貝科犀或查閱表)可被實施於任何有形 儲存媒體’譬如任一電腦或其它機械可讀取資料儲存媒體 ㈣為f腦可讀取指令、資料指令、程式模式或其它資料, =如如上就記憶體185、465所論,例如:軟磁碟、唯讀記 憶光碟、可重寫光碟'數位光碟、磁性硬碟驅動器、光學 驅動器或如上所提任何其它型態的資料儲存設備或媒體。 用來提供功率到譬如LED之非線性負載之本發明示範 102 201134295 性實施例的種種優點可顯而易見。種種示範性實施例提供 AC線功率到包括用於高亮度應用的led t 一或更多 LED,同時提供LED驅動器尺寸與成本的全面性縮減並辦 加㈣的效率與應用。示範性設備、方法與系統實施例在 相當寬AC輸入電座範圍上適當修改與運行,同時提供所希 輸出電遂或電流’且不會產生過量内部電塵或在高或過量 電麼應力下放置元件。此外’當被連接到ac線以用於輸入 功率時,種種示範性設備、方法與系統實施例會提供明顯 的功率因子校正。最後,種種示範性設備、方法與系統實 施例則提供用來控制發光裝置之亮度、色溫與顏色的能力。 雖然本發明關於特定實施例來說明,但是這些實施例 部僅僅用來顯示而非限制本發明。在其中的說明中,種種 明確細節可被提供,譬如電子元件、電子與結構性連接、 材料與結構性變化的實例,以提供本發明實施例的完整理 解。一般熟諳該相關技藝者將承認,不管怎樣,本發明實 施例&可在不具有一或更多明確細節,或具有其它設備、 系統、組件、元件、材料、部件等等之下被實施。在其它 情形中,眾所皆知的結構、材料或操作不會被明確顯示或 詳細說明,以避免模糊本發明實施例的態樣。此外,種種 圖式無法按比例繪製,其係並且不應被視為限制性。 在整個本說明書,對、、一個實施例〃、、、一實施例〃、 或特疋實施例的參考意味著結合該實施例來說明的 特疋特點、結構或特徵會被包括在本發明的至少一個實 施例並且不一定在所有實施例中,且再者,其係不一定意 103 201134295 指相同實施例。更者,本發明任何特定實施例的特別特點、 料或特徵,彳呈任何適當的方式以及呈與—或更多其它 實施例的任何適當組合來結合,其係包括在沒有其它特徵 的對應使用之下使用所選的特徵。此外,可進行許多修改, 以使特定的應用、情況或材料適應本發明實質範圍與精 神。應該理解的《,在此所說明與顯示之本發明實施例的 其它變化與修改,根據在此的教示來說,其係為可能的, 係並且被視為本發明的部份精神與範圍。 同樣要理解:該圖式中所描述的一個或更多元件亦可 呈更個別或整體方式來實施’或甚至可在特定情形中被移 除或表現得不可用,而根據一特定應用則為有用。一體成 型的元件組合亦可在本發明範圍内,特別用於離散元件之 分隔或組合不清楚或不可區別的實施例。此外,在此名詞 、耦合〃的使用在包括譬如、、耦合〃或、、可耦合〃之種種 形式係意指且包括任何直接或不直接的電性、結構性或磁 眭麵合、連接或附著’或此一直接或不直接電性、結構性 或磁性耦合、連接或附著的適應作用或能力,其係包括一 體成型的元件以及經由或經過另一元件耦合的元件。 誠如在此所使用,為本發明目的,名詞、、〃以及其 多個形式的、、LED” ’應該可被理解為包括任何電致發光^ 極體或其它型態以載子注入-或接面為主的系統,其係能^ 應電訊號來產生輻射,包括但不限於種種以半導體或碳為 ,的結構,其係應電流或電壓、發光聚合物、有機咖等 等來發光’其係包括在任何頻帶寬或任何顏色或色溫之可 104 201134295 見光光譜或譬如紫外光或紅外線的其它頻譜内。 如在此所使用’名,¾ Ac"表示任何形式之隨時間改 變的電流或電壓,包括但不限於具有任何波形(正弦、正 弦平方、整流、整流正弦、平方、矩型、三角形、錯齒、 不規則等)及具有任何DC補償的交流電或對應交流電麼水 平,且包括譬如經截流或順向或反向相位調變交流電流或 電壓之任何變化’譬如來自調光器切換。如在此所使用, 名碉DC表不波動DC (譬如由整流ac得到)及實質固 疋或固疋電壓DC兩者(譬如由電池、電壓調整器或以電容 器過濾的電源來得到), 在所顯示實施例的先前說明中及在顯示二極體的附加 圖式中,應該理解在本發明範圍内,同步二極體或同步整 流器(例士口#由控制訊號被切換關閉與開啟的繼電器或金 氧半導體場效電晶體或其它電晶體)或其它型態的二極體 I替代標準二極體來使用。在此所呈現的示範性實施例一 般會產生有關接地的正輸出電壓;不過,本發明教示亦可 應用到產生負輸出電麗的功率轉換器,示範性拓模在此可 藉由將半導體與其它偏振元件的極性反向來架構。 更者,在該附圖/圖式中的任何信號箭頭應該僅被視為 I範性且非限制性,除非另外被特別註記。步驟元件的組 ^ ^將被視為在本發明範圍内,特別在分別或結合能力不 月^可預見處。如在此及接著整個實施例所使用的分離性 名詞、、或’’ 一般意圖意指、、及/或",其具有結合與分離意 義兩者(其係且不询限於、、互斥或"意義),除非另外被 105 201134295 顯示。如在此說明及接著整個實施例所使用之、、一 〃與、、該” 包括複數個參考’除非内文另外明確顯示。同樣使用於此 的說明及接著的整個申請專利範圍之、、在〃的意思包括、、在 裡面"與、、在上面’,,除非内文有另外清楚的顯示。 本發明所示實施例中包括在發明内容或摘要中所說明 的先刚說明係不打算徹底無漏或將本發明限制於在此所揭 露的精確形式。從上文,吾人將觀察到種種變化、修改與 替代是令人預期,且可在不背離本發明新穎概念之精神與 範圍内生效。應令人理解:沒有任何關於在此所示特定方 法與設備的限制是令人預期或應該被推論出。當然,藉由 附加申請專利範圍來涵蓋在本申請專利範圍内的所有此些 修改係令人預期。 【圖式簡單說明】 在結合附圖來考慮時,本發明之目的、特徵與優點已 參考以上揭露而被更輕易地理解,其中相同的參考數字可 被使用來確認種種圖式中的相同元件,且其中具有字母字 7G的參考數字可被應用來確認在種種圖式中所選元件實施 例的額外型態、安裝或變化,其中: 圖1係為根據本發明教示所設計之第一示範性系統與 第一示範性設備的電路與方塊圖。 ' 圖2係為顯示根據本發明教示所設計之第一示範性負 載電流波形與輸入電壓水平的曲線圖。 圖3係為顯示根據本發明教示所設計之第二示範性負 106 201134295 載電流波形與輸入電壓水平的曲線圖。 圖4係為顯示根據本發明教示所設計之第二示範性系 統與第二示範性設備的方塊與電路圖。 圖5係為顯示根據本發明教示所設計之第二示範性系 統與第三示範性設備之方塊與電路圖。 圖6係為顯示根據本發明教示所設計之第四示範性系 統與第四示範性設備之方塊與電路圖。 圖7係為顯示根據本發明教示所設計之第五示範性系 統與第五示範性設備之方塊與電路圖。 圖8係為顯杀根據本發明教示所設計之第六示範性系 統與第六示範性設備之方塊與電路圖。 圖9係為顯示根據本發明教示所設計之第一示範性電 流限制器的方塊與電路圖。 圖10係為顯示根據本發明教示所設計之第二示範性電 流限制器的電路圖。 圖11係為顯示根據本發明教示所設計之第三示範性電 流限制器與溫度保護電路的電路圖。 圖12係為顯示根據本發明教示所設計之第四示範性電 流限制器的電路圖》 圖U係為顯示根據本發明教示所設計之第一示範性界 面電路的方塊與電路圖。 圖14係為顯示根據本發明教示所設計之第二示範性界 面電路的方塊與電路圖。 圖15係為顯示根據本發明教示所設計之第二不範性界 107 201134295 面電路的方塊與電路圖。 圖16係為顯示根據本發明教示所設計之第四示範性界 面電路的方塊與電路圖。 圖17係為顯示根據本發明教示所設計之第五示範性界 面電路的方塊與電路圖。 圖1 8係為顯示根據本發明教示所設計之第一示範性 DC電源電路的電路圖。 圖1 9係為顯示根據本發明教示所設計之第二示範性 Dc電源電路的電路圖。 圖2 0係為顯示根據本發明教示所設計之第二示範性 DC電源電路的電路圖。 圖2 1係為顯示根據本發明教示所設計之示範性控制器 的方塊圖。 圖22係為顯示根據本發明教示所設計之第一示範性方 $'的流程圖。 圖23分為圖23A、23B與23C,其係為顯示根據本發 月敎不所設計之第二示範性方法的流程圖。 圖24係為顯示根據本發明教示所設計之第七示範性系 與第七示範性設備之方塊與電路圖。 圖25係為顯示根據本發明教示所設計之第八示範性系 、、先與第八示範性設備之方塊與電路圖。 ^圖26係為顯示根據本發明教示所設計之第九示範性系 、’先與第九示範性設備之方塊與電路圖。 圖7係為顯示根據本發明教示所設計之第十示範性系 108 201134295 統與第十示範性設備之方塊與電路圖。 圖28係為顯示根據本發明教示所設計之第十一示範性 系統與第十一示範性設備之方塊與電路圖。 圖29係為顯示根據本發明教示所設計之第十二示範性 系統與第十二示範性設備之方塊與電路圖。 圖30係為顯示根據本發明教示所設計之第十三示範性 系統與第十三示範性設備之方塊與電路圖。 圖31分為圖3 1A與3 1 B,其係為顯示根據本發明教示 所設計之第三示範性方法的流程圖。 【主要元件符號說明】 50 第一示範性系統 100 第一示範性設備 102 交流(、、AC〃 )線 105 整流器 110 切換器 110!至110n 切換器 111,至llln 切換器 112!至112n 切換器 115 電流感測益 116 切換器 117 節點/接地電位 118 第一切換器 119 第二切換器 109 201134295 120 ' 120A— 1201 控制器 125、125A、125B、125C 直流電源電路 130、135 電阻器 131至134 節點 140 發光二極體 140,至140n 發光二極體 140P1至140Pn 發光二極體 140vl至140vz 發光二極體 141 峰值 142 輸入電壓 143 相位 144 零 1451至145n 時間區間 146、147 時間象限 148,至148n 時間區間 149 輸入電壓水平 150,至 150n., 輸出 155 輸入 160 輸入 161 輸入 162 輸入 165 電流感測電阻器 17(^至170n 輸出 171,1171。 輸出 110 201134295 172!至 172n 輸出 175!至 175n 發光二極體段 180】至 180n 電流調整益 181 、 183 誤差放大器 185 記憶體 190 使用者界面 195、195A 電壓感測器 200 第二 示範性設備 205i 至 2053 隔離二極體 210丨至 21〇n 切換器 220!至 22〇3 輸出 225 第二感測器 230 控制器輸入 240 界面電路 240A 至 240E 界面電路 250第二示範性系統 260、270、280 電流限制電路 260A 電流限制電路 265 輸出 270A、 270B 電流限制電路 271 第一 電阻器 272 第二 電阻器 273 齊納 二極體 274 NPN電晶體 111 201134295 275 輸 出 280A 謂 :流限制電路 281-283 第 -電阻器 285 調 光 切 換器 287 齊 納 二 極體 288 節 點 289 齊 納 二 極體 290 溫 度保 護電路 290A 溫 度保 護電路 291 ' 292 :晶體(FET) 293 NPN 雙 極接面電晶體 300 第 三 示 範性設備 301 電 阻 器 /電流感測器 302 第 二 電 阻器 306 齊 納 二 極體 307 節 點 308 電 晶 體 (P-型 FET) 309 電 晶 體 (PNP BJT) 310,— ί 310η 切換器 311 齊 納 二 極體 314 電 晶 體 (NPN BJT) 316 第 二 電 阻器 317 第 三 電 阻器 318 /rAr 即 點 112 201134295 319 32〇ι . 321 322 323 324 325 326 327 328 329 330 330, 333 336 34〇ι 341 345, 350 351 361 ] 364、 3 66 ' 367 ' 電晶體 £ 320„ 輸入 第一 電阻 器 第二 電阻 器 第三 電阻 器 齊納 二極 體 運算 放大 器 阻斷 二極 體 節點 N型 電晶 體 NPN BJT 輸入 至 330n 輸入 額外 電阻 器 阻斷 二極 體 至 340n 電丨 :且器 額外電阻 器 至 345n 電1 阻器 第三 示範 性系統 切換 器 L 363、 373 二極 365、376、385 電容器 378 ' 388 節點 377 任選切換器 113 201134295 371、 383、384 電阻器 372、 387 齊納二極體 374、381 切換器/電晶體 382 比較器 386 隔離二極體 400第四示範性設備 405!至405n 切換驅動器 410 ' 415 類比至數位(A/D")轉換器 420 調光控制電路 425 比較器 430 同步信號產生器 435 Vcc產生器 440 時脈 445 啟動重設電路 450 過低電壓檢測器/第四示範性系統 455 過電壓檢測器 460 數位邏輯電路 465 記憶體電路 500 第五示範性設備 550 第五示範性系統 600 第六示範性設備 65 0 第六示範性系統 700 第七示範性設備 750 第七示範性系統 114 201134295 800 第 八 示 範 性設備 850 第 八 示 範 性系統 900 第 九 示 範 性設備 950 第 九 示 範 性系統 1000 第 十 示 範 性設備 1050 第 十 示 範 性系統 1100 第 十 _ · 示 範性設備 1150 第 十 一 示 範性系 統 1200 第 十 二 示 範性設 備 1250 第 十 二 示 範性系 統 1300 第 十 三 示 範性設 備 1350 第 十 二 示 範性系 統 Ip 峰值 電 流 Is 電 流 Ith 臨 界 電 流 Ql,Q2 時 1象限 V cc 輸 出 電 壓 VlN 輸 入 電 壓 水平 V ref 參考 電 壓 115The software, source code or metadata of this month can be implemented by any type of encoding, such as C, C++, System C, USA, XML, Java, Brew, SQL and its worry (eg SQL99 or SQL exclusive) Version), DB2, Oracle, or any other type of stylized language that performs the functions discussed herein, including various hardware definitions or hardware simulation languages (eg, Vedi〇g, VHDL, RTL) and resulting data Library file (for example: gdsii). As a result, the equivalent construction, construction, and construction of the software, and the meaning of any kind of any stylized language The symbols 'may be provided or can be interpreted to provide a specific and unrelated function or method (when exemplified or loaded in a processor or computer and implemented, for example, including controller 12). The software, meta-data or other source code of the present invention and any generated bit files (object code, data block, Jay-Master, Becco or look-up table) can be implemented on any tangible storage medium such as any computer. Or other mechanically readable data storage medium (4) is a f-brainable command, data command, program mode or other data, as discussed above in terms of memory 185, 465, for example: floppy disk, CD-ROM, heavyweight Write a disc 'digital disc, magnetic hard drive, optical drive or any other type of data storage device or media as mentioned above. The various advantages of the exemplary embodiment of the present invention 102 201134295 for providing power to a non-linear load such as an LED are readily apparent. Various exemplary embodiments provide AC line power to include one or more LEDs for high brightness applications, while providing a comprehensive reduction in the size and cost of the LED driver and the efficiency and application of the (4). Exemplary apparatus, methods, and system embodiments are suitably modified and operated over a relatively wide range of AC input receptacles while providing a desired output power or current 'without generating excessive internal dust or under high or excessive electrical stress. Place the component. In addition, various exemplary devices, methods, and system embodiments provide significant power factor correction when connected to the ac line for input power. Finally, various exemplary apparatus, methods, and system embodiments provide the ability to control the brightness, color temperature, and color of the illumination device. While the invention has been described with respect to the specific embodiments, these embodiments In the description, various details may be provided, such as electronic components, electronic and structural connections, and examples of material and structural changes, to provide a complete understanding of the embodiments of the invention. It will be appreciated by those skilled in the art that the present invention may be practiced without one or more of the specific details, or with other devices, systems, components, components, materials, components or the like. In other instances, well-known structures, materials or operations are not explicitly shown or described in detail to avoid obscuring aspects of the embodiments of the invention. In addition, the various figures are not drawn to scale and are not considered as limiting. Throughout the specification, reference to, or an embodiment, or an embodiment, or a specific embodiment, means that the features, structures, or characteristics described in connection with the embodiment are included in the present invention. At least one embodiment is not necessarily in all embodiments, and further, it does not necessarily mean that 103 201134295 refers to the same embodiment. Furthermore, the particular features, materials, or characteristics of any particular embodiment of the invention are combined in any suitable manner and in any suitable combination with any other embodiments, including the corresponding use without other features. Use the selected feature below. In addition, many modifications may be made to adapt a particular application, situation or material to the scope and spirit of the invention. It is to be understood that the various changes and modifications of the embodiments of the present invention described and illustrated herein are to be construed as a part of the scope of the invention. It is also to be understood that one or more of the elements described in the drawings may be implemented in a more individual or holistic manner, or even may be removed or rendered unusable in a particular situation, and it works. Integrally formed component combinations are also within the scope of the invention, particularly for embodiments in which the separation or combination of discrete components is unclear or indistinguishable. In addition, the use of the term "coupled" in this context includes, for example, "coupled" or "coupled", and includes any direct or indirect electrical, structural or magnetic surface, connection, or Adhesion or an adaptation or capability of direct or indirect electrical, structural or magnetic coupling, attachment or attachment, including integrally formed elements and elements coupled via or through another element. As used herein, for the purposes of the present invention, the noun, 〃, and its plural forms, LED" should be understood to include any electroluminescent body or other type implanted with a carrier - or A junction-based system that emits electrical signals to generate radiation, including but not limited to a variety of semiconductor or carbon-based structures that emit light by current or voltage, luminescent polymers, organic coffee, etc. It is included in any frequency bandwidth or any color or color temperature 104 201134295 See the light spectrum or other spectrum such as ultraviolet light or infrared light. As used herein, 'name, 3⁄4 Ac" means any form of current that changes with time. Or voltage, including but not limited to any waveform (sinusoidal, sinusoidal, rectified, rectified sinusoidal, square, rectangular, triangular, misaligned, irregular, etc.) and with any DC compensation AC or corresponding AC level, and includes For example, by intercepting or directional or reverse phase modulation, any change in AC current or voltage 'such as switching from a dimmer. As used herein, the name DC table does not fluctuate DC (for example, obtained by rectifying ac) and substantially solid or solid voltage DC (for example, obtained by a battery, a voltage regulator, or a capacitor-filtered power supply), in the previous description of the illustrated embodiment and in the display diode In the additional drawings of the body, it should be understood that within the scope of the present invention, a synchronous diode or a synchronous rectifier (such as a relay or a MOS field effect transistor or other transistor that is switched off and on by a control signal) Or other types of diodes I are used in place of the standard diodes. The exemplary embodiments presented herein generally produce a positive output voltage with respect to ground; however, the teachings of the present invention can also be applied to generate negative output The power converter, the exemplary topology can be architected here by reversing the polarity of the semiconductor with other polarizing elements. Moreover, any signal arrow in the drawing/schema should be considered only I-normative and Unless otherwise specifically noted, a group of step elements will be considered to be within the scope of the present invention, particularly where the respective or combined capabilities are not foreseeable, as here and thereafter. The use of a separate noun, or '' generally intends to mean, and/or ", which has both the meaning of the meaning of the combination and the meaning of the meaning, and is not limited to, mutually exclusive or "meaning" Unless otherwise indicated by 105 201134295, the use of "a", "an", "the" and "the" The descriptions of the same use and the scope of the entire patent application are hereby incorporated by reference to the same as the same as the "and" The invention is not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. From the above, it will be appreciated that various changes, modifications, and alternatives are possible and can be made without departing from the spirit and scope of the novel inventive concept. It should be understood that there are no restrictions on the specific methods and equipment shown here that are expected or should be inferred. Of course, all such modifications are intended to be encompassed by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The objects, features, and advantages of the present invention will be more readily understood by reference to the appended claims. And reference numerals having the letter 7G therein may be applied to identify additional types, installations, or variations of selected component embodiments in various figures, wherein: FIG. 1 is a first example designed in accordance with the teachings of the present invention. Circuit and block diagram of the sexual system and the first exemplary device. Figure 2 is a graph showing a first exemplary load current waveform and input voltage level designed in accordance with the teachings of the present invention. 3 is a graph showing a second exemplary negative 106 201134295 current carrying waveform and input voltage level designed in accordance with the teachings of the present invention. 4 is a block and circuit diagram showing a second exemplary system and a second exemplary device designed in accordance with the teachings of the present invention. Figure 5 is a block and circuit diagram showing a second exemplary system and a third exemplary device designed in accordance with the teachings of the present invention. 6 is a block and circuit diagram showing a fourth exemplary system and a fourth exemplary device designed in accordance with the teachings of the present invention. Figure 7 is a block and circuit diagram showing a fifth exemplary system and a fifth exemplary device designed in accordance with the teachings of the present invention. Figure 8 is a block and circuit diagram showing a sixth exemplary system and a sixth exemplary device designed in accordance with the teachings of the present invention. Figure 9 is a block and circuit diagram showing a first exemplary current limiter designed in accordance with the teachings of the present invention. Figure 10 is a circuit diagram showing a second exemplary current limiter designed in accordance with the teachings of the present invention. Figure 11 is a circuit diagram showing a third exemplary current limiter and temperature protection circuit designed in accordance with the teachings of the present invention. Figure 12 is a circuit diagram showing a fourth exemplary current limiter designed in accordance with the teachings of the present invention. Figure U is a block and circuit diagram showing a first exemplary interface circuit designed in accordance with the teachings of the present invention. Figure 14 is a block and circuit diagram showing a second exemplary interface circuit designed in accordance with the teachings of the present invention. Figure 15 is a block and circuit diagram showing a second non-linear boundary 107 201134295 surface circuit designed in accordance with the teachings of the present invention. Figure 16 is a block and circuit diagram showing a fourth exemplary interface circuit designed in accordance with the teachings of the present invention. Figure 17 is a block and circuit diagram showing a fifth exemplary interface circuit designed in accordance with the teachings of the present invention. Figure 18 is a circuit diagram showing a first exemplary DC power supply circuit designed in accordance with the teachings of the present invention. Figure 19 is a circuit diagram showing a second exemplary Dc power supply circuit designed in accordance with the teachings of the present invention. Figure 20 is a circuit diagram showing a second exemplary DC power supply circuit designed in accordance with the teachings of the present invention. Figure 2 is a block diagram showing an exemplary controller designed in accordance with the teachings of the present invention. Figure 22 is a flow chart showing a first exemplary embodiment of the design in accordance with the teachings of the present invention. Figure 23 is divided into Figures 23A, 23B and 23C, which are flow diagrams showing a second exemplary method not designed in accordance with the present invention. Figure 24 is a block and circuit diagram showing a seventh exemplary system and a seventh exemplary device designed in accordance with the teachings of the present invention. Figure 25 is a block and circuit diagram showing an eighth exemplary system, first and eighth exemplary devices designed in accordance with the teachings of the present invention. Figure 26 is a block and circuit diagram showing a ninth exemplary system, 'first and ninth exemplary devices, designed in accordance with the teachings of the present invention. Figure 7 is a block and circuit diagram showing a tenth exemplary system 108 201134295 and a tenth exemplary device designed in accordance with the teachings of the present invention. Figure 28 is a block and circuit diagram showing an eleventh exemplary system and an eleventh exemplary device designed in accordance with the teachings of the present invention. Figure 29 is a block and circuit diagram showing a twelfth exemplary system and a twelfth exemplary device designed in accordance with the teachings of the present invention. Figure 30 is a block and circuit diagram showing a thirteenth exemplary system and a thirteenth exemplary device designed in accordance with the teachings of the present invention. Figure 31 is divided into Figures 3A and 3 1 B, which are flow diagrams showing a third exemplary method designed in accordance with the teachings of the present invention. [Main Element Symbol Description] 50 First Exemplary System 100 First Exemplary Apparatus 102 AC (,, AC〃) Line 105 Rectifier 110 Switcher 110! to 110n Switcher 111, to 11ln Switcher 112! to 112n Switcher 115 Current sense benefit 116 Switch 117 Node / Ground potential 118 First switch 119 Second switch 109 201134295 120 ' 120A - 1201 Controller 125, 125A, 125B, 125C DC power supply circuit 130, 135 Resistors 131 to 134 Node 140 light-emitting diode 140, to 140n light-emitting diode 140P1 to 140Pn light-emitting diode 140vl to 140vz light-emitting diode 141 peak 142 input voltage 143 phase 144 zero 1451 to 145n time interval 146, 147 time quadrant 148, to 148n Time Interval 149 Input Voltage Level 150, to 150n., Output 155 Input 160 Input 161 Input 162 Input 165 Current Sense Resistor 17 (^ to 170n Output 171, 1171. Output 110 201134295 172! to 172n Output 175! to 175n LED segment 180] to 180n current adjustment 181, 183 error amplifier 185 memory 190 user interface 195, 195A voltage sensing 200 second exemplary device 205i to 2053 isolation diode 210丨 to 21〇n switch 220! to 22〇3 output 225 second sensor 230 controller input 240 interface circuit 240A to 240E interface circuit 250 second demonstration System 260, 270, 280 Current Limiting Circuit 260A Current Limiting Circuit 265 Output 270A, 270B Current Limiting Circuit 271 First Resistor 272 Second Resistor 273 Zener Diode 274 NPN Transistor 111 201134295 275 Output 280A Limiting circuit 281-283 First-resistor 285 Dimming switch 287 Zener diode 288 Node 289 Zener diode 290 Temperature protection circuit 290A Temperature protection circuit 291 '292: Crystal (FET) 293 NPN Bipolar junction Transistor 300 Third Exemplary Apparatus 301 Resistor/Current Sensor 302 Second Resistor 306 Zener Diode 307 Node 308 Transistor (P-type FET) 309 Transistor (PNP BJT) 310, - ί 310η Switcher 311 Zener diode 314 transistor (NPN BJT) 316 second resistor 317 third Resistor 318 /rAr ie point 112 201134295 319 32〇ι . 321 322 323 324 325 326 327 328 329 330 330, 333 336 34〇ι 341 345, 350 351 361 ] 364, 3 66 ' 367 'Crystal £ 320 „ Input first resistor second resistor third resistor Zener diode operational amplifier blocking diode node N-type transistor NPN BJT input to 330n input additional resistor blocking diode to 340n power: and Additional Resistors to 345n Electrical 1 Resistor Third Exemplary System Switcher L 363, 373 Dipole 365, 376, 385 Capacitor 378 '388 Node 377 Optional Switcher 113 201134295 371, 383, 384 Resistor 372, 387 Zener diode 374, 381 switcher/transistor 382 comparator 386 isolation diode 400 fourth exemplary device 405! to 405n switching driver 410 '415 analog to digital (A/D") converter 420 dimming Control Circuit 425 Comparator 430 Synchronization Signal Generator 435 Vcc Generator 440 Clock 445 Start Reset Circuit 450 Over Voltage Detector / Fourth Exemplary System 455 Over Voltage Detector 460 Digital Logic Circuit 465 Memory Circuit 500 Fifth Exemplary Apparatus 550 Fifth Exemplary System 600 Sixth Exemplary Apparatus 65 0 Sixth Exemplary System 700 Seventh Exemplary Apparatus 750 Seventh Exemplary System 114 201134295 800 Eighth Exemplary Apparatus 850 Eighth Exemplary System 900 Ninth Exemplary Apparatus 950 Ninth Exemplary System 1000 Tenth Exemplary Apparatus 1050 Tenth Exemplary System 1100 Tenth_· Exemplary Apparatus 1150 Eleventh Exemplary System 1200 Twelfth exemplary device 1250 Twelfth exemplary system 1300 Thirteenth exemplary device 1350 Twelfth exemplary system Ip Peak current Is current Ith Critical current Q1, Q2 1 quadrant V cc Output voltage VlN Input voltage level V ref reference voltage 115

Claims (1)

201134295 七、申請專利範圍: 1 · 一種提供功率到可耦合以接收一交流電電壓之複數 個發光二極體的方法,該複數個發光二極體被串聯耦合以 形成複數段發光二極體,每一段皆包含至少一個發光二極 體,複數段發光二極體會被耦合到對應的複數個切換器, 以將一所選段的發光二極體切換入或切換出一串聯發光二 極體電流路徑,該方法包含: 監視一第一參數; 在交流電電壓區間的一第一部份内,當第一參數已經 達到一第一預定水平時,將一對應段的發光二極體切換入 該串聯發光二極體電流路徑;以及 在交流電電壓區間的一第二部份内,當該第一參數已 經減少到一第二預定水平時,將一對應段的發光二極體切 換出該_聯發光二極體電流路徑。 2·如申請專利範圍第丨項之方法,其中該第一參數係為 該串聯發光二極體電流路徑的電流水平。 3 ’如申請專利範圍第2項之方法,進一步包含: 將该串聯發光二極體電流路徑的電流水平實質維持固 疋於该第一預定水平上。 4‘如申g青專利範圍第2項之方法,進一步包含: 在交流電電壓區間之該第一部份内,在該第一參數已 經達到~ ^ ^ 弟二預疋水平時’將下一對應段發光二極體切換 入°玄串聯發光二極體電流路徑。 5.如申請專利範圍第2項之方法,進一步包含: 116 201134295 在β亥第一部份交流電雷厭「ea 诘丨、工, 电電壓區間内,在該第一參數已銥 減/到一第四預定 、士 ^ ^ L 將—對應段發光二極體切換出 該串聯發光二極體電流路徑。 吳出 6_如申請專利範圍第2項之方法,進一步包含: 在交流電電壓區間之哕笛、 電流連螬、“丨 ]之°亥第-部份内,當-發光二極體 電|連續達到一預定峰值 #, 嗦钵Α ^ 卞岈,將一對應段發光二極體 連、,切換入該串聯發光_ ρ货尤一極體電流路徑;以及 在父流電電壓區間之兮笛_ &、 第一 σ卩伤内,當該整流交流電 電壓水平減少到一對雁雷照^ τ + ^ . 對應電壓水平時,將該對應段發光二極 刀換出該串聯發光二極體電流路徑。. 7.如申請專利範圍第6項之方法,其中將該對應段發光 -極體切換出該串聯發光二極體電流路徑,其係與將該對 應段發光二極體切換入該串聯發光二極體電流路徑呈相反 順序。 8. 如申請專利範圍帛1項之方法,進一步包含: 〇决定第複數個時間區間,其係對應用於交流電電壓 區間之該第—部份的數個段發光二極體;以及 。决疋第一複數個時間區間,其係對應用於交流電電壓 區間之該第二部份的數個段發光二極體。 9. 如申請專利範圍第8項之方法,進一步包含: 在交流電電壓區間之該第一部份内,在該第一複數個 時間區間之每一個時間區間期滿時,將下一段發光二極體 切換入該串聯發光二極體電流路徑;以及 在交流電電壓區間之該第二部份内,在該第二複數個 117 201134295 時間區間之每—個時間 4r - ^ ^ χ Ί期滿時,以相反順序將下一段 發先一極體切換出該 权 1Λ , ^ Ρ ^九一極體電流路徑。 含時間專利範圍帛1項之方法,其中該第-參數包 ^更户時^ 或更多個時間區間,或者時基,或者一 或更多時脈循環數。 n_如申請專利範圍第1項之方法,進一步包含: 交爪電電壓整流以提供—整流交流電電壓。 12二申請專利範圍第1項之方法,進-步包含: 決定是否將交流電電壓作相位調變。 13. 如申請專利範圍第12項之方法,進一步包含: 當將交流電電壓作相位調變時,將一段發光二極體切 換入§亥串聯發光二極辦雷、,与 極骽電流路杈,其係對應一相位調變 流電電壓水平。 14. 如申請專利範圍第12項之方法,進一步包含: 當將交流電電壓作相位調變時,將一段發光二極體切 換入該串聯發光二極體電流路徑,其係對應—相位調變交 流電電流水平。 15·如申請專利範圍第12項之方法,進一步包含: 當將交流電電壓作相位調變時,將一段發光二極體切 換入該串聯發光二極體電流路徑,其係對應該相位調變交 流電電壓的一時間區間。 16.如申請專利範圍第12項之方法,進一步包含: 當將交流電電壓作相位調變時,經由一第一切換器維 持-並聯發光二極體電流路徑,同時將下一段發光二極體 118 201134295 經由一第二切換哭 17如申往裒妥刀入“聯發光二極體電流路徑。 ⑴申-專利範圍第W之方法,進—…. 在假如下一$恭上 ^ ^ s ' Γ 奴發光二極體被切換入兮由祕a 電流路徑下,決定B 、以串聯發光二極體 之兮第一 Λ Y 刀時間維持在交流電電壓區間 平。 遛電,瓜達到—預定峰值水 18. 如申請專利範圍第17項之 #女* 万法進—步包含: 虽有充分時間維持在 ^又抓电罨壓區間之該一 供該發光二極體電流達 ° 』唸預疋峰值水平時,將下一趿菸 光二極體切換入該串聯發 心 哪I元一極體電流路徑。. 19. 如申請專利範圍第17 項之方法’進一步包含· 當沒有充分時間維持在 . 災又机罨電壓區間之該第一部份 以供發光一極體電流達到亨 j这預疋峰值水平時,不將下一段 發光二極體切換入該串聯 杈 I无—極體電流路經。 20·如申請專利範圍第 、 項之方法,進一步包含: 切換複數段發光二極,”…, · 體,以形成一第一串聯發光二極 體電流路徑;以及 ~ π 切換複數段發光二極和 體,以形成並聯該第一串聯發光 二極體電流路徑的一第二电 串聯發光二極體電流路徑。 21.如申請專利範圍第】τΕ 1項之方法’其中複數段發光二 極體之所選段發光二極體+ > 腹中母一個均包含具有不同顏色或 波長之發光頻譜的發光二極胃。 2 2.如申請專利範圍第9 闲罘21項之方法,進一步包含: 將該所選段發光二極,^ ^ 蚀體選擇性切換入該串聯發光二極 U9 201134295 體電流路徑,以提供一對應的發光效果。 23·如申請專利範圍第21項之方法,進一步包含·· 將该所選段發光二極體選擇性切換入該串聯發光二極 體電流路徑,以提供一對應的顏色溫度。 24. —種可耦合以接收一交流電電壓的設備,該設備包 含: 整器,提供一整流交流電電麼; 複數個發光二極體,其係被串聯耦合以形成複數段發 光二極體; 複數個切換器,其係對應地耦合到複數段發光二極 體以將所選·^的發光二極體切換入或切換出一串聯發 光二極體電流路徑; 一電流感測器,感測一發光二極體電流水平丨以及 -控制器’耦合到該複數個切換器、以及到該電流邊 測器,在整流交流電電壓區間之_第—部份内且當該發另 二極體電流水平增加到一第一預定電流水平時,該控希" 會將-對應段發光二極體切換人該串聯發光二極體電流與 位’而且在整流交流電電壓區間之_第二部份内且當索 發光二極體電流水平減少到_第二預^電流水平時,^ 制器會將該對應段發光二極體切換出該串聯發光二極則 流路徑》 、…间,丹甲該控… 步將該發光二極體電流水平實質维垃m — τ貝貝維持固定於該第_ 平上。 $艰 120 201134295 26. 如申晴專利範圍第24項之設備,其中在交流電電壓 區間之§亥第一部份内,當該發光二極體電流水平已經達到 一第三預定水平時,該控制器會進一步將一下一對應段發 光一極體切換入該串聯發光二極體電流路徑内。 27. 如申睛專利範圍第24項之設備’其中在該交流電電 壓區間之該第二部份内,當該發光二極體電流水平已經減 乂到一第四預定水平時,該控制器會進一步將一對應段發 光一極體切換出該串聯發光二極體電流路徑。 28. 如申請專利範圍第24項之設備,進一步包含: 複數個電阻器’該複數個電阻器的每一個電阻器會被 串聯耗合到該複數個切換器的一對應切換器。 29·如申請專利範圍第28項之設備,其中每一電阻器會 被輕合在該對應切換器的一高電壓側上。 3〇.如申請專利範圍第28項之設備,其中每一電阻器會 被麵合在該對應切換器的一低電壓側上。 3 1.如申請專利範圍第24項之設備,進一步包含: 一切換器與一電阻器,其係串聯耦合該複數段發光二 極體的至少一段發光二極體。 32.如申請專利範圍第24項之設備’其中該複數段發光 二極體的最终段發光二極體總是會被耦合在該串聯發光二 極體電流路徑中。 33·如申請專利範圍第24項之設備’其中該控制器會被 進一步_合到複數段發光二極體’以接收對應節點的電壓 水平。 121 201134295 34.如申請專利範圍第24項 〇 谓之°又備其中s亥複數個切換 器的至少一個切換薄舍祐^^人2i 器會破搞合到該整流器,以接收該整流 交流電電壓。 35.如申請專利範圍第24項之設備,其中在整流交流電 電壓區間之D亥第-部份内,當該發光二極體電流水平達到 -預定峰值水平時,該㈣器進―步可將_對應段發光二 極體切換入該串聯發光二極體電流路徑;而且在一整流交 流電電壓區間之該第二部份内,當該發光二極體電流水平 減少到-對應值時,該控制器進—步會將該對應段發光二 極體切換出該串聯發光二極體電流路徑。 从如申請專利範圍帛35項之設備,其中該控制器進一 ^將該對應段發光二極體切換出該串聯發光二極體電流路 控’其係與將㈣應段發光二極體切換人該串聯發光二極 體電流路徑呈相反順序。 37·如申請專利範圍第24項之設備,其中該控制器進一 步決定是否將該整流交流電電壓作相位調變。 38.如申請專利範圍第37項之設備,其中當該整流交流 電電壓被相位調變時,該控制器進一步將一段發光二極體 刀換入β玄串秘發光二極體電流路徑,其係、對應言亥整流交流 電電壓水平。 39.如申請專利範圍第37項之設備,其中當該整流交流 電電壓被相位調變時,該控制器進一步將一段發光二極體 切換入該串聯發光二極體電流路徑,其係對應該整流交流 電電壓水平的時間區間。 122 201134295 40. 如申凊專利範圍第37項之設備,其中當該整流交流 電電壓被相位調變時,該控制器進一步經由一第一切換器 維持一並聯發光二極體電流路經,同時將下一段發光二極 體經由-第二切換器切換入該串聯發光二極體電流路徑。 41. 如申請專利範圍第24項之設備,其中在假如下—段 發光二極體被切換入該串聯發光二極體電流路徑下,該控 制器進一步決定是否有充分時間維持在該整流交流電電廢 區間的第一部份,以供該發光二極體電流水平達到該預定 峰值水平。 42. 如申請專利範圍第41項之設備,其中當有充分時間 維持在該整流交流電電壓區間之第一部份以供該發光二極 體電流水平達到該預定峰值水平時,該控制器進一步將該 下一段發光二極體切換入該串聯發光二極體電流路徑;且 备’又有充分時間維持在該整流交流電電壓區間之第一部份 以供該發光二極體電流水平達到該預定峰值水平時該控 制器進一步不將下一段發光二極體切換入該串聯發光二極 體電流路徑。 43. 如申請專利範圍第24項之設備,其中該控制器進一 v切換複數#又發光一極體’以形成第一串聯發光二極體電 流路徑,以及切換複數段發光二極體,以形成並聯該第一 串聯發光二極體電流路徑的第二串聯發光二極體電流路 徑。 44. 如申請專利範圍第24項之設備,其中複數段發光二 極體之所選段發光二極體中每一個均包含具有不同顏色或 123 201134295 波長之發光頻譜的發光二極體。 45. 如申請專利範圍第44項之設備,其中該控制器進— 步將所選段發光二極體選擇性切換入該串聯發光二極體電 流路控,以提供一對應的發光效果。 46. 如申請專利範圍第44項之設備,其中該控制器進— 步將違所選段發光二極體選擇性切換入該串聯發光二極體 電流路徑’以提供一對應的顏色溫度。 47. 如申請專利範圍第24項之設備,其中該設備在實質 大約100赫茲、120赫茲、300赫茲、360赫茲或400赫茲 的整流交流電電壓頻率上操作。 48. 如申請專利範圍第24項之設備,進一步包含: 複數個磷光體塗層或層,每一磷光體塗層或層會被耦 合到該複數個發光二極體的一對應發光二極體,每一磷光 體塗層或層則具有在大約2至3毫秒之間的發光衰變時間 常數。 49· 一種可耦合以接收一交流電電壓的設備,該設備包 含: 第一複數個發光二極體,其係被串聯耦合以形成第一 複數段發光二極體; 第一複數個切換器’其係被耦合到該第一複數段發光 二極體’以響應一控制訊號來將一所選段的發光二極體切 換入或切換出一第一串聯發光二極體電流路徑; 一電流感測器,決定一發光二極體電流水平;以及 一控制器’其係被耦合到該複數個切換器及到該電流 124 201134295 感測器’纟交流電電壓區間之—第—部份内且響應該發光 二極體電流水平’該控制器會產生一第—控制訊號,以將 該j 一複數段發光二極體的一對應段發丨光二極體切換入該 第-串聯發光二極體電流路徑;而且-交流電電壓區間之 一第二部份内且響應該發光二極體電流水平,將第一複數 段發光二極體的-對應段發光二極體切換出該第一串聯發 光二極體電流路徑。 x 50. 如申請專利範圍帛49項之設備,其中該控制器進一 步將該發光二極體電流水平實f維持固定於該第—預定 平上。 51. 如申請專利範圍第杓項之設備,進一步包含: 複數個電阻器’肖複數個電阻器的每一個冑阻器係串 聯搞合到該複數個切換器的一對應切換器。 52. 如申請專利範圍第51項之設備其中每一個電阻器 會被輕合在對應切換器的—高電壓側上。 ,53.如申請專利範圍帛51項之設備,其中每一個電阻器 會被耦合在對應切換器的-低電壓側上。 。 54.如申請專利範圍第49項之設備,進一步包含: 換器電阻器,其係串聯耦合該複數段發光二 極體的至少一段發光二極體。 士申明專利圍第49項之設備,其中該複數段發光 二極體的最終段私本_上 X尤一極體總是會被耦合在該串聯發光二 極體電流路徑中。 申°月專利圍第49項之設備,其中該控制器會被 125 201134295 進一步執合到複數段發光二極體,以接收對應節點的電壓 水平。 。57.如申請專利範圍第49項之設備,其中該複數個切換 器的至少一個切換器會被耦合到該整流器,以接收該整流 交流電電壓。 ^ 58. 如申請專利範圍第49項之設備’進一步包含: 第二複數個發光二極體,其係被争聯耦合以形成第二 複數段發光二極體;以及 第一複數個切換器,其係被耦合到第二複數段發光二 極體以將第二複數段發光二極體的__所選段切換入或切換 出一第二串聯發光二極體電流路徑; 其中该控制器進一步耦合到第二複數個切換器並且進 一步產生對應控制訊號’以切換第二複數段發光二極體的 複數段,U形成並聯帛—串聯發光二極體電流路徑的第二 串聯發光二極體電流路徑。 59. 如申請專利範圍第58項之設備’其中該第二串聯發 光一極體電流路徑所具有的極性與該第一串聯發光二極體 電流路徑相反。 60. 如申請專利範圍第58項之設備,其中流經該第一串 聯發光二極體電流路徑戶斤具有的第一電流之方向與流經該 第二串聯發光二極體電流路徑的第二電流相反。 61. 如申請專利範圍第49項之設備,進一步包含: 一電流限制電路。 62. 如申請專利範圍第49項之設備,進一步包含: 126 201134295 一調光界面電路。 步包含 步包含 6 3.如申請專利範圍第49項之設備,進 一直流電源電路,其係耦合到該控制器 64.如申請專利範圍第49項之設備,進 一溫度保護電路。 八、圖式· (如次頁) 127201134295 VII. Patent Application Range: 1 . A method for providing power to a plurality of light emitting diodes that are coupled to receive an alternating current voltage, the plurality of light emitting diodes being coupled in series to form a plurality of light emitting diodes, each Each of the segments includes at least one light emitting diode, and the plurality of light emitting diodes are coupled to the corresponding plurality of switches to switch a selected segment of the light emitting diode into or out of a series light emitting diode current path. The method includes: monitoring a first parameter; in a first portion of the alternating current voltage interval, when the first parameter has reached a first predetermined level, switching a corresponding segment of the light emitting diode into the series light a diode current path; and in a second portion of the alternating current voltage interval, when the first parameter has been reduced to a second predetermined level, switching a corresponding segment of the light emitting diode out of the light emitting diode Polar body current path. 2. The method of claim 2, wherein the first parameter is a current level of the series LED current path. 3' The method of claim 2, further comprising: substantially maintaining the current level of the series LED current path at the first predetermined level. 4' The method of claim 2, wherein the first part of the alternating current voltage interval, in the first part of the alternating current voltage range, the next parameter is reached when the first parameter has reached the level of ~ ^ ^ The segment light-emitting diode is switched into the 玄-series light-emitting diode current path. 5. The method of claim 2, further comprising: 116 201134295 In the first part of the beta sea, the alternating current lightning is "ea 诘丨, work, electric voltage range, the first parameter has been reduced / to one The fourth predetermined, 士^^L--corresponding segment LEDs are switched out of the series LED current path. Wu 6_, as in the method of claim 2, further includes: Between the AC voltage range The whistle, the current 螬, the 丨 第 第 部份 当 当 当 当 当 当 当 当 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光Switching into the series illuminating _ ρ cargo and even one pole current path; and in the parent galvanic voltage range 兮 &;, the first σ 卩 injury, when the rectified alternating current voltage level is reduced to a pair of geese ^ τ + ^ . Corresponding to the voltage level, the corresponding segment LED is swapped out of the series LED current path. 7. The method of claim 6, wherein the corresponding segment light-emitting body is switched out of the series light-emitting diode current path, and the corresponding segment light-emitting diode is switched into the series light-emitting diode The polar body current paths are in reverse order. 8. The method of claim 1, wherein the method further comprises: determining a plurality of time intervals corresponding to the plurality of segment light emitting diodes for the first portion of the alternating current voltage interval; The first plurality of time intervals are determined, which corresponds to a plurality of segment light emitting diodes for the second portion of the alternating current voltage interval. 9. The method of claim 8, further comprising: in the first portion of the alternating current voltage interval, when each of the first plurality of time intervals expires, the next segment of the light emitting diode Switching into the series LED current path; and in the second portion of the alternating current voltage interval, at the expiration of each of the second plurality of 117 201134295 time intervals, 4r - ^ ^ χ , In the reverse order, the next segment of the first polar body is switched out of the weight 1Λ, ^ Ρ ^ nine-pole current path. A method comprising the scope of time patent 帛1, wherein the first parameter parameter is a household time ^ or more time intervals, or a time base, or one or more clock cycles. N_ The method of claim 1, further comprising: alternating current voltage rectification to provide - rectifying the alternating voltage. The method of applying the first item of the patent scope of 12, the further step includes: determining whether the alternating current voltage is phase-modulated. 13. The method of claim 12, further comprising: when the alternating current voltage is phase-modulated, switching a length of the light-emitting diode into the CMOS relay, and the current circuit. It corresponds to a phase modulation galvanic voltage level. 14. The method of claim 12, further comprising: when the alternating current voltage is phase-modulated, switching a length of the light-emitting diode into the current path of the series-connected LED, the corresponding-phase-modulated alternating current Current level. 15. The method of claim 12, further comprising: switching a section of the light-emitting diode into the series-connected LED current path when the alternating current voltage is phase-modulated, which corresponds to phase-modulated alternating current A time interval of voltage. 16. The method of claim 12, further comprising: maintaining a parallel-light-emitting diode current path via a first switch while phase-modulating the alternating current voltage while simultaneously placing the next segment of the light-emitting diode 118 201134295 Through a second switch to cry 17 such as the application to the 联 裒 入 “ “ 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联 联The slave light-emitting diode is switched into the current path of the a a, which determines B, and the first Λ Y knife time of the series illuminating diode is maintained at the alternating current voltage interval. 遛, 瓜, - predetermined peak water 18 For example, the #女*万法进-step of the 17th article of the patent application includes: Although there is sufficient time to maintain the current and the voltage of the LED, the current of the LED is up to ° When the next fluorescent diode is switched into the I-in-one current path of the tandem core. 19. The method of claim 17 further includes · when there is insufficient time to maintain Case voltage The first part of the interval is such that when the current of the one-pole body reaches the peak value of the peak, the next-stage light-emitting diode is not switched into the series-connected 无I-pole current path. The method of claim 2, further comprising: switching a plurality of segments of the light emitting diode, "..., a body to form a first series light emitting diode current path; and ~π switching a plurality of segments of the light emitting diode and body to Forming a second electrical series LED current path in parallel with the first series LED current path. 21. The method of claim 】 τ Ε ' 其中 其中 其中 其中 其中 其中 其中 其中 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选stomach. 2 2. The method of claim 9 of the ninth aspect of the patent application, further comprising: selectively switching the selected segment of the light-emitting diode, the ^ 2 etchant into the series-emitting diode U9 201134295 body current path to provide a Corresponding lighting effect. 23. The method of claim 21, further comprising: selectively switching the selected segment of light emitting diodes into the series light emitting diode current path to provide a corresponding color temperature. 24. An apparatus coupled to receive an alternating current voltage, the apparatus comprising: a whole unit providing a rectified alternating current; a plurality of light emitting diodes coupled in series to form a plurality of light emitting diodes; a switcher, which is correspondingly coupled to the plurality of light emitting diodes to switch the selected light emitting diode into or out of a series light emitting diode current path; a current sensor, sensing one a light-emitting diode current level 丨 and a controller coupled to the plurality of switches, and to the current edge detector, within the _th portion of the rectified alternating current voltage interval and when the other diode current level When increasing to a first predetermined current level, the control will switch to the series LED output current and the bit in the second part of the rectified AC voltage range and When the current level of the cable diode is reduced to the second pre-current level, the controller switches the corresponding segment LED out of the series-emission dipole flow path, ... ... The step of maintaining the level of the light-emitting diode body is substantially fixed on the first level. $难120 201134295 26. The equipment of the 24th item of Shenqing Patent Range, in the first part of the alternating current voltage range, when the current level of the light-emitting diode has reached a third predetermined level, the control The device further switches the next corresponding segment of the light-emitting body into the series LED current path. 27. The device of claim 24, wherein in the second portion of the alternating current voltage interval, when the current level of the light emitting diode has been reduced to a fourth predetermined level, the controller Further, a corresponding segment of the light-emitting diode is switched out of the series LED current path. 28. The apparatus of claim 24, further comprising: a plurality of resistors each resistor of the plurality of resistors being serially coupled to a corresponding switch of the plurality of switches. 29. The device of claim 28, wherein each resistor is lightly coupled to a high voltage side of the corresponding switch. 3. The device of claim 28, wherein each resistor is surface mounted on a low voltage side of the corresponding switch. 3. The device of claim 24, further comprising: a switch and a resistor coupled in series to the at least one segment of the plurality of light emitting diodes of the plurality of light emitting diodes. 32. The device of claim 24, wherein the final segment of the plurality of light emitting diodes is always coupled in the series light emitting diode current path. 33. The device of claim 24, wherein the controller is further coupled to the plurality of light emitting diodes to receive the voltage level of the corresponding node. 121 201134295 34. If you apply for the scope of the patent, the 24th item is also provided. At least one of the switches of the shai and the plurality of switches will be broken into the rectifier to receive the rectified AC voltage. . 35. The apparatus of claim 24, wherein in the portion of the rectified alternating current voltage interval, when the current level of the light emitting diode reaches a predetermined peak level, the (four) device can be further advanced. _ corresponding segment LEDs are switched into the series LED current path; and in the second portion of a rectified AC voltage interval, when the LED current level is reduced to a corresponding value, the control The step-by-step will switch the corresponding segment LED from the series LED current path. From the device as claimed in the patent scope 帛35, wherein the controller switches the corresponding segment light-emitting diode out of the series-emitting diode current path control, and the (four) segment-emitting diode switcher The series LED current paths are in reverse order. 37. The apparatus of claim 24, wherein the controller further determines whether the rectified alternating current voltage is phase modulated. 38. The device of claim 37, wherein when the rectified alternating current voltage is phase-modulated, the controller further switches a length of the light-emitting diode knife into a beta-series light-emitting diode current path. Corresponding to the reciprocating AC voltage level. 39. The device of claim 37, wherein when the rectified alternating current voltage is phase modulated, the controller further switches a length of the light emitting diode into the series light emitting diode current path, which is rectified The time interval of the AC voltage level. The device of claim 37, wherein when the rectified alternating current voltage is phase-modulated, the controller further maintains a parallel light-emitting diode current path via a first switch, and The next segment of the light emitting diode is switched into the series LED current path via the second switch. 41. The apparatus of claim 24, wherein the controller further determines whether there is sufficient time to maintain the rectified alternating current when the following-stage LED is switched into the series LED current path. The first portion of the waste interval is for the light-emitting diode current level to reach the predetermined peak level. 42. The apparatus of claim 41, wherein the controller further maintains a first portion of the rectified alternating voltage range for the illuminating diode current level to reach the predetermined peak level The next segment of the LED is switched into the series LED current path; and there is sufficient time to maintain the first portion of the rectified AC voltage range for the LED current level to reach the predetermined peak When horizontal, the controller further does not switch the next segment of the LED into the series LED current path. 43. The device of claim 24, wherein the controller further switches a complex number # and further emits a polar body' to form a first series-connected LED current path, and switches a plurality of segments of the light-emitting diode to form A second series-connected LED current path of the first series-connected LED current path is connected in parallel. 44. The device of claim 24, wherein each of the selected segments of the plurality of light emitting diodes comprises a light emitting diode having a different color or an emission spectrum of 123 201134295 wavelength. 45. The device of claim 44, wherein the controller further selectively switches the selected segment of the LED into the series LED current path to provide a corresponding illumination effect. 46. The device of claim 44, wherein the controller further selectively switches the selected segment of the LED to the series LED current path to provide a corresponding color temperature. 47. The device of claim 24, wherein the device operates at a rectified alternating voltage frequency substantially at about 100 Hz, 120 Hz, 300 Hz, 360 Hz, or 400 Hz. 48. The device of claim 24, further comprising: a plurality of phosphor coatings or layers, each phosphor coating or layer being coupled to a corresponding light emitting diode of the plurality of light emitting diodes Each phosphor coating or layer has a luminescence decay time constant of between about 2 and 3 milliseconds. 49. An apparatus coupled to receive an alternating current voltage, the apparatus comprising: a first plurality of light emitting diodes coupled in series to form a first plurality of light emitting diodes; a first plurality of switches Is coupled to the first plurality of light-emitting diodes ' in response to a control signal to switch a selected segment of the LED into or out of a first series LED current path; a current sensing Determining a light-emitting diode current level; and a controller' is coupled to the plurality of switches and to the current portion 124 201134295 sensor '纟 alternating current voltage interval - part and responding to The LED current level 'the controller generates a first control signal to switch a corresponding segment of the j-multiple-segment LEDs into the first-series light-emitting diode current path And - in the second part of one of the alternating current voltage ranges, and in response to the level of the light emitting diode, switching the corresponding partial light emitting diode of the first plurality of light emitting diodes out of the first series Light diode current path. x 50. The device of claim 49, wherein the controller further maintains the LED current level f on the first predetermined level. 51. The device of claim 3, further comprising: a plurality of resistors. Each of the plurality of resistors is coupled in series to a corresponding switch of the plurality of switches. 52. As in the device of claim 51, each of the resistors will be lightly coupled to the high voltage side of the corresponding switch. 53. The device of claim 51, wherein each of the resistors is coupled to the low voltage side of the corresponding switch. . 54. The device of claim 49, further comprising: a converter resistor coupled in series to the at least one segment of the plurality of light emitting diodes of the plurality of light emitting diodes. The device of claim 49, wherein the final segment of the plurality of light-emitting diodes is always coupled to the series-connected diode current path. The equipment of the 49th patent of the patent, wherein the controller is further bound to the plurality of light-emitting diodes by 125 201134295 to receive the voltage level of the corresponding node. . 57. The apparatus of claim 49, wherein at least one switch of the plurality of switches is coupled to the rectifier to receive the rectified alternating current voltage. ^ 58. The device of claim 49, further comprising: a second plurality of light emitting diodes coupled to form a second plurality of light emitting diodes; and a first plurality of switches, Is coupled to the second plurality of light emitting diodes to switch the __ selected segment of the second plurality of light emitting diodes into or out of a second series light emitting diode current path; wherein the controller further Coupling to the second plurality of switches and further generating a corresponding control signal 'to switch the plurality of segments of the second plurality of light emitting diodes, U forming a second series LED current of the parallel 帛-series light-emitting diode current path path. 59. The device of claim 58 wherein the second series-connected photocurrent path has a polarity opposite to the first series-connected LED current path. 60. The device of claim 58, wherein the direction of the first current flowing through the first series LED current path and the second current flowing through the second series LED current path The current is reversed. 61. The device of claim 49, further comprising: a current limiting circuit. 62. The device of claim 49, further comprising: 126 201134295 A dimming interface circuit. The step includes the step 6. In the device of claim 49, a DC power supply circuit is coupled to the controller. 64. As in the device of claim 49, a temperature protection circuit is provided. Eight, schema · (such as the next page) 127
TW099141677A 2010-03-22 2010-12-01 Apparatus, method and system for providing ac line power to lighting devices TWI475922B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/729,081 US8410717B2 (en) 2009-06-04 2010-03-22 Apparatus, method and system for providing AC line power to lighting devices

Publications (2)

Publication Number Publication Date
TW201134295A true TW201134295A (en) 2011-10-01
TWI475922B TWI475922B (en) 2015-03-01

Family

ID=46751425

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141677A TWI475922B (en) 2010-03-22 2010-12-01 Apparatus, method and system for providing ac line power to lighting devices

Country Status (1)

Country Link
TW (1) TWI475922B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108434A (en) * 2011-11-14 2013-05-15 英飞特电子(杭州)股份有限公司 Load drive circuit
CN103458551A (en) * 2012-05-28 2013-12-18 冯向光 Switch LED drive circuit and LED lighting system
TWI471056B (en) * 2012-03-15 2015-01-21
TWI495394B (en) * 2012-09-18 2015-08-01 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
TWI511605B (en) * 2012-03-13 2015-12-01 Dialog Semiconductor Inc Dynamic control of power switching bipolar junction transistor
TWI551185B (en) * 2013-05-23 2016-09-21 張珉準 Power supply circuit for light emitting diode
TWI768880B (en) * 2021-05-07 2022-06-21 亞碩綠能股份有限公司 Synchronous pulse communicating method and system thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276861B1 (en) * 2004-09-21 2007-10-02 Exclara, Inc. System and method for driving LED
US7081722B1 (en) * 2005-02-04 2006-07-25 Kimlong Huynh Light emitting diode multiphase driver circuit and method
US7902771B2 (en) * 2006-11-21 2011-03-08 Exclara, Inc. Time division modulation with average current regulation for independent control of arrays of light emitting diodes
US7528551B2 (en) * 2007-02-26 2009-05-05 Semiconductor Components Industries, L.L.C. LED control system
US8368636B2 (en) * 2007-09-21 2013-02-05 Point Somee Limited Liability Company Regulation of wavelength shift and perceived color of solid state lighting with intensity variation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108434A (en) * 2011-11-14 2013-05-15 英飞特电子(杭州)股份有限公司 Load drive circuit
CN103108434B (en) * 2011-11-14 2015-07-08 英飞特电子(杭州)股份有限公司 Load drive circuit
TWI511605B (en) * 2012-03-13 2015-12-01 Dialog Semiconductor Inc Dynamic control of power switching bipolar junction transistor
TWI471056B (en) * 2012-03-15 2015-01-21
CN103458551A (en) * 2012-05-28 2013-12-18 冯向光 Switch LED drive circuit and LED lighting system
TWI495394B (en) * 2012-09-18 2015-08-01 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
TWI551185B (en) * 2013-05-23 2016-09-21 張珉準 Power supply circuit for light emitting diode
TWI768880B (en) * 2021-05-07 2022-06-21 亞碩綠能股份有限公司 Synchronous pulse communicating method and system thereof

Also Published As

Publication number Publication date
TWI475922B (en) 2015-03-01

Similar Documents

Publication Publication Date Title
US10616966B2 (en) Apparatus, method and system for providing AC line power to lighting devices
US8410717B2 (en) Apparatus, method and system for providing AC line power to lighting devices
TW201143519A (en) Apparatus, method and system for providing AC line power to lighting devices
US9474122B2 (en) Circuit arrangement and led lamp comprising the same
TW201134295A (en) Apparatus, method and system for providing AC line power to lighting devices
JP6038115B2 (en) Driving apparatus and method for driving a load, in particular an LED assembly
US20190021154A1 (en) Solid State Lighting Systems
CN103298201B (en) For avoiding the method and system glimmered in SSL device
US20140210351A1 (en) Electronic control gears for led light engine and application thereof
EP2710861A1 (en) Light generating device
WO2014122891A1 (en) Driving circuit, illumination light source, and illumination device
KR20140124379A (en) Auxiliary power supply for lighting driver circuitry
TW201136443A (en) Two-terminal current controller and related LED lighting device
CA2892775C (en) Led driver circuit using flyback converter to reduce observable optical flicker by reducing rectified ac mains ripple
TW201728227A (en) Dimming module and solid state lighting device
CN105554973B (en) The controller and corresponding operation method of driving circuit for solid-state lighting
JP2014078374A (en) Illumination equipment
US9800049B1 (en) Method and apparatus for correcting for power harmonics
US9603218B1 (en) Controlled color transition
CN111083823A (en) Lighting fixtures, lighting fixtures and lighting systems
JP7033744B2 (en) Lighting control system, lighting system, lighting system, and program
WO2016197971A1 (en) Converter-free led driver with low-frequency flicker reduction
JP2020523789A (en) Passive 3-phase LED driver
US9055623B1 (en) Light-emitting diode offline buck converter and method of controlling thereof
TW201620337A (en) Dual mode operation light-emitting diode lighting device having multiple driving stages