[go: up one dir, main page]

TW201131731A - Semiconductor multi-package module having wire bond interconnection between stacked packages - Google Patents

Semiconductor multi-package module having wire bond interconnection between stacked packages Download PDF

Info

Publication number
TW201131731A
TW201131731A TW100113640A TW100113640A TW201131731A TW 201131731 A TW201131731 A TW 201131731A TW 100113640 A TW100113640 A TW 100113640A TW 100113640 A TW100113640 A TW 100113640A TW 201131731 A TW201131731 A TW 201131731A
Authority
TW
Taiwan
Prior art keywords
package
die
module
substrate
stacked
Prior art date
Application number
TW100113640A
Other languages
Chinese (zh)
Other versions
TWI469301B (en
Inventor
Marcos Karnezos
Original Assignee
Chippac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/632,553 external-priority patent/US7053476B2/en
Priority claimed from US10/632,552 external-priority patent/US20040061213A1/en
Priority claimed from US10/632,551 external-priority patent/US6838761B2/en
Priority claimed from US10/632,568 external-priority patent/US7205647B2/en
Priority claimed from US10/632,549 external-priority patent/US7064426B2/en
Priority claimed from US10/632,550 external-priority patent/US6972481B2/en
Application filed by Chippac Inc filed Critical Chippac Inc
Publication of TW201131731A publication Critical patent/TW201131731A/en
Application granted granted Critical
Publication of TWI469301B publication Critical patent/TWI469301B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/10All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
    • H01L2225/1011All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/10All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
    • H01L2225/1011All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1052Wire or wire-like electrical connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/10All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
    • H01L2225/1011All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/10All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
    • H01L2225/1011All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
    • H01L2225/1094Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A semiconductor multi-package module having stacked lower and upper packages, each package including a die attached to a substrate, in which the upper and lower substrates are interconnected by wire bonding. Also, a method for making a semiconductor multi-package module, by providing a lower molded package including a lower substrate and a die, affixing an upper molded package including an upper substrate onto the upper surface of the lower package, and forming z-interconnects between the upper and lower substrates.

Description

201131731 六、發明說明: 相關申請交互參考 此案主張於2002年9月17日提出之美國臨時申請編號 60/41 1,590之優先權,其在此引用做為參考。 此申請案亦主張以下美國申請案之優先權,其每個皆在 2003年8月2日提出:美國申請編號10/632,549,名為「堆 疊封裝間具有線接點互連之半導體多重封裝模組」(「 Semiconductor multi-package module having wire bond interconnection between stacked packages」);美國申請編 號1 0/632,568,名為「具有堆疊在球格柵陣列封裝上的封 裝,與在堆疊封裝間具有線接點互連之半導體多重封裝模 組」(「Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnection between stacked packages」); 美國申請編號10/632,551,名為「堆疊封裝之間具有線接 點互連並具有電遮蔽之半導體多重封裝模組」(「 Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield」);美國申請編號10/632,552,名為「具有堆疊在 晶粒朝上倒裝晶片球格栅陣列封裝之封裝,並在堆疊封裝 之間具有線接點互連之半導體多重封裝模組」(「 Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages」);美國 155479.doc 201131731 申凊編號l〇/632,553,名為「具有堆疊在晶粒朝下倒裝晶 片球格柵陣列封裝上之封裝,並在堆疊封裝之間具有線接 點互連之半導體多重封裝 package module having package stacked over die-down flip chip ball grid array package and having wire bond mterconnect between stacked packages」);美國申請編號 10/632,550,名為「包括堆疊晶粒封裝並在堆疊的封裝之 間具有線接點互連之半導體多重封裝模組」(「 Semiconductor mufti-package module including stacked-die packages and having wire bond interconnect between stacked packages」);其每個皆在此引用做為參考。 【發明所屬之技術領域】 本發明關於半導體封裝。 【先前技術】 攜帶式電子產品,例如行動電話、行動運算器、及多種 消費性產品,纟皆需要在一有限的軌跡中具有較高的半導 體功能及效能、最小厚度與重量’並具有最低的成本。此 將驅使本產業來增加在個別半導體晶片上的整合度。 最近,該產業已經開始實施在「z軸」上的整=,也就 是說,藉由堆疊晶片’ ϋ已使用在—個封裝中^堆㈣ 五個晶片。此可提供具有-單晶片封裝之軌跡之密集晶片 結構,其範圍在5x5 mm到40χ40 mm,且其厚度已經:續 地由2.3 _降低到〇.5 mm。—堆疊的晶粒封襄之成本僅漸 增地高於—單—晶粒封裝的成本,且該裝配件良率相告古 155479.doc 201131731 ’相較於將該晶粒封裝在個別封裝中, 力的最終成本。 i具競爭 主可堆疊在一堆疊的晶粒封裝中之晶片數目的 要限制為該堆疊晶粒封裝之低最終測試良率。 =,㈣封裝中的-些晶粒具有某些缺點,因此該最終 Ί式良率將為個別晶粒測試良率之產品,其每個 於_。此特別會造成-問題,即使在__封裝中僅二疊 兩個晶粒,但其中之一由於設計複雜度或技術而具有低良 率 〇 熱量由一個晶粒傳 沒有明顯的散熱路 另一個限制是該封裝的低功率散失。 到另一個’除了由焊球到主機板之外, 徑。 另一個限制為該堆疊的晶粒之間的電磁干擾,特別是在 RF與數位晶粒之間,由於每個晶粒不具有電遮蔽。 另一個方式為整合在「ζ軸」上來堆疊晶粒封裝,以形 成多重封裝模組。堆疊封裝相較於堆疊晶粒封裝可提供 多種好處。 舉例而言,每個具有RF晶粒之封裝可以電性測試,並在 堆疊該等封裝之前被剔除,除非其顯示出令人滿意的效能 。因此,最終堆疊的多重封裝模組良率可以最大化。 在堆疊封裝中可提供更為有效率的冷卻,其係藉由在該 堆疊中的封裝以及在該模組頂部之間插入一散熱器。 封裝堆疊允許RF晶粒之電磁遮蔽,並避免與模組中的其 它晶粒之干擾。 155479.doc • 6 - 201131731 每個s日粒,或不止一個晶粒可以封裝在一個別的封裝中 。在使用對於該晶片型式及組態之最有效率的第-階互、連 .、餘的隹且中’例如線接點或倒裝晶片,其可最大化效能 並最小化成本。 :;堆疊多重封裝模組中封裝之間的z互連,從製造性 、6又汁彈性及成本的角度而言為關鍵的技術。已經提出的 z互連包括周邊料連接,以及彎曲在該底部封裝頂部之 上的可撓基板。在堆疊多重封裝模組中z互連之周邊焊球 的使用s限制可製作連接的數目,並限制設計彈性,並造 成較厚且較高成本的封裝。雖然、使用-可撓性f曲基板原 則上可提供設計彈性,對於該彎曲製程並無已建立之製造 機制。再者,使用一可撓性彎曲基板需要一兩金屬層可撓 基板’其非常昂# °另彳’該彎取的可撓基板方法受限於 低腳位數的應用’仙為在兩金屬層基板中繞線電路之限 制。 請參考圖1-4之進一步詳細說明不同的z互連結構。 圖1所示為已在業界良好建立之標準球格柵陣列(「 BGA」)之結構的截面圖,其可做為在一堆疊多重封裝模 組(「MPM」)中的底部封裝。如1〇所示,該bga包括附著 於具有至少一金屬層之基板12上的一晶粒14。其可使用多 種基板型式,其包括例如:一具有2_6金屬層之壓合板、 或具有4-8金屬層之增大基板、或一具有丨_2金屬層之可撓 性聚醯亞胺、或一陶瓷多層基板。例如藉由圖丨所示之基 板12具有兩個金屬層121、123,其每個被圖案化來提供適 155479.doc 201131731 當的電路’並藉由通孔122來連接。該晶粒習用上係使用 一黏著劑來附著於該基板的一表面,其基本上稱之為晶粒 附著環氧化物,如圖1之13所示,且在圖丨之組態中,該晶 粒所附著的基板表面可稱之為該「上方」表面,而在該表 面上的金屬層可稱之為「上方」金屬層,雖然該晶粒附著 表面在使用上不需要具有任何特定的方向。 在圖1之BGA中,該晶粒係線接點到該基板之上方金屬 層上的線接點側,以建立電連接。該晶粒14及該等線接點 16係以一模製化合物丨7所包覆,其可提供對於周圍及機械 應力之保護,以便於處理程序,並提供一表面來標示以供 識別。焊球18係回焊到該基板之下方金屬層上的接點墊之 上,以提供互連到一最終產品之主機板(未示於圖中),例 如一電腦。燁罩125、127係圖案化到該等金屬層121、123 之上,以暴露在接點處之下層金屬來做為電連接,例如該 線接點處及接點墊,以接合該線接點16及焊球Η。 圖2所示為一 24#Mp]v^範例性結構的截面目,標示 為2〇’其中在該堆叠中封裝之間的2互連係藉由焊料製 成。在此MPM中,一第一封裝(其可稱之為「底部」封幻 係類似於一標準BGA’如圖1所示(而使用類似的參考編號 來指到圖丨與2中類似的底部封裝之特徵)。一第二封裝(其 可稱之為該頂°卩」封裝)係堆疊在該底部封裝上,其在 結構上類似於該底部封裝,了在該頂部封裝中的焊球係 配置在該頂部封裝基板周邊處,所以其會影響該z互連, 而不會干擾該底部BGA之包覆。特別是,圖2中的頂部封 155479.doc 201131731 裝包括附著在具有至少—金屬層之基板22上的—晶粒24。 藉由例如圖2所示之頂部封裝基板22具有兩個金屬層221、 其每個圖案化來提供適當的電路,並藉由通孔222來 連接。該晶粒習用上使用—黏著劑來附著到該基板的一表 面("亥上方」表面),基本上稱之為該晶粒附著環氧化物 ’如圖2之23所示。 在圖2之MPM中的頂部封裝中,如同在該底部封裝,該 晶粒係線接點到在該基板之上方金屬層上的線接點處來建 立電連接。該頂部封裝晶粒24及線接點26係利用一頂部封 裝模製化合物27來包覆。焊球28係回焊到位於該頂部封裝 基板之下方金屬層之周邊空隙上的接點墊之上,以提供z 互連到該底部封裝。焊罩225、227係圖案化到該等金屬層 221、223之上,以暴露在接點處之下層金屬來做為電連接 ,例如該線接點處及接點墊,以接合該線接點%及焊球 28 ° 圖2之MPM申的z互連可藉由回焊附著在該頂部封裝基板 之下方金屬層上的周邊接點墊之焊球28到該底部bga之上 方金屬層Ji的周邊接點塾±。在此組態中,㈣頂部及底 部封裝之間的距離h必須至少與該底部封裝之包覆高度一 樣大,其可為0.3 mm或更高,且基本上較少地是在〇 5 mm 1.5 mm範圍之間。該等焊球28因此必須在當其回焊時具 有一充份大的直徑,而可與該底部BGA之接點墊具有良好 的接觸;也就是說,該焊球28直徑必須大於該包覆高度。 一較大的球徑規定了一較大的球間距,其因此限制了可安 I55479.doc 201131731 置在該可用空間中的球數。另外,該等焊球之周邊配置使 得該底部BGA明顯大於一標準BGA之模具蓋。在小型BGA 中,其通常稱之為晶片級封裝(「CSP」),該晶片本體尺 寸比該晶粒大1.7 mm。在標準BGA中,該本體尺寸約比該 模具蓋要大2 mm,在此組態中,該頂部封裝基板必須具有 至少兩個金屬層來便於該電連接。 圖3所示為一已知的2_堆疊倒裝晶片mpm之範例性結構 的截面圖,其通常表示為30。在此組態中,該底部BGA倒 裝晶片封裝包括一基板32,其具有一圖案化的金屬層31, 在其上該晶粒34係由該倒裝晶片凸塊36來連接,例如焊料 凸塊、金鈕凸塊、或各向異性導電膜或膏。該等倒裝晶片 凸塊係固定到該晶粒之活性表面上的一圖案化凸塊墊之陣 列上’且因為該晶粒的活性表面對於該基板的一面向上之 圖案化金屬層係面向下,這種配置可稱之為一「向下」倒 裝ΘΒ片封裝。在晶粒與基板之間的聚合物側填滿3 3提供了 對於周遭的保護,並加入機械整合度到該結構。這種倒裝 晶片封裝,其中該基板僅在該上方表面上具有一金屬層, 其係藉由透過焊料通孔35連接到該金屬層之焊球38來連接 到该下層電路(例如一主機板、其未示於圖中)。 在此組態中的頂部BGA係類似於該底部Bga,除了該頂 部BGA具有僅在該頂部基板的周圍處連接到一金屬層j 之z互連焊球338(經由在該頂部基板中的焊料通孔335)。焊 球338係回焊到該底部基板之金屬層331上,以提供該2互 連。特別是,在此組態中,該頂部BGA包括一基板332, I55479.doc -10· 201131731 其具有該圖案化的金屬層331,在其上該頂部BGA晶粒334 係由倒裝晶片凸塊336所連接。在該頂部BGA晶粒與基板 之間為一聚合物側填滿333。如圖3之結構更為適合於高電 效能應肖,但纟與圖2中所示型&之組態具有_的限制 。其比圖2之組態已有改良。其中該底部BGA沒有模製, 允許在該頂部BGA之周圍處使用較小直徑(h)的焊球來連接 在該等封裝之間。 圖4所示為一已知的2_堆疊彎曲可撓基板MpM之範例性 結構的截面圖,如40所示。在圖4之組態中的底部封襞具 有一2-金屬層可撓基板,在其上該晶粒係透過小柱來接合 到該基板之第一金屬層。該底部封裝基板之第二金屬層承 載有該等焊球來連接到該下層電路,例如一主機板(未示 出)。該基板係足夠大來折彎在該封裝的頂部,藉此向上 帶入該電互連線,其中它們可藉由在該頂部封裝上的焊球 陣列來連接到該頂部封裝(如下所述之範例)。在該晶粒周 圍與該晶粒與折彎基板之間的空間被包覆而提供保護及強 度。 請參考圖4,該2-金屬層底部封裝基板42包括一第一金 屬層141及一第二金屬層143 ,其每個被圖案化來提供適當 的電路’#由通孔142連接。該第一金屬層在該底部基: 之一部份之上的部份被處理(例如使用一沖孔陣列)來呈現 一懸臂樑或片46之陣列,其配置來對應於在該底部封裝晶 粒44之活性表面上的互連墊之陣列。在該基板“的此部份 上,其可稱之為該「晶粒附著部份」,該第—金屬層ΐ4ι 155479.doc 11 201131731 係面向上。該晶粒係對準在該基板之晶粒附著部份上,以 活性表面向下’並接合了該懸臂樑及相對應的互連墊,其 典型例如藉由一種使用組合了壓力、熱及超音波能量之熱 音波製程’以完成該等電連接。該晶粒44係使用一黏著劑 43來固定在該可撓基板42的晶粒附著部份上。該底部封裝 基板42之第一金屬層143係向下面向該基板的晶粒附著部 份中。焊球48係回焊到位在該第二金屬層143之面向下部 伤的陣列上之接點塾’以提供該MPM之互連到下層電路 (未示出一焊罩147係圖案化到該第二金屬層143之上, 以暴露該下層金屬做為電連接之接點處,其包含藉由焊球 48來與該下層電路連接的接點墊,及藉由焊球連接於該頂 部封裝的接點墊,如下所述。 該底部封裝基板42之另一部份,延伸鄰接該晶粒附著部 份,其係彎折向上,並位在該底部封裝晶粒44之上❶在該 可撓基板42之此彎折於上的部份之上,該第一金屬層143 係面向上。在圖4的組態中,該頂部封裝通常類似於圖i之 BGA,其中該晶粒係線接點到位在該基板之上方金屬層之 上的線接點處,以建立電連接。特別是,該頂部封裝晶粒 14係附著在具有兩個金屬層121、123之基板12上(在此範 例中)’其每個被圖案化來提供適當的電路,並藉由通孔 122來連接。該晶粒習用上使用一黏著劑13來附著到該頂 4封裝基板之上表面,其典型為一晶粒附著環氧化物。該 晶粒14及該等線接點16係利用一模製化合物17來包覆,其 可提供對於周遭及機械應力的保護,以便於處理作業,並 155479.doc -12- 201131731 提供表面來做標记用於辨識。焊球i 8係回焊到該弯折於 上之底部封裝基板的面向上金屬層之上的接點塾143,以 在該頂部與底部封裝之間的Z互連。 圖4之結構的優點為該彎折於上的基板可提供在該脊折 於上之底部封裝基板的面向上表面之上的充份面積,以容 納一完整焊球陣列在該頂部封裝中,並容納更複雜的互連 在該兩個封裝之間。其亦提供了一小型封裝軌跡。此組態 的-主要缺點為該基板的成本报高,且折弯技術與設備無 法取得。 所有這些堆疊封裝組態之共同特徵為它們可以保護每個 封裝,並以較高的最終測試良率來提供生產财^ 【發明内容】 本發明係關於具有堆疊封裝之多重封裝模組。根據本發 明,在該MPM中的該等堆疊封裝之間的以連係以線接點 為基準。-般而言,本發明之特徵在於具有多種不同堆疊 封裝之組態’及藉由線接點為主之2互連來堆疊及互連不 同封裝之方法。在根據本發明之多重封裝模組中,該封 裝堆疊可包括多種BGA封裝及/或任何—種平台格拇陣列 LLGA」)封装:該封裝堆疊可包括線接點及/或倒裝晶片 封裝,該封裝堆疊可包括在該堆疊十或於其上所產生的一 熱性增進特徵;該封裝堆疊可包括線接點到該BGA或LGA :部或底部的一倒裝晶片晶粒的—或多個封裝;該封裝堆 且可包括在該堆疊的封裝或並列的封袭中具有超過一個晶 粒之-或多個BGA及/或LGA封裝;該堆疊可包括—或多個 155479.d〇i 13 201131731 封裝之電磁遮蔽;且該堆疊可包括任何基板、麼合板或組 立或陶兗,其提供了藉由接合在該等封裝周圍上來製成z 互連塾。 在一通用方面,本發明之特徵在於具有堆疊的下方與上 方封裝之夕重封裝模組,其每個封裝包括附著到一基板之 曰曰粒,其中δ亥上方及下方基板係藉由線接點來互連。 本發明可提供優良的製造性、高的設計彈性,及低成本 ,以製造具有-低輪廟及小軌跡之堆疊封裝模組^該線接 點Ζ互連技術已在本產業中良好地建立;其為最低成本的 互連技術,並且可直接應用,不需要明顯的修改,即可用 於本發明之多重封裝模組。其對於BGA到之相對尺寸 提供了設計彈性,其可由導線長度來架橋。藉由可取得之 技術與设備,在一線接點中的導線最短可到0 5 ,或最 長到5 mm。該Z互連墊之配置可以透過BGA及LGA基板設 计或其中一種來實施。另外,使用根據本發明之線接點, ζ互連可形成在彼此並未精確對準之墊之間,其藉由所謂 的程序外之接合」(out of sequence bonding",其目前 已用於本產業中。該線接點間距在本產業中最為微細的技 術目則係在50微米,並預期可到25微米。此可造成大量的 ζ互連。製造性及設計彈性皆可貢獻於河1>1^的低成本。 一典型BGA或LGA之最小軌跡為大於晶粒尺寸的丨7 mm 。加入根據本發明之z互連接點墊將可增加Β〇α最少o s mm。一典型的BGA厚度為1.〇 mm,且lga厚度為0.8 mm 典型的黏著厚度之範圍在0.025 mm到0.100 mm之間。 155479.doc •14· 201131731 根據本發明之堆疊封裝MPM之軌跡與厚度對大多數應用而 言皆可落在可接受的範圍内。 在-些具體實施例中,該多重封裝模組包括三個或多個 封裝,其序列地固定來形成一堆疊。 在另-方面,本發明之特徵為一堆疊有第一(「底部」) :第二(「頂部」)封裝的多重封裝模組,每個封裝包括附 著於一基板之晶粒,並藉由線接點來連接到該基板,其中 該頂部封裝基板及該底部封裝基㈣藉由線接點來互連。 在y些具體實施财,每個封裝係完全以—模製材料來包 覆’在其它具體實施例中’至少一個封裝僅包覆到某個程 度’以在後續處理及測試期間來保護該晶粒與該基板之間 的線接點。在-些具體實施例中,該第二封裝為—心封 裝且在-些這種具體實施例中,該lga封裝基板為一單 一金屬層基板。 在另一方面,本發明之特徵為一堆疊有第一(「底部」) 及第二(「頂部」)封裝的多重封裝模組,該底部封裝為一 二GA封裝’每個封裝包括附著於—基板之晶粒,其中該頂 部封裝基板及該BGA封裝基板係藉由線接點來互連。 在另一方面,本發明之特徵在於具有堆疊封裝之一多重 封裝模組,其中至少-個封裝具有—電遮蔽。在—些這樣 的組態中,該電遮蔽可額外地設置成做為一散熱器。在^ 些具體實施例中’該等具有一電遮蔽之封裝包括__rf晶粒 ,且該遮蔽用於在該多重封裝模組中限制該RF晶粒與其它 晶粒之間的電磁干擾。在—些具體實施例中,該底部封裝 155479.doc -15· 201131731 具有—電遮蔽。 在另—方面,本發明之_ & 及第二(「頂ar 、 之特徵為一堆疊有第一(「底部」) 、了負口 p」)封裝的客 一上晶粒組態中的-倒/日^裝漁,該底部封裝為在 中該頂部基板與該底部封 曰片BGA封裝,其 體實施例中,該頂部封梦二良接點來互連。在一些具 實施例中,在該堆:;、—堆疊晶粒封裝;在-些具體 隔器來分開。在1曰日.立封裳中相鄰的堆疊晶粒可由間 裝晶片晶二實施例中,在該底部封裝上的倒 封裝基板包括—嵌入的^在—些具體實施例中,該底部 用於散熱及做為-電遮蔽。 #也千面係叹置成亦 在另—方面’本發明之特 及第二(「頂部 唯且有第(底部」) τ曰以 多重封裝模組;該底部封裝為在 =組態中的-倒裝晶片之-倒裝一:為; 中該頂。p基板與該底部 … 體實施例中,在該底部 =來互連。在一些具 蔽。 卩封裝上的倒裝晶片晶粒具有一電遮 在另-方面,本發明之特徵為一堆 二(頂部)封裝的多重封I^ (底#)及第 板之”立*益山 ㈣封裝包括附著於—基 板之a曰粒,並藉由線接點來連接,其中該 土 該底部封裝基板係藉由線接點及 與該頂部封裝中至少一個為 、^底销裝 貫施例中,該頂部封裝與該底 一、體 穿0 了褒白為-堆疊晶粒封 155479.doc •16· 201131731 在另一通用方面中, 組之方法,藉由在-笛 月之特徵在於製作多重封裝模 第一(底部)封裝基板上包括至少—曰 粒之第—(底部)封裝,其 曰曰 頂部)封裝,1在一第 第—封裝之上’及一第二( , —八 第—(頂部)封裝基板上包括至少一晶粒 該第-及第二(頂部及底部)基板之間形成線接點2互 、洁足=地疋’ 5亥等封裝可在組裂之前測試,其可丢棄不 六倉《:•或可靠度之封裝,所以較佳地是測試為「良好」 第封裝及第一封裳即用於該組裝的模組中。 在方面,本發明之特徵在於一種製作一多重封裝模組 之方法’纟包括堆疊在—BGA封裝上的lga封裝,其中該 頂口P及底部封裝藉由線接點來電互連。根據此方面,提供 BGA封裝’其通常係在一模製bga封裝之未分離的長條 ;較佳地是在該絲巾的BGA封裝進行效能及可靠度測試 ’而辨識A「良好」之封襄即接受後續的處理;黏著劑係 刀配到&好」BGA封裝上模製之上方表面上;提供一模 擬的模製平台格栅陣列封裝;較佳地是,測試該LGA封裝 ’「並辨識為「良好」;該等「良好」的LGA封裝即置於該 子」B G A封裝上的模製之上的黏著劑,並固化該黏著 劑,依照需要且較佳地是,在該堆疊的頂部lga與底部 BGA封裝之間形成線接點z互連之後即進行一電漿清洗作 業;依照需要且較佳地是,可進行一額外的電漿清洗,接 著為形成該MPM模製。進一步的步驟包括附著第二層互連 焊球到該模組之下方側;測試並分離完成的模組與該長條 例如藉由鋸開分割或藉由沖孔分離;並對於其它用途來 155479.doc 17 201131731 封裝。 在一些具體實施例中,該LGA(頂部)封裝即完全地模製 成型’具有該LGA封裝之常為平面的上方表面;在其它具 體實施例中,該等線接點,但非該LGA封裝之整個上方晶 粒表面進行模製,該LGA之模製係由僅在該晶粒的周圍及 s玄LGA封裝基板的間隙附近來分配有該模製化合物。 在另一方面’本發明之特徵在於為一種在一 LGA封裝堆 疊於一 BGA封裝之上的一多重封裝模組之方法,其中該頂 部及底部封裝係由線接點來電互連,且其中該底部封裝具 有一電磁遮蔽。根據此方面,提供一球格柵陣列封裝,其 通常係在BGA封裝之未分離的長條;該等BGA封裝具有固 定在該晶粒之上的遮蔽;較佳地是’在該長條中的Β〇α封 裝進行效能及可靠度之測試,並識別為「良好」,以接受 後續的處理;黏著劑係分配在「良好」BGA封裝上之遮蔽 的上方表面之上;提供一分離的模製平台格柵陣列封裝; 較佳地是,測試該LGA封裝,並識別為「良好」;該「良 好」LGA封裝係置於該遮蔽之上的點著劑上,並固化該黏 著齊“依照需要且較佳地是,在該堆疊的頂部lga與:部 BGA封裝之間形成線接點2互連之後即進行—電毁清洗作 業;依照需要且較佳地是,可進行1外的電㈣洗,接 著為形成該ΜΡΜ模製。進-步的步驟包括附著第二層互連 焊球到該模組之下方側;測試並分離完成的模組與該長條 ,例如藉由鋸開分割或藉由沖孔分離. 刀離,並對於其它用途來 封裝。 155479.doc -18- 201131731 在一些具體實㈣中,該方法包括用於提供該多重 模組一散熱器之步驟。在本發明的此一方面,進行、 的製程’具有額外的步驟插入—「落入」模製作業到安裝 所支援的散熱器令,或插入一「落入」模製作業到安裝: 簡早的平面散熱器;或藉由施加黏著劑到該頂部封裝模製 之上方表面上、或在該頂部封裝上一間隔器的上方表面上 ,並固定該平面散熱器到該黏著劑上。 在另#面’本發明之特徵在於一種製作 組之方法,其包括堆疊在一下晶粒㈣晶片職底部= 上的一頂部封梦,苴由外拉 中该等頂部及底部封裝藉由線接點來 步,w根據此方面,提供一下晶粒倒裝晶片BGA底部封 列二封2仃模製’通常係在下晶粒倒裝晶片球格柵陣 可 ,㈣地是在該長條巾的BGA封裝進行效能 =^試’而識別為「良好」的封裝即接受後續的處 背:㈣係分配在「良好」BGA封裝上該晶粒的上方表 ):上’提供分離的頂部(例如平台格栅陣峨裝 、11視需要來模製;較佳地是, ,並識別為封裝的測試 η 的黏著劑上,並固化該黏著劑;依照需要且較佳 點r互連之=疊的頂部lga與底部bga封裝之間形成線接 是,可進Λ即進行—電聚清洗作業;依照需要且較佳地 "的:’接著為形成該_製。 ;測試並分離完=::::焊:到該模組之下㈣ 棋興°亥長條,例如藉由鋸開分割或 155479.doc •19· 201131731 藉由冲孔分離;並對於其它用途來封裝。 另方面,本發明之特徵在於為一種包括在一頂 裝堆疊於—下晶粒倒裝晶片BGA底部封裝之上的一多重封 裝模、、且之方法,其中該頂部及底部封裝係由線接點來電互 連,且其中該底部封裝具有一電遮蔽。根據此方面, 類似於前述對於未遮蔽底部的倒裝晶片底部封裝的處理, 其具有-額外的步驟來插入安裝該遮蔽到該底部封裝倒裝 晶片晶粒。提供一下晶粒倒裝晶片BGa底部封裝,視需要 進行模製,通常係在下晶粒倒裝晶片球格拇陣列底部封裝 中;較佳地是在該長條中的封裝進行效能及可靠度測 試,而識別為「良好」的封裝即接受後續的處理;黏著劑 係分配在「良好」職封裝上該晶粒的上方表面(背側)之 上;提供分離的頂部(例如平台格栅陣列)封裝,其可視需 要來模製;較佳地是’進行該LGA封裝的測試,並識別為 '良好」;該#「良好」遍封裝係置於在該遮蔽之上的 黏著劑上’並固化該黏著劑;依照需要且較佳地是,在該 堆疊的頂部LGA與底部BGA封裝之間形成線接I互連之 後即進行-電漿清洗作業;依照需要讀佳地是,可進行 一額外的電漿清洗,接著為形成該MPM模製。進—步的步 驟包括附著第二層互連焊球到該模組之下方側,·測試並分 離完成的模組與該長條,例如藉由鑛開分割或藉由沖孔分 離;並對於其它用途來封裝。 在m,本發明之特徵在於一#包括堆叠於一上晶 粒倒裝晶片BGA底部封裝之上的一頂部封裝之方法,其中 155479.doc •20- 201131731 供 第封裝其^一些具體實施合'J中可為一堆疊的 邊頂部及底部封裝係藉由線接點電互連。根據此方面,提 供-上晶粒倒裝晶片球格栅陣列封裝,其通常未模製並 通常為-上晶粒倒裝晶片球格栅陣列封裝之未分離長條; 較佳地是’在該長條中的BGA封裝進行效能及可靠度的树 。式且識別為「良好」的封裝即接受後續的處理;黏著劑 即分配在「良好」BGA封裝上的該基板之上表面之 ..严兄》v晶粒 、…、可視需要且通常為模製;較佳地是,測試該lga 封裝並識別為「良好」;該等「良好」LGA封裝即置於 在該驗基板之上的黏著劑上,並固化該黏著劑;其視需 要而較佳地疋在該堆疊的頂部lga與底部BGA封裝之間形 成線接點Z互連之德彳隹仁 A u# ,4. 之後進仃一電漿清洗作業;其視需要且較 佳地是進行—額外的電漿清洗,接著形成該MPM模製。進 步的步驟包括附著第二層互連焊球到該模組之下方側; J式並刀離凡成的模組與該長條,例如藉由鋸開分割或藉 由沖孔分離;並對於其它用途來封裝。 在另方面,本發明之特徵在於一種製作一多重封裝模 組之方法’其包括堆疊在堆疊的底部封裝之上的一頂部封 裝’其中該等頂部及底部封裝藉由線接點來電互連。根據 此方面,提供一堆疊的晶粒BGA封裝,其通常為模製,且 通常提供為一堆疊的晶粒球格栅陣列封裝之未分離的長條 ;較佳地是進行在該長條中遍封褒的效能及可靠度測試 ’而識別為「良好」之封裝即接受後續的處理;黏著劑即 分配到該「良好」堆疊的晶粒BGA封裝之上方表面之上; 155479.doc -21 · 201131731 通常是在該封裝模製的經常為平面的上方表面上;提供一 分離的第二封裝,豸常為模製,其可視需要做為—堆疊的 晶粒封裝,·較佳地是測試該第:封裝,並識_「良好」 j「良好」第二封裝係置於該BGA之上方表面之上的黏 者月上,並固化該黏著劑;其視需要而較佳地是在該堆疊 的頂部及底部封裝之間形成線接點z互連之後進行一電褒 清洗作業;其視f要㈣佳地是進行—額外的電襞清洗’, 接著形成該MPM模製。進—步的步驟包括附著第二層互連 焊球到該模組之下方側;測試並分離完成的模組與該長條 ’例如藉由_分割或藉由沖孔分離;並對於其來 封裝。 + 在該方法的-些具體實施例中,在-未分離的長條中提 供兩個或更多的第-模製的封裝,且在該長條上進行兩個 或更夕模㈣組裝’並在完成該組裝之後進行該等兩個或 更多模組之分離。 在根據本發明之製作多重封裝模组的方法中,在該等堆 疊的封裝之間的電連接使用f用的線接點來在該堆疊令形 成上方及下方封裝基板L互連。特殊的好處包括使 用已建立的製造架構、低生產成本、設計彈性及_薄封裝 產品。該z互連線接點可以在多種的封裝及模組組態中實 施’其係藉由從纟該第=封裝基板i的一導電塾形成的凸 塊拉出導線到在該第一封裝基板上的一導電墊;或是,由 在該第-封裝基板上的一導電墊上形成的一凸塊拉出導線 到在該第一封裝基板上的一導電塾。 155479.doc •22· 201131731 本發明提供了以最低成本及最高的最終測試良率來在一 薄形及最小軌跡封裝中超過一個半導體之裝配件。再者, 根據本發明的-些堆疊組態允許高度熱效能、高度電效能 或一數位元件與尺!^元件之電性絕緣。其它的堆疊組態可提 (、適用於掌上型或 >肖費性產品之非常薄的結構。所有提供 來組裝的方法係允許該堆疊的封裝之個別測試可以最大化 該模組之最終良率。 額外的製程步驟將用丨完成根據本發明之多重封襄模組 舉例而s,其較佳地是,在該堆疊中最下方封裝之連接 用的焊球不會附著到主機板上,而是直到該MpM之分離之 前的最終步驟。而且’例如電衆清洗可在製程中許多地方 的任-點來進行,例如在黏著劑固化之後,及包覆之前, 且像是在2互連線接點之前及/或之後。 較佳地是,該等個別封裝可提供做為數個封裝的長條, 連接成一列,便於在製造期間來處理,且該多重封裝模組 係在完成製程步驟之後來分離。在根據本發明的方法中, 該等封裝堆疊可藉由固定分離的第二封裝來形成在一選擇 型式的非單-化第一封裝的—長條上,並直到完成形成該 等模組之製程之後才行成該線接點的£互連,然後再分離 該等模組。 根據本發明之MPM可以用來構建電腦、電信設備、及消 費性與工業電子裝置。 【實施方式】 現在本發明將參考圖面來進一步詳細說明,該等圖面說 155479.doc •23- 201131731 明了本發明其它的具體實施例。該等圖面僅為圖示,說明 了本發明之特徵與其和其它特徵與結構之關係,並未依比 例繪製。為了改善呈現的清晰度,在說明本發明之具體實 施例的圖面中,對應於在其它圖面中所示的元素之元素並 未皆特別重新編號,雖然它們在所有圖面中皆可清楚辨 識。 現在請參考圖5A,所示為在根據本發明一方面之一多重 封裝模組之具體實施例的5〇處的截面圖,其包括有堆疊的 第(底部」)及第二(「頂部」)封裝,其中該等堆疊的 封裝係由線接點來互連。在圖5A所示的具體實施例中,該 底封裝400為一習用的BGA封裝,例如圖1所示。因此, 在此具體實施例中,該底部封裝4〇〇包括一晶粒414,其附 著於具有至少一金屬層的一底部封裝基板412之上。其可 使用多種基板型式中的任何一種,例如包括:一具有2_6 金屬層之壓合板、或具有4-8金屬層之建構基板、或具有^ 2金屬層之可撓聚醯亞胺帶、或一陶瓷多重層基板。藉由 圖5八之範例所示之底部封裝基板412具有兩個金屬層421、 423 ’其每個被圖案化來提供適當的電路,並透過通孔422 連接。該晶粒在習用上係使用一黏著劑來附著於該基板的 一表面上’基本上係稱之為晶粒附著環氧化物,如圖5 a中 的413所示’且在圖5八的組態中,該晶粒所附著的基板表面 可稱之為「上方」表面’且在該表面上的金屬層可稱之為 「上方」金屬層’雖然該晶粒附著表面在使用上不需要具 有任何特定的方向性。 155479.doc •24- 201131731201131731 VI. INSTRUCTIONS: CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to U.S. Provisional Application Serial No. 60/41, the entire disclosure of which is incorporated herein by reference. This application also claims the priority of the following U.S. applications, each of which was filed on August 2, 2003: U.S. Application Serial No. 10/632,549, entitled "Semiconductor Multi-Package Module with Wire Junction Interconnects in Stacked Packages ("Semi-multiple-package module having wire bond interconnection between stacked packages"; US Application No. 1 0/632,568, entitled "Package with Stacked on Ball Grid Array Package, with Wire Connection Between Stacked Packages" "Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnection between stacked packages"; US application number 10/632,551, entitled "Between stacked packages " Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield"; US application number 10/632,552, entitled "with stacking Flip wafer ball on grain facing up " Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect" Between stacked packages"); United States 155479. Doc 201131731 Application No. l〇/632,553, entitled "Semiconductor Multipackage Package Module with Packages Stacked on a Chip-Back Flip Chip Ball Grid Array Package with Wire Junction Interconnect Between Stacked Packages Having package stacked over die-down flip chip ball grid array package and having wire bond mterconnect between stacked packages"); US Application No. 10/632,550, entitled "Includes stacked die packages and has wire bonds between stacked packages " " " Semiconductor mufti-package modules including stacked-die packages and having wire bond interconnect between stacked packages"; each of which is incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to semiconductor packages. [Prior Art] Portable electronic products, such as mobile phones, mobile computing devices, and a variety of consumer products, require high semiconductor function and performance, minimum thickness and weight in a limited trajectory, and have the lowest cost. This will drive the industry to increase integration on individual semiconductor wafers. Recently, the industry has begun to implement the whole = on the "z-axis", that is, by stacking the wafers ϋ has been used in a package of four (four) five wafers. This provides a dense wafer structure with a trajectory of a single chip package ranging from 5x5 mm to 40 χ 40 mm, and its thickness has been: continued by 2. 3 _ lower to 〇. 5 mm. - The cost of stacked die packages is only incrementally higher than the cost of a single-die package, and the yield of the assembly is 155479. Doc 201131731 'The final cost of force compared to packaging the die in individual packages. The number of wafers that can be stacked in a stacked die package is limited to the low final test yield of the stacked die package. =, (d) Some of the grains in the package have certain disadvantages, so the final yield will be the product of individual die test yields, each of which is _. This is particularly problematic - even if there are only two stacks of two dies in the __ package, one of them has low yield due to design complexity or technology. The heat is transferred from one die without a significant heat dissipation path. The limitation is the low power dissipation of the package. Go to another 'except for the ball from the solder ball to the motherboard. Another limitation is the electromagnetic interference between the grains of the stack, especially between the RF and the digital die, since each die does not have electrical shielding. Another way is to integrate the "die" to stack the die packages to form multiple package modules. Stacked packages offer several benefits over stacked die packages. For example, each package with RF dies can be electrically tested and rejected before stacking the packages unless they exhibit satisfactory performance. As a result, the final packaged multi-package module yield can be maximized. More efficient cooling can be provided in a stacked package by inserting a heat sink between the package in the stack and the top of the module. The package stack allows electromagnetic shielding of the RF die and avoids interference with other dies in the module. 155479. Doc • 6 - 201131731 Each s day grain, or more than one die, can be packaged in a different package. The most efficient first-order interconnections and connections for the wafer type and configuration are used. The rest, such as wire contacts or flip chip, maximizes efficiency and minimizes cost. : The z-interconnection between packages in a multi-package module is a key technology in terms of manufacturability, flexibility and cost. The z-interconnects that have been proposed include a perimeter connection and a flexible substrate that is bent over the top of the bottom package. The use of perimeter solder balls in a stacked multi-package module limits the number of connections that can be made and limits design flexibility and results in thicker, higher cost packages. Although, the use of a flexible f-cursor substrate can provide design flexibility, there is no established manufacturing mechanism for the bending process. Furthermore, the use of a flexible curved substrate requires a two-layer metal flexible substrate. It is very expensive. The method of flexing the flexible substrate is limited by the application of low-foot digits. The limitation of the winding circuit in the layer substrate. Please refer to Figures 1-4 for further details of the different z interconnect structures. Figure 1 shows a cross-sectional view of a structure of a standard ball grid array ("BGA") that has been well established in the industry as a bottom package in a stacked multi-package module ("MPM"). As shown in Fig. 1, the bga includes a die 14 attached to a substrate 12 having at least one metal layer. It can use a variety of substrate types including, for example, a plywood having a 2-6 metal layer, or an enlarged substrate having a 4-8 metal layer, or a flexible polyimide having a 丨_2 metal layer, or A ceramic multilayer substrate. The substrate 12, shown by way of example, has two metal layers 121, 123, each of which is patterned to provide a suitable 155479. Doc 201131731 The circuit ' is connected by via 122. The die is conventionally attached to a surface of the substrate using an adhesive, which is basically referred to as a die attach epoxide, as shown in FIG. 1 and 13, and in the configuration of the figure, The surface of the substrate to which the die is attached may be referred to as the "upper" surface, and the metal layer on the surface may be referred to as the "upper" metal layer, although the die attach surface does not need to have any particular use in use. direction. In the BGA of Figure 1, the die tie contacts the wire contact side of the metal layer above the substrate to establish an electrical connection. The die 14 and the wire bonds 16 are coated with a molding compound 丨7 which provides protection against ambient and mechanical stresses to facilitate handling and provides a surface for identification. Solder balls 18 are reflowed onto the contact pads on the underlying metal layer of the substrate to provide a host board (not shown) interconnected to a final product, such as a computer. The masks 125, 127 are patterned onto the metal layers 121, 123 to expose the underlying metal at the contacts for electrical connection, such as at the line contacts and the contact pads to engage the wires Point 16 and solder ball Η. Figure 2 shows a cross-sectional view of a 24#Mp]v^ exemplary structure, designated 2〇' where the 2 interconnects between the packages in the stack are made of solder. In this MPM, a first package (which may be referred to as a "bottom" block is similar to a standard BGA' as shown in Figure 1 (and a similar reference number is used to refer to the bottom of Figure 2). a feature of the package. A second package (which may be referred to as the top package) is stacked on the bottom package, which is similar in structure to the bottom package, and the solder ball system in the top package It is disposed at the periphery of the top package substrate, so it will affect the z-interconnect without interfering with the cladding of the bottom BGA. In particular, the top seal 155479 in Figure 2. The doc 201131731 package includes a die 24 attached to a substrate 22 having at least a metal layer. The appropriate package is provided by, for example, the top package substrate 22 shown in FIG. 2 having two metal layers 221, each patterned, and connected by vias 222. The die is conventionally adhered to a surface of the substrate ("above the surface of the sea"), which is basically referred to as the die attach epoxide' as shown in Fig. 2-23. In the top package of the MPM of Figure 2, as in the bottom package, the die tie contacts establish electrical connections to the line contacts on the metal layer above the substrate. The top package die 24 and wire contacts 26 are covered by a top package molding compound 27. Solder balls 28 are reflowed over the contact pads on the peripheral voids of the underlying metal layers of the top package substrate to provide z interconnects to the bottom package. The solder masks 225, 227 are patterned over the metal layers 221, 223 to expose the underlying metal at the contacts for electrical connection, such as at the line contacts and the contact pads to engage the wires. Point % and solder ball 28 ° The MP interconnection of Figure 2 can be reflowed by solder balls 28 attached to the peripheral contact pad on the metal layer under the top package substrate to the metal layer Ji above the bottom bga The surrounding contacts are 塾±. In this configuration, (4) the distance h between the top and bottom packages must be at least as large as the cladding height of the bottom package, which can be 0. 3 mm or higher, and substantially less at 〇 5 mm 1. Between 5 mm range. The solder balls 28 must therefore have a sufficiently large diameter when reflowed, and have good contact with the contact pads of the bottom BGA; that is, the solder balls 28 must have a larger diameter than the cladding. height. A larger ball diameter specifies a larger ball spacing, which limits Cocoon I55479. Doc 201131731 The number of balls placed in this free space. In addition, the perimeter of the solder balls is configured such that the bottom BGA is significantly larger than the mold cover of a standard BGA. In a small BGA, it is commonly referred to as a wafer level package ("CSP"), which is substantially larger than the die. 7 mm. In a standard BGA, the body size is about 2 mm larger than the mold cover. In this configuration, the top package substrate must have at least two metal layers to facilitate the electrical connection. Figure 3 is a cross-sectional view showing an exemplary structure of a known 2_stacked flip chip mpm, which is generally indicated at 30. In this configuration, the bottom BGA flip chip package includes a substrate 32 having a patterned metal layer 31 on which the die 34 is connected by the flip chip bumps 36, such as solder bumps. A block, a gold button bump, or an anisotropic conductive film or paste. The flip chip bumps are attached to an array of patterned bump pads on the active surface of the die and because the active surface of the die faces the patterned metal layer of the substrate facing down This configuration can be referred to as a "down" flip chip package. Filling the polymer side between the die and the substrate 3 provides protection for the surrounding and adds mechanical integration to the structure. The flip chip package, wherein the substrate has a metal layer only on the upper surface, which is connected to the lower layer circuit (for example, a motherboard by solder balls 38 connected to the metal layer through the solder vias 35) It is not shown in the figure). The top BGA in this configuration is similar to the bottom Bga except that the top BGA has a z-connected solder ball 338 connected to a metal layer j only around the top substrate (via solder in the top substrate) Through hole 335). Solder balls 338 are reflowed onto metal layer 331 of the bottom substrate to provide the 2 interconnects. In particular, in this configuration, the top BGA includes a substrate 332, I55479. Doc -10· 201131731 It has the patterned metal layer 331 on which the top BGA die 334 is connected by flip chip bumps 336. A polymer side is filled 333 between the top BGA die and the substrate. The structure of Figure 3 is more suitable for high-power performance, but the configuration of the type & shown in Figure 2 has a limit of _. It has been improved over the configuration of Figure 2. Where the bottom BGA is not molded, a smaller diameter (h) solder ball is allowed to be attached between the packages around the top BGA. Fig. 4 is a cross-sectional view showing an exemplary structure of a known 2-fold curved flexible substrate MpM, as shown at 40. The bottom package in the configuration of Figure 4 has a 2-metal layer flexible substrate upon which the die is bonded through a post to the first metal layer of the substrate. The second metal layer of the bottom package substrate carries the solder balls for connection to the underlying circuitry, such as a motherboard (not shown). The substrate is sufficiently large to be bent over the top of the package, thereby being brought up into the electrical interconnect, wherein they can be connected to the top package by an array of solder balls on the top package (as described below) example). The space around the die and the space between the die and the bent substrate is covered to provide protection and strength. Referring to FIG. 4, the 2-metal layer bottom package substrate 42 includes a first metal layer 141 and a second metal layer 143, each of which is patterned to provide a suitable circuit '# connected by vias 142. A portion of the first metal layer over a portion of the bottom portion: (eg, using a perforated array) to present an array of cantilevers or sheets 46 configured to correspond to the crystal at the bottom An array of interconnect pads on the active surface of the particles 44. In this portion of the substrate, it may be referred to as the "die attach portion", the first metal layer ΐ 4ι 155479. Doc 11 201131731 Department up. The die is aligned on the die attach portion of the substrate with the active surface down' and the cantilever beam and corresponding interconnect pads are bonded, typically for example by a combination of pressure, heat and The thermal sonic process of ultrasonic energy 'to complete the electrical connection. The die 44 is attached to the die attaching portion of the flexible substrate 42 using an adhesive 43. The first metal layer 143 of the bottom package substrate 42 is directed downward into the die attach portion of the substrate. The solder balls 48 are reflowed into the contacts 位 on the array of the second metal layer 143 facing the lower portion to provide interconnection of the MPM to the underlying circuit (a solder mask 147 is not shown to be patterned to the first a contact pad on the second metal layer 143 for exposing the underlying metal as an electrical connection, comprising a contact pad connected to the underlying circuit by solder balls 48, and a soldering ball connected to the top package a contact pad, as described below. Another portion of the bottom package substrate 42 extends adjacent to the die attach portion and is bent upwardly and positioned over the bottom package die 44 to be flexible The substrate 42 is bent over the upper portion, and the first metal layer 143 faces upward. In the configuration of Figure 4, the top package is generally similar to the BGA of Figure i, wherein the die is connected Pointing in place at the line contact above the metal layer above the substrate to establish an electrical connection. In particular, the top package die 14 is attached to the substrate 12 having two metal layers 121, 123 (in this example Medium) 'each of which is patterned to provide appropriate circuitry and connected by vias 122. The die is coated with an adhesive 13 attached to the upper surface of the top 4 package substrate, typically a die attach epoxide. The die 14 and the wire contacts 16 utilize a molding compound 17 Covered to provide protection against ambient and mechanical stress for handling operations, and 155479. Doc -12- 201131731 Provides a surface for marking for identification. Solder balls i 8 are soldered back to the contacts 143 on the upper facing metal layer of the bottom package substrate to interconnect the Z between the top and bottom packages. An advantage of the structure of FIG. 4 is that the substrate folded over can provide a fill area over the upper surface of the bottom package substrate on which the ridge is folded to accommodate a complete array of solder balls in the top package, And accommodate more complex interconnects between the two packages. It also provides a small package trajectory. The main disadvantage of this configuration is that the cost of the substrate is high and that bending techniques and equipment are not available. A common feature of all of these stacked package configurations is that they can protect each package and provide production at a higher final test yield. SUMMARY OF THE INVENTION The present invention is directed to a multi-package module having a stacked package. In accordance with the present invention, the connections between the stacked packages in the MPM are based on line contacts. In general, the present invention features a configuration with a plurality of different stacked packages and a method of stacking and interconnecting different packages by means of 2 interconnects based on wire contacts. In a multi-package module in accordance with the present invention, the package stack can include a variety of BGA packages and/or any type of platform flip LLGA package: the package stack can include wire bonds and/or flip chip packages. The package stack can include a thermal enhancement feature generated on or in the stack; the package stack can include - or a plurality of wire contacts to the BGA or LGA: a flip chip die at the bottom or bottom Package; the package stack may include more than one die- or multiple BGA and/or LGA packages in the stacked package or side-by-side encapsulation; the stack may include - or more than 155479. D〇i 13 201131731 Electromagnetic shielding of the package; and the stack may comprise any substrate, plywood or assembly or ceramic, which provides for the formation of z interconnects by being bonded around the packages. In a general aspect, the invention features a stacked underlying and upper packaged epoch packaging module, each of which includes a ruthenium attached to a substrate, wherein the upper and lower substrates are connected by wires Point to interconnect. The invention can provide excellent manufacturability, high design flexibility, and low cost to manufacture a stacked package module with a low wheel temple and a small track. The wire contact interconnection technology has been well established in the industry. It is the lowest cost interconnect technology and can be used directly, without the need for significant modifications, to be used in the multi-package module of the present invention. It provides design flexibility for the relative dimensions of the BGA to which it can be bridged by the length of the wire. With the available technology and equipment, the wire in the wire contact can be as short as 0 5 or as long as 5 mm. The configuration of the Z interconnect pads can be implemented by either BGA and LGA substrate design or one of them. In addition, with the wire contacts according to the present invention, the germanium interconnects can be formed between pads that are not precisely aligned with each other, by means of so-called out-of-order bonding, which is currently used In this industry, the line-to-point spacing is the finest in the industry, at 50 microns, and is expected to reach 25 microns. This can result in a large number of interconnects. Both manufacturability and design flexibility can contribute to the river. 1>1^ Low cost. The minimum trajectory of a typical BGA or LGA is 丨7 mm larger than the grain size. Adding the z-interconnect point pad according to the present invention will increase Β〇α minimum os mm. A typical BGA The thickness is 1. 〇 mm, and lga thickness is 0. The typical adhesion thickness of 8 mm is in the range of 0. 025 mm to 0. Between 100 mm. 155479. Doc • 14· 201131731 The trajectory and thickness of the stacked package MPM according to the present invention can fall within an acceptable range for most applications. In some embodiments, the multiple package module includes three or more packages that are sequentially fixed to form a stack. In another aspect, the present invention features a first ("bottom"): second ("top") package of multiple package modules, each package including a die attached to a substrate, and by A wire contact is connected to the substrate, wherein the top package substrate and the bottom package base (4) are interconnected by wire contacts. In some specific implementations, each package is completely covered with a molding material 'in other embodiments, at least one package is only coated to a certain extent' to protect the crystal during subsequent processing and testing. A line junction between the grain and the substrate. In some embodiments, the second package is a core package and in some such embodiments, the lga package substrate is a single metal layer substrate. In another aspect, the invention features a multi-package module having a first ("bottom") and a second ("top") package stacked, the bottom package being a two-GA package 'each package including being attached to a die of a substrate, wherein the top package substrate and the BGA package substrate are interconnected by wire contacts. In another aspect, the invention features a multi-package module of a stacked package in which at least one of the packages has an electrical shield. In some such configurations, the electrical shield can additionally be configured as a heat sink. In some embodiments, the packages having an electrical shield include __rf dies, and the occlusion is used to limit electromagnetic interference between the RF dies and other dies in the multiple package module. In some embodiments, the bottom package is 155479. Doc -15· 201131731 has - electric shielding. In another aspect, the _ & and the second ("top ar, characterized by a stacked first ("bottom"), negative port p") package in the guest-on-die configuration The bottom package is packaged in the top substrate and the bottom package BGA package. In the embodiment, the top cover is interconnected. In some embodiments, the stack:;, - stacked die package; in a specific spacer to separate. On the 1st of the next day. The adjacent stacked dies in the stand can be interposed between the wafers, and the inverted package substrate on the bottom package includes - embedded in some embodiments, the bottom is used for heat dissipation and - Electric shielding. #也千面系叹为成在其他-'the invention is the second and the second ("top only has the (bottom)" τ曰 in multiple package modules; the bottom package is in the = configuration - flip chip - flipping one: for; top of the top. p substrate and the bottom ... in the body embodiment, at the bottom = to interconnect. In some masked 卩 package on the flip chip die has In one aspect, the present invention is characterized in that a plurality of (top) packaged multi-packages (the bottom #) and the first board of the "Lee* Yishan (four) package comprise a 曰 particles attached to the substrate, and The bottom package substrate is connected by at least one of the wire contact and the top package, and the top package and the bottom are worn by the bottom package. 0 褒 white for - stacked die seal 155479. Doc •16·201131731 In another general aspect, the method of grouping includes at least a first (bottom) package on a first (bottom) package substrate of a multi-package die. The top-of-the-box package includes a first and a second (top and bottom) substrate on a first (on-package) and a second (-eight-first) package substrate Between the formation of line contacts 2, clean feet = cellar '5 hai and other packages can be tested before the group crack, which can discard the not six warehouses:: • or reliability of the package, so it is better to test The first package and the first package are used in the assembled module. In terms of aspect, the invention features a method of fabricating a multi-package module, including a lga package stacked on a BGA package. Wherein the top port P and the bottom package are interconnected by wire contacts. According to this aspect, a BGA package is provided which is typically an undivided strip of a molded bga package; preferably in the scarf BGA package for performance and reliability testing' and identify A "good" The seal is then subjected to subsequent processing; the adhesive is attached to the upper surface of the molded & BGA package; an analog molded platform grid array package is provided; preferably, the LGA package is tested '" and identified as "good"; these "good" LGA packages are the adhesive placed over the molding on the BGA package and cure the adhesive, as needed and preferably, A plasma cleaning operation is performed after forming a line contact z interconnection between the top portion 1ga of the stack and the bottom BGA package; an additional plasma cleaning may be performed as needed, and preferably, to form the MPM mold. Further steps include attaching a second layer of interconnected solder balls to the underside of the module; testing and separating the completed module from the strip, for example by sawing or by punching; and for other uses Come to 155479. Doc 17 201131731 Packaging. In some embodiments, the LGA (top) package is fully molded 'having a generally planar upper surface of the LGA package; in other embodiments, the line contacts, but not the LGA The entire upper die surface of the package is molded, and the LGA is molded by dispensing the molding compound only around the die and near the gap of the s-shaped LGA package substrate. In another aspect, the invention features a method of stacking a multi-package module on a LGA package stacked on a BGA package, wherein the top and bottom packages are interconnected by wire contacts, and wherein The bottom package has an electromagnetic shield. In accordance with this aspect, a ball grid array package is provided, which is typically a strip of undivided strips of a BGA package; the BGA packages have a shield that is secured over the die; preferably in the strip The Β〇α package is tested for performance and reliability and identified as “good” for subsequent processing; the adhesive is dispensed over the upper surface of the mask on the “good” BGA package; a separate mold is provided a platform grid array package; preferably, the LGA package is tested and identified as "good"; the "good" LGA package is placed on the dispensing agent over the mask and the adhesive is cured "in accordance with It is desirable and preferred that after the interconnection of the top contact 1ga of the stack and the portion of the BGA package is formed, the electrical connection cleaning operation is performed; if necessary, and preferably, an external power can be performed. (d) washing, followed by forming the stamping. The step of stepping includes attaching a second layer of interconnecting solder balls to the underside of the module; testing and separating the completed module from the strip, for example by sawing Segmentation or separation by punching.  The knife is separated and packaged for other uses. 155479. Doc -18- 201131731 In some concrete implementations (4), the method includes the steps of providing the multi-module and a heat sink. In this aspect of the invention, the process of performing 'has additional steps to insert--"falls into" the molding operation to install the supported radiator command, or inserts a "drop-in" molding operation to the installation: a planar heat sink; or by applying an adhesive to the upper surface of the top package molding, or to the upper surface of a spacer on the top package, and fixing the planar heat sink to the adhesive. In another aspect, the invention features a method of fabricating a set comprising a top seal placed on the bottom of the lower die (four) wafers, and the top and bottom packages are connected by wires in the outer pull. According to this aspect, it is provided that the bottom of the die-flip wafer BGA is sealed by two 2" moldings, which are usually attached to the lower die wafer wafer grid array, and (4) the ground is in the long strip. The package that is identified as "good" by the BGA package is accepted as a "good" package: (4) is assigned to the top of the die on a "good" BGA package): on top to provide a separate top (eg platform The grid array armor, 11 is molded as needed; preferably, and identified as the adhesive of the package test η, and the adhesive is cured; as needed and preferably the point r interconnect = stack A wire connection is formed between the top lga and the bottom bga package, which can be performed immediately - electropolymer cleaning operation; as needed and preferably ": 'Next to form the system. ??? Test and separation =:: ::Welding: Under the module (4) Chess Hing, long strips, for example by sawing split or 155479 . Doc •19· 201131731 is separated by punching; and is packaged for other uses. In another aspect, the invention features a multi-package mold including a top-mounted stacked-sub-die flip chip BGA bottom package, wherein the top and bottom packages are lined The contacts are interconnected, and wherein the bottom package has an electrical shield. In accordance with this aspect, similar to the aforementioned processing of the unmasked bottom flip chip bottom package, it has an additional step of inserting the shield to the bottom package flip chip die. Provide a die-wafer BGA bottom package, optionally molded, in a lower die-flip wafer flip-flop array bottom package; preferably in a package for performance and reliability testing in the strip The package identified as "good" is subjected to subsequent processing; the adhesive is dispensed over the upper surface (back side) of the die on a "good" package; a separate top is provided (eg, a platform grid array) a package, which can be molded as needed; preferably 'tested for the LGA package and identified as 'good'; the #"good" pass package is placed on the adhesive over the mask' and cured The adhesive; as needed and preferably, after the wire-to-I interconnection is formed between the top LGA of the stack and the bottom BGA package, a plasma cleaning operation is performed; as desired, an additional The plasma is cleaned and then molded to form the MPM. The step of stepping includes attaching a second layer of interconnected solder balls to the underside of the module, testing and separating the completed module from the strip, for example by splitting or separating by punching; Other uses for packaging. At m, the invention features a method comprising a top package stacked on top of an upper wafer flip chip BGA package, wherein 155479. Doc •20-201131731 For the first package, some of the specific implementations can be a stack of edge top and bottom packages electrically interconnected by wire contacts. In accordance with this aspect, an upper die-flip wafer ball grid array package is provided, which is typically unmolded and is typically an undivided strip of an upper die-flip wafer ball grid array package; preferably The BGA package in the strip performs a tree of performance and reliability. The package identified as "good" accepts subsequent processing; the adhesive is dispensed onto the top surface of the substrate on a "good" BGA package. . 严兄》v die, ..., as needed and usually molded; preferably, the lga package is tested and identified as "good"; the "good" LGA packages are placed on top of the substrate Adhesive, and curing the adhesive; if desired, it is preferred to form a wire joint Z interconnected between the top lga of the stack and the bottom BGA package.  Thereafter, a plasma cleaning operation is performed; it is preferably carried out as needed - additional plasma cleaning, followed by formation of the MPM molding. The step of progressing includes attaching a second layer of interconnected solder balls to the underside of the module; a J-shaped knives separate from the module and the strip, for example by sawing apart or by punching; Other uses for packaging. In another aspect, the invention features a method of fabricating a multi-package module that includes a top package stacked on top of a stacked bottom package, wherein the top and bottom packages are interconnected by wire contacts . In accordance with this aspect, a stacked die BGA package is provided that is typically molded and is typically provided as an undivided strip of a stacked die ball grid array package; preferably in the strip The package that is identified as "good" by the performance and reliability test of the package is subjected to subsequent processing; the adhesive is dispensed onto the upper surface of the "good" stacked die BGA package; 155479. Doc -21 · 201131731 is usually on the often planar upper surface of the package; a separate second package is provided, usually molded, which can be used as a stacked die package, preferably Is to test the first: package, and _ "good" j "good" second package is placed on the sticky moon above the upper surface of the BGA and cure the adhesive; it is preferably as needed An electric cleaning operation is performed after the wire contact z interconnection is formed between the top and bottom packages of the stack; it is preferably (four) preferably performed - additional electric cleaning, and then the MPM molding is formed. The step of stepping includes attaching a second layer of interconnected solder balls to the underside of the module; testing and separating the completed module from the strip 'eg by _ splitting or by punching; and for Package. + In some embodiments of the method, two or more first-molded packages are provided in the un-separated strip, and two or more die-type (four) assemblies are performed on the strip. And separating the two or more modules after the assembly is completed. In the method of fabricating a multi-package module in accordance with the present invention, the electrical connections between the stacked packages use wire contacts for f to interconnect the package substrates L above and below the stack. Special benefits include the use of established manufacturing architectures, low production costs, design flexibility and thin package products. The z interconnect contact can be implemented in a variety of package and module configurations by pulling a wire from a bump formed by a conductive pad of the first package substrate i to the first package substrate a conductive pad on the conductive pad; or a bump formed on a conductive pad on the first package substrate to pull the wire to a conductive bump on the first package substrate. 155479. Doc • 22· 201131731 The present invention provides more than one semiconductor package in a thin and minimal track package at the lowest cost and highest final test yield. Moreover, some of the stacked configurations in accordance with the present invention allow for high thermal performance, high electrical performance, or electrical isolation of a digital component from a component. Other stacked configurations can be used (for very thin structures for handheld or sleek products. All methods of assembly are allowed to allow individual testing of the stacked packages to maximize the final quality of the module. The additional process steps will be used to complete the multi-sealing module according to the present invention. Preferably, the solder balls for the connection of the lowermost package in the stack are not attached to the motherboard. Rather, until the final step before the separation of the MpM. And 'for example, the electricity cleaning can be done at any point in the process, for example, after the adhesive is cured, and before the coating, and like the interconnection in 2 Preferably, the individual packages are provided as strips of several packages, connected in a row for easy processing during manufacturing, and the multi-package module is in the process step Then, in the method according to the present invention, the package stacks can be formed on a strip of a non-single-first package of a selected type by a fixedly separated second package, and are completed. After the process of the modules, the interconnects of the line contacts are formed, and then the modules are separated. The MPM according to the present invention can be used to construct computers, telecommunication equipment, and consumer and industrial electronic devices. [Embodiment] The present invention will now be described in further detail with reference to the drawings, which are referred to as 155479. Doc • 23-201131731 Other embodiments of the invention are apparent. The drawings are merely illustrative and illustrate the relationship between the features of the present invention and other features and structures, and are not drawn to scale. In order to improve the clarity of the presentation, in the drawings illustrating the specific embodiments of the present invention, the elements corresponding to the elements shown in the other drawings are not specifically renumbered, although they are clear in all drawings. Identification. Referring now to FIG. 5A, there is shown a cross-sectional view at 5 具体 of a specific embodiment of a multi-package module according to one aspect of the present invention, including stacked (bottom) and second ("top" Package) wherein the stacked packages are interconnected by wire contacts. In the embodiment shown in Figure 5A, the bottom package 400 is a conventional BGA package, such as shown in Figure 1. Thus, in this embodiment, the bottom package 4A includes a die 414 attached to a bottom package substrate 412 having at least one metal layer. It can use any of a variety of substrate types, including, for example, a plywood having a 2-6 metal layer, or a structured substrate having a 4-8 metal layer, or a flexible polyimide tape having a 2 metal layer, or A ceramic multiple layer substrate. The bottom package substrate 412 shown by the example of Fig. 5 has two metal layers 421, 423' each patterned to provide appropriate circuitry and connected through vias 422. The die is conventionally attached to a surface of the substrate using an adhesive 'substantially referred to as a die attach epoxide, as shown at 413 in Figure 5a' and in Figure VIII. In the configuration, the surface of the substrate to which the die is attached may be referred to as an "upper" surface and the metal layer on the surface may be referred to as an "upper" metal layer, although the die attach surface is not required for use. Have any specific directionality. 155479. Doc •24- 201131731

晶粒係線接點到在該基板Grain line contact to the substrate

腦等。焊罩415、427係圖案化到該金屬層421、 電路,例如電 1、423之上來 在接點處暴露該下層金屬用於電連接,例如該線接點處, 及用於接合該等線接點416及焊球41 8之接點墊。 在圖5A所示的具體實施例中,該頂部封裝5〇〇為一平台 格栅陣列(LGA)封裝,其可以類似於一BGA封裝,例如圖丄 中所示,但不具有焊球安裝到該基板之下表面的接點墊上 。特別是在此範例中,該頂部封裝5〇〇包括附著在具有至 少一金屬層之頂部封裝基板5 12上的一晶粒5 14。其可使用 多種基板型式中的任何一種;藉由圖5 A之範例所示之頂部 封裝基板5 12具有兩個金屬層521、523,其每個被圖案化 來提供適當的電路,並透過通孔522連接。該晶粒在習用 上係使用一黏著劑來附著於該基板的一表面上,基本上係 稱之為晶粒附著環氧化物,如圖5 A中的5 13所示,且在圖 5 A的組態中,該晶粒所附著的基板表面可稱之為「上方」 表面’且在該表面上的金屬層可稱之為「頂部」金屬層, 雖然該晶粒附著表面在使用上不需要具有任何特定的方向 性。 155479.doc -25- 201131731 在圖5A之具體實施例中的頂部Lga封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒5 1 4及該線接點5 1 6係以一模製化合物5 17來包覆,其可 提供對於周遭與機械應力的保護,以便於處理作業,並具 有一頂部封裝上表面5 19。該頂部封裝500係堆疊在該底部 封裝400之上’並使用一黏著劑503來附著。焊罩515、527 係圖案化在該等金屬層521、523之上,以在接點處來暴露 該下層金屬,用於電連接,例如該等線接點處來接合該線 接點5 1 6。 在該堆疊的頂部封裝500與底部封裝400之間的z互連係 藉由連接個別封裝基板之頂部金屬層的線接點518來製成 。一方面’每個線接點518係電連接到該頂部封裝基板512 之上金層層521上之墊的上表面’而另一方面,每個線接 點係連接到該底部封裝基板412之上金屬層42 1上之塾的上 表面。該線接點可由任何在本技藝中所熟知的線接點技術 來形成,例如像是在美國專利5,226,582中所述,其在此引 用做為參考。該封裝對封裝z互連線接點係藉由圖5A中的 範例來說明,其係由形成一凸粒或凸塊在該頂部基板的上 金屬層上的一墊之上表面上,然後向下拉出導線朝向並融 合到該底部基板之上金屬層的一墊上。如下所述,該線接 點可在反方向上完成,也就是說’藉由形成一凸粒或凸塊 在該底部基板之上金屬層的一墊之上表面上,然後向下拉 出該導線朝向並融合到該頂部基板之上金屬層上的一墊。 如下所述’該封裝對封裝z互連之線接點策略的選擇將根 155479.doc -26- 201131731 據該等堆疊基板之間隙的幾何配置與在其上的接合表面來 決定。 在圖5A中的堆疊封裝具體實施例中,在個別封裝基板上 的z互連墊係配置在靠近該封裝基板之間隙處的上金屬層 之上該z互連塾之位置及順序通常係配置來使得在該頂 部封裝基板上的Z互連墊在堆疊該等封裝時大致覆蓋了在 該底部封裝上的相對應2互連墊。習用上,該頂部封裝500 具有比該底部封裝400要較小的基板軌跡,以允許該線接 點之空隙不會造成短路到該基板之金屬層的邊緣。一旦已 、、至开y成了該z互連線接點,即形成一模組包覆,以覆蓋及 保蒦該專Z互連線接點,並提供所完成的模組之機械整合 性。 在該頂部及底部封裝基板上的Z互連墊之配置係藉由在 圖5B及5C中的平面圖之範例來顯示,其分別是在5〇〇及 4〇〇。請參考圖5B,頂部封裝2互連墊524係由圖案化位在 该頂部封裝基板5 12之上表面525上的空隙501處的該上金 屬層的區域所形成。該空隙5〇1延伸超過該頂部封裝包覆 材料之邊緣526,其具有一上表面519。現在請參考圖5C, 底部封裝z互連墊424係由圖案化位在該頂部封裝基板412 之上表面425上的空隙401處的上金屬層之區域所形成。該 空隙401延伸超過該堆疊之軌跡5丨丨之外,並覆蓋頂部封裝 基板512’並進一步超過該底部封裝包覆材料之邊緣426, 其具有一上表面419。 如圖5A、5B及5C所示,在根據本發明之頂部及底部封 155479.doc •27- 201131731 裝之間的Z互連係由在該頂部封裝基板之空隙5〇1令的頂部 封裝互連塾524及該底部封裝基板之㈣4〇1中的底部封裝 互連塾424之間(上接點或下接點)的線接點所製成。該多重 封裝模組結構係由形成一模組包覆5〇7來保護,且焊球W 8 係回焊到該底部封裝基板之下金屬層上所暴露的焊球塾, 來連接到下層電路,例如一主機板(未示於圖中)。 如前所述,根據本發明之結構允許在組裝到該多重封裝 模組之前預先測試該BGA及LGA,以允許在組裝之前排除 不符合的封裝,藉此保證具有較高的最終模組測試良率。 為了改善來自該多重封裝模組之散熱,在該頂部封裝之 上可提供一散熱器《該頂部散熱器係由一導熱材料所形成 ’其至少S其上表面之中具彳更多&amp;中心區域來暴露該 MPM的上表面到周遭環境,來更有效率地對於進行 熱交換。例如該頂部散熱器可為一金屬片(如銅片),而其 可在該模製材料固化處理期間來固定到該厘⑽包冑。或者 ,該散熱器可在該頂冑封裝之上具有—it常為平面的部份 ’以及-周圍支擇的部份,或是置於或靠近於該底部封裝 基板之上表面的支標部件。 藉由範例,圖5E所示為根據本發明另一方面之堆疊的 BGA+LGA MPM 54之截面圖,其中在該MpM的上表面處 提供一「頂部」散熱胃。在MPM 54中堆叠的封裝之結構 通常類似於圖5A中的該MPM 5〇,而在圖中可由類似的參 考編號來識別類似的結構。在此範例中的頂部散熱器係由 一導熱材料所形成,其具有位在該頂部封裝之上的通常為 155479.doc -28 · 201131731 平面的中心部份544,及延伸到該底部封裝結構4i2之上表 面的周圍支撑部件546。該平面部份544之上表面係在該 MPM上表面來暴露到周圍’以有效率地將熱帶出職。 例如該頂部散熱器可藉由一金屬片(例如銅)來形成,例如 藉由沖壓。該等支揮部件546可依需要來使用一黏著劑固 定到該底部封裝基板之上表面(未示於圖中)。言亥多重封裝 模組結構可由形成一模組包覆5〇7來保護,且該散熱器支 撐部件在該模製材料固化處理期間被嵌入在該MpM包覆 中。在圖5E的具體實施例巾,在該散熱器的平面上方 部份544的周圍提供有一階梯狀的凹入特徵545,以允許較 佳的結構之機械性整合度,而較不會與該模製化合物分離 :在此具體實施例巾,該散熱器544之下表面與該L(JA模 製5 17之上表面5 19之間的空間係填入該MpM模製之薄層。 另外,一頂部散熱器可固定於該LGA模製之上表面,如 在圖5D之截面圖中所示。在MPM 52中該堆疊的封裝之結 構通常類似於在圖5A中的MPM 5〇,而類似的結構可在圖 面上由類似的參考編號來識別。在圖5D之範例中的頂部散 熱器504為一通常為平面的導熱材料板,其至少具有其上 表面的一更為中心的區域來暴露到周圍環境,以更有效率 地將熱帶出MPM,如圖5E之範例中所示。例如該頂部散熱 器可為一金屬板(例如銅)。但是,在此處該頂部散熱器5〇4 係使用一黏著劑506來固定到該上方封裝包覆517之上表面 519。該黏著劑506可為一導熱黏著劑,以提供改善的散熱 效果。通常在該頂部封裝模製已經至少部份固化之後,該 155479.doc -29- 201131731 頂部散熱ϋ即固定到該頂部封裝模製,但其係在該模製材 料對於該ΜΡΜ包覆5G7射出之前。該頂部散熱器之周圍可 以包覆該MPM模製材料。在圖5〇的具體實施例中,在該 散熱器504的周圍提供有—階梯狀的凹入特徵5〇5,以允許 較佳的結構之機械性整合度’而較不會與該模製化合物分 離。 在另-種選擇中’如圖5八之麵,其可具有一簡單的 平面散熱器’而不具有支樓部件,其並不附著於該頂部封 裝模製的上表面。在這些具體實施例中,如在圖5〇中的具 體實施例,該頂部散熱器可為一通常為平面的導熱材料板 ,例如像是一金屬片(例如銅),及至少該平面散熱器之上 表面的更為中心的區域係暴露到周圍來更有效率地將熱帶 離該MPM。此處,在該簡單平面散熱器之下表面與該lga 模製5 17之上表面5 19之間的空間係填入一薄層的MpM模製 ,且這種簡單的平面散熱器可在該模製材料固化處理期間 來固定於該MPM包覆507。這種未附著的簡單平面頂部散 熱器之周圍可以包覆有該MPM模製材料,如同在圖5D中 所附著的平面散熱器,並可在該周圍上提供一階梯狀的凹 入特徵505,以允許與該結構的較佳機械整合度,並較不 會與該模製化合物分離。 如圖5D、5E所示之具有一散熱器的MPM,其可提供改 善的熱效能。 現在請參考圖6A,所示為根據本發明一方面之堆疊的封 裝多重封裝模組之截面圖,其在一 BGA底部封裝之上具有 155479.doc •30· 201131731 -lga頂部封裝’其中該頂部封裝LGA被部份地包覆。也 就是說,該頂部LGA封裝的模製材料係應用到有限的區域 ’並為有限的量’其足以在㈣處理期間來保護該等線接 點,特別是在後續的㈣測試期間。在纟它方面,圖6八的 組態即實質上顯示在圖5A中。因此,在此具體實施例中, 。亥底邛封裝400之結構如圖5A所述,且該頂部封裝6⑻之結 構實質上即如圖5A所示,除了在該上方封裝包覆中的差異: 。特別是,該頂部封裝600包括附著在具有至少一金屬層 之頂部封裝基板612上的-晶粒614。其可使用多種基板型 式中的任何一種;藉由圖6A之範例所示之頂部封裝基板 512具有兩個金屬層621、623,其每個被圖案化來提供適 當的電路,並透過通孔622連接。該晶粒在習用上係使用 一黏著劑來附著於該基板的一表面上,基本上係稱之為晶 粒附著環氧化物,如圖6A中的613所示,且在圖6八的組態 中,該晶粒所附著的基板表面可稱之為「頂部」表面,且 在該表面上的金屬層可稱之為「上方」或「頂部」金屬層 ’雖然該晶粒附著表面在使用上不需要具有任何特定的方 向性。 在圖6A之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒614及該線接點616係包覆一模製化合物617,其可提供 對於周遭及機械應力的保護,以便於處理作業。在此具體 實施例中的包覆617之形成,係僅用來包覆該線接點及其 個別的連接到該頂部封裝基板與該頂部封裝晶粒,所以該 155479.doc • 31 · 201131731 晶粒614之上表面大部份皆未被該包覆所覆蓋。該頂部封 裝600係堆疊在該底部封裝4〇〇之上,並使用一黏著劑來固 定在那裏。焊罩615、627係圖案化在該金屬層621、623之 上,以在接點處暴露該下層金屬來用於電連接,例如在該 線接點處來接合該等線接點61 6。 在該堆疊的頂部封裝600與底部封裝4〇〇之間的z互連係 藉由連接個別封裝基板之頂部金屬層的線接點618來製成 »亥夕重封裝模組結構係由形成一模組包覆6〇7來保護, 且焊球418係回焊到該底部封裝基板之下金屬層上所暴露 的焊球墊,來連接到下層電路,例如一主機板(未示於圖 中)。 此組態的好處在於降低成本。該部份包覆係實施成與該 線接點處理一致(例如藉由通過一微細噴嘴配送,如同來 自二〜針官的注射器)’並因此提供了較高的流量,及 使用較少的包覆材料。在該部份包覆之後,該頂部lga封 裝可在不需要重排㈣殊的處理即可測試,以避免損傷該 頂部封裝線接點β 厂了改善如圖6Α中的範例所示之多重封裝模組的散產 :該頂部封裝之上可提供-散熱器。該頂部散熱器⑽ 導熱材料所形成,其具有將其上表面之更為中心的㈣ 露該刪的上表面到周圍環境,以更有效率地將熱 ΜΡΜ▼離。例如該頂部散熱器可為_金屬板(例如銅), 其可在該模製材料固化處理期間固^到該Mm包覆上。 者,該散熱器可在該頂部封裝之上具有__通常為平面的 155479.doc -32- 201131731 份,及一周圍支撐部份、或置於該底部封裝基板之上表面 之上或其附近的支樓部件。 藉由範例’圖6B所示為根據本發明另一方面之堆疊的 BGA+LGA MPM 62之戴面圖,其中在該MPM的上表面處 提供一「頂部」散熱器。在MPM 62中堆疊的封裝之結構 通常類似於圖6A中的該MPM 60’而在圖中可由類似的來 考編號來識別類似的結構。在此範例中的頂部散熱器係由 一導熱材料所形成,其具有位在該頂部封裝之上的通常為 平面的中心部份644,及延伸到該底部封裝結構412之上表 面的周圍支撐部件646。該平面部份646之上表面係在該 MPM上表面來暴露到周圍,以有效率地將熱帶ώΜρΜ。 例如該頂部散熱器可藉由一金屬片(例如銅)來形成,例如 藉由沖壓。該等支撐部件646可依需要來使用一黏著劑固 定到該底部封裝基板之上表面(未示於圖中)。該多重封裝 模組結構可由形成一模組包覆6〇7來保護,且該散熱器支 撐部件在該模製材料固化處理期間被嵌入在該ΜρΜ包覆 607中。在圖印的具體實施例中,在該散熱器的平面上方 部份644的周圍提供有一階梯狀的凹入特徵Μ5,以允許較 佳的結構之機械性整合度,而較不會與該模製化合物分離 。在此具體實施例中,該散熱器644之下表面與該晶粒614 之上表面之間的空間可由一層ΜΡΜ模製來填入,其足夠地 厚,使得該散熱器644不會干涉到該周圍LGA模製617。 另外,在圖6A的此具體實施例中的MpM,其可具有一 簡單的平面散熱器,不具有支撐部件,且不附著於該頂部 155479.doc -33· 201131731 封裝模製的上表面。在這些具體實施例中,如在圖⑺中的 具體實施例,該頂部散熱器可為一通常為平面的導熱㈣ 板例如像疋一金屬片(例如銅),及至少該平面散熱器之 上表面的更為中心的區域係暴露到周圍來更有效率地將熱 帶,該MPM。此處’如圖6B的具體實施例,在該平面散 熱器之下表面與該晶粒614之上表面之間的空間係由一層 MPM模製所填人,其足夠地厚,使得該散熱器不會干涉到 該周圍的LGA模製617。而此處在圖6B的具體實施例中, 這種簡單的平面散熱器可在該模製材料固化處理期間來固 定到該MPM包覆607。這種未附著的簡單平面頂部散熱器 之周圍可以包覆有該MPM模製材料,#同在圖5〇中所附 著的平面散熱器,並可在該周圍上提供一階梯狀的凹入特 徵,以允許與該結構的較佳機械整合度,並較不會與該模 製化合物分離。 、 、 如在圖6A中一具體實施例之另一選擇,其允許附著一簡 單平面散熱器到該頂部封裝60〇 ,在該簡單平面頂部散熱 器之下表面與該晶粒614之上表面之間可提供一間隔器。 該間隔器可使用一黏著劑來固定於該晶粒及該散熱器;或 是,該間隔器可形成為整體的一部份,及該散熱器的一間 隔器部份,且在這些具體實施例中,該散熱器之間隔器部 份之下表面可使用一黏著劑來固定於該晶粒的上表面。該 間隔器較佳地由導熱材料製成,且該黏著劑可為一導熱黏 著劑’以提供改善的散熱性能。在這些具體實施例中,該 頂部散熱器可在該頂部封裝模製已經至少部份固化之後來 155479.doc -34 - 201131731 607射出封裝,但其係在該模製材料對於霞PM包覆 製材料。二二I/熱^…可以包覆有該顧模 器的周圍提=:::實施例中’在該簡單™ 之機械性整狀的凹人特徵,以允許較佳的結構 度而較不會與該模製化合物分離。 例如圖6B所示之罝右_私# 改善的熱效能。、’’、、益的職結構,其可提供 圖7所示為根據本發明另一 月另方面的堆疊多重封裝模組之 其在BGA底部封裝之上堆疊有一頂部lga封裝 ’其令對於該頂部LGA封裝使用—單層金屬層基板。在其 它方面’圖7的組態即實質上顯示在圖从中。因此,在此 具體實施例中’該底部封裝_之結構如參考圖5A所示, 而該頂部封裝700之結構即實f上如圖5A所示,除了在該 頂部封裝基板的結構有所差異。特別是,該頂部封裝7〇〇 包括附著到具有一金屬層721之頂部封裝基板712之—晶粒 714其被圖案化來提供適當的電路。該晶粒在習用上係 使用一黏著劑來附著到該基板的表面,其基本上稱之為晶 粒附著環氧化物,如圖7之713所示,且在圖7的組態中, 該晶粒所附著的基板表面可稱之為「上表面」,因此在此 基板上的金屬層可稱之為「上方」或「頂部」金屬層,雖 然該晶粒附著表面在使用上不需要具有任何特殊的方向。 在圖7之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。兮曰 日曰 粒714及該線接點716係包覆一模製化合物717,其可提供 155479.doc -35· 201131731 對於周遭及機械應力的保謹 _ 卞邊,以便於處理作業。在圖7所 不之具體實施例中的包覆7〇7伤机 ^ 係5又置成如同圖5A中的具體 實施例,所以該包覆7〇7霜筌7分曰κ ' 復蓋了該日日粒以及該等線接點及 其連接,且該包覆在整個曰 個日日粒及互連之上具有一表面719 如下所述’此處的包覆另可形成如同圖6A之具體實施例 ’也就是說’其形成係僅包㈣等線接點及其個別的連接 到該頂部封裝基板及該頂部封裝晶粒,所以大部份該晶粒 的上方表面並未被該包覆所覆蓋。該頂部封裝700係堆疊 在該底部封裝400之上,並使用一黏著劑固定在那裏如 在703所示。焊罩715被圖案化在該金屬層Μ〗之上,以在 接點處暴露下層金屬來電連接,例如用於接合該等線接點 716之線接點處。 在該堆疊的頂部封裝700與底部封裝4〇〇之間的z互連係 藉由連接個別封裝基板之頂部金屬層的線接點71 8來製成 。亥多重封裝模組結構係由形成一模組包覆7〇7來保護, 且焊球418係回焊到該底部封裝基板之下金屬層上所暴露 的焊球墊,來連接到下層電路,例如一主機板(未示於圖 中)。 此組態之好處在於相較於在該頂部LGA封裝中使用兩個 金屬層之基板的組態可以降低成本,因為該單一金屬層基 板之成本較低。此組態可額外地提供一較低的封裝輪廓, 因為該單一金屬層基板比具有兩個或更多金屬層之基板要 薄0 圖8A所示為根據本發明另一方面之堆曼的bga+lga 155479.doc -36- 201131731 MPM 80之截面圖,i中裎 /、中裢供—散熱器及電遮蔽給該底部 封裝。藉由圖8A中的範例所示之具體實施例具有—頂 台格柵陣列(「LGA」)封梦. 、 其堆疊在一底部球格栅陣 列BGA」封裝402之上,其中# 丹Τ该頂部LGA封裝通常建構 成圖5Α中的頂部Lga封裝。如下所a . 衣如下所述,一具有單一金屬層 之LGA’如參考圖从所述,其另可做為圖8a之具體實施 例中的頂部LGA。請參考S8A,該頂部lga封裝_可類 似於-BGA封裝,例如圖丨中所*,㈣具有焊球來安裝 在該基板之下表面的接點墊上。特別是在此範例十,該頂 P封裝800包括附著在具有至少—金屬層之頂部封裝基板 812上的一晶粒814。其可使用多種基板型式中的任何一種 ;藉由圓8A之範例所示之頂部封裝基板812具有兩個金屬 層821 823’其每個被圖案化來提供適當的電路,並透過 通孔822連接。該晶粒在習用上係使用一黏著劑來附著於 该基板的一表面上,基本上係稱之為晶粒附著環氧化物, 如圖8A中的813所示,且在圖8八的組態中,該晶粒所附著 的基板表面可稱之為「上方」表面’且在該表面上的金屬 層可稱之為「上方」或「頂部」金屬層,雖然該晶粒附著 表面在使用上不需要具有任何特定的方向性。 在圖8A之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒814及該等線接點816係包覆有一模製化合物817,其可 提供對於周遭及機械應力的保護,以便於處理作業,並具 有一頂部封裝上表面819。焊罩815、827係圖案化在該等 155479.doc •37- 201131731 金屬層821、823之上,以在接點處暴露該下層金屬來用於 電連接,例如用於接合該等線接點8 1 6之線接點處。 在圖8A中的具體實施例之底部BGA封裝402為一習用的 BGA封裝’例如在圖1中所示,除了圖8A之底部BGA封裝 並未包覆有一模製化合物;而是,其具有一散熱器,其可 額外地做為一電遮蔽’如下所述。因此,在此具體實施例 中,該底部封裝402包括一附著到具有至少一金屬層之底 部封裝基板412上的一晶粒414。其可使用多種基板型式之 任何一種’例如包括:一具有2-6金屬層之壓合板、或具 有4-8金屬層之建構基板、或具有丨_2金屬層之可撓聚酿亞 胺帶、或一陶瓷多重層基板。藉由圖8 a之範例所示之底部 封裝基板412具有兩個金屬層421、423,其每個被圖案化 來提供適當的電路’並透過通孔422連接。該晶粒在習用 上係使用一黏著劑來附著於該基板的一表面上,基本上係 稱之為晶粒附著環氧化物,如圖8A中的413所示,且在圖 8A的組態中’該晶粒所附著的基板表面可稱之為「上方」 表面,且在該表面上的金屬層可稱之為「上方」金屬層, 雖然該晶粒附著表面在使用上不需要具有任何特定的方向 性。 在圖8A之底部BGA封裝中,該晶粒係線接點到該基板之 上方金屬層的線接點處來建立電連接。焊球418係回焊到 該基板之下金屬層上的接點墊之上’以提供互連到底部的 電路,例如一最終產品之主機板(未示於圖中),例如電腦 。焊罩415、427係圖案化在該金屬層42 }、423之上以在 155479.doc -38- 201131731 接點處暴露該下層金屬來用於電連接,例如在該線接點處 來接合該等線接點416及焊球418。 該多重封裝模組80之底部BGA封裝4〇2具有一金屬化(例 如銅)散熱器,其額外可做為一電遮蔽來電性地包含任何 來自在該下方BGA中的晶粒之電磁輻射,並藉此防止干擾 在該上方封裝中的晶粒。該散熱器4〇6之「頂部」平面部 伤係支撐在該基板412之上,並藉由腳或侧壁4〇7位在該晶 粒414之上。在黏著劑上的點或線4〇8係用來固定該散熱器 支撐407到該底部基板的上方表面。該黏著劑可為一導電 黏著劑,並可電連接到該基板4丨2之頂部金屬層42 i,特別 疋連接到該電路的一接地平面,並藉此建立該散熱器做為 電遮蔽。或是,該黏著劑可為一非導電性,且在這種組 態中,該散熱器僅做為一散熱裝置。該散熱器4〇6之支撐 邓伤及頂。卩部份包覆該晶粒4丨4及該線接點4 16,並可用來 對於周遭及機械應力來保護那些結構,以便於處理作業, 特別是在該MPM組裝之前的後續測試。 該多重封裝模組80之頂部封裝8〇〇係堆疊在該散熱器/遮 蔽406之平坦表面上的底部封裝4〇2之上,並使用一黏著劑 803固定在那裏。該黏著劑8〇3可為導熱性,以改善散熱; 而該黏著劑803可為導電性,以建立該散熱器楊與該lga 封裝基板之下方金屬層的電連接,或其可為電絕緣,藉此 防止電連接。 根據本發明之頂部封裝800與底部封裝4〇2之間的z互連 係由在該頂部封裝基板812之空隙中的頂部封裝互連墊與 155479.doc •39· 201131731 在該底部封裝基板402之空隙中底部封裝互連墊之間的線 接點818所構成。該等線接點可以上接點或下接點的方式 來形成。該多重封裝結構係由形成一模組包覆8〇7來保護Brain and so on. The solder masks 415, 427 are patterned onto the metal layer 421, circuitry, such as electricity 1, 423, to expose the underlying metal at the contacts for electrical connections, such as at the line contacts, and for bonding the lines Contact pad 416 and solder ball 41 8 contact pads. In the embodiment shown in FIG. 5A, the top package 5A is a platform grid array (LGA) package, which can be similar to a BGA package, such as shown in the figure, but without solder balls mounted to The contact pad on the lower surface of the substrate. Particularly in this example, the top package 5A includes a die 5 14 attached to a top package substrate 51 having at least one metal layer. It can use any of a variety of substrate types; the top package substrate 5 12 shown by the example of FIG. 5A has two metal layers 521, 523, each of which is patterned to provide appropriate circuitry and pass through The holes 522 are connected. The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 5 13 in Figure 5A, and in Figure 5A. In the configuration, the surface of the substrate to which the die is attached may be referred to as an "upper" surface and the metal layer on the surface may be referred to as a "top" metal layer, although the die attach surface is not in use. Need to have any specific directionality. 155479.doc -25- 201131731 In the top Lga package of the embodiment of Figure 5A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The die 516 and the wire bond 516 are coated with a molding compound 517, which provides protection against ambient and mechanical stress for processing operations and has a top package upper surface 5 19. The top package 500 is stacked on top of the bottom package 400 and is attached using an adhesive 503. Solder caps 515, 527 are patterned over the metal layers 521, 523 to expose the underlying metal at the contacts for electrical connection, such as at the wire contacts to engage the wire contacts 5 1 6. The z-interconnect between the top package 500 and the bottom package 400 of the stack is made by wire contacts 518 that connect the top metal layers of the individual package substrates. On the one hand, each of the wire contacts 518 is electrically connected to the upper surface of the pad on the gold layer 521 above the top package substrate 512. On the other hand, each wire contact is connected to the bottom package substrate 412. The upper surface of the crucible on the upper metal layer 42 1 . The wire contacts can be formed by any of the wire contact techniques known in the art, for example, as described in U.S. Patent No. 5,226,582, the disclosure of which is incorporated herein by reference. The package-to-package z interconnect line is illustrated by the example in FIG. 5A by forming a bump or bump on the upper surface of a pad on the upper metal layer of the top substrate, and then The pull-down wire is oriented and fused to a pad of the metal layer above the bottom substrate. As described below, the wire contact can be completed in the reverse direction, that is, by forming a bump or bump on the surface of a pad of the metal layer above the base substrate, and then pulling the wire toward the wire And fused to a pad on the metal layer above the top substrate. The selection of the wire contact strategy for the package z interconnect will be determined as follows 155479.doc -26- 201131731 depending on the geometric configuration of the gaps of the stacked substrates and the bonding surface thereon. In the stacked package embodiment of FIG. 5A, the z interconnect pads on the individual package substrates are disposed on the upper metal layer near the gap of the package substrate, and the position and order of the z interconnects are generally configured. The Z interconnect pads on the top package substrate substantially cover the corresponding 2 interconnect pads on the bottom package when stacking the packages. Conventionally, the top package 500 has a smaller substrate track than the bottom package 400 to allow voids in the wire contacts from shorting to the edges of the metal layer of the substrate. Once the z-connector contacts have been formed, a module package is formed to cover and protect the Z-connector contacts and provide mechanical integration of the completed modules. . The arrangement of the Z interconnect pads on the top and bottom package substrates is shown by the example of the plan views in Figures 5B and 5C, which are at 5 〇〇 and 4 分别, respectively. Referring to FIG. 5B, the top package 2 interconnect pads 524 are formed by patterning regions of the upper metal layer at the voids 501 on the upper surface 525 of the top package substrate 51. The void 〇1 extends beyond the edge 526 of the top package cladding material and has an upper surface 519. Referring now to FIG. 5C, the bottom package z interconnect pads 424 are formed by patterning regions of the upper metal layer at the voids 401 on the top surface 425 of the top package substrate 412. The void 401 extends beyond the track 5' of the stack and overlies the top package substrate 512' and further beyond the edge 426 of the bottom package cladding material, having an upper surface 419. As shown in Figures 5A, 5B and 5C, the Z interconnect between the top and bottom seals 155479.doc • 27-201131731 in accordance with the present invention is interconnected by a top package interconnect in the top of the top package substrate. The 塾524 is formed by a line contact between the bottom package interconnect 424 (the upper contact or the lower contact) of the (4) 4〇1 of the bottom package substrate. The multi-package module structure is protected by forming a module cover 5〇7, and the solder ball W8 is soldered to the solder ball bump exposed on the metal layer under the bottom package substrate to be connected to the lower layer circuit. , for example, a motherboard (not shown). As previously mentioned, the structure according to the present invention allows the BGA and LGA to be pre-tested prior to assembly into the multi-package module to allow for the exclusion of non-compliant packages prior to assembly, thereby ensuring a high final module test. rate. In order to improve the heat dissipation from the multiple package module, a heat sink can be provided on the top package. The top heat sink is formed of a heat conductive material. At least S has more of its upper surface. The area is used to expose the upper surface of the MPM to the surrounding environment for more efficient heat exchange. For example, the top heat sink can be a sheet of metal (e.g., a copper sheet) that can be secured to the PCT bag during the curing process of the molding material. Alternatively, the heat sink may have a -it portion that is generally planar on the top package and a peripherally-selected portion, or a spacer member placed on or near the upper surface of the bottom package substrate . By way of example, Figure 5E shows a cross-sectional view of a stacked BGA + LGA MPM 54 in accordance with another aspect of the present invention, wherein a "top" cooling stomach is provided at the upper surface of the MpM. The structure of the package stacked in the MPM 54 is generally similar to the MPM 5 in Figure 5A, and similar structures can be identified by similar reference numbers in the figures. The top heat sink in this example is formed from a thermally conductive material having a central portion 544, typically 155479.doc -28 - 201131731 plane, over the top package, and extending to the bottom package structure 4i2 A support member 546 is supported around the upper surface. The upper surface of the planar portion 544 is attached to the upper surface of the MPM to be exposed to the surroundings to efficiently serve the tropics. For example, the top heat sink can be formed by a sheet of metal, such as copper, for example by stamping. The support members 546 can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 5〇7, and the heat sink support member is embedded in the MpM cladding during the molding material curing process. In the embodiment of Figure 5E, a stepped recessed feature 545 is provided around the planar upper portion 544 of the heat sink to allow for better mechanical integration of the structure, rather than with the mold. Separation of the compound: In the specific embodiment, the space between the lower surface of the heat sink 544 and the surface of the L (the upper surface 5 19 of the JA molding 5 17 is filled with the MpM molded thin layer. A top heat sink can be attached to the LGA molded upper surface as shown in the cross-sectional view of Figure 5D. The structure of the stacked package in the MPM 52 is generally similar to the MPM 5 in Figure 5A, and similar. The structure can be identified on the drawing by similar reference numerals. The top heat sink 504 in the example of Figure 5D is a generally planar sheet of thermally conductive material having at least a more central region of its upper surface exposed Go to the surrounding environment to more efficiently discharge the tropical MPM, as shown in the example in Figure 5E. For example, the top heat sink can be a metal plate (such as copper). However, here the top heat sink 5〇4 An adhesive 506 is used to secure the upper package cover 517 Upper surface 519. The adhesive 506 can be a thermally conductive adhesive to provide improved heat dissipation. Typically, after the top package molding has been at least partially cured, the 155479.doc -29-201131731 top heat sink is fixed to The top package is molded, but before the molding material is ejected to the enamel cladding 5G 7. The periphery of the top heat sink may be coated with the MPM molding material. In the specific embodiment of FIG. The periphery of the heat sink 504 is provided with a stepped recessed feature 5〇5 to allow for a better mechanical integration of the structure 'without being separated from the molding compound. In another alternative' In the case of a simple planar heat sink, it does not have a branch member that does not adhere to the upper surface of the top package molding. In these embodiments, as in Figure 5 In a specific embodiment, the top heat sink can be a generally planar sheet of thermally conductive material, such as, for example, a sheet of metal (eg, copper), and at least a more central region of the upper surface of the planar heat sink is exposed to the surroundings. more efficient The tropic is separated from the MPM. Here, the space between the lower surface of the simple planar heat sink and the upper surface 5 19 of the LG molding 5 17 is filled with a thin layer of MpM molding, and this simple The planar heat sink can be secured to the MPM cover 507 during the molding material curing process. The unattached, simple planar top heat sink can be wrapped around the MPM molding material as in Figure 5D. An attached planar heat sink can be provided with a stepped recessed feature 505 on the periphery to allow for better mechanical integration with the structure and less separation from the molding compound. Figure 5D, 5E The illustrated MPM with a heat sink provides improved thermal performance. Referring now to FIG. 6A, there is shown a cross-sectional view of a stacked package multi-package module in accordance with an aspect of the present invention having a 155479.doc • 30·201131731 -lga top package on a BGA bottom package. The package LGA is partially coated. That is, the molding material of the top LGA package is applied to a limited area&apos; and is of a limited amount&apos; which is sufficient to protect the line contacts during (d) processing, particularly during subsequent (d) testing. In terms of it, the configuration of Fig. 6 is substantially shown in Fig. 5A. Therefore, in this particular embodiment, . The structure of the bottom package 400 is as described in Fig. 5A, and the structure of the top package 6 (8) is substantially as shown in Fig. 5A except for the difference in the upper package cladding: In particular, the top package 600 includes a die 614 attached to a top package substrate 612 having at least one metal layer. It can use any of a variety of substrate types; the top package substrate 512 shown by the example of FIG. 6A has two metal layers 621, 623, each patterned to provide a suitable circuit and through the via 622 connection. The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 613 in Figure 6A, and in the group of Figure 6-8. In the state, the surface of the substrate to which the die is attached may be referred to as a "top" surface, and the metal layer on the surface may be referred to as an "upper" or "top" metal layer, although the die attach surface is in use. There is no need to have any specific directionality. In the top LGA package of the embodiment of Figure 6A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The crystal 614 and the wire contact 616 are coated with a molding compound 617 which provides protection against ambient and mechanical stresses for handling operations. The formation of the cladding 617 in this embodiment is only used to cover the wire contacts and their individual connections to the top package substrate and the top package die, so the 155479.doc • 31 · 201131731 Most of the upper surface of the pellet 614 is not covered by the coating. The top package 600 is stacked on top of the bottom package 4 and is secured there using an adhesive. Solder caps 615, 627 are patterned over the metal layers 621, 623 to expose the underlying metal at the contacts for electrical connection, such as at the wire contacts to engage the wire bonds 61 6 . The z-interconnection between the top package 600 and the bottom package 4A of the stack is made by connecting the line contacts 618 of the top metal layer of the individual package substrates. The set is covered with 6〇7 for protection, and the solder balls 418 are reflowed to the solder ball pads exposed on the metal layer under the bottom package substrate to be connected to the underlying circuit, such as a motherboard (not shown) . The benefit of this configuration is to reduce costs. The partial coating is implemented in accordance with the line contact processing (e.g., by dispensing through a fine nozzle, as with a syringe from a needle) and thus provides a higher flow rate and uses fewer packages Cover material. After the partial cladding, the top lga package can be tested without the need for rearrangement (four) processing to avoid damage to the top package line junction. The factory has improved the multiple packages shown in the example in Figure 6Α. Bulk production of the module: a heat sink can be provided on top of the top package. The top heat sink (10) is formed of a thermally conductive material having a more central (4) exposed upper surface to the surrounding environment to more efficiently remove the heat. For example, the top heat sink can be a metal plate (e.g., copper) that can be applied to the Mm cladding during the molding material curing process. The heat sink may have _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Branch building components. By Fig. 6B is a perspective view of a stacked BGA + LGA MPM 62 in accordance with another aspect of the present invention, wherein a "top" heat sink is provided at the upper surface of the MPM. The structure of the package stacked in the MPM 62 is generally similar to the MPM 60' in Figure 6A and similar references can be identified in the figures by similar reference numbers. The top heat sink in this example is formed from a thermally conductive material having a generally planar central portion 644 over the top package and surrounding support members extending to the upper surface of the bottom package structure 412 646. The upper surface of the planar portion 646 is attached to the upper surface of the MPM to be exposed to the surroundings to efficiently tropic. For example, the top heat sink can be formed by a sheet of metal, such as copper, for example by stamping. The support members 646 can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 6〇7, and the heat sink support member is embedded in the ΜρΜ cladding 607 during the molding material curing process. In the particular embodiment of the print, a stepped recessed feature Μ 5 is provided around the planar upper portion 644 of the heat spreader to allow for better mechanical integration of the structure, rather than with the mold. The compound is isolated. In this embodiment, the space between the lower surface of the heat sink 644 and the upper surface of the die 614 may be filled by a die, which is sufficiently thick that the heat sink 644 does not interfere with the The surrounding LGA is molded 617. Additionally, the MpM in this particular embodiment of Figure 6A can have a simple planar heat sink without support members and is not attached to the top surface of the package 155479.doc -33·201131731. In these embodiments, as in the embodiment of Figure (7), the top heat sink can be a generally planar thermally conductive (four) plate such as a silicon metal sheet (e.g., copper), and at least the planar heat sink. The more central area of the surface is exposed to the surroundings to more efficiently bring the tropics to the MPM. Here, as shown in the specific embodiment of FIG. 6B, the space between the lower surface of the planar heat sink and the upper surface of the die 614 is filled by a layer of MPM molding, which is sufficiently thick so that the heat sink It does not interfere with the surrounding LGA molding 617. While in the particular embodiment of Figure 6B, such a simple planar heat sink can be secured to the MPM cover 607 during the molding material curing process. The unattached simple planar top heat sink may be covered with the MPM molding material, a planar heat sink attached to FIG. 5, and may provide a stepped concave feature on the periphery. To allow for better mechanical integration with the structure and less separation from the molding compound. Another option, as in an embodiment of FIG. 6A, allows attachment of a simple planar heat sink to the top package 60A, the lower surface of the simple planar top heat sink and the upper surface of the die 614 A spacer can be provided between. The spacer may be fixed to the die and the heat sink using an adhesive; or the spacer may be formed as a whole part, and a spacer portion of the heat sink, and in these embodiments In the example, the lower surface of the spacer portion of the heat sink may be fixed to the upper surface of the die by using an adhesive. The spacer is preferably made of a thermally conductive material and the adhesive can be a thermally conductive adhesive&apos; to provide improved heat dissipation. In these embodiments, the top heat sink can be ejected from the package 155479.doc -34 - 201131731 607 after the top package molding has been at least partially cured, but it is coated with the molding material for the Xia PM. material. 22 I / heat ^ ... can be coated with the surrounding of the molder =::: in the embodiment of the mechanical characteristics of the simple TM concave features to allow better structural degrees and less Will be separated from the molding compound. For example, the improved thermal performance of 罝右_私# shown in Figure 6B. The structure of the '', </ RTI> </ RTI> provides a stacked multi-package module according to another aspect of the present invention, which has a top lig package stacked on top of the BGA bottom package. The top LGA package uses a single metal layer substrate. In other respects, the configuration of Fig. 7 is substantially shown in the figure. Therefore, in the specific embodiment, the structure of the bottom package is as shown in FIG. 5A, and the structure of the top package 700 is as shown in FIG. 5A except that the structure of the top package substrate is different. . In particular, the top package 7A includes a die 714 attached to a top package substrate 712 having a metal layer 721 that is patterned to provide suitable circuitry. The die is conventionally attached to the surface of the substrate using an adhesive, which is basically referred to as a die attach epoxide, as shown at 713 in Figure 7, and in the configuration of Figure 7, The surface of the substrate to which the crystal grains are attached may be referred to as an "upper surface". Therefore, the metal layer on the substrate may be referred to as an "upper" or "top" metal layer, although the die attach surface does not need to be used in use. Any special direction. In the top LGA package of the embodiment of Figure 7, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The 兮曰 曰 granule 714 and the line contact 716 are coated with a molding compound 717, which provides 155479.doc -35·201131731 for the surrounding and mechanical stress _ 卞 edge for processing. In the specific embodiment of Fig. 7, the coated 7〇7 wounder system 5 is again placed as in the specific embodiment of Fig. 5A, so the covering 7〇7 frost 筌 7 minutes 曰 κ 'covered The day granules and the wire bonds and their connections, and the cladding has a surface 719 over the entire day granules and interconnects as described below. 'The cladding here may be formed as shown in FIG. 6A. The specific embodiment 'that is to say' is formed by only wrapping (four) equal-line contacts and their individual connections to the top package substrate and the top package die, so that the upper surface of most of the die is not covered by the package. Covered. The top package 700 is stacked on top of the bottom package 400 and secured there using an adhesive as shown at 703. A solder mask 715 is patterned over the metal layer to expose an underlying metal incoming connection at the junction, such as at a line junction for bonding the line contacts 716. The z-interconnect between the top package 700 and the bottom package 4A of the stack is made by wire contacts 718 connecting the top metal layers of the individual package substrates. The multi-package module structure is protected by forming a module package 7〇7, and the solder ball 418 is soldered back to the solder ball pad exposed on the metal layer under the bottom package substrate to be connected to the lower layer circuit. For example, a motherboard (not shown). The benefit of this configuration is that the cost can be reduced compared to the configuration of the substrate using two metal layers in the top LGA package because of the lower cost of the single metal layer substrate. This configuration may additionally provide a lower package profile because the single metal layer substrate is thinner than a substrate having two or more metal layers. FIG. 8A shows a stack of bga according to another aspect of the present invention. +lga 155479.doc -36- 201131731 MPM 80 cross-section, i 裎 /, 裢 — - heat sink and electric shield to the bottom package. The embodiment shown in the example of FIG. 8A has a top grid array ("LGA"), which is stacked on top of a bottom ball grid array BGA package 402, where #丹Τ The top LGA package is typically constructed as the top Lga package in Figure 5. As follows, a LGA' having a single metal layer is as described below with reference to the accompanying drawings, which can also be used as the top LGA in the specific embodiment of Fig. 8a. Referring to S8A, the top lga package _ can be similar to a -BGA package, such as * in the figure, (4) having solder balls mounted on the contact pads on the lower surface of the substrate. In particular, in this example ten, the top P package 800 includes a die 814 attached to a top package substrate 812 having at least a metal layer. It can use any of a variety of substrate types; the top package substrate 812 shown by the example of circle 8A has two metal layers 821 823' each patterned to provide appropriate circuitry and connected through vias 822 . The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 813 in Figure 8A, and in the group of Figure 8 In the state, the surface of the substrate to which the die is attached may be referred to as an "upper" surface and the metal layer on the surface may be referred to as an "upper" or "top" metal layer, although the die attach surface is in use. There is no need to have any specific directionality. In the top LGA package of the embodiment of Figure 8A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The crystal grains 814 and the wire bonds 816 are coated with a molding compound 817 which provides protection against ambient and mechanical stresses for handling operations and has a top package upper surface 819. The solder masks 815, 827 are patterned over the 155479.doc • 37-201131731 metal layers 821, 823 to expose the underlying metal at the contacts for electrical connection, such as for bonding the wire contacts 8 1 6 line contact. The bottom BGA package 402 of the embodiment of Figure 8A is a conventional BGA package 'as shown, for example, in Figure 1, except that the bottom BGA package of Figure 8A is not coated with a molding compound; rather, it has a A heat sink, which can additionally be used as an electrical shield, is described below. Thus, in this embodiment, the bottom package 402 includes a die 414 attached to a bottom package substrate 412 having at least one metal layer. It can use any of a variety of substrate types 'for example, including: a plywood having a 2-6 metal layer, or a construction substrate having a 4-8 metal layer, or a flexible polyimide tape having a 丨 2 metal layer Or a ceramic multiple layer substrate. The bottom package substrate 412 shown by the example of Fig. 8a has two metal layers 421, 423, each of which is patterned to provide a suitable circuit 'and connected through vias 422. The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 413 in Figure 8A, and in the configuration of Figure 8A. The surface of the substrate to which the die is attached may be referred to as an "upper" surface, and the metal layer on the surface may be referred to as an "upper" metal layer, although the die attach surface does not need to have any use in use. Specific directionality. In the bottom BGA package of Figure 8A, the die line contacts are connected to the line contacts of the metal layer above the substrate to establish an electrical connection. Solder balls 418 are reflowed onto the contact pads on the metal layer below the substrate to provide circuitry interconnected to the bottom, such as a motherboard for a final product (not shown), such as a computer. Solder caps 415, 427 are patterned over the metal layers 42 }, 423 to expose the underlying metal at 155479.doc -38 - 201131731 contacts for electrical connection, such as at the wire contacts The wire contact 416 and the solder ball 418. The bottom BGA package 4〇2 of the multi-package module 80 has a metallized (e.g., copper) heat sink that can additionally serve as an electrical shield to electrically include any electromagnetic radiation from the die in the lower BGA. And thereby preventing interference with the crystal grains in the upper package. The "top" planar portion of the heat sink 4〇6 is supported on the substrate 412 and is placed over the crystal grain 414 by the foot or side wall 4〇7. A dot or line 4 〇 8 on the adhesive is used to secure the heat sink support 407 to the upper surface of the base substrate. The adhesive can be a conductive adhesive and can be electrically connected to the top metal layer 42 i of the substrate 4 , 2, particularly to a ground plane of the circuit, and thereby establishing the heat sink as an electrical shield. Alternatively, the adhesive may be non-conductive, and in this configuration, the heat sink is only used as a heat sink. The support of the radiator 4〇6 is Deng and the top. The crucible partially coats the die 4丨4 and the wire contacts 416 and can be used to protect those structures for ambient and mechanical stresses to facilitate handling operations, particularly subsequent testing prior to assembly of the MPM. The top package 8 of the multi-package module 80 is stacked on top of the bottom package 4〇2 on the flat surface of the heat sink/mask 406 and secured thereto using an adhesive 803. The adhesive 8〇3 may be thermally conductive to improve heat dissipation; and the adhesive 803 may be electrically conductive to establish electrical connection between the heat sink and the underlying metal layer of the lga package substrate, or it may be electrically insulated Thereby preventing electrical connections. The z-interconnection between the top package 800 and the bottom package 4〇2 according to the present invention is made up of a top package interconnection pad in the gap of the top package substrate 812 and 155479.doc • 39·201131731 in the bottom package substrate 402 A line contact 818 between the bottom package interconnect pads in the gap is formed. The line contacts can be formed by means of a contact or a lower contact. The multiple package structure is protected by forming a module covering 8〇7

。在該散熱器之支撐部份407中可提供開口,以允許MpM 模製材料來在包覆期間填入在該包封的空間中。 焊球41 8係回焊到該底部封裝基板412之下金屬層上暴露 的焊球墊上,用於連接到下層電路,例如一主機板(未示 於圖中)。 如前所述,根據本發明之結構允許在組裝到該多重封裝 模組之前預先測試該BGA及LGA,以允許在組裝之前排除 不符合的封裝,藉此保證具有較高的最終模組測試良率。 為了改善來自該多重封裝模組之散熱,在該頂部封裝之 上可提供一散熱器。該頂部散熱器係由一導電材料所形成 ,其將其上方表面暴露在該MPM之上表面處的至少更為中 心的區域到周遭環境,以更有效率地將熱帶離該MpM。例 如,該頂部散熱器可為一金屬片(例如銅),且其可在該模 製材料固化處理期間固定到該MPM包覆。或者,該散熱器 可在該頂部封裝之上具有一通常為平面的部份,及一周圍 支撐部份、或置於該底部封裝基板之上表面之上或其附近 的支#部件。 藉由範例,圖8B所示為根據本發明另一方面之堆疊的 BGA+LGA MPM 82之截面圖,其中在該MPM的上表面處 提供一「頂部」散熱器。在MpM 82中堆疊的封裝之結構 通常類似於圖8A中的該MPM 8G,而在圖t可由類似的參 155479.doc 201131731 考編號來識別類似的結構。在此範例中的頂部散熱器係由 一導熱材料所形成,其具有位在該頂部封裝之上的通常為 平面的中心部份804,及延伸到該底部封裝基板412之上表 面的周圍支撐部件806。該平面部份804之上表面係在該 MPM上表面來暴露到周圍,以有效率地將熱帶出MpM。 例如該頂部散熱器可藉由一金屬片(例如銅)來形成,例如 藉由沖壓。該等支撐部件8〇6可依需要來使用一黏著劑固 定到該底部封裝基板之上表面(未示於圖中)。該多重封裝 模組結構可由形成一模組包覆8〇7來保護,且該散熱器支 撐部件在該模製材料固化處理期間被嵌入在該M p m包覆 中。在圖8B的具體實施例中,在該散熱器的平面上方 邛伤804的周圍提供有一階梯狀的凹入特徵8〇5,以允許較 佳的結構之機械性整合度,而較不會與該模製化合物分離 :在此具體實施例中,該散熱器_之下表面與該LGA模 製8 1 7之上表面819之間的空間係填入該MpM模製之薄層。 另外,該頂部散熱器可為一通常為平面板的一導熱材料 ,例如像是一金屬片(例如銅),其不需要支撐部件。至少 該:面散熱器之上方表面的更為中心#區域被暴露到周遭 環扰,用以更有效率地將熱帶離該MPM »這種簡單平面散 熱器係示於圖8C中的844,其中該散熱器係固定到該頂部 封裝模製之上表面。但是在圖8B中,該散熱器並未附著到 °亥頂。卩封裝模製的上表面。而是,在該簡單平面散熱器之 :表面與該LGA模製817之上表面819之間的空間係填入一 薄層的MPM模製,且這種簡單的平面散熱器可在該模製材 155479.doc • 41· 201131731 料固化處理期間來固定於該MPM包覆807 » —簡單平面頂 部散熱器之周圍在例如圖8B中的具體實施例,其可包覆有 該MPM模製材料’並可在該周圍具有一階梯狀的凹入特徵 (在圖8C中的簡單平面散熱器844中稱之為凹入特徵845), 以允許該結構具有較佳的機械整合度,而較不會與該模製 化合物脫離。 另外’一頂部散熱器可固定於該LGA模製之上表面,如 在圖8C之截面圖中所示。在MpM 84中堆疊的封裝之結構 通常類似於圖8A中的該MPM 80,而在圖中可由類似的參 考編號來識別類似的結構。在圖8 c之範例中的頂部散熱器 844為一導熱材料之通常為平面的板,其將其至少上表面 之更為中〜的區域暴露到周遭來更有效率地將熱帶離MpM ,如同在圖8B中的範例。例如該頂部散熱器可為一金屬片 (例如銅)。但是,在此處該頂部散熱器8〇4係使用一黏著劑 846來固定到該上方封裝包覆817之上表面819。該黏著劑 846可為一導熱黏著劑,以提供改善的散熱效果。通常在 該頂部封裝模製已經至少部份固化之後,該頂部散熱器即 固定到該頂部封裝模製,但其係在該模製材料對於該MpM 包覆847射出之前。該頂部散熱器之周圍可以包覆該 模製材料。在圖8C的具體實施例中’在該散熱器“4的周 圍提供有-階梯狀的凹入特徵845,以允許較佳的結構之 機械性整合度,而較不會與該模製化合物脫離。 在圖8A 8B、8C中所不之結構的好處為明顯的熱效能 ’並可視需要’在該底部封裝處有電遮蔽,例如其在組合 155479.doc -42- 201131731 了 RF及數位晶片之MPM中更為特別重要的關鍵。對於所 有的應用’其不需要同時具有一底部封裝散熱器及一頂 部散熱器。另外,根據終端產品的需求,有幾種之一為適 當0 圖9 A所示為根據本發明另一方面之多重封裝模組的戴面 圖,其中一下晶粒之倒裝晶片BGA堆疊於一LGA。在該下 方BGA中,該晶粒為連接到該基板之倒裝晶片,且該晶粒 與δ玄基板之間的空間為侧填滿。此bga可在組裝到該mpm 中之則進行測s式。該晶粒的背面可用來以黏著劑附著該頂 部LGA。該頂部LGA與該模組基板的ζ互連係透過線接點 ,而該ΜΡΜ被模製。此組態的一主要好處為在該bga上的 倒裝晶片連接提供了高的電效能。 請參考圖9A,該底部BGA倒裝晶片封裝包括一基板312 ,其具有該晶粒314藉由倒裝晶片凸塊316連接於其上的一 圖案化金屬層321,例如焊料凸塊、&amp;凸點凸塊、或各向 異性導電膜或膏。其可使用任何的基板型式;藉由圖从之 範例所示的底部封裝基板312具有兩個金屬層以卜M3, 其每個被㈣化來提供適當的電路,並透料孔322連接 。該等倒裝晶片凸塊係固定到在該晶粒之活性表面上的一 圖案化凸塊塾陣列’且做為該晶粒的活性表面’其對於該 基板之面向上的圖案化金屬層而面朝下,這種配置可稱: 為下曰曰粒」倒裝晶片封裝。在晶粒與基板之間的一聚 合物侧填滿提供了對於周遭的防護,並加入機械整合度到 該結構。 厌Θ 155479.doc 43- 201131731 該多重封裝模組90之頂部LGA封裝900通常建構成類似 於圖7之多重封裝模組70之頂部LGA封裝700。特別是,該 頂部封裝900包括附著到具有一金屬層921之頂部封裝基板 912之一晶粒914 ’其被圖案化來提供適當的電路。該晶粒 在習用上係使用一黏著劑來附著到該基板的表面,其基本 上稱之為晶粒附著環氧化物,如圖9 A之913所示,且在圖 9A的組態中’該晶粒所附著的基板表面可稱之為「上」表 面’因此在此基板上的金屬層可稱之為「上方」或「頂部 」金屬層,雖然該晶粒附著表面在使用上不需要具有任何 特殊的方向。 在圖9A之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒914及该線接點916係包覆一模製化合物917,其可提供 對於周遭及機械應力的保護,以便於處理作業。在圖9 A所 示的具體實施例中的包覆907覆蓋了該晶粒以及該線接點 及其連接,且該包覆具有一表面919在整個晶粒與互連之 上。如下所述,此處的包覆另可形成同圖6A之具體實施例 。其可形成像是來僅包覆該等線接點,及其個別的連接到 該頂部封裝基板及該頂部封裝晶粒,所以大部份該晶粒的 上表面並未被該包覆所覆蓋。該頂部封裝9〇〇係堆疊在該 底部封裝300之上,並使用一黏著劑固定在那裏,如在9〇3 所不。焊罩915被圖案化在該金屬層921之上,以在接點處 暴露下層金屬來電連接,例如用於接合該等線接點916之 線接點處。 155479.doc •44- 201131731 &amp;隹疊#頂口p封裝9〇〇與底部封裝綱之間的Z互連係 藉由連接個別封裝基板之頂部金屬層的線接點918來製成 多重封裝模組結構係由形成—模組包覆9〇7來保護, 焊球3 1 8係回谭到該底部封裝基板之下金屬層上所暴露 的焊球墊,來連接到下層電路,例如一最終產品之主機板 (未不於圖中),像是—電腦。焊罩315、327係圖案化在該 金屬層321 323之上’以在接點處暴露該下層金屬來用於 電連接’例如在該線接點處來接合該等線接點918及浑球 318 〇 具有堆疊在一具有下晶粒之倒裝晶片BGA上之lga的結 構’例如參考圖9A所示’其可組合—散熱器與電遮蔽,如 圖8B或圖8C所示。因此,圖9B所示為根據本發明另一方 面之多重封裝模組之截面圖,其中下晶粒之倒裝晶片BGA 系隹疊LGA,如圖9A之具體實施例,且其中該下方 具有一散熱器/遮蔽。 特別是,請參考圖9B,該多重封裝模組92之底部BGA封 裝300具有一金屬化(例如銅)散熱器,其額外地做為一電遮 蔽來電性地包含任何來自在該下方BGA中的晶粒之電磁輻 射’並藉此防止干擾在該上方封裝中的晶粒。該散熱器 906之「頂部」平面部份係支撐在該基板312上,並由腳或 側壁909支撐在該晶粒3 14上。一黏著劑之點或線9〇8用來 固定該散熱器支撐909到該底部基板之上表面。該黏著劑 可為一導電黏著劑’並可電連接到該基板312之頂部金屬 層321 ’特別是連接到該電路之一接地平面,並藉此建立 155479.doc • 45· 201131731 該散熱器做為一電遮蔽。或者,該黏著劑可為一非導電性 ’且在這種組態中’該散熱器僅做為一散熱裝置。該散熱 器906之支撐部份及頂部部份包覆該晶粒314,並可用來對 於周遭及機械應力來保護那些結構,以便於處理作業,特 別是在該MPM組裝之前的後續測試。 該多重封裝模組92之頂部封裝900係堆疊在該散熱器/遮 蔽906之平坦表面上的底部封裝300之上,並使用一黏著劑 903固定在那裏。該黏著劑903可為導熱性,以改善散熱; 而該黏著劑903可為導電性,以建立該散熱器9〇6與該 封裝基板之下方金屬層的電連接,或其可為電絕緣,藉此 防止電連接。 根據本發明之頂部封裝900與底部封裝3〇〇之間的z互連 係由在該頂部封裝基板91 2之空隙中的頂部封裝互連塾與 在該底部封裝基板300之空隙中底部封裝互連墊之間的線 接點918所構成。該等線接點可以上接點或下接點的方式 來形成。該多重封裝模組結構係由形成一模組包覆9〇7來 保護。在該散熱器之支撐部份907中提供開口,以允許該 MPM模製材料來在包覆期間填入在該包封的空間中。 知球3 1 8係回焊到該底部封裝基板3 〇〇之下金屬層上暴露 的焊球墊上,用於連接到下層電路,例如一主機板(未示 於圖中)。 如前所述,根據本發明之結構允許在組裝到該多重封裝 模組之前預先測試該BGA及LGA,以允許在組裝之前排除 不符合的封裝,藉此保證具有較高的最終模組測試良率。 155479.doc -46- 201131731 在根據本發明此方面之财晶片底部封裝中 片可為例如ASIC、GPU或CPU,通常為as =曰曰 裝可為-記憶體—封裝。其中當該::::: :記憶體封料,其可為—堆㈣晶粒記_封裝。^ 蔽的倒裝w下晶粒底部封裝特別適用於較高速的應用,'、、 特別是射頻處理,例如在行動通訊應用中。 其視需要’在一下晶粒組態令具有一倒裝晶片底部封襄 的MPM(例如圖9A或圖9B中所示)可具有一散熱器。 為了改善如圖9A或叩中的範例所示之多重封裝模组的 散熱,在該頂部封裝之上可提供-散熱器。該頂部散執器 係由-導電材料所形成’其將其上方表面暴露在該Μ·之 上表面處的至少更為中心的區域到周遭環境,以更有效率 地將熱帶離該MPM。例如,該頂部散熱器可為一金屬片(例 如銅)’且其可在該模製材料固化處理期間固定到該MpM 包覆。或者,該散熱器可在該頂部封裝之上具有一通常為 平面的部份,及-周圍支料份、或置於該底部封裝基板 之上表面之上或其附近的支撐部件。 藉由範例,圖9C所示為根據本發明另一方面之堆疊的 BGA+LGA MPM 94之截面圖,其中在該MpM的上表面處 提供一「頂部」散熱器。在MPM 94中堆疊的封裝之結構 通常類似於圖9B中的該MPM 92,而在圖中可由類似的參 考編说來識別類似的結構。在此範例中的頂部散熱器係由 一導熱材料所形成,其具有位在該頂部封裝之上的通常為 平面的中心部份944,及延伸到該底部封裝基板3丨2之上表 155479.doc -47- 201131731 面的周圍支撐部件946。該平面部份944之上表面係在該 MPM上表面來暴露到周圍,以有效率地將熱帶出MPM。 例如該頂部散熱器可藉由一金屬片(例如銅)來形成,例如 藉由沖麼。該等支撐部件946可依需要來使用一黏著劑固 疋到該底部封裝基板之上表面(未示於圖令)。該多重封裝 模組結構係由形成一模組包覆907來保護,且該散熱器支 撐部件係在該模製材料固化處理期間被嵌入在該MPM包覆 907中。在圖9C之具體實施例中,在該散熱器之平面上方 部份944之周圍上提供一階梯狀的凹入特徵945,以允許該 結構具有較佳的機械整合度,並較不會與該模製化合物脫 離。在此具體實施例中,該散熱器944之下表面及該晶粒 914之上表面之間的空間係填入一層]^1&gt;]^模製,其足夠厚 所以6亥散熱器944並不會干涉該周圍的lga模製91 7。 另外,如同9A或圖9B之具體實施例中的MPM可具有一 簡單平面散熱器,其不具有支撐部件。這種簡單平面散熱 器可使用一黏著劑來固定到該頂部封裝模組517之上表面 519。或者另外,圖9A或圖9B之具體實施例中的MPM可具 有簡單平面散熱器,其並不附著於該頂部封農模製之上 表面。在這些具體實施例中’如在圖5D中的具體實施例, 該頂部散熱器T為-通常為平面的導熱材料,例如像是 一金屬片(例如銅),及至少該平面散熱器之上表面的更為 中心的區域係暴露到周圍纟更有效率地將熱帶離㈣⑽。 此處’在圖9C之具體實施例中,該平面散熱器之下表面與 該頂部封裝900之間的空間可填入一層MpM。且如同圖9c 155479.doc -48- 201131731 之具體實施例中的這種簡單平面散熱器,其可在該模製材 料固化處理期間固定到該MPM包覆907。這種未附著的簡 單平面頂部散熱器之周圍可以包覆有該⑽轉製材料,如 ,在圖5D中所附著的平面散熱器,並可在該周圍上提供一. An opening may be provided in the support portion 407 of the heat sink to allow the MpM molding material to be filled in the enclosed space during cladding. Solder balls 41 8 are reflowed onto the exposed solder ball pads on the metal layer below the bottom package substrate 412 for connection to a lower layer circuit, such as a motherboard (not shown). As previously mentioned, the structure according to the present invention allows the BGA and LGA to be pre-tested prior to assembly into the multi-package module to allow for the exclusion of non-compliant packages prior to assembly, thereby ensuring a high final module test. rate. To improve heat dissipation from the multi-package module, a heat sink can be provided on the top package. The top heat sink is formed of a conductive material that exposes its upper surface to at least a more central region at the upper surface of the MPM to the surrounding environment to more effectively displace the tropics from the MpM. For example, the top heat sink can be a sheet of metal (e.g., copper) and it can be secured to the MPM cladding during the molding material curing process. Alternatively, the heat sink can have a generally planar portion over the top package and a surrounding support portion or a spacer member disposed on or near the upper surface of the bottom package substrate. By way of example, Figure 8B shows a cross-sectional view of a stacked BGA + LGA MPM 82 in accordance with another aspect of the present invention in which a "top" heat sink is provided at the upper surface of the MPM. The structure of the package stacked in the MpM 82 is generally similar to the MPM 8G in Figure 8A, and a similar structure can be identified in Figure t by a similar reference number 155479.doc 201131731. The top heat sink in this example is formed from a thermally conductive material having a generally planar central portion 804 positioned over the top package and surrounding support members extending to the upper surface of the bottom package substrate 412 806. The upper surface of the planar portion 804 is attached to the upper surface of the MPM to be exposed to the surroundings to efficiently discharge the MpM from the tropics. For example, the top heat sink can be formed by a sheet of metal, such as copper, for example by stamping. The support members 8A can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 8〇7, and the heat sink support member is embedded in the M p m cladding during the molding material curing process. In the embodiment of Figure 8B, a stepped recessed feature 8〇5 is provided around the surface of the heat sink 804 to allow for better mechanical integration of the structure, rather than with The molding compound is separated: in this embodiment, the space between the lower surface of the heat sink_ and the upper surface 819 of the LGA molded 181 is filled into the MpM molded thin layer. Alternatively, the top heat sink can be a thermally conductive material, typically a flat sheet, such as, for example, a sheet of metal (e.g., copper) that does not require a support member. At least this: the more central # region of the upper surface of the surface heat sink is exposed to the surrounding ring disturbance to more effectively slant the tropical zone from the MPM » such a simple planar heat sink to 844 in Figure 8C, wherein The heat sink is secured to the top surface of the top package molding. However, in Figure 8B, the heat sink is not attached to the top of the ceiling.卩 Encapsulate the molded upper surface. Rather, the space between the surface and the upper surface 819 of the LGA molding 817 is filled with a thin layer of MPM molding, and the simple planar heat sink can be used in the molding material. 155479.doc • 41· 201131731 During the curing process to be fixed to the MPM cladding 807 » - around a simple planar top heat sink in a specific embodiment such as in Figure 8B, which may be coated with the MPM molding material 'and There may be a stepped recessed feature around the perimeter (referred to as a recessed feature 845 in the simple planar heat sink 844 of Figure 8C) to allow for better mechanical integration of the structure, and less The molding compound is detached. Alternatively, a top heat sink can be attached to the upper surface of the LGA molding as shown in the cross-sectional view of Figure 8C. The structure of the package stacked in the MpM 84 is generally similar to the MPM 80 of Figure 8A, and similar structures can be identified by similar reference numbers in the figures. The top heat sink 844 in the example of Figure 8c is a generally planar plate of thermally conductive material that exposes at least the uppermost area of the upper surface to the surrounding to more effectively remove the tropics from the MpM, as The example in Figure 8B. For example, the top heat sink can be a sheet of metal (e.g., copper). However, here the top heat sink 8〇4 is secured to the upper surface 819 of the upper package wrap 817 using an adhesive 846. The adhesive 846 can be a thermally conductive adhesive to provide improved heat dissipation. Typically, after the top package molding has been at least partially cured, the top heat sink is fixed to the top package molding, but before the molding material is ejected for the MpM package 847. The molding material can be coated around the top heat sink. In the embodiment of Figure 8C, a stepped recessed feature 845 is provided around the heat sink 4 to allow for better mechanical integration of the structure without being detached from the molding compound. The benefits of the structure shown in Figures 8A 8B, 8C are significant thermal performance 'and optionally 'electrical masking at the bottom package, for example in combination 155479.doc -42 - 201131731 RF and digital wafers A more important key in MPM. For all applications, it does not need to have both a bottom package heat sink and a top heat sink. In addition, depending on the needs of the end product, one of several is appropriate. Figure 9 A Shown as a front view of a multiple package module according to another aspect of the present invention, wherein the lower die flip chip BGA is stacked on an LGA. In the lower BGA, the die is a flip chip connected to the substrate. And the space between the die and the δ-shaped substrate is filled side. The bga can be measured in the assembled mpm. The back surface of the die can be used to attach the top LGA with an adhesive. The top LGA is interconnected with the module substrate Through the wire contacts, the turns are molded. A major benefit of this configuration is that the flip chip connection on the bga provides high electrical performance. Referring to Figure 9A, the bottom BGA flip chip package includes a A substrate 312 having a patterned metal layer 321 to which the die 314 is attached by flip chip bumps 316, such as solder bumps, &amp; bump bumps, or an anisotropic conductive film or paste. It is possible to use any substrate type; the bottom package substrate 312 shown by way of example is provided with two metal layers, M3, each of which is provided to provide appropriate circuitry and vias 322. An inverted flip chip bump is attached to a patterned bump array 'on the active surface of the die and as an active surface of the die' which faces the upwardly facing patterned metal layer of the substrate Downward, this configuration can be called: Flip-chip package for the next 曰曰 pellet. Filling a polymer side between the die and the substrate provides protection against the surrounding and adds mechanical integration to the structure. Atop 155479.doc 43- 201131731 The top LGA package 900 of the multi-package module 90 is typically constructed as a top LGA package 700 similar to the multi-package module 70 of FIG. In particular, the top package 900 includes a die 914' attached to a top package substrate 912 having a metal layer 921 that is patterned to provide suitable circuitry. The die is conventionally attached to the surface of the substrate using an adhesive, which is essentially referred to as a die attach epoxide, as shown in 913 of Figure 9A, and in the configuration of Figure 9A. The surface of the substrate to which the die is attached may be referred to as an "upper" surface. Therefore, the metal layer on the substrate may be referred to as an "upper" or "top" metal layer, although the die attach surface is not required for use. Has any special direction. In the top LGA package of the embodiment of Figure 9A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The crystal 914 and the wire contact 916 are coated with a molding compound 917 which provides protection against ambient and mechanical stress for handling operations. The cladding 907 in the embodiment illustrated in Figure 9A covers the die and the wire contacts and their connections, and the cladding has a surface 919 over the entire die and interconnect. As described below, the coating herein may be formed in the same manner as the embodiment of Fig. 6A. The image may be formed to cover only the wire contacts, and the individual wires are connected to the top package substrate and the top package die, so that the upper surface of most of the die is not covered by the cladding . The top package 9 is stacked on top of the bottom package 300 and secured thereto using an adhesive, as in 9〇3. A solder mask 915 is patterned over the metal layer 921 to expose an underlying metal call connection at the junction, such as at a line junction for bonding the line contacts 916. 155479.doc •44-201131731 &amp;## 顶 顶 顶 顶 顶 p p p p p p p 〇〇 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z The group structure is protected by the formation-module cladding 9〇7, and the solder ball 3 18 is back to the solder ball pad exposed on the metal layer under the bottom package substrate to connect to the lower layer circuit, for example, a final The motherboard of the product (not in the picture), like a computer. The solder masks 315, 327 are patterned over the metal layer 321 323 'to expose the underlying metal at the contacts for electrical connection', such as at the line contacts to engage the line contacts 918 and the ball 318 〇 has a structure of lga stacked on a flip chip BGA having a lower die 'see, for example, FIG. 9A' which can be combined - a heat sink and an electric shield, as shown in FIG. 8B or FIG. 8C. 9B is a cross-sectional view of a multi-package module in accordance with another aspect of the present invention, wherein the flip chip BGA of the lower die is a folded LGA, as in the embodiment of FIG. 9A, and wherein the lower portion has a Radiator / shade. In particular, referring to FIG. 9B, the bottom BGA package 300 of the multi-package module 92 has a metallized (eg, copper) heat sink that additionally serves as an electrical shield to include any of the BGAs in the lower BGA. The electromagnetic radiation of the grains 'and thereby prevents interference with the grains in the upper package. The "top" planar portion of the heat spreader 906 is supported on the substrate 312 and supported on the die 314 by a foot or sidewall 909. An adhesive dot or line 9〇8 is used to secure the heat sink support 909 to the upper surface of the base substrate. The adhesive can be a conductive adhesive 'and can be electrically connected to the top metal layer 321 of the substrate 312', in particular to a ground plane of the circuit, and thereby establish 155479.doc • 45·201131731 the heat sink is made For an electric shield. Alternatively, the adhesive can be a non-conductive 'and in this configuration' the heat sink acts only as a heat sink. The support and top portions of the heat sink 906 enclose the die 314 and can be used to protect those structures against ambient and mechanical stresses to facilitate processing operations, particularly subsequent testing prior to assembly of the MPM. The top package 900 of the multi-package module 92 is stacked on top of the bottom package 300 on the flat surface of the heat sink/mask 906 and secured thereto using an adhesive 903. The adhesive 903 can be thermally conductive to improve heat dissipation; and the adhesive 903 can be electrically conductive to establish electrical connection between the heat sink 9〇6 and the underlying metal layer of the package substrate, or it can be electrically insulated. This prevents electrical connections. The z-interconnection between the top package 900 and the bottom package 3A according to the present invention is interconnected by a top package interconnect in the gap of the top package substrate 91 2 and a bottom package interconnect in the void of the bottom package substrate 300. A line contact 918 is formed between the pads. The line contacts can be formed by means of a contact or a lower contact. The multi-package module structure is protected by forming a module cover 9〇7. An opening is provided in the support portion 907 of the heat sink to allow the MPM molding material to be filled in the enclosed space during cladding. The ball 3 18 is reflowed onto the exposed solder ball pads on the metal layer below the bottom package substrate 3 for connection to a lower layer circuit, such as a motherboard (not shown). As previously mentioned, the structure according to the present invention allows the BGA and LGA to be pre-tested prior to assembly into the multi-package module to allow for the exclusion of non-compliant packages prior to assembly, thereby ensuring a high final module test. rate. 155479.doc -46- 201131731 In the wafer bottom package in accordance with this aspect of the invention, the chip can be, for example, an ASIC, GPU or CPU, typically as = can be a -memory-package. Wherein:::::: : memory sealing material, which can be - heap (four) grain record _ package. The bottomed package of the flip-chip w is particularly suitable for higher speed applications, ', especially RF processing, such as in mobile communications applications. It may have a heat sink in the next die configuration such that the MPM having a flip chip bottom package (as shown in Figure 9A or Figure 9B). In order to improve the heat dissipation of the multiple package modules as shown in the example of Figure 9A or ,, a heat sink can be provided over the top package. The top diffuser is formed of a conductive material that exposes its upper surface to at least a more central region at the upper surface of the crucible to the surrounding environment to more effectively displace the tropic from the MPM. For example, the top heat sink can be a sheet of metal (e.g., copper)&apos; and it can be secured to the MpM cladding during the molding material curing process. Alternatively, the heat sink can have a generally planar portion over the top package, and - a peripheral support portion, or a support member disposed on or near the upper surface of the bottom package substrate. By way of example, Figure 9C is a cross-sectional view of a stacked BGA + LGA MPM 94 in accordance with another aspect of the present invention, wherein a "top" heat sink is provided at the upper surface of the MpM. The structure of the package stacked in the MPM 94 is generally similar to the MPM 92 in Figure 9B, and similar structures can be identified in the drawings by similar reference. The top heatsink in this example is formed of a thermally conductive material having a generally planar central portion 944 over the top package and extending over the bottom package substrate 3丨2, Table 155479. Doc -47- 201131731 The surrounding support member 946. The upper surface of the planar portion 944 is attached to the upper surface of the MPM to be exposed to the surroundings to efficiently discharge the tropical MPM. For example, the top heat sink can be formed by a metal sheet such as copper, for example by punching. The support members 946 can be secured to the upper surface of the bottom package substrate (not shown) by an adhesive as needed. The multi-package module structure is protected by the formation of a module cover 907, and the heat sink support member is embedded in the MPM cladding 907 during the molding material curing process. In the embodiment of Figure 9C, a stepped recessed feature 945 is provided around the planar upper portion 944 of the heat sink to allow for better mechanical integration of the structure and less The molding compound is detached. In this embodiment, the space between the lower surface of the heat sink 944 and the upper surface of the die 914 is filled with a layer of ^1&gt;], which is thick enough so that the 6 hai radiator 944 is not Will interfere with the surrounding lga molding 91 7 . Additionally, the MPM in a particular embodiment like 9A or 9B can have a simple planar heat sink that does not have a support member. This simple planar heat sink can be secured to the upper surface 519 of the top package module 517 using an adhesive. Alternatively, the MPM of the embodiment of Figure 9A or Figure 9B may have a simple planar heat sink that does not adhere to the top surface of the top closure molding. In these embodiments, as in the particular embodiment of Figure 5D, the top heat sink T is - a generally planar thermally conductive material, such as, for example, a metal sheet (e.g., copper), and at least the planar heat sink The more central area of the surface is exposed to the surrounding ridges to more effectively remove the tropics (4) (10). Here, in the embodiment of Fig. 9C, the space between the lower surface of the planar heat sink and the top package 900 may be filled with a layer of MpM. And such a simple planar heat sink as in the embodiment of Figure 9c 155479.doc -48-201131731, which can be secured to the MPM cladding 907 during the molding material curing process. The unattached, simple planar top heatsink may be wrapped around the (10) transition material, such as the planar heat sink attached in Figure 5D, and may provide a

階梯狀的凹入特徵,以允許與該結構的較佳機械整合度, 並較不會與該模製化合物分離。 QA stepped recessed feature to allow for better mechanical integration with the structure and less separation from the molding compound. Q

例如圖9C所示之具有一散熱器的MpM,其可提供改盖 的熱效能。 D 根據本發明之MPM的底部封裝可為在一上晶粒組態中的 一倒裝晶片封裝’ λ中該底部封裝晶㈣承載於該底部封 裝基板之下表面上。通常在這種組態中的該底部封裳晶粒 附著區域係位在大約該基板區域的令心,且該第二階互連 球可在周邊上配置靠近於兩個或通常更多的該基板邊緣。 該上晶粒倒裝晶片及其倒裝晶片互連結構係位在該第二階 互連結構之停駐高度内,且因此在這種組態中的底部封裂 晶粒對於該ΜΡΜ之整體厚度沒有貢獻。再者,該上晶粒組 態可避免一網列反轉效應,其基本上為一下晶粒組態之結 果。 特別是,藉由範例,圖10Α所示為根據本發明另一方面 之多重封裝模組101之截面圖,其中一堆疊的晶粒平台格 栅陣列封裝1000在一上晶粒組態302中堆疊在一倒裝晶片 BGA之上,且該等堆疊的封裝係由線接點來互連。在該底 部BGA封裝302中,該晶粒344係附著在該BGA基板342之 下方側。 155479.doc •49- 201131731 如圖所示’此結構提供一較薄的MPM,因為該底部封裝 晶粒係在該底部封裝的底側在位在焊球的周圍之間的區域 中,這種組態可具有一較高的電效能,不僅因為其使用一 倒裝晶片連接,但亦因為其提供該晶粒的更為直接之電連 接到該等焊球,對於該晶粒與該等焊球之間的連接,其具 有較短的金屬跡線,且不需要通孔(如在圖9八或叩中的組 態所需要)。另外,該上晶粒組態使得此封裝在網列上可 相容於線接點,如同在一些應用令所需。網列為該晶粒與 該等焊球之間所有連接配對的總和。當該晶粒面向上「下 晶粒」時,其即具有一連接型態,其為當該晶粒面向下「 上晶粒」時,在相同晶粒中的相同型態的鏡像影像。 在圖10A的組態中,該頂部LGA封裝係以黏著劑附著到 該BGA的上方側,然後即線接點及模製。在圖i〇a到i〇e之 範例所不之具體實施例中,在該頂部封裝中堆疊了超過— 個的晶粒(兩個或更多)。堆疊的晶粒封裝在本產業中已良 好地建立,這些版本在封裝中最高可達到5個堆疊的晶粒 °該晶粒具有不同的尺寸’且在一堆疊的晶粒封裝中的晶 粒可具有才目同或不同的相對尺寸。肖晶粒基本上為正方形 或長方形,而不同尺寸之長方形與正方形晶粒可堆疊在— 堆疊的晶粒封裝+。當該晶粒為長方形或具有不同的尺寸 時,該晶粒即可堆疊,所以在該堆疊中—下方晶粒的空隙 突出超過一堆叠於其上的上方晶粒之空隙。圖1〇A所示為 在該堆疊中兩個晶粒為相同尺寸之範例。 例中,或在當該堆曼中上方晶粒大於-下方晶:的具= 155479.doc •50· 201131731 施例中,一間隔器組裝在該晶粒之間來構成所有晶粒之線 接點到該LGA基板。圖i〇B所示為在該堆疊中的上方晶粒 小於下方晶粒之範例;或者另外,該晶粒係堆疊成該上方 堆疊之空隙會突出超過該下方晶粒的空隙。在像是在圖 10B之具體實施例中,不需要有間隔器,因為在該下方晶 粒之犬出空隙的線接點處可允許線接點不會干擾堆疊於其 上的晶粒。 請參考圖10A,該底部倒裝晶片BGA封裝3〇2包括一具有 一圖案化金屬層353之基板342,其為該晶粒344藉由倒裝 晶片凸塊346連接之部份,例如焊料凸塊、金點凸塊或各 向異性導電膜或膏。丨可使用多種基板型式中的任何一種 :在圖10A之範例所示之底部封裝基板342具有兩個金屬層 351、353 ’其每個被圖案化來提供適#的電路。底部封裝 基板342額外地具有一金屬層355,其夾在介電層354、3f6 之間。金屬層355在選擇的位置處具有空洞,以允許該等 金屬層351、353透過通孔之連接,因此該圖案化的金屬層 351、353之選擇的部份係藉由通孔連接通過該等基板層 3 54、3 56,及通過在該等夹在其中的金屬層355中的空洞 。该圖案化的金屬;f 353之選擇的部份係藉由通孔連接通 過基板層356到夾住的金屬層355。 倒裝晶片凸塊3 4 6係附著到該晶粒之活性表面上的一圖 案化的凸塊墊,且因為該晶粒的活性表面對於—面向下的 該基板之圖案化的金屬層來面向上,這種配置可稱之為一 「上晶粒」倒裝晶片封裝。在晶粒與該基板的晶粒附著區 155479.doc 201131731 域之間的一聚合物側填滿343提供了對於周遭的防護,並 加入機械整合度到該結構。 如上所述,該等金屬層351、353被圖案化來提供適當的 電路,且該夾住的金屬層355在選擇的位置處具有空洞, 以允許在該上方及下方金屬層351、353上選擇的跡線之間 允許互連(並不接觸該夾住的金屬層355)。特別是,例如該 下方金屬層被圖案化在該晶粒附著區域來提供該倒裝晶片 互連凸塊343之附著處;及例如該下方金屬層被圖案化到 較為靠近該底部封裝基板342之空隙來提供該第二階互連 焊球348之附著處,藉此該完成的MpM由焊料回焊附著到 下層電路(未示出)。例如,特別是該上方金屬層被圖案化 到靠近該底部封裝基板342之空隙,以提供線接點之附著 處連接該頂部封裝到該底部封裝。在該金屬層353之電路 中的接地線透過通孔連接到該夾住的金屬層355 ;該等烊 球348中選擇的一些為接地球’其在當安裝時即附著 到該下層電路中的接地線。因此’該夹住的金屬層扮做 為該MPM之接地平面。該等焊球3财所選擇的為輸入/輸 出,或電源球’因此’這些在該金屬層⑸之電路中分別 附著到輸入/輸出或電源線上的焊球處。 仍參考@10A,該頂部封裝雜為—堆疊的晶粒平 柵陣列封裳’其中晶粒1〇14、1〇24係由一間隔器⑼$分離 ’且堆疊在—頂部㈣基板上。該頂部封裝基板包括一介 電層咖,其在該上方基板表面上具有一金屬層,並圖案 化來k供跡線,例如則,其具有附著處用於該頂部封裝 155479.doc •52· 201131731 基板線接點互連於該堆疊晶粒,並用於該頂部封裝之線接 點互連於該底部封裝基板。下方晶粒1014係使用_點著劑 1013附著到該頂部封裝基板的一晶粒附著區域,例如一晶 粒附著環氧化物。晶粒1014係藉由線接點1016電連接到該 頂部基板,連接在該晶粒之活性表面上的線接點處與在選 擇的跡線10U上的線接點處。一間隔器1〇15使用—黏著 劑(未示於圖中)來固定到該下方晶粒1014之上表面,而上 方晶粒1024使用一黏著劑(圖中未示出)來固定到該間隔器 1015之上表面。該間隔器被選擇具有充份的厚度,以提供 空隙,所以該上方晶粒1024之突出空隙不會侵犯到該等線 接點1016。晶粒1024藉由線接點1〇26連接到該頂部基板, 其連接在該晶粒之活性表面上的線接點處與選擇的跡線 1011上的線接點處。該堆疊的晶粒與在該頂部封裝基板之 上的線接點之裝配件被包覆在一模製材料1〇17中,提供一 頂部封裝上表面1019,並留下所暴露的該等互連跡線1〇11 之空隙部份。該頂部封裝丨〇〇〇在此時可被測試,然後堆疊 到5亥底部封裝基板之上表面的晶粒附著區域,並使用一黏 著劑1003來固定於該處。該等頂部及底部封裝之電互連會 受到在該頂部封裝基板之跡線1〇1丨上所暴露的線接點處與 該底部封裝基板之上方金屬層的跡線3 5丨上的線接點處之 線接點1018所影響《然後該MpM裝配件即包覆在一模製 1007中,以保護封裝對封裝之線接點,並在該完成的MpM 101中提供機械整合度》 如上所述’在這些具體實施例中堆疊在該上晶粒倒裝晶 155479.doc -53- 201131731 片BGA封裝之上的堆疊晶粒頂部封裝可具有多種組態,其 係根據例如在該堆疊中的晶粒數目、並根據該晶粒的尺寸 。舉例而言,在一戴面圖中,圆1〇B所示為另一MpM組態 103,其中该LGA具有兩個堆疊的晶粒,且其中該上方晶 粒1044之尺寸比该下方晶粒1〇34要小,至少在該截面圖的 平面上。在這種組態中,在該下方晶粒之空隙中的線接點 附著處之上/又有上方晶粒之空隙突出,所以不需要包括一 間隔器。在圖10B之MPM 1〇3中的底部封裝3〇2實質上類似 於圖10A之MPM 101中的底部封冑,且相對應的部份係類 似於圖面中所示。在MPM 1〇3中的頂部封裝刪為一堆疊 的晶粒平台格柵陣列封裝,其具有晶粒1〇34、1〇44堆疊在 一頂部封裝基板之上。該頂部封裝基板包括一介電層1〇12 ,其在該上方基板表面上具有—金屬層,並目案化來提供 跡線,例如1 03 1,其具有附著處用於該頂部封裝基板線接 點互連於該堆疊的晶粒,並用於該頂部封裝之線接點互連 於該底部封裝基板。下方晶粒1034係使用-黏著劑1〇33附 者到該頂部封裝基板的一晶粒附著區域,例如一晶粒附著 環氧化物。晶粒1034藉由線接點1〇36電連接到該頂部基板 ,其連接在該晶粒的活性表面上的線接點處與在選擇的跡 線1031上的線接點處。上方晶粒⑺料係使用一黏著劑Μ” 固疋到|亥下方晶粒1034之上表s。晶粒1〇44藉由線接點 1046電連接到該頂部基板,其連接在該晶粒的活性表面上 之線接點處與選擇的跡線1〇31上的線接點處。在該頂部封 裝基板之上的堆疊晶粒與線接點之裝配件係包覆在提供一 155479.doc -54- 201131731 頂部封裝上表面1039之模製材料1037中,並留下暴露的互 連跡線1031之空隙部份。該頂部封裝1〇3〇在此時可被測試 ’然後堆疊到該底部封裝基板之上表面的晶粒附著區域, 並使用一黏著劑1003來固定於該處。該等頂部及底部封裝 之電互連會受到在該頂部封裝基板之跡線1 03 1上所暴露的 線接點處與該底部封裝基板之上方金屬層的跡線35 1上的 線接點處之線接點1018所影響。然後該河]?]^裝配件即包覆 在一模製1007中,以保護封裝對封裝之線接點,並在該完 成的MPM 103中提供機械整合度。 在根據本發明此方面之倒裝晶片底部封裝中的處理器晶 片可為例如ASIC、GPU或CPU;且該頂部封裝可為一記憶 體封裝,特別是例如在圖10A及圖i〇B中所示之一堆疊晶 粒記憶體封裝。該底部封裝之倒裝晶片上晶粒組態可提供 一非常薄的模組,並特別適用於較高速的應用,例如行動 通訊。 如下所述,在像是MPM 101或1 〇3之具體實施例中該底 部封裝基板中的接地平面355額外地做為一電磁遮蔽來顯 著地降低該BGA晶粒與該覆蓋的LGA晶粒之間的干擾,且 像是MPM可特別應用在該底部封裝晶粒為—高頻晶粒(例 如射頻)的應用中。 在一些應用中,其亦需要來遮蔽在該底部封裝中的bga 晶粒與該MPM所附著的該下層電路。圖1〇c所示為一多重 封裝模組105之範例中一堆疊晶粒平台格柵陣列封裝 1〇〇〇在一上晶粒組態302中堆疊在一倒裝晶片bga之上^ 155479.doc •55· 201131731 其中該等堆疊的封裝係由線接點來互連,其中在該倒裝晶 片BGA處提供一電磁遮蔽,以限制輻射向下朝向下層電路 (未示出)。 在圖10C的MPM 105中,該頂部封裝10〇〇與該底部封裝 302實質上係構建成如同圖1〇AiMPM 1〇1,且相對應的特 徵可相對應地在圖中辨識。該MPM 1〇5之底部封裝3〇2即 具有金屬化(例如銅)電遮蔽來電性地包含來自在該下方 BGA中的晶粒之電磁輻射,並藉此防止干擾在該安裝的 MPM之下的電路。該遮蔽3()4的下方平面部份係由腳或側 壁305所支撐。一黏著劑的點或線3〇6用來固定該散熱器支 撐305到該底部基板之下表面。該黏著劑可為一導電黏著 劑’並可電連接到該基板之下金屬層中的跡線,特別是連 接到該電路之接地跡線。該支撐部份及該遮蔽的下方平面 部份包覆該晶粒344,且除了遮蔽在該完成的裝置中之下 方晶粒,其可用來對於周遭及機械應力來保護該下方晶粒 以便於處理作業,且特別是在組裝該MpM之前的後續測 試期間、或在安裝之前。 另外,如下所述,參考圖㈣所述之遮蔽可用來遮蔽在 MPM中的-上晶粒倒裝晶片底部封裝術,其具有其它堆 疊曰曰粒頂部封裝組態。例如該堆疊晶粒頂部封裝在相鄰晶 粒之間不具有間隔器,如圖10B之1〇3〇令所示。 且另外,如參考圖10C所述之遮蔽可用來遮蔽在MpM中 之上晶粒倒裝晶片底部封裝3〇2,其除了堆疊晶粒頂部封 裝之外的頂部封裝。例如該頂部封裝可為-平台格柵陣列 155479.doc •56- 201131731 封裝,例如像是圖5A中的5〇〇所示2LGA頂部封裝。 再者’為了改善通常設置在圖1〇A中的—多重封裝模组 之散熱作用,在該頂部封裝之上可提供—散熱器。該頂部 散熱器係由一導電材料所形成,其將其上方表面暴露在該 MPM之上表面處的至少更為,心的區域到周遭環境,以更 有效率地將熱帶離該MpM。例如,該頂部散熱器可為一金 屬片(例如銅),且其可在該模製材料固化處理期間固定到 »亥MPM包覆。或者,該散熱器可在該頂部封裝之上具有一 通常為平面的部份’及—周g支料份、或置於該底部封 裝基板之上表面之上或其附近的支撐部件。 藉由範例’圖10E所示為包括堆疊在—上晶粒倒裝晶片 底部BGA之上的一堆疊的晶粒頂部封裝之MpM } 〇9之截面 圖,其中在該的上表面處提供一「頂部」散熱器。在 刪109中的頂部及底部封裝之結構通常類似於在圖⑽ 中的MPM 105’且藉由類似的參考編號可在圖面中辨識類 似的結構。在此範例中的頂部散熱器係由__導熱材料所形 成,其具有位在該頂部封裝1〇〇〇之上的通常為平面的中心 部份ι_,及延伸到該底部封裝基板342之上表面的周圍 支樓部件1046。該平面部份1〇〇4之上表面係在該MpM上表 面來暴露到周圍,以有效率地將熱帶出MpM。例如該頂部 散熱器可由一金屬片(例如銅)所形成,例如藉由沖壓,該 等支擇部件HM6可依需要來使用一黏著劑固定到該底部封 裝基板之上表面(未不於圖中)。該多重封裝模組結構可由 形成-模組包覆H)〇7來保護’且該散熱器支撐部件在該模 155479.doc •57· 201131731 製材料固化處理期間被嵌入在該MPM包覆1007中。在圖 10E的具體實施例中’在該散熱器的平面上方部份丨〇44的 周圍提供有一階梯狀的凹入特徵1045,以允許較佳的結構 之機械性整合度,而較不會與該模製化合物脫離。在此具 體貫施例中’該散熱器1 044之下表面與該LGA模製1 〇 1 7之 上表面1019之間的空間係填入該MPM模製之薄層。 另外,該頂部散熱器可為一通常為平面板的一導熱材料 ,例如像是一金屬片(例如銅),其不需要支撐部件。至少 該平面散熱器之上方表面的更為中心的區域被暴露到周遭 %丨兄’用以更有效率地將熱帶離該Mpm。這種簡單平面散 熱器係示於圖10 D中的丨〇 〇 4,其中該散熱器係固定到該頂 部封裝模製之上表面。在ΜΡΜ107中堆疊的封裝之結構通 常類似於圖服中的該MPM1Q9,而在圖中可由類似的參考 編號來識別類似的結構。在圖10D之範例中的頂部散熱器 1004為一通常為平面的導熱材料板,其至少具有其上表面 的一更為中心的區域來暴露到周圍環境,以更有效率地將 熱帶出MPM,如圖之範例中所*。例如該頂部散孰器 可為-金屬片(例如銅但是,此處該頂部散熱器刪係 使用一黏著劑1006固定到該上方封裝包覆⑺^之上表面 HH9上。該黏著劑刪可為一導熱黏著劑來提供改良的散 熱作用。通常在該頂部封襄模製已經至少部份固化之後, 該頂部散熱器即固定到該頂部封裝模製,但其係在該模製 材料對於該讓包覆贈射出之前。該頂部㈣^周圍 可以包覆該MPM模製材料。在圖1〇〇的具體實施例中,在 155479.doc •58- 201131731 該散熱器1004的周圍提供有一階梯狀的凹入特徵1〇〇5,以 允許較佳的結構之機械性整合度,而較不會與該模製化合 物脫離。 一簡單平面散熱器,像是圖10D中的1〇〇4,其不需要附 著到該頂部封裝模製之上表面。而是,在該簡單平面散熱 器之下表面與該LGA模製1〇17之上表面1〇19之間的空間係 填入一薄層的MPM模製,且這種簡單的平面散熱器可在該 模製材料固化處理期間來固定於該]^1&gt;]^包覆1〇〇7。一簡單 平面頂部散熱器之周圍在這種具體實施例中,其可包覆有 該MPM模製材料,並可在該周圍具有一階梯狀的凹入特徵( 在圖10D中的簡單平面散熱器1〇〇4中稱之為凹入特徵ι〇〇5) ,以允許该結構具有較佳的機械整合度,而較不會與該模 製化合物脫離。 如同在圖1〇D、10E中的結構之優點為可改善熱效能。 對於所有的應用,其不需要同時具有—底部封裝遮蔽及一 頂部散熱器。另外,根據終端產品的需求,有幾種之一為 適當。 圖η所示為根據本發明之MpM(即nG)的另—個具體實 包幻之截面圖,其中—堆疊晶粒LGA頂部封裝1 〇⑼係堆疊 在一堆疊晶粒BGA底部封裝彻之上,且該頂部與底部封 裝由線接點來互連。在圖丨丨所 EJ i 1所不的具體貫施例中,該底部 BGA封裝408在該堆疊中且古+加曰〜 _ τ八有兩個日日粒,且該頂部LGA封 裝在該堆疊中具有兩個晶粒。 例如具有此組態之結構特別適 用於在一固定的軌跡内 需 155479.doc •59· 201131731 記:在度之應用。該堆疊的晶粒可為相同或不同的 ° : 式,其包括快閃、SRAM、PSRAM等。 1頂部封裝1000實質上係建構成類似於圖 的頂部封褒1000,且類似的特徵係由類似的參考編 °’所辨識。特別是,該頂部封裝為-堆疊的晶粒平台 格柵陣列封裝’其中晶粒1〇14、1〇24係由一間隔器⑻5分 離,且堆叠在-頂部封裝基板上。該頂部封裝基板包括一 &quot;電層1012’其在該上方基板表面上具有一金屬層,並圖 案化來提供跡線’例如1〇11 ’其具有附著處用於該上方 封裝基板線接點互連於料#的晶粒,並詩該上方封裝 之線接點於该底部封裝基板。下方晶粒⑺“使用—黏著劑 1013附著到該頂部封裝基板的一晶粒附著區域,例如一晶 粒附著環氧化物。晶粒1014係藉由線接點贿電連接到該 頂。卩基板,連接在该晶粒之活性表面上的線接點處與在選 擇的跡線1011上的線接點處。一間隔器1〇15使用一黏著劑 (未示於圖中)來固定到該下方晶粒1014之上表面而上方 晶粒1024使用一黏著劑(未示出)來固定到該間隔器1〇15之 上表面。該間隔器被選擇具有充份的厚度,以提供空隙, 所以該上方晶粒1024之突出空隙不會侵犯到該等線接點 1016。晶粒1024藉由線接點1〇26連接到該頂部基板,其連 接在該晶粒之活性表面上的線接點處與選擇的跡線丨〇丨i上 的線接點處。該堆疊的晶粒與在該頂部封裝基板之上的線 接點之裝配件被包覆在一模製材料1 〇 17中,提供一頂部封 裝上表面1019,並留下所暴露的該等互連跡線丨〇丨丨之空隙 155479.doc -60- 201131731 部份。該頂部封裝1000在此時被測試,然後堆疊在該底部 封裝408之上’如以下之詳細說明。 該MPM 11〇之底部封裝4〇8之結構類似於該頂部封裝 1000。特別是,該底部封裝408為一堆疊的平台格柵陣列 封裝,其將晶粒444、454由一間隔器分離,並堆疊在一底 部封裝基板之上。該底部封裝基板做為該完成的MpM之互 連基板’且其可用例如類似於圖5A中MPM 500之底部封裝 400之底部基板412的方式來構建。特別是,在此具體實施 例中,該底部封裝408包括具有至少一金屬層之底部封裝 基板442 °其可使用多種基板型式中的任何一種,例如包 括:一具有2-6金屬層之壓合板、或具有4_8金屬層之建構 基板、或具有1-2金屬層之可撓聚醯亞胺帶、或一陶瓷多 重層基板。藉由圖11之範例所示的底部封裝基板442具有 兩個金屬層451、453,其每個被圖案化來提供適當的電路 ,並藉由通孔452來連接。該下方晶粒444在習用上使用一 黏著劑443附著到該基板的一「上方」表面,其基本上稱 之為該晶粒附著環氧化物,如圖11中的443所示。該下方 晶粒係藉由線接點446電連接到該底部基板,其連接在該 晶粒444之活性表面中的線接點處與在選擇的跡線45丨上的 線接點處。一間隔器係使用一黏著劑(未示出)來固定到該 下方晶粒444之上表面’且該上方晶粒454係堆疊於其上, 並使用一黏著劑(未示出)固定於該間隔器之上表面。該間 隔器被選擇為足夠地厚來提供空隙,所以該上方晶粒454 之突出空隙不會衝突於該線接點料6。該上方晶粒454藉由 155479.doc -61 · 201131731 線接點456連接到該底部基板,其連接在該晶粒454之活性 表面中的線接點處與在選擇的跡線451上之線接點處。該 底部封褒下方晶粒444及上方晶粒454,及該線接點秘、 W係包覆有-模製化合物447,其提供對於周遭及機械應 力的保護,以便於處理作業,並提供該頂部堆疊的晶粒封 裝1000可堆疊於其上之底部封裝上表面。焊球係回焊 到該基板之下金屬層上的接點塾之上,以提供互連到底部 的電路,例如-最終產品之主機板(未示於圖中焊罩 、457係圖案化在該金屬層451、453之上,以在接點處暴 露該下層金屬來用於電連接,例如在該線接點處來接合該 等線接點及焊球418。 該頂部封裝麵可被測試,然後堆疊到該底部封裝基板 之上表面的晶粒附著區域,並使用一點著劑⑽來固定於 該處。該等頂部及底部封裝之電互連會受到在該頂部封裝 基板之跡線1011上所暴露的線接點處與該底部封裝基板之 上方金屬層的跡線451上的線接點處之線接點1118所影響 。然後該MPM裝配件即包覆在一模製11〇7令,以保護封裝 對封裝之線接點,並在該完成賴刚11〇中提供機械整合 度》 〇 在該頂部封裝與在該底部封裝、或同時在該頂部與底部 封裝中的MPM可特別適用於高記憶體小軌跡的應用。例如 圖11之一多重封裝模組可在一堆疊的ASIC底部封裝之上包 括-堆疊的晶粒記憶體頂部封裝;或是,頂部及底、部封= 皆可為堆疊的晶粒記憶體封裝,構成一高密度記憶體模 155479.doc -62- 201131731 組。 其它的堆疊晶粒封裝組態根據本發明此方面可應用在 MPM中的底部或頂部堆疊的晶粒封裝,其係根據例如在該 . 堆疊中的晶粒數目,並根據在該堆疊中的晶粒尺寸。舉例 ' 而5,在一底部封裴堆疊中的一上方晶粒可具有比一下方 曰B粒要小的尺寸。在這種組態中,在該下方晶粒之空隙中 的線接點附著處之上沒有上方晶粒之空隙突出所以在該 堆疊中相鄰晶粒之間不需要包括一間隔器。 根據本發明此方面,其它頂部封裝組態可堆疊在一堆疊 的曰曰粒底部封裝之上。例如在圖5 Α之具體實施例中所示, BGA頂部封裝可以堆疊在一堆疊的晶粒底部封裝之上。 為了改善來自具有堆疊的晶粒底部封裝之一多重封裝模 組之散熱,例如在圖U之範例十所示,在該頂部封裝之上 可提供-散熱器。該頂部散熱器係由一導熱材料所形成,For example, the MpM with a heat sink shown in Figure 9C provides the thermal performance of the cover. D. The bottom package of the MPM according to the present invention may be in a flip chip package 'λ in an upper die configuration, the bottom package crystal (4) being carried on the lower surface of the bottom package substrate. Typically, the bottom seal die attach area in such a configuration is tied to a center of the substrate area, and the second order interconnect ball can be disposed on the perimeter close to two or more of the The edge of the substrate. The upper die-flip wafer and its flip chip interconnect structure are within the landing height of the second-order interconnect structure, and thus the bottom-sealed die in this configuration is integral to the die The thickness did not contribute. Moreover, the upper die configuration avoids a net column reversal effect, which is essentially the result of the lower die configuration. In particular, by way of example, FIG. 10A is a cross-sectional view of a multiple package module 101 in accordance with another aspect of the present invention, wherein a stacked die platform grid array package 1000 is stacked in an upper die configuration 302. Above a flip chip BGA, and the stacked packages are interconnected by wire contacts. In the bottom BGA package 302, the die 344 is attached to the lower side of the BGA substrate 342. 155479.doc •49- 201131731 As shown in the figure, 'this structure provides a thinner MPM because the bottom package die is in the region between the solder ball and the bottom side of the bottom package. The configuration can have a higher electrical performance, not only because it uses a flip chip connection, but also because it provides a more direct electrical connection of the die to the solder balls for the die and the solder The connection between the balls has a shorter metal trace and does not require a through hole (as required in the configuration in Figure 9 or )). In addition, the upper die configuration allows the package to be compatible with wire contacts on the grid as required in some applications. The mesh is the sum of all the connections between the die and the solder balls. When the grain faces the "lower grain", it has a connected pattern which is a mirror image of the same type in the same grain when the grain faces the "upper grain". In the configuration of Figure 10A, the top LGA package is attached to the upper side of the BGA with an adhesive, then wire contacts and molding. In the specific embodiment of the example of Figures ia to i〇e, more than one die (two or more) is stacked in the top package. Stacked die packages have been well established in the industry, and these versions can achieve up to five stacked dies in the package. The dies have different sizes' and the dies in a stacked die package can Have relative dimensions that are identical or different. The schm grains are substantially square or rectangular, and rectangular and square dies of different sizes can be stacked in the stacked die package +. When the crystal grains are rectangular or have different sizes, the crystal grains can be stacked, so in the stack, the voids of the lower crystal grains protrude beyond the voids of the upper crystal grains stacked thereon. Figure 1A shows an example in which the two grains are the same size in the stack. In the example, or when the upper grain in the stack is larger than the lower crystal: 155479.doc • 50· 201131731, a spacer is assembled between the crystal grains to form a line connection of all the crystal grains. Click on the LGA substrate. Figure iB shows an example in which the upper die in the stack is smaller than the lower die; or alternatively, the die is stacked such that the upper stacked voids protrude beyond the void of the lower die. In the particular embodiment of Fig. 10B, no spacers are required because the line contacts at the line exit of the underlying crystal grain allow the line contacts to not interfere with the grains stacked thereon. Referring to FIG. 10A, the bottom flip chip BGA package 3〇2 includes a substrate 342 having a patterned metal layer 353, which is a portion of the die 344 connected by flip chip bumps 346, such as solder bumps. A block, a gold dot bump or an anisotropic conductive film or paste. Any of a variety of substrate types can be used: The bottom package substrate 342 shown in the example of Figure 10A has two metal layers 351, 353' each patterned to provide a suitable circuit. The bottom package substrate 342 additionally has a metal layer 355 sandwiched between the dielectric layers 354, 3f6. The metal layer 355 has voids at selected locations to allow the metal layers 351, 353 to pass through the via connections, such that selected portions of the patterned metal layers 351, 353 are connected by vias. The substrate layers 3 54 , 3 56 , and the voids in the metal layer 355 sandwiched therein. The selected portion of the patterned metal; f 353 is connected through via substrate 356 to the sandwiched metal layer 355 via vias. Flip-chip bumps 341 are attached to a patterned bump pad on the active surface of the die, and because the active surface of the die faces the patterned metal layer of the substrate facing down This configuration can be referred to as an "upper die" flip chip package. A polymer side fill 343 between the die and the die attach region of the substrate 155479.doc 201131731 provides protection against the surrounding and adds mechanical integration to the structure. As described above, the metal layers 351, 353 are patterned to provide a suitable circuit, and the sandwiched metal layer 355 has voids at selected locations to allow selection on the upper and lower metal layers 351, 353. Interconnection is allowed between the traces (not touching the sandwiched metal layer 355). In particular, for example, the underlying metal layer is patterned in the die attach region to provide adhesion to the flip chip interconnect bump 343; and for example, the underlying metal layer is patterned closer to the bottom package substrate 342 The voids provide the attachment of the second-order interconnect solder balls 348 whereby the completed MpM is reflow soldered to the underlying circuitry (not shown). For example, in particular, the upper metal layer is patterned adjacent to the void of the bottom package substrate 342 to provide attachment of the wire contacts to the top package to the bottom package. A ground line in the circuit of the metal layer 353 is connected to the sandwiched metal layer 355 through a via; a selected one of the balls 348 is a ground ball 'which is attached to the underlying circuit when mounted Ground wire. Therefore, the sandwiched metal layer acts as a ground plane for the MPM. These solder balls are selected for input/output, or power balls 'so' these are attached to the solder balls of the input/output or power lines in the circuit of the metal layer (5). Still referring to @10A, the top package is a stacked-grain grid array in which the dies 1 〇 14, 1 〇 24 are separated by a spacer (9) and stacked on a top (four) substrate. The top package substrate includes a dielectric layer having a metal layer on the surface of the upper substrate and patterned to provide traces, for example, having an attachment for the top package 155479.doc • 52· The 201131731 substrate line contacts are interconnected to the stacked die, and the line contacts for the top package are interconnected to the bottom package substrate. The lower die 1014 is attached to a die attach region of the top package substrate using a dot implant 1013, such as a grain adhesion epoxide. The die 1014 is electrically coupled to the top substrate by wire contacts 1016, connected at line contacts on the active surface of the die to the line contacts on the selected trace 10U. A spacer 1〇15 is attached to the upper surface of the lower die 1014 using an adhesive (not shown), and the upper die 1024 is fixed to the spacer using an adhesive (not shown). The upper surface of the device 1015. The spacer is selected to have a sufficient thickness to provide a void so that the protruding voids of the upper die 1024 do not invade the wire bonds 1016. The die 1024 is connected to the top substrate by wire contacts 1 〇 26 which are connected at line contacts on the active surface of the die to the line contacts on the selected trace 1011. The stacked die and the wire contact assembly on the top package substrate are wrapped in a molding material 1 〇 17 to provide a top package upper surface 1019 and leave the exposed mutual Connect the gap between traces 1 and 11. The top package can be tested at this point and then stacked to the die attach area on the top surface of the 5 liter bottom package substrate and secured thereto using an adhesive 1003. The electrical interconnections of the top and bottom packages are subjected to lines on the traces exposed on the traces 1〇1 of the top package substrate and on the traces of the metal layer above the bottom package substrate. The contact at the contact is affected by the wire contact 1018. The MpM assembly is then wrapped in a molded 1007 to protect the package-to-package wire contacts and provide mechanical integration in the finished MpM 101. The stacked die top package stacked on top of the upper die flip chip 155479.doc -53 - 201131731 piece BGA package in these embodiments may have various configurations depending, for example, in the stack The number of crystal grains, and according to the size of the crystal grains. For example, in a wearing diagram, circle 1〇B is shown as another MpM configuration 103, wherein the LGA has two stacked dies, and wherein the upper die 1044 is smaller in size than the lower dies 1〇34 should be small, at least on the plane of the cross-sectional view. In this configuration, the gap between the wire contact in the gap of the lower die/the upper die is protruded, so that it is not necessary to include a spacer. The bottom package 3〇2 in the MPM 1〇3 of Fig. 10B is substantially similar to the bottom seal in the MPM 101 of Fig. 10A, and the corresponding portions are similar to those shown in the drawings. The top package in the MPM 1〇3 is diced into a stacked die platform grid array package having die 1〇34, 1〇44 stacked on top of a top package substrate. The top package substrate includes a dielectric layer 〇12 having a metal layer on the surface of the upper substrate and being visualized to provide traces, such as 032, with an attachment for the top package substrate line A junction is interconnected to the stacked die and a line contact for the top package is interconnected to the bottom package substrate. The lower die 1034 is attached to a die attach region of the top package substrate using an adhesive 1 〇 33, such as a die attach epoxide. The die 1034 is electrically coupled to the top substrate by wire bonds 1〇36 which are connected at line contacts on the active surface of the die to the line contacts on the selected trace 1031. The upper die (7) is affixed to the top surface of the die 1034 using an adhesive 。. The die 1 〇 44 is electrically connected to the top substrate by wire contacts 1046, which are connected to the die. The line contact on the active surface is at the line contact on the selected trace 1〇31. The stacked die and wire contact assembly on the top package substrate is wrapped to provide a 155479. Doc-54-201131731 The top package encloses the upper surface 1039 of molding material 1037 and leaves the void portion of the exposed interconnect trace 1031. The top package 1〇3〇 can be tested at this time' and then stacked a die attach area on the top surface of the bottom package substrate and secured thereto using an adhesive 1003. The electrical interconnections of the top and bottom packages are exposed by traces 101 1 of the top package substrate The line contact is affected by the line contact 1018 at the line contact on the trace 35 1 of the metal layer above the bottom package substrate. Then the assembly is wrapped in a molded 1007 To protect the package-to-package line contacts and provide mechanical integration in the completed MPM 103 The processor chip in the flip chip bottom package according to this aspect of the invention may be, for example, an ASIC, GPU or CPU; and the top package may be a memory package, in particular, for example, in FIG. 10A and FIG. One of the stacked die memory packages is shown. The bottom-mounted flip-chip on-die configuration provides a very thin module and is especially well suited for higher speed applications such as mobile communications. In a specific embodiment such as MPM 101 or 1 〇 3, the ground plane 355 in the bottom package substrate is additionally used as an electromagnetic shield to significantly reduce interference between the BGA die and the covered LGA die, and For example, MPM can be particularly applied in applications where the bottom package die is a high frequency die (eg, radio frequency). In some applications, it is also required to shield the bga die in the bottom package from the MPM. The lower layer circuit. Figure 1〇c shows an example of a multi-package module 105 in which a stacked die platform grid array package 1 is stacked in an upper die configuration 302 in a flip chip bga上^ 155479.doc •55· 201131731 Wherein the stacked packages are interconnected by wire contacts, wherein an electromagnetic shield is provided at the flip chip BGA to limit radiation downward toward the underlying circuitry (not shown). In the MPM 105 of Figure 10C, The top package 10A and the bottom package 302 are substantially constructed as shown in FIG. 1AiMPM 1〇1, and the corresponding features can be correspondingly identified in the figure. The bottom package of the MPM 1〇5 is 3〇2 That is, having a metallized (e.g., copper) electrical shield electrically includes electromagnetic radiation from the die in the lower BGA and thereby prevents interference with circuitry under the installed MPM. The lower planar portion of the shield 3() 4 is supported by the foot or side wall 305. An adhesive dot or line 3〇6 is used to secure the heat sink support 305 to the lower surface of the base substrate. The adhesive can be a conductive adhesive&apos; and can be electrically connected to traces in the metal layer beneath the substrate, particularly to the ground traces of the circuit. The support portion and the lower planar portion of the shield enclose the die 344 and, in addition to shielding the underlying die in the finished device, can be used to protect the underlying die for ambient and mechanical stress for processing Work, and especially during subsequent testing prior to assembly of the MpM, or prior to installation. Additionally, as described below, the masking described with reference to Figure (4) can be used to mask the top die flip chip bottom package in the MPM with other stacked tantalum top package configurations. For example, the stacked die top package does not have a spacer between adjacent crystal grains, as shown in Fig. 10B. In addition, the masking as described with reference to Figure 10C can be used to mask the die-flip wafer bottom package 3〇2 in the MpM, except for the top package of the stacked die top package. For example, the top package can be a - platform grid array 155479.doc • 56-201131731 package, such as the 2LGA top package shown in Figure 5A. Furthermore, in order to improve the heat dissipation of the multi-package module, which is usually disposed in FIG. 1A, a heat sink can be provided on the top package. The top heat sink is formed of a conductive material that exposes its upper surface to at least a more central portion of the surface of the MPM to the surrounding environment to more effectively move the tropics away from the MpM. For example, the top heat sink can be a metal sheet (e.g., copper) and it can be secured to the »HPM coating during the molding material curing process. Alternatively, the heat sink can have a generally planar portion &/or a perimeter portion of the top package or a support member disposed on or near the upper surface of the bottom package substrate. By way of example 'FIG. 10E, a cross-sectional view of MpM } 〇9 including a stacked die top package stacked on top of the upper die pad flip chip BGA is provided, wherein a "provided" is provided at the upper surface. Top" radiator. The structure of the top and bottom packages in the deletion 109 is generally similar to the MPM 105' in Figure (10) and similar structures can be identified in the drawings by similar reference numerals. The top heat sink in this example is formed of a thermally conductive material having a generally planar central portion ι_ above the top package 1 , and extending over the bottom package substrate 342 The surrounding branch member 1046 of the surface. The upper surface of the planar portion 1〇〇4 is attached to the surface of the MpM to be exposed to the surroundings to efficiently discharge the MpM from the tropics. For example, the top heat sink may be formed of a metal piece (for example, copper). For example, by stamping, the supporting member HM6 may be fixed to the upper surface of the bottom package substrate by an adhesive as needed (not shown). ). The multi-package module structure can be protected by a forming-module coating H) ' 7 and the heat sink supporting member is embedded in the MPM cladding 1007 during the curing process of the mold 155479.doc • 57· 201131731 . In the embodiment of Figure 10E, a stepped recessed feature 1045 is provided around the portion of the flat surface 44 above the plane of the heat sink to allow for better mechanical integration of the structure, rather than with The molding compound is detached. In this embodiment, the space between the lower surface of the heat sink 1 044 and the upper surface 1019 of the LGA molded 1 〇 17 is filled into the MPM molded thin layer. Alternatively, the top heat sink can be a thermally conductive material, typically a flat sheet, such as, for example, a sheet of metal (e.g., copper) that does not require a support member. At least a more central region of the upper surface of the planar heat sink is exposed to the surrounding area to more effectively remove the tropics from the Mpm. This simple planar heat sink is shown in Fig. 10D, which is fixed to the top surface of the top package molding. The structure of the package stacked in the crucible 107 is generally similar to the MPM1Q9 in the figure, and similar structures can be identified by similar reference numerals in the drawings. The top heat sink 1004 in the example of FIG. 10D is a generally planar sheet of thermally conductive material having at least a more central region of its upper surface exposed to the surrounding environment to more efficiently extract the tropical MPM, As shown in the example in the figure. For example, the top diffuser can be a metal sheet (for example, copper. However, the top heat sink is fixed to the upper surface of the upper package (7) ^HH9 by an adhesive 1006. The adhesive can be a thermally conductive adhesive to provide improved heat dissipation. Typically, after the top seal molding has been at least partially cured, the top heat sink is fixed to the top package molding, but it is attached to the molding material for the Before the coating is ejected, the MPM molding material may be wrapped around the top (four). In the specific embodiment of Fig. 1 , a stepped shape is provided around the radiator 1004 at 155479.doc • 58-201131731. The feature 1〇〇5 is recessed to allow for better mechanical integration of the structure without being detached from the molding compound. A simple planar heat sink, such as 1〇〇4 in Figure 10D, does not It is necessary to adhere to the top surface of the top package molding. Rather, the space between the lower surface of the simple planar heat sink and the surface 1〇19 of the LGA molded 1〇17 is filled with a thin layer of MPM. Molded, and this simple flat heat sink can be The molding material is fixed to the coating during the curing process. Around the simple planar top heat sink, in this embodiment, it may be coated with the MPM molding material. And having a stepped recessed feature around the circumference (referred to as a recessed feature ι〇〇5 in the simple planar heat sink 1〇〇4 in Fig. 10D) to allow the structure to have a better mechanical Integration is less detached from the molding compound. The advantages of the structure as in Figures 1D, 10E are to improve thermal efficiency. For all applications, it does not need to have both bottom package shielding and a top In addition, depending on the requirements of the end product, one of several is appropriate. Figure η shows another specific real-world cross-sectional view of the MpM (i.e., nG) according to the present invention, wherein - the stacked die The LGA top package 1 〇 (9) is stacked on top of a stacked die BGA, and the top and bottom packages are interconnected by wire contacts. In the specific example of Figure EJ i 1 The bottom BGA package 408 is in the stack and the ancient + plus 曰 ~ _ τ eight The granules of the day, and the top LGA package has two dies in the stack. For example, the structure with this configuration is particularly suitable for use in a fixed trajectory 155479.doc • 59· 201131731 Note: In the application of degrees. The stacked dies may be the same or different °: formula, including flash, SRAM, PSRAM, etc. 1 The top package 1000 is substantially constructed to resemble the top seal 1000 of the figure, and similar features are similar The reference package is identified. In particular, the top package is a - stacked die platform grid array package 'where the die 1〇14, 1〇24 are separated by a spacer (8) 5 and stacked in a top package On the substrate. The top package substrate includes an &quot;electric layer 1012' having a metal layer on the upper substrate surface and patterned to provide traces 'eg 1 '11' having attachments for the upper package substrate line contacts The die is interconnected to the material #, and the line of the upper package is connected to the bottom package substrate. The lower die (7) "use-adhesive 1013 is attached to a die attach region of the top package substrate, such as a die attach epoxide. The die 1014 is connected to the top by a wire contact. Connected to the line contact on the active surface of the die at the line contact on the selected trace 1011. A spacer 1〇15 is secured to the wire using an adhesive (not shown) The upper surface of the lower die 1014 and the upper die 1024 are secured to the upper surface of the spacer 1 15 using an adhesive (not shown). The spacer is selected to have a sufficient thickness to provide a void, so The protruding voids of the upper die 1024 do not invade the wire contacts 1016. The die 1024 is connected to the top substrate by wire contacts 1〇26, which are connected to the wire contacts on the active surface of the die. At a line contact with the selected trace 丨〇丨i. The stacked die and the wire contact assembly on the top package substrate are wrapped in a molding material 1 〇17, A top package upper surface 1019 is provided and the exposed interconnect traces are left 丨空隙 空隙 155479.doc -60- 201131731 part. The top package 1000 is tested at this time and then stacked on top of the bottom package 408 'as detailed below. The bottom package of the MPM 11 〇 4 〇 8 The structure is similar to the top package 1000. In particular, the bottom package 408 is a stacked platform grid array package that separates the dies 444, 454 from a spacer and is stacked on a bottom package substrate. The bottom package substrate acts as the completed MpM interconnect substrate 'and it can be constructed, for example, in a manner similar to the bottom substrate 412 of the bottom package 400 of the MPM 500 of Figure 5A. In particular, in this particular embodiment, the bottom The package 408 includes a bottom package substrate 442 having at least one metal layer, which may use any of a variety of substrate types, including, for example, a plywood having a 2-6 metal layer, or a construction substrate having a 4-8 metal layer, or having a flexible polyimide layer of 1-2 metal layer, or a ceramic multiple layer substrate. The bottom package substrate 442 shown by the example of FIG. 11 has two metal layers 451, 453, each of which is patterned Appropriate circuits are provided and connected by vias 452. The lower die 444 is conventionally attached to an "upper" surface of the substrate using an adhesive 443, which is basically referred to as the die attach ring. The oxide is shown as 443 in FIG. The lower die is electrically connected to the base substrate by wire contacts 446 that are connected at line contacts in the active surface of the die 444 to the line contacts on the selected trace 45A. A spacer is secured to the upper surface ′ of the lower die 444 using an adhesive (not shown) and the upper die 454 is stacked thereon and secured thereto using an adhesive (not shown). The upper surface of the spacer. The spacer is selected to be sufficiently thick to provide a void so that the protruding void of the upper die 454 does not conflict with the wire contact 6. The upper die 454 is connected to the bottom substrate by a 155479.doc -61 · 201131731 wire bond 456 that is connected to the line contact in the active surface of the die 454 and the line on the selected trace 451 At the junction. The bottom seals the lower die 444 and the upper die 454, and the wire contact is coated with a mold compound 447 which provides protection against ambient and mechanical stress for handling operations and provides The top stacked die package 1000 can be stacked on the bottom package upper surface thereon. The solder balls are reflowed onto the contacts on the metal layer below the substrate to provide circuitry interconnected to the bottom, such as the motherboard of the final product (not shown in the figure, the solder mask, the 457 system is patterned Above the metal layers 451, 453, the underlying metal is exposed at the contacts for electrical connection, such as bonding the wire contacts and solder balls 418 at the wire contacts. The top package surface can be tested And then stacked to the die attach area on the top surface of the bottom package substrate and secured thereto using a layer of the dopant (10). The electrical interconnections of the top and bottom packages are subject to traces 1011 on the top package substrate. The exposed line contacts are affected by line contacts 1118 at the line contacts on the trace 451 of the metal layer above the bottom package substrate. The MPM assembly is then wrapped in a molded 11〇7 To protect the package from the wire bond of the package, and to provide mechanical integration in the finished Lai Gang 11", the MPM in the top package and the bottom package, or both in the top and bottom packages can be special Suitable for applications with high memory small tracks. For example A multi-package module of FIG. 11 can include a stacked die memory top package on a stacked ASIC bottom package; or a top, bottom, and top package can be stacked die memory packages. Forming a high-density memory phantom 155479.doc-62-201131731 group. Other stacked die package configurations may be applied to the bottom or top stacked die package in the MPM according to this aspect of the invention, for example according to The number of grains in the stack, and according to the grain size in the stack. For example, an upper die in a bottom packed stack may have a smaller size than a lower germanium B grain. In this configuration, there is no gap above the wire contact in the gap of the lower die without the gap of the upper die, so that it is not necessary to include a spacer between adjacent dies in the stack. In this aspect of the invention, other top package configurations can be stacked on a stacked tantalum bottom package. For example, as shown in the specific embodiment of Figure 5, the BGA top package can be stacked in a stacked die bottom package. In order to improve from Heat dissipation of a multi-package module having a stacked die bottom package, such as shown in Example 10 of Figure U, on which a heat sink can be provided. The top heat sink is formed of a thermally conductive material ,

、、在&quot;上表面之中具有更多的申心區域來暴露該MPM 的上表面到周遭環境,來更有效率地將熱帶離該MPM。例 如該頂部散熱器可為一金屬片(如鋼片),而其可在該模製 材料固化處理期間來固定到該河?]^包覆。或者,該散熱器 可在該上方封裝之上具有一通常為平面的部份,以及一周 圍支樓的部份’或是置於或靠近於該底部封裝基板之 面的支撐部件。 藉由圖5D及圖5E之範例所示之頂部散熱器亦可適用於 在具有-堆疊晶粒底部封裝之職中的頂部MpM散熱器 。(或具有堆疊的晶粒底部及頂部封裝) 155479.doc -63 - 201131731 例如參考圖Η之MPM結構及圖汀中的散熱器,該頂部 散熱器係由一導熱材料所形成,其具有位在該頂部封裝之 上的通常為平面的中心部份544,及延伸到該底部封裝基 板442之上表面的周圍支撐部件546。該平面部份5料之上 表面係在該MPM上表面來暴露到周圍,以有效率地將熱帶 出MPM。例如該頂部散熱器可由一金屬片(例如銅)所形成 ,例如藉由沖壓。該等支撐部件546可依需要來使用一黏 者劑固定到該底部封裝基板之上表面。該多重封裝模組結 構可由形成一模組包覆11〇7來保護’且該散熱器支撐部件 在該模製材料固化處理期間被嵌入在該MPM包覆11〇7中。 在該散熱器的平面上方部份544的周圍提供有一階梯狀的 凹入特徵545,以允許較佳的結構之機械性整合度,而較 不會與該模製化合物脫離。在此具體實施例中,該散熱器 544之下表面與該頂部封裝模製1〇17之上表面ι〇ΐ9之間的 空間係填入該MPM模製之薄層。 另外,一頂部散熱器可固定到該頂部封裝模製之上表面 。請參考圖Η之MPM結構,並參考圖5D中的散熱器,例 如该頂部散熱器504可為一導熱材料之通常為平面的板’ 其至少將其上方表面之更為中心的區域暴露到周遭,以更 有效率地將熱帶離該MPM。例如該頂部散熱器可為一金屬 板(例如銅)。但是,此處該頂部散熱器5〇4係使用一黏著劑 固疋到忒上方封裝包覆1〇17之上表面1〇19。該黏著劑可為 -導熱黏著劑、以提供改良的散熱作用。通常在該頂部封 裝模製已經至少部份固化之後,該頂部散熱器即固定到該 155479.doc -64- 201131731 Z封裝模製’但其係在該模製材料對於該ΜΡΜ包覆1107 射出:前。該頂部散熱器之周圍可以包覆該觀模製材料 μ散熱㈣504的周圍提供有-階梯狀的凹入特徵505 化=許較佳的結構之機械性整合度,而較不會與該模製 化合物脫離。 做為另—種選擇,如在圖&quot;中的Mm可以具有一簡單平 其不具有支禮部件,其並不附著⑽頂部封裝 、.#的上表面。在廷些具體實施例中,該頂部散熱器可為 熱材料之通常為平面的板,例如像是一金屬片(例如 銅)+’及至少將該平面散熱器之上表面的更為中心區域係 ,路到周遭來更有效率地將熱帶離該。此處,在該簡 早平面散熱器之下表面與該LGA模製1017之上表面1019之 間的空間係填入一薄層的ΜΡΜ模製,且這種簡單的平面散 熱器可在該模製材料固化處理期間來固定於該ΜρΜ包覆 11〇7。這種未附著的簡單平面頂部散熱器之周圍可以包覆 有該ΜΡΜ模製材料,如同在圖5D中所附著的平面散熱器 ,並可在該周圍上提供一階梯狀的凹入特徵5〇5,以允許 與該結構的較佳機械整合度,i較不會與該模製化合物分 離0 如由前述所瞭解,在所有不同的方面中,本發明之特徵 在於做為堆疊的封裝之間的z互連方法之線接點。概言之 堆疊在一下方BGA上的所有LGA對於該等線接點必須小 於該BGA(在該x_y平面上至少一個尺寸)來允許在周圍處有 空間。该導線直徑通常層級在〇〇25 (〇〇5〇到 155479.doc -65- 201131731 的範圍)°到該lga基板邊緣之導線距離在許多具體實施 例中不同’但並不小於一導線直徑。該BGA及LGA之相對 尺寸主要係由其每個之最大晶粒尺寸所決定。該晶粒厚度 與模具蓋厚度主要係決定了有多少晶粒可堆疊在一個封裝 中。 用於製作在本發明中所使用之BGA封裝與LGA封裝的製 程係同時對於該線接點及該倒裝晶片型式的封裝在本產業 中已良好地建立。 BGA的測試已在本產業中良好地建立,且基本上藉由進 行接觸到該等焊球墊來完成。該等LGA可以用兩種方式之 一來測試,即藉由存取到該基板之LGA的下表面上的jlga 墊,其類似於在一BGA中的焊球墊;或藉由接近在該基板 之上表面上的z互連墊。該等完成的1^11&gt;]^裝配件可用測試 BGA相同的方式測試。 該MPM裝g己件處理對於根據本發明不同方面的組態皆類 似。概言之,該處理包括以下步驟:提供包括一第一封裝 基板及至少一個晶粒附著到該第一封裝基板之第一模製封 裝、分配黏著劑到該第一模製封裝的上表面之上、放置包 括一第二封裝基板及至少一個晶粒之第二模製封裝,使得 在黏著期間該第二基板的下表面可接觸在該第一封裝之上 表面之上的黏著劑、並在該第一及第二基板之間形成z互 連。較佳地是’該等封裝可在組裝之前測試,其可丟棄不 滿足效能或可靠度需求之封裝,所以測試為「良好」之第 一封裝及第二封裝即用於該組裝的模組中。 155479.doc -66 - 201131731 圖12所示為例如圖5A或圖7中所示之多重封裝模組的組 裝處理之流程圖。在步驟1202中,其提供一球格栅陣列封 裝之未分離長條。在該球格栅陣列封裝上的晶粒及線接點 係由一模製保護。在該長條中的BGA封裝較佳地是在其進 行製程中的後續步驟之前進行效能及可靠度的測試(如圖 中*所不)。僅有識別為「良好」的封裝會接受後續處理。 在步驟1204中,黏著劑被分配在「良好」BGA封裝上該模 製的上表面之上。在步驟1206中,提供了分離的平台格柵 陣列封裝。該分離的LGA封裝係由—模製保護,且較佳地 疋被測5式(*) ’並識別為「良好」。在步驟i 中,進行一 檢選及放置作業,以放置「良好」的L(M封裝在該「良好 」GA封裝上的模製之上的黏著劑上。在步驟丨2丨〇中,該 黏著劑即被固化。在步驟1212中,在預備步驟i2i4時進行 電焚清洗作業,其中在該堆疊的頂部lga及底部BGA封 裝之間形成線接點z互連。在步驟1216中,可進行一額外 的電衆清洗,接著在步驟1218中形成該m 1⑽,該第二階互連焊球即附著到該模組之底側在;; 驟’該完成的模組即進行測試⑺,並由該長條分離 ’例如藉由鑛開分離或藉由沖孔分離,並被封裝來做進一 步使用。 圖13所示為_種例如示於圖6八中的一多重封裝模組之組 2㈣流程圖。在步驟_中,提供-球格栅陣列封裝 的未为離長條。在兮抹姑』 構卽*措制 &quot;4格柵陣列封裝上的晶粒及線接點結 稱即由一模製决仅上兹 '、濩。在該長條中的8(3八封裝較佳地是在 I55479.doc -67- 201131731 其採取製程中的後續步驟之前進行效能及可靠度的測試(如 圖中標示*者P僅有識別為「良好」的封裝會接受後續處 理。在步驟1304中,黏著劑被分配在「良好」BGa封裝上 該模製的上表面之上。在步驟13〇6中,提供了分離的平台 格柵陣列封裝。該分離的LGA封裝係由一周圍模製保護, 以保護該線接點,且較佳地是被測試⑺,並識別為「良好 」。在步驟1308中,進行一撿選及放置作業,以放置「声 好」的封裝在該「良好」BGA封裝上的模製之上㈣ 著劑上。在步驟1310中,該黏著劑即被固化。在步驟UK 中,在預備步驟13 14時進行一電衆清洗作業,《中在該堆 疊的頂部LGA及底部BGA封裝之間形成線接點z互連。在 步驟!316中’可進行—額外的電歸洗,接著在步驟⑽ I形成該顧模製。在步驟132〇中,第二階互連焊球即附 著到該模組之底側。在步驟助中,該完成的模組即進行 測試(*),並由該長條分離,例如藉由鑛開分離或藉由沖孔 分離,並被封裝來做進—步使用。 圖MA所示為一種例如示於圓从中的一多重封裝模组之 組裝製程的流程圖。在步驟⑽中,提供一球格拇陣列封 裝的未分離長條。該等BGA封裝具有固定於該晶粒之上的 遮蔽Θ等遮蔽可保護在該球格柵陣列封裝上的晶粒及線 接點結構’因此不需要封裝模製。在該長條中的BGA封裝 =佳地是在其進行製程中的後續步驟之前進行效能及可靠 度的測試(如圖中以*指示)。僅有識別為 接受後續處理。在步驟ί4Π4Λ 的才裝會 艾驟1404中,黏著劑被分配在「良好」 155479.doc -68 - 201131731 BGA封裝上之遮蔽的上表面之上。在步驟1撕中,提供分 離的平台格柵陣列封震。該分離的LGA封裝係由-模製保 護,且較佳地是被測試⑺,並識別為「良好」。在㈣ 1408中,進打一撿選及放置作業’以放置「良好」的[Μ 封裝在該「良好」BGA封裝上的模製之上的黏著劑上。在 步驟1410中’固化該黏著劑。在步驟1412中,在預備步驟 1414時進行一電漿清洗作業,其中在該堆疊的頂部及 底4 BGA封裝之間形成線接點z互連。在步驟1416中,進 行額外的電漿清洗,接著在步驟1418中形成該MPM模製 。在步驟剛中,進行一去光作業,以分解及移除不想要 的有機物質。該去光係由雷射進行、或可藉由化學或電浆 清洗。在步驟1422中,第二階互連焊球可附著到該模組之 底側在步驟1424中,該完成的模組即進行測試(*),並由 該長條分離,例如藉由鋸開分離或藉由沖孔分離,並被封 裝來做進一步使用。 圖14B所示為一種例如示於圖8B中的一多重封裝模組之 組裝製程的流程圖。此處理係類似於圖丨4 A中所示,其具 有額外的步驟插入在安裝該散熱器之前,進行一「落入」 模具作業。在該製程中類似的步驟係由圖中類似的參考編 號來識別。在步驟1402中,提供一球格栅陣列封裝之未分 離的長條。該等BGA封裝具有固定於該晶粒之上的遮蔽。 該等遮蔽保護了在該球格柵陣列封裝上的該晶粒及線接點 結構,因此不需要封裝模製。在該長條中的BGA封裝較佳 地是在其採取製程中的後續步驟之前進行效能及可靠度的 155479.doc •69· 201131731 測4(如圓中標示*者)。僅有識別為「良好」的封 後續處理。在步驟“… 4請」的封裝會接受 在步驟1404中,黏著劑被分配在 封裝上該遮蔽的上表 」 的平^ 在步驟1406中,提供了分離 的千。格栅陣列封裝。該分 ,且敕㈣&quot; ㈣LGA封裝係由-模製保護 中疋被測試⑺,並識別為「良好」。在步驟刚 在該「=好檢選及放置作業’以放置「良好」的心封裝 14/πφ \」BGA封裝上的遮蔽之上的#著劑上。在步驟 ’該黏著劑即被固化。在步驟1412中,在預備步驟 7時進行一電浆清洗作業,其中在該堆疊的頂部LGA及 部BGA封裝之間形成線接點z互連。在步驟1416中’可 進行-額外的電漿清洗。在步驟1415中,—散熱器被落入 到一模穴模製裝置中的每個模穴中。在步驟1417中,來自 步驟1416之清洗封裝堆疊即落入在該散熱器之上的模穴。 在步驟1419中,-包覆材料被射入該模穴中,並固化來形 成該MPM模製。在步驟1421中,可進行一去光作業,以分 解及移除不想要的有機物質。該去光係由雷射進行、或可 藉由化學或電聚清洗。在步驟1422中,第二階互連焊球可 附著到該模組之底側。在步驟1424中,該完成的模組即進 打測試(*)’並由該長條分離,例如藉由鑛開分離或藉由沖 孔分離’並被封裝來做進一步使用。 圖14C所示為一種例如示於圖8C中的一多重封裝模組之 組裝製程的流程圖。此處理係類似於圖丨4 A中所示,其在 文裝一平面散熱器則插入了附著到該頂部封裝之額外的步 驟。在該處理中類似的步驟係由圖面甲類似的參考編號來 155479.doc -70- 201131731 識別。在步驟1402中,提供一球格栅陣列之未分離的長條 °該等BGA封裝具有㈣於該晶粒之上的遮蔽。該等遮蔽 可保護在該球格柵陣列封裝上的晶粒及線接點結構,因此 不需要封裝模製。在該長條令的BGA封裝較佳地是在其進 灯製程中的後續步驟之前進行效能及可靠度的測試(如圖 中所不)。僅有識別為「良好」的封裝會接受後續處理。 在步驟14G4巾,黏著劑被分配在「良好」BGA封裝上該遮 蔽的上表面之上。在步驟14〇6中,提供了分離的平台格拇 陣列封裝。該會離的LGA封裝係由一模製保護,且較佳地 是被測4 (*)’並識別$「良好」。在步驟^彻中,進行一 撿選及放置作業’以放置「良好J的LGA封裝在該「良好 」BGA封裝上的遮蔽之上的霉占著劑上。好驟i4i〇中,固 化該黏著劑。在步驟1412中,在預備步驟1414前進行一電 漿清洗作業,其中在該堆疊的頂部lga及底部bga封裝之 間形成線接點z互連,然後進行—額外的電漿清洗。在步 驟1431中,分配黏著劑到該頂部LGa封裝模製的上表面之 上,且在步驟1433中,進行一撿選及放置作業,以放置一 平面散熱器到該頂部封裝模製的黏著劑之上。在步驟1435 中,該黏著劑即被固化。在步驟1416,進行額外的電漿清 洗,且在步驟〗418中,形成該MPM模製。在步驟142〇中, 可進行一去光作業’以分解及移除不想要的有機物質。該 去光可由#射或化學及電製清洗來進行。在步驟1422令, 第二階互連焊球可附著到該模組之底侧。在步驟1424中, 該完成的模組即進行測試(*)’並由該長條分離,例如藉由 155479.doc 71 201131731 鋸開分離或藉由沖孔分離,並被封裝來做進一步使用。 圖15所不為例如在圖9A中所示之一多重封裝模組的組裝 處理之流程圖。在步驟1502中,提供—下晶粒倒裝晶片球 格柵陣列底部封裝的一未分離的長條。該BGA封裝可以具 有模製,也可不具有,並可以不具有第二階互連焊球。在 該長條中的BGA封裝較佳地是在其進行製程中的後續步驟 之則進行效能及可靠度的測試(如圖中*所示)。僅有識別為 「良好」的封裝會接受後續處理。在步驟15〇4中,黏著劑 被分配在「良好」BGA封裝上該晶粒的上表面(背側)之上 。在步驟1506中,提供了分離的平台格柵陣列封裝。該分 離的LGA封裝係由一模製保護,且較佳地是被測試⑺,並 識別為「良好」。在步驟丨駕中,進行—撿選及放置作業 ,以放置「良好」的LGA封裝在該「良好」bga封裝上的 晶粒之上的黏著劑上。在步驟151〇中,該黏著劑即被固化 。在步驟1512中,在預備步驟1514時進行一電漿清洗作業 ,其中在該堆疊的頂部LGA及底部BGA封裝之間形成線接 I互連4步驟1516中,可進行—額外的電衆清洗,接 著在步驟1518中形成該MPM模製。在步驟152〇中,第二階 互連焊球即附著到該模組之底側。在步驟〗522中,該完成 的模組即進行測試(*),並由該長條分離,例如藉由錯開分 離或藉由沖孔分離,並被封裝來做進—步使用。 圖16所示為例如圖9B所示之多封裝模組之組裝處理的流 程圖。此處理係類似於圖15所示’其有一額外的步驟插入 在安裝該遮蔽在該底部封裝倒裝晶片晶粒之上。在該製程 155479.doc •72· 201131731 中類似的步驟係、由圖中類似的參考編號來識別。在步驟 1602中,提供一下晶粒倒裝晶片球格柵陣列底部封裝之未 分離的長條。該BGA封裝可以具有模製,也可不具有,並 、八有第一卩0互連焊球。在該長條卡的B G A封裝較佳 地是在其進行製程中的後續步驟之前進行效能及可靠度的 測試(如圖中的*所示)。僅有識職「良好」㈣農會接受 後續處理。在步驟! 6〇3中,該電遮蔽係固定於「良好」底 部B「GA封裝上的晶粒之上。在步驟_中,黏著劑被分配 在f好」BGA封裝上該遮蔽的上表面之上。在步驟Μ% 中,提供了分離的平台格柵陣列封裝。該分離的lga封裝 係由-模製保護’且較佳地是被測試(*),並識別為「良好 」。在步驟16〇8中,進行—撿選及放置作業,以放置「良 =」的LGA封裝在該「良好」BGA封裝上的遮蔽之上的黏 者劑上。在步驟1610中,該黏著劑即被固化。在步驟i6i2 中’在預備步驟1614時進行—電漿清洗作業,其中在該堆 疊的頂部LGA及底部BGA封裝之間形成線接點z互連。在 步驟1616中,可進行—額外的電聚清洗’接著在步驟1618 中形成該MPM模製。在步驟162()中,第二階互連焊球即附 著到該模組之底側。在步驟1622中,該完成的模組即進行 測試(*)’並由該料分離,例如藉由㈣分 分離,並被封裝來做進—步使用。 圖17所不為例如在圖1〇A或圖10B中所示之-多重封裝 模!且的组裝處理之流程圚。在步驟⑽中,提供一上晶粒 倒裝晶片球格柵陣列底部封袈的一未分離的長條。該倒裝 155479.doc •73- 201131731 晶片互連係由該晶粒與該底部基板之晶粒附著表面之間的 一側填滿或模製來保護,所以不需要覆蓋模製。在該長條 中的BGA封裝較佳地是在其進行製程中的後續步驟之前進 行效能及可靠度的測試(如圖中的*所示)。僅有識別為「良 好」的封裝會接受後續處理。在步驟17〇4中’黏著劑被分 配到「良好」BGA封裝上該基板的上表面之上。在步驟 1706中,提供分離的第二封裝’其可為堆疊的晶粒封裝, 例如在圖1〇八及1〇8中所示。該分離的第二封裝係由一模 製來保護’較佳地是被測試(*),並識別為「良好」。在步 驟1708中,進行一撿選及放置作業,以放置「良好」的封 裝在該「良好」BGA封裝上基板之上的黏著劑上。在步驟 1710中,該黏著劑即固化。在步驟1712中,在預備步驟 1714時進行一電漿清洗作業,其中在該堆疊的頂部(堆疊的 曰曰粒)與底部上晶粒倒裝晶片BGA封裝之間形成線接點z互 連。在步驟1716中’可進行一額外的電漿清洗,接著在步 驟1718中形成該MPM模製。在步驟172〇中,第二階互連焊 球即附著到該模組之底側。在步驟1722中,該完成的模組 即進行測試(*),並由該長條分離,例如藉由鋸開分離或藉 由沖孔分離,並被封裝來做進一步使用。 圖18所不為例如圖丨丨中所示之多重封裝模組之組裝處理 的流程圖。在步驟1802中,提供一堆疊的晶粒球格柵陣列 封裝之未分離的長條。該堆疊的晶粒BGA封裝即被模製, 並提供上方封裝表面。在該長條中的BGA封裝較佳地是 在其進行製程中的後續步驟之前進行效能及可靠度的測試 155479.doc •74- 201131731 (如圖中*所示)。僅有識別為「良好 理。在步驟蘭中,黏著劑被分配在「广會接-谈續處 離的第二封,:=:二。在步驟_,提供分 一㈣其了為堆疊的晶粒封裝,例如在圖 ^心離的第二封裝可由—模製保護,且較佳地是進二 L ()’並識別為「良好」。在步驟18〇8中,進行= 及放置作業’以放置「良好」的第二封裝在該「良好 BGA封裝上的基板之上的黏著劑上。在步驟⑻〇中, 著劑即被固化。在步驟1812中,在預備步驟1814時進:― 電聚清洗作業,其中在該堆疊的頂部(堆疊晶粒)及底部上 晶粒倒裝晶片BGA封裝之間形成線接點z互連。在步驟 1816中,可進行一額外的電漿清洗,接著在步驟1818中形 成該MPM模製。在步驟卿中,第二階互連焊球即附著到 =模組之底側。在步驟助中,該完成的模組即進行測試 ()並由該長條刀離,例如藉由鑛開分離或藉由沖孔分離 ’並被封裝來做進一步使用。 如下所述可進行根據本發明之製程中許多步驟之個別 步驟’其係根據此處所述的方法,使用了實質上為習用的 技術,但如此處所述’利用直接修正的習用製造設施。這 些習用技術之變化’以及習用製造設備的修正,其可在使 用此處所描述的方法來完成’並不需要再經過實驗。 其它的具體實施例皆在以下的申請專利範圍中陳述。 【圖式簡單說明] 圖1所不為通過一習用球格柵陣列半導體封裝之截面 155479.doc -75- 201131731 圖; 圖2所示為通過在堆疊的球格柵陣列半導體封裝之間具 有焊球z互連之習用多重封裝模組之截面圖; 圖3所示為通過在堆疊的倒裝晶片半導體封裝之間具有 焊球z互連之習用倒裝晶片多重封裝模組之截面圖; 圖4所示為通過在堆疊的半導體封裝之間具有一彎折可 撓基板與焊球z互連之習用多重封裝模組之截面圖; 圖5 A所示為通過根據本發明一方面在堆疊的bga與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之具 體實施例的截面圖; 圖5 B所示為在適用於圖5 a所示之本發明具體實施例中 的配置之具有z互連接點墊之底部BGA基板的平面圖; 圖5C所示為在適用於圖5A所示之本發明具體實施例中 的配置之具有z互連接點墊之頂部LGA基板的平面圖; 圖5D所示為通過根據本發明一方面之在堆疊的bga與 LGA半導體封裝之間具有線接點z互連之多重封裝模組之 具體貫施例的截面圖,其並具有固定於一該頂部封裝的上 表面之散熱器; 圖5E所示為在堆疊的BGA與LGA半導體封裝之間具有線 接點z互連的一多重封裝模組之具體實施例的截面圖且根 據本發明另一方面具有一散熱器; 圖6A所示為通過根據本發明一方面在堆疊的BGA與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中該頂部封裝具有周圍模製; 155479.doc -76- 201131731 圖6B所示為通過根據本發明—方面在堆疊的驗與lga 半導體封裝之間具有線接點z互連的—多重封裝模組之另 一具體實施例的截面圖,其t該頂部封裝具有周圍模製, 且該模組具有一散熱器; 圖7所示為通過根據本發明—方面在堆疊的bga與 半導體封裝之間具有線接點z互連的一多重封裝模組之另 -具體實施例的截面圖’其中該頂部封裝基板具有一金屬 層基板; 圖8A所示為通過根據本發明另外—方面在堆疊的bga與 LGA半導體封裝之間具有線接點2互連的一多重封裝模組 之-具體實施例的截面圖,纟中在底部封裝上提供一電遮 蔽; 圖8B所示為通過根據本發明一方面在堆疊的bga與 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中在該底部封裝之上提供一電 遮蔽,且該模組具有一散熱器; 圖8C所示為通過根據本發明一方面在堆疊的BGA與 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中在該底部封裝之上提供一電 遮蔽’且該模組具有固定於該頂部封裝的一上表面之散熱 3S ♦ 益, 圖9 A所示為通過根據本發明另外一方面在堆疊的倒裝晶 片BGA(下晶粒)與LGA半導體封裝之間具有線接點z互連的 一多重封裝模組之截面圖; 155479.doc -77· 201131731 圖9B所示為通過根據本發明另外一方面在堆疊的倒裝晶 片BGA(下晶粒)與LGA半導體封裝之間具有線接點z互連的 一多重封裝模組之截面圖,其中在該底部封裝上提供一電 遮蔽; 圖9C所示為通過根據本發明另外—方面在堆疊的倒裝晶 片BGA(下晶粒)與LGA半導體封裝之間具有線接點z互連的 一多重封裝模組之截面圖,其中在該底部封裝上提供一電 遮蔽’且該模組具有一散熱器; 圖10A所示為通過根據本發明另外一方面在堆疊的倒裝 晶片BGA(上晶粒)與堆疊的晶粒LGA半導體封裴之間具有 線接點z互連的一多重封裝模組之截面圖,其中在該第二 封裝中相鄰堆疊的晶粒係由一間隔器所分離; 圖10B所不為通過根據本發明另外一方面在堆疊的倒裝 晶片B G A (上晶粒)與堆疊的晶粒L G A半導體封裝之間具有 線接點z互連的一多重封裝模組之截面圖,其中在該第二 封裝中相鄰堆疊的晶粒具有不同的尺寸; 圖10C所示為通過根據本發明另外—方面在堆疊的倒裝 晶片BGA(上晶粒)與堆疊的晶粒LGA半導體封裝之間具有 線接點z互連的-多重封裝模組之截面圖,且其中在該底 部封裝上提供一電遮蔽; 一 圖騰所示為通過根據本發明另外—方面在堆疊的倒裝 晶片BGA(上晶粒)與堆叠的晶粒LGA半導體封裝之間具有 線接點z互連的一多重封裝模組之截面圖,且其中在該底 部封裝上提供-電遮蔽’並具有固定於該頂部封裳的上表 355479.doc -78- 201131731 面之一散熱器; 圖10E所示為通過根據本發明另外一方而产协声 十《 π力万面在堆疊的倒裝 晶片BGA(上晶粒)與堆疊的晶粒LGA半導體封裴之間具有 線接點z互連的一多重封裝模組之截面圖,其中在該底部 封裝上提供一電遮蔽,並具有根據本發明另一方面而具有 一散熱器; 圖11所示為通過根據本發明另外一方面在堆疊BGA(堆 疊晶粒)與LGA(堆疊晶粒)半導體封裝之間具有線接點2互 連的一多重封裝模組之截面圖; 圓12所示為一種例如示於圖5A或圖7 組之組裝製程的流程圖; 裝模 圖13所示為一種例如示於圖6八中的一多重封裝模組之組 裝製程的流程圖; 圖14A所不為一種例如示於圖8A中的一多重封裝模組之 組裝製程的流程圖; 圖14B所示為一種例如示於圖8B中的一多重封裝模組之 組裝製程的流程圖; 圖14C所示為一種例如示於圖8C中的一多重封裝模組之 組裝製程的流程圖; 圖15所示為一種例如示於圖9A中的一多重封裝模組之組 裝製程的流程圖; 圖16所示為一種例如示於圖9B中的一多重封裝模組之组 裝製程的流程圖; 圖17所示為一種例如示於圖1〇A或圖1〇B中的一多重封 155479.doc 79- 201131731 裝模組之組裝製程的流程圖;及 圖1 8所示為一種例如示於圖11中的一多重封裝模組之組 裝製程的流程圖。 【主要元件符號說明】 10 MPM底部封裝 12、 22 基板 13 ' 23 晶粒附著環氧化物 14、 24 &gt; • 34、 • 44 晶粒 16、 26 線接點 17、 27、 .47 模製化合物 18 ' 28、 ‘38、 '48 焊球 20 堆疊MPM 30 2-堆疊倒裝晶片MPM 33 聚合物側填滿 35 通孔 36 凸塊 40 2-堆疊彎曲可撓基板MPM 42 金屬層底部封裝基板 43 黏著劑 46 懸臂樑 50 &gt; 52、 60、 70、84 多重封裝模組 54、 62、 •82、 94 BGA+LGA多重封裝模組 155479.doc -80- 201131731 90 、 92 、 101 、 103 多重封裝模組 105、107、109、110 多重封裝模組 121 、 123 金屬層 122 &gt; 142 通孔 125 、 127 、 147 焊罩 141 第一金屬層 143 第二金屬層 221 &gt; 223 金屬層 222 通孔 225 ' 227 焊罩 300 底部封裝 302 底部BGA封裝 304 遮蔽 305 側壁 306 線 312 底部封裝基板 314 晶粒 315 ' 327 焊罩 316 倒裝晶片凸塊 318 焊球 321 &gt; 323 金屬層 322 通孔 155479.doc -81 - 201131731 155479.doc 331 金屬層 332 基板 333 聚合物側填滿 334 晶粒 335 通孔 336 凸塊 338 z互連焊球 342 BGA基板 343 互連凸塊 344 晶粒 346 倒裝晶片凸塊 348 第二階互連焊球 351 金屬層 353 圖案化金屬層 354 、 356 介電層 355 金屬層 400 底部封裝 401 空隙 402 底部球格柵陣列(BGA)封裝 406 散熱器/遮蔽 407 側壁 408 線 )C -82- 201131731 412 底部封裝基板 413 晶粒附著環氧化物 414 晶粒 415 、 427 烊罩 416 線接點 417 模製化合物 418 焊球 419 底部封裝上表面 421 ' 423 金屬層 422 通孔 424 底部封裝z互連墊 425 上表面 426 上表面 442 底部封裝基板 443 黏著劑 444 ' 454 晶粒 446 、 456 線接點 447 模製化合物 448 焊球 451 、 453 金屬層 452 通孔 455 ' 457 焊罩 -83 - 155479.doc 201131731 500 頂部封裝 501 空隙 503 ' 506 黏著劑 505 ' 545 凹入特徵 507 模組包覆 511 軌跡 512 頂部封裝基板 513 晶粒附著環氧化物 514 晶粒 515 焊罩 516 線接點 517 模製化合物 518 線接點 519 上表面 521 金屬層 522 通孔 523 金屬層 524 頂部封裝z互連墊 525 上表面 526 邊緣 527 焊罩 544 、 504 散熱器 155479.doc -84- 201131731 546 支撐部件 600 頂部封裝 607 模組包覆 612 頂部封裝基板 613 晶粒附著環氧化物 614 晶粒 615 焊罩 616 線接點 617 模製化合物 618 線接點 621 金屬層 622 通孔 623 金屬層 627 焊罩 644 散熱器 645 凹入特徵 646 支撐部件 700 頂部封裝 707 模組包覆 712 頂部封裝基板 713 晶粒附著環氧化物 714 晶粒 155479.doc -85- 201131731 715 焊罩 716 線接點 717 模製化合物 718 線接點 719 表面 721 金屬層 800 頂部平台格柵陣列(LGA)封裝 803 黏著劑 804 散熱器 805 凹入特徵 806 支撐部件 807 模組包覆 812 頂部封裝基板 813 晶粒附著環氧化物 814 晶粒 815 、 827 焊罩 817 模製化合物 818 、 816 線接點 819 上表面 821 金屬層 822 通孔 823 金屬層 155479.doc • 86 - 201131731 844 散熱器 845 凹入特徵 846 黏著劑 847 包覆 900 頂部LGA封裝 903 黏著劑 907 模組包覆 908 線 909 側壁 912 頂部封裝基板 913 晶粒附著環氧化物 914 晶粒 915 焊罩 917 模製化合物 918 、 916 線接點 919 表面 921 金屬層 944 散熱器 945 凹入特徵 946 支撐部件 1000 晶粒平台格柵陣列封裝 1003 、 1006 黏著劑 155479.doc • 87 - 201131731 1004 散熱器 1005 凹入特徵 1007 模組包覆 1011 跡線 1012 介電層 1013 黏著劑 1014 晶粒 1015 間隔器 1017 模製材料 1018 、 1016 、 1026 線接點 1019 上表面 1024 晶粒 1030 頂部封裝 1031 跡線 1033 黏著劑 1034 晶粒 1035 黏著劑 1036 線接點 1037 模製材料 1039 上表面 1044 晶粒 1045 凹入特徵 155479.doc -88- 201131731 1046 線接點 1103 黏著劑 1107 模製 1118 線接點 155479.doc -89-There are more areas of appeal in the upper surface to expose the upper surface of the MPM to the surrounding environment to more effectively remove the tropics from the MPM. For example, the top heat sink can be a sheet of metal (e.g., a steel sheet) that can be secured to the river during the curing process of the molding material. ]^Coated. Alternatively, the heat sink can have a generally planar portion over the upper package, and a portion of the perimeter of the perimeter or a support member disposed on or adjacent to the bottom package substrate. The top heat sink shown by the examples of Figures 5D and 5E can also be applied to a top MpM heat sink in a package with a -stacked die bottom package. (Or have stacked die bottom and top packages) 155479. Doc-63 - 201131731 For example, referring to the MPM structure of FIG. 2 and the heat sink in the figure, the top heat sink is formed of a thermally conductive material having a generally planar central portion 544 positioned above the top package. And a surrounding support member 546 that extends to the upper surface of the bottom package substrate 442. The surface of the planar portion 5 is attached to the upper surface of the MPM to be exposed to the surroundings to efficiently discharge the tropical MPM. For example, the top heat sink can be formed from a sheet of metal, such as copper, such as by stamping. The support members 546 can be secured to the upper surface of the bottom package substrate using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 11 ’ 7 and the heat sink support member is embedded in the MPM cladding 11 〇 7 during the molding material curing process. A stepped recessed feature 545 is provided around the planar upper portion 544 of the heat sink to allow for better mechanical integration of the structure without being detached from the molding compound. In this embodiment, the space between the lower surface of the heat sink 544 and the top surface ι 9 of the top package molding 1 〇 17 is filled into the MPM molded thin layer. Additionally, a top heat sink can be attached to the top surface of the top package molding. Referring to the MPM structure of FIG. 5A, and referring to the heat sink of FIG. 5D, for example, the top heat sink 504 can be a generally planar plate of a thermally conductive material that exposes at least a more central region of its upper surface to the periphery. To more effectively remove the tropics from the MPM. For example, the top heat sink can be a metal plate (e.g., copper). However, here, the top heat sink 5〇4 is fixed to the upper surface 1〇19 of the upper package by an adhesive using an adhesive. The adhesive can be a thermally conductive adhesive to provide improved heat dissipation. Typically, the top heat sink is attached to the 155479 after the top package molding has been at least partially cured. Doc -64- 201131731 Z package molding 'but it is before the molding material is shot for the enamel cladding 1107: before. The periphery of the top heat sink may be coated with the molding material. The heat dissipation (four) 504 is provided with a stepped concave feature 505 = a mechanically integrated degree of the preferred structure, and less than the molding. The compound is detached. As an alternative, as in the figure, Mm can have a simple flat and does not have a binding component, which does not attach (10) the top package. The upper surface of #. In some embodiments, the top heat sink can be a generally planar plate of thermal material, such as, for example, a metal sheet (eg, copper) + 'and at least a more central region of the upper surface of the planar heat sink. Department, the road to the surrounding to more effectively remove the tropics. Here, the space between the lower surface of the simple planar heat sink and the upper surface 1019 of the LGA molding 1017 is filled with a thin layer of tantalum molding, and the simple planar heat sink can be used in the mold. The material is fixed to the ΜρΜ cladding 11〇7 during the curing process of the material. The periphery of the unattached, simple planar top heat sink may be coated with the tantalum molding material, as in the planar heat sink attached in Figure 5D, and may provide a stepped recessed feature on the periphery. 5, to allow for better mechanical integration with the structure, i is less separated from the molding compound. As understood from the foregoing, in all of the different aspects, the invention is characterized as being between stacked packages. The line junction of the z interconnect method. In summary, all LGAs stacked on a lower BGA must have less than the BGA (at least one dimension on the x_y plane) for the line contacts to allow space around. The wire diameter is usually at the level of 〇〇25 (〇〇5〇 to 155479. The range of doc-65-201131731) the distance to the edge of the lga substrate is different in many embodiments, but not less than a wire diameter. The relative sizes of the BGA and LGA are primarily determined by the maximum grain size of each. The thickness of the die and the thickness of the mold cover primarily determine how many grains can be stacked in one package. The process for fabricating the BGA package and the LGA package used in the present invention has been well established in the industry for both the wire contact and the flip chip type package. BGA testing has been well established in the industry and is basically accomplished by making contact with such solder ball pads. The LGAs can be tested in one of two ways, namely by accessing a jlga pad on the lower surface of the LGA of the substrate, similar to a solder ball pad in a BGA; or by accessing the substrate The z interconnect pads on the upper surface. These completed 1^11&gt;]^ assemblies can be tested in the same way as the test BGA. The MPM assembly process is similar for configurations in accordance with various aspects of the present invention. In summary, the processing includes the following steps: providing a first molding package including a first package substrate and at least one die attached to the first package substrate, and dispensing an adhesive to an upper surface of the first molding package Depositing a second molded package including a second package substrate and at least one die such that the lower surface of the second substrate can contact the adhesive on the upper surface of the first package during bonding, and A z-interconnect is formed between the first and second substrates. Preferably, the packages can be tested prior to assembly, which can discard packages that do not meet performance or reliability requirements, so the first package and the second package that are tested as "good" are used in the module for assembly. . 155479. Doc-66 - 201131731 Figure 12 is a flow chart showing the assembly process of the multi-package module shown in Figure 5A or Figure 7, for example. In step 1202, it provides an undivided strip of ball grid array package. The die and wire contacts on the ball grid array package are protected by a mold. The BGA package in the strip is preferably tested for performance and reliability prior to subsequent steps in the process (as shown in the figure). Only packages identified as "good" will be processed. In step 1204, the adhesive is dispensed over the molded upper surface of the "good" BGA package. In step 1206, a separate platform grid array package is provided. The separate LGA package is protected by -molding, and is preferably tested as (")" and identified as "good". In step i, a check and placement operation is performed to place a "good" L (M packaged on the adhesive over the molding of the "good" GA package. In step 丨〇2, the The adhesive is cured. In step 1212, an electric incineration cleaning operation is performed during preliminary step i2i4, wherein a wire contact z interconnection is formed between the top 1ga of the stack and the bottom BGA package. In step 1216, An additional power cleaning, then forming the m 1 (10) in step 1218, the second-order interconnect solder ball is attached to the bottom side of the module;; the completed module is tested (7), and Separating from the strip 'for example by separation or by punching, and being packaged for further use. Figure 13 shows a group of multiple package modules such as shown in Figure 68. 2 (4) Flowchart. In step _, provide the ball grid array package is not a strip. In the 兮 姑 』 措 措 措 措 措 措 措 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 That is, by a mold only on the ', 濩. 8 in the strip (3 eight package is preferably in I55479. Doc -67- 201131731 The performance and reliability test is performed before the subsequent steps in the process (the package marked as *good in the figure shown in the figure will be subjected to subsequent processing. In step 1304, the adhesive is Distributed over the molded upper surface on a "good" BGa package. In step 13A6, a separate platform grid array package is provided. The separate LGA package is protected by a perimeter molding to protect the The line contact, and preferably the test (7), is identified as "good." In step 1308, a selection and placement operation is performed to place the "sound" package on the "good" BGA package. Molding over (4) the agent. In step 1310, the adhesive is cured. In step UK, a cleaning operation is performed in the preliminary step 13 14 , "the top LGA and the bottom BGA in the stack" Wire contacts z interconnections are formed between the packages. In step !316, 'may be performed - additional electrical backwashing, followed by forming the mold in step (10) I. In step 132, second order interconnect solder balls That is attached to the bottom side of the module. The completed module is tested (*) and separated by the strip, for example by separation or by punching, and packaged for further use. Figure MA shows an example A flow chart of an assembly process of a multi-package module shown in the circle. In step (10), an undivided strip of a ball matrix package is provided. The BGA packages have a shadow fixed on the die. The mask can protect the die and wire contact structure on the ball grid array package. Therefore, no package molding is required. The BGA package in the strip is preferably before the subsequent steps in the process. Tests for performance and reliability (indicated by * in the figure). Only identified as accepting follow-up processing. In step 404, the adhesive is assigned to "good" 155479. Doc -68 - 201131731 Above the upper surface of the shield on the BGA package. In the tearing of step 1, a separate platform grid array is provided to seal the shock. The separate LGA package is protected by -molding and is preferably tested (7) and identified as "good". In (4) 1408, a selection and placement operation is performed to place a "good" [Μ" adhesive over the molding packaged on the "good" BGA package. The adhesive is cured in step 1410. In step 1412, a plasma cleaning operation is performed during preliminary step 1414, wherein a wire contact z interconnect is formed between the top and bottom BGA packages of the stack. In step 1416, additional plasma cleaning is performed, followed by formation of the MPM molding in step 1418. In the first step, a light removal operation is performed to decompose and remove unwanted organic matter. The light removal system is performed by laser or may be cleaned by chemical or plasma. In step 1422, a second-order interconnect solder ball can be attached to the bottom side of the module. In step 1424, the completed module is tested (*) and separated by the strip, for example by sawing. Separated or separated by punching and packaged for further use. Figure 14B is a flow chart showing an assembly process of a multi-package module such as that shown in Figure 8B. This process is similar to that shown in Figure 4A, with an additional step of inserting a "drop-in" mold operation prior to installation of the heat sink. Similar steps in the process are identified by similar reference numerals in the figure. In step 1402, an undivided strip of a ball grid array package is provided. The BGA packages have a shield that is fixed over the die. The masks protect the die and wire contact structures on the ball grid array package and therefore do not require package molding. The BGA package in the strip is preferably 155479 before it takes the next step in the process. Doc •69· 201131731 Test 4 (as indicated by the circle in the circle). Only follow-up processing identified as "good". The package at step "...4" will accept that in step 1404, the adhesive is dispensed onto the package on the top of the mask. In step 1406, a separate thousand is provided. Grid array package. This point, and 敕 (4) &quot; (d) LGA package is protected by the - mold protection (7), and identified as "good." In the step "= good check and placement operation", place the "good" core on the 14/πφ \"BGA package on the mask on the #agent. In the step 'the adhesive is cured. In step 1412, a plasma cleaning operation is performed during preliminary step 7, wherein a line junction z interconnection is formed between the top LGA of the stack and the portion of the BGA package. In step 1416, an additional plasma cleaning can be performed. In step 1415, the heat sink is dropped into each of the cavities in a cavity molding apparatus. In step 1417, the cleaning package stack from step 1416 falls into the cavity above the heat sink. In step 1419, a cladding material is injected into the cavity and cured to form the MPM molding. In step 1421, a light removal operation can be performed to decompose and remove unwanted organic matter. The light removal system is performed by laser or can be cleaned by chemical or electropolymerization. In step 1422, a second order interconnect solder ball can be attached to the bottom side of the module. In step 1424, the completed module is tested (*)&apos; and separated by the strip, e.g., by splitting or by punching&apos; and packaged for further use. Figure 14C is a flow chart showing an assembly process of a multi-package module such as that shown in Figure 8C. This process is similar to that shown in Figure 4A, where an additional step of attaching to the top package is inserted in the document. Similar steps in this process are given by reference numbers like Figure 155479. Doc -70- 201131731 Identification. In step 1402, an undivided strip of a ball grid array is provided. The BGA packages have (iv) a shadow over the die. These masks protect the die and wire contact structures on the ball grid array package and therefore do not require package molding. The BGA package of the strip is preferably tested for performance and reliability prior to subsequent steps in the lamp manufacturing process (not shown). Only packages identified as "good" will be processed. At step 14G4, the adhesive is dispensed over the masked upper surface of the "good" BGA package. In step 14〇6, a separate platform grid array package is provided. The off-the-shelf LGA package is protected by a molding, and is preferably 4 (*)' tested and identifies "good". In step ^, a selection and placement operation is performed to place the "good J LGA package" on the mold on the mask of the "good" BGA package. In the first step i4i, the adhesive is cured. In step 1412, a plasma cleaning operation is performed prior to the preliminary step 1414, wherein a wire contact z interconnection is formed between the top 1ga and bottom bga packages of the stack, followed by an additional plasma cleaning. In step 1431, an adhesive is dispensed onto the upper surface of the top LGA package molding, and in step 1433, a selection and placement operation is performed to place a planar heat sink to the top package molded adhesive. Above. In step 1435, the adhesive is cured. At step 1416, additional plasma cleaning is performed, and in step 418, the MPM molding is formed. In step 142, a light removal operation can be performed to decompose and remove unwanted organic matter. The de-lighting can be carried out by #射 or chemical and electrical cleaning. At step 1422, the second-order interconnect solder balls can be attached to the bottom side of the module. In step 1424, the completed module is tested (*)' and separated by the strip, for example by 155479. Doc 71 201131731 The saw is separated or separated by punching and packaged for further use. Figure 15 is a flow chart showing the assembly process of a multi-package module such as that shown in Figure 9A. In step 1502, an undivided strip of the bottom package of the lower die wafer wafer grid array is provided. The BGA package may or may not have and may not have a second order interconnect ball. The BGA package in the strip is preferably tested for performance and reliability (as shown in *) when it is followed by a subsequent step in the process. Only packages identified as "good" will be processed. In step 15〇4, the adhesive is dispensed over the upper surface (back side) of the die on a "good" BGA package. In step 1506, a separate platform grid array package is provided. The separate LGA package is protected by a mold and is preferably tested (7) and identified as "good". In the step-by-step procedure, a selection and placement operation is performed to place a "good" LGA package on the adhesive on the die on the "good" bga package. In step 151, the adhesive is cured. In step 1512, a plasma cleaning operation is performed at a preliminary step 1514, wherein a wire-to-I interconnection 4 is formed between the top LGA and the bottom BGA package of the stack, step 1516, which can be performed - additional power cleaning, The MPM molding is then formed in step 1518. In step 152, the second-order interconnect solder balls are attached to the bottom side of the module. In step 522, the completed module is tested (*) and separated by the strip, for example by staggered separation or by punching, and packaged for further use. Fig. 16 is a flow chart showing the assembly process of the multi-package module shown in Fig. 9B, for example. This process is similar to that shown in Figure 15 which has an additional step of inserting the mask over the bottom package flip chip die. In the process 155479. Doc • 72· 201131731 Similar steps are identified by similar reference numbers in the figure. In step 1602, the undivided strips of the bottom package of the die-flip wafer ball grid array are provided. The BGA package may or may not have, and has a first 0 interconnect solder ball. The B G A package of the strip card is preferably tested for performance and reliability prior to its subsequent steps in the process (shown as * in the figure). Only the job is "good" (4) The peasant association accepts the follow-up treatment. In step! 6〇3, the electrical shield is fixed on the "good" bottom B "the grain on the GA package. In step _, the adhesive is distributed on the BGA package." Above. In step Μ%, a separate platform grid array package is provided. The separate lga package is protected by -mold and is preferably tested (*) and identified as "good". In step 16-8, a -selection and placement operation is performed to place the "good =" LGA package on the adhesive over the mask on the "good" BGA package. In step 1610, the adhesive is cured. In step i6i2, at the preliminary step 1614, a plasma cleaning operation is performed in which a line junction z interconnection is formed between the top LGA and the bottom BGA package of the stack. In step 1616, an additional electropolymer cleaning can be performed. The MPM molding is then formed in step 1618. In step 162(), the second-order interconnect solder balls are attached to the bottom side of the module. In step 1622, the completed module is tested (*)&apos; and separated by the material, e.g., separated by (4), and packaged for further use. Figure 17 is not a multi-package mode as shown, for example, in Figure 1A or Figure 10B! And the process of assembly processing 圚. In step (10), an undivided strip of the bottom seal of the upper die wafer wafer grid array is provided. The flip 155479. Doc •73- 201131731 The wafer interconnect is protected by the filling or molding of one side between the die and the die attach surface of the base substrate, so no overmolding is required. The BGA package in the strip is preferably tested for performance and reliability prior to its subsequent steps in the process (shown as * in the figure). Only packages that are identified as "good" will be processed. In step 17〇4, the adhesive is dispensed onto the upper surface of the substrate on a "good" BGA package. In step 1706, a separate second package ' is provided which may be a stacked die package, such as shown in Figures 1-8 and 1-8. The separate second package is protected by a molding 'preferably tested (*) and identified as "good". In step 1708, a selection and placement operation is performed to place a "good" package of adhesive on the substrate on the "good" BGA package. In step 1710, the adhesive is cured. In step 1712, a plasma cleaning operation is performed during preliminary step 1714, wherein a line junction z interconnection is formed between the top of the stack (stacked particles) and the bottom die-flip wafer BGA package. An additional plasma cleaning can be performed in step 1716, followed by formation of the MPM molding in step 1718. In step 172, the second-order interconnect solder balls are attached to the bottom side of the module. In step 1722, the completed module is tested (*) and separated by the strip, for example by sawing apart or by punching, and packaged for further use. Figure 18 is a flow chart showing the assembly process of the multi-package module shown in Fig. 18, for example. In step 1802, an undivided strip of a stacked die ball grid array package is provided. The stacked die BGA package is molded and provides an overlying package surface. The BGA package in the strip is preferably tested for performance and reliability before it is subjected to subsequent steps in the process. Doc •74- 201131731 (shown as * in the figure). Only recognized as "good. In the step orchid, the adhesive is assigned in the "Guanghui meeting - the second part of the continuation,: =: two. In step _, provide one (four) for the stack The die package, such as the second package in the center of the drawing, can be molded, and preferably enters L()' and is identified as "good." In step 18〇8, the = and placement operation is performed to place the "good" second package on the adhesive on the substrate on the "good BGA package." In step (8), the primer is cured. In step 1812, at preliminary step 1814, a "electropolymer cleaning operation is performed in which a line junction z interconnection is formed between the top of the stack (stacked die) and the bottom die-flip wafer BGA package. In step 1816, an additional plasma cleaning can be performed, and then the MPM molding is formed in step 1818. In the step, the second-order interconnect solder balls are attached to the bottom side of the module. The completed module is tested () and separated by the strip, for example by separation or by punching and is packaged for further use. The process according to the invention can be carried out as follows The individual steps of many of the steps are based on the methods described herein, using substantially conventional techniques, but as described herein, 'use of conventionally modified manufacturing facilities. These changes in conventional technology' and conventional manufacturing equipment Amendment The use of the methods described herein to accomplish 'does not require further experimentation. Other specific embodiments are set forth in the following patent claims. [Simplified Schematic Description] Figure 1 is not through a conventional ball grid array Section of the semiconductor package 155479. Doc -75- 201131731 Figure; Figure 2 shows a cross-sectional view of a conventional multi-package module with solder ball z interconnections between stacked ball grid array semiconductor packages; Figure 3 shows the flip through the stack A cross-sectional view of a conventional flip chip multi-package module having solder ball z interconnections between wafer semiconductor packages; FIG. 4 is a view showing a flexible substrate and solder balls z between the stacked semiconductor packages A cross-sectional view of a conventional multi-package module; FIG. 5A shows a specific implementation of a multi-package module having a wire contact z interconnection between a stacked bga and an LGA semiconductor package in accordance with an aspect of the present invention. Figure 5B is a plan view of a bottom BGA substrate having a z-connected dot pad in a configuration suitable for use in the embodiment of the invention illustrated in Figure 5a; Figure 5C is shown in Figure 5C Figure 5A is a plan view of a top LGA substrate having a z-interconnect dot pad configured in a particular embodiment of the invention; Figure 5D is shown with a bga and LGA semiconductor package between the stacked layers according to an aspect of the invention. Multiple interconnections of line contacts A cross-sectional view of a specific embodiment of a module having a heat sink secured to an upper surface of the top package; Figure 5E shows a wire contact z interconnect between the stacked BGA and LGA semiconductor packages A cross-sectional view of a specific embodiment of a multiple package module and having a heat sink according to another aspect of the invention; FIG. 6A illustrates a wire connection between stacked BGA and LGA semiconductor packages by one aspect in accordance with the present invention; A cross-sectional view of another embodiment of a multi-package module interconnected by a point z, wherein the top package has a peripheral molding; 155479. Doc-76-201131731 Figure 6B is a cross-sectional view showing another embodiment of a multi-package module having interconnects with wire bonds z between stacked and ga semiconductor packages in accordance with the present invention. t The top package has a peripheral package and the module has a heat sink; FIG. 7 shows a multiple package with a wire contact z interconnection between the stacked bga and the semiconductor package in accordance with aspects of the present invention. A cross-sectional view of another embodiment of the module in which the top package substrate has a metal layer substrate; FIG. 8A shows a line contact 2 between the stacked bga and LGA semiconductor packages by another aspect in accordance with the present invention. A cross-sectional view of a multi-package module interconnected, in which an electrical shield is provided on the bottom package; FIG. 8B illustrates the presence of a stacked bga between the semiconductor package and the semiconductor package in accordance with an aspect of the present invention. A cross-sectional view of another embodiment of a multi-package module interconnected by a wire contact z, wherein an electrical shield is provided over the bottom package, and the module has a heat sink; According to this issue A cross-sectional view of another embodiment of a multi-package module having a wire bond z interconnect between a stacked BGA and a semiconductor package, wherein an electrical shield is provided over the bottom package and the mode The set has a heat sink 3S fixed to an upper surface of the top package, and FIG. 9A shows a line between the stacked flip chip BGA (lower die) and the LGA semiconductor package by another aspect of the present invention. A cross-sectional view of a multi-package module interconnected by a contact z; 155479. Doc-77·201131731 Figure 9B shows a multi-package module with interconnects z between the stacked flip chip BGA (lower die) and the LGA semiconductor package in accordance with another aspect of the present invention. A cross-sectional view in which an electrical shield is provided on the bottom package; FIG. 9C illustrates a line contact z between the stacked flip chip BGA (lower die) and the LGA semiconductor package by another aspect of the present invention. A cross-sectional view of a multi-package module in which an electrical shield is provided on the bottom package and the module has a heat sink; and FIG. 10A shows a flip chip mounted on the stack by another aspect of the present invention. A cross-sectional view of a multi-package module having a wire contact z interconnect between a BGA (upper die) and a stacked die LGA semiconductor package, wherein adjacent stacked die in the second package is A spacer is separated; FIG. 10B is not a multiple of interconnects having a wire contact z between a stacked flip chip BGA (upper die) and a stacked die LGA semiconductor package in accordance with another aspect of the present invention. a cross-sectional view of the repackaged module, in which The adjacent stacked dies in the second package have different sizes; FIG. 10C shows that there is a flip-chip BGA (upper die) between the stacked flip chip BGA (upper die) and the stacked die LGA semiconductor package according to another aspect of the present invention. A cross-sectional view of a multi-package module interconnected by a wire contact z, and wherein an electrical shield is provided on the bottom package; a totem is shown in a flip-chip BGA (on-chip) stacked in accordance with additional aspects of the present invention a cross-sectional view of a multi-package module having a wire contact z interconnection between the stacked die and the stacked LGA semiconductor package, and wherein - the electric shield is provided on the bottom package and has a fixed on the top The above table 355479. Doc -78- 201131731 One of the heat sinks; Figure 10E shows the synergy of the other side of the invention by the synergistic ten "π force surface in the stacked flip chip BGA (top die) and stacked die LGA A cross-sectional view of a multi-package module having interconnects z-connected between the semiconductor packages, wherein an electrical shield is provided on the bottom package and has a heat sink in accordance with another aspect of the present invention; Shown is a cross-sectional view of a multiple package module having wire bonds 2 interconnected between a stacked BGA (stacked die) and an LGA (stacked die) semiconductor package in accordance with another aspect of the present invention; Shown as a flow chart of, for example, the assembly process shown in FIG. 5A or FIG. 7; FIG. 13 is a flow chart showing an assembly process of a multi-package module, such as shown in FIG. FIG. 14B is a flow chart showing an assembly process of a multiple package module shown in FIG. 8B; FIG. 14B is a flow chart showing an assembly process of a multiple package module shown in FIG. 8B; Figure 14C shows a multiple package such as that shown in Figure 8C. Flowchart of the assembly process of the group; FIG. 15 is a flow chart showing an assembly process of a multi-package module shown in FIG. 9A; FIG. 16 is a diagram showing, for example, a multiple shown in FIG. 9B. Flowchart of the assembly process of the package module; Figure 17 shows a multiple seal 155479, for example, shown in Figure 1A or Figure 1B. Doc 79-201131731 Flowchart of an assembly process for assembling a module; and Figure 18 is a flow chart showing a assembly process of a multi-package module such as that shown in Figure 11. [Main component symbol description] 10 MPM bottom package 12, 22 substrate 13 ' 23 die attach epoxide 14, 24 &gt; • 34, • 44 die 16, 26 wire contacts 17, 27, . 47 Molding compound 18 ' 28, '38, '48 solder ball 20 stacked MPM 30 2-stack flip chip MPM 33 polymer side filled 35 through hole 36 bump 40 2-stack curved flexible substrate MPM 42 metal layer Bottom package substrate 43 Adhesive 46 Cantilever beam 50 &gt; 52, 60, 70, 84 Multi-package module 54, 62, • 82, 94 BGA + LGA multi-package module 155479. Doc -80- 201131731 90, 92, 101, 103 Multiple package modules 105, 107, 109, 110 Multi-package modules 121, 123 Metal layer 122 &gt; 142 Through holes 125, 127, 147 Weld cover 141 First metal layer 143 second metal layer 221 &gt; 223 metal layer 222 via 225 '227 solder mask 300 bottom package 302 bottom BGA package 304 shield 305 sidewall 306 line 312 bottom package substrate 314 die 315 ' 327 solder mask 316 flip chip bump 318 solder ball 321 &gt; 323 metal layer 322 through hole 155479. Doc -81 - 201131731 155479. Doc 331 Metal Layer 332 Substrate 333 Polymer Side Filled 334 Die 335 Through Hole 336 Bump 338 z Interconnect Solder Ball 342 BGA Substrate 343 Interconnect Bump 344 Die 346 Flip Chip Bump 348 Second Order Interconnect Solder ball 351 Metal layer 353 Patterned metal layer 354, 356 Dielectric layer 355 Metal layer 400 Bottom package 401 Void 402 Bottom ball grid array (BGA) package 406 Heat sink / shield 407 Side wall 408 line) C -82- 201131731 412 Bottom package substrate 413 die attach epoxide 414 die 415, 427 cap 416 wire contact 417 molding compound 418 solder ball 419 bottom package upper surface 421 ' 423 metal layer 422 via 424 bottom package z interconnect pad 425 Upper surface 426 upper surface 442 bottom package substrate 443 adhesive 444 '454 die 446, 456 wire contact 447 molding compound 448 solder ball 451, 453 metal layer 452 through hole 455 '457 welding cap - 83 - 155479. Doc 201131731 500 Top Package 501 Void 503 ' 506 Adhesive 505 ' 545 Recessed Feature 507 Module Wrap 511 Trace 512 Top Package Substrate 513 Grain Attachment Epoxide 514 Die 515 Solder Cover 516 Line Contact 517 Molding Compound 518 line contact 519 upper surface 521 metal layer 522 through hole 523 metal layer 524 top package z interconnection pad 525 upper surface 526 edge 527 solder mask 544, 504 heat sink 155479. Doc -84- 201131731 546 Support member 600 Top package 607 Module cover 612 Top package substrate 613 Die attach epoxide 614 Die 615 Solder mask 616 Line contact 617 Mold compound 618 Line contact 621 Metal layer 622 pass Hole 623 Metal Layer 627 Weld Cover 644 Heat Sink 645 Recessed Feature 646 Support Member 700 Top Package 707 Module Cover 712 Top Package Substrate 713 Grain Attachment Epoxide 714 Grain 155479. Doc -85- 201131731 715 Weld Cover 716 Line Contact 717 Molding Compound 718 Line Contact 719 Surface 721 Metal Layer 800 Top Platform Grid Array (LGA) Package 803 Adhesive 804 Heat Sink 805 Recessed Feature 806 Support Member 807 Mode Group cladding 812 top package substrate 813 die attach epoxide 814 die 815, 827 solder mask 817 molding compound 818, 816 wire contact 819 upper surface 821 metal layer 822 through hole 823 metal layer 155479. Doc • 86 - 201131731 844 Heatsink 845 Recessed Features 846 Adhesive 847 Wrapped 900 Top LGA Package 903 Adhesive 907 Module Wrap 908 Line 909 Sidewall 912 Top Package Substrate 913 Grain Attachment Epoxy 914 Die 915 Solder Cover 917 Molding compound 918, 916 wire contact 919 Surface 921 Metal layer 944 Heat sink 945 Recessed feature 946 Support member 1000 Die plate grid array package 1003, 1006 Adhesive 155479. Doc • 87 - 201131731 1004 Heatsink 1005 Recessed features 1007 Module covered 1011 Trace 1012 Dielectric layer 1013 Adhesive 1014 Die 1015 Spacer 1017 Molding material 1018, 1016, 1026 Line contact 1019 Upper surface 1024 crystal Grain 1030 Top Package 1031 Trace 1033 Adhesive 1034 Die 1035 Adhesive 1036 Wire Contact 1037 Molding Material 1039 Upper Surface 1044 Grain 1045 Recessed Feature 155479. Doc -88- 201131731 1046 Line contact 1103 Adhesive 1107 Molded 1118 Line contact 155479. Doc -89-

Claims (1)

201131731 七、申請專利範園·· 1. 一種具有一第二封裝堆疊在 模組,該等堆封裝之上的多重封裝 封裝具有一電遮蔽。 I連其中至少一個該 2.如申請專利範圍第!項之多 裝具有-電遮蔽。 ㈣組,其中該第一封 3·如申請專利範圍第1項之多重封裝模 係配置用來做為一散熱器。 、中該電遮蔽 4 專利範圍第1項之多重封裝模組,其中該具有- 匕括RFa曰拉’且该遮蔽作為限制在該多 重封裝模、组中_晶粒與其它晶粒之間的電磁干擾。 5.如申請專利範圍第!項之多重封裝模組,其中該第一封 =為在-上晶粒組態中具有一倒裝晶片的一倒裝晶片球 格柵陣列封裝。 6·如申請專利範圍第i項之多重封裝模組,其中該第一封 裝為在-下晶粒組態中具有-倒裝晶片的—倒裝晶片球 格拇陣列封裝。 7. 如申請專利範圍第丨項之多重封裝模組其中該第二封 裝為一堆疊晶粒封裝。 8. 如申請專利範圍第7項之多重封裝模組,其中在該堆疊 晶粒封裝中相鄰堆疊晶粒係由一間隔器所分離。 9. 如申請專利範圍第丨項之多重封裝模組,該第一封裝包 3 第 封裝基板,而該第二封裝包含一第二封穿基 板’其中該第一封裝基板包括一嵌入的接地平面。 155479.doc 201131731 ίο 1112. 13. 14. 15. 16. 17. 如申請專利範圍第9項之多重封裝模組 配置用來做為散熱。 該接地平面係 .如申請專利範圍第9項. 配置用來做為一電遮蔽 種用於製造一包括一第二封裳堆疊在-第-封裳之上 的多重封裝模組之方法,其包括 提供具有一遮蔽的一第—封裝, 提供一第二封裝, 堆疊該第二封裝到該遮蔽的— 面,及 通常為平面之上表 藉由打線來電互連該第一及第二封裝。 如申請專利範圍第12項之方法,Α Λ &amp; 〈万沄其中提供該第 含提供一封裝的未分離長條。 一封裝包 如申請專利範圍第12項之方法,其中堆疊該第二封裝到 該遮蔽的上表面之上包含施加一黏著劑到該遮蔽的一上 表面之上,並放置該第二封裝到該黏著劑之上。 如申請專利範圍第U項之方法,其中該黏著劑為一可固 化黏著劑,且進一步包含固化該黏著劑。 如申請專利範圍第η項之方法,其中提供該第—封裝包 3對於一效此及可靠度需求來測試封裝,並選擇該第一 封裝而可滿足該需求。 如申請專利範圍第12項之方法,其中提供該第二封裝包 含對於一效能及可靠度需求來測試封裝,並選擇該第二 封裝而可滿足該需求。 155479.doc • 2· 201131731 18.如申請專利範圍第12項之方法,進一步包含附著第二階 互連球到該第一封裝基板之上。 19·如申請專利範圍第12項之方法,進一步包含包覆該等堆 疊封裝在一多重封裝模組模製中。 20.如申請專利範圍第12項之方法,其中提供該第一封裝包 含提供一球格柵陣列封裝。 申凊專利範圍第12項之方法,進一步包含提供該多重 封裝模組一散熱器。 之方法,其中提供一散熱器包含 5亥散熱器在形成一模組模製之前 22·如申請專利範圍第21項 進行一落入模具作業, 被放置到一模具中。 23·如&quot;專利範圍第21項之方法,其中提供-散熱器包含 固疋一散熱器之通常為平面的部份到該第二封裝之—通 常為平面的上表面之上。 24· 2請專利範圍第12項之方法,其中提供該第-封裝包 3 乂供倒裝晶片球格柵陣列封裝。 25.如申請專利範圍第12 乃忐其中提供具有一遮蔽的 =第一封裝包含提供-下晶粒倒裝晶片球格柵陣列封 26.=請=_項之方法,其中提供具有-遮蔽的 β弟一封裝包含接供— θ 〃 上日日粒倒裝晶片球格柵陣列封 衷0 中提供具有一遮蔽的 包含提供具有一遮蔽 27.如申請專利範圍第乃項之方法,其 一下晶粒倒裝晶片球格柵陣列封裂 155479.doc 201131731 的一封裝,其包括一補登A 98 , ^ ± ^ 通常為平面的部份在該晶粒之上。 28·如申請專利範圍第%項之方法, 一 ±曰f # s 、中ki、具有一遮蔽的 的球格栅陣列封裝包含提供具有-遮蔽 一二#包括-通常為平面的部份在該晶粒之下。 29. —種包含具有一第二封 .,, ·&quot;隹第一封裝之上的多重 封裝棋組之行動裝置’該 算且封裝係由打線電互連, 八中至 &gt;'一個該封裝具有一電遮蔽。 30. —種包含具有—第二 第一封裝之上的多重 封裝模組之電腦,料堆疊封裝係由打線電互連,其令 至少一個該封裝具有一電遮蔽。 3 1 '種包含堆疊第一及第二封裝之&amp; ^ ^ Λ Τ衷之多重封裝模組,每個該 封裝包含一附著到一基板 丞板之日日粒,其中該等第一及第二 暴扳係由打線互連,且其φ &amp; “ ^ 第—封裝包含在-上晶粒 ·.· -i中具有一倒裝晶片的一 巧发日日片球格栅陣列封 装0 32_如申請專利範圍第3〗 里釕衷模組,其中該第二封 裝為一打線的平台格栅陣列封裝。 33.如申請專利範圍第32項 ^里訂屐棋組,其中該第二封 ^包括連結該第二封裝晶粒與該第二封裝基板之打線且 d在該第二封裝中的晶粒及打線係由一模製材料完全 地包覆。 34·如_請專利範圍第32項之多重封裝模組,其中該第二封 裝係某種程度在周圍被包覆,其足以覆蓋該晶粒與該基 板之間的打線。 155479.doc 4- 201131731 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 如申請專利範圍第32項之多重封裝模組,其中該第二封 裝基板為一單一金屬層基板。 如申請專利範圍第31項之多重封裝模組,其中該倒裝晶 片封裝具有一電遮蔽。 如申請專利範圍第36項之多重封裝模組,其中該電遮蔽 係配置用來做為一散熱器。 如申請專利範圍第31項之多重封裝模組,其中該倒裝晶 片封裝包括一 RF晶粒。 如申請專利範圍第36項之多重封裝模組,其中該倒裝晶 片封裝包括一 RF晶粒,且該遮蔽作為限制在該多重封裝 模組中該R F晶粒與其它晶粒之間的電磁干擾。 如申請專利範圍第31項之多重封裝模組,其中該第一封 裝具有一電遮蔽。 如申請專利範圍第31項之多重封裝模組,其中該第二封 褒為一堆疊的晶粒封裝。 如申請專利範圍第41項之多重封裝模組,其中在該堆疊 的晶粒封裝&quot;目鄰堆疊的晶粒係由-間隔器所分離。’ 如申請專利範圍第31項之多重封裝模組,其 裝係堆疊在該第一封裳之上,且其中在該第—封= 倒裝晶片晶粒係具有一電遮蔽。 如申請專利範圍第31項之多重封裝模組,其中該第一封 裝基板包括一嵌入的接地平面。 如申請專利範圍第44項之多重封裝模组,該接地平面係 配置用來做為散熱。 155479.doc 201131731 46·如申請專利範圍第44項之多重封裝模組,該接地平面係 配置用來做為一電遮蔽。 47.如申請專利範圍第3丨項之多重封裝模組,其中該第一及 第二封裝中至少一個為一堆疊晶粒封裝。 48·如申請專利範圍第31項之多重封裝模組,其中該第二封 裝為一堆疊晶粒封裝。 9. 士申凊專利範圍第31項之多重封裝模組進一步包含一 散熱器。 5 〇 ’ 一種製造—多重封裝模組之方法,其包括: 提供—包括—第-封裝基板之上晶粒倒裝晶片第一封 裝, 提供一包括一晶粒及一第二封裝基板之第二封裝, 堆疊°玄第一封裝在該第一封裝之上,及 藉由連接該第—封裝基板及第二封裝基板之打線來電 連該第&amp;第一封裝,其中提供一上晶粒倒裝晶片第 -封裝包含對於一效能及可靠度需求測試上晶粒倒裝晶 片封裝,並選擇符合該需求之封裝做為該第一封裝。 51·Γ請專利範圍第5G項之方法,其中提供-上晶粒倒裝 曰曰片第-封裝包含提供-上晶粒倒裝 分離的長條。 #对裝之未 一第二封裝包 並選擇符合該 52.如申請專利範圍第5〇項之方法其中提供 含對於一效能及可靠度需求來測試封裝, 需求之封裝做為該第二封裝。 其中提供該第二封裝包 53.如申請專利範圍第5〇項之方法, 155479.doc 201131731 含提供一平台格柵陣列封裝。 54.如申請專利範圍第5〇 气鬼項之方法,其中堆疊該第二封裝在 忒第一封裝之上包含固 之表面上。 μ第二封裝到該第-封裝基板 55.如申請專利範圍第54 —炫 万去,其中固定該第二封裝到 該第一封裝基板之表面上肖人#λ 7哀 3轭加一黏著劑到該第一封 裝表面基板之晶粒附著區域 該黏著劑。 -之上,並使該第二封裝接觸 56.如申請專利範圍第55項之 法,其中施加該黏著劑包含 轭加一可固化黏著劑, 如申請專利範圍第5。項二步包含固化該黏著劑。 互連球到該第-基板之上法’進一步包含附著第二階 58.2請專利範圍第Μ項之方法,進—步包含利用一模製 化合物來包覆在該第-基板之上的特徵。 59. 如申請專利範圍第51項之方法,進 離該完成的模組。 ’匕6亥長條分 進一步包含提供一電磁 進一步包含提供一散熱 其中提供一散熱器給該 60. 如申請專利範圍第5〇項之方法 遮蔽給該第一封裝。 61. 如申請專利範圍第5〇項之方法 器給該模組。 62. 如申s奢專利範圍第61項之方法 模組包含進行一落入模製作業 其中提供一散熱器給該 63. 如申請專利範圍第61項之方法 描知έϊ入、狀热器給 模組包含固定一通常為 θ十面之政熱益到該第二封裝的上 155479.doc 201131731 表面之上。 64· 一種包含如中請專利範圍㈣項之多重封裝模組之 通信裝置。 65. 一種包含如申請專利範圍第31項之多重封裝模 腦。 电 66. -種包含堆叠第—及第二封裝之多重封裝模組,該第— 封裝包括附著且電性連接到一第一基板之一晶粒,且該 第二封裝包括附著且電性連接到一第二基板之—晶粒^ 其中該第一及第二基板藉由打線來互連,其中該第一封 裝包含在—下晶粒組態中具有一倒裝晶片之倒裝晶片球 格拇陣列封裝,且其中节笛 衣且具〒4第一封裝由一封裝包覆來包 覆,該模組進一步包含在下方封裝基板之下方側的第二 階互連焊球墊。 67. 如申請專利範圍第66 夕更封裝槟組,其中該第二封 裝為一打線的平台格栅陣列封裝。 68. 如申請專利範圍第67項之多重封装模組,其中在該第二 封裝中的晶粒及打線係由一模製材料完全地包覆/ 一 69. 如申請專利範圍第67項之多重封裝模組,其中該第二封 裝係某種程度在周圍被包覆,其足以覆蓋該晶粒與該基 板之間的打線。 土 70. 如申請專利範圍第67項之多 】衣棋組,其中該第二封 裝基板為一單一金屬層基板。 71·如申請專利範圍第66項之 也 訂裝模組,其中該電遮蔽 係配置用來做為一散熱器。 155479.doc 201131731 72.如申請專利範圍第66項之多重封裝模組,其中該倒裝晶 片封裝包括一 RF晶粒。 73·如申請專利範圍第66項之多重封裝模組,其中該倒裝晶 片封裝包括一 RF晶粒,且該遮蔽作為限制在該多重封穿 模組中該RF晶粒與其它晶粒之間的電磁干擾。 74. 如申請專利範圍第項之多重封裝模組,其中該第一封 裝具有一電遮蔽。 75. 如申請專利範圍第66項之多重封裝模組,其中該第二封 裝為一堆疊晶粒封裝。 76. 如申請專利範圍第75項之多重封裝模組,其中在該堆疊 晶粒封裝中相鄰堆疊的晶粒係由一間隔器所分離。 77. 如申請專利範圍第66項之多重封裝模組其中該第二封 裝係堆疊在該第一封裝之上,且其中在該第一封裝上的 倒裝晶片晶粒係具有一電遮蔽。 78. 如申請專利範圍第66項之多重封裝模組,其中該第—封 裝基板包括一嵌入的接地平面。 如申叫專利範圍第7 8項之多重封裝模組,該接地平面係 配置用來做為散熱。 如申明專利範圍第7 8項之多重封裝模組,該接地平面係 配置用來做為一電遮蔽。 81. 如申請專利範圍第66項之多重封裝模組,其中該第一及 第一封裝中至少一個為一堆疊晶粒封裝。 82. 如申請專利範圍第“項之多重封裝模組,其中該第二封 裝為一堆疊晶粒封裝。 I55479.doc 201131731 83.如申請專利範圍第66項之多重封裝模組,進一步包含一 熱遮蔽。 84· —種製造—多重封裝模組之方法,其包括: 提供一包括一下晶粒倒裝晶片及一第一封裝基板之第 一封裝, 提供一包括一打線晶粒之第二封裝,該晶粒至少與該 下晶粒倒裝晶片一樣大,在兩側電性連接至一第二封裝 基板其中s亥打線晶粒包封在一第—包覆, 堆疊該第二封裝在該第一封裝之上, 藉由連接該第一封裝基板及第二封裝基板兩側之打線 來電互連該等第一及第二封裝,及 包覆之該第二封裝 模製一第二包覆以包封包含該第一 及該打線》 申請專利範圍第84項之方法,其中提供—下晶粒㈣ 曰曰片第—封裝包含提供-下晶粒倒裝晶片[封裝 分離的長條。 未 86·ΠΓΓ圍第84項之方法’其中提供-下晶粒倒裝 ’十裝包含對於-效能及可靠度需求測試下晶粒 :裝晶片封裳’並選擇符合該需求之封裝做為該第一封 87· 7請專利範圍第84項之方法,其中提供_第二封裝勺 能及可靠度需求來測試封裝,並選擇符:: 耑衣之封裝做為該第二封裝。 88.如申請專利範圍第84項之方法,其中提供該第二封裂包 155479.doc 201131731 含提供一平台格柵陣列封襞β 89. 如申請專利範圍第84項之方法,其中堆疊該第二封裝在 该第一封裝之上包含固定該第二封裝到該下晶粒倒裝晶 片晶粒之上表面之上。 90. 如申請專利範圍第89項之方法其中固定該第二封裝到 該下晶粒倒裝晶片晶粒之上表面之上包含施加一黏著劑 到。亥明粒的该上表面之上,並使該第二封裝接觸該黏著 劑。 91. 如申明專利範圍第9〇項之方法,其中施加該黏著劑包含 靶加可固化黏著劑,且進_步包含固化_ n 92. 如申請專利範圍第84項之方法,進一步包含附著第二階 互連球到該第一基板之上。 93·如申請專利範圍第料項之方法,其中模製該第二包覆以 包封該第_封裝包含利用—模製化合物來包覆在該第一 基板之上的特徵。 進一步包括由該長條分 94·如申請專利範圍第85項之方法 離該完成的模組。 進一步包含提供一電磁 進一步包含提供一散熱 95. 如申請專利範圍第以項之方法 遮蔽給該第—封裝。 96. 如申請專利範圍第以項之方法 器給該模組。 其中提供一散熱器給該 97·如申請專利範圍第96項之方法 模組包含進行一落入模製作業, 其中提供一散熱器給該 98.如申請專利範圍第%項之方法 155479.doc 201131731 模組包含固定一通常為平面之散熱器到該第二封裝的上 表面之上。 99.如中請專利範圍第95項之方法,其中提供—電磁遮蔽給 該第一封裝包含固^ —遮蔽到該下晶粒倒裝晶片晶粒之 上0 胤如申請專利範圍第99項之方法,其中堆疊該第二封裝在 該第一封裝之上包含固㈣第二封裝到該遮蔽之上表面 之上。 胤如申請專利範圍第⑽項之方法,其中固定該第二封裝 到該遮蔽的上表面之上包含施加—黏著劑到該遮蔽的該 上表面之上,並使該第二封裝接觸該黏著劑。 胤如申請專利範圍第101項之方法,其中施加該黏著劑包 含施力一可固化黏著劑,且進一步包含固化該黏著劑。 103.-種包含如申請專利範圍第66項之多重封裝模組 通信裝置。 說-種包含如申請專利範圍第66項之多重封裝 腦。 电 敝一種包含堆疊的下方及上方封裝之多重封裝模組,兮下 方封裝包括附著且電性連接到—τ方基板之晶粒,且1 上方封裝包括附著且電性連接到一上方基板之晶粒,其: 中該上方及下方基板係由打線來互連,其中至少一個兮 封裝包含-堆疊晶粒封裝’且其中至少一該堆疊晶缸:; 裝被包覆。 τ 敝如申請專利範圍第105項之多重封裝模組,其中該下方 155479.doc -12- 201131731 封裝包含一堆疊晶粒封裝。 脱如申請專利範圍第⑽項之多重封裝模組’其中每㈣ 下方封裝及該上方封裝包含—堆疊晶粒封裝。 108.如申請專利範圍第1〇5 嗖乙夕重封裝模組,其中該上方 封裝包含一堆疊晶粒封裝。 跳如f請專利範圍第1G5項之多重封裝模組’其中在該堆 疊晶粒封裝中相鄰堆疊的晶粒係由-間隔器所分離。 no.如申請專利範圍第105項之多重封裝模組,進—步包含 在該上方封裝之上的一散熱器。 πι.—種製造一多重封裝模組之方法其包括: 提供一第一封裝, 提供一第二封裝, 各該封裝包括附著且電性連接到—基板之晶粒,至少 -個該封裝包含-堆疊晶粒封裝,其中至少—該堆疊晶 粒封裝被包覆, 堆疊該第二封裝在該第一封裝之上,及 藉由打線在該第一封裝與該第二封裝之間形成電互 連〇 112·如申請專利範圍第⑴項之方法,其中提供該封裝包含 -堆疊晶粒封裝包含對於-效能及可靠度需求來測試堆 疊晶粒封裝,並識別符合該需求之封裝做為該堆叠晶粒 封裝。 113.如申請專利範圍第m項之方法,其中提供一第二封裝 包含對於-效能及可靠度需求來測試封裝,並識別符合 155479.doc -13· 201131731 該需求之封裝做為該第二封裝。 114利範圍第111項之方法,其中提供該封裝包含 條。晶粒封裝包含提供―堆疊晶粒封裝的未分離長 利範圍第⑴項之方法,其中提供該封裝包含 一曰曰粒封裝包括提供包含固定到-封褒基板之一第 _曰曰粒、-固定在該第一晶粒之上的一第二晶粒、及在 該第-及第二晶粒與該基板之間的打線互連之封裝。 116. 如申請專利範圍第115項之方法,其中提供包p堆疊 晶:封裝之該封裝包含提供一封裝,其進一步包含一間 隔器插入在該第一及該第二晶粒之間。 117. 如申請專利範圍第m項之方法,進—步包含提供 熱器。 進一步包含附著第 118. 如申請專利範圍第111項之方法 1¾互連球到該第一封裝基板之上 進一步包含包覆該等 119. 如申晴專利範圍第η 1項之方法 堆疊封裝在一模製化合物中的模組上 微-種包含如申言倉專利範圍第1〇5項之多重封裝模組的行 動裝置。 121. —種包含如申請專利笳圊坌 τ月寻扪乾圓第1〇5項之多重封裝模組的電 腦。 155479.doc201131731 VII. Applying for a patent garden 1. A multi-package package having a second package stacked on the module has an electrical shield. I have at least one of these 2. As in the scope of the patent application, the item has an electric shield. (4) The group, wherein the first package is configured as a heat sink as the multiple package module of the first application of the patent scope. The multi-package module of the first aspect of the invention, wherein the multi-package module of the first aspect of the invention, wherein the shield is as defined in the multi-package mode, the group between the die and the other die Electromagnetic interference. 5. The multi-package module of claim 2, wherein the first seal = a flip chip ball grid array package having a flip chip in the on-die die configuration. 6. The multiple package module of claim i, wherein the first package is a flip chip wafer flip array package having a flip chip in the under-die configuration. 7. The multi-package module of claim 3, wherein the second package is a stacked die package. 8. The multiple package module of claim 7, wherein adjacent stacked die are separated by a spacer in the stacked die package. 9. The multi-package module of claim 2, the first package 3 is a first package substrate, and the second package comprises a second package substrate, wherein the first package substrate comprises an embedded ground plane . 155479.doc 201131731 ίο 1112. 13. 14. 15. 16. 17. The multi-package module configuration as claimed in item 9 of the patent application is used for heat dissipation. The ground plane is as in claim 9 of the patent application. The method is configured to be used as an electric shield for manufacturing a multi-package module including a second stack on top of the first cover. The method includes providing a first package having a mask, providing a second package, stacking the second package to the shielded surface, and generally planarly interconnecting the first and second packages by wire bonding. For example, in the method of claim 12, Α Λ &amp; 沄 沄 沄 提供 提供 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The method of claim 12, wherein stacking the second package onto the upper surface of the shield comprises applying an adhesive onto an upper surface of the shield, and placing the second package to the Above the adhesive. The method of claim U, wherein the adhesive is a curable adhesive, and further comprising curing the adhesive. For example, the method of claim n, wherein the first package 3 is provided for testing the package for an effect and reliability requirement, and selecting the first package satisfies the requirement. The method of claim 12, wherein the second package is provided to test the package for a performance and reliability requirement, and the second package is selected to meet the demand. The method of claim 12, further comprising attaching a second-order interconnecting ball to the first package substrate. 19. The method of claim 12, further comprising cladding the stacked packages in a multi-package module molding. 20. The method of claim 12, wherein the first package is provided to provide a ball grid array package. The method of claim 12, further comprising providing the multi-package module with a heat sink. The method comprises the steps of: providing a heat sink comprising a 5 liter heat sink before forming a module molding. 22, as in claim 21, performing a drop into the mold operation, and placing it into a mold. The method of claim 21, wherein the heat sink comprises a generally planar portion of the heat sink to the second package - generally a planar upper surface. The method of claim 12, wherein the first package is provided for flip chip wafer grid array packaging. 25. The method of claim 12, wherein the method of providing a masked = first package comprises providing a lower die wafer flip-chip array package 26. = please = item, wherein providing - masking a package containing a θ 〃 上 上 上 上 倒 倒 球 球 球 球 球 球 上 上 上 中 上 中 中 中 中 中 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上A flip chip wafer grid array is sealed by a package of 155479.doc 201131731, which includes a patch A 98 , ^ ± ^ which is typically a planar portion over the die. 28. The method of claim 100, wherein a ± 曰f # s , medium ki, ball grid array package having a shadow comprises providing a portion having a shadow - a mask - a generally planar portion Below the grain. 29. A mobile device comprising a multi-package chess set having a second package, and a package is electrically interconnected by a wire, eight to &gt; The package has an electrical shield. 30. A computer comprising a multi-package module having a second package, the material stack package being electrically interconnected by wire bonding, wherein at least one of the packages has an electrical shield. 3 1 'a kind of multi-package module comprising stacked first and second packages & ^ ^ Τ, each of which comprises a day-to-day grain attached to a substrate, wherein the first and the first The second violent pull is interconnected by a wire, and its φ &amp; " ^ first package contains a flip chip in the upper die ··· -i, a clever hair day ball grid array package 0 32 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ^ including the bonding of the second package die and the second package substrate and the die and the wiring in the second package are completely covered by a molding material. The multi-package module of the item, wherein the second package is wrapped around to some extent enough to cover the wire between the die and the substrate. 155479.doc 4- 201131731 35. 36. 37. 39. 40. 41. 42. 43. 44. 45. The multiple package module of claim 32, wherein the second The package substrate is a single metal layer substrate, such as the multiple package module of claim 31, wherein the flip chip package has an electrical shield, such as the multiple package module of claim 36, wherein the electrical shield The multi-package module of claim 31, wherein the flip-chip package comprises an RF die, such as the multi-package module of claim 36, wherein The flip-chip package includes an RF die, and the shielding acts as an electromagnetic interference between the RF die and the other die in the multiple package module, such as the multiple package module of claim 31, wherein The first package has an electrical shield. The multiple package module of claim 31, wherein the second package is a stacked die package, such as the multiple package module of claim 41, wherein In the stacked die package, the adjacent stacked die is separated by a spacer. 'As in the multi-package module of claim 31, the package is stacked in the first The first package substrate includes an embedded ground plane. The multi-package module of claim 31, wherein the first package substrate comprises an embedded ground plane. For example, in the multi-package module of claim 44, the ground plane is configured to be used for heat dissipation. 155479.doc 201131731 46. The multi-package module of claim 44, the ground plane configuration is used 47. The multi-package module of claim 3, wherein at least one of the first and second packages is a stacked die package. 48. The multiple package module of claim 31, wherein the second package is a stacked die package. 9. The multi-package module of Section 31 of the patent application scope further comprises a heat sink. A method of fabricating a multi-package module, comprising: providing - including a first package of a die-flip wafer on a first package substrate, providing a second die including a die and a second package substrate a first package is mounted on the first package, and the first package is connected by a wire connecting the first package substrate and the second package substrate, wherein an upper die is provided The wafer first package includes a die flip chip package for a performance and reliability requirement test, and a package that meets the demand is selected as the first package. 51. The method of claim 5G, wherein the upper-die die-chip is provided with a strip that provides a split-up of the upper die. #对装不一个一第二包包 and selects the method according to the 52. PCT Patent Application No. 5, which provides a package containing the requirements for a performance and reliability, and the package required as the second package. The second package is provided. 53. The method of claim 5, 155479.doc 201131731 includes providing a platform grid array package. 54. The method of claim 5, wherein the stacking the second package comprises a solid surface on the first package. The second package is applied to the first package substrate 55. As disclosed in the patent application No. 54-Hyunwan, the second package is fixed to the surface of the first package substrate, and the adhesive is added to the surface of the first package substrate. Adhesive to the die attach area of the first package surface substrate. The upper package is contacted with 56. The method of claim 55, wherein the applying the adhesive comprises a yoke plus a curable adhesive, as in the scope of claim 5th. The second step involves curing the adhesive. The method of interconnecting the ball onto the first substrate further includes a method of attaching the second step 58.2 of the scope of the patent, the method comprising coating a feature on the first substrate with a molding compound. 59. If the method of claim 51 is applied, the completed module is removed. The 匕6海长条分 further includes providing an electromagnetic further comprising providing a heat sink wherein a heat sink is provided to the 60. The method of claim 5 is masked to the first package. 61. The method is applied to the module as claimed in item 5 of the patent application. 62. The method module of claim 61 of the invention patent scope includes performing a drop-in molding operation in which a heat sink is provided to the 63. The method of claim 61 describes the intrusion and the heat exchanger. The module contains a fixed θ ten-sided political heat onto the surface of the second package above the 155479.doc 201131731. 64. A communication device comprising a multi-package module as claimed in claim 4 (4). 65. A multi-package model comprising the 31st item of the patent application. The multi-package module includes a stacked first and second package, the first package includes a die attached and electrically connected to a first substrate, and the second package includes an attached and electrically connected a die to a second substrate, wherein the first and second substrates are interconnected by wire bonding, wherein the first package comprises a flip chip ball having a flip chip in a lower die configuration The thumb array package, and wherein the segmented whistle and the first package are covered by a package, the module further comprises a second-order interconnection solder ball pad on a lower side of the lower package substrate. 67. The Penang Group is further packaged as on the 66th of the patent application, wherein the second package is a one-wire platform grid array package. 68. The multi-package module of claim 67, wherein the die and the wire bonding in the second package are completely covered by a molding material / 69. The multiple of claim 67 The package module, wherein the second package is wrapped around to some extent, which is sufficient to cover the wire between the die and the substrate. Soil 70. As claimed in the 67th scope of the patent application, the second package substrate is a single metal layer substrate. 71. A package module is also provided as claimed in claim 66, wherein the electrical shield is configured to function as a heat sink. The multi-package module of claim 66, wherein the flip-chip package comprises an RF die. 73. The multiple package module of claim 66, wherein the flip chip package comprises an RF die, and the shielding is limited between the RF die and the other die in the multiple sealing module Electromagnetic interference. 74. The multi-package module of claim 1, wherein the first package has an electrical shield. 75. The multi-package module of claim 66, wherein the second package is a stacked die package. 76. The multi-package module of claim 75, wherein adjacent stacked crystal grains in the stacked die package are separated by a spacer. 77. The multi-package module of claim 66, wherein the second package is stacked on the first package, and wherein the flip chip die on the first package has an electrical shield. 78. The multi-package module of claim 66, wherein the first package substrate comprises an embedded ground plane. For example, the multi-package module of the patent scope of item 78 is configured to be used for heat dissipation. For example, in the multi-package module of claim 78, the ground plane is configured to be used as an electrical shield. 81. The multi-package module of claim 66, wherein at least one of the first and first packages is a stacked die package. 82. The multi-package module of claim ", wherein the second package is a stacked die package. I55479.doc 201131731 83. The multiple package module of claim 66, further comprising a heat A method of manufacturing a multi-package module, comprising: providing a first package comprising a lower die flip chip and a first package substrate, and providing a second package including a wire die; The die is at least as large as the lower die flip chip, and is electrically connected to a second package substrate on both sides, wherein the slap die is encapsulated in a first cladding, and the second package is stacked in the first On the first package, the first and second packages are electrically connected by connecting the two sides of the first package substrate and the second package substrate, and the second package is molded by the second package. Encapsulating the method of claim 84, wherein the first die and the wire are applied, wherein the lower die (four) die-package comprises a supply-lower die flip chip [package separation strip. ·The 84th item The method of 'providing - the lower die flipping' ten-pack contains the die for the performance and reliability requirements test: loading the chip package and selecting the package that meets the demand as the first 87. 7 patent The method of claim 84, wherein the second package spoon and the reliability requirement are provided to test the package, and the selector:: the package of the clothing is used as the second package. 88. The method of claim 84 </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The second package is over the upper surface of the lower die wafer die. 90. The method of claim 89, wherein the second package is fixed to the upper surface of the lower die wafer die The method of applying an adhesive to the upper surface of the celite and contacting the second package with the adhesive. The method of claim 9, wherein the applying the adhesive comprises a target Additive curable adhesive And the method comprising the method of claim 84, further comprising attaching the second-order interconnecting ball to the first substrate. 93. The method of claim 1, wherein Molding the second cladding to encapsulate the first package includes features that are overcoated on the first substrate with a molding compound. Further comprising the length of the strip 94 as set forth in claim 85 The method further comprises providing an electromagnetic further comprising providing a heat sink 95. The method is masked to the first package as in the scope of the patent application. 96. Module. A method of providing a heat sink to the method of the method of claim 96 includes performing a drop molding operation, wherein a heat sink is provided to the 98. The method of claim 155479.doc The 201131731 module includes a heat sink that is generally planar to the upper surface of the second package. 99. The method of claim 95, wherein providing electromagnetic shielding to the first package comprises solidifying onto the lower die wafer die 0, as claimed in claim 99 The method wherein the second package is stacked over the first package to include a solid (four) second package over the upper surface of the shield. The method of claim 10, wherein the fixing the second package onto the upper surface of the shield comprises applying an adhesive to the upper surface of the shield, and contacting the second package with the adhesive . For example, the method of claim 101, wherein applying the adhesive comprises applying a force to cure the adhesive, and further comprising curing the adhesive. 103. A multi-package module communication device as claimed in claim 66. Said - a multi-package brain containing the scope of claim 66. A multi-package module comprising a stacked lower and upper package, the lower package includes a die attached and electrically connected to the -τ square substrate, and the upper package includes a crystal attached and electrically connected to an upper substrate a grain, wherein: the upper and lower substrates are interconnected by wire bonding, wherein at least one of the germanium packages comprises a -stacked die package and wherein at least one of the stacked crystal cells: is packaged. τ For example, the multi-package module of claim 105, wherein the lower 155479.doc -12-201131731 package comprises a stacked die package. The multiple package module as claimed in claim 10 (wherein each of the (4) lower package and the upper package includes a stacked die package. 108. The method of claim 1 , wherein the upper package comprises a stacked die package. The multi-package module of the patent scope 1G5 is skipped, wherein the adjacent stacked crystal grains in the stacked die package are separated by a spacer. No. As claimed in claim 105, the multi-package module further includes a heat sink on the upper package. The method for manufacturing a multi-package module includes: providing a first package, providing a second package, each package comprising a die attached and electrically connected to the substrate, at least one of the packages comprises a stacked die package, wherein at least the stacked die package is coated, the second package is stacked on the first package, and electrical interconnection is formed between the first package and the second package by wire bonding 〇 · 112. The method of claim 1, wherein providing the package includes - stacking the die package includes testing the stacked die package for the performance and reliability requirements, and identifying the package that meets the requirement as the stack Die package. 113. The method of claim 4, wherein a second package is provided to test the package for the performance and reliability requirements, and to identify the package that meets the requirements of 155479.doc -13·201131731 as the second package . 114. The method of claim 111, wherein the package comprises a strip. The die package includes a method of providing an undivided extended range of item (1) of a stacked die package, wherein providing the package comprises a particle package comprising providing a first to the first substrate to be fixed to the package substrate, - a second die fixed on the first die, and a package of wire bonding between the first and second die and the substrate. 116. The method of claim 115, wherein the package p-stack is provided: the package comprises a package, the package further comprising a spacer interposed between the first and second dies. 117. If the method of claim m is applied, the further step includes the provision of heat. Further comprising the attachment of 118. The method of claim 111, wherein the interconnecting ball is over the first package substrate further comprises cladding the 119. The method of claim </ br> The module in the molding compound is a mobile device comprising a multi-package module as claimed in claim 1 of the patent application. 121. A computer containing a multi-package module such as the patent application 笳圊坌 月 扪 扪 第 第 第 。. 155479.doc
TW100113640A 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages TWI469301B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US41159002P 2002-09-17 2002-09-17
US10/632,553 US7053476B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages
US10/632,552 US20040061213A1 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
US10/632,551 US6838761B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield
US10/632,568 US7205647B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
US10/632,549 US7064426B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having wire bond interconnect between stacked packages
US10/632,550 US6972481B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module including stacked-die package and having wire bond interconnect between stacked packages

Publications (2)

Publication Number Publication Date
TW201131731A true TW201131731A (en) 2011-09-16
TWI469301B TWI469301B (en) 2015-01-11

Family

ID=32034538

Family Applications (3)

Application Number Title Priority Date Filing Date
TW098139252A TWI378548B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages
TW092125625A TWI329918B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages
TW100113640A TWI469301B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW098139252A TWI378548B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages
TW092125625A TWI329918B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages

Country Status (6)

Country Link
EP (1) EP1547141A4 (en)
JP (3) JP4800625B2 (en)
KR (1) KR101166575B1 (en)
AU (1) AU2003272405A1 (en)
TW (3) TWI378548B (en)
WO (1) WO2004027823A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165906B2 (en) 2012-12-10 2015-10-20 Invensas Corporation High performance package on package
TWI716525B (en) * 2016-04-07 2021-01-21 美商艾馬克科技公司 Semiconductor package and manufacturing method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858854B2 (en) * 2003-06-24 2006-12-20 富士通株式会社 Multilayer semiconductor device
US7364945B2 (en) 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
JP5346578B2 (en) * 2005-03-31 2013-11-20 スタッツ・チップパック・リミテッド Semiconductor assembly and manufacturing method thereof
US7394148B2 (en) 2005-06-20 2008-07-01 Stats Chippac Ltd. Module having stacked chip scale semiconductor packages
SG130055A1 (en) 2005-08-19 2007-03-20 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices
SG130066A1 (en) 2005-08-26 2007-03-20 Micron Technology Inc Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices
JP5522561B2 (en) * 2005-08-31 2014-06-18 マイクロン テクノロジー, インク. Microelectronic device package, stacked microelectronic device package, and method of manufacturing microelectronic device
US8198735B2 (en) 2006-12-31 2012-06-12 Stats Chippac Ltd. Integrated circuit package with molded cavity
US8124451B2 (en) 2007-09-21 2012-02-28 Stats Chippac Ltd. Integrated circuit packaging system with interposer
KR20110124063A (en) * 2010-05-10 2011-11-16 하나 마이크론(주) Stacked Semiconductor Packages
KR101688005B1 (en) * 2010-05-10 2016-12-20 삼성전자주식회사 Semiconductor package having dual land and related device
KR20110124065A (en) 2010-05-10 2011-11-16 하나 마이크론(주) Stacked Semiconductor Packages
TWI406377B (en) * 2010-12-27 2013-08-21 Powertech Technology Inc Ball grid array package with three-dimensional pin 1 mark and its manufacturing method
JP6128993B2 (en) 2013-06-28 2017-05-17 キヤノン株式会社 Multilayer semiconductor device, printed circuit board, electronic device, and method of manufacturing multilayer semiconductor device
KR101563910B1 (en) * 2013-10-24 2015-10-28 앰코 테크놀로지 코리아 주식회사 EMI shielding device for semiconductor package and method for manufacturing the same
US9995641B2 (en) * 2013-10-30 2018-06-12 Honeywell International Inc. Force sensor with gap-controlled over-force protection
JP6357371B2 (en) * 2014-07-09 2018-07-11 新光電気工業株式会社 Lead frame, semiconductor device, and lead frame manufacturing method
US9666730B2 (en) * 2014-08-18 2017-05-30 Optiz, Inc. Wire bond sensor package
KR101961377B1 (en) * 2015-07-31 2019-03-22 송영희 Land Grid Array semiconductor package
WO2018125242A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Microelectronic devices designed with 3d stacked ultra thin package modules for high frequency communications
KR102283390B1 (en) 2019-10-07 2021-07-29 제엠제코(주) Semiconductor package for multi chip and method of fabricating the same
KR102325217B1 (en) 2020-05-18 2021-11-11 제엠제코(주) Multi die stack semiconductor package
CN114361063B (en) * 2021-11-24 2024-12-13 苏州科阳半导体有限公司 Substrate bonding method and substrate
CN115410929B (en) * 2022-10-09 2024-09-24 江苏华创微系统有限公司 Preparation method of stacked structure of flip chip and bottom chip

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222014A (en) * 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
JPH05283608A (en) * 1992-03-31 1993-10-29 Toshiba Corp Resin-sealed semiconductor device and manufacture thereof
US5247423A (en) * 1992-05-26 1993-09-21 Motorola, Inc. Stacking three dimensional leadless multi-chip module and method for making the same
FR2694840B1 (en) * 1992-08-13 1994-09-09 Commissariat Energie Atomique Three-dimensional multi-chip module.
US5436203A (en) * 1994-07-05 1995-07-25 Motorola, Inc. Shielded liquid encapsulated semiconductor device and method for making the same
US5652185A (en) * 1995-04-07 1997-07-29 National Semiconductor Corporation Maximized substrate design for grid array based assemblies
US6075289A (en) * 1996-10-24 2000-06-13 Tessera, Inc. Thermally enhanced packaged semiconductor assemblies
JP3644662B2 (en) 1997-10-29 2005-05-11 株式会社ルネサステクノロジ Semiconductor module
JPH11243175A (en) * 1998-02-25 1999-09-07 Rohm Co Ltd Composite semiconductor device
JPH11265975A (en) * 1998-03-17 1999-09-28 Mitsubishi Electric Corp Multi-layer integrated circuit device
JP2000058691A (en) * 1998-08-07 2000-02-25 Sharp Corp Millimeter wave semiconductor device
US6201302B1 (en) * 1998-12-31 2001-03-13 Sampo Semiconductor Corporation Semiconductor package having multi-dies
JP2000269411A (en) * 1999-03-17 2000-09-29 Shinko Electric Ind Co Ltd Semiconductor device and manufacture thereof
JP4075204B2 (en) * 1999-04-09 2008-04-16 松下電器産業株式会社 Multilayer semiconductor device
JP4284744B2 (en) * 1999-04-13 2009-06-24 ソニー株式会社 High frequency integrated circuit device
JP2000340736A (en) * 1999-05-26 2000-12-08 Sony Corp Semiconductor device, packaging structure thereof and manufacturing method of them
JP2001127246A (en) * 1999-10-29 2001-05-11 Fujitsu Ltd Semiconductor device
JP2001223326A (en) * 2000-02-09 2001-08-17 Hitachi Ltd Semiconductor device
JP2001358280A (en) * 2000-04-12 2001-12-26 Sony Corp Lead frame, its manufacturing method, semiconductor integrated circuit device, and its manufacturing method
JP3916854B2 (en) * 2000-06-28 2007-05-23 シャープ株式会社 Wiring board, semiconductor device, and package stack semiconductor device
JP2002040095A (en) * 2000-07-26 2002-02-06 Nec Corp Semiconductor device and mounting method thereof
JP4570809B2 (en) 2000-09-04 2010-10-27 富士通セミコンダクター株式会社 Multilayer semiconductor device and manufacturing method thereof
JP2002158326A (en) * 2000-11-08 2002-05-31 Apack Technologies Inc Semiconductor device and manufacturing method thereof
JP3798620B2 (en) * 2000-12-04 2006-07-19 富士通株式会社 Manufacturing method of semiconductor device
US6340846B1 (en) * 2000-12-06 2002-01-22 Amkor Technology, Inc. Making semiconductor packages with stacked dies and reinforced wire bonds
JP2002184936A (en) * 2000-12-11 2002-06-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002217354A (en) 2001-01-15 2002-08-02 Shinko Electric Ind Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165906B2 (en) 2012-12-10 2015-10-20 Invensas Corporation High performance package on package
TWI716525B (en) * 2016-04-07 2021-01-21 美商艾馬克科技公司 Semiconductor package and manufacturing method thereof

Also Published As

Publication number Publication date
JP5856103B2 (en) 2016-02-09
EP1547141A2 (en) 2005-06-29
AU2003272405A8 (en) 2004-04-08
JP2011181971A (en) 2011-09-15
TW201017853A (en) 2010-05-01
TWI378548B (en) 2012-12-01
WO2004027823A2 (en) 2004-04-01
TW200419765A (en) 2004-10-01
TWI329918B (en) 2010-09-01
TWI469301B (en) 2015-01-11
KR20050044925A (en) 2005-05-13
JP4800625B2 (en) 2011-10-26
EP1547141A4 (en) 2010-02-24
KR101166575B1 (en) 2012-07-18
JP2013211589A (en) 2013-10-10
AU2003272405A1 (en) 2004-04-08
JP2005539403A (en) 2005-12-22
WO2004027823A3 (en) 2004-05-21
JP5602685B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
TW201131731A (en) Semiconductor multi-package module having wire bond interconnection between stacked packages
TWI331392B (en) Module having stacked chip scale semiconductor packages
TWI322489B (en) Semiconductor package assembly
TWI379362B (en) Integrated circuit package system with interposer
TWI322448B (en) Semiconductor stacked multi-package module having inverted second package
US7211900B2 (en) Thin semiconductor package including stacked dies
JP5280014B2 (en) Semiconductor device and manufacturing method thereof
KR100421774B1 (en) semiconductor package and its manufacturing method
TWI278947B (en) A multi-chip package, a semiconductor device used therein and manufacturing method thereof
US7633144B1 (en) Semiconductor package
US20080164545A1 (en) Mems microphone package and method thereof
US20060163702A1 (en) Chip on board leadframe for semiconductor components having area array
TW200818454A (en) Interconnect structure and formation for package stacking of molded plastic area array package
JP2003273317A (en) Semiconductor device and its manufacturing method
CN111033732A (en) Stackable memory die using hybrid addition structure of wire bonds
JP2005183923A (en) Semiconductor device and its manufacturing method
JP2011101044A (en) Stacked package and method of manufacturing the same
US20070164411A1 (en) Semiconductor package structure and fabrication method thereof
CN101621041B (en) Package structure and method for chip reconfiguration
US20070052082A1 (en) Multi-chip package structure
JP2006527924A (en) Stackable integrated circuit package and method thereof
KR20080095797A (en) Laminated package with releasing layer and forming method thereof
CN101266966B (en) Multi-chip package module and manufacturing method thereof
US20080237831A1 (en) Multi-chip semiconductor package structure
JP2001007255A (en) High-efficiency heat radiating type chip dimension package method and device

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent