TW201131501A - Active knowledge managing system, method and computer program product for solving questions - Google Patents
Active knowledge managing system, method and computer program product for solving questions Download PDFInfo
- Publication number
- TW201131501A TW201131501A TW99106437A TW99106437A TW201131501A TW 201131501 A TW201131501 A TW 201131501A TW 99106437 A TW99106437 A TW 99106437A TW 99106437 A TW99106437 A TW 99106437A TW 201131501 A TW201131501 A TW 201131501A
- Authority
- TW
- Taiwan
- Prior art keywords
- knowledge
- file
- expert
- module
- keyword
- Prior art date
Links
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
201131501 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種知識管理系統(kn〇wiedge m_gement system,簡稱KM ),特別是指—種用於問題解 決之主動式知識管理系統。 【先前技術】 企業或組織中,經驗的累積十分重要;但若經驗知識僅 累積在某些個人身上’由於知識分散’不但無法發揮最大效 • 益且往往難以充分地傳承。因此,系統化的知識管理技術因 應而生。 現有知識管理相關技術例如: 1.中華民國第359778號發明專利「專家輔助問題解決系 統」’當中概略地提出當「問題解決方案索引模組」無法 針對所接收之問題訊息進行解答時,將與一「專家訊息 資料庫」連線’以取得專家之個人資料與專業領域訊束。 惟’該案訴求的重點在於「使用者可利用手寫方式提出 __」’但躲线本㈣運算執行技術,例如「問題解 決方案索引模組如何提供解答?」、「如何找到該問題對 應的專家?」並未著墨,理應只是採用一般檢索方式, 精準度有限。 2.中華民國第1286718號發明專利「用以整合知識管理系 統及數位學習系統之知識«整合系統及方法」揭露一 種動態推薦模組’當知識管理平台被使用時,會根據知 識貧料間的相關性及使用者的紀錄推薦學習資料庫中的 201131501 學習資料;當數位學習平台被使料,會根據使用者的 紀錄等推薦知識資料庫中的相關知識資料。惟此案技 術主要訴求在於知識管理與數位學習的整合,僅可被動 地供使用者檢索知識及學習課程,無法主動協助使用者 解決問題。 3·中華民國發明公開第2〇〇3〇〇239號案「電子化知識管理 之建構與分析方法」,藉由讓企業員工填寫智慧資本提案 2 ’並透過社群方式以網站與網際網路之方式互相交 流意見與想法。惟’此案對於知識之累積及再利用之資 訊判讀,係採_字方式,用此方法所搜尋出的結果容 易形成資料雜訊,給予使用者不需要之解答。 因此’有必要因應企業組織架構,提出能夠主動且有 效、精準地協助解決問題的管理資訊方案,藉以縮短使用者 尋求解答的時間’並且讓企業組織累積的知識發揮最大效益 且充分地傳承。 【發明内容】 因此’本發明之目的,即在提供-種能夠主動且精準地 協助問題解決之主動式知識管理系統。 於是,本發明用於問題解決之主動式知辭理系統,包 含-知識文件資料庫、-自動化回覆模組及一自動化分派模 組。 該知識文件資料庫儲存多數筆知識文件及該等知識文 件的特徵向量’每-知識文件以—多階層之工作技術妈進行 編號,且該知識文件之内容包含處理該案例之專家。較佳 201131501 地’本系統還包含—與該知識文件資料庫連結的知識文件管 理,組’依據-預設詞庫從該等知識文件中操取關鍵詞,並 计算每關鍵巧的權重,最後榻取權重較高之關鍵詞作為系 統關鍵詞’並依該等系統關鍵詞建立該等知識文件的特徵向 量。該知識文件管理模組計算每__關鍵詞的權重涉及以下參 數:該關鍵詞的長度、該關鍵詞所纟之知識文件中最長關鍵 弓的長度》亥關鍵gS]在所在之知識文件中出現次數、該關鍵 «司所在之知識文件中出現次數最多的關鍵詞的出現次數、該 • 知識文件資料庫中的知識文件總數,及該知識文件資料庫中 包含該關鍵詞的知識文件數量。 自動化回覆模組與該知識文件資料庫連結,供接收一問 題請求指令’該指令内容包括問題内容。較佳地,該問題請 求才曰·?内合還包含至少一該問題所涉及之工作技術碼。 、”亥自動化回覆模組將該問題内容轉換成一問題特徵向 量,並計算該問題特徵向量與該知識文件資料庫中該等知識 mu徵向量之間的_’將内積值高於一預設值之知識 _ 文件提供給使用者。 較佳地’當自動化回覆模組不存在内積值高於該預 設值的知識文件,則依據該問題所對應之工作技術碼,找出 上一層之知識類別所涵蓋的所有知識文件,重新計算内積。 自動化分派模組與該自動化回覆模組連結,當該自動化 回覆模組計算内積並判斷不存在内積值高於該預設值之知 識文件時,呼叫該自動化分派模組,該自動化分派模組依據 該問題所對應之工作技術碼在該知識文件資料庫中搜尋出 201131501 曰處理該工作技術碼對應之案例的專家,計算每位專家的符 合程度’將專家依符合程度排序後,建議〇〜5位專家並通 知該專家進行回覆。 較佳地,本系統還包括一專家地圖,且該知識文件資料 庫中儲存有專家檔案,該專家樓案中記錄有每位專家之向度 資料;且該自動化分派模組還擷取所搜尋出之專家的向度資 料,依據該向度資料計算與該問題之間的符合度。該向度資 料包括量化的年資向度、專業密集向度及知識加值向度。計 算符合度之公式為·· 符合度’X年資向度.x專業密集向度如知識加値向度 其中,w,u w3為預先訂定之分別代表各向度所 佔的權重。 較佳地,當自動化分派模組依據該工作技術㈣尋不到 專家’則依據該工作技術碼找出上_層之知識類別所涵蓋的 所有知識文件,重新搜尋專家。 較佳地,本系統還包含-與該知識文件資料庫連結的知 識地圖’將利用該工作技術碼進行編碼的知識文件以二維的 方式來顯示,產生第-階編碼對應第二階編碼、第二階編碼 對應第三階編碼及第一階編碼對應第三階編瑪的地圖。 本發明之另-目的在於提供一種電腦程式產品,當電腦 讀取其中的電腦程式並執行後’作用如前述用於問題解決之 主動式知識管理系統。 種用於問題解決之主動 ’並包含以下步驟:(a) 本發明之再一目的在於提供一 式知識管理方法,由一伺服器執行 201131501 接收-問題請求指令’該指令内容包括問題内容,並將該問 題内容轉換成一問題特徵向量;(b)計算該問題特徵向量與 -知識文件資料庫中多數筆知識文件之特徵向量之間的内 積,該知識文件資料庫中每一知識文件以一多階層之工作技201131501 VI. Description of the Invention: [Technical Field] The present invention relates to a knowledge management system (KM), and more particularly to an active knowledge management system for problem solving. [Prior Art] Accumulation of experience is important in a business or organization; but if empirical knowledge accumulates only in certain individuals, 'distributed knowledge' is not the most effective and often difficult to fully inherit. Therefore, systematic knowledge management techniques are born. Existing knowledge management related technologies such as: 1. The Republic of China No. 359778 invention patent "Expert-assisted problem solving system" generally proposes that when the "Problem Solution Index Module" cannot answer the received question message, An "Expert Information Database" is connected to obtain expert personal data and professional domain communications. However, the focus of the case's appeal is that "users can use handwriting to propose __"' but do not use the algorithm (eg, "How does the problem solution index module provide answers?", "How to find the corresponding problem The experts?" is not in the ink, it should be just a general search method, the accuracy is limited. 2. The Republic of China No. 1286718 invention patent "integration of knowledge management system and digital learning system knowledge «integration system and method" reveals a dynamic recommendation module 'when the knowledge management platform is used, it will be based on knowledge and poor materials Correlation and user records recommend the 201131501 learning materials in the learning database; when the digital learning platform is enabled, the relevant knowledge data in the knowledge database will be recommended based on the user's records. However, the main appeal of this case technology lies in the integration of knowledge management and digital learning. It can only passively provide users with knowledge and learning courses, and cannot actively assist users in solving problems. 3. The Republic of China Invention Disclosure No. 2〇〇3〇〇239, “Construction and Analysis Method of Electronic Knowledge Management”, by allowing employees to fill out the Smart Capital Proposal 2 'and use the community to use the website and the Internet Ways to exchange ideas and ideas. However, in this case, the information interpretation of the accumulation and reuse of knowledge is based on the _ word method. The results found by this method are easy to form data noise, giving the user unnecessary answers. Therefore, it is necessary to propose a management information plan that can actively and effectively and accurately assist in solving problems in response to the organizational structure of the enterprise, so as to shorten the time for users to seek answers, and to maximize the benefits of the accumulated knowledge of the organization. SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide an active knowledge management system capable of actively and accurately assisting problem solving. Thus, the present invention provides an active knowledge system for problem solving, including a knowledge file database, an automated reply module, and an automated dispatch module. The knowledge file database stores a plurality of knowledge files and feature vectors of the knowledge files. Each knowledge file is numbered by a multi-level work technology mother, and the content of the knowledge file includes an expert who processes the case. Preferably, 201131501, the system further includes - knowledge file management linked to the knowledge file database, the group 'based on the default vocabulary to retrieve keywords from the knowledge files, and calculate the weight of each key skill, and finally The keyword with higher weight is used as the system keyword' and the feature vector of the knowledge file is established according to the system keywords. The knowledge file management module calculates the weight of each __ keyword to refer to the following parameters: the length of the keyword, the length of the longest key bow in the knowledge file of the keyword, and the key of the key gS] appear in the knowledge file The number of occurrences, the number of occurrences of the most frequently occurring keywords in the knowledge file of the key, the total number of knowledge files in the knowledge file database, and the number of knowledge files containing the keyword in the knowledge file database. The automated reply module is coupled to the knowledge file database for receiving a question request command. The content of the command includes the content of the question. Preferably, the question is asked? The internal combination also contains at least one working technology code involved in the problem. "Hai automation reply module converts the problem content into a problem feature vector, and calculates the _' between the problem feature vector and the knowledge m quotation vector in the knowledge file database to increase the inner product value by a preset value The knowledge _ file is provided to the user. Preferably, when the automatic reply module does not have a knowledge file whose inner product value is higher than the preset value, the knowledge class of the upper layer is found according to the working technical code corresponding to the problem. All the knowledge files covered, recalculating the inner product. The automatic dispatch module is linked with the automated reply module, and when the automated reply module calculates the inner product and judges that there is no knowledge file whose inner product value is higher than the preset value, the call is made. The automatic dispatching module, the automated dispatching module searches the knowledge file database for the 201131501 专家 expert who processes the case corresponding to the working technical code according to the working technical code corresponding to the problem, and calculates the degree of conformity of each expert' After the experts sorted according to the degree of conformity, it is recommended to 〇~5 experts and notify the expert to reply. Preferably, the system also includes An expert map, and an expert file is stored in the knowledge file database, and each expert's dimension data is recorded in the expert building; and the automated dispatching module also retrieves the dimension data of the searched expert. Calculate the degree of conformity with the problem based on the dimension data. The dimension data includes the quantitative annual dimension, the professional intensive dimension, and the knowledge added dimension. The formula for calculating the degree of conformity is ·· To the degree of .x professional intensive degree, such as knowledge plus degree, w, u w3 is the pre-determined weight representing the degree of each dimension. Preferably, when the automatic dispatch module is based on the working technology (four) To the expert's, based on the work technology code, find all the knowledge files covered by the knowledge category of the upper layer, and re-search the experts. Preferably, the system also includes - the knowledge map linked to the knowledge file database will be utilized The knowledge file encoded by the working technology code is displayed in a two-dimensional manner, and the first-order encoding corresponds to the second-order encoding, the second-order encoding corresponds to the third-order encoding, and the first-order encoding corresponds to the third. Another aspect of the present invention is to provide a computer program product which, when the computer reads the computer program and executes it, functions as an active knowledge management system for problem solving as described above. Actively includes the following steps: (a) A further object of the present invention is to provide a knowledge management method in which a server executes a 201131501 receiving-question request instruction, the content of the instruction includes a problem content, and converts the content of the question into a question. The feature vector; (b) calculating the inner product between the feature vector of the problem and the feature vector of the majority of the knowledge file in the knowledge file database, and each knowledge file in the knowledge file database is operated by a multi-level function.
術碼進行編號,且該知識文件之内容包含處理該案例之專 家;及(C)依據該内積值判斷是否存在内積值高於一預設 值之知識文件,若存在,則進行步驟(d)提供給使用者, 若不存在’則進行步驟(e)依據該問題所對應之工作技術 碼在該知識文件資料庫中搜尋出曾處理該卫作技術碼對應 之案例的專家,並通知該專家進行回覆。 本發明之功效在於,利用自動化回覆模組以及自動化分 派模組的搭配設計,將使用者輸入的問題自動查詢出精準的 答覆,或精準地找出專家並通知專家回覆,達到主動協助問 題解決的目的。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在以 下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚 的呈現。 參閱圖1,本發明用於問題解決之主動式知識管理系統 100之較佳實施例適合供公司企業或各種組織(以下統稱企 業)使用,其架構於一網站伺服器,可供使用者透過電腦7 連線提出待解決的問題而獲得適當的解決。該系統1〇〇包含 知識文件管理模組1、一知識文件資料庫2、一知識地圖 3、一專家地圖4、—自動化回覆模組5,及一自動化分派模 201131501 組6。該伺服器具有一中央處理單元( 處理單元料並執行-記憶體中之程式H 當該中央 女杜;Ϊ田祕4 1 9々’作用如該知識 文件S理模,且1、知識地圖3、專家 組5,及自動化分派模組6。 自動化回覆模 知識文件資料庫2例如為光碟片#外_ 是該词服器的記憶體,其中預先儲存 ',或者 作為分耕2其虑—上 系之夕數葦知識案例 /内識案例的㈣訂稱為知識文 牛,内谷包括案例資料、處理該案例之專 ㈣案例之專家相當於被標記在該案例中。且該等::文: 疋以一特定之多階層編碼一工作 η…一 ’作技術碼(以下簡稱工技碼) 2 Γ 例所㈣工技碼共三階層,其中第一階層 ’第一階層2碼’第三階層3碼,共6碼可代表所屬 ’實際㈣内容可依各個企業進行設計。 配合參閱圖2,知識文件㈣餘i需執行前置工作以 利後續自動化回覆模組5使用。知識文件管理模組【的前置 工作包含建立-系統_詞#料庫u,及針對知識文件資 枓庫2中的所有知識文件建立特徵向量詳細步驟如下: 步驟su—知識文件管理模組1依據-預設詞庫從知識 文件資料庫2之該等知識文件中操取騎詞。前述預設詞庫 可依據現有中文詞庫搭配柯如企業内部之專家提供的專業 領域關鍵詞所構成。 ^驟S12利用【式】】計算每一掘取出之關鍵詞的權 重並儲存之’權重高的關鍵詞視為對於技術解答而言較具意 義的詞。 201131501The code is numbered, and the content of the knowledge file includes an expert who processes the case; and (C) judges whether there is a knowledge file whose inner product value is higher than a preset value according to the inner product value, and if yes, proceeds to step (d) Provided to the user, if there is no ', then step (e) according to the work technical code corresponding to the problem, search the knowledge file database for the expert who has processed the case corresponding to the technical code, and notify the expert Reply. The utility model has the advantages that the automatic reply module and the automatic dispatch module are combined to design, and the user input questions are automatically queried for accurate answers, or the experts are accurately identified and the experts are notified to reply, thereby actively assisting the problem solving. purpose. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the drawings. Referring to FIG. 1, a preferred embodiment of the active knowledge management system 100 for problem solving of the present invention is suitable for use by a company or various organizations (hereinafter collectively referred to as enterprises), and is constructed on a web server for users to access a computer. 7 Connect the problem to be solved and get an appropriate solution. The system 1 includes a knowledge file management module 1, a knowledge file database 2, a knowledge map 3, an expert map 4, an automated reply module 5, and an automated dispatch module 201131501 group 6. The server has a central processing unit (processing unit material and executing - program H in the memory when the central female Du; Putian secret 4 1 9 々 ' role as the knowledge file S model, and 1, knowledge map 3 , expert group 5, and automatic dispatch module 6. Automated replying model knowledge file database 2, for example, CD-ROM #外_ is the memory of the word server, which is stored in advance, or as a sub-farming 2 The number of eves of the 苇 knowledge case / internal knowledge case (4) is called the knowledge literary cow, the inner valley includes the case data, the expert who handles the case (4) the case is equivalent to being marked in the case. And these:: : 疋 疋 一 一 一 特定 特定 特定 特定 特定 特定 特定 特定 特定 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一Level 3 yards, a total of 6 yards can represent the actual 'fourth' content can be designed according to each enterprise. With reference to Figure 2, knowledge file (4) Yu i need to perform pre-work to facilitate the use of subsequent automated reply module 5. Knowledge file management module Group [pre-work includes inclusion - The system_word# 料库u, and the eigenvectors for all the knowledge files in the knowledge file resource library 2 are as follows: Step su-the knowledge file management module 1 according to the preset vocabulary from the knowledge file database 2 The above-mentioned default vocabulary can be constructed according to the existing Chinese vocabulary and the professional domain keywords provided by experts in Keru Enterprise. ^S12 uses [Formula] to calculate each excavation Keyword weights and stored 'highly weighted keywords' are considered more meaningful words for technical solutions. 201131501
【式1】 其中,IMFi,j代表知識文件i中關鍵詞』的權重,、代 表關鍵詞j的長度,Li,max代表知識文件i中最長的關鍵詞的 長度,tfi,j代表關鍵詞j在知識文件士中出現的次數,味mu 代表知識文件i中出現次數最多的關鍵詞的出現次數’叫 代表含關鍵詞j的知識文件數量,N代表知識文件資料庫2 中的知識文件總數。隨著知識文件資料庫2中的内容改變, 本步驟可定期重新執行,藉此更新權重值。 步驟S13-將該等關鍵詞j依權重排序後,取出權重較 高者作為系統關鍵詞,儲存於該系統關鍵詞資料庫U中。 當系統關鍵詞利用以上步驟被決定,即可建立每 文件的特徵向量。[Formula 1] where IMFi, j represents the weight of the keyword in the knowledge file i, represents the length of the keyword j, Li, max represents the length of the longest keyword in the knowledge file i, tfi, j represents the keyword j The number of occurrences in the knowledge document, the taste mu represents the number of occurrences of the most frequently occurring keyword in the knowledge file i 'represents the number of knowledge files containing the keyword j, and N represents the total number of knowledge files in the knowledge file database 2. As the content in the knowledge document database 2 changes, this step can be re-executed periodically, thereby updating the weight value. Step S13 - After the keywords j are sorted according to the weights, the higher weights are taken as system keywords and stored in the system keyword database U. When the system keyword is determined using the above steps, the feature vector of each file can be established.
步驟S14—依據系統關鍵詞A . . u 中的關鍵詞j。這些關鍵詞例如為 其在該知識文件i的權重是利用 wil、Wi2、...Wij...,及 Wjn。Step S14 - According to the keyword j in the system keyword A . . u . These keywords are, for example, whose weight in the knowledge file i is wil, Wi2, ... Wij..., and Wjn.
1双同重,如【式2】〇 %)} r .........【式2】1 double weight, such as [Formula 2] 〇 %)} r ......... [Formula 2]
歹骅—枨叹一問題請求指令。該 。該指令内容包含使 向量 輸入 201131501 者在如圖4所不之操作畫面填寫輸入的—問題内容(包括主 旨、說明)m組該問題所涉及的工技碼。 步驟S22-將該問題主旨及/或說明内容轉換成—問題 特徵向量。文字内容轉換成特徵向量之技術可參考圖 S14&S15。 哪 v驟S23—另一方面,依據該工技碼在知識文件資料庫 中找出該知識類別下的所有知識文件。 步驟S24-將步驟S22所得到的問題特徵向量,與步驟 S23所得到的知識文件的特徵向量—計算内積,藉由該内 積值作為問題與知識文件之間相似程度的判斷依據。 舉例來說,假設系統關鍵詞包括A、B、c及D,一使 者提出的問題Q包含A、B兩個系統關鍵詞,且利用【式 】汁算出權重值分別為〇 4、〇 4 ;則在步驟s22令可得到 問題特徵向量如下: Q= {(A,0.4),(B,0.4),(C,0),(〇,0)} 假設步驟S23找出的知識文件有兩筆,其特徵向量分 別為: D1 = {(A,0.5),(B,0.3),(C,0),(D,0)} 〇2= {(A,0.2),(B,0),(C,0.3),(D,0.4)} 則在步驟S24計算問題q與知識文件m的内積值為 〇·4χ〇.5+().4χ().3+_=() 32,問題Q與知敎件⑴的内積 值為 0.4χ〇.2 + 0+〇+〇=〇.〇8。 步驟S25—依據步驟S24所求出之結果,判斷是否存在 内積值高於—預設值者?若存在,則進入步驟S26,若否, 10 201131501 則進入如圖5所示之流程。關於臨界值的定義方式,是事前 計算知識文件資料庫2中的所有知識文件兩兩間的相似 度,並經由正規化讓相似度介於〇到1之間;接著將取得之 相似度從大到小排序後再從中挑選相似度約位於2 〇 %的相 似度值作為系統篩選相似案例時的臨界值。定義臨界值的有 助於提供使用者真正需要的相關的案例,協助使用者快速的 解決問題。 步驟S26—將内積值高於預設值之知識文件提供給使 φ 用者參考。系統100對應本步驟所呈現的操作畫面如圖6 所示,使用者可藉由點選其中一知識文件而觀看詳細知識内 容並進入知識地圖3。 在此需特別說明的是,本發明之知識地圖3為一有效的 知識查询及知識呈現工具。當知識文件數量日益龐大,對於 知識文件的擷取及呈現方式變得更重要4亥知識地圖3利用 前述工技碼編碼系統進行編碼的知識文件以二維的方式來 顯不,產生第一碼對應第二三碼之地圖(如圖7所示)、第 • 二三碼對應第四五六碼之地圖(如圖8所示)、第一碼對應 第四五六碼之地圖(如圖9所示)。此三張地圖為知識地圖 3的基本架構’可供閱圖者快速了解知識之^點及解讀其意 義。 步驟S27自動化回覆模組5還可接收一反饋指令,該 反饋指令是使用者點選如圖6所示晝面中「上述建議已足夠 幫助我解決問題」按鍵與「我需要專家的協助」按鍵其中之 -所產生。當使用者點選前者按鍵’自動化回覆模組5依據 201131501 所接收指令判斷為正向反饋指令,則可結束流程;當使用者 點選後者按鍵,自動化回覆模組5將呼叫自動化分派模组 6,接著由自動化分派模組6執行圖1〇所示步驟。 前述步驟S25 _,若該問題特徵向量與各個知識文件 的特徵向量之内積值皆未高出預設值,自動化回覆模組5 執行如圖5所示之流程,包含以下步驟。 步驟S31-自動化回覆模組5依據問題請求指令中的工 技碼’找出上-層之知識類別所涵蓋的知識文件,也就是擴 大搜尋。 步驟S32—將該問題特徵向量與步驟S31所得到的知識 文件的特徵向量一 一計算内積。 ㈣S33-依❹驟S32之計算结果,判斷是否存在内 積值高於該預設值者?若存在,則進入步驟⑽將内積值 高於該預設值之知識文件提供給使用者參考,使用者可針對 該步驟S34之結果進行反馈,同樣地,若自動化回覆模組5 在步驟S36中未能接收到正向反饋結果,則呼叫自動化分 派模組6;若不存在内積值高於預設值之知識文件則進入 步驟S35 ’告知使用者無相似案例可供參考,並呼叫自動化 分派模組6。當然,在不存在内積值高於預設值之知識文件 的情況下,本發明也可以設計為再次執行類似步驟31之步 驟,擴大搜尋範圍直到找到可供使用者參考之知識文件,或 直到確定知識文件資料庫2中不存在可供使用者參考之知 識文件才停止。 在前述步驟S35,以及步驟S27、步驟S36未能接收正 201131501 向反饋指令的情況下’自動化分派模M 6被呼叫而執行圖 ίο所示流程。該流程包含以下步驟:歹骅 - sigh a question request instruction. The. The content of the instruction includes the input of the vector input 201131501 in the operation screen as shown in Fig. 4 - the problem content (including the subject matter, description) m group of work code involved in the problem. Step S22 - Convert the subject matter and/or the description of the problem into a problem feature vector. The technique for converting text content into feature vectors can be referred to Figure S14 & S15. Which v step S23 - on the other hand, all knowledge files under the knowledge category are found in the knowledge file database based on the work code. Step S24 - Calculate the inner product of the problem feature vector obtained in step S22 and the feature vector of the knowledge file obtained in step S23, and use the inner value as the basis for judging the degree of similarity between the problem and the knowledge file. For example, suppose the system keywords include A, B, c, and D. A question Q proposed by the messenger includes two system keywords A and B, and the weight values calculated by using the formula are 〇4 and 〇4; Then, in step s22, the problem feature vector is obtained as follows: Q= {(A, 0.4), (B, 0.4), (C, 0), (〇, 0)} Assume that the knowledge file found in step S23 has two strokes. The eigenvectors are: D1 = {(A,0.5), (B,0.3),(C,0),(D,0)} 〇2= {(A,0.2),(B,0), (C, 0.3), (D, 0.4)} Then, in step S24, the inner product value of the problem q and the knowledge file m is calculated as 〇·4χ〇.5+().4χ().3+_=() 32, the problem The inner product value of Q and the knowledge component (1) is 0.4χ〇.2 + 0+〇+〇=〇.〇8. Step S25—According to the result obtained in step S24, determining whether there is an inner product value higher than the preset value? If yes, go to step S26, if no, 10 201131501 will enter the flow shown in FIG. 5. The definition of the critical value is to calculate the similarity between the two knowledge files in the knowledge file database 2 in advance, and to make the similarity between 〇 and 1 through normalization; then the similarity obtained from the large After the small sorting, the similarity value with the similarity of about 2% is selected as the critical value when the system screens similar cases. Defining thresholds helps provide relevant cases that users really need to help users solve problems quickly. Step S26—Providing the knowledge file whose inner product value is higher than the preset value to the user reference of φ. The operation screen presented by the system 100 corresponding to this step is as shown in FIG. 6. The user can view the detailed knowledge content and enter the knowledge map 3 by clicking one of the knowledge files. It should be particularly noted here that the knowledge map 3 of the present invention is an effective knowledge query and knowledge presentation tool. When the number of knowledge files is increasing, the way of capturing and presenting knowledge files becomes more important. The knowledge files encoded by the above-mentioned work code coding system are displayed in two dimensions, and the first code is generated. Corresponding to the map of the second three yards (as shown in Figure 7), the map of the second and third yards corresponding to the fourth and fifth yards (as shown in Figure 8), and the first code corresponding to the map of the fourth and fifth yards (as shown in the figure) 9)). These three maps are the basic structure of the knowledge map 3, which allows the reader to quickly understand the knowledge and understand its meaning. In step S27, the automated reply module 5 can also receive a feedback command, which is a user clicking the button "The above suggestions are enough to help me solve the problem" and the "I need expert assistance" button in the figure shown in FIG. Among them - produced. When the user clicks the former button 'automatic reply module 5' to determine the forward feedback command according to the command received by 201131501, the process can be ended; when the user clicks the latter button, the automated reply module 5 will automatically dispatch the call module 6 Then, the steps shown in FIG. 1B are performed by the automated dispatch module 6. In the foregoing step S25_, if the product value of the problem feature vector and the feature vector of each knowledge file is not higher than the preset value, the automated reply module 5 executes the flow shown in FIG. 5, and includes the following steps. Step S31 - The automated reply module 5 finds the knowledge file covered by the upper-layer knowledge category according to the work code ' in the question request instruction, that is, expands the search. Step S32 - calculating the inner product of the problem feature vector and the feature vector of the knowledge file obtained in step S31. (4) S33- According to the calculation result of step S32, it is judged whether there is any inner value higher than the preset value? If yes, proceed to step (10) to provide a knowledge file with an inner product value higher than the preset value to the user for reference. The user can feedback the result of the step S34. Similarly, if the automatic reply module 5 is in step S36. If the forward feedback result is not received, the automatic dispatching module 6 is called; if there is no knowledge file whose inner product value is higher than the preset value, the process proceeds to step S35 'informing the user that there is no similar case for reference, and calling the automatic dispatching mode Group 6. Of course, in the case where there is no knowledge file whose inner product value is higher than the preset value, the present invention can also be designed to perform the steps similar to step 31 again, expand the search range until a knowledge file available for the user is found, or until the determination is made. There is no knowledge file available for user reference in Knowledge Document Database 2 to stop. In the foregoing step S35, and in the case where the step S27 and the step S36 fail to receive the positive 201131501 to the feedback command, the automated dispatch module M6 is called to execute the flow shown in Fig. The process consists of the following steps:
步驟S41—自動化分派模組6依據由自動化回覆模组$ 傳來的問題請求指令,並依據指令中的工技碼透過專家地圖 4找尋對應該至少-工技碼的候選專家。詳言之,知識文件 資料庫2中儲存有一專家檔案’該專家檔案中記錄有每位專 家處理過之案例、案例所㈣之工技碼及向度資料(說明於 下文)。本發明專家地圖4是一有效的專家查詢及專家資源 呈現工具,可供使用者了解每—專家在解決專業問題方面的 特質’並以圖11所示之雷達圖或列表方式呈現。本實施例 是藉由問題言青求指+中的i技碼找到對應該工技碼的專 家,也就是處理過相關案例的專家。 步驟S42-確認是否找到候選專家?若有找到,即進入 步驟S43;若未能找到候選專家,則依據該1技碼找出上一 層之工技碼所對應相關的專家(步驟S47),也就是擴大搜 尋範圍,並回到步驟S42,直到確認找到候選專家或直 家地圖4之資料中沒有與該問題相關之專家為止二 步驟S43_t找到候選專家’在此步驟讀取找到之專家 的向度資料。在此需制說明較,本發明預建之專家地圖 4乃依據企業員工檔案資料、知識文件(内容包含案件處理 人員)並配合知識地圖3所建立,針對每一位專家以「年 資」、「專業密集」及「知識加值」三種屬性量化為參數,再 麟此三種參數稱為向度㈣,以便計算專家與問題之間的 符合程度。詳言之,知識地圖之分類法是建立專家地圖的基 13 201131501 礎,專家地圖架構在知識地圖之上 包括專業密集度及知識 加值向度皆以工技碼分類。前抽 J这二種向度資料分別說明如 下。 (1) 年資向度包含設計年資、監造年資、專案管理 但不以此為限。各年資資料由企業提供。 八 (2) 專業㈣向度可依該員1所處理過之工作類型對應 的工技碼,以及該卫技碼的.[作時數作為分析資料資料由 企業提供。本實施例中’專業密集向度數值計算方法,是以 該員工在某領域填的工作時數除以年資所得,代表該員工在 此領域的分數。 Φ (3) 知識加值向度是將發生於知識管理活動中產生的 價值量化。所謂「加值」即輸出量與輸入量相減而得,知識 管理過程中增加的知識量,在本發明是利用模糊語詞(如巧 terms )經過兩個階段的模糊算數計算而得。 本發明將問題求解活動之「原創知識過程」分成五個描 述。司·不重要、稍重要、重要、报重要及非常重要;在「知 識加值過程」描述詞之分類,採用焦點群體訪談法來獲得專 家之建議’亦即對於-個問題之回覆能產生多少貢獻來評估 _ 問題求解活動之知識加值等級。訪談結果對於問題求解活動 之知識加值過程」中分成五個描述詞:沒有貢獻、稍有貢 獻、有貢獻、相當有貢獻,及非常有貢獻。 本發明有關原創知識過程及知識加值過程程序之量測 是依據參與者與管理人之專家判斷而得,而專家之判斷結果 以模糊語詞表示,因此必須建立各語詞之模糊隸屬度函數。 14 201131501 本發明以「鐘形函數(bell-shaped function)」來模擬專家判 斷模糊語詞之模糊隸屬度函數,鐘形函數具有可訓練 (trainable)之特性,表達如【式3】所示: MF(x) = e 1 σ J 【式 3】 x。:為值域(universe of discourse)中之某一變數值 :隸屬度函數值 μ :為鐘形函數之中間值(mean) σ :為鐘形函數之偏異值(spread) φ 由【式3】可知,在建立模糊隸屬度函數之前要先得知 各描述詞之中間值(means)與偏異值(spread),本發明以網路 系統問卷之方式,將知識案例描述出並呈現給受訪人(包括 問題提問人及管理人等),並客觀要求受訪人對知識文件之 原創知識過程及知識加值過程程序作最適當評量並選擇最 合適之「原創知識描述詞」及「知識加值描述詞」《在取得 受訪人之評量結果後,再以Kohonen特徵圖(Kohonen Feature Map)來計算中間值。Kohonen學習法則(Kohonen Φ Learning Rule)包含兩個階段,如【式4】與【式5】所示。 1. 第一階段:相似度匹配階段(similarity matching) \x-^\ = Min {|^-w;|} 【式 4】 k :第k個重複 λ .群集w的正規化價值 使輸入值X與最接近的第i群集之中間值(<)差異縮到 最小。 2. 第二階段:更新階段(updating) 15 201131501 + ;; * (Λ: - li;f )Step S41—the automatic dispatch module 6 searches for the problem request instruction transmitted by the automated reply module $, and searches for the candidate expert corresponding to at least the work code through the expert map 4 according to the work skill code in the instruction. In detail, the knowledge file database 2 stores an expert file. The expert file records the case code and the dimension data (described below) of each case processed by the expert. The expert map 4 of the present invention is an effective expert inquiry and expert resource presentation tool for the user to understand the characteristics of each expert in solving professional problems' and presented in the form of a radar chart or a list as shown in FIG. In this embodiment, an expert who corresponds to the technical code is found by the i-code of the problem, and the expert who has dealt with the relevant case. Step S42 - Confirm whether a candidate expert is found? If yes, the process proceeds to step S43; if the candidate expert cannot be found, the expert corresponding to the work code of the upper layer is found according to the 1 skill code (step S47), that is, the search range is expanded, and the process returns to the step. S42, until it is confirmed that there is no expert related to the problem in the data of the candidate expert or the direct map 4, the second step S43_t finds the candidate expert's reading the foundness information of the expert in this step. In this case, the pre-built expert map 4 is based on the employee's file data, knowledge files (including the case handling personnel) and the knowledge map 3, and is designed for each expert with "years" and " The three attributes of “professional intensive” and “knowledge added value” are quantified as parameters, and the three parameters are called dimension (4), in order to calculate the degree of conformity between experts and problems. In particular, the classification of knowledge maps is the basis for the establishment of expert maps. The expert map structure is based on knowledge maps including professional intensity and knowledge. The value-added dimension is classified by work code. The two kinds of divergence data of the former pumping J are explained as follows. (1) The seniority degree includes designing the seniority, supervising the seniority, and project management, but not limited to this. The annual information is provided by the company. Eight (2) Professional (4) Dimensions can be based on the work skill code corresponding to the type of work handled by the member 1 and the code of the health code. [The hours are used as analytical data. In this embodiment, the professional intensive numerical calculation method is based on the employee's work hours in a certain field divided by the seniority income, and represents the employee's score in this field. Φ (3) Knowledge plus value is the quantification of the value that will occur in knowledge management activities. The so-called "appreciation" means that the output quantity is subtracted from the input quantity, and the amount of knowledge added in the knowledge management process is obtained by using fuzzy words (such as clever terms) through two stages of fuzzy arithmetic calculation. The present invention divides the "original knowledge process" of the problem solving activity into five descriptions. Division is not important, slightly important, important, important and very important; in the "knowledge value added process" description of the word classification, the use of focus group interviews to obtain expert advice 'that is, how many responses to a question Contribution to evaluate _ problem solving activity knowledge value rating. The results of the interviews are divided into five descriptors for the knowledge-added process of problem-solving activities: no contribution, little contribution, contribution, considerable contribution, and very contribution. The measurement of the original knowledge process and the knowledge-added process procedure of the present invention is based on expert judgments of the participants and the administrator, and the expert judgment results are expressed in fuzzy words, so the fuzzy membership function of each word must be established. 14 201131501 The present invention simulates a fuzzy membership function of a fuzzy word by a "bell-shaped function", and the bell-shaped function has a trainable characteristic, and the expression is as shown in [Formula 3]: MF (x) = e 1 σ J [Equation 3] x. : is a variable value in the universe of discourse: membership function value μ: is the middle value of the bell function (mean) σ: is the discriminant value of the bell function (spread) φ by [Equation 3 It can be seen that before the establishment of the fuzzy membership function, the median and spread of each descriptor are known. The present invention describes and presents the knowledge case to the recipient in the form of a network system questionnaire. Interviewers (including questioners and administrators, etc.), and objectively require respondents to make the most appropriate assessment of the original knowledge process and knowledge-added process procedures of knowledge documents and select the most appropriate "original knowledge descriptors" and " Knowledge added descriptive words "After obtaining the results of the interviewee's assessment, the Kohonen Feature Map is used to calculate the median value. The Kohonen Φ Learning Rule consists of two phases, as shown in Equation 4 and Equation 5. 1. The first stage: similarity matching stage (similarity matching) \x-^\ = Min {|^-w;|} [Equation 4] k: kth repetition λ. The normalized value of the cluster w makes the input value The difference between the X and the nearest i-th cluster (<) is minimized. 2. The second stage: the update stage (2011) 15 201131501 + ;; * (Λ: - li;f )
【式5】 Y :第k個重複的合適學習係數。 在更新階段,第,·個群集的中間值,其第*個重複將適 應之後新來的訓練資料义。未有新值進入的群集,將保持中 間值不變。 上述的Kohonen學習法是以群集(clusteHng)之方式,決 定輸入與輸出節點有關的隸屬度函數之中間值。群集方法是 將相似之資料點聚集在一起,並且決定這些資料的中間值。 這些每一個相似群組都以一個模糊語詞表示,而這些群組的 令間值就是模糊語詞的中間值。為了建立鐘形函數之模糊隸 屬度函數尚須決疋另一參數一偏異值(Spread),本發明應 「第一鄰近探索法(the first_nearest_neighb〇rh〇〇d heuristic)」來找出偏異值,如【式6】所示。 σ 丨y 【式6】 σ :偏異值 w' ’第i個群集的中心值 ^ nearest · 最接近的群集中 心值 r :兩個相鄰的模糊語詞的重疊比例 當知識加值模式在前面已經建立完成,接下來將計算在 輸入與輸出之間的知識改變量。本發明藉由知識加值過程的 兩個階段一原創知識過程及知識加值過程,以模糊語詞呈現 並計算改變幅度,也就是利用「模糊算數(fuzzy anthmetic)」,以模糊乘法對模糊集過程進行計算。假設以 16 201131501 第丨個知識管理活動為例,原創知識過程及知識加值過程之 模糊語詞分別為3與心則知識加值計算公式如【式7】所示: 【式7】 估計知識加值過程中第,個知識管理活動之知識價值增 加量 3 :原創知識過程之模糊語詞 尽:知識加值過程之模糊語詞 為了計算多個知識管理活動的知識加值結果必須將模糊語 詞解模糊4分析現有解模糊方法之後,考量符合高斯模糊隸屬 零度函數之計算效率,採用「最大中間法(max— 〇f嶋㈣」作 為解模糊之方法。知識加值之加法計算如【式8】所示。 κνΑ〇,αΙ = ΣκνΑ 【式 8】 尺: «個知識管理活動的知識加值總和 尺厂為:第ί個知識管理活動的解模糊之知識加值 上述的知識管理活動的知識加值總和,是用來呈現知識社群 的價值總量。[Formula 5] Y: Appropriate learning coefficient of the kth repetition. In the update phase, the median value of the first cluster, the *th repetition will be applied after the new training data. Clusters that do not have new values will remain unchanged. The Kohonen learning method described above is a cluster (clusteHng) method that determines the intermediate value of the membership function associated with the input and output nodes. The cluster approach is to gather similar data points and determine the median of these data. Each of these similar groups is represented by a vague word, and the inter-value of these groups is the median of the vague words. In order to establish the fuzzy membership function of the bell-shaped function, another parameter-Spread value must be determined. The present invention should find the partial first-nearest_neighb〇rh〇〇d heuristic The different value is as shown in [Formula 6]. σ 丨y [Equation 6] σ: the divergence value w' 'the center value of the i-th cluster ^ nearest · The closest cluster center value r: the overlap ratio of two adjacent fuzzy words when the knowledge bonus mode is in front Already established, the amount of knowledge change between input and output will be calculated next. The invention presents and calculates the change range by using the two stages of the knowledge value-adding process, the original knowledge process and the knowledge value-adding process, that is, using fuzzy "fuzzy anthmetic" to blur the multiplication process to the fuzzy set process. Calculation. Assume that the first knowledge management activity of 16 201131501 is taken as an example. The fuzzy words of the original knowledge process and the knowledge bonus process are respectively 3 and the heart is added to the knowledge calculation formula as shown in [Formula 7]: [Equation 7] Estimation of knowledge plus In the value process, the knowledge value of the knowledge management activities increases by 3: the fuzzy words of the original knowledge process: the fuzzy words of the knowledge value-added process in order to calculate the knowledge value of multiple knowledge management activities, the fuzzy words must be blurred. After analyzing the existing defuzzification method, the calculation efficiency of Gaussian fuzzy membership zero function is considered, and the "maximum intermediate method (max_〇f嶋(4)" is used as the method of defuzzification. The addition of knowledge addition is calculated as shown in [8] κνΑ〇,αΙ = ΣκνΑ [Formula 8] Ruler: «The knowledge plus value of the knowledge management activities is the sum of the factory: the knowledge of the knowledge management activities, the value of the knowledge added to the above knowledge management activities Is the total amount of value used to present the knowledge community.
綜合來說’知識加值向度是用來對專家做是否願意分享 的加值判斷,若是有專家非常樂於分享,在知識加值向度的 计算方面就會提升該專家的分數。 整體舉例來說,假定自動化分派模組6欲從工技碼 110Α00中找尋能夠解決使用者問之專家,在此工技碼下共 j 3位候_選專家’本步驟讀取其基頂向麼資斛杯丁 設計 候選 專家 年資 監造 年資 專案管 理年資 專業密 集向度 知識加 值向度 17 201131501 1 10 0 3 56.8 0 2 20 10 0 100 0 3 0 5 0 72.6 0 步驟S44—接著計算每位專家與使用者所提出之問題 的符合度,將專家依符合度由高至低排序後,建議〇〜5位 專豕(步驟S45 ) ’同時發出電子郵件通知專家8(步驟)。 使用者可點選本系統! 〇〇所推薦的專家而進入如圖u所示 之專家地圖4觀看專家資料。 接續以上例子,各候選專家的符合度可由以下【式3】 及【式4】計算得: 符合度年資向度+『2X專業密集向度+ .知識加値向度【式3】 年資向度=W4 X設計年資+ w5 χ監造$冑+ γ χ胃In general, the knowledge value-added dimension is used to judge whether the experts are willing to share the value-added judgment. If an expert is very happy to share, the expert's score will be improved in the calculation of the knowledge added value. For example, as a whole, it is assumed that the automatic dispatching module 6 wants to find an expert who can solve the user's question from the technical code 110Α00, and a total of j 3 candidates in the work skill code _ select the expert' this step to read the base top direction斛 斛 斛 设计 设计 设计 设计 设计 设计 设计 设计 设计 设计 设计 设计 设计 设计 设计 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 The degree of conformity between the expert and the user's question, after sorting the experts according to the highest to the lowest, it is recommended to 〇~5 digits (step S45) 'Also send an email to the expert 8 (step). The user can click on the system! 〇〇 The recommended experts enter the expert map 4 as shown in Figure u to view the expert information. Following the above example, the degree of conformity of each candidate expert can be calculated by the following [3] and [Formula 4]: Compliance degree + "2X professional intensive degree + . Knowledge plus degree [3] =W4 X Design Years + w5 χ Supervising $胄+ γ χ stomach
…L式4J...L type 4J
【式3】中的Wi、W2及W3分別代表各向度所佔的權 重,各權重由管理者事先定義並儲存設定。【式3】中的年 資向度由【式4】計算得到,W4、Ws及w0同樣為管理者事 先疋義並儲存設定。透過上述公式,以Wi = 〇 2、W2=〇 4 及 W3~0·4 且 W4=〇.33、W5=0_34 及 W6=〇.33 為例,候 選專家的得分分別為: 候選專家1 候選專家2 : 0.2 X (0.33 X10 + 0.34 x 0 + 0.33 x 3) + 0.4 χ 56.8 + 0.4 χ 0 == 23.578 0.2 χ (0.33 χ 20 + 0.34 χ 10 + 0.33 χ 0) + 0.4 χ 100 + 0.4 χ 〇 42 18 201131501 候選專家 3 : 0·2χ(0.33χ0 + 0·34χ5 + 0.33χ0) + 0.4χ72.6 + 0·4Χ0 = 29.38 因此,當提問者發問過後無法在自動化回覆模組5得到 回應或者回覆之資料不合使用時,除了將問題發佈而等待熱 心人員回覆之外,還可以透過自動化分派模組6尋求該領域 專長的專家協助。如此一來,不僅可以省下提問者等待人員 回覆的時間,也因為尋求的是經自動化分派模組6判斷為該 領域之專家的協助,使得得到的回覆可以更加的精準。 綜上所述,本發明用於問題解決之主動式知識管理系統 • 1〇0及方法可因應企業組織架構,利用多階層的工技碼預先 將案例編碼,並利用自動化回覆模組5以及自動化分派模組 6將使用者提出的問題主動且有效、精準地予以解決,藉以 縮紐使用者尋求解答的時間,並且讓企業組織累積的知識發 揮最大效益且充分地傳承,故確實能達成本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不能 以此限定本發明實施之範圍,即大凡依本發明申請專利範^ 及發明說明内容所作之簡單的等效變化與修飾,皆仍屬本發 • 明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一說明本發明用於問題解決之主動式知識管理 系統之較佳實施例的系統方塊圖; 圖2是一說明該實施例中,知識文件管理模組 工作的流程圖; 圖3是一說明該實施例中自動化回覆模組所執行流程 之部分流程圖; 19 201131501 圖4是曰-使用者提出問題之操作畫面示意圖; 圖疋說明遠自動化回覆模组所執行流程之另一部 分流程圈; 疋由自動化回覆模組提供查詢結果之操作畫面 示意圖; 圖7至圖9分別是該較佳實施例中,各種知識地圖之示 意圖, 圖10是該較佳實施例中自動化分派模組所執行流程之 流程圖;及 圖11是該較佳實施例中,專家地圖之查詢晝面示意圖。Wi, W2, and W3 in Equation 3 represent the weights of the respective degrees of orientation, and each weight is defined in advance by the administrator and stored and set. The degree of capital in [Formula 3] is calculated by [Formula 4], and W4, Ws, and w0 are also pre-existing and stored by the administrator. Through the above formula, with Wi = 〇2, W2=〇4 and W3~0·4 and W4=〇.33, W5=0_34 and W6=〇.33 as examples, the scores of the candidate experts are: Candidate 1 candidate Expert 2 : 0.2 X (0.33 X10 + 0.34 x 0 + 0.33 x 3) + 0.4 χ 56.8 + 0.4 χ 0 == 23.578 0.2 χ (0.33 χ 20 + 0.34 χ 10 + 0.33 χ 0) + 0.4 χ 100 + 0.4 χ 〇42 18 201131501 Candidate Expert 3 : 0·2χ(0.33χ0 + 0·34χ5 + 0.33χ0) + 0.4χ72.6 + 0·4Χ0 = 29.38 Therefore, when the questioner asks, he cannot get a response in the automated reply module 5 or When the replies are not used, in addition to posting the questions and waiting for the enthusiasts to reply, you can also seek expert assistance in the field through the automated dispatch module 6. In this way, not only can the time for the responder to wait for the reply of the person to be saved, but also the assistance of the expert in the field judged by the automated dispatch module 6 can be obtained, so that the reply can be more accurate. In summary, the present invention is an active knowledge management system for problem solving. The method and method can use the multi-level technical code to pre-code the case according to the organizational structure of the enterprise, and utilize the automated reply module 5 and the automation. The dispatching module 6 solves the problem raised by the user actively, effectively and accurately, so as to shorten the time for the user to seek the answer, and let the accumulated knowledge of the enterprise organization maximize the benefits and fully inherit the original, so the invention can be achieved. The purpose. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the present invention in accordance with the invention and the description of the invention. , are still within the scope of this patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a preferred embodiment of an active knowledge management system for solving a problem in the present invention; FIG. 2 is a diagram illustrating the operation of a knowledge file management module in the embodiment. FIG. 3 is a partial flow chart showing the flow of execution of the automatic reply module in the embodiment; 19 201131501 FIG. 4 is a schematic diagram of an operation screen of the user-proposed problem; FIG. Another part of the flow of the process; a schematic diagram of the operation screen for providing the query result by the automated reply module; FIG. 7 to FIG. 9 are schematic diagrams of various knowledge maps in the preferred embodiment, FIG. 10 is a schematic view of the preferred embodiment. A flow chart of the flow executed by the automated dispatch module; and FIG. 11 is a schematic diagram of the query of the expert map in the preferred embodiment.
20 201131501 【主要元件符號說明】 100… •…問題解決之主動 6… .......自動化分派模組 式知識管理系統 7 ··· .......(使用者)電腦 1 ....... •…知識文件管理模組 8 ··· ……(專家)電腦 11 ··.·· •…系統關鍵詞資料庫 S11 〜S 15步驟 2…… •…知識文件資料庫 S21 ~S27步驟 3 ....... —知識地圖 S31 〜S36步驟 4 ....... 專豕地圖 S41 〜S47步驟 5 ....... •…自動化回覆模組20 201131501 [Description of main component symbols] 100... •...Proactive problem solving 6... .......Automatic dispatching modular knowledge management system 7 ··· ....... (user) computer 1 ....... •...Knowledge File Management Module 8··· ......(Expert) Computer 11 ······...System Keyword Database S11~S 15Step 2... •...Knowledge Document Library S21 ~ S27 Step 3 ....... — Knowledge Map S31 ~ S36 Step 4 ....... Special Map S41 ~ S47 Step 5 ....... •...Automatic Reply Module
21twenty one
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99106437A TWI419071B (en) | 2010-03-05 | 2010-03-05 | Active knowledge management system, method and computer program product for problem solving |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99106437A TWI419071B (en) | 2010-03-05 | 2010-03-05 | Active knowledge management system, method and computer program product for problem solving |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201131501A true TW201131501A (en) | 2011-09-16 |
TWI419071B TWI419071B (en) | 2013-12-11 |
Family
ID=50158254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99106437A TWI419071B (en) | 2010-03-05 | 2010-03-05 | Active knowledge management system, method and computer program product for problem solving |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI419071B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI619028B (en) * | 2017-05-17 | 2018-03-21 | 正修學校財團法人正修科技大學 | Annotation learning system, method, computer program product with stored programs, computer readable medium with stored programs |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI563402B (en) * | 2014-12-08 | 2016-12-21 | Inventec Corp | Method of operating a solution searching system and solution searching system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644686A (en) * | 1994-04-29 | 1997-07-01 | International Business Machines Corporation | Expert system and method employing hierarchical knowledge base, and interactive multimedia/hypermedia applications |
EP0915422B1 (en) * | 1997-11-06 | 2006-03-01 | Hewlett-Packard Company | Expert system |
TW569105B (en) * | 2002-07-16 | 2004-01-01 | Intumit Inc | System and method accelerating similarity computation of document vector |
TW589549B (en) * | 2002-12-24 | 2004-06-01 | Inst Information Industry | Method for calculating conceptual similarity based on common sense tree marking method |
US20080016052A1 (en) * | 2006-07-14 | 2008-01-17 | Bea Systems, Inc. | Using Connections Between Users and Documents to Rank Documents in an Enterprise Search System |
US8271401B2 (en) * | 2007-07-24 | 2012-09-18 | Uop Llc | Expert systems as a method of delivering diagnostic, problem solving, and training technical services to customers |
TWI352913B (en) * | 2008-01-16 | 2011-11-21 | Univ Nat Taiwan Science Tech | Expert finding system and method |
US8949233B2 (en) * | 2008-04-28 | 2015-02-03 | Alexandria Investment Research and Technology, Inc. | Adaptive knowledge platform |
-
2010
- 2010-03-05 TW TW99106437A patent/TWI419071B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI619028B (en) * | 2017-05-17 | 2018-03-21 | 正修學校財團法人正修科技大學 | Annotation learning system, method, computer program product with stored programs, computer readable medium with stored programs |
Also Published As
Publication number | Publication date |
---|---|
TWI419071B (en) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Beck et al. | Knowledge exchange and symbolic action in social media-enabled electronic networks of practice | |
US20220067665A1 (en) | Three-party recruiting and matching process involving a candidate, referrer, and hiring entity | |
US9990609B2 (en) | Evaluating service providers using a social network | |
Wang et al. | ExpertRank: A topic-aware expert finding algorithm for online knowledge communities | |
JP6369053B2 (en) | MATCHING DEVICE, MATCHING METHOD, AND PROGRAM | |
Bell et al. | Can AI help in ideation? A theory-based model for idea screening in crowdsourcing contests | |
JP6802334B1 (en) | Matching system and program | |
JP5965557B1 (en) | Similarity learning system and similarity learning method | |
Seebach | Searching for answers--knowledge exchange through social media in organizations | |
CA2959340A1 (en) | Customizable machine learning models | |
WO2016104736A1 (en) | Communication provision system and communication provision method | |
CN109584094B (en) | Interpersonal path rapid positioning system, method and medium | |
Currim et al. | A procedure for measuring and estimating consumer preferences under uncertainty | |
JP6526849B1 (en) | Estimation device, estimation method and estimation program | |
US11238410B1 (en) | Methods and systems for merging outputs of candidate and job-matching artificial intelligence engines executing machine learning-based models | |
CN110727852A (en) | Method, device and terminal for pushing recruitment recommendation service | |
CN111737485A (en) | Human-sentry matching method and human-sentry matching system based on knowledge graph and deep learning | |
WO2023178971A1 (en) | Internet registration method, apparatus and device for seeking medical advice, and storage medium | |
CN110222254A (en) | Course recommended method, device, equipment and computer readable storage medium | |
CN114491205A (en) | User portrait generation method and device, electronic equipment and readable medium | |
Shrestha et al. | Multi-dimensional analysis and prediction model for tourist satisfaction | |
TW201131501A (en) | Active knowledge managing system, method and computer program product for solving questions | |
Tooranloo et al. | IT outsourcing through group decision-making based on the principles of interval-valued intuitionistic fuzzy theory | |
Koczy et al. | Some considerations on data mining from questionnaires by constructing fuzzy signatures based on factor analysis | |
Aelani et al. | Chatbot for Information Service of New Student Admission Using Multinomial Naïve Bayes Classification and TF-IDF Weighting |