201131187 • 六、發明說明: 【發明所屬之技術領域】 本發明係有關全球定位系統(GPS)技術領域,更具體而言, 係有關用於從GPS衛星信號中獲取導航位元流的方法和裝置、Gps 接收機及其定位方法。 【先前技術】隨著汽車及電子電腦技術的發展和人們對生活 需求的提高’全球衛星定位系統(GPS)得到了廣泛的應用,越來 •越多的人開始使用GPS接收機和導航系統。GPS接收機在車載導航 和移動消費電子等領域得到迅速發展。隨著應用領域的不斷擴大 和使用群體的迅速增加,使用者對GPS接收機的功能和性能提出 了越來越多的要求。 如圖1所示,傳統的GPS接收機1〇〇主要包括天線11〇、前置 放大斋120、射頻/中頻(即/11?)變換器13〇、類比/數位(a/d) ,換器140、數位絲處理器15〇、導航處理器16〇以及控制顯示 單凡170。GPS衛星發射的射頻(RF )信號通過天線i i 〇接收下來, •並,=一個無源的帶通濾波器進行濾波,以減小帶外射頻干擾。 接著則置放大器120對遽波後的即信號進行預放大,射頻/中頻 (RF/IF)變換器130將射頻向下變頻為中頻(IF)。再用類比/數 位(j/D)變換器140對IF信號進行採樣以及數位化,得到數位中 頻七^;(也稱為數位基帶信號)並將數位中頻信號送人數位基帶 處理150進行處理。數位基帶處理器150 ±要完成以下功能: $喊’跟蹤魅’料航資料健實行觸,轉調出導航 ^進订偽距測量’載波相位測量及多普勒頻移測量。導航處 理器160根據提取的偽距和頻率測量資訊進行定位結算,給出用 戶的位置、速度和時間(ρντ)資訊。最後,通過控制顯示單元 201131187 在螢幕^示出用戶的Ρντ資訊。Gps接收機定 縱至=臟衛星的信號,收集到4顆衛星的星曆=件疋跟 义間(Tlme t〇 FirSt Fix ’ TTFF)是指 GPS接收機 所ί要的時間,是衡量Gps接收機性能= 可_在GPS接收機開機後很短的時間内便 根=_已知先驗資訊,GPS接收機的啟纏式可分為冷啟 動(C〇1d start)、溫啟動(咖start)和熱啟動(h〇t s加) 一種’其中冷啟動疋指GPS接收機在無任何已知資訊(.包括衛星 星,曆日歷史接收機位置和時鐘資⑹的條件下啟動,溫啟 動是心在具有有效衛星廣書、粗略接收機位置和時鐘資訊的條件 下開機啟動’喊啟_是指在有衛星星層、粗略接㈣位置和 精確GPS時鐘資訊的條件下開機啟動。 —圖2不思性地不出現有GPS接收機在上述三種啟動模式下的 疋位〃 1(_程200。如圖2所示,(;ps接收機在冷啟動模式21〇_】下從 開機到疋位一般需要經歷如下幾個過程:衛星信號的捕獲 (acquisition) 211-1、衛星信號的跟蹤(track) 212-1 '導航 -貝料位元同步(navigation data bit synchronization) 213-1、 ‘航-貝料子幀同步(贿4出〇11 data sub_frame synchronization)(其也可稱為導航資料幀同步)214_卜衛星星 曆收集(satellite ephemeris gathering) 215-1 和定位輸出 (fixing and outputting) 216-卜目前,市場上普通GPS接收 機的冷啟動TTFF均在40s(秒)左右。 而在溫啟動模式210-2和熱啟動模式210-3下,由於存在一 定的先驗資訊,GPS接收機的首次定位流程略有不同。 GPS接收機在溫啟動模式210-2下從開機到定位一般需要經 201131187 ,如下幾個過程:衛星信號的概21卜2、衛星信號的跟蹤2d 導織触朋步213-2、導織肝關步(其也可 料_步)2M-2、衛星星曆收集2i5_2和定位輸出216_2。 GPS接收機在熱啟動模式21()_2下從開機到雜一般需要經 歷如下幾個過程碲星信號的捕獲211_3、魅信號的跟縱212_3 和定位輸出216-3。 如圖2所示除了不需要捕獲全部衛星的信號,奶接收機在 溫=動模式下·機収簡#也要經麟星信號的跟 #貧料位元同步、導航資料子悄同步、衛星星層收集和定位輸 =接收機在熱啟動模式下從啟動到定位時,纟於存在衛星 可!!省掉位元同步過程’並且由於存在精確的奶時 二二j二則掉_步及星曆收集過程。在傳統GPS接收機在 獲= 式下進行定位的過程中’由於衛星信號的捕 調均需串列完成,使得GPS接收機在開機後 位以獲得當前位置資訊。因此,如何提高GPS定位 的TTFF性此仍然是目前亟待解決的問題之一。 > 【發明内容】 取導以ΐ情況,本發明提出了一種用於從GPS衛星信號中獲 方法和裝置、啦接收機及其定位方法。根據本發 行==1;=夠改善在冷敬動和/或溫啟動模式下進 號中上述目的’根據本發明提供了—種用於從GPS衛星信 • 流的方法’包括:對該GPS衛星信號中的導航 同步,以舣該導航資料的麵邊界;在對該邮 俯星域中的該導航資料進行該位元同步期間,存儲該位 201131187 ,程:的該GPS衛星信號中的偽隨機碼的資訊;在該位元同步完 成之後,根據所確定的該導航資料的該位元邊界 期間所存儲的該偽隨機瑪的該資訊解調為第一部^ :二 該位元同步完成之後,根據所確定的該導 :=在 ==元=後的該導航資料解調為第二= :形ΞΙ:分導航位元與該第二部分導航位元相連接, 根據本發明的一個實施例, + .隨機碼的資訊為舰機碼_分值。在位明步_所存儲的偽 為第括隨機碼的_調 導航位元中的每個導航位元 =個解為出.第—部分 分值在所存儲的偽隨機積分值中碼的積 隨機碼的.值中_纽在1儲的偽 對從該導航位元的第一位置至該導 的第一位置’·以及 機碼的積分錢行解調,以·^位置的所有偽隨 儲的偽隨機石馬 本發明還提供了—種GPS接收 跟縱GPS衛星信號;對Gps衛星信號 ,,包括:捕獲和 以確定導航資_位元邊 導_枓進躲元同步, 行位元同步期間,存儲===,導航賢料進 機喝的資訊;在位元同步' S衛星信號中的偽隨 元邊界’將位元同步期間:存儲的 201131187 元同步完成之後’根據所確定的導航資料的位 兀邊界,騎叙的位元讀的導航資 ==一部分導航位元與第二部分導航位 以域連續的導航位元流;對導航位元流 步;從子巾貞同步後的導織料愤集星曆和轉導^ 集到的星曆和曆書來獲得GPS接收機的定位資訊 Ϊ發供了一種用於從^衛星信號中獲取導航位元流 ==確定導航資料的位元邊界。其中 ί理:偽隨機_訊存儲單元,用於在該數位基帶 處理讀GPS衛星信號中的導航資料進行位元同步 信號中的偽隨機碼的資訊。該裝置還‘ 帶;^理1™·〜早%肖於在位調步完成之後,根據數位基 單:在I 資料的位元邊界’將該偽隨機碼資訊存儲 :在位_步_所存儲的偽隨機碼的資訊解調為第一部分導 .航位兀。該數位基帶處理H還用於在 確定的導航資料的位元邊界,將所確定的位 料解,第二部分導航位元。該裝置還包J航:== 第—部分導航位元與第二部分導航位元相連接,以 I成連續的導航位元流。 的用還提供了一種GPS接收機,包括根據本發明的實施例 #理」5 s衛星錄巾獲取導航位元朗裝置。其巾,該基帶 =斋還用於捕獲和跟縱GPS衛星信號,以及對該裝置所獲取的 航處=流進ί導航資料子綱步;並且該GPS接收機還包括導 0該、航處理器用於從子鴨同步後的導航資料中收集星 曆書’以及根據所收集到的星曆和磨書來獲得GPS接收機的 201131187 定位資訊。 —=本發明的—個實施例嫩接收機中的補充 單元㈣倾來實現,频置轉it 隨偷撕期間的偽 缝铺神心i 存儲下來並在導航資料位元同步之 σ u又广貝料,有效的提高了導航資料位元同步期門的在 賴石馬資簡利神,增加可㈣導 同= 曆收集的時間,從而提高了 GPS粒時的蕭性能。_步和星 產品另外,本發明還提供了相應的電腦可讀存齡質和電腦程式 【實施方式】 以下將對本發_實施例給出詳_制。雖然本發 合實施例進_述,但應理解這並非意指將本發明限跋這些; 施例。相ϋ ’本利意在涵蓋由後时請專纖騎界定的本 發明精神和範圍崎定義的各種變化、修改和均等物。 此外在以下對本㈣轉細描射,為了提供針對本發明 的完全理解,提供了大量的頻㈣H於本技術領域中具 有通常知識者將理解’沒有這些具體細節,本發明同樣可以實施。 在另外的-些實射’對於大家熟知的方法、程序、元件和電路 未作詳細描述,以便於凸顯本發明之主旨。 為了更便於麟本發_原理和說明本發_實施例,以下 首先參考韻’ _是® 3 iL 5來描述根據本㈣實施例的一般 原理。 201131187 ^ GPu衛星信號是衛星向地面發送的用於導航定位的無線 #號’、它包含:载波、偽隨機碼和導航資料碼。GPS使用L波段的 兩種载頻’ L1載波為1575. 42MHz,L2載波為1227. 6MHz,GPS衛 星的偽隨機碼和導航資料碼通常採用BPSK調製方式調製到載波 上’崎祕射轉發料去。 偽蚁機雜訊(Pseudo Random Noise, PRN)碼也被稱為偽隨 機石馬或偽雜訊石馬,並具有如下特點: 具有高斯白雜訊的性質,即良好的自相關特性; • 2.具有一定的週期和編碼規則,可人為再現,並且可人為 控制。這一點對於信號的擴頻解調是必需的。 户使用偽隨機雜訊碼的優點在於可實現擴頻通信,從而實現保 =信和基於齡多址(隱)的通信。—般資料碼信號的頻帶 2乍,而PRN碼信號的頻帶很寬,因此,通過將資料碼調製到卿 馬上,使資料碼信號的頻帶展寬,這個過程即為公知的擴頻。 〜在GPS系統裡,每一顆衛星使用一個木同的pRN碼對資料進 t知的直序擴頻。在民用GPS領域裏,這個偽隨機碼__201131187 • VI. Description of the invention: [Technical field of the invention] The present invention relates to the field of global positioning system (GPS) technology, and more particularly to a method and apparatus for acquiring a navigation bit stream from GPS satellite signals , Gps receiver and its positioning method. [Prior Art] With the development of automotive and electronic computer technology and the improvement of people's needs for life, Global Positioning System (GPS) has been widely used, and more and more people are using GPS receivers and navigation systems. GPS receivers are rapidly evolving in areas such as car navigation and mobile consumer electronics. With the continuous expansion of application fields and the rapid increase in the use of users, users have increasingly demanded the functions and performance of GPS receivers. As shown in FIG. 1, the conventional GPS receiver 1 〇〇 mainly includes an antenna 11 前, a preamplifier 120, a radio frequency/intermediate frequency (ie, /11?) converter 13 〇, an analog/digital (a/d), The converter 140, the digital wire processor 15A, the navigation processor 16A, and the control display unit 170. The radio frequency (RF) signal transmitted by the GPS satellite is received through the antenna i i ,, and = a passive bandpass filter is used to reduce the out-of-band RF interference. The amplifier 120 then pre-amplifies the chopped signal, and the RF/IF converter 130 downconverts the RF to an intermediate frequency (IF). The analog/digital (j/D) converter 140 is used to sample and digitize the IF signal to obtain a digital intermediate frequency (also referred to as a digital baseband signal) and send the digital intermediate frequency signal to the number of baseband processing 150. deal with. The digital baseband processor 150 has to perform the following functions: $Shouting 'Tracking Charm' data navigation key touch, navigation out navigation ^Subscribing pseudorange measurement 'carrier phase measurement and Doppler shift measurement. The navigation processor 160 performs location settlement based on the extracted pseudorange and frequency measurement information, and gives the user's position, velocity, and time (ρντ) information. Finally, the user's Ρντ information is displayed on the screen by controlling the display unit 201131187. The Gps receiver sets the signal to the dirty satellite, and collects the satellite history of the four satellites. The Tlme t〇FirSt Fix 'TTFF is the time required by the GPS receiver to measure the GPS reception. Machine performance = can be _ in the short time after the GPS receiver is turned on, the root = _ known a priori information, the GPS receiver can be divided into cold start (C〇1d start), warm start (coffee start ) and hot start (h〇ts plus) A 'cool start GPS GPS receiver is started without any known information (including satellite star, calendar history receiver position and clock capital (6), warm start is The heart starts up with the effective satellite wide book, rough receiver position and clock information. 'Shouting _ means starting up under the condition of satellite star layer, rough connection (four) position and accurate GPS clock information. - Figure 2 I do not think that there is a GPS receiver in the above three startup modes 〃 1 (_ 200), as shown in Figure 2, (; ps receiver in cold start mode 21 〇 _) from boot to 疋The bit generally needs to go through the following processes: acquisition of satellite signals (acquisition) 211 -1, tracking of satellite signals (track) 212-1 'navigation data bit synchronization' 213-1, 'air-before sub-frame synchronization (brows 4 out 〇 11 data sub_frame synchronization) Also known as navigation data frame synchronization) 214_satellite ephemeris gathering 215-1 and positioning output (fixing and outputting) 216-b Currently, the cold start TTFF of common GPS receivers on the market is 40s (seconds). In the warm start mode 210-2 and the hot start mode 210-3, the first positioning process of the GPS receiver is slightly different due to the existence of certain prior information. The GPS receiver is in the warm start mode 210- 2 from boot to positioning generally need to go through 201131187, the following processes: the satellite signal of the 21st 2, the satellite signal tracking 2d guide weaving touch step 213-2, guide weaving liver step (which can also be expected _ step 2M-2, satellite ephemeris collection 2i5_2 and positioning output 216_2. GPS receiver in the hot start mode 21 () _2 from boot to miscellaneous generally need to go through the following processes: capture of comet signal 211_3, charm signal 212_3 and positioning output 216-3. As shown in Figure 2, in addition to the need to capture the signals of all satellites, the milk receiver in the temperature = dynamic mode, the machine to collect the simple # also through the Linxing signal with the # poor material bit synchronization, navigation data sub-synchronization, satellite Star layer collection and positioning transmission = when the receiver is in the hot start mode from start to position, there is no satellite available!! Eliminate the bit synchronization process 'and due to the existence of accurate milk, then the second step is Ephemeris collection process. In the process of positioning in the conventional GPS receiver, the satellite signal is captured in series, so that the GPS receiver can obtain the current position information after the power is turned on. Therefore, how to improve the TTFF of GPS positioning is still one of the problems to be solved. > SUMMARY OF THE INVENTION The present invention proposes a method and apparatus for obtaining signals from GPS satellite signals, a receiver, and a positioning method thereof. According to this release ==1; = sufficient to improve the above objectives in the cold homing and / or warm start mode "provided according to the invention - a method for streaming from GPS satellites" includes: the GPS Navigating in the satellite signal to modulate the surface boundary of the navigation data; during the bit synchronization of the navigation data in the postal star field, storing the pseudo in the GPS satellite signal of the 201131187 Information of the random code; after the bit synchronization is completed, the information of the pseudo-random horse stored during the bit boundary of the navigation data is demodulated into the first part: 2: the bit synchronization is completed Then, according to the determined guide: = the navigation data after == yuan = demodulated into a second =: shape: the sub-navigation bit is connected with the second part of the navigation bit, according to the invention For example, the information of the random code is the ship code _ score. Each navigation bit in the _ navigation navigator of the pseudo-random random code stored in the position _ _ is a solution. The product of the first partial score in the stored pseudo-random integration value In the value of the random code, the pseudo-pair of the stored value in the first position of the navigation bit is demodulated from the first position of the navigation bit to the first position of the guide, and the pseudo-pair of the machine code The pseudo-random stone horse stored in the present invention also provides a GPS receiving and vertical GPS satellite signal; for the GPS satellite signal, including: capturing and determining the navigation resource _ bit edge guide _ 枓 躲 躲 元 , , , During synchronization, store ===, navigation information into the machine to drink information; in the bit synchronization 'S satellite signal in the pseudo-slave boundary' will be bit synchronization period: after the storage of 201131187 yuan synchronization is completed 'according to the determined The position of the navigation data is located at the boundary, and the navigator of the navigation data reads == part of the navigation bit and the second part of the navigation bit are continuous navigation bit stream; the navigation bit flows; after synchronization from the sub-frame The guide weaves the singularity of the ephemeris and the transpositions of the ephemeris and the almanac to obtain the GPS receiver Location information Ϊ made for a navigation bit stream for acquiring the satellite signal from the ^ == determine the bit boundaries of navigation data. Wherein: a pseudo-random _ memory unit for processing the pseudo-random code information in the bit synchronization signal in the digital baseband processing navigation data in the GPS satellite signal. The device also 'bands'; 1TM·~ early % Xiao after the in-position pacing is completed, according to the digit base list: the pseudo-random code information is stored at the bit boundary of the I data: in-position _ step_ The information of the stored pseudo-random code is demodulated into the first part of the navigation. The digital baseband processing H is also used to resolve the determined bit and the second portion of the navigation bit at the bit boundary of the determined navigation data. The device also includes J navigation: == The first partial navigation bit is connected with the second partial navigation bit to form a continuous navigation bit stream. A GPS receiver is also provided, including a navigation device for obtaining a navigation device in accordance with an embodiment of the present invention. The towel, the baseband=fast is also used for capturing and following the GPS satellite signal, and the navigation point acquired by the device is flowed into the navigation data sub-step; and the GPS receiver further includes a guide, the navigation processing The device is used to collect the ephemeris from the navigation data after the synchronization of the ducks and to obtain the 201131187 positioning information of the GPS receiver according to the collected ephemeris and grinding books. -= In the embodiment of the present invention, the supplemental unit (4) in the tender receiver is implemented, and the frequency shifting it is stored with the pseudo-seam during the tearing and is stored and synchronized in the navigation data bit. The shell material effectively improves the navigation data bit synchronization period in the Lai Shi Ma Zi Jian Li, increasing the time available for the (4) guidance = calendar collection, thereby improving the Xiao performance of the GPS grain. In addition, the present invention also provides a corresponding computer readable age and computer program. [Embodiment] The following is a detailed description of the present invention. Although the present invention is described, it is to be understood that this is not intended to limit the invention;本 ϋ 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本Further, in the following, the present invention is equally well-received, and in order to provide a full understanding of the present invention, a large number of frequencies are provided. Those skilled in the art will understand that the present invention can be practiced without these specific details. The other methods, procedures, components and circuits are not described in detail in order to highlight the gist of the invention. In order to make the present invention more convenient, the general principles of the embodiment according to the present invention are described below with reference to the rhyme '_ is ® 3 iL 5 . 201131187 ^ The GPu satellite signal is the wireless ##' for satellite positioning sent by the satellite to the ground. It contains: carrier, pseudo-random code and navigation data code. GPS uses two carrier frequencies of the L-band. The L1 carrier is 1575.42MHz, and the L2 carrier is 1227. 6MHz. The pseudo-random code and navigation data code of the GPS satellite are usually modulated onto the carrier by BPSK modulation. . Pseudo Random Noise (PRN) code is also called pseudo-random stone horse or pseudo-noise stone horse, and has the following characteristics: It has the characteristics of Gaussian white noise, that is, good autocorrelation property; Has a certain period and coding rules, can be artificially reproduced, and can be artificially controlled. This is necessary for spread spectrum demodulation of the signal. The advantage of using pseudo-random noise codes is that spread spectrum communication can be realized, thereby realizing the communication and the multi-address (hidden) communication based on age. Generally, the frequency band of the data code signal is 2 乍, and the frequency band of the PRN code signal is wide. Therefore, the frequency band of the data code signal is broadened by modulating the data code, which is a well-known spread spectrum. ~ In the GPS system, each satellite uses a wooden pRN code to directly learn the data. In the field of civil GPS, this pseudo-random code __
又(Coarse Acquisition ’ c/Α)碼。GPS 接枚機通過識別 C/A 碼而區別出來自不同衛星的信號。C/A碼由鹏個 〆 1毫秒(ms)序列迴圈一次。. 母 導航資料碼是用戶用來粒和導航的:雜基礎^導銳資料 主要包括:衛星星曆、時鐘改正、電離層時延改正、工作狀雜二 =等。這些資誠二進位碼的侃按規定格式向外播送。導^ 砩中的每一個位元被稱為導航位元,它的碼速率為5〇仇- (bit/s) ’寬度為20ms。也就是說’每一個導航位*週期包 固C/A碼的週期。這個關係非常重要,是導航資 : 調導銳位賴誠。 明步和解 201131187 下面以GPS接收機在冷啟動模式下 簡要描述和分析整罐定位過程的各個階程為例 信號捕蒋釦璁總 GPS衛星信號的捕獲和跟縱的目的在 雛質:鮮和碼她。 衫細紅號的兩 從GPS規範上可以得知,L1载波的頻率為咖娜 載波的頻率為1227. Miz。但是,郷定魅制 ^於存在有相對運動的關係了在頻率 ί 假設奶接收機靜止接收GPS信號’由於 術星的運動’多普勒效應所影響的範圍大約為Μζ,如果哪接 收機也處於高速移_狀態下,多絲效應所影響的 到達HMz。 碼她代表C/A碼週期信號的邊界位置。目前,Gps信 的方法都是根據GPS信號c/Α碼的特質來做處理,衛星信^是二 32個不同的偽隨機雜訊序列區別,而上述特質就是指這些偽隨機 雜=序列的彼此之_乎沒有互相關α臟⑺㈣也⑽),並 且只有自己本身和自己在沒有延遲的情況下,自相關函數 (Auto-correlation Function)才會有極值。 通常運用接枚機本身的偽隨機雜訊序列產生器產生衛星的偽 隨機雜訊相,再通過改變卿位和缝器咖⑴咖)所產 生的載波頻率’來與接收到的信號做相關運算,以識別所接收的 衛星^號中的偽隨機雜訊序列。本領域所屬技術人員將瞭解很多 常用的相關演算法,因此這裡不做深入討論。 在相同的啟動模式下,GPS衛星信號的捕獲和跟蹤的快慢取決 於基帶相關運算資源的多少’即Gps接收機的通道資源數發。在 201131187 冷啟動的衛星捕獲跟蹤時間消耗多於溫啟動 的捕狻跟辦_耗,溫啟動的捕獲跟蹤時間 衛星捕獲跟蹤時間消耗。 ;“,、啟動的 位元同步 捕獲完成時,僅能獲取到該衛星信號的C/Α碼的 碼的:i#/ ’要進行導航·的解調,必須在捕獲所得的C/A ^的基礎上完餅航資料的邊界同步,即導航資料位 I 兀问步°·Also (Coarse Acquisition ’ c/Α) code. The GPS receiver distinguishes signals from different satellites by recognizing the C/A code. The C/A code is looped once by the Peng 〆 1 millisecond (ms) sequence. The mother navigation data code is used by the user for grain and navigation: the basic basis ^ guide data mainly includes: satellite ephemeris, clock correction, ionospheric delay correction, work type II = and so on. The 资 二 binary code is broadcasted in the specified format. Each bit in the ^ is called a navigation bit, and its code rate is 5 〇 - (bit / s) 'width is 20ms. That is to say, 'each navigation bit* period encapsulates the period of the C/A code. This relationship is very important, it is the navigation capital: to adjust the sharp position Lai Cheng. Mingbu Reconciliation 201131187 The following is a brief description and analysis of the various stages of the whole tank positioning process in the cold start mode of the GPS receiver as an example of the capture of the GPS satellite signal capture and the purpose of the vertical in the chick: fresh and code her . Two of the fine red numbers of the shirts can be known from the GPS specification. The frequency of the L1 carrier is the frequency of the Gana carrier is 1227. Miz. However, there is a relative motion relationship in the frequency ί. It is assumed that the milk receiver is stationary receiving GPS signals. The range affected by the Doppler effect of the motion of the star is about Μζ, if the receiver is also In the high-speed shift state, the multifilament effect is affected by the arrival of HMz. The code represents the boundary position of the C/A code period signal. At present, the Gps letter method is based on the characteristics of the GPS signal c/Α code. The satellite signal is the difference between two 32 different pseudo-random noise sequences, and the above-mentioned traits refer to these pseudo-random mismatches/sequences of each other. There is no cross-correlation α dirty (7) (four) also (10)), and only the self-correlation function itself has an extreme value without delay. Usually, the pseudo-random noise sequence generator of the binding machine itself is used to generate the pseudo-random noise phase of the satellite, and then the carrier frequency generated by changing the position and the sewing machine (1) is used to perform correlation calculation with the received signal. To identify the pseudorandom noise sequence in the received satellite number. Those skilled in the art will be aware of many commonly used correlation algorithms, and therefore will not be discussed in depth here. In the same startup mode, the speed of GPS satellite signal acquisition and tracking depends on the number of baseband related computing resources, ie the number of channel resources of the GPS receiver. In 201131187, the satellite capture tracking time consumed by cold start is more than that of warm start. The capture time of the warm start is captured by the satellite capture tracking time. ",, when the start of the bit synchronization acquisition is completed, only the code of the C/Α code of the satellite signal can be obtained: i#/ 'To perform navigation demodulation, the C/A obtained must be captured. Based on the boundary synchronization of the cake data, that is, the navigation data bit I 兀
首先簡單介紹一下GPS錢的導航資料結構。衛星下發的GPS 分朗調製而成··鮮為h 57542GHz的载波信號、 道:、辱^號和50Hz的導航資料資訊。圖3所示為GPS =航貧料的結構示意圖咖。如圖3所示,在u上所承載的導航 貝料巧為單位,每_為⑽G位元,i又可分為五個子賴。 導航·貝料的内谷包括衛星的周内時間(Ti脈如冰,醫)、廣 (Broadcast Ephemeris) > t (Almanac) •等。其中廣播星曆用來計算各衛星本身的精確軌道位置 ,並且 被os在^航負料的1/2/3子巾貞中,正常情況下,它每2小時更. 新-次,每次更新的有效期約則、時;曆書為所有衛星在軌道上 的概略位置及其狀況等,正常情況下,它每週更新一次,有效時 間可達數週。 常用的導航資料位元同步的方法包括以下步驟: 在捕獲所得的lms C/a碼邊界的基礎上進行積分,得到lms C/A碼資料的積分值; 一在同個導航位元週期裏,由於C/A碼調製的是同一個導航 位元’因此’在-個導航位元週期裏的2〇個—c/a _積分值 11 201131187 ^該是大助社·。如果__導綠 則這個麟會通過lms積分值呈現出來。積分值發生了 0 =轉 時刻就是20ms的導航位元的邊界; 、 ,,肩隻化的 元的:ri:20ms的積分累加值來找到第-個2〇-的導航位 同確Γ這轉触元邊界進❹次的驗,啸高位元 佈越均勻,㈣二 的美礎上,轉低’耗時增長。在保證賴的檢測概率 .的基礎上導Μ料位元同步-般需要花費4〜6秒的時間。 GPS_3^iftg^ 般位大Γ可以解調導航位元。解調出導 類方法本質都===類,幅度解調和符_調。這兩 ·"、J lms積为值資訊。例如,可以通過 偷人昌體%航料4解财法對於本領域所屬技 此這裡就了的。’而且也不是本發明所關注的問題,因 幽同步釦!-收, 和二=元^㈣列—) 輪社構決文中稱為導航資料子綱步。GPS導航資料的傳 “構决疋了子_步平均需要耗費%的時間。 12 201131187 收集 在完成子綱步之後,根鮮航資料的結構定義 =確的前提下,進行衛星星曆、層書和電離層參數的提取奇偶技 在滿足解調靈敏度的條件下,收华 費24秒的時間。 ㈣到伤疋整的星曆平均需要耗 條棹ί至ί!鎖定4顆GPS衛星信號和收集齊了相關衛星的星滑的 =:::戶r和時間資訊,並將相關計 後輸A j用戶顯示單元。關於GPS的位置、速度和時間計算、 算結果的舰歧非本㈣注_'點,並且本領域 ===行這些計算和處理的多種方法,因此在這裡 多個述和分析可見,GPS触機從職到定位需要經歷 白又母個階段的耗時均會影響GPS接收機的ttff性能。其 同步和歸收集的時間是由GPS導航資料結構所決定的, 是由系統的糊器資源所蚊。本發明主要著重從 古:貝;位疋同步、導航資料解調的角度分析提高TTFF的性能的 万法。 的邊^文可知,纟於衛星信號的捕獲過程僅能提供C/A碼(lms) 料1 _貝訊’而導航資料的週期為20ms,因此在導航資料位元同 啟^無t進行導航資料的解綱算。在如® 4所示的傳統的冷 位机程4〇0中,包括有捕獲所有衛星步驟410、跟蹤捕獲成 ^、喊步驟41卜位元同步步驟412與位元解調步驟416。在一 施例中’位元解調步驟4丨6包括幀同步步驟413、星曆收集步驟 4步驟與疋位和輸出步驟415。導航資料位元同步412和導航資 13 201131187 料解調416這兩個階段是串列進行的。也就是說,用於導航資料 β _同步的寊料無法用於導航資料的解調。基於這一點,本發明 提出了-種用於從GPS衛星信號中獲取導航位元流的方法和裝 置4PS接收機及其定位方法,其能夠在空間上並行處理導航資料 位元同步和導航資料解調,從而提高了 GPS接收機的TTFF性能。 在根據本發明的方案中,將導航資料位元同步期間的c/a碼 ^訊(例如積分值資訊或C/A碼序列)存儲下來作為補充的導航 ^料’並且在導航資料位元同步之後解調該段導航資料。這樣, 可以有效地提高位元同步期間的C/A碼積分資訊的利用率,增加 了 GPS定位触中可用的導航資料量,從而縮短了子_步和星 曆收集的時間’提高了 GPS接收機的TTFF性能。圖5所示為根據 本發明,例的冷啟動模式下的GPS;t位方法的流程丄,^= 獲所有衛星步驟51G、跟蹤捕獲成功的衛星步驟51卜位元同步步 驟512與位元解調步驟516。在—實施例中,位元解調步驟⑽ 包括,同步步驟513、星曆收集步驟514與定位和輸出步驟515。 在一實施例巾,補紐元觸倾517可為位元解調步驟516之 一輸入。 根據本發明實施例的溫啟動模式下的GPS定位方法的原理與 此相同。在一實施例卜GPS接收機的定位方法,包括:捕獲和^ 蹤一 GPS衛星信號;利用從一 Gps衛星信號中獲取一導航^元流 的方法來從捕獲_該Gps衛星信號中獲取—導航位元流;賴 獲取的該導航位元流進行—驰資料子_步;從該子巾貞同步後 的該導航資料中收集—星曆和—曆書;以及根據所收集到的該星 曆和該曆書來獲得該GPS接收機的一定位資訊。 μ 以下將結合圖式、特別是圖6至圖10來描述根據本發明實施 例的用於從GPS衛星信號中獲取導航位元流的方法和裝置、Gps 201131187 其粒枝。在町的贿巾,為了清聽見,省略了 無關或關係不大的、且本領域所屬技術人員已知 的部件和處理的表示和描述。 道圖6所示為根據本發明實施例的用於從GPS衛星信號中獲取 ,位=的方法的示意性流_ _,包括有:導航位元同步以 位疋St界步驟_、將位元邊界之後的導航資料解調成導航 ^ 、存儲偽隨機碼(C/A碼)的積分值步驟s63〇、將First, a brief introduction to the navigation data structure of GPS money. The GPS transmitted by the satellite is divided into a carrier signal of the 57542 GHz, a channel, a humiliation number and a navigation information of 50 Hz. Figure 3 shows the structure diagram of GPS = aerospace material. As shown in Fig. 3, the navigation material carried on u is a unit, and each _ is (10) G bits, and i can be divided into five sub-destinations. The inner valley of the navigation material includes the satellite's intra-week time (Ti pulse such as ice, medical), broad (Eastern Ephemeris) > t (Almanac) • and so on. The broadcast ephemeris is used to calculate the precise orbital position of each satellite itself, and is used by os in the 1/2/3 sub-frame of the airborne material. Under normal circumstances, it is more every 2 hours. New-time, each time The validity period of the update is about the time and time; the almanac is the approximate position and condition of all satellites in orbit. Normally, it is updated once a week for several weeks. The commonly used navigation data bit synchronization method includes the following steps: performing integration on the basis of the captured lms C/a code boundary to obtain an integral value of the lms C/A code data; one in the same navigation bit period, Since the C/A code modulates the same navigation bit 'so' in the two navigation bit periods, 2 - c / a _ integral value 11 201131187 ^ This is the big helper. If __ leads green, then this lin will be presented by the lms integral value. The integral value occurs 0 = the turn-off time is the boundary of the navigation bit of 20ms; , ,, the shoulder-only element: ri: 20ms integral accumulated value to find the first - 2〇- navigation bit and confirm this turn In the test of the boundary of the touch element, the more uniform the whistle is, the more uniform it is, and the lower the cost of the (four) two. On the basis of guaranteeing the probability of detection, it takes 4 to 6 seconds to synchronize the data bit. GPS_3^iftg^ The general position can demodulate the navigation bit. The nature of the demodulation method is === class, amplitude demodulation and symbol_modulation. These two · ", J lms product value information. For example, it can be solved by the method of stealing a person's body. ‘And it’s not a problem of concern to the present invention, because of the quiescent sync! - Receive, and two = yuan ^ (four) column -) The round of social media is called the navigation data sub-step. The transmission of GPS navigation data "constructs the average time of the _ step to spend % of the time. 12 201131187 Collection After the completion of the sub-step, the structure definition of the root fresh air data = the premise, the satellite ephemeris, layer book And the extraction and parity of the ionospheric parameters, under the condition of satisfying the demodulation sensitivity, the time of receiving the fee is 24 seconds. (4) The average ephemeris to the scar is consuming 棹ί to ί! Locking 4 GPS satellite signals and collecting The relevant satellite's star-slip =::: household r and time information, and will be related to the A j user display unit. The GPS position, speed and time calculation, the calculation results of the ship is not the same (four) note _' Points, and the field === lines of these various methods of calculation and processing, so here are a number of sums and analysis can be seen, GPS receivers from the job to the positioning needs to go through the white and mother stage of the time will affect the GPS receiver The ttff performance. The synchronization and collection time is determined by the GPS navigation data structure, and is the mosquito of the system's paste resource. The invention mainly focuses on the ancient: shell; position synchronization, navigation data demodulation angle Analysis improves the performance of TTFF Wanfa. The side of the text can be known, the satellite signal capture process can only provide C / A code (lms) material 1 _ Beixun 'and the navigation data cycle is 20ms, so the navigation data bit with the same ^ no Performing a solution to the navigation data. In the conventional cold-storing machine 4〇0 shown in FIG. 4, the steps of capturing all satellites 410, tracking captures into ^, shouting step 41, and bit synchronization steps 412 are included. Bit demodulation step 416. In one embodiment, the 'bit demodulation step 4丨6 includes a frame synchronization step 413, an ephemeris collection step 4 step and a clamp and output step 415. Navigation data bit synchronization 412 and navigation resources 13 201131187 Material demodulation 416 These two phases are performed in series. That is to say, the data used for navigation data β_synchronization cannot be used for demodulation of navigation data. Based on this, the present invention proposes Method and device for acquiring navigation bit stream from GPS satellite signals 4PS receiver and positioning method thereof, capable of spatially processing navigation data bit synchronization and navigation data demodulation in parallel, thereby improving TTFF performance of GPS receiver In the solution according to the invention The c/a code (for example, the integral value information or the C/A code sequence) during the synchronization of the navigation data bit is stored as a supplementary navigation material and the navigation data is demodulated after the navigation data bit is synchronized. In this way, the utilization of the C/A code integration information during the bit synchronization can be effectively improved, and the amount of navigation data available in the GPS positioning touch is increased, thereby shortening the time of the sub-step and the ephemeris collection. TTFF performance of the machine. Figure 5 shows the GPS in the cold start mode according to the invention, the flow of the t-bit method, ^= get all satellite steps 51G, track the successful satellite step 51 bit synchronization step 512 and bit demodulation step 516. In an embodiment, the bit demodulation step (10) includes a synchronization step 513, an ephemeris collection step 514, and a positioning and output step 515. In an embodiment, the fill button 517 can be one of the bit demodulation steps 516. The principle of the GPS positioning method in the warm start mode according to the embodiment of the present invention is the same as this. In an embodiment, a GPS receiver positioning method includes: capturing and tracking a GPS satellite signal; acquiring a navigation channel from a GPS satellite signal to acquire from the GPS signal of the GPS signal. a bit stream; the obtained navigation bit stream is subjected to a data sub-step; and the ephemeris and the almanac are collected from the navigation data synchronized by the sub-frame; and according to the collected ephemeris and The almanac obtains a positioning information of the GPS receiver. μ The method and apparatus for acquiring a navigation bit stream from GPS satellite signals, Gps 201131187, in accordance with an embodiment of the present invention, will be described below in conjunction with the drawings, particularly Figures 6-10. The bribes in the town, for the sake of clarity, omit representations and descriptions of components and processes that are not relevant or of little relevance and known to those skilled in the art. FIG. 6 is a schematic flow diagram __ for a method for acquiring bit = from a GPS satellite signal according to an embodiment of the present invention, including: navigation bit synchronization to position St _ step, _ bit The navigation data after the boundary is demodulated into navigation ^, and the integral value of the stored pseudo random code (C/A code) is step s63〇,
偽1^鄭”?的積謹解調成導航位元步驟S64G、與連接成連續的導 航位元流步驟S65G等。而圖7所示為根據本發明實施例的Gps接 收機的定位方法的示意性流程圖·,且在圖 ^位方法彻了圖6中的方法來獲取GPS衛星信號中的== 抓。為了方便本領域所魏術人員更好地理解根據本發明實施例 的方法’這裡首先參照圖7來描述根據本發明實施例的Gps接收 機定位方法。 〇如圖7所示,首先,在步驟S710中,捕獲和跟縱GPS衛星信 號。通$是在S個辭區間上對特定魅信號進行觀。捕獲完 成後’基於織射定的醉和G/A碼她開始觸衛星信號進 行跟蹤。所述捕獲和跟蹤可以使用現有技術中已知的各種技術手 段來實現,這裡不再贅述。 ,著,在步驟S720中,在所確定的C/A碼相位的基礎上,對 GPS衛星信號中的導航資料進行位元同步,以確料航資料的位元 邊界。在此也可贿用現有技射已知的各種導航龍位元同步 方法來實現’因此省略了其具體描述。 在進行導航資料位元同步的同時,在步驟373〇中,存儲位元 同步過程中的每個lms的C/A碼的積分值。在此,假設用[intl, intl,intn]表示位元同步期間的各個lms的C/A碼積分值。 15 201131187 ,官在該實施例巾存儲的是C/A碼的積分值,但是本領域所屬技 術人員應當理解,在其他實施例中,也可以存儲C/A碼的其他資 例如,根據本發明的一個實施例,可以在步驟S730中存儲位 3步過財的G/A碼相。G/A碼_分值可崎過(:/Α碼序列 计'^而到。 、在導航資料位元同步完成以後,即,在已經獲取到導航資料 的位元邊界時’在麵湖,減導航資料驗元邊界將位元同 步期間存制各個lms的G/A碼積分值觸成導航位元。 曾=外,在導航資料位元同步完成以後,在步驟S750中,根據 $貝料的位元邊界,將所確定的位元邊界之後的導 成導航位元。 ,此’步驟S74〇和S75〇的處理可以彼此串列執行(也可以 …仃步驟S750的處理然後再執行步驟湖的處理),但是也可 以彼此地並行執行。 接著’在步驟S76〇中,將在步驟S74〇和S75〇中解調出的導 ^元連接成連續料航位元流。相騎現有技術^言,在步驟 魏中進行的解調提供了附加的可用導航位元,因此在本文中也 稱為補充導航資料解調。 根據本發明的-個實施例,在步驟测中,可以按以下過程 逐個解調出每個導航位元: 1、假設導航資料位元同步的總耗時為n毫秒(ms),則位元 三=間的導航位讀以⑽如吟其巾[」是用於對計算結果 向下取整數的運算符; ιρΛ根據位兀同步所得的位元邊界可知,從intn開始5往前 2二lms積分值就代表―個完整的導航位元資訊; UtartNavBitCi)為第i個導航位元的lms(yA石馬積分 201131187 在位元同步期間所存儲的C/Α碼積分值當中的起始位置,則:The pseudo-1^zheng" is demodulated into a navigation bit step S64G, and is connected to a continuous navigation bit stream step S65G, etc. Figure 7 shows a positioning method of a GPS receiver according to an embodiment of the present invention. Illustrative flow chart, and the method in Fig. 6 is used to obtain the == scratch in the GPS satellite signal. In order to facilitate the skilled person in the art to better understand the method according to the embodiment of the invention' Here, a GPS receiver positioning method according to an embodiment of the present invention will be described first with reference to Fig. 7. As shown in Fig. 7, first, in step S710, GPS satellite signals are captured and aligned. The pass$ is on the S-word interval. Viewing the specific enchantment signal. After the capture is completed, 'based on the smear-based drunk and G/A code, she starts tracking with the satellite signal. The capture and tracking can be achieved using various technical means known in the prior art, here Further, in step S720, based on the determined C/A code phase, the navigation data in the GPS satellite signal is bit-synchronized to determine the bit boundary of the navigation data. You can also use the existing technology to know the bribe. Various navigation dragon bit synchronization methods are implemented to 'enclose the detailed description thereof. While performing navigation data bit synchronization, in step 373, the integral of each lms C/A code in the bit synchronization process is stored. Here, it is assumed that [intl, intl, intn] is used to represent the C/A code integral value of each lms during the bit synchronization. 15 201131187, in this embodiment, the integral value of the C/A code is stored. However, those skilled in the art should understand that in other embodiments, other resources of the C/A code may also be stored. For example, according to an embodiment of the present invention, the G/A of the bit 3 step can be stored in step S730. Code phase. G/A code _ score can be oversold (: / 序列 code sequence '^而到. After the navigation data bit synchronization is completed, that is, when the bit boundary of the navigation data has been acquired' Face lake, minus the navigation data check boundary, the G/A code integral value of each lms stored in the bit synchronization period is touched into the navigation bit. Once = outside, after the navigation data bit synchronization is completed, in step S750, according to $ bit boundary of the material, after the determined bit boundary The processing of the steps S74 and S75 can be performed in series with each other (may also be: the processing of step S750 and then the processing of the step lake), but can also be performed in parallel with each other. In step S76, the demodulation elements demodulated in steps S74A and S75〇 are connected into a continuous material stream. In the prior art, the demodulation performed in the step provides additional availability. The navigation bits are therefore also referred to herein as supplementary navigation data demodulation. According to an embodiment of the present invention, in the step measurement, each navigation bit can be demodulated one by one according to the following procedure: 1. Assume navigation data The total time of bit synchronization is n milliseconds (ms), then the navigation bit between bits 3 = is read as (10) if its towel [" is an operator used to take an integer down to the calculation result; ιρΛ according to the position 兀Synchronization of the bit boundary can be seen, starting from int 5 forward 2 2 lms integral value represents "complete navigation bit information; UtartNavBitCi) is the ith navigation point lms (yA Shima integral 201131187 in-position C/Α code stored during synchronization Value among the starting position, then:
Sta.rtNavBit(i)=n- bitcnt *20+(i-l)*20+l (i), 其中i為正整數且Hbitcnt β 4、假設EndNavBit⑴為第i個導航位元的-C/A碼積分在 位兀同步期間所存儲的C/A石馬積分值當中的結束位置,則:Sta.rtNavBit(i)=n-bitcnt *20+(il)*20+l (i), where i is a positive integer and Hbitcnt β 4, assuming that EndNavBit(1) is the -C/A code integral of the i-th navigation bit At the end of the C/A stone horse integral value stored during the synchronization, then:
EndNavBi t (i)=StartNavBi t (i ) + 19 ( 2 ) -如池爾⑴至脇騎丨⑴的積分值按照如前 κ導貝枓解調一節中所述的常規解調方法進行解調,即可 付到位70同步期間第i個導航位元。 進步驟S77G ^,對在步^ _爾航位元流 進盯導航胃料子_步。在細s巾,從 料中收集星曆和曆書。在步驟例 ^的¥航貧 書來知GPS接收機的定位資訊,從而完成奶定位。當然 可以將獲得的GPS接收機的定位資 、、、 P 〇 〇77Π ^ 位貝訊以各種已知的方式顯示給用 二步至S790的處理可以使用現有卿接收機定位方法 對其進行詳細描述 料了制書的簡潔起見,這裡不再 =圖6所示為根據本發明實施例的用於從g 取導航位元流的方法_。步 軒生1 口唬中獲 S750、S76G 的處理_。也^^S72G、_、S740、 方法中可以利關6中的方法獲_ #GPS接收機定位 這裡不再細㈣梅繼起見, 碼積分值通漏— 201131187 過常規_航資料解調得到另—部分導航位 ° =兩。卩V導航位元連接在,,便形成了—段連續 伹7C流。 ,9,示為根據本發明實施例的用於從奶衛星信號帽取 ¥航位7〇抓的裝置900的結構示意圖。如圖9所示,用於從Gps 取導航位元流的裝置綱包括數位基帶處理器 ^10、補充導航資料解調單元921以及導航位元流形成單元922。 數位基帶處理器91〇可用於對GPS衛星信號中的導航資料進行位 兀同步以確定導航資料的位元邊界。數位基帶處理器则中進一 =包括偽_碼龍存鮮元911,其可祕麵舰位基帶處理 益對GPS衛星仏號中的導航湖·進行位元同步期間存儲位元同步 過程中的GPS衛星信號中的C/A碼的資訊(比如積分值或者c/a 碼序列)。補充導航資料解調單元921可用於在位元同步完成之 後’根據數位基帶處所奴的導航資料的位元邊界,將 機碼資訊存儲單元911在位元同步期間所存儲的C/A碼的資訊解 調為-部分導航位元。所述數位基帶處理器_還用於在位元同 步完成之後,根據所確定㈣航資料的位元邊界,將所確定的位 元邊界之後的導航資料解調為另-部分導航位元。導航位元流形 成單元922可用於將這兩部分導航位元相連接,以形成連續的導 航位元流。 根據本發明的-個實施例’補充導航資料解調單元921可按 照以上所述關7中的步驟中所_的方法’逐個解調出每 個導航位元。為簡潔起見,這裡不再對此進行詳細描述。 根據本發明的-個實施例’可以通過軟體來實現補充導航資 料解調單元921和導航位元流形成單元咖。當然,本領域所屬技 術人員應當理解,也可以通過硬體或實體來實現這些單元。然而, 18 201131187 使用硬各或:體來實現這些單元可能需要較高的成本。 立圖10示出了根據本發明實施例的GPS接收機1〇〇〇的結構示 广圖:·如f 10所示’GPS接收機1_中包括了圖9中的用於從 PS何星信號中獲取導航位元流的裝置900,而GPS接收機1〇〇〇 的其餘,成部件與現有Gps接收機中的相同。包括天線誦、前 置放大器刪、射頻/中頻⑽/ΠΟ變換器1_、類比/數位(A/D) ^換器_、數位基帶處理器·。因此,為簡潔起見,這裡不 再對GPS接收機100_各個組成部件進行詳細描述。 本領域所屬技術人貞可以理解,奶接收機議中的數位基 '、*理器上〇5。還可用於捕獲和跟鞭GPS衛星信號,以及對導航位 成單it 1Q62所形成的導航位元流進行導航資料子朗步。 =實_巾,触絲處理器魏賴碼纽存儲單元 1U51 ° 另外GPS接收機1〇〇〇還包括導航處理器logo,其可用於從 鴨同步後的導航資料中收集星曆和曆書,以及根據所收 集到的 曆和曆書來獲得GPS接收機的定位資訊。 根據本發明的一個實施例,補充導航資料解調單元工術和導 航位元流戦單元膽可以通過倾來實現,並且可以設置在導 料ίΠ1刪中,如圖1G所示。另外,如上所述,補充導航資 訾。周單元1.061和導航位元流形成單元1〇62也可以通過硬體或 ,來實現’並且可以設置在例如數絲帶處㈣刪巾(未示 出)。 通過以上的贿挪看丨,在根據本發明的實酬中,通過 ^航資料位元同步期間的C/A碼資訊(例如積分值資訊)存儲 =作為附加的導航㈣,並且在導崎料位元同步之後解調該 又導航資料,可以有效地提高位簡步_的G/A碼積分資訊的 201131187 利用率,増加了可用的導 星,=時間,提高貞同步和 GPS衛星信號中獲例^根據本發明實施例的上述用於從 位方法進行了說明。然而H方法和裝置、GPS接收機及其定 明的原理™爾術墙當明白,本發 測試結果 為了更明確說明根據本發明實施例的上述哪 機定位方法心接 在冷啟動模式下的TTFF性能指標祕兄〃別測试了 G_欠機 為了測試的客酿和對比性,整 時鐘二:: ㈣下開機,直至GPS接收機定位,記錄本次的丽耗 ,在疋位之後的〇〜30秒内,隨機開始下次測試。 測試結果如表ί所示。從表〗中可以看出 ::施例帽方法和/或GPS接收機時 = τ: :ρ; #3::!γ """ gps --- 了 3. 6秒,明顯地提升了 Gps接收機的TTFF性能。 參1冷啟動TTFF對比測試結果 測試次數 1003EndNavBi t (i)=StartNavBi t (i ) + 19 ( 2 ) - The integral value of Chier (1) to 丨 丨 (1) is demodulated according to the conventional demodulation method as described in the section 枓Demodulation , you can pay for the i-th navigation bit during the synchronization period. Proceeding to step S77G ^, in the step ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the thin s towel, collect ephemeris and almanac from the material. In the example of the example, the navigation information of the GPS receiver is known to complete the milk positioning. Of course, the obtained positioning information of the GPS receiver, and the P 〇〇 77 Π 位 贝 以 can be displayed in various known manners to the processing of the two steps to S790 can be described in detail using the existing clear receiver positioning method. For the sake of simplicity of the book making, it is no longer here that FIG. 6 shows a method for taking a navigation bit stream from g according to an embodiment of the present invention. Step Xuansheng was treated with S750 and S76G in a sputum. Also ^^S72G, _, S740, the method can be obtained in the method of 6 _ #GPS receiver positioning here no longer fine (four) Mei Jijian, code integral value leakage - 201131187 over the conventional _ aeronautical data demodulation Another part of the navigation bit ° = two. When the 卩V navigation bit is connected, a continuous 伹7C stream is formed. 9, which is a schematic structural view of a device 900 for taking a position from a milk satellite signal cap according to an embodiment of the present invention. As shown in Fig. 9, the apparatus for extracting a navigation bit stream from Gps includes a digital baseband processor ^10, a supplementary navigation data demodulating unit 921, and a navigation bit stream forming unit 922. The digital baseband processor 91 can be used to perform bitwise synchronization of the navigation data in the GPS satellite signals to determine the bit boundaries of the navigation data. The digital baseband processor is in the middle one = including the pseudo-code Longsheng 911, which can be used for the navigation of the navigation satellite in the GPS satellite nickname during the bit synchronization. Information about the C/A code in the satellite signal (such as the integral value or the c/a code sequence). The supplementary navigation data demodulating unit 921 can be configured to: after the bit synchronization is completed, the information of the C/A code stored by the machine code information storage unit 911 during the bit synchronization according to the bit boundary of the navigation data of the digital baseband slave. Demodulated into a partial navigation bit. The digital baseband processor_ is further configured to demodulate the navigation data after the determined bit boundary into another-part navigation bit according to the bit boundary of the determined (four) navigation data after the bit synchronization is completed. The navigation bit stream forming unit 922 can be used to connect the two partial navigation bits to form a continuous navigation bit stream. The supplementary navigation data demodulating unit 921 according to the present invention can demodulate each navigation bit one by one according to the method _ in the step of the above. For the sake of brevity, this will not be described in detail here. The supplementary navigation data demodulating unit 921 and the navigation bit stream forming unit coffee can be realized by software in accordance with an embodiment of the present invention. Of course, those skilled in the art will appreciate that these units can also be implemented by hardware or entity. However, 18 201131187 using hard or body to implement these units may require higher costs. Figure 10 shows a schematic view of the structure of a GPS receiver 1 according to an embodiment of the present invention: · as shown in f 10 'GPS receiver 1_ includes the star for PS from Figure 9 The means 900 for acquiring the stream of navigation bits in the signal, while the rest of the GPS receiver 1 is the same as in the existing GPS receiver. Including antenna 诵, preamplifier deletion, RF/intermediate frequency (10)/ΠΟ converter 1_, analog/digital (A/D) converter _, digital baseband processor. Therefore, for the sake of brevity, the components of the GPS receiver 100_ will not be described in detail herein. Those skilled in the art can understand that the digital base in the milk receiver is '5'. It can also be used to capture and follow the GPS satellite signals, and to navigate the navigation bit stream formed by the navigation unit into a single it1Q62. = _ towel, touch wire processor Wei Lai code New Zealand storage unit 1U51 ° In addition, the GPS receiver 1〇〇〇 also includes a navigation processor logo, which can be used to collect ephemeris and almanac from the navigation data after duck synchronization, and The positioning information of the GPS receiver is obtained according to the collected calendar and almanac. According to one embodiment of the present invention, the supplementary navigation data demodulation unit engineering and navigation bit rogue unit can be implemented by tilting, and can be set in the material, as shown in Fig. 1G. In addition, as described above, the navigation resources are supplemented. The weekly unit 1.061 and the navigation bit stream forming unit 1〇62 may also be implemented by hardware or , and may be disposed at, for example, a number of ribbons (4) to delete (not shown). Through the above bribery, in the actual remuneration according to the present invention, C/A code information (for example, integral value information) during synchronization of the data bit is stored as an additional navigation (4), and in the guide material Demodulation of the navigation data after the bit synchronization can effectively improve the 201131187 utilization rate of the G/A code integral information of the bit _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The above description for the slave bit method according to an embodiment of the present invention has been made. However, the H method and device, the GPS receiver and its prescribed principle are understood, and the test result of the present invention is to more clearly explain the TTFF of the above-mentioned machine positioning method in the cold start mode according to the embodiment of the present invention. Performance indicators secret brother screening test G_ under the machine for the test of brewing and contrast, the whole clock two:: (four) boot, until the GPS receiver positioning, record the current consumption, after the 疋 position Within ~30 seconds, start the next test at random. The test results are shown in Table ί. As can be seen from the table:: When applying the cap method and / or GPS receiver = τ: : ρ; #3::! γ """ gps --- After 3. 6 seconds, obviously Improved TTFF performance of Gps receivers. Reference 1 cold start TTFF comparison test results Test times 1003
測試方法 傳統冷啟動定位 20 201131187 E速冷啟動定位 1098 32.4 以上結合具體實施例描述了本發_基, 所屬技術人員而言,能夠理解本發明的方法 括^理哭步驟或者部件,可以在任何計算設備(包 為、存儲;丨質等)或者計算設備的網路中,以硬體、實體、 組合加以實現’這是本領域所屬技術人員在閱讀 現的χ明的情況下,運用他們的基本撰寫程式技能就能實 現的’因此在麵省略了詳細綱。 處理=上發ΓΠ的還可以通過在任何資訊 就是說,這樣式碼的程式產品來實現。也 或各㈣是’在本發_置和方时,難,各部件 說明_序按時_二=== 屬技術人員應述:本發明的具體實施方式’但是本領域所 體細節,而^ ^ ’發明的保護範圍不限於這裡所公開的具 〃有在本發明的精神實質範圍内的各種變化和等 201131187 效方案。 【圖式簡單說明】 本發明上述和其他目的、特 圖式所給__撕_轉下认结合 似的附圖標記表示相同或者相似的部件相同或相 圖1根據現有技術的GPS接收機的結構示意圖; 流程^根據現有技術的在GPS接收機的三種^動模式下的定位 圖3 GPS導航資料的結構示意圖; 圖4根據現有技躺GPS接收機在冷啟動模式下的定 的原理示意圖; 取 圖5根據本發明實施例的GPS接收機在冷啟動模式下的定位 方法的原理示意圖; 一圖6根據本發明實施例的用於從Gps衛星信號中獲取導航位 元流的方法的流程圖; 圖7根據本發明實施例的GPS接收機的定位方法的流程圖; 圖8根據本發明實施例的形成連續的導航位元流的示意圖; 圖9根據本發明實施例的用於從GPS衛星信號中獲取導航仇 元流的裝置的結構示意圖;以及 圖1 〇根據本發明實施例的GPS接收機的結構示意圖。 【主要元件符號說明】 1〇〇 :傳統的GPS接收機 22 201131187 110 :天線 120 :前置放大器 130 :射頻/中頻(RF/IF)變換器 140 :類比/數位(A/D)變換器 150:數位基帶處理器 160:導航處理器 170 :控制顯示單元 φ 200 :定位流程 210-1 :冷啟動 210-2 :溫啟動 210- 3 :熱啟動 211- 1〜211-3 :衛星信號的捕獲 212- 1〜212-3 :衛星信號的跟蹤 213- 卜213-3 :導航資料位元同步 • 214-1〜214-2 :導航資料子幀同步\導航資料幀同步 215- 1〜215-2 :衛星星曆收集 216- 1〜216-3 :定位輸出 300 : GPS導航資料的結構示意圖 400 :定位流程 410 :有捕獲所有衛星步驟 411 :跟縱捕獲成功的衛星步驟 412:位元同步步驟 23 201131187 413:幀同步步驟 414 :星曆收集步驟 415 :定位和輸出步驟 416 :位元解調步驟 500 :定位流程 510 :捕獲所有衛星步驟 511 ·跟縱捕獲成功的衛星步驟 512 :元同步步驟 513 :幀同步步驟 514 :星曆收集步驟 515 :定位和輸出步驟 516 :位元解調步驟 517 :補充位元解調步驟 600 :流程圖 S610 :導航位元同步以確定位元邊界步緣 S620 :將位元邊界之後的導航資料解調成導航位元步驟 S630 :存儲偽隨機碼(C/A碼)的積分值步驟 S640 ··將偽隨機碼的積分值解調成導航位元步驟 S650 ··連接成連續的導航位元流步驟 700 :流程圖 S710、S7210、S730、740、S750、S760、S770、S780、S790 ·· 步驟 24 201131187 800 :導航位元流的示意圖 900 :用於從GPS衛星信號中獲取導航位元流的裝置 910 ::數位基帶處理器 911 ::偽隨機碼資訊存儲單元 921 :補充導航資料解調單元 922 :以及導航位元流形成單元 1000 :根據本發明實施例的GPS接收機 Φ 1010 :天線 1020 :前置放大器 1030 :射頻/中頻(RF/IF)變換器 1040 :類比/數位(A/D)變換器 1050 :數位基帶處理器 -1051 :偽隨機碼資訊存儲單元 1060 :導航處理器 • 1061 :補充導航資料解調單元 1062 :導航位元流形成單元 1070 :控制顯示單元 25TEST METHODS Conventional Cold Start Positioning 20 201131187 E-Speed Cold Start Positioning 1098 32.4 The above description has been described in connection with the specific embodiments, and those skilled in the art can understand that the method of the present invention includes any crying steps or components that can be used in any Computing devices (packages, storage, enamel, etc.) or computing devices are implemented in hardware, entities, and combinations. This is the case for those skilled in the art to use their current readings. Basic writing skills can be achieved 'so the detailed outline is omitted. Processing = up-and-coming can also be achieved by any kind of information, that is, a program product of this type. Or each (four) is 'in the case of the present invention, it is difficult, the description of each component _ sequence on time _ two === belongs to the skilled person: a specific embodiment of the invention 'but the details of the field, and ^ ^ 'The scope of protection of the invention is not limited to the various changes and equivalents of the 201131187 effect that are disclosed herein without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, the specific reference numerals of the present invention are given to the same or similar components, or the phase of the GPS receiver according to the prior art. Schematic diagram of the structure; according to the prior art, the positioning of the GPS navigation data in the three modes of the GPS receiver; FIG. 4 is a schematic diagram of the principle of the prior art GPS receiver in the cold start mode; 5 is a schematic diagram of a method for locating a GPS receiver in a cold start mode according to an embodiment of the present invention; FIG. 6 is a flowchart of a method for acquiring a navigation bit stream from a GPS satellite signal according to an embodiment of the present invention. Figure 7 is a flow chart of a positioning method of a GPS receiver according to an embodiment of the present invention; Figure 8 is a schematic diagram of forming a continuous navigation bit stream according to an embodiment of the present invention; Figure 9 is for a satellite from a GPS according to an embodiment of the present invention; A schematic structural diagram of a device for acquiring a navigational enemy stream in a signal; and FIG. 1 is a schematic structural diagram of a GPS receiver according to an embodiment of the present invention. [Main component symbol description] 1〇〇: Conventional GPS receiver 22 201131187 110 : Antenna 120 : Preamplifier 130 : RF / IF converter 140 : Analog / digital (A / D) converter 150: Digital baseband processor 160: Navigation processor 170: Control display unit φ 200: Positioning flow 210-1: Cold start 210-2: Warm start 210-3: Hot start 211-1 to 211-3: Satellite signal Capture 212-1~212-3: Tracking of Satellite Signals 213- Bu 213-3: Navigation Data Bit Synchronization • 214-1~214-2: Navigation Data Subframe Synchronization\Navigation Data Frame Synchronization 215-1~215- 2: Satellite Ephemeris Collection 216-1~216-3: Positioning Output 300: Structure Diagram of GPS Navigation Data 400: Positioning Process 410: Capture All Satellites Step 411: Follow the Vertical Capture Successful Satellite Step 412: Bit Synchronization Step 23 201131187 413: Frame Synchronization Step 414: Ephemeris Collection Step 415: Positioning and Output Step 416: Bit Demodulation Step 500: Positioning Flow 510: Capture All Satellites Step 511 • Follow the Capture Successful Satellite Step 512: Meta-Synchronization Step 513: Frame Synchronization Step 514: Ephemeris Collection Step 515: Positioning and Step 516: Bit demodulation step 517: Supplemental bit demodulation step 600: Flowchart S610: Navigation bit synchronization to determine bit boundary step edge S620: Demodulate navigation data after the bit boundary into navigation bits Step S630: storing the integral value of the pseudo random code (C/A code). Step S640 · Demodulating the integrated value of the pseudo random code into the navigation bit. Step S650 · Connecting to the continuous navigation bit stream. Step 700: Flowchart S710, S7210, S730, 740, S750, S760, S770, S780, S790 · Step 24 201131187 800: Schematic 900 of the navigation bit stream: means 910 for obtaining a navigation bit stream from GPS satellite signals :: Digit Baseband processor 911::Pseudo-random code information storage unit 921: supplementary navigation data demodulating unit 922: and navigation bit stream forming unit 1000: GPS receiver Φ 1010 according to an embodiment of the present invention: antenna 1020: preamplifier 1030 : RF/IF converter 1040: Analog/digital converter (A/D) converter 1050: Digital baseband processor - 1051: Pseudo-random code information storage unit 1060: Navigation processor • 1061: Supplementary navigation data Demodulation unit 1062: Navigation bit stream forming unit 1070: Control display unit 25