[go: up one dir, main page]

TW201127863A - Acrylic modified urethane urea resin composition and molding product obtained by using the same - Google Patents

Acrylic modified urethane urea resin composition and molding product obtained by using the same Download PDF

Info

Publication number
TW201127863A
TW201127863A TW099131544A TW99131544A TW201127863A TW 201127863 A TW201127863 A TW 201127863A TW 099131544 A TW099131544 A TW 099131544A TW 99131544 A TW99131544 A TW 99131544A TW 201127863 A TW201127863 A TW 201127863A
Authority
TW
Taiwan
Prior art keywords
urea resin
modified urethane
acrylic
urethane urea
resin composition
Prior art date
Application number
TW099131544A
Other languages
Chinese (zh)
Other versions
TWI495654B (en
Inventor
Koujirou Tanaka
Yukihiko Minamida
Masayoshi Imanaka
Eiji Nakai
Shinya Yamamoto
Eiji Sugaya
Kazuki Obi
Original Assignee
Dainippon Ink & Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink & Chemicals filed Critical Dainippon Ink & Chemicals
Publication of TW201127863A publication Critical patent/TW201127863A/en
Application granted granted Critical
Publication of TWI495654B publication Critical patent/TWI495654B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This invention relates to an acrylic modified urethane urea resin composition and a molding product obtained by using the composition, the acrylic modified urethane urea resin composition containing an acrylic modified urethane urea resin (1) and a solvent (2), the acrylic modified urethane urea resin (1) being obtained by reacting a polyol (A), a polyisocyanate (B), a polyamine (C) and an acrylic compound (D) having active hydrogen-containing groups, the equivalent weight of the acrylol groups derived from the acrylic compound (D) in the acrylic modified urethane urea resin being in the range of 10000 to 50000.

Description

201127863 六、發明說明: 【發明所屬之技術領域】 本發明係關於例如在成型材料或塗覆劑、黏著劑等等 各種用途可使用的丙烯酸改性胺基甲酸酯脲樹脂組成物。 【先前技術】 使用胺基甲酸酯系成型材料而獲得的成型物,現在使 用在汽車零件及家電零件或包裝材、構成皮革狀片材之表 皮材等各種用途。 對於則述成型物,要求因應於其適用用途的各種特 性。例如使用在汽車內裝材時’有時要求在夏日的高溫環 境下長時間暴露時不會引起成型物變色或變形等的程度的 耐熱性’使用於前述包裝材時,有時要求能夠保護其内容 物免於受外部損害的程度的強度或耐久性。 另一方面’伴隨著胺基甲酸酯系成型物的適用用途更 爲廣泛,對於前述成型物也要求比起以往更高度的特性。 例如於醫療領域’要求經包裝的醫療器具能不開封而以紫 外線殺菌,對於該包裝材,要求具備對於紫外線或較低波 長區之可見光線的高穿透率。 又’近年來,紫外線硬化型黏著劑的開發急速進展, 由提高工業製品的生產效率的觀點,例如有時會在透明的 被黏著體表面塗佈前述黏著劑,並將其他被黏著體載置於 該塗佈面後’隔著前述透明的被黏著體對前述黏著劑層照 射紫外線’藉此使此等黏著。此時’當前述透明被黏著體 -4- 201127863 爲能吸收紫外線等的材質’即使照射多量紫外線等,有時 前述黏著劑層的硬化也無法充分進行,因此產業界需求能 使用在可充分穿透紫外線或較低波長區之可見光線的被黏 著體的成型物。 但是,以往’在紫外線或可見光線的低波長區(約 3 8 Onm附近)提高光穿透性非常困難,例如僅提高其光穿透 率約1 %,也要花費相當勞力與試誤,因此,實情爲能形成 具備產業界所需求的程度的光穿透率的成型物的成型材料 的開發,並未急速進展。 即使在該狀況下,仍有關於前述光穿透性優異之成型 材料的報告,已知例如將由脂肪族系單體或/及脂環族系單 體構成之聚胺基甲酸酯脲樹脂溶液,塗佈在具有鏡面的脫 模性基材上並乾燥得到的遠紫外線穿透性膜,具有優異的 遠紫外線穿透性(例如參照專利文獻1 )。 前述遠紫外線穿透性膜,雖具有某個程度的良好光穿 透性’但是於高溫環境下使用等時,有時會因爲熱的影響 而引起膜收縮等變形或變色。 如以上’實情爲:尙未發現可形成兼具有於紫外線或可 見光線之低波長區光穿透性優異及耐熱性優異的膜等成型 物的成型材料。 先前技術文獻 專利文獻 專利文獻1 日本特開昭6 2 — 1 5 6 9 1 6號公報 201127863 形,耐 可性異 , 透優 物穿的 成光度 組的程 脂異之 樹優等 0311 種區色 一長變 #波或 :ii低形 於之變 在線起 題光弓 課見而 的可響 題決或影 課解線熱 。 1 的欲外因物 容決明紫會型 內解發於不成 明欲本備有的 發明 具具性 ί 發 成且熱 文若改透 利到酸穿 專¾烯光 r’ 的r 於討得的 對探獲異 , 行而優 題進基具 課礎醯兼 述基烯能 m爲丙glc 決脂的, 解樹量物 了 脲定成 爲酯特組 , 酸入脂 等甲導樹 式人基中脲 方明胺造酯 。 之發的構酸性 題案載脂甲熱 課本記樹基耐 決 1 在胺與 解 獻爲性性 即’本發明係關於一種丙烯酸改性胺基甲酸酯脲樹脂 組成物及使用此組成物得到的成型物,該丙烯酸改性胺基 甲酸酯脲樹脂組成物,包含:使多元醇(A)、聚異氰酸酯(B)、 多元胺(C)及具有含活性氫原子之基的丙烯酸化合物(D)反 應而得的丙烯酸改性胺基甲酸酯脲樹脂(1 ),與溶劑(2)而 成’前述丙烯酸改性胺基甲酸酯脲樹脂具有的來自前述丙 烯酸化合物(D)的丙烯醯基的當量重量爲loooo〜50000的 範圍。 發明之效果 若爲本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 可形成具有於紫外線或可見光線之低波長區之光穿透性優 -6- 201127863 異’且具有不會因爲熱影響造成變形或變色等之程度的優 異耐熱性的成型物’因此例如可使用在汽車零件或家電零 件、包裝材、膜或片材、皮革類片材之表皮材等的製造。 又’本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 由於如前述具有優異的耐熱性,因此例如可使用在各種基 材之表面塗覆劑或黏著劑等。 【實施方式】 實施發明之形態 首先說明本發明使用的丙烯酸改性胺基甲酸酯脲樹脂 (1)。 本發明使用的丙烯酸改性胺基甲酸酯脲樹脂(1 ),係使 多元醇(A)與聚異氰酸酯(B)與多元胺(C)及具有含活性氫 原子之基的丙烯酸化合物(D)反應而得,具有來自前述丙烯 酸化合物(D)的丙烯醯基的胺基甲酸酯脲樹脂當中,具有 10000〜50000的範圍的丙烯醯基的當量重量。 在此,前述丙烯醯基之當量重量,係指構成前述丙烯 酸改性胺基甲酸酯脲樹脂(1)之多元醇(A)與聚異氰酸酯(B) 與多元胺(C)與具有含活性氫原子之基的丙烯酸化合物(D) 的合計質量,除以前述丙烯酸改性胺基甲酸酯脲樹脂中存 在的來自前述丙烯酸化合物(D)的丙烯醯基的當量而得之 値。 前述丙烯醯基之當量重量超過50000的丙烯酸改性胺 基甲酸酯脲樹脂,於該樹脂中幾乎不具有丙烯醯基,因此 有時會造成耐熱性顯著降低。另一方面,前述當量重量小 201127863 於10000的丙烯酸改性胺基甲酸酯脲樹脂,其重量平均分 子量大致低到小於5 0 0 0的程度,有時仍會引起耐熱性降 低。因此,本發明使用之丙烯酸改性胺基甲酸酯脲樹脂 U ),於兼具在紫外線或可見光線之低波長區的光穿透性與 耐熱性方面,必需使用具有10000〜50000之丙烯醯基的當 量重量者。前述丙烯酸改性胺基甲酸酯脲樹脂(1 ),使用前 述當量重量10000〜30000之範圍者較佳。 又’前述丙烯酸改性胺基甲酸酯脲樹脂(1 ),具有胺基 甲酸酯鍵及脲鍵。使用不具脲鍵,所謂胺基甲酸酯丙烯酸 酯時’成型加工性低,有時難以製造例如薄化的膜等成型 物。因此,就前述丙烯酸改性胺基甲酸酯脲樹脂(1 )而言, 就兼具優異的成型加工性,同時具有良好的耐熱性與光穿 透性的觀點’使用具有4〜10質量%的脲鍵者較佳,5〜8 質量%較佳,6〜7質量%尤佳。又,前述脲鍵之質量比例, 爲相對於作爲前述丙烯酸改性胺基甲酸酯脲樹脂(1 )之製 造使用之原料的前述多元醇(A)與聚異氰酸酯(B)與多元胺 (C)與含有含活性氫原子之基的丙烯酸化合物(D)的合計質 量’脲鍵構造在前述原料中所佔的質量比例。 又’前述丙烯酸改性胺基甲酸酯脲樹脂(1 ),從兼具優 異成型加工性,同時具有良好耐熱性與光穿透性的觀點, 使用具有5〜15質量%的胺基甲酸酯鍵者較佳,7〜9質量% 更佳。又’前述胺基甲酸酯鍵之質量比例,係指相對於作 爲前述丙烯酸改性胺基甲酸酯脲樹脂(丨)之製造使用之原 料的前述多元醇(A)與聚異氰酸酯(B)與多元胺(C)與具有 201127863 含活性氫原子之基之丙烯酸化合物(D)的合計質量,胺基甲 酸酯鍵構造在前述原料中所佔的質量比例。 又,前述丙烯酸改性胺基甲酸酯脲樹脂(1 ),使用具有 5000〜200000之重量平均分子量者,在維持優異光穿透性 與耐熱性同時維持良好成型加工性方面較佳,1 5 0 0 0〜 200000之範圍更佳。又,前述丙烯酸改性胺基甲酸酯脲樹 脂之重量平均分子量,係使用凝膠滲透層析(GPC),使用四 氫呋喃作爲溶離液,以苯乙烯換算求得之値。 其次,說明前述丙烯酸改性胺基甲酸酯脲樹脂(1 )之製 造使用的多元醇(A)。 前述多元醇(A)可使用各種者,但是,較佳爲使用羥基 價爲30〜230mgKOH/g之範圍者,使用50〜230mgKOH/g 之範圍者更佳。又,前述多元醇(A)之羥基價,係依據JIS K0070進行測定之値。 前述多元醇(A),可使用例如聚酯多元醇、聚碳酸酯多 元醇、聚醚多元醇、丙烯酸基多元醇等,其中,使用不具 芳香族環式構造者,在更提高光穿透性的方面較佳。 前述聚酯多元醇,例如可使用將低分子量多元醇與聚 羧酸進行酯化反應得到的脂肪族聚酯多元醇,或將ε-己 內酯、γ -戊內酯等環狀酯化合物進行開環聚合反應得到之 聚酯,或此等的共聚合聚酯等。 前述低分子量多元醇,例如可使用乙二醇、二乙二醇、 三乙二醇、四乙二醇、1,2 —丙二醇、1,3-丙二醇、二丙二 201127863 醇、三丙二醇 ' 1,2 — 丁 二醇、1,3 — 丁 二醇、i,4 — 丁 二醇、 2,3 — 丁二醇、1,5— 戊二醇、1,5_ 己二醇、1,6_ 己二醇、 2,5 —己二醇、1,7-庚二醇、1,8—辛二醇、1,9 —壬二醇' 1,10_ 癸二醇、1,11--1--烷二醇、1,12 ——h 二烷二醇、2 —甲基一 1,3 —丙二醇、新戊二醇、2 — 丁基—2_乙基一 1,3 —丙二醇、3 —甲基一1,5 —戊二醇、2 —乙基一1,3 —己二 醇、2_甲基一1,8 —辛二醇、甘油 '三羥甲基丙烷、二-三 羥甲基丙烷、三-三羥甲基丙烷、新戊四醇等脂肪族多元 醇、I,4 一環己烷二甲醇、氫化雙酚A等含有脂肪族環式構 造之多元醇、雙酚A、雙酚A之環氧烷加成物、雙酚s、 雙酣S之環氧烷加成物等多元醇,其中,使用含有脂肪族 或脂肪族環式構造之多元醇較佳,使用脂肪族二醇更佳。 前述聚羧酸,例如可將琥珀酸、己二酸、辛二酸、壬 二酸、癸二酸、十二烷二羧酸、二聚酸之脂肪族聚羧酸、 I,4 -環己烷二羧酸或環己烷三羧酸等脂環族聚羧酸、鄰苯 二甲酸、間苯二甲酸、對苯二甲酸、1,4一萘二羧酸、2,3 一萘二羧酸、2,6-萘二羧酸、聯苯二羧酸、偏苯三甲酸' 苯均四酸等芳香族聚羧酸、及此等之酸酐或酯衍生物單獨 使用或倂用2種以上,使用脂肪族聚羧酸較佳,使用脂肪 族二羧酸更佳。 前述聚酯多元醇,使用不具有芳香族環式構造之聚酯 多元醇較佳’使用使前述脂肪族多元醇與脂肪族聚羧酸反 應而得者較佳,其中,使用使具有2〜6個碳原子之脂肪族 -10- 201127863 多元醇與具有2〜6個碳原子之脂肪族聚羧酸反應得到 者,於賦予優異耐熱性與光穿透性方面尤佳。 又,前述多兀醇(A)可使用之聚碳酸醋多兀醇,例如可 使用使碳酸酯及/或光氣’與後述多元醇反應得到者。 前述碳酸酯,可使用例如:碳酸甲酯’或碳酸二甲醋、 碳酸乙酯、碳酸二乙酯、環碳酸酯 '碳酸二苯酯等。 又,能與前述碳酸酯或光氣反應之多元醇,例如:2;:1 醇、二乙二醇、三乙二醇 '四乙二醇、1,2 —丙二_、i 3 _丙二醇、二丙二醇、三丙二醇、1,2 — 丁二醇' ι,3 — 丁二 醇、1,4 一丁 二醇、2,3 — 丁 二醇、1,5-戊二醇、ι,5 —己二 醇、1,6 —己二醇、2,5-己二醇、1,7 —庚二醇、ι,8 —辛二 醇、1,9 —壬二醇、1,1〇-癸二醇、1,1〗_十一烷二醇、;!,12 _十二院二醇、2—甲基_1,3 —丙二醇、新戊二醇、2 — 丁 基一2—乙基一1,3 —丙二醇、3—甲基一 1,5 —戊二醇、2一 乙基一 1,3 —己二醇、2 —甲基_ 1,8_辛二醇、1,4 —環己烷 二甲醇、1,4一環己烷二甲醇、氫醌、間苯二酚、雙酚a、 雙酚F、4,4’ -聯苯酚等較低分子量的二羥基化合物,或聚 乙二醇、聚丙二醇、聚四亞甲基二醇等聚醚多元醇,或聚 六亞甲基己二酸酯、聚六亞甲基琥珀酸酯、聚己內酯等聚 酯多元醇等’其中,使用脂肪族二醇較佳’使用丨,6—己二 醇更佳。 前述聚碳酸酯多元醇,由於能將使用得到的丙烯酸改 性胺基甲酸酯脲樹脂組成物形成的成型物的耐熱性或光穿 -11- 201127863 透性更提高故使用較佳。其中,使用不具芳香族環式構造 之聚碳酸酯多元醇較佳,使用1,6—己二醇系聚碳酸酯多元 醇尤佳。 又,前述多元醇(A)可使用之聚醚多元醇,例如以具有 2個以上活性氫原子的化合物1種或2種以上作爲起始劑’ 將伸烷基氧化物加成聚合者。 前述起始劑,例如可使用水、乙二醇、二乙二醇 '三 乙二醇、四乙二醇、1,2 —丙二醇、1,3 —丙二醇、二丙二醇、 三丙二醇、1,2 — 丁 二醇、1,3_ 丁二醇 ' 1,4 一丁 二醇、2,3 一丁 二醇、1,5- 戊二醇、1,5- 己二醇、1,6 —己二醇、2,5 —己二醇 ' 1,7 —庚二醇、1,8 —辛二醇、1,9 一壬二醇、1,1〇 —癸二醇、1,11—十一烷二醇' 1,12 —十二烷二醇' 2—甲 基—1,3 —丙二醇、新戊二醇、2_ 丁基_2—乙基一1,3—丙 二醇、3 —甲基-1,5 —戊二醇、2 —乙基一1,3 —己二醇、2 一甲基_1,8 —辛二醇、甘油、二甘油、三羥甲基丙烷、二 -三羥甲基丙烷、三-三羥甲基丙烷、1,2,6—己三醇、三乙 醇胺、三異丙醇胺、新戊四醇、二新戊四醇、山梨醇、蔗 糖、乙二胺、N —乙基二乙三胺、1,2 —二胺基丙烷、1,3 — 二胺基丙烷、1,2_二胺基丁烷、1,3 -二胺基丁烷、1,4一 二胺基丁烷、二乙三胺、磷酸、酸性磷酸酯等。 又,前述環氧院(alkylene oxide),例如可使用環氧乙 烷、環氧丙烷、環氧丁烷、氧化苯乙烯、表氯醇、四氫呋 喃等。 -12- 201127863 前述多元醇(A),相對於得到之丙烯酸改性胺基甲酸酯 脲樹脂(1)之製造使用之原料即多元醇(A)與聚異氰酸酯(B) 與多元胺(C)與丙稀酸化合物(D)之合計質量,使用40〜80 質量%之範圍較佳。 其次,說明前述聚異氰酸酯(B)。 前述聚異氰酸酯(B)’可將例如苯二異氰酸酯、甲苯二 異氰酸酯、二苯基甲院二異氰酸酯' 萘二異氰酸酯等芳香 族二異氰酸酯,或六亞甲基二異氰酸酯 '離胺酸二異氰酸 酯、環己烷二異氰酸酯、異佛爾酮二異氰酸酯、4,4’_二 環己基甲烷二異氰酸酯 '二甲苯二異氰酸酯、四甲基二甲 苯二異氰酸酯等含有脂肪族或脂肪族環式構造之二異氰酸 酯等單獨使用、或倂用2種以上。其中,使用含有脂肪族 環式構造之二異氰酸酯’在提高紫外線或可見光線之低波 長區之光穿透性與耐熱性方面較佳’使用4,4’ -二環己基 甲烷二異氰酸酯、異佛爾酮二異氰酸酯更佳。尤其,提高 耐熱性時,使用4,4’_二環己基甲烷二異氰酸酯尤佳。 前述聚異氰酸酯(B),相對於得到之丙烯酸改性胺基甲 酸酯脲樹脂(1)之製造使用之原料即多元醇(A)與聚異氰酸 酯(B)與多元胺(C)與丙烯酸化合物(D)之合計質量,使用15 〜5 0質量%之範圍較佳。 其次,說明前述多元胺(C)。 前述多元胺(C) ’係於前述丙烯酸改性胺基甲酸酯脲樹 脂(1)中導入脲鍵時使用。 -13- 201127863 前述多元胺(c) ’例如:乙二胺、丙二胺、六亞甲基二 環 基二胺 '異佛爾酮二胺、4,4,— 基甲烷二胺 環己烷 胺基環己烷、哌阱 環 降莰二胺等’其中,使用異佛爾酮二胺、4,4,一 甲烷二胺、降莰二胺等含有脂肪族環式構造之多元胺,於 更提尚紫外線或可見光線之低波長區之光穿透性之方面較 佳’使用含有脂肪族環式構造之二胺更佳,異佛爾酮二胺 尤佳。 前述多元胺(C) ’相對於得到之丙烯酸改性胺基甲酸酯 脲樹脂(1)之製造使用之原料即多元醇(A)與聚異氰酸酯(B) 與多元胺(C)與丙烯酸化合物(D)之合計質量,使用 質量%之範圍較佳。 其次說明前述丙烯酸化合物(D)。 本發明使用之具有含活性氫原子之基的丙烯酸化合物 (D),係於在前述丙烯酸改性胺基甲酸酯脲樹脂(1 )中導入 丙烯醯基時使用者,使用具有能與異氰酸酯基反應之含活 性氫原子之基者。具體而言,使用含羥基之丙烯酸化合物 較佳。 前述含活性氫原子之基,例如羥基、羧基等’羥基較 佳。 前述丙烯酸化合物(D),可使用前述具經基之丙Μ酸化 合物或具羧基之丙烯酸化合物等,但使用具羥基之丙烯酸 化合物較佳。 -14- 201127863 前述含羥基之丙烯酸化合物,例如可使用:(甲基)丙烯 酸2_羥基乙酯、(甲基)丙烯酸2_羥基丙酯、(甲基)丙烯 酸3—羥基丁酯、(甲基)丙烯酸4一羥基丁酯等含羥基之丙 烯酸烷基酯、聚乙二醇單丙烯酸酯、聚丙二醇單丙烯酸酯 等。其中,從光穿透性與耐熱性之觀點,使用含羥基之丙 烯酸烷基酯較佳,從原料取得之容易度的觀點,使用丙烯 酸2_羥基乙酯或丙烯酸4 一羥基丁酯更佳。 前述丙烯酸化合物(D ),相對於得到之丙烯酸改性胺基 甲酸酯脲樹脂(1)之製造使用之原料即多元醇(A)與聚異氰 酸酯(B)與多元胺(C)與丙烯酸化合物(D)之合計質量,使用 0 · 0 5〜1 0質量%之範圍較佳。 又,前述丙烯酸化合物(D)之一部分,也可在本發明之 丙烯酸改性胺基甲酸酯脲樹脂組成物中以未反應狀態存 在。即,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 可以同時含有前述丙烯酸改性胺基甲酸酯脲樹脂(1 )及未 反應之前述丙烯酸化合物(D)。 其次,說明本發明使用之溶劑(2)。 前述溶劑(2),可使用有機溶劑及水溶劑,但是由更提 升成型品之成型性的觀點,使用有機溶劑更佳。 前述溶劑(2)使用有機溶劑時,雖不特別限定,但是可 使用例如乙酸乙酯、乙酸丁酯、乳酸乙酯、賽路蘇、乙酸 賽路蘇、丙酮、甲乙酮、甲基異丁基酮、環己酮、甲苯、 二甲苯 '二甲基甲醯胺、二甲基乙醯胺、丙二醇單甲基醚、 -15- 201127863 丙二醇單甲醚乙酸酯、乙腈、二甲基亞楓、N—甲基吡咯啶 酮、N —乙基吡略啶酮、甲醇、異丙醇、2_ 丁醇、正丁醇、 異丙醇、乙二醇單甲基醚乙酸酯等,此等可單獨使用也可 倂用。又,此等有機溶劑,可視使用的用途適當選擇。 又,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物 中,前述丙烯酸改性胺基甲酸酯脲樹脂(1 )與前述溶劑(2) 之質量比例,爲(1)/(2) = 10〜50/90〜50較佳,15〜35/85 〜6 5更佳。 其次說明前述丙烯酸改性胺基甲酸酯脲樹脂(1 )之製 造方法。 前述丙烯酸改性胺基甲酸酯脲樹脂(1)之製造方法,例 如以下製法(i)〜製法(ii)之方法。其中,依照以下(i)之方 法製造,容易控制反應故較佳。 製法(i),係於前述溶劑(2)下,使前述多元醇(A)與前 述聚異氰酸酯(B)反應而得到於分子末端具有異氰酸醋基 之胺基甲酸酯預聚物,其次,使前述胺基甲酸酯預聚物與 前述多元胺(C)與前述丙烯酸化合物(D)反應而製造丙稀酸 改性胺基甲酸酯脲樹脂(1 ) ° 前述多元醇(A)與前述聚異氰酸酯(B)之反應’於該多 元醇(A)具有之羥基與聚異氰酸酯(B)具有之異氰酸酯基的 當量比例[異氰酸酯基/羥基]爲1.1/1.0〜5.0/1.0之範圍進 行較佳,1.5Π.0〜3.0/1.0之範圍更佳。又,前述多元醇(A) 與前述聚異氰酸酯(B)之反應’於20〜120 Ό之條件下約進 行30分鐘〜24小時較佳。 -16- 201127863 前述多元醇(A)與聚異氰酸醋(B)之反應得到之在前述 分子末端具有異氰酸酯基的胺基甲酸醋預聚物’與前述多 元胺(C)與前述丙烯酸化合物(D)之反應,例如可藉由將前 述胺基甲酸酯預聚物與前述多元胺(C) 一次供給或逐次供 給並使反應,而製造胺基甲酸酯脲預聚物’並藉由使該胺 基甲酸酯脲預聚物與前述丙烯酸化合物(D)反應’而製造丙 烯酸改性胺基甲酸酯脲樹脂(1)。此時’前述胺基甲酸酯預 聚物具有之異氰酸酯基與多元胺(C)之胺基之當量比例[胺 基/異氰酸酯基],爲0.70/1.0〜0.99/1.0之範圍較佳。又, 將前述胺基甲酸酯預聚物與前述多元胺(C)與前述丙烯酸 化合物(D)—次混合或逐次混合,於20〜80°C之條件下大致 反應約1〜3小時也可製造。 又,前述製法(ii),係於前述溶劑(2)下,使前述聚異 氰酸酯(B)與前述多元胺(C)反應而藉此得到於分子末端具 有異氰酸酯基的聚脲預聚物,其次,使該聚脲預聚物與前 述多元醇(A)與前述丙烯酸化合物(D)反應,藉此製造丙烯 酸改性胺基甲酸酯脲樹脂(1 )。 前述聚異氰酸酯(B)與前述多元胺(C)之反應,於前述 聚異氰酸酯(B)具有之異氰酸酯基與前述多元胺(C)具有之 胺基的當量比例[異氰酸酯基/胺基]爲1.1/1.〇〜5.0/1.〇之 範圍進行較佳。 前述聚異氰酸酯(B)與前述多元胺(C)之反應得到之於 前述分子末端具有異氰酸酯基的聚脲預聚物,與前述多元 -17- 201127863 醇(A)與前述丙烯酸化合物(〇)之反應,可藉由將例如前述 聚脲預聚物與前述多元醇(A)—次或逐次供給並使反應,而 製造於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物’ 並使該胺基甲酸酯脲預聚物與前述丙烯酸化合物(D)反 應,藉此製造丙烯酸改性胺基甲酸酯脲樹脂(丨)。又,也可 藉由將前述聚脲預聚物與前述多元醇(A)與前述丙烯酸化 合物(D)—次或逐次混合並使反應而製造。 製造前述丙烯酸改性胺基甲酸酯脲樹脂(〗)時,於前述 製法(i)及(ii)任一者之情形均可視需要使用三級胺觸媒或 有機金屬系觸媒而促進反應。 利用以上方法得到之含有丙烯酸改性胺基甲酸酯脲樹 脂(1)與溶劑(2)的本發明之丙烯酸改性胺基甲酸酯脲樹脂 組成物’也可視需要含有硬化劑或硬化促進劑。 前述硬化劑,可使用例如紫外線硬化劑或電子束硬化 劑等光硬化劑、熱硬化劑。 前述紫外線硬化劑’爲光增感性物質,例如可使用如 苯偶因院基醚之苯偶因醚系;二苯基酮、鄰苯甲醯基苯甲 酸甲酯等二苯基酮系;苄基二甲基縮酮、2,2一二乙氧基苯 乙酮、2 —羥基_2 —甲基苯丙酮、4 一異丙基一 2_羥基—2 一甲基苯丙酮' 1,1 一二氯苯乙酮等苯乙酮系;2_氯一 9 一 氧硫灿唱、2—甲基一 9_氧硫卩山喂、2一異丙基—9 一氧硫 口山喝等9 —氧硫灿卩星(thioxanthone)系化合物。 -18- 201127863 又’前述電子束硬化劑,例如可使用鹵化院基苯、二 硫醚(disulfide)系化合物等。 又’其他光硬化劑,例如可使用羥基烷基苯酮系化合 物、烷基一 9 一氧硫吔唱系化合物、锍鹽系化合物等。 又’前述熱硬化劑,可使用有機過氧化物,具體而言, 可使用二醯基過氧化物系、過氧化酯系、過氧化氫系、二 烷基過氧化物系、酮過氧化物系、過氧化縮酮系、烷基過 酯系、過碳酸酯系化合物等。 前述硬化劑之使用量,視使用之種類而不同,通常相 對於前述丙烯酸改性胺基甲酸酯脲樹脂(1) 1 〇 〇質量份,使 用0 · 1〜1 0質量份之範圍較佳,使用1〜5質量份之範圍更 佳。 又’前述硬化促進劑,例如可使用環烷酸鈷、辛烯酸 鈷等有機金屬鹽' 胺系、β-二酮類等。 本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物,如前 述者以外’在不損及本發明之效果之範圍也可添加其他添 加劑。 前述其他添加劑,由防止由於大氣中之氧的影響造成 自由基聚合停止等之觀點,例如可使用乙二醇單烯丙醚、 二乙二醇單烯丙醚、丙二醇單烯丙醚、二丙二醇單烯丙醚、 1,2- 丁二醇單烯丙醚、三羥甲基丙烷二烯丙醚、甘油二烯 丙醚、新戊四醇三烯丙醚等多元醇類之烯丙醚化合物等。 又’前述其他添加劑,由提高得到之成型物之耐熱性 或耐久性之觀點’可使用丙燃酸化合物。 -19- 201127863 則述丙嫌酸化合物,例如與作爲前述丙燃酸化合物(D ) 例示者同樣者’或二(甲基)丙烯酸1,6—己二醇酯、二(甲 基)丙烯酸1,4 一丁二醇酯、二(甲基)丙烯酸乙二醇酯、二(甲 基)丙烯酸三丙二醇酯、二(甲基)丙烯酸新戊二醇酯、二(甲 基)丙烯酸四乙二醇酯、二(甲基)丙烯酸三乙二醇酯、二(甲 基)丙烯酸聚乙二醇酯、三羥甲基丙烷三(甲基)丙烯酸酯等 多官能丙烯酸化合物。 又’前述其他添加劑,例如:塡充材或顏料、染料、界 面活性劑、抗靜電劑、紫外線吸收劑 '聚合禁止劑、黏著 性賦予劑、可塑劑 '抗氧化劑、塗平劑、成膜助劑、安定 劑或難燃劑等以往已知的各種添加劑,可在不損及本發明 效果之範圍使用。 使本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物硬化 的方法’視前述硬化劑之種類而不同。例如使用前述紫外 線硬化劑之丙烯酸改性胺基甲酸酯脲樹脂組成物,可使用 金屬鹵化物燈、水銀燈、紫外線LED燈等一般的紫外線光 照射裝置照射既定的紫外線而使硬化。另一方面,使用前 述熱硬化劑之丙烯酸改性胺基甲酸酯脲樹脂組成物,可例 如使用高溫爐等,較佳爲於5 0〜2 5 0 °C之溫度加熱而使硬 化。 又’前述丙烯酸改性胺基甲酸酯脲樹脂組成物如前 述,可使用在形成各種成型物之成型材料等、塗覆劑、黏 著劑等各種用途。其中’前述丙燃酸改性胺基甲酸酯脲樹 -20- 201127863 脂組成物’由於既定的光穿透性優異,故使用在要求創作 性的構成櫃台或浴槽等建築構件或汽車構件、醫療構件、 電子電機構件等各種工業製品之構件等成型物之製造較 佳。 將前述丙烯酸改性胺基甲酸酯脲樹脂組成物成型並製 造成型物之方法’例如可應用使用加熱模具的壓製成型 法、射出成型法、RT Μ (抗蝕劑轉移模塑)成型法、連續成型 法、抽拉成型法等。 使用前述丙烯酸改性胺基甲酸酯脲樹脂組成物製造膜 或片狀成型物之方法,例如將前述丙烯酸改性胺基甲酸酯 脲樹脂組成物利用例如簾流塗佈法或模塗法等狹縫塗佈 法、刀塗法、輥塗法等塗佈於脫模基材表面,並視需要乾 燥後’照射紫外線或加熱等並硬化之方法較佳。前述乾燥, 可於常溫下自然乾燥,也可使加熱乾燥。加熱乾燥,通常 於4 0〜2 5 0 °C,進行約1〜6 0 0秒之時間較佳。 以上方法得到的成型物,光穿透性優異,尤其於紫外 線或可見光線之低波長區的光穿透性優異,且耐熱性亦優 異’因此,可使用在例如櫃台或浴槽等成型物、建築構件、 汽車零件、家電零件、醫療器具零件、各種容器、包裝用 途或皮革狀片材的表皮層或中間層形成用的膜或片材等各 種用途。 又’前述丙烯酸改性胺基甲酸酯脲樹脂組成物使用在 塗覆劑或黏著劑時,就將此等塗佈在各種基材表面之方法 -2 1- 201127863 而言’例如:簾流塗佈法或模塗法等狹縫塗佈法、刀塗法、 輥塗法等。 以前述方法塗佈後,視需要將溶劑乾燥並使硬化進行 之方法’如前述,可視使用的硬化劑種類,利用加熱或照 射紫外線等而形成被覆膜或黏著層。又,前述乾燥可於常 溫下自然乾燥,也可加熱乾燥。加熱乾燥通常於40〜250 °C進行約1〜6 0 0秒的時間較佳。 前述方法形成之被覆膜或黏著層,也是前述光穿透性 或耐熱性優異,因此可使用於例如金屬基材或塑膠基材、 木質基材等各種基材的表面被覆或黏著。 實施例 [實施例1] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入使1,4 一丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:1 1 2.2)500.0質量份,加入 異佛爾酮二異氰酸酯222·2質量份 '甲苯180.6質量份,— 面抑制發熱,一面於8 0 °C反應3小時’藉此得到於分子末 端具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至4〇°C的前述甲苯溶液與ν,ν —二甲基 甲醯胺1 447.2質量份與甲苯543.1質量份混合後,與異佛 爾酮二胺73.6質量份混合’於60°C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸醒脲預聚物溶 液。 -22- 201127863 其次’將前述胺基甲酸酯脲預聚物溶液與丙烯酸2 _ 羥基乙酯8 . 1質量份與第二丁醇2 4丨.2質量份混合,於7 〇 C反應約1小時,藉此得到丙稀酸改性胺基申酸酯脲樹脂 組成物(1)(丙稀醯基之當量重量;1·15χ1〇4、重量平均分子 量;20000、非揮發成分;25質量%)。 [實施例2] 於配備溫度計、攪拌機、惰性氣體導入D、及回流冷 卻器之5公升的四口燒瓶中,加入使1,4一丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:112·2)50〇·〇質量份,加入 異佛爾酮二異氰酸酯222_2質量份 '甲苯180.6質量份,一 面抑制發熱,一面於8 0 °C使反應3小時,藉此得到於分子 末端具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40°C的前述甲苯溶液與Ν,Ν—二甲基 甲醯胺1445.9質量份與甲苯542_4質量份混合後,與異佛 爾酮二胺7 5.2質量份混合’於6 0 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2 -羥基乙酯5.8質量份與第二丁醇241.0質量份混合,於70 。(:使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹 脂組成物(Π)(丙烯醯基之當量重量;l.61xl〇4'重量平均 分子量;39000、非揮發成分;25質量%)。 -23- 201127863 [實施例3 ] 於配備溫度計 '攪拌機、惰性氣體導入口、及回流冷 卻器的5公升四口燒瓶中,加入使1,4 - 丁二醇與己二酸反 應得到的聚酯多元醇(羥基價:1 1 2.2)500.0質量份,加入異 佛爾酮二異氰酸酯222.2質量份、甲苯180.6質量份,—面 抑制發熱,一面於80°C反應3小時,藉此得到於分子末端 具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40°C的前述甲苯溶液與N,N —二甲基 甲醯胺1444.6質量份與甲苯541.7質量份混合後,與異佛 爾酮二胺76.8質量份混合,於6(TC使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙稀酸2-羥基乙酯3.5質量份與第二丁醇240.8質量份混合,於7〇 C使反應約1小時’藉此得到丙烯酸改性胺基甲酸酯脲樹 脂組成物(111)(丙烯醯基之當量重量;2.66 X 1 04、重量平均 分子量;64000、非揮發成分;25質量%)。 [實施例4] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入使〗,4_丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:IHWSOOO質量份,加入 4,4’ —二環己基甲烷二異氰酸酯2624質量份、甲苯19〇6 質量份’一面抑制發熱’ 一面於8 〇 〇c使反應3小時,藉此 得到於分子末端具有異氰酸酯基的胺基甲酸酯預聚物的甲 苯溶液。 -24- 201127863 其次,將冷卻至4〇°C的前述甲苯溶液與N,N —二甲基 甲醯胺1516.8質量份與甲苯567.8質量份混合後,與異佛 爾酮一胺7 6.8質量份混合’於6 0 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次’將前述胺基甲酸酯脲預聚物溶液與丙稀酸2 -羥基乙酯3.5質量份與第二丁醇252.8質量份混合,於70 °C使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹 脂組成物(IV)(丙烯醯基之當量重量;2.8〇xl04、重量平均 分子量;128000、非揮發成分;25質量%)。 [實施例5] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中’加入1,6 —己二醇系聚碳酸酯BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acrylic-modified urethane urea resin composition which can be used, for example, in various applications such as a molding material or a coating agent, an adhesive, and the like. [Previous Art] A molded article obtained by using a urethane-based molding material is now used in various applications such as automobile parts, home electric appliance parts or packaging materials, and skin materials constituting leather-like sheets. For the molded article, various characteristics are required in response to its application. For example, when it is used in automotive interiors, it is required to have heat resistance to such an extent that it does not cause discoloration or deformation of the molded product when exposed to a high temperature environment in summer. The contents are protected from the strength or durability of the external damage. On the other hand, the use of the urethane-based molded article is more extensive, and the molded article is required to have higher characteristics than the conventional one. For example, in the medical field, it is required that the packaged medical device can be sterilized by ultraviolet rays without opening the package, and the package material is required to have a high transmittance for ultraviolet rays or visible light rays of a lower wavelength region. In recent years, the development of ultraviolet curable adhesives has progressed rapidly. From the viewpoint of improving the production efficiency of industrial products, for example, the above-mentioned adhesive may be applied to the surface of a transparent adherend, and other adherends may be placed. After the coated surface, the above-mentioned adhesive layer is irradiated with ultraviolet rays through the transparent adherend, thereby adhering to the adhesive. In this case, when the transparent adhesive material -4-201127863 is a material that can absorb ultraviolet rays or the like, even if a large amount of ultraviolet rays or the like is irradiated, the curing of the adhesive layer may not be sufficiently performed. Therefore, the industrial demand can be sufficiently worn. A molded article of an adherent that transmits ultraviolet light or visible light in a lower wavelength region. However, in the past, it is very difficult to improve the light transmittance in the low-wavelength region of ultraviolet light or visible light (about 3 8 Onm). For example, it only takes about 1% of the light transmittance, and it takes a lot of labor and trial and error. In fact, the development of a molding material capable of forming a molded article having a light transmittance which is required by the industrial industry has not progressed rapidly. Even in this case, there is a report on a molding material excellent in light transmittance as described above, and for example, a polyurethane urethane resin solution composed of an aliphatic monomer or/and an alicyclic monomer is known. The far ultraviolet ray penetrating film which is applied to a mold release substrate and dried to have excellent far ultraviolet ray permeability (for example, see Patent Document 1). The far ultraviolet ray penetrating film has a certain degree of good light transmittance. However, when it is used in a high temperature environment, deformation or discoloration such as film shrinkage may occur due to the influence of heat. As described above, it has been found that a molding material which can form a molded article such as a film which is excellent in light transmittance in a low-wavelength region of ultraviolet rays or visible light and excellent in heat resistance is not found. PRIOR ART DOCUMENT PATENT DOCUMENT Patent Document 1 Japanese Patent Laid-Open No. 6 2 — 1 5 6 9 1 6 Bulletin 201127863 Shape, resistance to heterogeneity, transparency of the object through the luminosity group of the process A long change # wave or: ii low shape in the online change of the light bow class to see the sound of the problem or the shadow class solution hot. 1 The desire for external matter is due to the fact that the illusion of the purple illusion is solved in the form of the invention that has not been made up, and the heat is changed to the acid-wearing The syllabus and the superiority of the syllabus are the basis of the syllabus. Urea-based amines are esterified. The structure of the acidity of the case of the fat-bearing heat of the book is based on the amine and the dissolution of the nature of the present invention is related to an acrylic modified urethane urea resin composition and the use of this composition The molded article, the acrylic modified urethane urea resin composition, comprising: a polyol (A), a polyisocyanate (B), a polyamine (C), and an acrylic compound having a group having an active hydrogen atom ( D) The acrylic modified urethane urea resin (1) obtained by the reaction, and the solvent (2) are formed from the acrylic acid compound (D) having the acrylic acid-modified urethane urea resin. The equivalent weight of the thiol group is in the range of loooo~50000. The effect of the invention is the composition of the acrylic modified urethane urea resin of the present invention, which can form light transmittance in the low wavelength region of ultraviolet rays or visible rays, and has no difference The molded article which thermally affects the degree of excellent heat resistance such as deformation or discoloration can be used, for example, in the manufacture of automobile parts, home electric appliance parts, packaging materials, films or sheets, and leather materials such as leather sheets. Further, the acrylic modified urethane urea resin composition of the present invention has excellent heat resistance as described above, and thus, for example, a surface coating agent or an adhesive for various substrates can be used. [Embodiment] Mode for Carrying Out the Invention First, an acrylic modified urethane urea resin (1) used in the present invention will be described. The acrylic modified urethane urea resin (1) used in the present invention is a polyol (A) with a polyisocyanate (B) and a polyamine (C) and an acrylic compound having a group containing an active hydrogen atom (D) In the urethane urea resin having the acryl oxime group derived from the acrylic compound (D), the equivalent weight of the acryl oxime group in the range of 10,000 to 50,000 is obtained. Here, the equivalent weight of the aforementioned acrylonitrile group means the polyol (A) constituting the aforementioned acrylic modified urethane urea resin (1) and the polyisocyanate (B) and the polyamine (C) and having an activity The total mass of the acrylic compound (D) based on the hydrogen atom is obtained by dividing the equivalent amount of the acrylonitrile group derived from the acrylic compound (D) present in the acrylic modified urethane urea resin. The acrylic modified urethane urea resin having an equivalent weight of the above propylene oxime of more than 50,000 has almost no acryl oxime group in the resin, and thus the heat resistance is remarkably lowered. On the other hand, the above-mentioned acrylic acid-modified urethane urea resin having an equivalent weight of 1, 2011,863 to 10,000 has a weight average molecular weight which is substantially as low as less than 5,000, and may cause a decrease in heat resistance. Therefore, the acrylic-modified urethane urea resin U) used in the present invention must have an acrylonitrile having 10,000 to 50,000 in terms of light transmittance and heat resistance in a low-wavelength region of ultraviolet rays or visible rays. The equivalent weight of the base. The acrylic modified urethane urea resin (1) is preferably used in the range of 10,000 to 30,000 equivalent weights. Further, the aforementioned acrylic modified urethane urea resin (1) has an urethane bond and a urea bond. When a urethane acrylate having no urea bond is used, the molding processability is low, and it may be difficult to produce a molded article such as a thinned film. Therefore, the above-mentioned acrylic acid modified urethane urea resin (1) has excellent moldability and has good heat resistance and light transmittance. The use has 4 to 10% by mass. The urea bond is preferred, and 5 to 8 mass% is preferred, and 6 to 7 mass% is particularly preferred. Further, the mass ratio of the urea bond is the aforementioned polyol (A) and polyisocyanate (B) and polyamine (C) relative to the raw material used for the production of the acrylic modified urethane urea resin (1). The mass ratio of the total mass of the urea bond structure to the acrylic acid compound (D) containing the active hydrogen atom-containing group in the aforementioned raw material. Further, the above-mentioned acrylic acid-modified urethane urea resin (1) has an aminocarboxylic acid having 5 to 15% by mass from the viewpoint of having excellent moldability and good heat resistance and light transmittance. The ester bond is preferably, and 7 to 9 mass% is more preferable. Further, the mass ratio of the aforementioned urethane bond refers to the aforementioned polyol (A) and polyisocyanate (B) relative to the raw material used for the production of the above-mentioned acrylic modified urethane urea resin (丨). The mass ratio of the urethane bond structure to the above-mentioned raw material, in combination with the total mass of the polyamine (C) and the acrylic compound (D) having a group having an active hydrogen atom of 201127863. Further, the acrylic modified urethane urea resin (1) is preferably a weight average molecular weight of from 5,000 to 200,000, and is excellent in maintaining excellent light transmittance and heat resistance while maintaining good moldability. The range of 0 0 0 to 200000 is better. Further, the weight average molecular weight of the acrylic modified urethane urea resin was determined by gel permeation chromatography (GPC) using tetrahydrofuran as a dissolving solution in terms of styrene. Next, the polyol (A) used in the production of the above-mentioned acrylic modified urethane urea resin (1) will be described. Although the polyol (A) may be used in various forms, it is preferably used in the range of 30 to 230 mgKOH/g, and more preferably in the range of 50 to 230 mgKOH/g. Further, the hydroxyl value of the polyol (A) is measured in accordance with JIS K0070. As the polyol (A), for example, a polyester polyol, a polycarbonate polyol, a polyether polyol, an acrylic polyol, or the like can be used, and in the case of using an aromatic ring-free structure, light penetration is further improved. The aspect is better. As the polyester polyol, for example, an aliphatic polyester polyol obtained by esterifying a low molecular weight polyol with a polycarboxylic acid, or a cyclic ester compound such as ε-caprolactone or γ-valerolactone can be used. A polyester obtained by ring-opening polymerization, or a copolymerized polyester or the like. As the aforementioned low molecular weight polyol, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propanediol, dipropylene II 201127863 alcohol, tripropylene glycol '1 can be used. , 2 — butanediol, 1,3-butanediol, i,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6_ Glycol, 2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol' 1,10-decanediol, 1,11--1-- Alkanediol, 1,12-h dialkyl glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl Base 1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, glycerol 'trimethylolpropane, di-trimethylol An aliphatic polyhydric alcohol such as propane, tris-trimethylolpropane or neopentyl alcohol, an aliphatic cyclic structure-containing polyol such as I, 4-cyclohexanedimethanol or hydrogenated bisphenol A, bisphenol A or bisphenol a polyhydric alcohol such as an alkylene oxide adduct of A, a bisphenol s or an alkylene oxide adduct of a diterpene S, wherein A fatty aliphatic or cyclic aliphatic polyhydric alcohol is preferably constructed of, more preferably an aliphatic diol. The polycarboxylic acid, for example, succinic acid, adipic acid, suberic acid, sebacic acid, sebacic acid, dodecanedicarboxylic acid, dicarboxylic acid aliphatic polycarboxylic acid, I, 4-cyclohexyl Alicyclic polycarboxylic acid such as alkanedicarboxylic acid or cyclohexanetricarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalene dicarboxylic acid, 2,3-naphthalenedicarboxylic acid An aromatic polycarboxylic acid such as acid, 2,6-naphthalenedicarboxylic acid, biphenyldicarboxylic acid or trimellitic acid' benztetracarboxylic acid, or an acid anhydride or ester derivative thereof, used alone or in combination of two or more It is preferred to use an aliphatic polycarboxylic acid, and it is more preferable to use an aliphatic dicarboxylic acid. The polyester polyol is preferably a polyester polyol having no aromatic ring structure. It is preferably used by reacting the above aliphatic polyol with an aliphatic polycarboxylic acid, wherein the use has 2 to 6 Aliphatic of one carbon atom-10-201127863 A polyol obtained by reacting an aliphatic polycarboxylic acid having 2 to 6 carbon atoms is particularly preferable in imparting excellent heat resistance and light transmittance. Further, the polyhydric alcohol polyhydric alcohol which can be used for the above polyterpene alcohol (A) can be obtained, for example, by reacting a carbonate and/or phosgene with a polyol described later. As the above carbonate, for example, methyl carbonate ′ or dimethyl carbonate, ethyl carbonate, diethyl carbonate or cyclic carbonate 'diphenyl carbonate can be used. Further, a polyol capable of reacting with the aforementioned carbonate or phosgene, for example: 2;:1 alcohol, diethylene glycol, triethylene glycol 'tetraethylene glycol, 1,2-propylene di-, i 3 -propylene glycol , dipropylene glycol, tripropylene glycol, 1,2-butanediol ' ι,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, ι,5 - hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, iota, 8-octanediol, 1,9-nonanediol, 1,1 - Decylene glycol, 1,1 __undecanediol, ;!,12 _12-yard diol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-B 1,1,3-propanediol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,4 - lower molecular weight dihydroxy compounds such as cyclohexanedimethanol, 1,4-cyclohexanedimethanol, hydroquinone, resorcinol, bisphenol a, bisphenol F, 4,4'-biphenol, or poly Polyether polyols such as ethylene glycol, polypropylene glycol, polytetramethylene glycol, or polyhexamethylene adipate, polyhexamethylene succinate, poly Lactone polyester polyol 'wherein preferred aliphatic diol' Shu used, more preferably 1,6-diol. The polycarbonate polyol is preferably used because it can improve the heat resistance of the molded article obtained by using the obtained acrylic acid modified urethane urea resin composition or the light transmittance of the light-through -11-201127863. Among them, a polycarbonate polyol having no aromatic ring structure is preferably used, and a 1,6-hexanediol-based polycarbonate polyol is particularly preferable. Further, the polyether polyol which can be used for the polyol (A), for example, one or two or more kinds of compounds having two or more active hydrogen atoms as a starting agent, is added to the alkylene oxide. As the initiator, for example, water, ethylene glycol, diethylene glycol 'triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, tripropylene glycol, 1, 2 can be used. —butanediol, 1,3-butanediol ' 1,4 -butanediol, 2,3 -butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexane Alcohol, 2,5-hexanediol ' 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,1-nonanediol, 1,11-undecane Glycol '1,12-dodecanediol' 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl-1 , 5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, glycerol, diglycerin, trimethylolpropane, di-trimethylol Propane, tris-trimethylolpropane, 1,2,6-hexanetriol, triethanolamine, triisopropanolamine, pentaerythritol, dipentaerythritol, sorbitol, sucrose, ethylenediamine, N -ethyldiethylenetriamine, 1,2-diaminopropane, 1,3 -diaminopropane, 1,2-diaminobutane, 1,3 -diaminobutane, 1,4 Diamine , Diethylenetriamine, phosphate, acid phosphate. Further, as the alkylene oxide, for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin or tetrahydrofuran can be used. -12- 201127863 The above polyol (A), a polyol (A) and a polyisocyanate (B) and a polyamine (C) which are used as a raw material for the production of the obtained acrylic modified urethane urea resin (1). The total mass of the acrylic acid compound (D) is preferably in the range of 40 to 80% by mass. Next, the above polyisocyanate (B) will be described. The polyisocyanate (B)' may, for example, be an aromatic diisocyanate such as phenylene diisocyanate, toluene diisocyanate, diphenylmethyl diisocyanate 'naphthalene diisocyanate, or hexamethylene diisocyanate 'isamic acid diisocyanate or ring. An aliphatic or aliphatic cyclic diisocyanate containing hexane diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate 'xylene diisocyanate, tetramethyl xylene diisocyanate, etc. Use alone or in combination of two or more. Among them, the use of an aliphatic cyclic structure-containing diisocyanate is preferred in terms of improving light transmittance and heat resistance in a low-wavelength region of ultraviolet rays or visible rays. Using 4,4'-dicyclohexylmethane diisocyanate, a different Buddha More preferably, ketone diisocyanate. In particular, when heat resistance is improved, it is particularly preferable to use 4,4'-dicyclohexylmethane diisocyanate. The polyisocyanate (B), the polyol (A) and the polyisocyanate (B) and the polyamine (C) and the acrylic compound are used as a raw material for the production of the obtained acrylic modified urethane urea resin (1). The total mass of (D) is preferably in the range of 15 to 50% by mass. Next, the above polyamine (C) will be explained. The above polyamine (C)' is used when a urea bond is introduced into the above-mentioned acrylic acid modified urethane urea resin (1). -13- 201127863 The aforementioned polyamine (c) 'for example: ethylenediamine, propylenediamine, hexamethylenedicyclodiamine'isophoronediamine, 4,4,-methanediamine cyclohexane Aminocyclohexane, piperazine cyclopentane diamine, etc., wherein an aliphatic cyclic structure-containing polyamine such as isophorone diamine, 4, 4, monomethane diamine or norborne diamine is used. Further, it is preferable that the light transmittance of the low-wavelength region of ultraviolet rays or visible rays is better. It is more preferable to use a diamine having an aliphatic ring structure, and isophorone diamine is particularly preferable. The polyol (A) and the polyisocyanate (B) and the polyamine (C) and the acrylic compound are used as a raw material for the production of the polyamine (C)' relative to the obtained acrylic modified urethane urea resin (1). The total mass of (D) is preferably in the range of % by mass. Next, the aforementioned acrylic compound (D) will be explained. The acrylic compound (D) having a group containing an active hydrogen atom used in the present invention is used when a propylene group is introduced into the acrylic modified urethane urea resin (1), and has an isocyanate group. The base of the reaction containing active hydrogen atoms. Specifically, it is preferred to use a hydroxyl group-containing acrylic compound. The above-mentioned group containing an active hydrogen atom is preferably a hydroxyl group such as a hydroxyl group or a carboxyl group. As the acrylic compound (D), the above-mentioned propionate compound or a carboxyl group-containing acrylic compound or the like can be used, but an acrylic compound having a hydroxyl group is preferably used. -14- 201127863 For the above-mentioned hydroxyl group-containing acrylic compound, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, (A) A hydroxyl group-containing alkyl acrylate such as 4-hydroxybutyl acrylate, polyethylene glycol monoacrylate, polypropylene glycol monoacrylate or the like. Among them, from the viewpoint of light transmittance and heat resistance, it is preferred to use a hydroxyl group-containing alkyl acrylate, and from the viewpoint of easiness of obtaining a raw material, 2-hydroxyethyl acrylate or 4-hydroxybutyl acrylate is more preferable. The acrylic compound (D), the polyol (A) and the polyisocyanate (B) and the polyamine (C) and the acrylic compound are used as a raw material for the production of the obtained acrylic modified urethane urea resin (1). The total mass of (D) is preferably in the range of 0·0 5 to 10% by mass. Further, a part of the acrylic compound (D) may be present in an unreacted state in the acrylic modified urethane urea resin composition of the present invention. That is, the acrylic modified urethane urea resin composition of the present invention may contain the acrylic modified urethane urea resin (1) and the unreacted acrylic compound (D). Next, the solvent (2) used in the present invention will be explained. As the solvent (2), an organic solvent and a water solvent can be used. However, from the viewpoint of further improving the moldability of the molded article, it is more preferable to use an organic solvent. When the organic solvent is used as the solvent (2), it is not particularly limited, and for example, ethyl acetate, butyl acetate, ethyl lactate, celecoxib, celecoxib acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone can be used. , cyclohexanone, toluene, xylene 'dimethylformamide, dimethylacetamide, propylene glycol monomethyl ether, -15- 201127863 propylene glycol monomethyl ether acetate, acetonitrile, dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, methanol, isopropanol, 2-butanol, n-butanol, isopropanol, ethylene glycol monomethyl ether acetate, etc. It can also be used alone. Moreover, these organic solvents can be appropriately selected depending on the intended use. Further, in the acrylic modified urethane urea resin composition of the present invention, the mass ratio of the acrylic modified urethane urea resin (1) to the solvent (2) is (1) / (2) ) = 10~50/90~50 is better, 15~35/85~6 5 is better. Next, a method for producing the above-mentioned acrylic modified urethane urea resin (1) will be explained. The method for producing the acrylic modified urethane urea resin (1) is exemplified by the following methods (i) to (ii). Among them, it is preferred to carry out the method according to the following (i), and it is easy to control the reaction. The method (i) is carried out by reacting the polyol (A) with the polyisocyanate (B) under the solvent (2) to obtain a urethane prepolymer having an isocyanate group at a molecular terminal. Next, the urethane prepolymer is reacted with the polyamine (C) and the acrylic compound (D) to produce an acrylic acid modified urethane urea resin (1) ° the aforementioned polyol (A) The reaction with the aforementioned polyisocyanate (B) is equivalent to the ratio of the hydroxyl group of the polyol (A) to the isocyanate group of the polyisocyanate (B) [isocyanate group / hydroxyl group]. 1/1. 0~5. 0/1. The range of 0 is better, 1. 5Π. 0~3. 0/1. The range of 0 is better. Further, it is preferred that the reaction of the polyol (A) with the polyisocyanate (B) is carried out for about 30 minutes to 24 hours under the conditions of 20 to 120 Torr. -16- 201127863 The reaction of the above polyol (A) with polyisocyanate (B) to obtain an amino carboxylic acid vinegar prepolymer having an isocyanate group at the molecular terminal and the aforementioned polyamine (C) and the aforementioned acrylic compound The reaction of (D) can be carried out, for example, by supplying the above-mentioned urethane prepolymer and the aforementioned polyamine (C) once or sequentially and reacting, thereby producing a urethane urea prepolymer. An acrylic modified urethane urea resin (1) is produced by reacting the urethane urea prepolymer with the aforementioned acrylic compound (D). At this time, the aforementioned urethane prepolymer has an equivalent ratio of the isocyanate group to the amine group of the polyamine (C) [amino group/isocyanate group], which is 0. 70/1. 0~0. 99/1. The range of 0 is preferred. Further, the urethane prepolymer and the polyamine (C) are mixed or sequentially mixed with the acrylic compound (D), and the reaction is carried out at about 20 to 80 ° C for about 1 to 3 hours. Can be manufactured. Further, in the above production method (ii), the polyisocyanate (B) and the polyamine (C) are reacted under the solvent (2) to obtain a polyurea prepolymer having an isocyanate group at a molecular terminal, followed by The polyurea prepolymer is reacted with the aforementioned polyol (A) and the aforementioned acrylic compound (D) to produce an acrylic modified urethane urea resin (1). The reaction ratio of the polyisocyanate (B) to the polyamine (C) described above is an equivalent ratio of the isocyanate group of the polyisocyanate (B) to the amine group of the polyamine (C) [isocyanate group / amine group] is 1 . 1/1. 〇~5. 0/1. The range of 〇 is better. The polyisocyanate (B) and the polyamine (C) are reacted to obtain a polyurea prepolymer having an isocyanate group at the molecular end, and the above-mentioned polyhydric -17-201127863 alcohol (A) and the aforementioned acrylic compound (〇) The reaction can be carried out by, for example, supplying the polyurea prepolymer and the aforementioned polyol (A) to the polyol (A) one by one or sequentially and reacting to produce a urethane urea prepolymer having an isocyanate group at the molecular terminal. The urethane urea prepolymer is reacted with the aforementioned acrylic compound (D) to thereby produce an acrylic modified urethane urea resin. Further, it can also be produced by mixing the polyurea prepolymer with the above-mentioned polyol (A) and the above-mentioned acrylic compound (D) in this order or sequentially. When the acrylic modified urethane urea resin (?) is produced, in the case of any of the above methods (i) and (ii), it is possible to use a tertiary amine catalyst or an organometallic catalyst to promote the reaction. . The acrylic modified urethane urea resin composition of the present invention containing the acrylic modified urethane urea resin (1) and the solvent (2) obtained by the above method may also contain a hardener or a hardening promotion as needed. Agent. As the curing agent, for example, a light curing agent such as an ultraviolet curing agent or an electron beam curing agent, or a thermal curing agent can be used. The ultraviolet ray curing agent' is a light sensitizing substance, and for example, a benzoin ether type such as a benzoin-based ether; a diphenyl ketone type such as a diphenyl ketone or a methyl benzhydryl benzoate; and a benzyl group; Dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 4-isopropyl- 2-2-hydroxy-2-methylpropiophenone 1, 1, Acetophenone such as dichloroacetophenone; 2_chloro-9 oxo sulphide, 2-methyl- 9-oxosulfonate, 2 isopropyl-9, oxysulfonate, etc. 9 - thioxanthone compound. -18-201127863 Further, as the electron beam hardening agent, for example, a halogenated phenylene-based or disulfide-based compound can be used. Further, as the other light curing agent, for example, a hydroxyalkylphenone compound, an alkyl hexathioxanthene compound, or a phosphonium salt compound can be used. Further, as the above-mentioned thermosetting agent, an organic peroxide can be used. Specifically, a dimercapto peroxide type, a peroxyester type, a hydrogen peroxide type, a dialkyl peroxide type, or a ketone peroxide can be used. A peroxy ketal system, an alkyl perester system, a percarbonate compound, or the like. The amount of the hardener to be used varies depending on the type of use, and is usually preferably in the range of from 0.1 to 10 parts by mass based on 1 part by mass of the acrylic modified urethane urea resin (1). It is more preferable to use a range of 1 to 5 parts by mass. Further, as the hardening accelerator, for example, an organic metal salt such as cobalt naphthenate or cobalt octylate, an amine system or a β-diketone can be used. The acrylic modified urethane urea resin composition of the present invention may be added to other additives as described above without departing from the effects of the present invention. The other additives described above can be used, for example, to prevent the radical polymerization from being stopped due to the influence of oxygen in the atmosphere, and the like, for example, ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, propylene glycol monoallyl ether, dipropylene glycol can be used. Alkenyl ether compounds of polyalcohols such as monoallyl ether, 1,2-butanediol monoallyl ether, trimethylolpropane diallyl ether, glycerol diallyl ether, and pentaerythritol triallyl ether Wait. Further, the above-mentioned other additives may be a propionic acid compound from the viewpoint of improving the heat resistance or durability of the obtained molded article. -19- 201127863 The above-mentioned acrylic acid compound is, for example, the same as the exemplified as the above-mentioned glycerin acid compound (D), or 1,6-hexanediol di(meth)acrylate, di(meth)acrylic acid 1 , 4 - butylene glycol ester, ethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tetraethylene di(meth)acrylate A polyfunctional acrylic compound such as an alcohol ester, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, or trimethylolpropane tri(meth)acrylate. 'The other additives mentioned above, for example: enamel fillers or pigments, dyes, surfactants, antistatic agents, UV absorbers' polymerization inhibitors, adhesion imparting agents, plasticizers' antioxidants, coating agents, filming aids Various conventionally known additives such as a agent, a stabilizer, or a flame retardant can be used without departing from the effects of the present invention. The method of curing the acrylic modified urethane urea resin composition of the present invention varies depending on the type of the curing agent. For example, the acrylic modified urethane urea resin composition using the ultraviolet curable agent can be cured by irradiating a predetermined ultraviolet ray with a general ultraviolet light irradiation device such as a metal halide lamp, a mercury lamp or an ultraviolet LED lamp. On the other hand, the acrylic modified urethane urea resin composition using the above-mentioned thermosetting agent can be hardened by heating at a temperature of 50 to 250 ° C, for example, using a high temperature furnace or the like. Further, as described above, the acrylic modified urethane urea resin composition can be used in various applications such as a molding material for forming various molded articles, a coating agent, and an adhesive. Among them, the aforementioned "acrylic acid-modified urethane urea tree-20-201127863 fat composition" is excellent in the light transmittance of the building, and is used in a building member or a car member such as a counter or a bathtub which requires a creative composition. It is preferable to manufacture a molded article such as a member of various industrial products such as a medical member or an electronic motor member. A method of molding the above-mentioned acrylic modified urethane urea resin composition and producing a molded article 'for example, a press molding method using a heating mold, an injection molding method, an RT Μ (resist transfer molding) molding method, Continuous molding method, drawing molding method, and the like. A method for producing a film or a sheet-like molded article using the above-mentioned acrylic modified urethane urea resin composition, for example, the aforementioned acrylic modified urethane urea resin composition by, for example, curtain coating or die coating A method such as a slit coating method, a knife coating method, a roll coating method, or the like is applied to the surface of the release substrate, and if necessary, it is preferably irradiated with ultraviolet rays or heated. The above drying can be naturally dried at normal temperature or dried by heating. Heating and drying, usually at 40 to 250 ° C, is preferably carried out for about 1 to 600 seconds. The molded article obtained by the above method is excellent in light transmittance, and is excellent in light transmittance in a low-wavelength region of ultraviolet rays or visible rays, and is excellent in heat resistance. Therefore, it can be used for moldings such as counters or baths, and construction. Various uses such as a member, an automobile part, a home appliance part, a medical device part, various containers, a packaging use, a skin layer of a leather-like sheet, or a film or sheet for forming an intermediate layer. Further, when the above-mentioned acrylic modified urethane urea resin composition is used in a coating agent or an adhesive, the method of coating the surface of various substrates on the surface of various substrates - 2 - 201127863 - for example: curtain flow A slit coating method such as a coating method or a die coating method, a knife coating method, a roll coating method, or the like. After coating by the above method, if necessary, the solvent is dried and hardened. As described above, the coating film or the adhesive layer may be formed by heating or irradiating ultraviolet rays or the like depending on the kind of the curing agent to be used. Further, the drying may be naturally dried at normal temperature or may be dried by heating. The heat drying is usually carried out at 40 to 250 ° C for about 1 to 600 seconds. The coating film or the adhesive layer formed by the above method is also excellent in light transmittance or heat resistance, and therefore can be coated or adhered to the surface of various substrates such as a metal substrate, a plastic substrate, or a wood substrate. EXAMPLES [Example 1] A polyester mixture obtained by reacting 1,4-butanediol with adipic acid was placed in a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux cooler. Alcohol (hydroxyl price: 1 1 2. 2) 500. 0 parts by mass, isophorone diisocyanate 222.2 parts by mass 'toluene 180. 6 parts by mass, the surface was inhibited from heating, and reacted at 80 ° C for 3 hours to thereby obtain a toluene solution of a urethane prepolymer having an isocyanate group at the molecular end. Next, the toluene solution cooled to 4 ° C and ν, ν - dimethylformamide 1 447. 2 parts by mass with toluene 543. After mixing 1 part by mass, with isophorone diamine 73. 6 parts by mass of the mixture was allowed to react at 60 ° C for 3 hours, whereby a solution of a carbamic acid ketone urea prepolymer having an isocyanate group at the molecular terminal was obtained. -22- 201127863 Next, the solution of the aforementioned urethane urea prepolymer and 2 - hydroxyethyl acrylate 8 .  1 part by mass with the second butanol 2 4 丨. 2 parts by mass of a mixture, and reacted at 7 〇C for about 1 hour, thereby obtaining a composition of the acrylic acid-modified urethane ester urea resin (1) (equivalent weight of acrylonitrile; 1·15 χ 1 〇 4, weight) Average molecular weight; 20000, non-volatile component; 25% by mass). [Example 2] A polyester polyol obtained by reacting 1,4-butanediol with adipic acid was placed in a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas introduction D, and a reflux condenser ( Hydroxyl valence: 112·2) 50 〇·〇 parts by mass, isophorone diisocyanate 222_2 parts by mass 'toluene 180. 6 parts by mass of the film was reacted at 80 ° C for 3 hours while suppressing heat generation, thereby obtaining a toluene solution of a urethane prepolymer having an isocyanate group at the molecular terminal. Next, the toluene solution cooled to 40 ° C and hydrazine, hydrazine - dimethylformamide 1445. 9 parts by mass and 542_4 parts by mass of toluene were mixed with isophoronediamine 7 5. 2 parts by mass of the mixture was allowed to react at 60 ° C for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the aforementioned urethane urea prepolymer solution and 2-hydroxyethyl acrylate 5. 8 parts by mass with second butanol 241. 0 parts by mass of mixed at 70. (: The reaction was allowed to proceed for about 1 hour, whereby an acrylic modified urethane urea resin composition (Π) (equivalent weight of acrylonitrile group; 61xl 〇 4' weight average molecular weight; 39000, non-volatile content; 25% by mass). -23- 201127863 [Example 3] A polyester obtained by reacting 1,4-butanediol with adipic acid was placed in a 5 liter four-necked flask equipped with a thermometer 'mixer, an inert gas inlet, and a reflux cooler. Polyol (hydroxyl price: 1 1 2. 2) 500. 0 parts by mass, isophorone diisocyanate 222. 2 parts by mass, toluene 180. 6 parts by mass, the surface was inhibited from heating, and reacted at 80 ° C for 3 hours, thereby obtaining a toluene solution of a urethane prepolymer having an isocyanate group at the molecular end. Next, the toluene solution cooled to 40 ° C and N, N - dimethylformamide 1444. 6 parts by mass with toluene 541. 7 parts by mass after mixing with isophorone diamine 76. 8 parts by mass of the mixture was reacted at 6 (TC for 3 hours, thereby obtaining a urethane urea prepolymer solution having an isocyanate group at the molecular terminal. Next, the aforementioned urethane urea prepolymer solution and 2-hydroxyethyl acrylate 3. 5 parts by mass with second butanol 240. 8 parts by mass of the mixture was reacted at 7 ° C for about 1 hour to thereby obtain an acrylic modified urethane urea resin composition (111) (equivalent weight of acrylonitrile group; 66 X 1 04, weight average molecular weight; 64000, nonvolatile content; 25% by mass). [Example 4] A polyester polyol obtained by reacting 4, butanediol with adipic acid was placed in a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser ( Hydroxy valence: IHWSOOO parts by mass, adding 2,24 parts by weight of 4,4'-dicyclohexylmethane diisocyanate, and 19 parts by mass of toluene to suppress heat generation, and reacting at 8 〇〇c for 3 hours, thereby obtaining a molecule a toluene solution of a urethane prepolymer having an isocyanate group at the end. -24- 201127863 Next, the toluene solution cooled to 4 ° C with N,N-dimethylformamide 1516. 8 parts by mass with toluene 567. After mixing 8 parts by mass, with isophorone monoamine 7 6. 8 parts by mass of the mixture was allowed to react at 60 ° C for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the solution of the aforementioned urethane urea prepolymer and 2-hydroxyethyl acrylate are 3. 5 parts by mass with second butanol 252. 8 parts by mass of the mixture was mixed at 70 ° C for about 1 hour, whereby an acrylic modified urethane urea resin composition (IV) (equivalent weight of acrylonitrile group; 8〇xl04, weight average molecular weight; 128000, non-volatile component; 25 mass%). [Example 5] 1,6-hexanediol-based polycarbonate was added to a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser.

多元醇(Nippon polyurethane industry(股)製「NIPPORAN 981」、羥基價:112.2)500.0質量份’並加入異佛爾酮二異 氰酸酯222.2質量份、甲苯180_6質量份’一面抑制發熱’ —面於8 0 r使反應3小時’藉此得到於分子末端具有異氰 酸酯基的胺基甲酸酯預聚物的甲苯溶 '液。 其次,將冷卻至4 〇它的前述甲苯溶液與N,N -二甲基 甲醯胺1 444.6質量份與甲苯541.7質量份混合後’與異佛 爾酮二胺7 6.8質量份混合.,於6 0 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸醋脲預聚物溶 液。 -25- 201127863 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2一 羥基乙酯3.5質量份與第二丁醇240.8質量份混合,於7〇 。(:使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹 脂組成物(V)(丙烯醯基之當量重量;2.66χ104、重量平均分 子量;63000、非揮發成分;25質量%)。 [比較例1 ] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入使1,4 — 丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:112.2)5 00.0質量份’加入 異佛爾酮二異氰酸酯222.2質量份、甲苯180.6質量份’一 面抑制發熱,於8 0 °C使反應3小時,藉此得到於分子末端 具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40t的前述甲苯溶液與N,N -二甲基 甲醯胺1442.6質量份與甲苯540.7質量份混合後,與異佛 爾酮二胺7 9 · 2質量份混合,於6 0 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與第二丁醇 240.4質量份混合,於70t使反應約1小時,藉此得到胺 基甲酸酯脲樹脂組成物(VI)(丙烯醯基之當量重量;-、重 量平均分子量;70000、非揮發成分;25質量%)。 -26- 201127863 [比較例2 ] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中’加入丨,6_己二醇系聚碳酸酯 多元醇(Nippon polyurethane industry(股)製「NIPPORAN 981」、經基價:112.2)5〇〇·〇質量份’加入異佛爾酮二異氰 酸酯222.2質量份、甲苯180.6質量份’一面抑制發熱,一 面於8 0 °C使反應3小時’藉此得到於分子末端具有異氰酸 酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40 °C的前述甲苯溶液與N,N—二甲基 甲醯胺M4 2.6質量份與甲苯5 40.7質量份混合後,與異佛 爾酮二胺79.2質量份混合,於60 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與第二丁醇 2 4 0 · 4質量份混合,於7 0 °C使反應1小時,藉此得到胺基 甲酸酯脲樹脂組成物(VII)(丙烯醯基之當量重量;―、重量 平均分子量;62000、非揮發成分;25質量%)。 [比較例3 ] 於配備溫度計、攪拌機、惰性氣體導入□、及回流冷 卻器的5公升的四口燒瓶中,加入使1,4 一丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:1 1 2.2 ) 5 0 0 . 〇質量份,加入 異佛爾酮二異氰酸酯222.2質量份、甲苯180.6質量份,一 面抑制發熱,一面於8 0 °C使反應3小時,藉此得到於分子 末端具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 -27- 201127863 其次,將冷卻至40t的前述甲苯溶液與Ν,Ν -二甲基 甲醯胺1455.9質量份與甲苯547.4質量份混合後,與異佛 爾酮二胺6 3.4質量份混合,於6 0 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2 -羥基乙酯23.2質量份與第二丁醇242.6質量份混合,於70 °C使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹 脂組成物(VIII)(丙烯醯基之當量重量;4.0 5 X 1 0 3、重量平 均分子量;12000、非揮發成分;25質量%)。 [比較例4] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入使1,4 一丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:11 2.2) 5 00.0質量份,加入 異佛爾酮二異氰酸酯222.2質量份、甲苯180.6質量份,一 面抑制發熱,一面於8 01使反應3小時,藉此得到於分子 末端具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40 °C的前述甲苯溶液與Ν,Ν -二甲基 甲醯胺1 509.0質量份與甲苯5 7 4.0質量份混合,藉此得到 於分子末端具有異氰酸酯基的胺基甲酸酯預聚物溶液。 其次,將前述胺基甲酸酯預聚物溶液與丙烯酸2 —羥 基乙酯116.1質量份與第二丁醇251.5質量份混合,於70 °C使反應約]小時,藉此得到丙烯酸改性胺基甲酸酯樹脂 -28- 201127863 組成物(IX)(丙烯醯基之當量重量;8.38X 102、重量平均分 子量;6100 '非揮發成分;25質量%)。 [丙烯酸改性胺基甲酸酯脲樹脂之重量平均分子量之測定 方法] 上述實施例及比較例得到的丙烯酸改性胺基甲酸酯脲 樹脂之重量平均分子量,係利用凝膠滲透層析(GPC)依照標 準聚苯乙烯換算求得。將得到的丙烯酸改性胺基甲酸酯脲 樹脂組成物的固體成分0.4 g溶解於四氫呋喃1 0 0 g,作爲測 定試樣。 測定裝置使用東曹(股)製高速液體層析HLC - 8220 型。管柱,係組合東曹(股)製管柱TSK — GEL(HXL — Η、 G5000HXL、 G4000HXL、 G3000HXL、 G2000HXL)使用。 測定條件:管柱溫度爲40°C、溶離液爲四氫呋喃、流量 爲1.0mL/min、試樣注入量500μί,標準聚苯乙烯使用TSK 標準聚苯乙烯。 [成型物(膜)之製作方法] 對於上述實施例及比較例得到的樹脂組成物的固體成 分 100 質量份,混合 IRGACURE 184(Ciba Japan (股)製、 光聚合起始劑)2質量份’並攪拌1 〇分鐘,藉此得到塗佈液。 將前述塗佈液塗佈在施行過脫模處理的聚對苯二甲酸 乙二酯膜上後,使用熱風乾燥機於1 〇 〇 t乾燥2 0分鐘後, 使用輸送帶型式的紫外線照射裝置(Gs-YUASA(股)公司製 C S Ο T — 4 0)照射1 0 0 0 m J / c m 2,藉此得到硬化後膜厚爲5 〇 μιη 之膜。 -29- 201127863 [光穿透性之評價方法] 前述製作的膜的光穿透率(%),使用日本分光(股)公司 製V — 570型分光光度計,於200nm〜900nm的波長範圍進 行測定,依據於3 8 0 n m、3 5 0 n m及3 0 0 n m之波長測定時的 光穿透率進行評價。於波長380nm的光穿透率爲85 %以 上、波長35〇11111之光穿透率爲80。/。以上、及波長30〇11111之 光穿透率爲70°/。以上者評價爲光穿透性優異。又,因爲成 型加工性不良’無法製作膜者,因爲無法測定光穿透率, 故評價爲「X」。 [耐熱性之評價方法] 前述方法製作的膜的流動開始溫度,使用島津Flow tester CFT 5 00D— 1 (島津製作所(股)製),於測定開始溫度; 4〇 °C 、升溫速度;3.0 °C /分、升溫法、缸筒壓力; 9.807xl〇5Pa、模頭;lmmxlmmL、負荷;98N、保持時間; 6 〇 〇秒的條件進行測定。 前述流動開始溫度大致爲170 °C以上者,評價爲耐熱 性優異。又,由於成型加工性不良,無法製作膜者,由於 無法以前述方法測定流動開始溫度,故耐熱性評價爲「X」。 [表 1 ] 表1 實施例1 實施例2 實施例3 實施例4 實施例5 . 多元醇(A) BG-AA BG-AA BG-AA BG-AA HG-PC 聚異氰酸酯(B) IPDI IPDI IPDI H12MDI IPDI .... 多兀胺(c) IPDA IPDA IPDA IPDA IPDA 丙烯酸化合杨(D) HEA HEA HEA ' HEA ""hea"" 丙烯醯基之當量重量 rxio4) 1.15 1.61 2.66 2.80 2.66 光穿透率(%) ; 380nm 86 86 87 350nm 80 80 84 90 3¾¾¾%) ; 300nm 73 70 75 . 73 87 耐熱性(°c) 170 172 177 180 184 -30- 201127863 [表2]Polyol (Nippon polyurethane industry "NIPPORAN 981", hydroxyl price: 112.2) 500.0 parts by mass 'and added isophorone diisocyanate 222.2 parts by mass, toluene 180_6 parts by mass 'to suppress heat' - face to 80 r was allowed to react for 3 hours 'by this to obtain a toluene solution of a urethane prepolymer having an isocyanate group at the molecular end. Next, the above-mentioned toluene solution cooled to 4 Torr was mixed with N,N-dimethylformamide 1 444.6 parts by mass and 541.7 parts by mass of toluene, and then mixed with isophoronediamine 7 6.8 parts by mass. The reaction was allowed to proceed at 60 ° C for 3 hours, whereby a solution of a urethane urethane prepolymer having an isocyanate group at the molecular end was obtained. Further, the above-mentioned urethane urea prepolymer solution was mixed with 3.5 parts by mass of 2-hydroxyethyl acrylate and 240.8 parts by mass of second butanol at 7 Torr. (: The reaction was allowed to proceed for about 1 hour, whereby an acrylic modified urethane urea resin composition (V) (equivalent weight of propylene fluorenyl group; 2.66 χ 104, weight average molecular weight; 63,000, nonvolatile content; 25% by mass) was obtained. [Comparative Example 1] A polyester mixture obtained by reacting 1,4-butanediol with adipic acid was placed in a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser. Alcohol (hydroxyl price: 112.2) 50.0 parts by mass '222.2 parts by mass of isophorone diisocyanate and 180.6 parts by mass of toluene were added to suppress heat generation, and the reaction was carried out at 80 ° C for 3 hours, whereby an isocyanate was obtained at the molecular terminal. a toluene solution of the urethane prepolymer of the base. Next, the above-mentioned toluene solution cooled to 40 t was mixed with 1442.6 parts by mass of N,N-dimethylformamide and 540.7 parts by mass of toluene, and then isophor. The ketone diamine was mixed with 7 9 parts by mass, and the reaction was allowed to proceed at 60 ° C for 3 hours, thereby obtaining a urethane urea prepolymer solution having an isocyanate group at the molecular terminal. Next, the aforementioned urethane was used. Ethyl urea prepolymer solution and 240.4 parts by mass of dibutanol was mixed, and the reaction was allowed to proceed at 70 t for about 1 hour, thereby obtaining a urethane urea resin composition (VI) (equivalent weight of propylene fluorenyl group; -, weight average molecular weight; 70,000, nonvolatile content) 255% by mass. -26- 201127863 [Comparative Example 2] Adding hydrazine, 6-hexanediol-based polycarbonate to a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux cooler The ester polyol (NIPPORAN 981, NIPPORAN 981, base price: 112.2), 5〇〇·〇 parts by mass, 222.2 parts by mass of isophorone diisocyanate, and 180.6 parts by mass of toluene were used to suppress heat generation. The reaction was carried out for 3 hours at 80 ° C to thereby obtain a toluene solution of a urethane prepolymer having an isocyanate group at the molecular end. Next, the toluene solution cooled to 40 ° C and N, N - 2.6 parts by mass of dimethylformamide M4 and 50.7 parts by mass of toluene were mixed, and then mixed with 79.2 parts by mass of isophoronediamine, and reacted at 60 ° C for 3 hours, thereby obtaining an isocyanate group at the molecular terminal. Urethane Next, the solution of the aforementioned urethane urea prepolymer was mixed with 2,400 parts by mass of the second butanol, and the reaction was allowed to proceed at 70 ° C for 1 hour, thereby obtaining an aminocarboxylic acid. Ethyl urea resin composition (VII) (equivalent weight of propylene fluorenyl group; - weight average molecular weight; 62000, nonvolatile content; 25% by mass). [Comparative Example 3] equipped with a thermometer, a stirrer, an inert gas introduction □, and A 5 liter four-necked flask of a reflux condenser was charged with a polyester polyol obtained by reacting 1,4-butanediol with adipic acid (hydroxyl: 1 1 2.2) 5 0 0 . 222.2 parts by mass of phorone diisocyanate and 180.6 parts by mass of toluene were reacted at 80 ° C for 3 hours while suppressing heat generation, thereby obtaining a toluene solution of a urethane prepolymer having an isocyanate group at a molecular terminal. . -27- 201127863 Next, the above-mentioned toluene solution cooled to 40 t was mixed with 1455.9 parts by mass of hydrazine, hydrazine-dimethylformamide and 547.4 parts by mass of toluene, and then mixed with 3.4 parts by mass of isophoronediamine 6 to The reaction was allowed to proceed at 60 ° C for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular end was obtained. Next, the aforementioned urethane urea prepolymer solution was mixed with 23.2 parts by mass of 2-hydroxyethyl acrylate and 242.6 parts by mass of second butanol, and the reaction was allowed to proceed at 70 ° C for about 1 hour, thereby obtaining acrylic acid modification. Aurethane urea resin composition (VIII) (equivalent weight of propylene sulfhydryl group; 4.0 5 X 10 3 , weight average molecular weight; 12,000, nonvolatile component; 25% by mass). [Comparative Example 4] A polyester polyol obtained by reacting 1,4-butanediol with adipic acid was placed in a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser ( Hydroxy valence: 11 2.2) 5 00.0 parts by mass, 222.2 parts by mass of isophorone diisocyanate and 180.6 parts by mass of toluene were added, and the reaction was allowed to proceed for 3 hours at 8 01 while suppressing heat generation, thereby obtaining an isocyanate group at the molecular terminal. A toluene solution of the urethane prepolymer. Next, the above-mentioned toluene solution cooled to 40 ° C was mixed with Ν, Ν-dimethylformamide 1 509.0 parts by mass and toluene 5 7 4.0 parts by mass, thereby obtaining an aminocarboxylic acid having an isocyanate group at the molecular terminal. Ester prepolymer solution. Next, the aforementioned urethane prepolymer solution was mixed with 116.1 parts by mass of 2-hydroxyethyl acrylate and 251.5 parts by mass of second butanol, and the reaction was allowed to proceed at 70 ° C for about 5 hours, thereby obtaining an acrylic modified amine. Carbamate resin-28 - 201127863 Composition (IX) (equivalent weight of propylene sulfhydryl; 8.38X 102, weight average molecular weight; 6100 'nonvolatile content; 25% by mass). [Method for Measuring Weight Average Molecular Weight of Acrylic Modified Aurethane Urea Resin] The weight average molecular weight of the acrylic modified urethane urea resin obtained in the above Examples and Comparative Examples was determined by gel permeation chromatography ( GPC) is obtained according to standard polystyrene conversion. 0.4 g of the solid component of the obtained acrylic modified urethane urea resin composition was dissolved in tetrahydrofuran (100 g) as a measurement sample. The measuring device used a high-speed liquid chromatography HLC-8220 model manufactured by Tosoh Corporation. The pipe string is used in combination with the TCA-GEL (HXL — Η, G5000HXL, G4000HXL, G3000HXL, G2000HXL). The measurement conditions were as follows: the column temperature was 40 ° C, the solution was tetrahydrofuran, the flow rate was 1.0 mL/min, the sample injection amount was 500 μί, and the standard polystyrene was TSK standard polystyrene. [Method for Producing Molded Article (Film)] IRGACURE 184 (manufactured by Ciba Japan Co., Ltd., photopolymerization initiator) was mixed in an amount of 100 parts by mass of the solid content of the resin composition obtained in the above Examples and Comparative Examples. The mixture was stirred for 1 minute to obtain a coating liquid. The coating liquid was applied onto a polyethylene terephthalate film subjected to release treatment, and then dried at 1 Torr for 20 minutes using a hot air dryer, and then a conveyor belt type ultraviolet irradiation device was used ( Gs-YUASA Co., Ltd. CS Ο T — 40 0) irradiated 1 0 0 m J / cm 2 , thereby obtaining a film having a film thickness of 5 〇 μιη after hardening. -29-201127863 [Evaluation method of light transmittance] The light transmittance (%) of the film produced as described above was carried out in the wavelength range of 200 nm to 900 nm using a V-570 spectrophotometer manufactured by JASCO Corporation. The measurement was evaluated based on the light transmittance at the wavelengths of 380 nm, 305 nm, and 300 nm. The light transmittance at a wavelength of 380 nm is 85% or more, and the light transmittance at a wavelength of 35 〇 11111 is 80. /. The light transmittance of the above and the wavelength of 30〇11111 is 70°/. The above was evaluated as excellent in light transmittance. Further, since the filming property was poor, the film could not be produced, and since the light transmittance could not be measured, it was evaluated as "X". [Evaluation method of heat resistance] The flow start temperature of the film produced by the above method was measured using Shimadzu Flow tester CFT 5 00D-1 (manufactured by Shimadzu Corporation) at the measurement start temperature; 4 ° ° C, temperature increase rate; 3.0 ° C / min, heating method, cylinder pressure; 9.807xl 〇 5Pa, die; lmmxlmmL, load; 98N, hold time; 6 〇〇 second conditions for determination. When the flow start temperature is approximately 170 °C or higher, it is evaluated as excellent in heat resistance. Further, since the film formation processability was poor and the film could not be produced, the flow start temperature could not be measured by the above method, so the heat resistance was evaluated as "X". [Table 1] Table 1 Example 1 Example 2 Example 3 Example 4 Example 5 Polyol (A) BG-AA BG-AA BG-AA BG-AA HG-PC Polyisocyanate (B) IPDI IPDI IPDI H12MDI IPDI .... Polyamine (c) IPDA IPDA IPDA IPDA IPDA Acrylic Compound Yang (D) HEA HEA HEA 'HEA ""hea"" Ethylene-based equivalent weight rxio4) 1.15 1.61 2.66 2.80 2.66 Light Transmittance (%); 380nm 86 86 87 350nm 80 80 84 90 33⁄43⁄43⁄4%) ; 300nm 73 70 75 . 73 87 Heat resistance (°c) 170 172 177 180 184 -30- 201127863 [Table 2]

表2 比較例1 比較例2 比較例3 比較例4 多元醇 BG-AA HG-PC BG-AA BG-AA 聚異氰酸酉旨 IPDI IPDI IPDI IPDI 多元胺 IPDA IPDA IPDA — 丙烯酸化合杨 — — HEA HEA 丙稀醯基之當量重量 (χΙΟ4) — 一 0.405 0.0838 光穿透率(%) ; 380mn 82 90 91 X 光穿透率(%) ; 350nm 75 87 90 X 光穿透率(%) ; 300nm 60 85 88 X 耐熱性fc) 153 160 157 X 以下說明表1〜2中之簡稱。 「BG— AA」爲使1,4— 丁二醇與己二酸反應得到的聚 酯多元醇(羥基價;Π2.2)。 「HG-PC」爲 Nippon polyurethane industry(股)製 「NIPPORAN981」(1,6 —己二醇系聚碳酸酯多元醇)。 「IPDI」爲異佛爾酮二異氰酸酯。 「H12MDI」爲4,4’ —二環己基甲烷二異氰酸酯。 「IPDA」爲異佛爾酮二胺。 「HEA」爲丙烯酸2—羥基乙酯。 產業利用性 若爲本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 可形成具備於紫外線或可見光線之低波長區之優異光穿透 性,且具備不會因爲熱之影響而引起變形或變色等之程度 的優異耐熱性的成型物,因此可使用於例如汽車零件或家 電零件、包裝材、膜或片材、皮革狀片材的表皮材等的製 造。 -3 1- 201127863 又,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 由於如前述,耐熱性優異,故可使用在例如各種基材之表 面塗覆劑或黏著劑等。 【圖式簡單說明】 Μ 。 j\\\ 【主要元件符號說明】 姐〇 J \ \\ -32-Table 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Polyol BG-AA HG-PC BG-AA BG-AA Polyisocyanate IPIP IPDI IPDI IPDI Polyamine IPDA IPDA IPDA — Acrylate Compound Yang — HEA Equivalent weight of HEA acrylonitrile group (χΙΟ4) — a 0.405 0.0838 light transmittance (%); 380mn 82 90 91 X light transmittance (%); 350nm 75 87 90 X light transmittance (%); 300nm 60 85 88 X Heat resistance fc) 153 160 157 X The following is abbreviated in Tables 1 to 2. "BG-AA" is a polyester polyol obtained by reacting 1,4-butanediol with adipic acid (hydroxyl price; Π2.2). "HG-PC" is "NIPPORAN 981" (1,6-hexanediol-based polycarbonate polyol) manufactured by Nippon polyurethane industry. "IPDI" is isophorone diisocyanate. "H12MDI" is 4,4'-dicyclohexylmethane diisocyanate. "IPDA" is isophorone diamine. "HEA" is 2-hydroxyethyl acrylate. Industrial Applicability The composition of the acrylic modified urethane urea resin of the present invention can form excellent light transmittance in a low-wavelength region of ultraviolet rays or visible rays, and is not caused by heat. A molded article having excellent heat resistance such as deformation or discoloration can be used for the production of, for example, automobile parts, home appliance parts, packaging materials, films or sheets, and skin materials of leather-like sheets. Further, the acrylic modified urethane urea resin composition of the present invention is excellent in heat resistance as described above, and thus, for example, a surface coating agent or an adhesive for various substrates can be used. [Simple description of the diagram] Μ . j\\\ [Main component symbol description] Sister J \ \\ -32-

Claims (1)

201127863 七、申請專利範圍: 1. 一種丙烯酸改性胺基甲酸酯脲樹脂組成物,其特徵在於: 含有使多元醇(A)、聚異氰酸酯(B)、多元胺(C)及具有含 活性氫原子之基的丙烯酸化合物(D)反應得到的丙烯酸改 性胺基甲酸酯脲樹脂(1),與溶劑(2),該丙烯酸改性胺基 甲酸酯脲樹脂具有的來自該丙烯酸化合物(D)的丙烯醯基 之當量重量爲10000〜50000的範圍。 2 .如申請專利範圍第1項之丙烯酸改性胺基甲酸酯脲樹脂 組成物,其中該丙烯酸改性胺基甲酸酯脲樹脂組成物 中,該丙烯酸改性胺基甲酸酯脲樹脂(1)與該溶劑(2)之質 量比例爲(1)/(2) = 10〜50/90〜50。 3 .如申請專利範圍第1或2項之丙烯酸改性胺基甲酸酯脲 樹脂組成物,其中該多元醇(A)具有30〜230mgKOH/g之 羥基價。 4 ·如申請專利範圍第1至3項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該多元醇(A)爲不具有芳香族 環式構造之多元醇。 5 .如申請專利範圍第4項之丙烯酸改性胺基甲酸酯脲樹脂 組成物’其中該不具芳香族環式構造的多元醇,係選自 由聚酯多元醇及聚碳酸酯多元醇構成之群組中1種以上。 6.如申請專利範圍第1至5項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該聚異氰酸酯(B)爲含有脂肪 族環式構造之聚異氣酸醋。 -33- 201127863 7 .如申請專利範圍第6項之丙烯酸改性胺基甲酸醋脲 組成物’其中該含有脂肪族環式構造之聚異氰酸醋 選自由4,4’ 一二環己基甲烷二異氰酸酯及異佛爾酮 氰酸酯構成之群組中1種以上。 8 ·如申請專利範圍第1至7項中任一項之丙嫌酸改性 甲酸酯脲樹脂組成物,其中該多元胺(C)爲含有脂肪 式構造之多元胺。 9 ·如申g靑專利範圍第1至8項中任一·項之丙稀酸改性 甲酸醋脲樹脂組成物,其中該丙嫌酸化合物(D)爲含 基之丙烯酸烷基酯。 1 0 ·如申g靑專利範圍第1至9項中任一項之丙稀酸改性 甲酸酯脲樹脂組成物,其中該丙儲酸改性胺基甲酸 樹脂具有5000〜200000之重量平均分子量。 1 1 一種成型物,係將如申請專利範圍第1至1 〇項中 項之丙烯酸改性胺基甲酸酯脲樹脂組成物成型而獲:j 樹脂 ,係 二異 胺基 族環 胺基 有羥 胺基 酯脲 任一 -34- 201127863 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無0 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201127863 VII. Patent application scope: 1. A composition of acrylic acid modified urethane urea resin, characterized by: containing polyol (A), polyisocyanate (B), polyamine (C) and having activity An acrylic modified urethane urea resin (1) obtained by reacting an acrylic compound (D) based on a hydrogen atom, and a solvent (2) having an acrylic acid compound derived from the acrylic modified urethane urea resin The equivalent weight of the propylene group of (D) is in the range of 10,000 to 50,000. 2. The acrylic modified urethane urea resin composition according to claim 1, wherein the acrylic modified urethane urea resin composition, the acrylic modified urethane urea resin (1) The mass ratio to the solvent (2) is (1) / (2) = 10 to 50 / 90 to 50. 3. The acrylic modified urethane urea resin composition according to claim 1 or 2, wherein the polyol (A) has a hydroxyl value of 30 to 230 mgKOH/g. The acrylic modified urethane urea resin composition according to any one of claims 1 to 3, wherein the polyol (A) is a polyol having no aromatic ring structure. 5. The acrylic modified urethane urea resin composition of claim 4, wherein the polyol having no aromatic ring structure is selected from the group consisting of polyester polyols and polycarbonate polyols. One or more of the groups. The acrylic modified urethane urea resin composition according to any one of claims 1 to 5, wherein the polyisocyanate (B) is a polyisocyanic acid vinegar having an aliphatic cyclic structure. -33- 201127863 7. The acrylic modified urethane urethane composition as claimed in claim 6 wherein the polyisocyanate having an aliphatic cyclic structure is selected from 4,4' dicyclohexylmethane One or more of the group consisting of diisocyanate and isophorone cyanate. The acrylic acid-modified formate urea resin composition according to any one of claims 1 to 7, wherein the polyamine (C) is a polyamine having a fatty structure. The acrylic acid modified formic acid urea resin composition according to any one of items 1 to 8, wherein the acrylic acid compound (D) is a group-containing alkyl acrylate. The acrylic acid modified formic acid urea resin composition according to any one of claims 1 to 9, wherein the cyanate acid modified urethane resin has a weight average of 5,000 to 200,000 Molecular weight. 1 1 A molded article obtained by molding an acrylic modified urethane urea resin composition as recited in claims 1 to 1 of the patent application: j resin, a diisoamine group cyclic amine group Hydroxylaminoester urea-34- 201127863 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None 0. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW099131544A 2009-09-18 2010-09-17 Acrylic modified urethane urea resin composition and molding product obtained by using the same TWI495654B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216996 2009-09-18

Publications (2)

Publication Number Publication Date
TW201127863A true TW201127863A (en) 2011-08-16
TWI495654B TWI495654B (en) 2015-08-11

Family

ID=43758464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131544A TWI495654B (en) 2009-09-18 2010-09-17 Acrylic modified urethane urea resin composition and molding product obtained by using the same

Country Status (5)

Country Link
JP (1) JP4877431B2 (en)
KR (1) KR101751766B1 (en)
CN (1) CN102549040B (en)
TW (1) TWI495654B (en)
WO (1) WO2011033851A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048459A (en) * 2013-09-04 2015-03-16 Dic株式会社 Radically polymerizable resin composition and civil engineering building material
US10934402B2 (en) * 2016-11-23 2021-03-02 Spartech, LLC Urethane urea acrylic cast sheet materials

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115969A (en) * 1984-11-09 1986-06-03 デソト,インコ−ポレ−テツド Radiation curable paint
US4690501A (en) * 1985-07-08 1987-09-01 Desoto, Inc. Ultraviolet curable optical glass fiber coatings from acrylate terminated, end-branched polyurethane polyurea oligomers
JPH02178315A (en) * 1988-12-28 1990-07-11 Dainippon Ink & Chem Inc Active energy ray curing type resin composition
JPH07292304A (en) * 1994-04-20 1995-11-07 Toyobo Co Ltd Activating energy ray curing type printing ink
US6107436A (en) * 1998-10-05 2000-08-22 3M Innovative Properties Company Polyfunctional polymer
JP2001055540A (en) * 1999-08-20 2001-02-27 Nippon Polyurethane Ind Co Ltd Polyurethane primer
JP2001122938A (en) * 1999-10-25 2001-05-08 Toyo Ink Mfg Co Ltd Method for producing polyurethane urea resin and pressure-sensitive adhesive sheet
JP4120373B2 (en) * 2001-11-30 2008-07-16 東洋インキ製造株式会社 Urethane urea resin and radiation curable resin composition containing the resin
US6897281B2 (en) * 2002-04-05 2005-05-24 Noveon Ip Holdings Corp. Breathable polyurethanes, blends, and articles
CN101466749B (en) * 2006-06-14 2011-06-08 日立化成工业株式会社 Resin composition and multilayer optical member using the same
JP2010116528A (en) * 2007-12-21 2010-05-27 Sumitomo Chemical Co Ltd Optical film and method for producing the optical film
CN101289298B (en) * 2008-05-20 2012-06-06 深圳大学 Self-repair concrete using urea-formaldehyde resin type high molecule microcapsule and method of manufacture
JP5463120B2 (en) * 2008-10-31 2014-04-09 三洋化成工業株式会社 Active energy ray-curable resin composition

Also Published As

Publication number Publication date
CN102549040A (en) 2012-07-04
KR20120082348A (en) 2012-07-23
KR101751766B1 (en) 2017-06-28
JP4877431B2 (en) 2012-02-15
JPWO2011033851A1 (en) 2013-02-07
WO2011033851A1 (en) 2011-03-24
CN102549040B (en) 2014-07-16
TWI495654B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
JP7111155B2 (en) Photocurable resin composition and pressure-sensitive adhesive using the same
CN102250312B (en) Optical two-pack type thermosetting urethane resin composition and optical molded body obtained by same
TWI526506B (en) Non-aqueous primer with plastic film with reactive energy ray hardening film, plastic film with hardening film with active energy line
CN108367562A (en) The manufacturing method of laminated body and laminated body
JP2010180290A (en) Pressure-sensitive adhesive composition and adherent laminate obtained by using the same
JP7453606B2 (en) Method for manufacturing laminate including adhesive sheet
TW201700697A (en) Adhesive composition and manufacturing method thereof, laminate and manufacturing method thereof
TWI526464B (en) Acrylic modified urethane urea resin composition and molding product obtained by using the same
TW200829669A (en) Base material for adhesive and method for producing adhesive
TWI495654B (en) Acrylic modified urethane urea resin composition and molding product obtained by using the same
JP5725335B2 (en) Prism sheet and manufacturing method thereof
TW201219493A (en) Active energy ray curable resin composition, adhesive for polarizing plate and polarizing plate
JP5614728B2 (en) Undercoat agent for plastic film with active energy ray cured film and plastic film with active energy ray cured film
JP2007023117A (en) Urethane urea composition, urethane urea resin and adhesive using the same
JP2017075214A (en) Adhesive sheet and diaphragm for thin type flat plate speaker using the same
CN112969764B (en) Organic polymer, composition containing the same, and method for producing the same
JP2024042176A (en) Active energy ray-curable resin composition, cured product and laminate
JP2012194308A (en) Prism sheet and method of manufacturing the same
JP2020007419A (en) Neutralized product of polyester polyol, resin composition, and method for producing neutralized product of polyester polyol