201125320 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及通信系統,更具體地說,涉及一種用於E-UTRA/LTE UE接收器内多頻率假設測試中增加頻移估計 精確度的方法和系統。 [先前技術] [0002] 已經開發出了各種通信標準來提供相當高的資料速率以 支援高品質服務,例如E-UTRA (演進的UMTS陸面無線存 取)標準’又被稱為LTE (Long Term Evolution,長 期演進技術)°LTE/E-UTRA是3GPP (第三代合作夥伴計 畫)標準,其提供高達50Mbps的上行鍵路速率和高達 100Mbps的下行鏈路速率。LTE/E-UTRA標準代表了蜂窩 技術的主要進步。LTE/E-UTRA標準的設計滿足現在和今 後告訴資料和多媒體傳輸以及高容量語音支援的載波需 求。LTE/E-UTRA標準給蜂窩網帶來了大量技術上的好處 ,包括OFDM (正交頻分複用)和/或ΜΙΜΟ (多進多出) 資料通信所系統的好處。此外,0FDMA (正交頻分多址) 和SC-0FDMA (單載波-頻分多址)被分別用於下行鏈路 (DL)和上行鏈路(UL)。 [〇〇〇3] 移動性管理代表了 LTE/E-UTRA標準的一個重要方面。由 於移動設備,在LTE/E-UTRA標準中又被稱為用戶設備( UE),在LTE/E-UTRA覆蓋區域内移動,同步信號傳輸和 蜂窩搜索進程的使用為移動設備或UE檢測並與各個蜂窩 同步提供了基礎。為了與特定蜂窩通信,相關LTE/ E-UTRA覆蓋區内的移動設備需要確定一個或多個特定蜂 099124832 表單編號A0101 第4頁/共43頁 1003036074-0 201125320 窩傳輸參數’例如符號時序、無線幀時序、和/或蜂窩單 元ID。在LTE/E-UTRA標準中,蜂窩特定資訊由參考和/ 或同步信號傳送。後者形成下行鏈路同步和相關LTE/ E-UTRA覆蓋區内移動設備處蜂窩特定資訊識別的基礎。 兩個下行鏈路同步信號,即主同步信號(PSS)和次同步 信號(SSS),被用於使得移動設備能夠與特定蜂窩單元 的傳輸時序同步’並從而獲得蜂窩特定資訊,例如天線 配置指示符、全物理蜂窩單元ID、和/或蜂窩單元ID組指 示符。 Ο [0004] 比較本發明後續將要結合附圖介絡的系統,現有技術的 其他局限性和弊端對於本領域的普通技術人員來說是顯 而易見的。 【發明内容】 [0005] Ο [0006] 本發明提供了用於E-UTRA/LTE UE接收器内多頻率假設 測試中增加頻移估計精確度的方法和/或系統,結合至少 一幅附圖進行了充分的展現和描述,並在權利要求中得 到了更完整的闡述。 根據本發明的一方面,本發明提出一種用於通信的方法 ’包括: [0007] [0008] 接收射頻信號,所述射頻信號包括主同步序列(pss)和 次同步序列(SSS); 在一組頻率假設(MFH)分支中的每一個内執行pss相關 [0009] 在所述一組頻率假設分支中產生最大P S S相關峰值幅度的 099124832 表單編號A0101 第5頁/共43頁 1003036074-0 201125320 一個頻率假設分支中,使用對應的PSS相關資料,為所接 收的射頻信號估計頻率偏移量。 [0010] 作為優選,所述方法進一步包括為所述一組頻率假設分 支中每一個確定預期的偏移量。 [0011] 作為優選,所述方法進一步包括基於所述確定的預期# 移量,針對所述一組頻率假設分支中每一個,對所述接 收的射頻信號的基帶信號進行頻移。 [0012] 作為優選,所述方法進一步包括在所述頻移至基帶信號 之後執行所述PSS相關。 [0013] 作為優選,所述方法進一步包括基於得到的PSS相關峰值 幅度,所述一組頻率假設分支中每一個,為所接收的PSS 選擇候選PSS。 [0014] 作為優選,所述方法進一步包括依據所述一組頻率假設 分支中所述最大PSS相關岭值幅度,從针對所述一組頻率 假設分支中每一個所選擇的候選PSS中律測出所述接收的 射頻信號的所述PSS。 [0015] 作為優選,所述方法進一步包括估計所述一組頻率假設 分支中所述產生最大PSS相關峰值幅度的頻率假設分支内 所述接收的射頻信號的剩餘頻率偏移量。 [0016] 作為優選,所述方法進一步包括通過將所述估計出的剩 餘頻率偏移量與和所述一組頻率假設分支中產生最大PSS 相關峰值幅度的所述頻率假設分支相關聯的預期頻率偏 移量相結合,來估算出頻率偏移量。 099124832 表單編號A0101 第6頁/共43頁 1003036074-0 201125320 [0017] [0018] [0019] [0020]Ο [0021] [0022] [0023] Ο [0024] [0025] 作為優選,所述方法進一步包括使用所述估算出的頻率 偏移量來對所述接收的射頻信號進行基帶處埋。 作為優選,所述方法進一步包括基於所述估算出的頻率 偏移量來調節所述移動設備的本地參考振盪器頻率。 根據本發明的一個方面,本發明提供一種用於通信的系 統’包括: 用於移動設備中的一個或多個處理器和/或電路,其中所 述—個或多個處理器和/或電路用於: 接收射頻信號,所述射頻信號包括主同步序列(pSS)和 次同步序列(SSS); 在一組頻率假設(MFH)分支中的每一個内執行PSS相關 f 在所述一組頻率假設分支中產生最大pss相關峰值幅度的 ί. ϊ ·!|. ·::; 一個頻率假設分支中’使用對應的PSS相關資料’為所接 收的射頻信號估計頻率偏移量° 作為優選,所述一個或多個處理器和/或電路為所述一組 頻率假設分支中每’個確定預期的偏移量。 作為優選’所述〆個或多個處理器和/或電路基於所述確 定的預期偏移量,針對所述一組頻率假設分支中每—個 ,對所述接收的射頻信號的基帶信號進行頻移。 作為優選,所述/個或多個處理器和/或電路在所述頻移 至基帶信號之後執行所述pss相關。 099124832 表單編號A0101 第7頁/共43頁 1003036074-0 [0026] 201125320 [0027] 作為優選,所述一個或多個處理器和/或電路基於得到的 PSS相關峰值幅度,所述一組頻率假設分支中每一個, 所接收的pss選擇候選pss ° [0028] 作為優選,所述一個或多個處理器和/或電路依據所迷〜 組頻率假設分支中所述最大PSS相關峰值幅度,從針對所 述一組頻率假設分支中每一個所選擇的候選p S S中檢剛出 所述接收的射頻信號的所述PSS。 [0029] 作為優選,所述一個或多個處理器和/或電路估計所逑〜 組頻率假設分支中所述產生最大PSS相關峰值幅度的頰率 假設分支内所述接收的射频信號的剩餘頻率偏移量。 [0030] 作為優選,所述一個或多個處理器和/或電路通過將所述 估計出的剩餘頻率偏移量與和所述一組頻率假設分支中 產生最大PSS相關峰值幅度的所述頻率假設分支相關聯的 預期頻率偏移量相結合,來估算出頻率偏移量。 .- .: [0031] 作為優選,所述一個或多個處理器和/或電路使用所述估 算出的頻率偏移量來對所述接收的射頻信號進行基帶處 理。 [0032]作為優選,所述一個或多個處理器和/或電路基於所述估 算出的頻率偏移量來調節所述移動設備的本地參考振盈 器頻率。 [0033] 本發明的各種優點、各個方面和創新特徵,以及其中所 示例的實施例的細郎’將在以下的描述和附圖中進行祥 細介紹。 【實施方式】 1003036074-0 099124832 表單編號A0101 第8頁/共43頁 201125320 [0034]本發明的實施例涉及用於增加LTE/E-UTRA用戶設備接收 器内的多頻率假設測試中的頻移估計精確度的方法和系 統。移動設備從相關聯的基站接收射頻信號。接收的射 頻信號包括PSS和SSS,移動設備將其用於通過PSS同步 和SSS檢測來獲取蜂窩特定參數。為了克服或消除與正確 的pss符號時序和/或針對接收的Pss的正確頻率偏移量 相關的不確定因素,移動設備可執行多頻率假設(miH_ tiple frequency hypothesis,MFH)測試。 Ο 剛移動設備可使用一組雨分支來執行MFH測試。移動設備 可以針對一組MHF分支中的每一個分支執行pss相關處理 。得到的相關資料可被用於估算相關聯的基站和用戶設 備本地振盪器之間存在的載波頻㈣移量1頻率偏移 量可基於-組晒分支中產生最大pss相關峰值幅度的 MFH分支内的對應PSS„f料來估算得到。移動設備可 為每個MFH分支破定預期的頻率偏移量。基於對應的預期 頻率偏移量’可在每個MFH分支内,將不同的頻率偏移量 Ο 應用於接收的pss的基帶信號。PSS相關處理可在每個分 支内的信號頻率偏移之後執行。基於對應的得到的PSS相 關峰值幅度’移動設備可在每個MFH分支内為接收的Pss 選擇候選PSS。接收的PSS可以從該組MFH分支内選定的 候選PSS中檢測出來。檢測到的pss可與整組_分支上 的最大PSS相關峰值幅度相關聯。使用針對產生最大Pss 相關峰值幅度的MFH分支所對應的pss相關資料,可以估 算出剩餘義率歸量4算出的剩餘頻率偏移量可以 和_分支内預期的頻率偏移量相結合,得到針對該移動 099124832 表單編號A0101 第9頁/共43頁 1003036074-0 201125320 設備的頻率偏移量。得到的頻率偏移量還可以用於調節 移動設備的相關聯LTE/E-UTRA用戶設備接收器内的參考 振盪器頻率。 [0036] 圖1是依據本發明的實施例的示範性LTE/E-UTRA通信系 統的示意圖,其用於增加LTE/E-UTRA用戶設備接收器内 的多頻率假設測試中的頻移估計精確度。如圖1所示,示 出了 LTE/E-UTRA通信系統100。LTE/E-UTRA通信系統 100包括多個蜂窩單元,圖中示出了蜂窩單元11 0-120。 LTE/E-UTRA覆蓋區130是蜂窩單元110和蜂窩單元120的 重疊覆蓋區。蜂窩單元110和120分別與基站110a和120a 相關聯。LTE/E-UTRA通信系統100包括多個移動設備, 其中示出了移動設備112-126。移動設備112-116位於蜂 窩單元110内,移動設備1 22-1 26位於蜂窩單元120内。 移動設備118和119位於重疊的1^£/£-耵1^覆蓋區130内 〇 [0037] 基站例如基站110a包括合適的邏輯、電路、介面和/或代 碼,用於管理與蜂窩單元110内的移動設備的通信的各個 方面,例如通信連接建立、連接維護和/或連接終止。基 站11 0 a可管理相關的無線資源,例如無線承載控制、無 線許可權控制、連接移動性控制、和/或蜂窩單元110内 上行和下行通信的無線資源的動態分配。基站11 0 a可利 用物理通道和實體信號用於上行鏈路和下行鏈路通信。 物理通道可攜帶來自較高層的資訊以傳送用戶資料以及 控制資訊。實體信號例如通信信號不能傳送來自較高層 的資訊。在LTE/E-UTRA標準内,基站110a可發送主同步 099124832 表單編號A0101 第10頁/共43頁 1003036074-0 201125320 [0038] Ο [0039] 〇 099124832 信號(PSS)和次同步信號(SSS)。 基站110a可以以每5ms為基礎,在每個無線幀的第一和第 十一時隙的最後兩個OFDM符號内發送PSS和SSS。PSS從 多種zadhoff-chu序列中選出,傳送蜂窩單元組内的基 站或蜂窩單元的身份資訊。SSS是傳送有關蜂窩單元組資 訊的序列’用擾碼序列進行了編碼。該擾碼可以鏈結或 映射到例如PSS的索引。在成功時間和通過pss同步的頻 率同步之後’可通過SSS檢測來執行幀邊界同步和/或蜂 窩單元識別。PSS和SSS的傳輸可允許在確定蜂窩特定資 訊之前解決好時序和頻率偏移問題。這可以降低相關移 動設備例如移動設備114和移動設備118在初始蜂窩搜索 和/或切換模式時的複雜度β 移動設備例如移動設備1丨8可包括合適的邏輯、電路、介 面和/或代碼’用於針對例如LTE/e-UTRA標準所支援的 服務與基站例如基站ll〇a通信。為了與基站l1〇a通信, 移動設備118可確定出基站11〇a所使甩的一個或多個傳輸 參數。這樣的資訊可通過例如解碼來自基站u〇a的廣播 通道(BCH)信號來獲得。就此而言,移動設備118可能 需要同步到來自基站l1〇a的傳輸的對應符號時序和幀時 序’以便獲取蜂寓特定資訊,例如相關的蜂窩單元11}和/ 或天線配置。就此而言,移動設備118可每5ms從鄰近或 周圍的基站例如基站ll〇a和基站120a接收多個pss和SSS 。接收的多個PSS疋針訝該基站或蜂窩單元特定的。 移動設備118可從接收的多個pss中檢測出或選擇一個特 定的PSS以獲取PSS同步。檢測到的PSS可用於估算通道 表單編號A0101 第11 共43頁 蘭 [0040] 201125320 。得到的通道估計值可用於解碼或檢測相關聯的SSS、 1 1 g 以 於幀邊界同步和蜂窩單元組資訊識別。移動設備1 使用各種方法來從接收的多個PSS中檢測或遠擇出^ PSS。例如,移動設備118可生成多個相關參考序列(/ 考PSS),每個分別與接收的多個PSS相關或相四齡 [0041] 依據本發明的實施例’可將PSS相關資料在一個威幾個時 隙週期上累加。得到的相關峰值可用作待考慮的<*pss 符號時序假設的指示。因此,移動設備118可依據得到的 相關峰值來檢測出特定PSS »此外,移動設備118可利用 PSS相關資料來估算移動設備118相對於與PSS傳輸相關 的載波頻率的本地振盪器頻率偏移量《例如,由於振盪 器不精確,移動設備118的正確PSS符號時序和/或正確本 地振盥器頻率可能存在很大範圍的不確定性。移動設備 118的正確PSS符號時序和/或本地振盪器頻率偏移量的不 確定性可能會導致移動設傷118在頻率偏移量太大的情況 下不能檢測到該特定PSS。此外,該不確定性還會導致移 動設備在沒有出現時錯誤地檢測特SPSS,從而不能在基 站110a和移動設備118之間正確地建立同步。就此而言, 移動設備118可執行多頻率假設測試以進行精確的頻率偏 移量估算》可以在所需的頻率不確定範圍例如+ /_15ppm 内選擇出一組預期的頻率偏移量。可以在多頻率假設測 試的每個多頻率假設(MFH)分支内放置一個預期頻率偏 移量,通過這種方式來均勻地覆蓋整個預期頻率不確定 範圍例如+ /-15ppm内。 [0042] 選擇的預期偏移量的解析度可基於移動設備118内的可用 099124832 表單編號A0101 第12頁/共43頁 1003036074-0 201125320 資源例如可用記憶體來確定。依據相應選擇的預期頻率 偏移量,為每個MFH分支調節或偏置接收的下行鏈路信號 頻率。信號頻率調節或頻率偏移可通過混頻來實現。移 動設備11 8可在混頻後針對每個MFH分支來執行pss相關 處理。在每個MFH分支内,PSS相關資料可在一個或幾個 時隙内累加。得到的PSS相關峰值(可能的Pss符號時序 假設)可進行比較,並且基於比較結果,可針對每個肘⑼ 分支為接收的PSS選擇出候選pss。針對每個mfh分支的 候選PSS可基於相應MFH分支内的最大相關峰值來選擇。 在整組MFH分支内產生最大PSS相關峰值幅度的一個!^!^ 分支内的預期頻率偏移量可指出基站ll〇a的載波頻率和 移動設備Π8的本地振盪器頻率之間可能存在的粗略頻率 偏移量估計值。就此而言,具有最大PSS相關峰值幅度的 MFH分支内的預期頻率偏移量可與該MFH分支内的對應剩 餘頻率偏移量相結合,以用於基站110a的載波頻率和移 動設備118的本地振盪器頻率之間的精確减率偏移量估計 。該剩餘頻率偏移量估算可使用具有最大PSS相關峰值幅 度的MFH分支内的對應PSS相關資料來執行。 [0043] 接收的特定PSS可以依據最高PSS相關峰值幅度從選擇的 候選PSS中檢測出。最高PSS相關峰值幅度的位置可指出 檢測到的PSS的起始位置,並為相應蜂窩單元例如蜂窩單 元110内的檢測到的PSS提供PSS符號時序。該檢測的PSS 、PSS符號時序、和/或頻率偏移量估計值可被移動設備 118用於針對蜂窩特定資訊例如幀邊界和/或蜂窩單元ID 組指示符的SSS檢測。 099124832 表單编號A0101 第13頁/共43頁 1003036074-0 201125320 [0044] 在示範性的操作中,基站110a可在蜂窩單元no内使用物 理通道和實體信號例如PSS和SSS來執行通信。基站u〇a 可規律地(例如每5ms )發送基站特定PSS和SSS。為了 與基站ll〇a通信,移動設備例如移動設備118可獲取從基 站110a接收的PSS和SSS以確定出一個或多個傳輸參數。 例如’移動設備118可獲取PSS同步以識別PSS符號時序 並估异通道。得到的通道估計值和識別出的PSS符號時序 可用於為蜂窩特定資訊(例如幀邊界同步和/或蜂窩單元 組資訊)檢測接收的SSS。 [0045] 移動設備118可執行多頻率假設測試來獲取PSS符號時序 和/或頻率偏移量。該多頻率假設測試可開始於預期頻率 不確定範圍例如+/-15ppm内的一組預期頻率偏移量。移 動設備118可以以均勻覆蓋整個預期頻率不確定範圍例如 + /一 15ppm的方式,給每個MFH分支分配一個唯一的預期 頻率偏移量。每個MFH分支可被分配有一飼唯一的預期頻 率偏移量。在每個MFH分支丨内,接收的基聲信號的頻率可 偏移該分配的預期頻率偏释量。可在具有預期頻率偏移 量的接收基帶信號上執行PSS相關處理,以獲得接收的 PSS。針對該接收的PSS的候選PSS可依據每個MFH分支内 的最大PSS相關峰值幅度來選擇。接收的pss可從選擇的 候選PSS中依據整組MFH分支上的最大PSS相關峰值幅度 來檢測出。得到的剩餘頻率偏移量可與該具有最大Pss相 關峰值幅度的MFH分支内的預期頻率偏移量相結合,以提 供基站110a的載波頻率和移動設備118的本地振盪器頻率 之間的頻率偏移量估計值。整組MFH分支上的最大PSS相 099124832 表單編號A0101 第W頁/共43頁 1003036074-0 201125320 關峰值幅度的位置可指出針對接收的PSS的PSS符號時序 〇 [0046] Ο 圖2是依據本發明實施例使用的LTE/E-UTRA下行鏈路同 步信號結構的框圖。參見圖2 ’示出了下行鏈路無線巾貞 200。在LTE/E-UTRA標準内,下行鏈路無線幀2〇〇可劃 分成二十個相等大小的時隙,且兩個連續的時隙安排在 一個子幀例如子幀210内。下行鏈路同步信號例如pss 210a和SSS 210b,可從基站例如基站ii〇a和/或基站 ll〇b發送給相關的移動設備例如移動設備118,以便移動 設備118可以獲得針對該下行鏈路無線幀2〇〇的正確時序 ,並獲得蜂窩特定資訊例如相關蜂窩單元〗&和/或天線配 置。 、 [0047] Ο PSS 210a和SSS 21〇b可在下行鏈路無線幀200的子蛸〇 和5上發送,並佔用相應子幀内的兩個連續符號。pss 210a可用於識別蜂窩單元點組内的符號時序和蜂窩單元 ID°SSS 210b可用於識別幀邊界,檢測蜂窩單元邝組, 和/或獲取系統參數例如迴圈首碼(cp)長度。用於sss 21〇b的SSS檢測可開始於PSS 21〇a上成功的PSS同步之 後。PSS同步可提供針對該下行鏈路無線幀2〇〇的時序和 頻率偏移量:f訊。為了獲取針對該下行鏈路額Q的精破 日年序和頻率偏移量’可執行多頻率假設測試。針對 210a的PSS相關處理可在具有頻率偏移量估計的每個 分支内合併。通過每個MFH分支内pss相關處理之前的混 頻,可將預期的頻率偏移量置於每#MFH分支内與pss 210a相關的基帶信號上。通過將預期或應用的頻率偏移 099124832 表單編號A0101 第15頁/共43頁 1003036074 201125320 量與MFH分支内的剩餘頻率偏移量相結合,可以獲得針董 每個MFH分支的精確頻率偏移量估計值。該剩餘頻率偏移 量可針對每個MFH分支從相應PSS相關資料中獲得。針對 下行鏈路無線幀200的整體頻率偏移量估計值可在pss 210 a被檢測而到後識別出。 [0048] 圖3疋依據本發明實施例的示範性移動設備的框圖,其用 於增加LTE/E-UTRA用戶設備接收器内的多頻率假設測試 中的頻移估计精破度。參見圖3,示出了移動設備3 〇 〇, 包括天線310、收發器320、主處理器330和記憶體332。 收發器320包括射頻接收器前端324、射頻發射器前端 326和基帶處理器322。 [0049] 天線31 0可包括合適的邏輯、電路、介面和/或代碼,用 於發射和/或接收電磁信號。儘管圖中示出了單個天線, 但本發明並不僅限於此《就此而言,收發器32〇可利用通 用天線來發射和接收符合一個或多個無線標準的射頻( RF) k號,可利用不同的天線用於每個支援的無線標準 ’和/或利用多個天線用於每個支援的無線標準。各種多 天線配置可用于利用智慧天線技術、分集和/或波束成形 技術。 [0050] 收發器320可包括合適的邏輯、電路、介面和/或代碼, 用於發射和/或接收依據一種或多種無線標準例如LTE/ E-UTRA標準的射頻信號。 射頻接收器前端324可包括合適的邏輯、電路、介面和/ 或代碼,用於處理通過LTE/E-UTRA空中介面經天線310 099124832 表單編號A0101 第16頁/共43頁 1003036074-0 [0051] 201125320 接收到的射頻信號。射頻接收器前端324可將接收的射頻 L號轉換成對應的基帶信號。得到的基帶信號可傳送給 基帶處理器322進行進一步的基帶處理。 [0052] [0053] Ο ο [0054] 射頻發射器前端326可包括合適的邏輯、電路、介面和/ 或代碼,用於處理射頻信號以用於傳輸。射頻發射器前 端326可從基帶處理器322接收基帶信號,並轉換基帶信 號為對應的射頻信號以用於通過天線310發射。 基帶處理器322可包括合適的邏輯、電路、介面和/或代 碼’用於管理和/或控制射頻接收器前端324和射頻發射 器前端326的操作。基帶處理器322可與收發器320傳送 基帶信號。基帶處理器322可對將傳送給射頻發射器前端 326的基帶信號進行處理以用於傳送,和/或對來自射頻 接收器前端324的基帶信號進行處理。接收的基帶信號包 括同步信號例如PSS和SSS。接收的PSS和SSS可用于獲取 傳輸時序和其他蜂窩特定資訊,例如用於相關蜂窩單元 内的相關的蜂窩單;ID和/或天線配置》就此而言,基帶 處理器322可生成多偭相關參考序列(參考PSS)以用於 獲取正確的PSS時序和/或頻率偏移量》 各種因素,例如傳播延遲、多普勒偏移、和/或振盪器頻 率漂移,會對正確的PSS符號時序和/或頻率偏移量造成 很大範圍的不確定性。就此而言,基帶處理器322可針對 精確的PSS符號時序和/或頻率偏移量估計執行多頻率假 設測試。可以對每個具有頻率偏移量估計的MFH分支執行 PSS相關處理。基帶處理器322可使用一組預期頻率偏移 量開始多頻率假設測試。該組預期頻率偏移量可通過均 099124832 表單編號A0101 第17頁/共43頁 1003036074-0 201125320 句地覆蓋整個頻率不確定範圍例如+ /-15ppm的方式來選 擇。每個MFH分支可與基帶處理器322選擇的特定的預期 或應用的頻率偏移量相關聯。該特定的預期頻率偏移量 可通過混頻應用於針對每個MFH分支接收的PSS的相關聯 基帶信號。 [0055] 基帶處理器322可對具有預期偏移量的信號執行PSS相關 處理。就此而言,依據得到的整組MFH分支上的PSS相關 峰值幅度,為所有的MFH分支選擇針對接收的PSS的候選 PSS。依據整組MFH分支上的最大.P_SS峰值幅度,可以從 選擇的候選PSS中檢測出接收的PSS。整组MFH分支上的 最大PSS峰值幅度的位置,可提供針對接收的信號的pss 符號時序。基帶處理器3 2 2可以使用相應的pss相關資料 來為產生最大相關峰值幅度的MFH分支確定出剩餘的頻率 偏移量。得到的剩餘頻率偏移量可與該MFh分支内的預期 頻率偏移量相結合,以提供基站1,1 〇a的載波頻率和移動 .. :i: . .·.. 設備3 0 0的本地振盪器頻率之間的頻率、偏多量估計值。基 帶處理器322可基於該頻率偏移量估計’值來調節參考或本 地振蘯器頻率。成功PSS同步之後,基帶處理器322利用 檢測到的PSS、PSS符號時序和/或頻率偏移量來執行其他 基帶處理程式’例如SSS檢測,以獲得蜂窩特定資訊,例 如蜂窩單元ID組和系統參數例如迴圈首碼長度。獲得的 蜂窩特性資訊可由基帶處理器322用於確保移動設備300 與相關的基站例如基站110a進行正確的通信。 [0056] 主處理器330可包括合適的邏輯、電路、介面和/或代碼 ’用於操作和控制收發器320的操作。主處理5|330可收 099124832 表單編號A0101 第18頁/共43頁 1003036074-0 201125320 發器3 2 0傳送資料以支援各種應用例如移動設備3 〇 〇上的 音頻流。 [0057] 記憶體332可包括合適的邏輯、電路、介面和/或代碼, 用於存儲資訊,例如主處理器330以及基帶處理器322所 使用的可執行指令和資料。該可執行指令包括可應用於 各種基帶信號處理(例如同步和/或通道估算)的演算法 。記憶體322可包括RAM、ROM、低延遲非易失性記憶體 例如快閃記憶體和/或其他合適的電子資料存儲媒介。 〇 [0058] 示範性的操作中,射頻接收前端324處理通過LTE/ E-UTRA空中介面經天線310接收到的射頻信號。接收的 射頻信號包括由基站例如基站ll〇a和ll〇b所發射的PSS 和SSS。接收的射頻信號可被轉換成對應的基帶信號,傳 送給基帶處理器322進行進一步的基帶處琿^為了與特定 基站例如基站110a進行通信,基帶處理器322同步到蜂窩 特定傳輸時序例如基站110¾所使用的符號時序和幀邊界 。就此而言,基帶處理器322可生成多個相關參考序列( 〇 參考PSS)來獲取PSS同步。為獲取正確的PSS時序和/或201125320 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to communication systems, and more particularly to an accurate frequency shift estimation for multi-frequency hypothesis testing in an E-UTRA/LTE UE receiver Degree method and system. [Prior Art] [0002] Various communication standards have been developed to provide a relatively high data rate to support high quality services such as E-UTRA (Evolved UMTS Land Surface Access) standard, also known as LTE (Long) Term Evolution, Long Term Evolution (LTE) is a 3GPP (3rd Generation Partnership Project) standard that provides up to 50Mbps uplink key rates and up to 100Mbps downlink rates. The LTE/E-UTRA standard represents a major advancement in cellular technology. The LTE/E-UTRA standard is designed to meet the carrier requirements of today's and tomorrow's data and multimedia transmissions as well as high-capacity voice support. The LTE/E-UTRA standard brings a number of technical benefits to cellular networks, including the benefits of OFDM (Orthogonal Frequency Division Multiplexing) and/or ΜΙΜΟ (Multiple Input Multiple Output) data communication systems. In addition, 0FDMA (Orthogonal Frequency Division Multiple Access) and SC-0FDMA (Single Carrier-Frequency Division Multiple Access) are used for the downlink (DL) and the uplink (UL), respectively. [〇〇〇3] Mobility management represents an important aspect of the LTE/E-UTRA standard. Since the mobile device is also referred to as a User Equipment (UE) in the LTE/E-UTRA standard, moving within the LTE/E-UTRA coverage area, the use of the synchronization signal transmission and the cellular search process is detected and associated with the mobile device or UE. Each cellular synchronization provides the foundation. In order to communicate with a specific cell, the mobile device in the relevant LTE/E-UTRA coverage area needs to determine one or more specific bees. 099124832 Form No. A0101 Page 4/Total 43 Page 1003036074-0 201125320 Nest Transmission Parameters 'eg symbol timing, wireless Frame timing, and/or cell ID. In the LTE/E-UTRA standard, cellular specific information is transmitted by reference and/or synchronization signals. The latter forms the basis for cellular-specific information identification at mobile devices in downlink synchronization and related LTE/E-UTRA coverage areas. Two downlink synchronization signals, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS), are used to enable the mobile device to synchronize with the transmission timing of a particular cellular unit and thereby obtain cellular specific information, such as an antenna configuration indication. , full physical cell ID, and/or cell ID group indicator. [0004] Other limitations and disadvantages of the prior art will be apparent to those of ordinary skill in the art in view of a system in which the present invention will be described in conjunction with the drawings. SUMMARY OF THE INVENTION [0006] The present invention provides a method and/or system for increasing frequency shift estimation accuracy in a multi-frequency hypothesis test in an E-UTRA/LTE UE receiver, in combination with at least one drawing It is fully illustrated and described, and is more fully described in the claims. According to an aspect of the present invention, the present invention provides a method for communication 'comprising: [0007] receiving a radio frequency signal including a primary synchronization sequence (pss) and a secondary synchronization sequence (SSS); Performing pss correlation in each of the group frequency hypothesis (MFH) branches [0009] 099124832 generating the maximum PSS correlation peak amplitude in the set of frequency hypothesis branches Form No. A0101 Page 5 of 43 Page 1003036074-0 201125320 In the frequency hypothesis branch, the corresponding PSS related data is used to estimate the frequency offset for the received RF signal. Advantageously, the method further comprises determining an expected offset for each of said set of frequency hypothesis branches. Advantageously, the method further comprises frequency shifting the baseband signal of said received radio frequency signal for each of said set of frequency hypothesis branches based on said determined expected # shift amount. Advantageously, the method further comprises performing said PSS correlation after said frequency shifting to a baseband signal. Advantageously, the method further comprises selecting a candidate PSS for the received PSS based on the obtained PSS correlation peak magnitude, each of the set of frequency hypothesis branches. Advantageously, the method further comprises, in accordance with said maximum PSS correlation ridge magnitude in said set of frequency hypothesis branches, from a candidate PSS selected for each of said set of frequency hypothesis branches The PSS of the received radio frequency signal. Advantageously, the method further comprises estimating a residual frequency offset of said received radio frequency signal within said frequency hypothesis branch of said set of frequency hypothesis branches that produces a maximum PSS correlation peak amplitude. Advantageously, the method further comprises: by arranging said estimated residual frequency offset with an expected frequency associated with said frequency hypothesis branch of said set of frequency hypothesis branches that produces a maximum PSS correlation peak amplitude The offset is combined to estimate the frequency offset. 099124832 Form No. A0101 Page 6 of 43 1003036074-0 201125320 [0018] [0020] [0020] [0023] [0025] [0025] Preferably, the method Further comprising performing baseband burying of the received radio frequency signal using the estimated frequency offset. Advantageously, the method further comprises adjusting a local reference oscillator frequency of said mobile device based on said estimated frequency offset. According to an aspect of the invention, a system for communicating 'includes' includes: one or more processors and/or circuits for use in a mobile device, wherein the one or more processors and/or circuits For receiving: a radio frequency signal comprising a primary synchronization sequence (pSS) and a secondary synchronization sequence (SSS); performing a PSS correlation f in each of a set of frequency hypothesis (MFH) branches at the set of frequencies Assume that the maximum pss correlation peak amplitude is generated in the branch ϊ ·!|. ·::; In a frequency hypothesis branch, 'Use the corresponding PSS related data' to estimate the frequency offset for the received RF signal. The one or more processors and/or circuits determine an expected offset for each of the set of frequency hypothetical branches. Preferably, the one or more processors and/or circuits perform baseband signals on the received radio frequency signals for each of the set of frequency hypothesis branches based on the determined expected offset Frequency shift. Advantageously, said one or more processors and/or circuits perform said pss correlation after said frequency shifting to a baseband signal. 099124832 Form No. A0101 Page 7 of 43 1003036074-0 [0026] [0027] Advantageously, the one or more processors and/or circuits are based on the obtained PSS correlation peak amplitude, the set of frequency hypotheses Each of the branches, the received pss selection candidate pss ° [0028] Preferably, the one or more processors and/or circuits assume a maximum PSS correlation peak amplitude in the branch according to the set frequency, from The PSS of the received radio frequency signal is detected in each of the selected candidate p SSs of the set of frequency hypothesis branches. [0029] Advantageously, said one or more processors and/or circuits estimate a residual frequency of said received radio frequency signal within a cheek rate hypothesis branch that produces a maximum PSS correlation peak amplitude in said set of frequency hypothesis branches Offset. [0030] Advantageously, said one or more processors and/or circuits by comparing said estimated residual frequency offset to said frequency that produces a maximum PSS correlation peak amplitude in said set of frequency hypothesis branches The frequency offset is estimated assuming a combination of the expected frequency offsets associated with the branches. Preferably, the one or more processors and/or circuits use the estimated frequency offset to perform baseband processing on the received radio frequency signals. Advantageously, said one or more processors and/or circuits adjust a local reference oscillator frequency of said mobile device based on said estimated frequency offset. Various advantages, aspects, and novel features of the present invention, as well as the exemplified embodiments thereof, are described in the following description and drawings. [Embodiment] 1003036074-0 099124832 Form No. A0101 Page 8 of 43 201125320 [0034] Embodiments of the present invention relate to increasing frequency shift in multi-frequency hypothesis testing in an LTE/E-UTRA user equipment receiver Methods and systems for estimating accuracy. The mobile device receives the radio frequency signal from the associated base station. The received radio frequency signals include PSS and SSS, which the mobile device uses to acquire cellular specific parameters through PSS synchronization and SSS detection. To overcome or eliminate uncertainties associated with proper pss symbol timing and/or correct frequency offset for received Pss, the mobile device may perform a miH_tiple frequency hypothesis (MFH) test.刚 Just mobile devices can use a set of rain branches to perform MFH testing. The mobile device can perform pss related processing for each of a set of MHF branches. The obtained related data can be used to estimate the carrier frequency existing between the associated base station and the local oscillator of the user equipment. (4) The shift amount 1 frequency offset can be based on the MFH branch in the set of branching branches that produces the maximum pss correlation peak amplitude. The corresponding PSS is estimated. The mobile device can break the expected frequency offset for each MFH branch. Based on the corresponding expected frequency offset, the different frequencies can be offset within each MFH branch. Ο The baseband signal applied to the received pss. The PSS correlation process can be performed after the signal frequency offset within each branch. Based on the corresponding resulting PSS correlation peak amplitudes, the mobile device can receive in each MFH branch. Pss selects the candidate PSS. The received PSS can be detected from the selected candidate PSS in the set of MFH branches. The detected pss can be correlated with the maximum PSS correlation peak amplitude on the entire set of branches. Use for generating the maximum Pss correlation peak The pss related data corresponding to the MFH branch of the amplitude can estimate the residual frequency offset calculated by the residual sense rate 4 and the expected frequency offset within the branch. Combine, get the frequency offset for the mobile 099124832 form number A0101 page 9 / total page 431003036074-0 201125320. The resulting frequency offset can also be used to adjust the associated LTE/E-UTRA user of the mobile device Reference oscillator frequency within a device receiver. [0036] FIG. 1 is a schematic diagram of an exemplary LTE/E-UTRA communication system for increasing LTE/E-UTRA user equipment receivers, in accordance with an embodiment of the present invention Frequency shift estimation accuracy in multi-frequency hypothesis testing. As shown in Figure 1, an LTE/E-UTRA communication system 100 is shown. The LTE/E-UTRA communication system 100 includes a plurality of cellular units, the cells of which are shown Units 110-120. LTE/E-UTRA coverage area 130 is an overlapping coverage area of cellular unit 110 and cellular unit 120. Cellular units 110 and 120 are associated with base stations 110a and 120a, respectively. LTE/E-UTRA communication system 100 includes A plurality of mobile devices, wherein mobile devices 112-126 are shown. Mobile devices 112-116 are located within cellular unit 110, and mobile devices 1 22-1 26 are located within cellular unit 120. Mobile devices 118 and 119 are located at overlapping locations. /£-耵1^ Coverage area 130〇[00 A base station, such as base station 110a, includes suitable logic, circuitry, interfaces, and/or code for managing various aspects of communication with mobile devices within cellular unit 110, such as communication connection establishment, connection maintenance, and/or connection termination. 110a can manage related radio resources, such as radio bearer control, radio grant control, connection mobility control, and/or dynamic allocation of radio resources for uplink and downlink communications within cellular unit 110. The base station 110a can utilize physical channel and physical signals for uplink and downlink communications. The physical channel can carry information from higher layers to transfer user data and control information. Entity signals such as communication signals cannot convey information from higher layers. In the LTE/E-UTRA standard, the base station 110a can transmit the primary synchronization 099124832 Form number A0101 Page 10 / Total 43 pages 1003036074-0 201125320 [0038] Ο [0039] 〇 099124832 Signal (PSS) and secondary synchronization signal (SSS) . The base station 110a may transmit the PSS and SSS within the last two OFDM symbols of the first and eleventh time slots of each radio frame on a 5 ms basis. The PSS is selected from a plurality of zadhoff-chu sequences to convey identity information of base stations or cellular units within the cell group. The SSS is a sequence of transmitting information about the cell group's coded with a scrambling code sequence. The scrambling code can be linked or mapped to an index such as a PSS. Frame boundary synchronization and/or cellular unit identification can be performed by SSS detection after the success time and frequency synchronization by pss synchronization. The transmission of PSS and SSS allows for timing and frequency offset problems to be resolved before cell-specific communications are determined. This may reduce the complexity of the associated mobile devices, such as mobile device 114 and mobile device 118, in the initial cellular search and/or handover mode. The mobile device, such as mobile device 1, 8 may include suitable logic, circuitry, interfaces, and/or code. Used to communicate with a base station, such as base station 110A, for services supported by, for example, the LTE/e-UTRA standard. In order to communicate with the base station 110a, the mobile device 118 can determine one or more transmission parameters that are caused by the base station 11A. Such information can be obtained, for example, by decoding a broadcast channel (BCH) signal from base station u〇a. In this regard, the mobile device 118 may need to synchronize to the corresponding symbol timing and frame timing of transmissions from the base station 110a to obtain bee-specific information, such as associated cellular units 11} and/or antenna configurations. In this regard, mobile device 118 can receive multiple pss and SSSs from neighboring or surrounding base stations, such as base station 110a and base station 120a, every 5 ms. The plurality of PSS pins received are surprisingly specific to the base station or cell. Mobile device 118 can detect or select a particular PSS from the plurality of received pss to obtain PSS synchronization. The detected PSS can be used to estimate the channel. Form No. A0101 Page 11 of 43 Lan [0040] 201125320 . The resulting channel estimate can be used to decode or detect the associated SSS, 1 1 g for frame boundary synchronization and cell group group information identification. The mobile device 1 uses various methods to detect or remotely select PSS from a plurality of received PSSs. For example, the mobile device 118 can generate a plurality of related reference sequences (/PSS), each of which is associated with a plurality of received PSSs, respectively, or four years old. [0041] According to an embodiment of the present invention, PSS related information can be used in a Accumulated over several time slot periods. The resulting correlation peak can be used as an indication of the <*pss symbol timing hypothesis to be considered. Thus, the mobile device 118 can detect the particular PSS based on the obtained correlation peaks. Additionally, the mobile device 118 can utilize the PSS related data to estimate the local oscillator frequency offset of the mobile device 118 relative to the carrier frequency associated with the PSS transmission. For example, due to the inaccuracy of the oscillator, there may be a wide range of uncertainties in the correct PSS symbol timing of the mobile device 118 and/or the correct local oscillator frequency. The correct PSS symbol timing of the mobile device 118 and/or the uncertainty of the local oscillator frequency offset may cause the mobile scratch 118 to fail to detect the particular PSS if the frequency offset is too large. Moreover, this uncertainty can also cause the mobile device to erroneously detect the SPSS when it does not occur, so that synchronization cannot be correctly established between the base station 110a and the mobile device 118. In this regard, the mobile device 118 can perform a multi-frequency hypothesis test to make an accurate frequency offset estimate. A set of expected frequency offsets can be selected within a desired frequency uncertainty range, such as + /_15 ppm. An expected frequency offset can be placed within each multi-frequency hypothesis (MFH) branch of the multi-frequency hypothesis test, in such a way as to uniformly cover the entire expected frequency uncertainty range, eg, within +/- -15 ppm. [0042] The resolution of the selected expected offset may be determined based on the available memory in the mobile device 118, 099124832 Form Number A0101 Page 12 of 43 1003036074-0 201125320 Resources, such as available memory. The received downlink signal frequency is adjusted or biased for each MFH branch based on the corresponding selected expected frequency offset. Signal frequency adjustment or frequency offset can be achieved by mixing. The mobile device 118 can perform pss correlation processing for each MFH branch after mixing. Within each MFH branch, PSS related data can be accumulated in one or several time slots. The resulting PSS correlation peaks (possible Pss symbol timing hypotheses) can be compared, and based on the comparison results, candidate pss can be selected for the received PSS for each elbow (9) branch. The candidate PSS for each mfh branch can be selected based on the largest correlation peak within the corresponding MFH branch. The expected frequency offset within a !^!^ branch that produces the maximum PSS correlation peak amplitude within the entire set of MFH branches may indicate a rough possible relationship between the carrier frequency of the base station 110a and the local oscillator frequency of the mobile device Π8. Frequency offset estimate. In this regard, the expected frequency offset within the MFH branch having the largest PSS correlation peak magnitude can be combined with the corresponding residual frequency offset within the MFH branch for the carrier frequency of base station 110a and local to mobile device 118. Accurate decrement offset estimate between oscillator frequencies. The residual frequency offset estimate can be performed using the corresponding PSS related data within the MFH branch having the largest PSS correlation peak amplitude. [0043] The particular PSS received may be detected from the selected candidate PSS based on the highest PSS correlation peak magnitude. The location of the highest PSS correlation peak amplitude may indicate the starting location of the detected PSS and provide PSS symbol timing for the detected PSS within the corresponding cellular unit, such as cellular unit 110. The detected PSS, PSS symbol timing, and/or frequency offset estimates may be used by the mobile device 118 for SSS detection of cellular specific information, such as frame boundaries and/or cell ID group indicators. 099124832 Form Number A0101 Page 13 of 43 1003036074-0 201125320 [0044] In an exemplary operation, base station 110a may perform communication within cellular unit no using physical channels and physical signals such as PSS and SSS. The base station u〇a can transmit base station specific PSS and SSS regularly (e.g., every 5 ms). In order to communicate with the base station 110a, a mobile device, such as mobile device 118, may acquire the PSS and SSS received from the base station 110a to determine one or more transmission parameters. For example, mobile device 118 may acquire PSS synchronization to identify PSS symbol timing and estimate the channel. The resulting channel estimate and the identified PSS symbol timing can be used to detect received SSS for cellular specific information (e.g., frame boundary synchronization and/or cell group information). [0045] Mobile device 118 may perform a multi-frequency hypothesis test to acquire PSS symbol timing and/or frequency offset. The multi-frequency hypothesis test can begin with a set of expected frequency offsets within an expected frequency uncertainty range, such as +/- 15 ppm. The mobile device 118 can assign a unique expected frequency offset to each MFH branch in a manner that uniformly covers the entire expected frequency uncertainty range, such as + / 15 ppm. Each MFH branch can be assigned a unique expected frequency offset for the feed. Within each MFH branch, the frequency of the received base acoustic signal may be offset by the expected frequency offset of the allocation. The PSS correlation process can be performed on the received baseband signal having the expected frequency offset to obtain the received PSS. The candidate PSS for the received PSS may be selected based on the maximum PSS correlation peak magnitude within each MFH branch. The received pss can be detected from the selected candidate PSS based on the maximum PSS correlation peak amplitude on the entire set of MFH branches. The resulting residual frequency offset can be combined with the expected frequency offset within the MFH branch having the maximum Pss correlation peak amplitude to provide a frequency offset between the carrier frequency of base station 110a and the local oscillator frequency of mobile device 118. Estimated shift. Maximum PSS phase on the entire set of MFH branches 099124832 Form No. A0101 Page W/43 Page 1003036074-0 201125320 The position of the peak amplitude can indicate the PSS symbol timing for the received PSS [0046] Figure 2 is in accordance with the present invention A block diagram of an LTE/E-UTRA downlink synchronization signal structure used by an embodiment. The downlink wireless frame 200 is shown in Fig. 2'. Within the LTE/E-UTRA standard, the downlink radio frame 2〇〇 can be divided into twenty equal-sized time slots, and two consecutive time slots are arranged in one subframe, such as subframe 210. Downlink synchronization signals, such as pss 210a and SSS 210b, may be transmitted from a base station, such as base station ii 〇 a and/or base station 110 给 b, to an associated mobile device, such as mobile device 118, so that mobile device 118 may obtain the downlink wireless for the downlink The correct timing of frame 2 is obtained and cellular specific information such as associated cellular unit & and/or antenna configuration is obtained. [0047] Ο PSS 210a and SSS 21〇b may be transmitted on subframes 5 and 5 of downlink radio frame 200 and occupy two consecutive symbols within the corresponding subframe. The pss 210a can be used to identify symbol timing and cell ID within the cell point group. The SSS 210b can be used to identify frame boundaries, detect cell groups, and/or obtain system parameters such as loop first code (cp) length. SSS detection for sss 21〇b can begin after successful PSS synchronization on PSS 21〇a. PSS synchronization provides timing and frequency offsets for the downlink radio frame 2: f. In order to obtain a fine-breaking diurnal order and frequency offset for the downlink amount Q, a multi-frequency hypothesis test can be performed. The PSS correlation process for 210a can be combined within each branch with a frequency offset estimate. The expected frequency offset can be placed on the baseband signal associated with pss 210a within each #MFH branch by the mixing before the pss correlation process within each MFH branch. By combining the expected or applied frequency offset 099124832 Form No. A0101 Page 15 of 43 1003036074 201125320 with the residual frequency offset in the MFH branch, the exact frequency offset of each MFH branch can be obtained. estimated value. This residual frequency offset can be obtained from the corresponding PSS related data for each MFH branch. The overall frequency offset estimate for the downlink radio frame 200 can be identified after pss 210a is detected. 3 is a block diagram of an exemplary mobile device for increasing frequency offset estimation in a multi-frequency hypothesis test within an LTE/E-UTRA user equipment receiver, in accordance with an embodiment of the present invention. Referring to Figure 3, a mobile device 3, including an antenna 310, a transceiver 320, a main processor 330, and a memory 332 is shown. The transceiver 320 includes a radio frequency receiver front end 324, a radio frequency transmitter front end 326, and a baseband processor 322. [0049] Antenna 31 0 may include suitable logic, circuitry, interfaces, and/or code for transmitting and/or receiving electromagnetic signals. Although a single antenna is shown, the invention is not limited thereto. In this regard, the transceiver 32 can utilize a universal antenna to transmit and receive radio frequency (RF) k numbers that conform to one or more wireless standards, available Different antennas are used for each supported wireless standard' and/or multiple antennas are used for each supported wireless standard. Various multi-antenna configurations can be used to utilize smart antenna technology, diversity and/or beamforming techniques. [0050] The transceiver 320 can include suitable logic, circuitry, interfaces, and/or code for transmitting and/or receiving radio frequency signals in accordance with one or more wireless standards, such as the LTE/E-UTRA standard. The RF receiver front end 324 may include suitable logic, circuitry, interfaces, and/or code for processing through the LTE/E-UTRA empty interfacing plane via the antenna 310 099124832 Form Number A0101 Page 16 of 43 Page 303036074-0 [0051] 201125320 Received RF signal. The RF receiver front end 324 can convert the received RF L number to a corresponding baseband signal. The resulting baseband signal can be passed to baseband processor 322 for further baseband processing. [0054] The radio frequency transmitter front end 326 can include suitable logic, circuitry, interfaces, and/or code for processing radio frequency signals for transmission. The RF transmitter front end 326 can receive the baseband signal from the baseband processor 322 and convert the baseband signal to a corresponding RF signal for transmission through the antenna 310. Baseband processor 322 may include suitable logic, circuitry, interfaces, and/or code' for managing and/or controlling the operation of radio frequency receiver front end 324 and radio frequency transmitter front end 326. The baseband processor 322 can transmit baseband signals with the transceiver 320. The baseband processor 322 can process the baseband signals to be transmitted to the RF transmitter front end 326 for transmission, and/or process the baseband signals from the RF receiver front end 324. The received baseband signals include synchronization signals such as PSS and SSS. The received PSS and SSS can be used to obtain transmission timing and other cellular specific information, such as for associated cellular singles within the associated cell; ID and/or antenna configuration. In this regard, baseband processor 322 can generate multiple correlation references. Sequence (refer to PSS) for obtaining the correct PSS timing and/or frequency offset. Various factors, such as propagation delay, Doppler shift, and/or oscillator frequency drift, will be the correct PSS symbol timing and / or frequency offsets cause a wide range of uncertainties. In this regard, the baseband processor 322 can perform a multi-frequency hypothesis test for accurate PSS symbol timing and/or frequency offset estimation. PSS correlation processing can be performed for each MFH branch having a frequency offset estimate. The baseband processor 322 can begin a multi-frequency hypothesis test using a set of expected frequency offsets. The expected frequency offset for this group can be selected by means of the way 099124832 Form No. A0101 Page 17 of 431003036074-0 201125320 covering the entire frequency uncertainty range, eg + /-15ppm. Each MFH branch can be associated with a particular expected or applied frequency offset selected by the baseband processor 322. This particular expected frequency offset can be applied to the associated baseband signal of the PSS received for each MFH branch by mixing. [0055] The baseband processor 322 can perform PSS correlation processing on signals having an expected offset. In this regard, candidate PSS for the received PSS is selected for all MFH branches based on the resulting PSS correlation peak magnitude over the entire set of MFH branches. The received PSS can be detected from the selected candidate PSS based on the maximum .P_SS peak amplitude on the entire set of MFH branches. The location of the maximum PSS peak amplitude on the entire set of MFH branches provides pss symbol timing for the received signal. The baseband processor 322 can use the corresponding pss correlation data to determine the remaining frequency offset for the MFH branch that produces the largest correlation peak amplitude. The resulting residual frequency offset can be combined with the expected frequency offset within the MFh branch to provide the carrier frequency and movement of the base station 1,1 〇a.. :i: . . . . device 3 0 0 The frequency, partial estimate of the local oscillator frequency. Baseband processor 322 can adjust the reference or local oscillator frequency based on the frequency offset estimate' value. After successful PSS synchronization, the baseband processor 322 performs other baseband processing routines, such as SSS detection, using the detected PSS, PSS symbol timing and/or frequency offset to obtain cellular specific information, such as cell ID groups and system parameters. For example, the length of the first code of the loop. The obtained cellular characteristic information can be used by the baseband processor 322 to ensure that the mobile device 300 is in proper communication with an associated base station, such as base station 110a. Main processor 330 may include suitable logic, circuitry, interfaces, and/or code for operating and controlling the operation of transceiver 320. Main processing 5|330 can be received 099124832 Form number A0101 Page 18 of 43 1003036074-0 201125320 Transmitter 3 2 0 Transfer data to support audio streams on various applications such as mobile devices 3 〇 。. [0057] Memory 332 may include suitable logic, circuitry, interfaces, and/or code for storing information, such as executable instructions and materials used by host processor 330 and baseband processor 322. The executable instructions include algorithms that can be applied to various baseband signal processing (e.g., synchronization and/or channel estimation). Memory 322 can include RAM, ROM, low latency non-volatile memory such as flash memory and/or other suitable electronic material storage media. [0058] In an exemplary operation, the radio frequency receive front end 324 processes the radio frequency signals received via the antenna 310 through the LTE/E-UTRA null interfacing plane. The received radio frequency signals include PSS and SSS transmitted by base stations such as base stations 110a and 11b. The received radio frequency signals can be converted to corresponding baseband signals for transmission to the baseband processor 322 for further baseband communication. To communicate with a particular base station, such as base station 110a, the baseband processor 322 synchronizes to the cellular specific transmission timing, such as base station 1103⁄4. Symbol timing and frame boundaries used. In this regard, the baseband processor 322 can generate a plurality of related reference sequences (〇 reference PSS) to obtain PSS synchronization. To get the correct PSS timing and / or
頻率偏移量,基帶處理器322可執行多頻率假設測試。該 多頻率假設測試可開始於預期頻率不確定範圍例如 + /- 15ppm内的一組預期頻率偏移量。基帶處理器322可 以以均勻覆蓋整個預期頻率不確定範圍例如+ /-15ppm的 方式,給每個MFH分支分配一個唯一的預期頻率偏移量。 與接收的PSS相關的基帶信號可通過混頻來進行頻移。頻 移之後,可以針對每個MFH分支執行PSS相關處理。針對 該接收的PSS的候選PSS可依據每個MFH分支内的最大PSS 099124832 表單煸號A0101 第19頁/共43頁 1003036074-0 201125320 相關峰值幅度來選擇。基帶處理器322可從選擇的候選 PSS中依據整組MFH分支上的最大pss相關峰值幅度來檢 測出接收的pss。剩餘頻率偏移量可以使用具有最大pss 相關峰值幅度的MFH分支内的PSS相關資料來估算。得到 的剩餘頻率偏移量可與該具有最大pss相關峰值幅度的 MFH分支内的預期頻率偏移量相結合,以確定出基站 的載波頻率和移動設備300的參考或本地振盪器頻率之間 的頻率偏移量估計值。基帶處理器322可基於該頻率偏移 里估计值來調節參考或本地振盪器頻率。檢測到的pSS、 PSS符號時序和/或頻率偏移量被用來執行其他基帶處理 程式,例如SSS檢測,蜂窩特定資訊例如蜂窩單元11}和天 線配置。獲得的蜂窩特性資訊的使用可確保主處理器3 3 〇 所運行的各種應用例如音頻流可與相關的基站例如基站 110a進行正確的通信。 [0059] 圖4是依據本發明實施例的示範性接收器的框圖,其用於 增加LTE/E-UTRA用戶設備接收器内的多頻率假設測試中 的頻移估計精確度。參見圖4,示出了接收器4〇〇。接收 器400包括接收器射頻前端410、基帶處理器42〇、本地 振盪器430和頻率控制單元440。接收器射頻前端41〇包 括低噪放大器(LNA) 412、混頻器414、低通(Lp)濾 波器416。可變增益放大器(VGA) 418。基帶處理器420 包括模數轉換器(ADC) 422、多頻率假設子系統424、 處理器426和記憶體428。 [0060] 接收器射頻前端410可包括合適的邏輯、電路、介面和/ 或代碼’用於處理通過天線310接收的射頻信號。接收的 099124832 表單編號A0101 第20頁/共43頁 1003036074-0 201125320 [0061] [0062]Ο [0063] [0064] Ο [0065]The frequency offset, baseband processor 322 can perform a multi-frequency hypothesis test. The multi-frequency hypothesis test can begin with a set of expected frequency offsets within an expected frequency uncertainty range, such as + / - 15 ppm. The baseband processor 322 can assign a unique expected frequency offset to each MFH branch in a manner that uniformly covers the entire expected frequency uncertainty range, such as + /-15 ppm. The baseband signal associated with the received PSS can be frequency shifted by mixing. After the frequency shift, PSS correlation processing can be performed for each MFH branch. The candidate PSS for the received PSS may be selected according to the maximum PSS 099124832 form nickname A0101 page 19/43 page 1003036074-0 201125320 correlation peak amplitude in each MFH branch. The baseband processor 322 can detect the received pss from the selected candidate PSS based on the maximum pss correlation peak amplitude over the entire set of MFH branches. The residual frequency offset can be estimated using PSS correlation data within the MFH branch with the largest pss correlation peak amplitude. The resulting residual frequency offset can be combined with the expected frequency offset within the MFH branch having the maximum pss correlation peak amplitude to determine the carrier frequency of the base station and the reference or local oscillator frequency of the mobile device 300. Frequency offset estimate. The baseband processor 322 can adjust the reference or local oscillator frequency based on the estimated value in the frequency offset. The detected pSS, PSS symbol timing and/or frequency offset are used to perform other baseband processing, such as SSS detection, cellular specific information such as cellular unit 11} and antenna configuration. The use of the obtained cellular characteristic information ensures that the various applications (e.g., audio streams) in which the main processor 3 3 is operating can communicate properly with the associated base station, e.g., base station 110a. 4 is a block diagram of an exemplary receiver for increasing frequency shift estimation accuracy in a multi-frequency hypothesis test within an LTE/E-UTRA user equipment receiver, in accordance with an embodiment of the present invention. Referring to Figure 4, a receiver 4 is shown. Receiver 400 includes a receiver radio frequency front end 410, a baseband processor 42A, a local oscillator 430, and a frequency control unit 440. The receiver RF front end 41 includes a low noise amplifier (LNA) 412, a mixer 414, and a low pass (Lp) filter 416. Variable Gain Amplifier (VGA) 418. The baseband processor 420 includes an analog to digital converter (ADC) 422, a multi-frequency hypothesis subsystem 424, a processor 426, and a memory 428. Receiver radio front end 410 may include suitable logic, circuitry, interfaces, and/or code 'for processing radio frequency signals received through antenna 310. Received 099124832 Form No. A0101 Page 20 of 43 1003036074-0 201125320 [0061] [0062] [0064] [0065]
射頻信號包括PSS和SSS。接收器射頻前端410可將接收 的射頻信號轉換成對應的基帶信號,並傳送給基帶處理 器420進行進一步的基帶處理。 LNA 412可包括合適的邏輯、電路、介面和/或代碼,用 於放大天線310接收到的射頻信號。LNA 412基本上針對 系統雜訊會達到多低設置一個極限值。LNA 4丨2可實現低 噪性能,這對於高性能射頻前端來說是很關鍵的。 — 混頻器414可包括合適的邏輯、電路、介面和/或代碼, 利用來自本地振盪器430的正弦信號將來自LNA 412的放 大後的射頻信號轉譯成較低的中頻信.號。 低通濾波器416可包括合適的邏輯、電路、介面和/或代 碼,用於對來自混頻器414的中頻信號進行濾波,以便濾 除不想要的信號成分。 VGA 418可包括合適的邏輯、電路、介面和/或代碼,用 於放大來自低通濾波器416的類比基帶信號。VGA 418可 為類比基帶信號設置不同的增益,以在ADC 422的輸入端 產生可變信號電平。 ADC 422可包括合適的邏輯、電路、介面和/或代碼,用 於將接收自VGA 418的類比基帶信號轉換成對應的數位基 帶信號(例如位元組)°ADC 422可以例如1.92MHz的模 數採樣率對接收的類比基帶信號進行採樣,該採樣率得 至頻率控制單元430内的參考振盪器所提供的參考頻率。 生成的基帶信號可包括代表類比基帶信號振幅的值。該 數位基帶信號可與MFH子系統424通信以獲取正確的PSS 099124832 表單編號A0101 第21頁/共43頁 1003036074-0 201125320 時序和/或頻率偏移量。該數位基帶信號可被傳送給處理 器426進行其他基帶處理例如SSS檢測。 [0066] MFH子系統424可包括合適的邏輯、電路 '介面和/或代碼 ’用於執行多頻率假設測試以獲得正確的p S S時序和/或 頻率偏移量。MFH子系統424可使用預期頻率不確定範圍 例如+/-15ppm内的一組預期頻率偏移量來開始多頻率假 s災測試。M F Η子系統4 2 4在每個M F Η分支内設置預期的頻 率偏移量。MFH子系統424可通過混頻來對接收的pss的 基帶信號進行頻移。頻移之後’可以針對每個評^分支執 行PSS相關處理。MFH子系統424可依據每個MFH分支内的 最大pss相關峰值幅度來選擇針對該接收的PSS的候選 PSS。接收的PSS可從選擇的候選PSS中依據整組MFH分支 上的最大PSS相關峰值幅度來檢測出。 [0067] 河?11子系統424可以使用具有最大?58相關峰值幅度的訂11 分支内的PSS相關資料來估算剩餘頻碌偏移量。得到的剩 餘頻率偏移量可與該具有最大pSS相關峰值幅度的1|11?11分 支内的預期頻率偏移量相結合,以確定出基站11〇3的載 波頻率和接收器400的本地振盪器頻率之間的頻率偏移量 估計值。整組MFH分支上的最大pss相關峰值幅度的位置 可指出針對接收的?55的?88符號時序。11?11子系統424將 檢測到的PSS、PSS符號時序和/或頻率偏移量傳送給處理 器426用於其他基帶處理,例如sss檢測。MFH子系統424 可傳送頻率偏移量估計值給頻率控制單元440以調節接收 器400的參考或本地振盪器頻率,從而調節本地振盪器 430的頻率和ADC 422的採樣頻率。 099124832 表單編號A0101 第22頁/共43頁 1003036074-0 201125320 [0068] Ο 處理器426可包括合適的邏輯、電路、介面和/或代碼, 用於處理來自ADC 422的數位基帶信號。處理器426可使 用來自MFH子系統424的資訊例如檢測到的PSS、PSS符號 時序和/或頻率偏移量估計值來執行各種基帶處理程式, 例如SSS檢測。例如,處理器426基於來自MFH子系統424 的檢測到PSS來確定出SSS加擾碼。處理器426可使用確 定出的加擾碼對SSS信號進行解擾。處理器426可處理解 擾後的SSS信號以用於蜂窩單元id檢測。處理器426可基 於MFH子系統424提供的PSS符號時序確定SSS位置。確定 出的SSS位置可指出例如相關蜂窩單元内傳輸的幀邊界。 處理器426可基於確定出的SSS位置執行sss解碼,用於 識別出蜂窩特定資訊’例如蜂寓厚元ID組、參考信號序 列、和/或天線配置。各種系統參數例如迴圈首碼長度都 可以通過SSS解碼識別出來。識別出的蜂窩特定參數和系 統參數可碎保接收器400和相關聯基站例如基站11 〇a之間 的正確通信。 〇 [0069] s己憶體428可包括合適的邏輯、電路、介面和/或代碼, 用於存儲資訊,例如接收器4 〇 〇内的相關部件例如處理器 426所使用的可執行指令和資料。該可執行指令包括用於 各種基帶處理的演算法,例如通道估算、通道均衡和/或 通道編碼。該資料包括時序和/或頻率假設。記憶體428 可包括RAM、RGM、低延遲非易失性記憶體例如快閃記憶 體和/或其他合適的電子資料存儲媒介。 本地振盈器430可包括合適的邏輯、電路、介面和/或代 碼’用於與頻率控制單元44()通信以提供本地振盡器頻率 099124832 表單編號A0101 第23頁/共43頁 1003036074-0 [0070] 201125320 [0071] [0072] [0073] 099124832 給接收器400的混頻器414。 頻率控制單元440可包括合適的邏輯、電路、介面和/或 代碼,用於控制本地振盪器430和ADC 422的相應參考頻 率的設置。頻率控制單元440可依據來自MFH子系統424 的頻率偏移量估計值,調節本地振盪器430和ADC 422的 參考頻率。頻率控制單元440的操作可用來控制接收器 400的時序和/或本地振盪器頻率。 示範性操作中,接收器400可從例如天線31〇接收射頻信 號。接收的射頻信號包括由基站例如基站11〇3和11〇1)所 發射的PSS和SSS。接收器射頻前端41〇通過LNA 412放 大接收的射頻信號,並通過混頻旧414和低通放大器416 轉換成基帶頻率信號。該基帶信號通過VGA: 418放大並通 過ADC 422轉換成數位基帶信號。該數位基帶信號由MFH 子系統424進行處理,以獲得精確的pss時序和/或頻率偏 移量。MFH子系統424可使用針對务個MFH分支選擇的應 用或預期頻率偏移量對該數位基帶信號進行頻移。選擇 的預期偏移量的解析度可基於可用資源例如可用記憶體 來確定。針對每個MFH分支,執行PSS相關處理,並且每 個MFH分支都與特定選擇的預期偏移量相關聯。 MFH子系統424可依據整組MFH分支上的最大pss相關峰值 幅度來檢測接收的PSS。針對接收的pss的PSS符號時序 可由最大PSS相關峰值幅度的位置來指出。針對整組mfjj 分支上具有最大峰值幅度的MFH分支,可執行剩餘頻率偏 移量估算。得到的剩餘頻率偏移量可與該具有最大pss相 關峰值幅度的MFH分支内的預期頻率偏移量相結合,以確 表單編號A0101 第24頁/共43頁 1003036074-0 201125320 [0074] Ο [0075] Ο 099124832 定出基站ll〇a的載波頻率和接收器400的本地振盪器頻率 之間的頻率偏移量估計值。頻率偏移量估計值可被傳送 給頻率控制單元440以發信號給本地振盪器430和ADC 422來調節對應的參考頻率。檢測到的PSS、PSS符號時 序和/或頻率偏移量被傳送給處理器426,其適用它們來 執行其他基帶處理或功能,例如SSS檢測。 圖5是依據本發明實施例的示範性多頻率假設子系統的示 意圖’其用於增加LTE/E-UTRA用戶設備接收器内的頻移 估計精確度。參見圖5,示出了MFH子系統500,包括混頻 頻率生成器510、一組MFH分支(圖申示出了MFH分支 520-560)、以及pss峰值檢測器570 〇 MFH分支例如MFH 分支524包括匹配濾波器524a、積分器524b和頻移估算 器 524c。 混頻頻率生成器510可包括合適的邏輯、電路、介面和/ 或代碼,用於為該組MFH分支例如MFH分支520-560生成 多個混頻頻率。混頻頻率生成器510可生成多個混頻頻率 以便在MFH分支内設置預期頻率偏移量。生成的混頻頻率 的數量,即MFH分支的數量,可依據可用系統資源例如記 憶體來確定。生成的混頻頻率暗示著對應的時序和/或頻 率偏移量。混頻頻率生成器510可生成混頻頻率,使得得 到的頻率偏移量位於預期頻率精度範圍内例如+ /_i5p⑽ 内。生成的混頻頻率可傳送給MFH分支52〇_56〇,用於對 從ADC 422接收的數位基帶信號進行頻移,以提供正確的 時序和/或頻率偏移量估計值。 MFH分支,例如MFH分支5〇2,可包括合適的邏輯、電路 表單編號A0101 第25頁/共43頁 ' 1003036074-0 [0076] 201125320 、介面和/或代碼,用於執行PSS相關處理和/或正確的頻 率偏移量估算。MFH分支520可通過混頻器522來對接收 自ADC 422的數位基帶信號進行頻移。MFH分支520可通 過PSS相關器524對具有預期頻移的數位基帶信號進行 PSS相關處理。在MFH分支520與整組MFH分支上的最大 PSS峰值幅度相關聯的情況下,MFH分支520可使用得到 的P S S相關資料執行剩餘頻率偏移量的估算。剩餘頻率偏 移量可以與由來自混頻頻率生成器510的混頻頻率所提供 的應用或預期頻率偏移量相結合,來得到基站11 〇a和相 關聯接收器之間的頻車偏移量的精確估計值。 [0077] [0078] [0079] 099124832 混頻器例如混頻器522可包括合適的邏輯、電路、介面和 /或代碼,用於將從ADC 422接收的數位基帶信號與來自 混頻頻率生成器510的混頻頻率進行混頻。該混頻頻率指 出了針對MFH分支520的應用或預期頻率偏移量。 PSS相關器例如PSS相關器524可包括合適的邏輯、電路 、介面和/或代碼,用於執行PSS相關處理以獲得PSS同步 。PSS相關器524可通過匹配濾波器524a對來自混頻器 522的信號執行相關處理。得到的PSS相關資料可被傳送 給積分器524b用於識別可能的PSS時序假設。在MFH分支 520與最大PSS峰值幅度相關聯的情況下,得到的PSS相 關資料可傳送給頻移估算器524c,用於估算該MFH分支 520内的剩餘頻率偏移量。 匹配濾波器例如匹配濾波器524a可包括合適的邏輯、電 路、介面和/或代碼,用於將來自混頻器522的信號與多 個本地參考PSS中的每一個進行相關。得到的PSS相關資 表單編號A0101 第26頁/共43頁 1003036074-0 201125320 [0080] Ο [0081] Ο [0082] 099124832 料被提供給積分器524b以及頻移估算器524c。 積分器例如積分器524b可包括合適的邏輯、電路、介面 和/或代碼’用於將多個時隙週期内來自匹配濾波器524a 的PSS相關資料累加。得到的pss相關峰值可指出待考慮 的可能PSS符號時序假設。積分器524b可依據最大相關峰 值幅度識別出候選PSS。最大相關峰值的位置可指出MFH 分支520内識別出的候選PSS的PSS符號時序。識別出的 候選PSS和PSS符號時序可傳送給PSS峰值檢測器570以檢 測出整組MFΗ分支上的最大接收的PSS峰值幅度。 頻移估算器例如頻移估算器524c可包括合適的邏輯、電 路、介面和/或代碼’用於估算MFH分支520内的剩餘頻率 偏移量。就此而言,在MFH分支520與最大PSS峰值幅度 相關聯的情況下,頻移估算器524c可使用來自匹配濾波 器524a的PSS相關資料估算出剩餘頻率偏移量。頻移估算 器524c可將估算出的頻率偏移量與混頻器522引入的應用 的或預期頻率偏移量相結合,提供基站u〇a和相關接收 器之間的頻率偏移量估計值。 PSS峰值檢測器570可包括合適的邏輯、電路、介面和/或 代碼,用於檢測MFH分支520-560内的最大PSS相關峰值 。檢測到的pss可對應於整組_分支上的最大pss相關 峰值。針對檢測出的PSS的Pss符號時序可由該最大pss 相關峰值的位置暗不出來。與針對檢測到的pss的訓分 支相關的頻率偏移量,可提供基站11〇&和相關接收器例 如接收$400之間的整體尚精確度或解析度頻率偏移量估 計值。PSS峰值檢測抓〇可將得到的頻率估計值傳送給 表單編號A0101 第27頁/共43頁 1003036074-0 201125320 頻率控制單元440,以調節參考振盡器頻率’進而調節接 收器400的本地振盪器頻率。pss峰值檢測器570可傳送 h測到的P S S、相關P S S時序和/或頻率偏移量估計值給處 理器426,用於其他基帶信號處理,例如SSS檢測。 [0083] [0084] 示範性操作中’ MFH子系統500通過對來自天線310的謂 製後射頻載波信號進行處理來接收對應的數位基帶信號 。接收的射頻信號包括PSS和SSS。接收的射頻信號可針 對每一MFH分支進行處理,以用於對應傳輸的精確時序和 /或頻移。每個MFH分支内,例如MFH分支520内,通過混 頻器522調節該數位基帶信號的頻率。混頻器5 2 2可針對 特定混頻頻率與混頻頻率生成器510通信。該特定混頻頻 率可暗示對MFH分支520内的數位基帶信號的預期頻移量 。該混頻頻率可選擇成使得產生的預期頻移量位於預期 頻率精確度範圍内,例如+ /-15ppm内。PSS相關器524可 通過匹配濾波器524a對來_混頻器522的信號執行相關處 理。匹配濾波器524b將接收的信號奐多個本地參考pss中 的每一個進行相關。得到的p s S相關資料被提供給積分器 524b以及頻移估算器524c。The RF signal includes PSS and SSS. The receiver RF front end 410 converts the received RF signal into a corresponding baseband signal and transmits it to the baseband processor 420 for further baseband processing. LNA 412 may include suitable logic, circuitry, interfaces, and/or code for amplifying the RF signals received by antenna 310. The LNA 412 basically sets a limit for how low the system noise will be. The LNA 4丨2 achieves low noise performance, which is critical for high performance RF front ends. - Mixer 414 may include suitable logic, circuitry, interfaces, and/or code to translate the amplified RF signal from LNA 412 into a lower intermediate frequency signal using a sinusoidal signal from local oscillator 430. The low pass filter 416 can include suitable logic, circuitry, interfaces, and/or code for filtering the intermediate frequency signal from the mixer 414 to filter out unwanted signal components. VGA 418 may include suitable logic, circuitry, interfaces, and/or code for amplifying the analog baseband signal from low pass filter 416. The VGA 418 can set different gains for the analog baseband signal to produce a variable signal level at the input of the ADC 422. ADC 422 may include suitable logic, circuitry, interfaces, and/or code for converting an analog baseband signal received from VGA 418 into a corresponding digital baseband signal (e.g., a byte). ADC 422 may, for example, have a modulus of 1.92 MHz. The sampling rate samples the received analog baseband signal, which is derived to the reference frequency provided by the reference oscillator within frequency control unit 430. The generated baseband signal can include a value representative of the amplitude of the analog baseband signal. The digital baseband signal can be communicated with the MFH subsystem 424 to obtain the correct PSS. 099124832 Form Number A0101 Page 21 of 43 1003036074-0 201125320 Timing and/or frequency offset. The digital baseband signal can be transmitted to processor 426 for other baseband processing such as SSS detection. [0066] The MFH subsystem 424 may include suitable logic, circuitry 'interfaces and/or code' for performing multi-frequency hypothesis testing to obtain the correct p S S timing and/or frequency offset. The MFH subsystem 424 can initiate a multi-frequency false s-hazard test using a set of expected frequency offsets within an expected frequency uncertainty range, such as +/- 15 ppm. The M F Η subsystem 4 2 4 sets the expected frequency offset within each M F Η branch. The MFH subsystem 424 can frequency shift the baseband signal of the received pss by mixing. After the frequency shift, the PSS related processing can be performed for each of the evaluation branches. The MFH subsystem 424 can select candidate PSSs for the received PSS based on the maximum pss correlation peak magnitude within each MFH branch. The received PSS can be detected from the selected candidate PSS based on the maximum PSS correlation peak amplitude on the entire set of MFH branches. [0067] River? 11 Subsystem 424 can be used to have the largest? The PSS related data in the 11 branch of the correlation peak amplitude is used to estimate the residual frequency offset. The resulting residual frequency offset can be combined with the expected frequency offset within the 1|11-11 branch having the maximum pSS correlation peak amplitude to determine the carrier frequency of the base station 11〇3 and the local oscillation of the receiver 400. Estimated frequency offset between the frequency of the device. The location of the maximum pss correlation peak amplitude on the entire set of MFH branches can be indicated for reception? 55? 88 symbol timing. The 11-11 subsystem 424 transmits the detected PSS, PSS symbol timing and/or frequency offset to the processor 426 for other baseband processing, such as sss detection. The MFH subsystem 424 can transmit a frequency offset estimate to the frequency control unit 440 to adjust the reference or local oscillator frequency of the receiver 400 to adjust the frequency of the local oscillator 430 and the sampling frequency of the ADC 422. 099124832 Form Number A0101 Page 22 of 43 1003036074-0 201125320 [0068] Processor 426 may include suitable logic, circuitry, interfaces, and/or code for processing digital baseband signals from ADC 422. Processor 426 can perform various baseband processing routines, such as SSS detection, using information from MFH subsystem 424, such as detected PSS, PSS symbol timing, and/or frequency offset estimates. For example, processor 426 determines an SSS scrambling code based on the detected PSS from MFH subsystem 424. Processor 426 can descramble the SSS signal using the determined scrambling code. Processor 426 can process the descrambled SSS signals for cellular unit id detection. Processor 426 can determine the SSS location based on the PSS symbol timing provided by MFH subsystem 424. The determined SSS location may indicate, for example, the frame boundaries transmitted within the associated cell. Processor 426 can perform sss decoding based on the determined SSS location for identifying cellular specific information' such as a bee chunk ID group, a reference signal sequence, and/or an antenna configuration. Various system parameters such as the first code length of the loop can be identified by SSS decoding. The identified cell specific parameters and system parameters can shuffle the correct communication between the receiver 400 and the associated base station, e.g., base station 11a. [0069] The suffix 428 may include suitable logic, circuitry, interfaces, and/or code for storing information, such as relevant components within the receiver 4, such as executable instructions and data used by the processor 426. . The executable instructions include algorithms for various baseband processing, such as channel estimation, channel equalization, and/or channel coding. This information includes timing and / or frequency assumptions. Memory 428 can include RAM, RGM, low latency non-volatile memory such as flash memory and/or other suitable electronic data storage media. The local oscillator 430 can include suitable logic, circuitry, interfaces, and/or code 'for communicating with the frequency control unit 44() to provide local oscillator frequency 099124832 Form No. A0101 Page 23 / Total 43 Page 1003036074-0 [0070] 201125320 [0073] [0073] 099124832 to the mixer 414 of the receiver 400. Frequency control unit 440 can include suitable logic, circuitry, interfaces, and/or code for controlling the settings of the respective reference frequencies of local oscillator 430 and ADC 422. Frequency control unit 440 can adjust the reference frequency of local oscillator 430 and ADC 422 based on the frequency offset estimate from MFH subsystem 424. The operation of frequency control unit 440 can be used to control the timing of receiver 400 and/or the local oscillator frequency. In an exemplary operation, receiver 400 can receive a radio frequency signal from, for example, antenna 31A. The received radio frequency signals include PSS and SSS transmitted by base stations such as base stations 11〇3 and 11〇1). The receiver RF front end 41〇 amplifies the received RF signal through the LNA 412 and converts it into a baseband frequency signal by mixing the old 414 and low pass amplifiers 416. The baseband signal is amplified by VGA: 418 and converted to a digital baseband signal by ADC 422. The digital baseband signal is processed by the MFH subsystem 424 to obtain accurate pss timing and/or frequency offset. The MFH subsystem 424 can frequency shift the digital baseband signal using the application or expected frequency offset selected for the MFH branch. The resolution of the selected expected offset can be determined based on available resources such as available memory. For each MFH branch, PSS correlation processing is performed, and each MFH branch is associated with a specific offset of the particular selection. The MFH subsystem 424 can detect the received PSS based on the maximum pss correlation peak magnitude over the entire set of MFH branches. The PSS symbol timing for the received pss can be indicated by the location of the maximum PSS correlation peak amplitude. The estimate of the residual frequency offset can be performed for the MFH branch with the largest peak amplitude on the entire set of mfjj branches. The resulting residual frequency offset can be combined with the expected frequency offset within the MFH branch having the maximum pss correlation peak amplitude to confirm the form number A0101 page 24 / total page 43 1003036074-0 201125320 [0074] Ο [ 0075] Ο 099124832 Determines the frequency offset estimate between the carrier frequency of base station 110a and the local oscillator frequency of receiver 400. The frequency offset estimate can be communicated to frequency control unit 440 to signal local oscillator 430 and ADC 422 to adjust the corresponding reference frequency. The detected PSS, PSS symbol timing and/or frequency offset are passed to processor 426, which is used to perform other baseband processing or functions, such as SSS detection. 5 is a schematic illustration of an exemplary multi-frequency hypothesis subsystem for increasing frequency shift estimation accuracy within an LTE/E-UTRA user equipment receiver, in accordance with an embodiment of the present invention. Referring to Figure 5, an MFH subsystem 500 is illustrated, including a mixing frequency generator 510, a set of MFH branches (illustrated as MFH branches 520-560), and a pss peak detector 570 〇 MFH branch, such as MFH branch 524. A matched filter 524a, an integrator 524b, and a frequency shift estimator 524c are included. Mixing frequency generator 510 can include suitable logic, circuitry, interfaces, and/or code for generating a plurality of mixing frequencies for the set of MFH branches, such as MFH branches 520-560. Mixing frequency generator 510 can generate a plurality of mixing frequencies to set an expected frequency offset within the MFH branch. The number of generated mixing frequencies, i.e., the number of MFH branches, can be determined based on available system resources such as memory. The resulting mixing frequency implies a corresponding timing and/or frequency offset. Mixing frequency generator 510 can generate a mixing frequency such that the resulting frequency offset is within a range of expected frequency accuracy, such as + / _i5p (10). The resulting mixing frequency can be passed to the MFH branch 52〇_56〇 for frequency shifting the digital baseband signal received from the ADC 422 to provide correct timing and/or frequency offset estimates. The MFH branch, such as the MFH branch 5〇2, may include suitable logic, circuit form number A0101, page 25 of 43 '1003036074-0 [0076] 201125320, interface and/or code for performing PSS related processing and/or Or the correct frequency offset estimate. The MFH branch 520 can frequency shift the digital baseband signal received from the ADC 422 via the mixer 522. The MFH branch 520 can perform PSS correlation processing on the digital baseband signal having the expected frequency shift by the PSS correlator 524. In the case where the MFH branch 520 is associated with the maximum PSS peak amplitude over the entire set of MFH branches, the MFH branch 520 can perform an estimate of the residual frequency offset using the resulting P S S correlation data. The residual frequency offset can be combined with the application or expected frequency offset provided by the mixing frequency from the mixing frequency generator 510 to obtain the frequency offset between the base station 11 〇a and the associated receiver. An accurate estimate of the quantity. [0079] A mixer, such as mixer 522, may include suitable logic, circuitry, interfaces, and/or code for receiving a digital baseband signal from ADC 422 with a mixer frequency generator. The mixing frequency of 510 is mixed. This mixing frequency indicates the application or expected frequency offset for the MFH branch 520. A PSS correlator, such as PSS correlator 524, can include suitable logic, circuitry, interfaces, and/or code for performing PSS correlation processing to obtain PSS synchronization. PSS correlator 524 can perform correlation processing on the signals from mixer 522 via matched filter 524a. The resulting PSS related data can be passed to integrator 524b for identifying possible PSS timing hypotheses. Where the MFH branch 520 is associated with a maximum PSS peak amplitude, the resulting PSS related data may be passed to a frequency shift estimator 524c for estimating the residual frequency offset within the MFH branch 520. A matched filter, such as matched filter 524a, can include suitable logic, circuitry, interfaces, and/or code for correlating the signal from mixer 522 with each of a plurality of local reference PSSs. The obtained PSS related information Form No. A0101 Page 26 of 43 1003036074-0 201125320 [0080] Ο [0082] 099124832 is supplied to the integrator 524b and the frequency shift estimator 524c. The integrator, e.g., integrator 524b, can include suitable logic, circuitry, interfaces, and/or code' for accumulating PSS related data from matched filter 524a over a plurality of slot cycles. The resulting pss correlation peak can indicate the possible PSS symbol timing assumptions to be considered. The integrator 524b can identify the candidate PSS based on the maximum correlation peak magnitude. The location of the maximum correlation peak may indicate the PSS symbol timing of the candidate PSS identified within the MFH branch 520. The identified candidate PSS and PSS symbol timings can be communicated to the PSS peak detector 570 to detect the maximum received PSS peak amplitude across the entire set of MFΗ branches. The frequency shift estimator, e.g., frequency shift estimator 524c, may include suitable logic, circuitry, interfaces, and/or code' for estimating the residual frequency offset within MFH branch 520. In this regard, where MFH branch 520 is associated with a maximum PSS peak amplitude, frequency shift estimator 524c may use the PSS correlation data from matched filter 524a to estimate the residual frequency offset. The frequency shift estimator 524c may combine the estimated frequency offset with the applied or expected frequency offset introduced by the mixer 522 to provide an estimate of the frequency offset between the base station u〇a and the associated receiver. . PSS peak detector 570 can include suitable logic, circuitry, interfaces, and/or code for detecting the maximum PSS correlation peaks within MFH branches 520-560. The detected pss may correspond to the maximum pss correlation peak on the entire set of branches. The Pss symbol timing for the detected PSS can be darkened by the position of the maximum pss correlation peak. The frequency offset associated with the training branch for the detected pss may provide an overall accuracy or resolution frequency offset estimate between the base station 11& and the associated receiver, e.g., receiving $400. The PSS peak detection capture can transmit the obtained frequency estimation value to the form number A0101 page 27/43 page 1003036074-0 201125320 frequency control unit 440 to adjust the reference resonator frequency 'and thereby adjust the local oscillator of the receiver 400 frequency. The pss peak detector 570 can transmit h measured P S S, associated P S S timing and/or frequency offset estimates to the processor 426 for other baseband signal processing, such as SSS detection. [0084] In an exemplary operation, the MFH subsystem 500 receives a corresponding digital baseband signal by processing a post-derivative RF carrier signal from the antenna 310. The received RF signals include PSS and SSS. The received RF signal can be processed for each MFH branch for accurate timing and/or frequency shifting of the corresponding transmission. Within each MFH branch, such as MFH branch 520, the frequency of the digital baseband signal is adjusted by mixer 522. Mixer 52 can communicate with mixing frequency generator 510 for a particular mixing frequency. This particular mixing frequency may imply an expected amount of frequency shift for the digital baseband signal within MFH branch 520. The mixing frequency can be selected such that the expected amount of frequency shift produced is within a range of expected frequency accuracy, such as within +/- -15 ppm. PSS correlator 524 can perform correlation processing on the signals of the mixer 522 via matched filter 524a. Matched filter 524b correlates the received signal to each of a plurality of local reference pss. The resulting p s S related data is supplied to the integrator 524b and the frequency shift estimator 524c.
積分器524b將多個時隙週期内來自匹配濾波器524a的 PSS相關資料累加。得到的PSS相關峰值可指出待考慮的 可能PSS符號時序假設。依據MFH分支内的最大相關峰值 幅度,可識別出MFH分支520内針對接收的PSS的候選PSS 。依據最大相關峰值幅度,可從整組MFH分支上識別出的 候選P S S中檢測出接收的p s S。致大相關峰值的位置可指 出檢測的PSS的PSS符號時序。在MFH分支520與最大PSS 099124832 表單編號A0101 第28頁/共43頁 1003036074-0 201125320 峰值幅度相關聯的情況下,頻移估算器524c可使用來自 匹配渡波益524a的PSS相關資料估算出剩餘頻率偏移量。 頻移估舁器524c可將估算出的頻率偏移量與mfh分支520 中應用的或預期頻率偏移量相結合,提供基站11〇a和相 關接收器之間的頻率偏移量估計值^ p S S峰值檢測器5 7 〇 可傳送檢測到的PSS、相關PSS時序和/或頻率偏移量估計 值給頻率控制單元440和處理器426,以分別用於頻率控 制和其他基帶信號處理。 0 [0085] 圖6是依據本發明實施例的用於增mLTE/e_utra用戶設 備接收器内的多頻率假設測試中的頻移估計精確度的示 範性方法的流程圖◊該方法起始於步驟6〇2 β步驟6〇2中 ’射頻接收前端324通過LTE/E-UTRA空中介面接收射頻 信號並在下變頻轉換、濾波和採樣後生成數位基帶信號 。接收的射頻信號包括PSS和SSS。該數位基帶信號可源 自接收的射頻信號,並被傳送給MFH子系統424進行處理 ,以獲得精確的PSS時序和/或頻率偏移量。步驟604中, 〇 MFH子系統424秦於移動設備300的可用資源例如可用記 憶體’確定出一組預期頻率偏移量。每個頻率偏移量被 應用於每個MFH分支。步驟6〇6中,MFH子系統424依據對 應的預期頻率偏移量,針對每個MFH分支對來自ADC 422 的數位基帶信號進行頻移。 [0086] 步驟608中’ MFH子系統424為每個MFH分支對頻移後的相 應數位基帶信號執行PSS相關處理。例如,PSS相關器 524對來自混頻器522的信號執行相關處理。步驟610中 ’依據對應的PSS相關峰值幅度,為每個MFH分支選擇針 099124832 表單編號A0101 第29頁/共43頁 1003036074-0 201125320 對接收的PSS的候選PSS。例如,基於來自匹配;慮波器 524a的PSS相關資料的最大相關峰值幅度,積分器524b 選擇出MFH分支520内的候選PSS。步驟612中,由峰值檢 測器570從選擇的候選PSS中依據整組MFH分支上的最大 PSS相關峰值幅度檢測出接收的pss。步驟614中,可使 用相應PSS相關資料位元產生最大pss相關峰值幅度的 MFH分支估算出剩餘頻率偏移量。例如,在MFH分支520 與最大PSS峰值幅度相關聯的情況下,頻移估算器524c可 使用來自匹配濾波器5 2 4 a的P S S相關資料估算出剩餘頻率 偏移量。步驟616中,估算出的頻率偏移量與MFH分支 520中應用的或預期頻率偏移量相結合,提供基站11〇&和 相關接收器例如接收器400之間的頻率偏移量估計值。 [0087]在本發明用於增加LTE/E-UTRA用戶設備接收器内的多頻 率假設測試中的頻移估計精確度的方法和系統的各個示 例方面中,移動設備例如释動設備U4可從將基站ll〇a接 收射頻信號。接收的射頻傳號包括PSS知SSS,其被移動 設備114用於通過PSS同步和SSS檢測來獲取蜂窩特定參 數。為了克服或消除與正確的PSS符號時序和/或針對接 收的PSS的正確頻率偏移量相關的不確定因素,移動設備 114可通過MFH子系統424執行多頻率假設測試。MFH子系 統424可使用一組MFH分支例如MFH分支520-5 60來執行 MFH測試。移動設備114可以針對一組MHF分支520-560 中的每一個分支執行PSS相關處理。例如,在MFH分支 520内’通過PSS相關器524執行pss相關處理。匹配濾波 器524b將接收的PSS的基帶信號與多個本地參考PSS中的 099124832 表單編號A0101 第30頁/共43頁 1003036074-0 201125320 每一個進行相關。得到的匹配濾波器524b的輸出上的相 關資料可用於估算從基站110a接收的資料的載波頻率偏 移量。如結合圖5所描述的,頻率偏移量估算可使用針對 產生最大PSS相關峰值幅度的MFH分支的相應PSS相關資 料來執行。MFH子系統424可確定每個MFH分支520-560 的預期頻率偏移量。接收的PSS的基帶信號可針對每個 MFH分支利用混頻器522基於相應預期頻率偏移量進行頻 移。PSS相關處理可以在接收的PSS的基帶信號經過頻移 之後執行。 Ο [0088] Ο 在每個MFH分支520-560内,例如在MFH分支520内,積 分器524b基於得到的pss相關峰值選擇出針對接收的pss 的候選PSS。選擇出的候選PSS被傳送給PSS峰值檢測器 570。峰值檢測器57〇從整組肘!^分支上識別出的候選pss 中檢測出接收的PSS。檢測出的PSS與最大PSS相關峰值 幅度相關聯。剩餘頻率偏移量可為整組MFH分支5〇2_56() 中產生最大PSS相關峰锒幅度的MFH分支估算出。估算出 的頻率偏移量與該MFH分支中應用的或預期頻率偏移量相 合,k供基站110 a和相關接收器例如接收器3 〇 〇之間的 頻率偏移量估計值。PSS峰值檢測器57〇可傳送頻率偏移 量估計值給處理器426,以用於進一步的基帶信號處理。 頻率偏移量估計值可回饋給頻率控制單元44〇。頻率控制 單元44G基於該頻率偏移量估計值控制和/或調解振盈器 430的參考振盪器頻率。 本發明的另-個實施例提供了 —種可機讀記憶體,其上 存健的電腦代碼和/或電肺式包括至少_域碼段,該 099124832 表單編號A0101 第31頁/共43頁 1003036074-0 [0089] 201125320 至少一個代碼段可由機器和/或電腦執行,使得該機器和 /或電腦執行本申請介紹的用於增加LTE/E-UTRA用戶設 備接收器内的多頻率假設測試中的頻移估計精確度的方 法和系統的各步驟。 [0090] 因此,本發明可以通過硬體、軟體,或者軟、硬體結合 來實現。本發明可以在至少一個電腦系統中以集中方式 實現,或者由分佈在幾個互連的電腦系統中的不同部分 以分散方式實現。任何可以實現所述方法的電腦系統或 其他設備都是可適用的。常用軟硬體的結合可以是安裝 有電腦程式的通用電腦系統,通過安裝和執行所述程式 控制電腦系統,使其按所述方法運行。在電腦系統中, 利用處理器和存儲單元來實現所述方法。 [⑽1] 本發明還可以嵌入電腦程式產品,所述套裝程式含能夠 實現本發明方法的全部特徵,當其安裝到電腦系統中時 ,通過運行,可以實現本發明的方法。本文中的電腦程 式所指的是:可以採用任何程式語言、代碼或符號編寫 的一組指令的任何運算式,該指令組使系統具有資訊處 理能力,以直接實現特定功能,或在進行下述一個或兩 個步驟之後,a)轉換成其他語言、編碼或符號;b)以不 同材料形式再現,實現特定功能。 [0092] 本發明是通過幾個具體實施例進行說明的,本領域技術 人員應當明白,在不脫離本發明範圍的情況下,還可以 對本發明進行各種變換及等同替代。另外,針對特定情 形或具體情況,可以對本發明做各種修改,而不脫離本 發明的範圍。因此,本發明不局限於所公開的具體實施 099124832 表單編號A0101 第32頁/共43頁 1003036074-0 201125320 例而應當包括落入本發明權利要求範圍内的全部實施 方式。 【圖式簡單說明】 [0093] [0094] Ο [0095] [0096] [0097] ❹ [0098] [0099] [0100] 圖1疋依據本發明的實施例的示範性LTE/E_UTRA通信系 統的示意圖,其用於增加LTE/E_UTRA用戶設備接收器内 的多頻率假設測試中的頻移估計精確度; 圖2是依據本發明實施例使用的LTE/E_UTRA下行鏈路同 步信號結構的框圖; 圖3疋依據本發明實施例的示範性移動設備的框圖,其用 於增加LTE/E-UTRA用戶設備接收器内的多頻率假設測試 中的頻移估計精確度; 圖4是依據本發明實施例的示範性接收器的框圖,其用於 增加LTE/E-UTRA用戶設備接收器内的多頻率假設測試中 的頻移估計精確度; 圖5是依據本發胡實施例的示範性多頻率假設子系統的示 意圖,其用於增加LTE7E-UTRA用戶設備接收器内的頻移 估計精確度; 圖6是依據本發明實施例的用於增加LTE/E-UTRA用戶設 備接收器内的多頻率假設測試中的頻移估計精確度的示 範性方法的流程圖。 【主要元件符號說明】 LTE/E-UTRA通信系統100蜂窩單元11〇 基站110a基站ll〇b 099124832 表單编號A0101 第33頁/共43頁 1003036074-0 201125320 [0101] 移動設備114移動設備118 [0102] 移動設備119蜂窩單元120 [0103] 基站120a移動設備122-126 [0104] LTE/E-UTRA覆蓋區130下行鏈路無線幀 200 [0105] 子幀 210 PSS 210a [0106] SSS 210b移動設備300 [0107] 天線310收發器320 [0108] 基帶處理器322射頻接收器前端324 [0109] 射頻發射器前端326主處理器330 [0110] 記憶體332接收器400 [0111] 接收器射頻前端410噪放大器(LNA) 412 [0112] 混頻器414低通(LP)濾波器416 [0113] 可變增益放大器(VGA) 418基帶處理器 420 [0114] 模數轉換器(ADC) 422多頻率假設子系統424 [0115] 處理器426記憶體428 [0116] 本地振盪器430頻率控制單元440 [0117] MFH子系統500混頻頻率生成器510 [0118] MFH分支520-560混頻器522 [0119] PSS相關器524匹配濾波器524a 099124832 表單編號A0101 第34頁/共43頁 1003036074-0 201125320 [0120] 積分器524b頻移估算器524c [0121] PSS峰值檢測器570Integrator 524b accumulates PSS related data from matched filter 524a over a plurality of slot cycles. The resulting PSS correlation peak can indicate the possible PSS symbol timing assumptions to be considered. Based on the maximum correlation peak magnitude within the MFH branch, the candidate PSS for the received PSS within the MFH branch 520 can be identified. Based on the maximum correlation peak amplitude, the received p s S can be detected from the candidate P S S identified on the entire set of MFH branches. The position of the large correlation peak can indicate the PSS symbol timing of the detected PSS. In the case where the MFH branch 520 is associated with a maximum PSS 099124832 Form No. A0101 page 28/43 page 1003036074-0 201125320 peak amplitude, the frequency shift estimator 524c may estimate the remaining frequency using the PSS correlation data from the matched crossing wave 524a. Offset. The frequency shift estimator 524c may combine the estimated frequency offset with the applied or expected frequency offset in the mfh branch 520 to provide an estimate of the frequency offset between the base station 11A and the associated receiver. The p SS peak detector 57 can transmit the detected PSS, associated PSS timing, and/or frequency offset estimates to the frequency control unit 440 and the processor 426 for frequency control and other baseband signal processing, respectively. 6 is a flowchart of an exemplary method for increasing frequency shift estimation accuracy in a multi-frequency hypothesis test within a mLTE/e_utra user equipment receiver, in accordance with an embodiment of the present invention. 6〇2 β Step 6〇2 The RF receiving front end 324 receives the RF signal through the LTE/E-UTRA null interfacing plane and generates a digital baseband signal after downconversion, filtering and sampling. The received RF signals include PSS and SSS. The digital baseband signal can be derived from the received radio frequency signal and passed to the MFH subsystem 424 for processing to obtain an accurate PSS timing and/or frequency offset. In step 604, the MF MFH subsystem 424 determines a set of expected frequency offsets from available resources of the mobile device 300, such as available memory. Each frequency offset is applied to each MFH branch. In step 6-6, the MFH subsystem 424 frequency shifts the digital baseband signal from the ADC 422 for each MFH branch based on the corresponding expected frequency offset. [0086] In step 608, the MFH subsystem 424 performs PSS correlation processing on the frequency-shifted corresponding digital baseband signal for each MFH branch. For example, PSS correlator 524 performs correlation processing on signals from mixer 522. In step 610, the needle is selected for each MFH branch according to the corresponding PSS correlation peak amplitude. 099124832 Form No. A0101 Page 29 of 43 1003036074-0 201125320 Candidate PSS for the received PSS. For example, based on the maximum correlation peak magnitude of the PSS related data from the match; filter 524a, integrator 524b selects the candidate PSS within MFH branch 520. In step 612, the received pss are detected by peak detector 570 from the selected candidate PSS based on the maximum PSS correlation peak amplitude over the entire set of MFH branches. In step 614, the residual frequency offset can be estimated using the MFH branch that produces the maximum pss correlation peak amplitude for the corresponding PSS related data bit. For example, where MFH branch 520 is associated with a maximum PSS peak amplitude, frequency shift estimator 524c may estimate the residual frequency offset using the P S S correlation data from matched filter 5 2 4 a. In step 616, the estimated frequency offset is combined with the applied or expected frequency offset in the MFH branch 520 to provide an estimate of the frequency offset between the base station 11 & and the associated receiver, such as the receiver 400. . [0087] In various example aspects of the method and system of the present invention for increasing the accuracy of frequency shift estimation in a multi-frequency hypothesis test within a receiver of an LTE/E-UTRA user equipment, the mobile device, such as the interfering device U4, may The base station 110a receives the radio frequency signal. The received radio frequency signature includes a PSS aware SSS that is used by the mobile device 114 to acquire cellular specific parameters through PSS synchronization and SSS detection. To overcome or eliminate uncertainties associated with correct PSS symbol timing and/or correct frequency offset for the received PSS, mobile device 114 may perform multi-frequency hypothesis testing through MFH subsystem 424. The MFH subsystem 424 can perform MFH testing using a set of MFH branches, such as MFH branches 520-5 60. Mobile device 114 can perform PSS related processing for each of a set of MHF branches 520-560. For example, pss correlation processing is performed by the PSS correlator 524 within the MFH branch 520. Matching filter 524b correlates the received baseband signal of the PSS with each of the plurality of local reference PSSs, 099124832 Form Number A0101, Page 30 of 43 1003036074-0 201125320. The associated data on the output of the resulting matched filter 524b can be used to estimate the amount of carrier frequency offset of the data received from base station 110a. As described in connection with Figure 5, the frequency offset estimate can be performed using the corresponding PSS related information for the MFH branch that produces the maximum PSS correlation peak magnitude. The MFH subsystem 424 can determine the expected frequency offset for each MFH branch 520-560. The baseband signal of the received PSS can be frequency shifted by the mixer 522 based on the respective expected frequency offset for each MFH branch. The PSS correlation process can be performed after the baseband signal of the received PSS is frequency shifted. [0088] Ο Within each MFH branch 520-560, such as within MFH branch 520, integrator 524b selects a candidate PSS for the received pss based on the resulting pss correlation peak. The selected candidate PSS is transmitted to the PSS peak detector 570. The peak detector 57 detects the received PSS from the candidate pss identified on the entire set of elbows. The detected PSS is associated with the maximum PSS correlation peak amplitude. The residual frequency offset can be estimated for the MFH branch of the entire set of MFH branches 5〇2_56() that produces the largest PSS correlation peak amplitude. The estimated frequency offset is matched to the applied or expected frequency offset in the MFH branch, k for the frequency offset estimate between base station 110a and the associated receiver, e.g., receiver 3 〇 . The PSS peak detector 57A can transmit a frequency offset estimate to the processor 426 for further baseband signal processing. The frequency offset estimate can be fed back to the frequency control unit 44A. Frequency control unit 44G controls and/or mediates the reference oscillator frequency of oscillator 430 based on the frequency offset estimate. Another embodiment of the present invention provides a machine readable memory having a computer code and/or a piggyback type including at least a _ field code segment, the 099124832 form number A0101 page 31 of 43 1003036074-0 [0089] 201125320 At least one code segment may be executed by a machine and/or a computer such that the machine and/or computer perform the multi-frequency hypothesis test described in this application for adding LTE/E-UTRA user equipment receivers The method of frequency shift estimation accuracy and the steps of the system. Thus, the invention can be implemented by hardware, software, or a combination of soft and hard. The invention can be implemented in a centralized fashion in at least one computer system or in a distributed fashion across different portions of several interconnected computer systems. Any computer system or other device that can implement the method described above is applicable. A combination of commonly used hardware and software may be a general-purpose computer system in which a computer program is installed, and the computer system is controlled to operate as described above by installing and executing the program. In a computer system, the method is implemented using a processor and a storage unit. [(10) 1] The present invention can also be embedded in a computer program product, which contains all the features of the method of the present invention, and when it is installed in a computer system, the method of the present invention can be implemented by operation. The computer program in this document refers to any expression of a set of instructions that can be written in any programming language, code, or symbol. The set of instructions enables the system to have information processing capabilities to directly implement a particular function, or to perform the following After one or two steps, a) is converted into other languages, codes or symbols; b) is reproduced in different material forms to achieve a specific function. The present invention has been described in terms of several specific embodiments, and it will be understood by those skilled in the art In addition, various modifications may be made to the invention without departing from the scope of the invention. Therefore, the present invention is not limited to the specific embodiments disclosed. 099124832 Form No. A0101 Page 32 of 43 1003036074-0 201125320 Examples All embodiments that fall within the scope of the claims of the present invention should be included. BRIEF DESCRIPTION OF THE DRAWINGS [0010] FIG. 1 is an exemplary LTE/E_UTRA communication system according to an embodiment of the present invention. [0099] FIG. Schematic diagram for increasing the frequency shift estimation accuracy in a multi-frequency hypothesis test in an LTE/E_UTRA user equipment receiver; FIG. 2 is a block diagram showing an LTE/E_UTRA downlink synchronization signal structure used in accordance with an embodiment of the present invention; 3 is a block diagram of an exemplary mobile device for increasing frequency shift estimation accuracy in a multi-frequency hypothesis test within an LTE/E-UTRA user equipment receiver, in accordance with an embodiment of the present invention; FIG. 4 is in accordance with the present invention A block diagram of an exemplary receiver of an embodiment for increasing frequency shift estimation accuracy in a multi-frequency hypothesis test within an LTE/E-UTRA user equipment receiver; FIG. 5 is an exemplary diagram in accordance with an embodiment of the present invention A schematic diagram of a multi-frequency hypothesis subsystem for increasing frequency shift estimation accuracy in an LTE 7E-UTRA user equipment receiver; FIG. 6 is a diagram for adding an LTE/E-UTRA user equipment receiver according to an embodiment of the present invention; Frequency shift estimation in multi-frequency hypothesis testing Fan flowchart illustrating an exemplary method of determining degree. [Description of main component symbols] LTE/E-UTRA communication system 100 Cellular unit 11 〇 Base station 110a Base station 〇 0 0 099124832 Form number A0101 Page 33 / Total 43 pages 1003036074-0 201125320 [0101] Mobile device 114 mobile device 118 [ Mobile device 119 Cellular unit 120 [0103] Base station 120a mobile device 122-126 [0104] LTE/E-UTRA coverage area 130 downlink radio frame 200 [0105] Sub-frame 210 PSS 210a [0106] SSS 210b mobile device 300 [0107] Antenna 310 Transceiver 320 [0108] Baseband Processor 322 Radio Frequency Receiver Front End 324 [0109] Radio Frequency Transmitter Front End 326 Main Processor 330 [0110] Memory 332 Receiver 400 [0111] Receiver RF Front End 410 Noise Amplifier (LNA) 412 [0112] Mixer 414 Low Pass (LP) Filter 416 [0113] Variable Gain Amplifier (VGA) 418 Baseband Processor 420 [0114] Analog to Digital Converter (ADC) 422 Multi-Frequency Hypothesis Subsystem 424 [0115] Processor 426 Memory 428 [0116] Local Oscillator 430 Frequency Control Unit 440 [0117] MFH Subsystem 500 Mixing Frequency Generator 510 [0118] MFH Branch 520-560 Mixer 522 [0119] ] PSS correlator 524 matched filter 524a 099124832 Form No. A0101 Page 34 of 43 1003036074-0 201125320 [0120] Integrator 524b Frequency Shift Estimator 524c [0121] PSS Peak Detector 570
〇 099124832 表單編號A0101 第35頁/共43頁 1003036074-0〇 099124832 Form No. A0101 Page 35 of 43 1003036074-0