[go: up one dir, main page]

TW201125195A - Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and fabricating method thereof - Google Patents

Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and fabricating method thereof Download PDF

Info

Publication number
TW201125195A
TW201125195A TW099131830A TW99131830A TW201125195A TW 201125195 A TW201125195 A TW 201125195A TW 099131830 A TW099131830 A TW 099131830A TW 99131830 A TW99131830 A TW 99131830A TW 201125195 A TW201125195 A TW 201125195A
Authority
TW
Taiwan
Prior art keywords
active material
secondary battery
comparative example
lithium
solid solution
Prior art date
Application number
TW099131830A
Other languages
Chinese (zh)
Other versions
TWI489682B (en
Inventor
Daisuke Endo
Yoshihiro Katayama
Toshiyuki Nukuda
Original Assignee
Gs Yuasa Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Int Ltd filed Critical Gs Yuasa Int Ltd
Publication of TW201125195A publication Critical patent/TW201125195A/en
Application granted granted Critical
Publication of TWI489682B publication Critical patent/TWI489682B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

An active material for lithium secondary battery contains a solid solution of lithium transition metal composite oxide having α -NaFeO2 type crystalline structure. The active material for lithium secondary battery is characterized by composite ratio of the metal element in the solid solution satisfying Li1+(x/3)Co1-x-y-zNiy/2Mgz/2Mn(2x/3)+(y/2)+(z/2) (x > 0; y > 0; z > 0; x+y+z < 1), having a X-ray diffraction pattern belonging to space group P3112, and having discharge capacitance exceeding 200mAh/g. In addition to the foregoing features, the active material for lithium secondary battery is characterized by intensity ratio of the diffraction peak of (003) surface to (114) surface measured by X-ray diffraction being I(003)/I(114) ≥ 1.15, and/or half width of the (003) surface diffraction peak being 0.15 DEG or less, and half width of the (114) surface diffraction peak being 0.25 DEG or less.

Description

201125195 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種鋰二次電池用活性物質、使用該 經二次電池用活性物質的鐘二次電池及其製造方法。 【先前技術】 先前’鋰二次電池中主要使用LiCo02作為正極活性 物資。然而’放電電容為120mAh/g〜130mAh/g左右。 已知有使LiCo〇2與其他化合物形成固溶體的材料。 具有a-NaFe02型結晶構造,作為LiCo02、LiNi02及LiMn02 三種成分之固溶體的I^CouxNixMnJC^CiXxSlO已 於2001年發表。將作為上述固溶體的一例的UNii/2Mni/2〇2 或LiCo^NimMiimO2用作活性物質的鐘二次電池,其放 電電容為 150 mAh/g〜180 mAh/g,優於 LiCo02。 非專利文獻1〜非專利文獻4中,提出有具有 a-NaFe02 型結晶構造的 Li[Li1/3Mn2/3]〇2、LiNii/2Mni/;2〇:2 及LiCo〇2三種成分的固溶體。該材料如可表現為 Li[Li,Mn,Ni,Co]〇2般’於具有a-NaFe02型結晶構造的 LiCo〇2中,於Co存在的位點(site),除了過渡金屬以外 存在Li。因此’可期待更高的放電電容,於非專利文獻1 〜非專利文獻4中,報告了 180 mAh/g〜200 mAh/g左右 的放電電容。 然而,謀求放電電容更大的裡二次電池用活性物質。 關於以異種元素將鋰二次電池用正極活性物質所用的 過渡金屬化合物的一部分過渡金屬位點(site)替換的嘗 201125195 5式’正方晶尖晶石構造的LiMn2〇4等其他活性物質的例子 不勝枚舉,已進行了大量研究。然而,異種元素替換所帶 來的效果是就各種活性物質而不同,該技術領域中,不言 而喻,完全難以預測不同材料所表現出的效果是否在其他 材料的情況下也同樣地表現出。 非專利文獻5中記载,以Mg來替換LiCo〇2的一部分 Co,結果室溫下的電子傳導率提昇(參照圖2 但放電電容由於Mg的添加而降低(參照Fig 6、Fig 8)。 非專利文獻6中記載’以Mg來替換相當於Lic〇〇2、 LiNi〇2及LiMn〇2三種成分的固溶體的Lic〇i/3Nii/3Mn^〇 的一部分過渡金屬位點,結果仍然是放電電容降低(2 Fig. 8)。 ·… 非專利文獻7中記載,以Mg來替換相當於 LiCLi^Mn^O2及LiNi^Mn^O2兩種成分的固溶體的 LitUusNio·275!^!!。·575]。2的一部分過渡金屬位點,結果雖缺 伴隨著反覆充放電的電容維持率可見提高,但^ ^ 容仍然降低(參照Fig. 2)。另外,所報告的放電電 過200 mAh/g (參照該圖)。 另外,專利文獻1中記載有「一種正極活性 兑 將 Li_cNidC〇eLiaM,,b]〇2 ( M,,為選自由 B、峋、a卜^ V、Cr、Fe、Cu及Zn所组成的組群中的至少一種元二[Technical Field] The present invention relates to an active material for a lithium secondary battery, a clock secondary battery using the active material for a secondary battery, and a method for producing the same. [Prior Art] In the prior 'lithium secondary battery, LiCoO 2 was mainly used as a positive electrode active material. However, the discharge capacitance is about 120 mAh/g to 130 mAh/g. A material which forms a solid solution of LiCo 2 and other compounds is known. I^CouxNixMnJC^CiXxSlO, which has a crystal structure of a-NaFe02 type and is a solid solution of three components of LiCo02, LiNi02 and LiMn02, was published in 2001. A clock secondary battery using UNii/2Mni/2〇2 or LiCo^NimMiimO2 as an example of the above solid solution as an active material has a discharge capacity of 150 mAh/g to 180 mAh/g, which is superior to LiCo02. In Non-Patent Document 1 to Non-Patent Document 4, solid solution of Li[Li1/3Mn2/3]〇2, LiNii/2Mni/; 2〇:2 and LiCo〇2 having an a-NaFe02 type crystal structure is proposed. body. This material can be expressed as Li[Li, Mn, Ni, Co] 〇2 in LiCo〇2 with a-NaFe02 type crystal structure. At the site where Co exists, Li exists in addition to the transition metal. . Therefore, a discharge capacity of about 180 mAh/g to 200 mAh/g is reported in Non-Patent Document 1 to Non-Patent Document 4, in which a higher discharge capacity can be expected. However, an active material for a secondary battery having a larger discharge capacity is sought. An example of another active material such as LiMn 2 〇 4 of the formula 201125195 5 'orthogonal spinel structure of the transition metal compound used for the positive electrode active material for a lithium secondary battery by a different element is replaced by a transition metal site. Too many to mention, a lot of research has been done. However, the effect of replacement of different elements is different for various active substances, and it is self-evident in the technical field that it is completely difficult to predict whether the effects exhibited by different materials are similarly exhibited in the case of other materials. . Non-Patent Document 5 describes that a part of Co of LiCo〇2 is replaced by Mg, and as a result, the electron conductivity at room temperature is increased (see FIG. 2, but the discharge capacity is lowered by the addition of Mg (see Fig. 6, Fig. 8). Non-Patent Document 6 describes that a part of transition metal sites of Lic〇i/3Nii/3Mn^〇 which are a solid solution of three components of Lic〇〇2, LiNi〇2, and LiMn〇2 are replaced by Mg, and the result is still In the case of Non-Patent Document 7, LitUusNio·275, which is a solid solution corresponding to two components of LiCLi^Mn^O2 and LiNi^Mn^O2, is replaced by Mg. !!. 575]. Part of the transition metal site of 2, the result is that although the capacity retention rate with repeated charge and discharge is improved, the capacitance is still reduced (see Fig. 2). In addition, the reported discharge power 200 mAh/g (refer to the figure). Patent Document 1 discloses that "a positive electrode active pair is Li_cNidC〇eLiaM,, b] 〇2 (M, which is selected from B, 峋, ab ^ V, At least one element of the group consisting of Cr, Fe, Cu, and Zn

+ e + a + b'C + d+e + a + b=l'〇^a^〇.〇5,〇^b^〇 :C 0.2W0.5、讀把〇.4)所表示的複合氧化物=主: 分,該正極活性物質的特徵在 為主成 田邱厄特 201125195 請-Emmett姻er,BET)法所得的比表面積為〇 3 m /g以上、1.5 m /g以下,具有可歸屬於空間群R3/m的χ 射線繞射圖案’ 2Θ = 44.1±1。時的繞射波峰相對於2θ = 18.6±1°時的繞射波峰的相對強度比為〇 6以上、丨i以下, 並且2Θ=18.6±1。時的繞射波峰的半高寬(謹width)為 0二1ΓΓ上、請。以下’且2e=44.1:tl。時的繞射波峰的半 问寬為1〇。以上、〇.17〇以下,粒徑為3 μιη以上、20 μηι =上述^對強度比設定狀6以上、丨]以下的正極活性物 丄可提供兼具良好的高率放能與良好的充放電循淨 成d獻2:記载有「一種正極活性物質,其含有組 ^ Μη〇,.χΝΐ〇^ ( ^ + 〇 &amp; &lt; 1 3 ^ 複二(=範:=外== 2=第L項1正_性物_寺徵在於:含有上述二 (二&lt;= 足下述關係式的複合氧化物 /3°-05f _ y&lt;G.5)。根據此種構成,特別可形成能製造高率 6 201125195 放電性能及綠魏雜能似、私量密度的非水電解 質二:欠電池的正極活性物質」(第6頁自下往上第7行〜第 了頁第4行)、「申請專利範圍第5項的正極活性物質的特 徵在於··上述複合氧化物的總孔隙體積為...以下,且使用 CuKoc射線的粉末χ射線繞射圖的2θ==44 ι±ι。時的繞 峰相對於2θ-18.6±ι。時的繞射波峰的相對強度比為⑽ 以上1.05以下。根據此種構成,特別可形成能製造高 =電性能及充放賴雜㈣異、高能量密度(高放電電 谷的非水電解質二次電池的正極活性物質」(第8頁自下 ,上第4行〜第9頁第3行)、「中請專利範圍第6項的正 極^性物®的概在於:上述複合氧化物的比表面積為... 二1+ιΛ使用CUK(X射線的粉末Χ射線繞射圖的2Θ== 相物目躲2θ=1δ.6±1。日杨繞射波峰的 可开0.65以上、⑽以下。根據此種構成,特別 =度(高放電電容)的非水電解質二次電=極;: 彳了〜第ig行)’但並未揭示,於採用 定、疋且成的活性物質的上述相對強度比在特 疋靶圍内時,放電電容顯著提高。 J. . Ω 9π〇 , ·18·6士1時的繞射波峰的半高寬為0.05。 高寬為且^^:44·1士1〇時的繞射波峰的半 成能製造1有〜Λ二:Γ。根據此種構成’特別可形 /、有同把里岔度(尚放電電容)、充放電循環性能 201125195 優異的非水電解質二次電池的正極活性物質」(第9頁第 11行〜第16行),但並未揭示’於採用Mg作為M的特定 組成的活性物質的上述繞射波峰的半高寬在特定範圍2 時’高率放電特性顯著提高。 專利文獻3中揭示有「一種鋰二次電池用活性物質, 其含有具有a-NaFe02型結晶構造的鋰過渡金屬複合氧化 物的固溶體’且該鋰二次電池用活性物質的特徵在於:上 述固溶體所含有的Li、Co、Ni及Μη的組成比滿足 Lii+i/3xCo1.x.yNiy/2Mn2X/3+y/2 (x + y^l ' i _x_y = z ), 於 (x) -LiNii/2Mni/2〇2 (y)丄1(^〇〇2 (z) 系三角相圖中,(X,y, z)是以存在於以點A(0 45, 〇 55 點 Β(0·63, 0.37, 0)、點 C(0.7, 0.25, 0.05)、點 d(0.67, 〇 18+ e + a + b'C + d+e + a + b=l'〇^a^〇.〇5,〇^b^〇:C 0.2W0.5, read 〇.4) Oxide=main: minute, the positive electrode active material is characterized by a specific surface area of 〇3 m /g or more and 1.5 m /g or less, which is obtained by the method of the main Narita-Cheuette 201125195-Emmett marriage, BET). The χ ray diffraction pattern ' 2 Θ = 44.1 ± 1 attributed to the space group R3/m. The relative intensity ratio of the diffraction peak at the time of the diffraction peak at 2θ = 18.6 ± 1° is 〇 6 or more, 丨 i or less, and 2 Θ = 18.6 ± 1. The half-height width of the diffraction peak (when width) is 0 2 1 ΓΓ, please. The following 'and 2e = 44.1: tl. The half-width of the diffraction peak is 1〇. In the above, 〇.17〇 or less, the positive electrode active material having a particle diameter of 3 μm or more and 20 μηι = the above-mentioned strength ratio setting of 6 or more and 丨] or less can provide both a good high rate of discharge and a good charge. The discharge is cleaned into a d2: It is described as "a positive active material containing a group ^ Μ 〇, . χΝΐ〇 ^ ( ^ + 〇 &&lt; 1 3 ^ complex two (= 范: = outer == 2 = Item L 1 positive _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Forming a non-aqueous electrolyte that can produce a high rate of 6 201125195 discharge performance and green Wei-like energy, private density: positive electrode active material of under-battery" (page 6 from bottom to top line 7 - page 4) The positive electrode active material of the fifth aspect of the patent application is characterized in that the total pore volume of the composite oxide is below, and the 2θ ==44 ι ± of the powder χ ray diffraction pattern using CuKoc ray The relative intensity ratio of the diffraction peak at the time of ι is relative to 2θ-18.6±ι. The relative intensity ratio of the diffraction peak is (10) or more and 1.05 or less. According to this configuration, a special energy system can be formed. High = electrical performance, charge and discharge (four), high energy density (positive active material of non-aqueous electrolyte secondary battery with high discharge electric valley) (Page 8 from below, on line 4 to page 9 and line 3) ), "The positive electrode ^ of the patent scope of the sixth paragraph is: the specific surface area of the above composite oxide is ... 2 1 + ι Λ using CUK (X-ray powder Χ ray diffraction pattern of 2 Θ = = phase object avoids 2θ=1δ.6±1. The diurnal peak of the yang can be opened 0.65 or more and (10) or less. According to this configuration, the non-aqueous electrolyte secondary electricity of the specific degree (high discharge capacity) is extremely high; : 彳 〜 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The half-height width of the diffraction peak at 18·6 士1 is 0.05. The height and width are ^^: the radius of the diffraction peak at 44 1 1 〇 is 1 Λ Γ 2: Γ. a positive electrode active material of a non-aqueous electrolyte secondary battery which is excellent in shape and has the same degree of enthalpy (still discharge capacity) and charge and discharge cycle performance 201125195" 9th, 11th to 16th lines, but it is not revealed that 'the half-height width of the above-mentioned diffraction peak of the active material using Mg as the specific composition of M is significantly increased in the specific range 2'. Document 3 discloses "an active material for a lithium secondary battery containing a solid solution of a lithium transition metal composite oxide having a crystal structure of a-NaFeO type" and the active material for a lithium secondary battery is characterized by the above The composition ratio of Li, Co, Ni, and Μη contained in the solid solution satisfies Lii+i/3xCo1.x.yNiy/2Mn2X/3+y/2 (x + y^l ' i _x_y = z ), at (x ) -LiNii/2Mni/2〇2 (y)丄1(^〇〇2 (z) is a triangular phase diagram, (X, y, z) is present at point A (0 45, 〇 55 points Β (0·63, 0.37, 0), point C (0.7, 0.25, 0.05), point d (0.67, 〇18

0.15)、點 E (0.75, 0, 0_25)、點 F (〇.55, 〇, 〇.45)及點 G (0.45, 0.2, 0.35 )作為頂點的七角形ABCDEFG的線上咬 内部的範圍的值來表示,並且,由χ射線繞射測定所得^ (003)面與(104)面的繞射波峰的強度比於充放電前為 I (003) /1 ( 104) 21.56、於放電末為 ϊ (〇〇3)々(1〇4f &gt;1」(申請專利範圍第1項)的發明、「一種鋰二次電池的 製造方法’其是採用充電時的正極的最大到達電位為43 V(vs. Li/Li+)以下的充電方法的用以製造如申請專利範圍 第9項所述之鐘二次電池的製造方法,其特徵在於包括以 下步驟:進行在超過4.3 V(vs. Li/Li+)、且為4.8 v以下(vs Li/Li+)的正極電位範圍中出現的電位變化至少 平坦區域的充電」(申請專利範圍第1〇項)的發明另^ 201125195 記載有「於先前的活性物質中,由於生成此種無序 (disorder)相,故不發生來自Li層的順暢的以離子的移 動’一般認為亦影響可逆電容。相對於此,本發明的活性 物貝中由於 I ( 〇〇3 ) /1 ( 1 〇4 ) $ 1 56,故 disorder 相的 生成極少’―般認為可獲得優異的放電電容」(段落 [0068]),作為實例,亦揭示了由χ射線繞射測定所得的 (003)面與(1〇4)面的繞射波峰的強度比於充放電前為 I (003) /1 ( 1〇4) = ι·77、於放電末為 I (〇〇3) /1 ( 1〇4) — 1.67,且放電電容達到225 mAh/g的鋰二次電池用活性 物質,但該活性物質不含有Mg,並未揭示於含有Mg的特 定組成的活性物質的上述相對強度比在特定範圍内時,放 電電容顯著提高。 而且,將專利文獻3所記載的固溶體作為活性物質的 鋰二次電池如後述的比較例般,有無法獲得高率放電時的 電容的問題。 專利文獻4中記載有「-種具有LiaNixMny(:Gz〇㈣&amp; + y + z=卜1.00&lt;a&lt;L3、〇9&lt;〇·3)的化學組成的層狀 構造的裡•鎳•猛•钻複合氡化物’該複合氧化物的使用 CuKa射線的粉末X射線繞射的米勒指數(Miller丨如以) hkl的(003)面及(104)面的繞射波峰角如分別為i865。 以上及44.50。以上,且該些各面的繞射波峰半高寬均 0_18。以下’進而(108)面及(110)面的繞射波峰角2θ 分別為64.40。及65.15。以上’且該些各面的繞射波峰 寬均為0.18。以下」(申請專利範圍第1項)的發明.: 201125195 ⑽的粉末x射祕射的米勒指數 C 03)面及(104)面的繞射波峰角2Θ分別小於 右^^带44·50。’則相間隔減少,鋰離子的擴散受到抑制, 夫L η特性劣化。另外’若該些面的繞射波峰半高寬分別 ^ _18 ’則可能結晶的成長不充分而組成的偏差大 Π04?特性劣化」(段落陶7]),但未揭示(_)面及 ^ 的繞射波峰半高寬(半高寬)與高率放電特性的 專利文獻5中記載有r一種正極活性物質, 於:含有可歸屬於空間群R_3m、相當於(1〇4)面^= ,繞射波峰的半高寬在隊,15。的範圍内、且由下 ⑴式所算出的形狀係數SF1的平均值在大於丨且為η :::範圍内的含鋰金屬複合氧化物粒子。…」(申請專利 乾圍第1項)的發明;另外揭示:於含鐘金屬複合氧化物 粒子的結晶構造歸屬於空間群尺_3111、且相當於(104)面 的X射線繞射波峰的半高寬在0·06。〜〇 15。的範圍内時, 可獲得較高的放電負荷特性(高率放電特性);以及若半高 寬超過0.15。’則含鋰金屬複合氧化物的結晶性下降而難= 獲得高的高率放電特性(段落[祕]);但·使含鐘金屬 複合氧化物含有Mg則完全無記載,且並未啟示,藉由將 含有Mg的含裡金屬複合氧化物的繞射波峰的半高寬設定 為特定範圍而高率放電特性顯著提高。 專利文獻6中記載有「可藉由在本發明的 LiNiwMnwCowO2中摻雜異種元素而表現出附加功能,可 201125195 藉由添加鎂而使電子傳導性飛躍性地提昇」(段落 [0077]);另外亦揭示’可使用使鋰原子比增加的 LitLi/NiwMnwCch/UOz (式中 ’ O^xSO.3)所表示的 氧化物’以乾式方式將共沈展所付的複合氧化物與氫氧化 鋰混合並於looot:下煅燒而成的鎳錳鈷複合氧化物是屬 於層構造R3m的六方晶系(段落[0028]〜[0030]);但並未 啟示,於鎳錳鈷複合氧化物中含有鎂作為固溶體成分時, 放電電容顯著提高,高率放電特性顯著提高。 專利文獻7中記載有「一種鋰二次電池正極材料用鐘 錄猛姑系複合氧化物粉體,其是含有歸屬於層狀構造的会士 晶構造而構成,且其組成是以下述(I)式所表示, %0.15), point E (0.75, 0, 0_25), point F (〇.55, 〇, 〇.45) and point G (0.45, 0.2, 0.35) as the value of the range of the inner corner of the octagonal ABCDEFG In addition, the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane obtained by the ray diffraction measurement is I (003) /1 (104) 21.56 before charge and discharge, and is ϊ at the end of discharge. (〇〇3) 发明 (1〇4f &gt; 1) (Application No. 1 of the patent application) and "Manufacturing method of a lithium secondary battery", wherein the maximum reaching potential of the positive electrode during charging is 43 V ( Vs. Li/Li+) A method of manufacturing a clock secondary battery according to the above-mentioned charging method, which is characterized in that it comprises the following steps: performing over 4.3 V (vs. Li/Li+) In addition, the electric potential change in the positive electrode potential range of 4.8 v or less (vs Li/Li+) is charged in at least the flat region (see Patent Application No. 1), and the other active material is described in 201125195. In the case of generating such a disorder phase, smooth movement of ions from the Li layer does not occur. In contrast, in the active material of the present invention, since I ( 〇〇3 ) /1 ( 1 〇 4 ) $ 1 56 , the generation of the disorder phase is extremely small, and it is considered that excellent discharge capacitance can be obtained. (Paragraph [0068]), as an example, also reveals that the intensity ratio of the diffraction peaks of the (003) plane and the (1〇4) plane obtained by the ray diffraction measurement is I (003) /1 before charge and discharge. (1〇4) = ι·77, active material for lithium secondary batteries with I (〇〇3) /1 (1〇4) - 1.67 at the end of discharge and a discharge capacitance of 225 mAh/g, but the activity The material does not contain Mg, and the discharge capacity is not significantly increased when the relative intensity ratio of the active material having a specific composition of Mg is within a specific range. Further, the solid solution described in Patent Document 3 is used as an active material of lithium. The secondary battery has a problem that the capacitance at the time of high rate discharge cannot be obtained as in the comparative example described later. Patent Document 4 describes that "the species has LiaNixMny (: Gz 〇 (4) & + y + z = 1.00 1.00 &lt; a &lt; L3, 〇9&lt;〇·3) The chemical composition of the layered structure of the lining • nickel • ray • drilling composite bismuth 'this composite The diffraction peak angle of the (003) plane and the (104) plane of the powder X-ray diffraction of the oxide using the CuKa ray (Miller 丨) is respectively i865. Above and 44.50. The half-height widths of the diffraction peaks of the faces are 0_18. The following diffraction angles 2θ of the (108) plane and the (110) plane are 64.40, respectively. And 65.15. The above and the diffraction peak widths of the respective faces are both 0.18. The invention of the following (Application No. 1 of the patent application): 201125195 (10) The Miller Index C 03) surface of the powder x-ray shot and the diffraction peak angle 2 of the (104) plane are smaller than the right ^^ belt 44·50 . Then, the interval is reduced, the diffusion of lithium ions is suppressed, and the characteristics of the L η are deteriorated. In addition, if the half-height widths of the diffraction peaks of these faces are respectively ^ _18 ', the growth of the crystal may be insufficient and the variation of the composition may be large Π 04? The characteristic deterioration" (paragraph Tao 7), but the (_) surface is not revealed and ^ Patent Document 5 of the diffraction peak half-height width (full width at half maximum) and high-rate discharge characteristics describes a positive electrode active material, which is contained in a space group R_3m and corresponds to a (1〇4) plane ^= The half-height of the diffraction peak is in the team, 15. The lithium-containing metal composite oxide particles having an average value of the shape factor SF1 calculated by the following formula (1) are larger than 丨 and are in the range of η :::. The invention of the patent application (the first paragraph of the patent application), and the disclosure that the crystal structure of the metal-containing composite oxide particles is attributed to the space group _3111 and corresponds to the X-ray diffraction peak of the (104) plane. The half width is at 0.06. ~〇 15. In the range of the above, a higher discharge load characteristic (high rate discharge characteristic) can be obtained; and if the full width at half maximum exceeds 0.15. 'The crystallinity of the lithium-containing metal composite oxide is lowered and it is difficult to obtain a high high-rate discharge characteristic (paragraph [secret]); however, the inclusion of Mg in the metal-containing composite oxide is completely undocumented and has not been revealed. The high-rate discharge characteristics are remarkably improved by setting the full width at half maximum of the diffraction peak of the cerium-containing metal composite oxide containing Mg. Patent Document 6 describes that "the LiNiwMnwCowO2 of the present invention can be doped with a different element to exhibit an additional function, and the electron conductivity can be greatly improved by adding magnesium in 201125195" (paragraph [0077]); It is also disclosed that 'the oxide represented by LitLi/NiwMnwCch/UOz (in the formula 'O^xSO.3) which increases the lithium atomic ratio can be used to dry-mix the composite oxide compounded with the lithium hydroxide in a dry manner. The nickel-manganese-cobalt composite oxide calcined under looot: is a hexagonal system belonging to the layer structure R3m (paragraphs [0028] to [0030]); however, it is not suggested that magnesium is contained in the nickel-manganese-cobalt composite oxide. When it is a solid solution component, the discharge capacity is remarkably improved, and the high rate discharge characteristics are remarkably improved. Patent Document 7 describes "a composite of a choline-type composite oxide powder for a lithium secondary battery positive electrode material, which is composed of a crystal structure belonging to a layered structure, and its composition is as follows (I ), expressed as %

Li[Liz/(2+z) {(LixNi(1_3x)/2Mn(1+x)/2)(1.y)C〇y} 2/(2+z)]〇2... (I) (其中 ’0.01SxS0.15、0Sy$0.35、0.02(l-y) (1_3χ) SzS0.15 (1-y) (l-3x))」(申請專利範圍第6項)的發 明;且揭示’重要的是Li量在較化學計量組成稍許富餘 (rich)的範圍内,藉此電池性能(特別是速率特性^輸 出特性)提高(段落[0014]及段落[〇〇15]),但並未啟示w 於鋰鎳錳鈷系複合氧化物為含有鎂的特定組成時,玫'電電 容顯著提昇’高率放電特性顯著提昇。 另外,專利文獻1〜專利文獻7中記載的鋰二次電池 用正極活性物質並非設想為Li[Li1/3Mn2/3]〇2 ' LiNi^Mn^O2、LiC〇〇2及 LiMg^Mr^O2 四種成分的固溶 11 201125195 因此即便如上所述的正極活性物質假使含有Mg、且 滿足相對強度比的條件,自非專利文獻5〜非專利文獻7 的記載來看亦無法期待放電電容提高。 [先前技術文獻] [非專利文獻] [非專利文獻 1] Electrochim.Acta,vol.51,page 5581-5586, 2006.Li[Liz/(2+z) {(LixNi(1_3x)/2Mn(1+x)/2)(1.y)C〇y} 2/(2+z)]〇2... (I) (in which '0.01SxS0.15, 0Sy$0.35, 0.02(ly) (1_3χ) SzS0.15 (1-y) (l-3x))" (the scope of claim 6); and reveals that 'important is The amount of Li is slightly richer than the stoichiometric composition, whereby the battery performance (especially the rate characteristic ^ output characteristic) is improved (paragraph [0014] and paragraph [〇〇15]), but it is not revealed When the lithium nickel manganese cobalt composite oxide is a specific composition containing magnesium, the 'electrical capacitance is significantly improved' and the high rate discharge characteristics are remarkably improved. In addition, the positive electrode active material for a lithium secondary battery described in Patent Document 1 to Patent Document 7 is not assumed to be Li[Li1/3Mn2/3]〇2 'LiNi^Mn^O2, LiC〇〇2, and LiMg^Mr^O2. In the case of the above-described positive electrode active material, if the content of the positive electrode active material is Mg and the relative strength ratio is satisfied, the discharge capacity cannot be expected to be improved from the descriptions of Non-Patent Documents 5 to 5. [Prior Art Document] [Non-Patent Document] [Non-Patent Document 1] Electrochim. Acta, vol. 51, page 5581-5586, 2006.

[非專利文獻 2] J.p〇wer Sources,vol. 146, page 598-601, 2005.[Non-Patent Document 2] J.p〇wer Sources, vol. 146, page 598-601, 2005.

[非專利文獻 3] J.Electrochem.Soc., vol_l52, no.l, page A171-A178, 2005.[Non-Patent Document 3] J. Electrochem. Soc., vol_l52, no.l, page A171-A178, 2005.

[非專利文獻 4] Mater丄ett., vol.58, page 3197-3200, 2004.[Non-Patent Document 4] Mater丄ett., vol.58, page 3197-3200, 2004.

[非專利文獻 5] J.Electrochem.Soc·,vol.144, page 3164-3168, 1997.[Non-Patent Document 5] J. Electrochem. Soc., vol. 144, page 3164-3168, 1997.

[非專利文獻 6] Solid State Ionics, vol.178,page 849-857, 2007.[Non-Patent Document 6] Solid State Ionics, vol. 178, page 849-857, 2007.

[非專利文獻 7] J.Mater.Chem.,vol 13,page 319-322, 2003.[Non-Patent Document 7] J. Mater. Chem., vol 13, page 319-322, 2003.

[專利文獻] [專利文獻1]日本專利第4320548號公報 [專利文獻 2] WO 2002/086993 A1 [專利文獻 3] WO 2009/063838 A1 [專利文獻4]日本專利第4216669號公報 12 201125195 [專利文獻5]曰本專利2〇〇3_178756號公報 [專利文獻6]日本專利2〇〇3_17〇52號公報 [專利文獻7]曰本專利2〇〇6_253119號公報 【發明内容】 本發明是鑒於上述問題而成,其課題在於提供一種放 電電谷大、南率放電特性優異的鋰二次電池用活性物質及 使用s玄鋰二次電池用活性物質的鋰二次電池。 對本發明的構成及作用效果夾雜技術思想來進行說 明。其中,作用機制包括推定,其正確與否並不限制本發 明。再者’本發明可於不偏離其精神或主要特徵的情況^ 以其他多種形態來實施。因此,後述實施形態或實驗例於 所,方面僅不過為例示,而非限定性地解釋。進而,屬於 申請專利範ϋ的均等範U的變職變更全部在本發明的 圍内。 具有a-NaFe〇2型結晶構造、可表現為 Li[Li,Mn,Ni,Co]〇2的材料需留意存在於過渡金屬位點的各 =元素的價數。即’於合成可表現為Li[Li Mn,Ni 的材料時’並非任意設定作為補所含的金屬元素的U、 _的域比率’岐在存在於過渡金屬位點時 的各金屬兀素的價數成為Li1+、、Ni2+、c〇3+的條件 Γΐίί金屬元素的比率’並且於使用如此般合成的材料 =射線繞射圖t繞射波峰的半高寬在特定朗内的物質 作為鐘二次電池用活性物質時,可表現出高的放電電容。 各金屬元素的價數成為Li丨+、Mn〇、Nia、c〇3+的條 13 201125195 件可藉由設想 Li[Li1/3Mn2/3]02、LiNi1/2Mn1/202 及 LiCo〇2 三種成分的固溶體而提供。即,藉由設想 xLitLimMr^/JCVyLiNimMn^C^- ( 1-x-y) LiCo02 (其中, x&gt;0、y&gt;0、x + y&lt;l),並任意選擇x及y,理論上可使 a-NaFe〇2型結晶構造的存在於過渡金屬位點的各金屬元 素的價數為 Li1+、Mn4+、Ni2+、Co3+。 本發明的鋰二次電池用活性物質的特徵在於含有 Mg,但此時亦需留意存在於過渡金屬位點的金屬元素的價 數。即,藉由在存在於過渡金屬位點時的各金屬元素的價 數成為Li1、Co3+、Ni2+、Mn4+、Mg2+的條件下設定各金 屬元素的比率,本發明的效果顯著表現出。 此處’於保持成為 Li1+、Mn4+、Ni2+、Co3+、Mg2+的 條件下設定Mg比率時,可採用若干種想法。第一想法是 根據藉由來替換構成所設想的 LiNi^Mn^O2的Νθ+^Μη4'/2部分的思想而設定Mg比率 的方法’本案說明書中作為實例2-1〜實例2-6而加以具體 詳述。第一想法是根據藉由來替換構成所設 想的LiELimMn2/3]。2的[Li^Mn2/3]3&quot;1·部分的思想而設定Mg 比率的方法,本案說明書中作為實例2_7〜實例21()而加 以具體詳述。第三想法是想到根據藉由[Mgi/2Mni/2]3+來替 換Co3+的思想而設定Mg比率的方法。另外想到將這些思 想中的2個或3個重複應用的方法。 於採用上述任意想法時可知,各金屬元素的價數成為 Li1+、Mn4+、Ni2+、C〇p、Mg2+的條件可藉由設想 14 201125195[Patent Document 1] Japanese Patent No. 4320548 [Patent Document 2] WO 2002/086993 A1 [Patent Document 3] WO 2009/063838 A1 [Patent Document 4] Japanese Patent No. 4216669 No. 12 201125195 [Patent Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The problem is to provide an active material for a lithium secondary battery having excellent discharge electric power and high south rate discharge characteristics, and a lithium secondary battery using an active material for a smectic lithium secondary battery. The technical concept of the configuration and effects of the present invention will be described. Among them, the mechanism of action includes presumption, and its correctness does not limit the invention. Further, the present invention can be embodied in other various forms without departing from the spirit or essential characteristics thereof. Therefore, the embodiments or experimental examples described below are merely illustrative and not limiting. Further, all of the changes to the equivalent of the patent application are all within the scope of the present invention. A material having a crystal structure of a-NaFe〇2 type and which can be expressed as Li[Li,Mn,Ni,Co]〇2 should pay attention to the valence of each element of the transition metal site. That is, 'in the case of synthesizing a material which can be expressed as Li[Li Mn, Ni, the domain ratio of U and _ which is not arbitrarily set as a metal element contained in the complement 岐" is present in each metal quinone present at the transition metal site. The valence becomes the condition of Li1+, Ni2+, c〇3+ Γΐ ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί When the secondary battery is used as an active material, it can exhibit a high discharge capacity. The valence of each metal element becomes a strip of Li丨+, Mn〇, Nia, c〇3+. 201125195 can be imagined by considering Li[Li1/3Mn2/3]02, LiNi1/2Mn1/202 and LiCo〇2 Provided by a solid solution. That is, by envisioning xLitLimMr^/JCVyLiNimMn^C^-(1-xy)LiCo02 (where x&gt;0, y&gt;0, x + y&lt;l), and arbitrarily selecting x and y, theoretically a- The valence of each metal element present in the transition metal site of the NaFe〇2 type crystal structure is Li1+, Mn4+, Ni2+, Co3+. The active material for a lithium secondary battery of the present invention is characterized by containing Mg, but at this time, it is also necessary to pay attention to the valence of the metal element present at the transition metal site. In other words, the effect of the present invention is remarkably exhibited by setting the ratio of each metal element under the condition that the valence of each metal element present at the transition metal site becomes Li1, Co3+, Ni2+, Mn4+, and Mg2+. Here, when the Mg ratio is set under the condition of maintaining Li1+, Mn4+, Ni2+, Co3+, and Mg2+, several ideas can be employed. The first idea is to set the Mg ratio according to the idea of replacing the Νθ+^Μη4'/2 portion of the envisioned LiNi^Mn^O2, as in the case of Example 2-1 to Example 2-6. Detailed details. The first idea is to replace the constituent LiELimMn2/3] by the substitution. The method of setting the Mg ratio by the idea of [Li^Mn2/3]3&quot;1 part of 2 is specifically described in detail in the present specification as Example 2_7 to Example 21(). The third idea is to think of a method of setting the Mg ratio based on the idea of replacing Co3+ by [Mgi/2Mni/2]3+. Also think of ways to repeat the application of two or three of these ideas. When using any of the above ideas, it can be known that the valence of each metal element becomes Li1+, Mn4+, Ni2+, C〇p, Mg2+, and the assumption can be made by envisioning 14 201125195

Li[Li1/3Mn2/3]02、LiNi1/2Mn1/2〇2、LiCo02 及 LiMg1/2Mn1/2〇2 四種成分的固溶體而提供。即,藉由設想固溶體 xLi[Lii/3Mn2/3]〇2-yLiNii/2Mn1/2〇2-zLiMg1/2Mni/2〇2-(1 -x-y-z) LiCo〇2 (x〉0、y&gt;〇、z&gt;〇、x + y+ z&lt;l)並 任意選擇x、y及z ’理論上可使存在於a_NaFe02型結晶 構造的過渡金屬位點的各金屬元素的價數為Li1+、Co3+、 Ni2+、Mn4+、Mg2+ 〇 右' 將 上述式 xLi[Li1/3Mn2/3]02-yLiNi1/2Mn1/2〇2_zLiMg1/2Mn1/2〇2- (1-x-y-z) LiCoC^a以變形,則可一意地獲得式Ul+(x/3) C〇i-x-y-zNiy/2Mgz/2Mn (2X/3) + (y/2) + (z/2) 〇2。此處,本發明是 一種鋰二次電池用活性物質,其含有具有a_NaFe〇2型結晶 構造的鋰過渡金屬複合氧化物的固溶體,且該鋰二次電池 用活性物質的特徵在於:上述固溶體所含有的金屬元素的 組成比率滿足 Li1+ (x/3) Cok.yJSiiMMg^Mn (2x/3) + (y/2) + (z/2) (x&gt;0、y&gt;〇、z&gt;〇、x + y + z&lt;l),具有可歸屬於空間群 P3!12的X射線繞射圖案’且具有超過2〇〇 mAh/g的放電 電容。 如後述的比較例所示,即便是滿足上述金屬元素的組 成比率、且具有可歸屬於空間群P3ll2的X射線繞射圖案 的活性物質,有時放電電容亦為2〇〇mAh/g以下,而本發 明是於上述活性物質十,限定於由後述充放電循環試驗所 得的放電電容超過200 mAh/g的活性物質。 為了使上述活性物質具有超過200 mAh/g的放電電 15 201125195 容,煅燒溫度的影響大,藉由將滿足上述金屬元素的組成 比率的裡過渡金屬複合氧化物的固溶體於超過9〇〇它的溫 度、例如920C以上的溫度下煅燒,可獲得具有超過2〇〇 mAh/g的放電電容的活性物質。若煅燒溫度超過⑴⑻艽, 則有時無法獲得具有可歸屬於空間群1&gt;3112的乂射線繞射 圖案的活性物質,故較佳為1000°c以下。 本發明首次發現,於將上述含有Mg的鋰過渡金屬複 合氧化物的固溶體製成具有超過2〇〇 mAh/g的大的放電電 容的活性物質時,高率放電特性亦顯著提高。 滿足上述金屬元素的組成比率、且具有可歸屬於空間 群P3!12的X射線繞射圖案的活性物質就特性的觀點來 看,例如於由X射線繞射測定所得的(〇〇3)面與(114) 面的繞射波峰的強度比為15時,及/或(〇〇3) 面的繞射波峰的半高寬為〇.15。以下、且(114)面的繞射 波峰的半高寬為0.25。以下時,具有超過200 mAh/g的放電 電容。 ^通常’若經由烺燒步驟來合成具有a-NaFe02型結晶構 造=過渡金屬複合氧化物,鑛實際獲得的化合物進行 刀析而求出元素組成比,則事實上可知,與根據原料 的=加組成比而計算的組成相比有稍許(5%左右)變動。 资本發明可於不偏離其技術思想或主要特徵的情 况下實施,不應解釋為藉由合成而獲得的物質僅由於組成 不與上述組成式嚴格一致而不屬於本發明之範圍。特別是 關於Li量,已知於煅燒步驟中容易揮發。另外,氧原子的 201125195 係數亦可根據合成條件等而變動,並非嚴格限定於2的情 況不應解釋為由於氧缺損而不屬於本發明的範圍。再者, j發明t,規定金屬元素組成比的上述式中不規定氧的係 數。 另外’本發明的活性物質亦可含有Li、Co、Ni、Μη、 Mg、Ο以外的元素’於含有Li、c〇、奶、Μη、叫、〇以 外::素時’本發明的活性物質亦要求構成上述固溶體的 1中’ ^、Co、Ni、Μη及Mg的價數分別滿足以+、 、Μη4+、Μ§2+的價數條件。再者,伴隨著電池 的^放電而活性物質中的Li量變化,並且過渡金屬的價數 亦^化’但即便是自充放電深度不㈣電池所採取的活性 物質’亦可藉由感應耦合電漿(恤心咖 d P1a_ ’ ICP)發光分光分析、χ射線繞射測定、氧量分析 ”而得知合成了該活性物質時的包含u的金屬元 =因此’可判疋§亥活性物質是否屬於本發明的技術 範圍。 此 j,將 LiCo〇2 粉末、LiNii/2Mni 2〇2 粉末、 邮〜鋒的抑2粉末等簡單地製成混合物的粉體不可當作 η「固溶體」。該些材料的單品由於進行χ射線繞 射測疋時所觀察到的各晶格常數所對應的波峰位置各不相 同’故^對該些簡單的混合物進行χ射線繞射測定,則可 獲得各單品所對應的繞射圖案。 此處藉由選擇1/3&lt;χ&lt;2/3的範圍的值作為X,於將 所合成的材料用作鐘二次電池用活性物質時可表現出相對 201125195 較H電電容’故較佳。x或y的值可考慮欲採用該链 =電^活性物質的電池f求何種電池特性而適當選 旦為二:、1與Mg量相關,但如後述實例所示,即便Mg ίί二Γ Mg的情形相比亦顯著發揮提高放電 數:化二二2 ’Mg由於即便進行充放電亦不發生價 艾4剩έ有無益,較佳為不過分地大量含有。使 ζ ·?值5仃各觀化時的本發明的絲的表現方式是根據 Χ ί y的值而不同’故只要根據電池設計來決定採用的X、 ’然後相對於該Χ、Υ的值根據上述技術思想使z的 值適當的z的值即可4 了使放電電容提高, 車父佳為 0&lt;y&lt;2/3、〇&lt;z〈〇 3。 如上所述,藉由「一種鐘二次電池用活性物質,其含 有八有aNaFe〇2型結晶構造的鐘過渡金屬複合氧化物的 固溶體,且上述m溶體所含有的金屬元素驗成比率滿足 LH+ (χ/3) Co^^Ni^Mg^Mn (2x/3) + (y/2) + (z/2) ( x&gt; 〇 , y &gt; 〇 . Z&gt;0、X + y+z&lt;1)」,可表現出高的放電電容;而於本發 明中,為了使放電電容及高率放電雜顯著提高,而使上 述鐘過渡金屬複合氧化物的JU溶體具有可歸屬於空間群 Phu的X射線繞射圖案,使由χ射線繞射測定所得的 (003)面與(114)面的繞射波峰的強度比為j (〇〇3) /工 (114) $1.15,及/或使(〇〇3)面的繞射波峰的半高寬為 0.15。以下、錢(114)面的繞射波峰的半高寬為〇25。以 下。 再者,本發明的上述固溶體的χ射線繞射圖可歸屬於 201125195 空間群P3J2’但亦並非不可能歸屬於空間群R3卬 歸屬於㈣群!&gt;3ll2時的上述(114)面的繞射波峰^寺’ 於空間群R3-4必須另稱為「(104)面的繞射波♦屬 處,關於空間群的表述,「R3_m」原本應於「3」上」, 橫線(ba〇「_」來表述,但本說明書巾為 為「R3-m」。 义兄而表达 使用本發明的鋰二次電池用活性物質,於使用時,艮 便採用充電時的正極的最大到達電位為4 3 V(vs U几, 下的充電方法’為了製造可取出充分的放電電容的鍾二 電池,重要的亦是如下述,於該鐘二次電池的製造步^ 設置考慮到本發明的鐘二次電池用活性物質的特徵 _ 為的充電步驟。即’與專利文獻3中記载的鐘二次電也= 活性物質相同,關於本發明的含有Mg _二次電池 性物質,亦是若將其用於正極並持續進行恆定電流充電, 則如後述實例所示,於正極電位4 3 v〜4 8v的範圍中於 相對較長期間内觀察到電位變化相對較平坦的區域。、 此處,本發明是一種鋰二次電池的製造方法,其是浐 用充電時的正極的最大到達電位為4.3 V(vs. Li/Li+)以^二 充電方法的用以製造上述鋰二次電池的製造方法,其特微 在於包括以下步驟:進行超過4 3 V(vs Li/Li+)、且為48^ 以下(vs. Li/Li+)的正極電位範圍内出現的電位變化至少 到相對較平坦的區域的充電。 此處,電池完成前的初期充放電步驟的充電必須進疒 到至少達到上述電位平坦區域為止。該電位平坦區域相2 19 201125195 (例如1()〇mAh/gJ^上)持續,故較好的是以儘可 1!由_程的方式持續充電。另外,於由於電位 而=察到該電解坦區朗終點時,亦可據此而設定為充 電,止條件,亦可根據採用恆定電流恆定電壓充電而電漭 值衰減至②定值為止,定為充電終止條件。 [發明的效果] 根據本發明’可提供一種放電電容大、且高率放 性優異的鋰二次電池用活性物質。 明如下 為讓本發明之上述和其他目的、特徵和優點能更明顯 ,下文特舉較佳實施例,並配合所附圖式,作詳細說 【實施方式】 明。對製造本發明_二次電池用活性物質的方法加以說 戈而明!!鐘二次電池用活性物f基本上可藉由以下 二、=·十於構成活性物質的金屬元素ai、Mn、c。 右的馬⑹目“活性物質(氧化物)的組成般調整所' 並對其進行锻燒。其中,關於Li原料的量,: ^作^料的—部分消失’故過剩添加1 %〜5%左^A solid solution of four components of Li[Li1/3Mn2/3]02, LiNi1/2Mn1/2〇2, LiCo02, and LiMg1/2Mn1/2〇2 is provided. That is, by considering a solid solution xLi[Lii/3Mn2/3]〇2-yLiNii/2Mn1/2〇2-zLiMg1/2Mni/2〇2-(1 -xyz) LiCo〇2 (x>0, y&gt; 〇, z &gt; 〇, x + y + z &lt; l) and arbitrarily select x, y and z 'The theoretical valence of each metal element present in the transition metal site of the a_NaFe02 type crystal structure is Li1+, Co3+, Ni2+ Mn4+, Mg2+ 〇 right' The above formula xLi[Li1/3Mn2/3]02-yLiNi1/2Mn1/2〇2_zLiMg1/2Mn1/2〇2-(1-xyz) LiCoC^a is deformed, which can be obtained Formula Ul+(x/3) C〇ixy-zNiy/2Mgz/2Mn (2X/3) + (y/2) + (z/2) 〇2. Here, the present invention is an active material for a lithium secondary battery, which comprises a solid solution of a lithium transition metal composite oxide having a crystal structure of a_NaFe〇2 type, and the active material for a lithium secondary battery is characterized by the above The composition ratio of the metal element contained in the solid solution satisfies Li1+(x/3) Cok.yJSiiMMg^Mn(2x/3) + (y/2) + (z/2) (x&gt;0, y&gt;〇, z&gt ; 〇, x + y + z &lt; l), having an X-ray diffraction pattern ' attributable to the space group P3! 12 and having a discharge capacitance exceeding 2 mAh/g. As shown in the comparative example described later, even if the active material satisfies the composition ratio of the metal element and has an X-ray diffraction pattern that can be attributed to the space group P3ll2, the discharge capacity may be 2 mAh/g or less. In the present invention, the active material is limited to an active material having a discharge capacity of more than 200 mAh/g obtained by a charge and discharge cycle test described later. In order to make the above-mentioned active material have a discharge electric current of more than 200 mAh/g, the influence of the calcination temperature is large, and the solid solution of the inner transition metal composite oxide satisfying the composition ratio of the above metal elements is more than 9 〇〇. Its temperature, for example, calcination at a temperature of 920 C or higher, can obtain an active material having a discharge capacity of more than 2 mAh/g. When the calcination temperature exceeds (1) (8) Å, an active material having a x-ray diffraction pattern attributable to the space group 1 &gt; 3112 may not be obtained, and therefore it is preferably 1000 ° C or less. The present inventors have found for the first time that when the solid solution of the above-mentioned Mg-containing lithium transition metal complex oxide is made into an active material having a large discharge capacity of more than 2 mAh/g, the high rate discharge characteristics are remarkably improved. From the viewpoint of satisfying the composition ratio of the above-described metal element and having an X-ray diffraction pattern attributed to the space group P3! 12, for example, the (〇〇3) surface obtained by X-ray diffraction measurement When the intensity ratio of the diffraction peak to the (114) plane is 15, the half-height of the diffraction peak of the (〇〇3) plane is 〇.15. The half-height width of the diffraction peak of the following (114) plane is 0.25. The following has a discharge capacitance of more than 200 mAh/g. ^Generally, if a compound having an a-NaFe02 type crystal structure = transition metal composite oxide is synthesized by a calcination step, and the compound actually obtained by the ore is subjected to knife analysis to determine the elemental composition ratio, it is actually known that There is a slight (about 5%) change in the composition calculated from the composition ratio. The capital invention may be carried out without departing from its technical idea or main features, and it should not be construed that the material obtained by synthesis is not within the scope of the invention only because the composition is not strictly consistent with the above composition. In particular, regarding the amount of Li, it is known that it is easily volatilized in the calcination step. Further, the 201125195 coefficient of the oxygen atom may vary depending on the synthesis conditions and the like, and the case where it is not strictly limited to 2 should not be construed as being in the range of the present invention due to the oxygen deficiency. Further, j is t, and the coefficient of oxygen is not defined in the above formula in which the metal element composition ratio is specified. In addition, the active material of the present invention may contain an element other than Li, Co, Ni, Μη, Mg, or yttrium containing "Li, c〇, milk, Μη, 〇, 〇::" It is also required that the valences of '^, Co, Ni, Μ, and Mg in the first solid solution constituting the solid solution satisfy the valence conditions of +, Μ, 44+, and Μ§2+, respectively. Furthermore, the amount of Li in the active material changes with the discharge of the battery, and the valence of the transition metal is also improved, but even if the self-charge and discharge depth is not (four) the active substance taken by the battery can also be coupled by inductive coupling. The plasma contains the metal element of u when the active material is synthesized, so that it can be judged as the active substance of the 疋 亥 活性 活性 活性 1 1 1 1 1 1 1 ICP ICP ICP ICP 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成 合成Whether it is within the technical scope of the present invention. This j, a powder which is simply a mixture of LiCo〇2 powder, LiNii/2Mni 2〇2 powder, postal-feng 2 powder, etc. cannot be regarded as a η "solid solution". . The individual materials of these materials have different peak positions corresponding to the respective lattice constants observed during the ray-ray diffraction measurement. Therefore, it is possible to perform the χ-ray diffraction measurement on the simple mixtures. The diffraction pattern corresponding to each item. Here, by selecting the value of the range of 1/3 &lt; χ &lt; 2/3 as X, it is preferable to use the material synthesized as the active material for the clock secondary battery as compared with the 201125195 H capacitance. . The value of x or y can be determined by considering the battery characteristics of the battery to be used for the chain = electroactive substance, and the appropriate selection is two: 1, and the amount of Mg is related, but as shown in the example below, even if Mg ίί In the case of Mg, the number of discharges is also remarkably improved. Since the second two 2'Mg does not occur, even if it is charged and discharged, it is not useful, and it is preferably not excessively contained. The expression of the yarn of the present invention at the time of ζ·? value is different depending on the value of Χί y. Therefore, it is necessary to determine the value of X, 'and then the value of Χ and Υ according to the design of the battery. According to the above technical idea, the value of z which is appropriate for the value of z can be increased by 4, and the vehicle father is 0 &lt; y &lt; 2 / 3, 〇 &lt; z < 〇 3. As described above, the "active material for a secondary battery contains a solid solution of a clock transition metal composite oxide having an aNaFe〇2 type crystal structure, and the metal element contained in the above m solution is tested. The ratio satisfies LH+(χ/3) Co^^Ni^Mg^Mn (2x/3) + (y/2) + (z/2) ( x&gt; 〇, y &gt; 〇. Z&gt;0, X + y +z&lt;1)", which can exhibit a high discharge capacity; in the present invention, in order to significantly increase the discharge capacitance and the high rate discharge impurity, the JU solution of the above-mentioned clock transition metal composite oxide has a function attributable to The X-ray diffraction pattern of the space group Phu is such that the intensity ratio of the diffraction peaks of the (003) plane and the (114) plane obtained by the x-ray diffraction measurement is j (〇〇3) / (114) $1.15, and / or the half-height of the diffraction peak of the (〇〇3) plane is 0.15. Hereinafter, the full width at half maximum of the diffraction peak of the money (114) plane is 〇25. the following. Furthermore, the x-ray diffraction pattern of the above solid solution of the present invention can be attributed to the 201125195 space group P3J2' but it is not impossible to belong to the space group R3 卬 to the (four) group! &gt;3ll2, the diffraction peak of the (114) plane is the other part of the space group R3-4. The space of the (104) plane is the genus of the diffraction wave, and the expression of the space group, "R3_m" In the case of "3", the horizontal line (ba〇 "_" is used, but the specification sheet is "R3-m". The active material for the lithium secondary battery of the present invention is expressed by the use of the present invention. , 艮 采用 采用 采用 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电 充电In the manufacturing process of the secondary battery, the charging step of the active material for the clock secondary battery of the present invention is considered. That is, the same as the active material of the clock secondary electric power described in Patent Document 3, the present invention is Containing a Mg_secondary battery substance, if it is used for a positive electrode and continuous constant current charging, as shown in the later example, in a range of positive electrode potentials 4 3 v to 4 8 v for a relatively long period of time A region in which the potential change is relatively flat is observed. Here, the present invention A method for producing a lithium secondary battery, which is a method for producing the above-described lithium secondary battery by using a maximum electric potential of a positive electrode at the time of charging, which is 4.3 V (vs. Li/Li+) The special feature consists in the steps of performing a charge change occurring in a positive electrode potential range of more than 4 3 V (vs Li/Li+) and below 48^ (vs. Li/Li+) to at least a relatively flat region. Here, the charging of the initial charging and discharging step before the completion of the battery must be performed until at least the potential flat region is reached. The potential flat region phase 2 19 201125195 (for example, 1 () 〇 mAh / g J ^) continues, so it is better It can be continuously charged by the method of _ Cheng. In addition, when the end point of the electrolysis zone is detected due to the potential, the charging can be set accordingly, and the constant current can be used according to the condition. According to the present invention, it is possible to provide an active material for a lithium secondary battery having a large discharge capacity and a high rate of release, by the constant voltage charging and the electric enthalpy value being attenuated to a constant value of 2. Ming as follows The above and other objects, features and advantages of the present invention will become more apparent from the aspects of the preferred embodiments of the invention. The method is to say that the active material f of the secondary battery can basically be composed of the following two elements, ie, a metal element ai, Mn, c constituting the active material. Right horse (6) mesh "active material (oxidation) The composition of the material is adjusted in the same way and burned. Among them, regarding the amount of Li raw material, : ^ is the part of the material disappeared - so the excess is added 1 % ~ 5% left ^

Mn、If 2組成的氧化物時,已知有:將Li、Co、Ni 謂「固相法― 豆中蔣T.Biw人〇 Ni Mn、Mg的共沈澱前驅物,;j 寻別疋Mn相對於Co、Ni而難以均勻地[ 20 201125195 迄今 或Co f ’故難以獲得各元素於—粒子中均句分布的試樣( ^止’於文獻等中已大量進行了欲藉由固相法於Nl 的一部分中固溶·的嘗試(LiNilxMnx02等),但選擇「丘 沈殿法」更容易以原子水準獲得均勻相。因此,於^ 例中採用「共沈驗」。再者,此種前驅物驗佳製作方法 例如參考專利文獻2的記載。 ' 、於製作共沈殿前驅物時,使欲獲得共沈澱前驅物的溶 液中為惰性環境極為重要。其原因在於,c。、Ni、恤、 Mg中Μη容易被氧化,不易製作c〇、见、Mn、心以2 價的狀態均勻分布的共沈殺氫氧化物,因此Co、Ni、Mn、 Mg的原子水準的均勻混合容易變得不充分。特別是於本 發明的組成範圍中,由於Μη比率高於c〇、Ni比率,故 使溶液中為惰性環境更為重要。後述實例中,於水溶液中 將惰性氣體鼓泡(bubbling)而去除溶存氧,進而同時滴 加還原劑。 供於上述煅燒的前驅物的調整方法並無限定。可將Li 化合物、Μη化合物、Ni化合物、c〇化合物及Mg化合物 單獨混合,亦可於溶液中使含有過渡金屬元素的氫氧化物 共沈殿,並將其與Li化合物混合。為了製作均勻的複合氧 化物,較佳為將Mn、Ni、Co及Mg的共沈殿化合物與Li 化合物混合並進行煅燒的方法。 關於上述共沈殿氫氧化物前驅物的製作,較佳為將 Mn、Ni、Co及Mg均勻混合而成的化合物。其中,前驅 物不限定於氫氧化物,除此以外,只要為碳酸鹽、檸檬酸 21 201125195 鹽等元素以原子水準均勻存在的難溶性鹽,則可與氫氧化 物同樣地使用。另外,亦可藉由使用利用錯合劑的晶析反 應等,而製作體積密度更大的前驅物。此時,由於可藉由 與Li源混合•煅燒而獲得更高密度且比表面積小的活彳1物 質,故可使單位電極面積的能量密度提高。 關於上述共沈澱氫氧化物前驅物的原料,Mn化合物 可列舉氧化錳、碳酸錳、硫酸錳、硝酸錳、乙酸錳等作為 一例,Ni化合物可列舉氫氧化鎳、碳酸鎳、硫酸鎳、硝酸 鎳、乙酸鎳等作為一例,Co化合物可列舉硫酸鈷、硝酸鈷、 乙酸鈷等作為一例,Mg化合物可列舉硫酸鎂、硝酸鎂、 乙酸鎮等作為一例。 關於用於製作上述共沈澱氫氧化物前驅物的原料,只 要可與鹼性水溶液形成沈澱反應,則任意形態均可使用, 較佳為使用溶解度高的金屬鹽。 斤本發明的鋰二次電池用活性物質可藉由將上述共沈澱 氫氧化物前驅物與Li化合物混合後進行熱處理而合適地 製作。可藉由使用氫氧化裡、碳酸鐘、石肖酸鐘、乙酸鐘等 作為Li化合物而合適地製造。 於獲得放電電容顯著提高的活性物質時,般燒溫度的 選擇極為重要。 如後述實例般’藉由將锻燒溫度設定為92〇°C〜 ioooc,「固溶體所含有的金屬元素的組成比率滿足Lii+ (χ/3) C〇1.x.y.2Niy/2Mgz/2Mll(2x/3) + (y/2) + (z/2) (χ&gt;〇 - y&gt;〇 χ z &gt;〇、x + y + z&lt;1)的」鋰過渡金屬複合氧化物的固溶體具 22 201125195 =:彳 應而崩r t 質伴隨著氧釋放反In the case of oxides composed of Mn and If 2, it is known that Li, Co, and Ni are referred to as "solid phase method - co-precipitation precursor of T. Biw human 〇 Ni Mn, Mg, and j; It is difficult to uniformly obtain a sample with a uniform distribution of each element in the particle with respect to Co and Ni [20 201125195 to date or Co f ' ( ^ 止 ' has been extensively carried out in the literature and the like by solid phase method Attempts to dissolve in a part of Nl (LiNilxMnx02, etc.), but it is easier to obtain a homogeneous phase at the atomic level by selecting the "Qiu Shen Dian Method". Therefore, the "common test" is used in the example. Again, this precursor For example, referring to the description of Patent Document 2, it is extremely important to make an inert environment in a solution for obtaining a coprecipitation precursor in the production of a pre-precipitate precursor. The reason is that c, Ni, shirt, In the Mg, Μη is easily oxidized, and it is difficult to produce a co-precipitated hydroxide which is uniformly distributed in a state in which c〇, Mn, and the core are uniformly distributed in a valence state. Therefore, uniform mixing of atomic levels of Co, Ni, Mn, and Mg is likely to become impossible. Sufficient, especially in the composition range of the present invention, due to the high ratio of Μη In the ratio of c〇 and Ni, it is more important to make the solution inert in the solution. In the following examples, the inert gas is bubbling in an aqueous solution to remove dissolved oxygen, and the reducing agent is simultaneously added dropwise. The method for adjusting the precursor is not limited. The Li compound, the Μ 化合物 compound, the Ni compound, the c 〇 compound, and the Mg compound may be separately mixed, or the transition metal element-containing hydroxide may be co-precipitated in the solution, and the The Li compound is mixed. In order to produce a uniform composite oxide, a method in which a common compound of Mn, Ni, Co, and Mg is mixed with a Li compound and calcined is preferably used. A compound obtained by uniformly mixing Mn, Ni, Co, and Mg is preferable. The precursor is not limited to a hydroxide, and other elements such as a carbonate and a citric acid 21 201125195 salt are uniformly present at an atomic level. The poorly soluble salt can be used in the same manner as the hydroxide. Further, it is also possible to produce a bulk density by using a crystallization reaction using a complexing agent or the like. At this time, since the living substance 1 having a higher density and a smaller specific surface area can be obtained by mixing and calcining with the Li source, the energy density per unit electrode area can be increased. Examples of the raw material of the material include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, and manganese acetate. Examples of the Ni compound include nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate, and the like, and Co. Examples of the compound include cobalt sulfate, cobalt nitrate, and cobalt acetate. Examples of the Mg compound include magnesium sulfate, magnesium nitrate, and acetic acid. The raw material for preparing the coprecipitated hydroxide precursor is preferably a base. The aqueous solution can be used in any form, and it is preferred to use a metal salt having a high solubility. The active material for a lithium secondary battery of the present invention can be suitably produced by mixing the above-mentioned coprecipitated hydroxide precursor with a Li compound and then heat-treating it. It can be suitably produced by using a hydroxide, a carbonic acid clock, a sulphuric acid clock, an acetic acid clock or the like as a Li compound. When obtaining an active material with a significantly increased discharge capacitance, the choice of the firing temperature is extremely important. By setting the calcination temperature to 92 ° ° C to ioooc as described later, "the composition ratio of the metal element contained in the solid solution satisfies Lii + (χ / 3) C〇1.xy2Niy/2Mgz/2Mll ( 2x/3) + (y/2) + (z/2) (χ&gt;〇- y&gt;〇χ z &gt;〇, x + y + z&lt;1)" solid solution of lithium transition metal composite oxide With 22 201125195 =: 彳 而 而 rt quality accompanied by oxygen release

Li[Li1/3Mn2/3]〇2型所規定、六方晶以外單斜晶的 觀察到的傾向,L 成為固溶相’而有分相而 地減少,故欠佳活性物質的可逆電容大幅度 45。附近觀察職X射線繞射圖上35。附近及 小於活性物質的氧釋放反^,▲燒溫度重要的是設定為 氧釋放溫度於本發明的組;= = == 氧=度有稍許偏差,故較佳 槐所含的Γη I,釋溫度。特別是由於雄認到試 移,故必項、'主則前驅物的氧釋放溫度越往低溫側 的氧釋放溫度的方法, L_2〇的混合物供於熱重量分析:共二:)物: :=定樣揮發…Li[Li1/3Mn2/3]〇2 type, the tendency to observe monoclinic crystals other than hexagonal crystals, L becomes a solid solution phase and decreases in phase, so the reversible capacitance of poor active materials is large. 45. Observe the X-ray diffraction pattern on the nearby 35. The oxygen release near and below the active material is reversed, and the temperature of the burn is important to set the oxygen release temperature to the group of the present invention; = = == The oxygen = degree has a slight deviation, so the Γη I contained in the 槐 is better, temperature. In particular, because the male recognizes the test shift, it is necessary to use the method of 'the main oxygen release temperature of the precursor to the oxygen release temperature of the low temperature side. The mixture of L_2〇 is used for the thermogravimetric analysis: a total of two:): := Sample volatilization...

尤女·心“綠好的是將減採用50(TC 某軸度的結晶化的組成物供於熱 r上:面:般燒溫度過低,則結晶化未充分進行, Ιϋ’由X射線繞射測定所得的(〇〇3)面* (1 4)面的繞射波峰的強度比為1(_〜)&lt;115,放 23 201125195 電電容降低,故欠# 少900¾以上 佳。本發明中’煅燒溫度必須設定為至 進順暢行結晶化對於減輕晶界的阻抗、促 法可列舉制掃^Γ較為重要。結晶化减的辨別方 ^ 式電子顯微鏡的視覺觀察。對本發明的 、、θ卢Λ snn。進仃掃描式電子顯微鏡觀察時,若試樣合成 =進=:’則試樣是由奈米級的-次粒子形成, 喊樣合成溫度緒晶化至:欠微米程度為 止,而麟伴有電極特性提昇的大的-次粒子。 γ λ方面,表示結晶化程度的另一標準有上文所述的 六、、’ Ί鱗的半高寬。本發明中,為了提高不僅放電 谷而且阿率放電特性,較佳為於歸屬於空間群Ρ3! 12的 '射線繞射圖中使(GG3)面的繞射波峰的半高寬為〇 15。 以下’且使(114)面的繞射波峰的半高寬為〇25。以下。 (〇〇3)面的繞射波峰的半高寬更佳為〇14。〜〇15。,(114) 面的繞射波峰的半高寬更佳為0.23。〜0.25。。 為了使(003)面的繞射波峰的半高寬為〇15。以下、 (114)面的繞射波峰的半高寬為〇25。以下,亦必須提高 烺燒溫度。 如上所述,較佳煅燒溫度是根據活性物質的氧釋放溫 度而不同,難以一概地設定煅燒溫度的較佳範圍,但若較 佳為900°C〜l〇5〇t:,更佳為920°C〜1〇00。(:,則可發揮高 的特性。 繞射波峰的半高寬是由表示晶格的失配程度的變形 量、及作為最小域(domain)的微晶(crystallite)尺寸兩 24 201125195 個因素所支配,為了根據半高寬來辨別結晶性程度,必須 分別把握。發明者們藉由詳細分析本發明活性物質的半高 寬而確認到’於8〇〇QC以下的溫度下合成的試樣中,於晶 格内殘存變形,藉由在該溫度以上的溫度下合成,可幾乎 去除變形。糾,微晶的尺寸與合成溫度的上升成比例地 變大。因此,本發明活性物質的組成亦於系内幾乎無格子 的隻开y,且曰在形成微晶尺寸充分成長的粒子,由此可獲 得良好的放電電容。具體而言可知,較佳為採用影響晶格 常數的變形量為1%以下、且微晶尺寸成長至15〇nm以上 的合成溫度(煅燒溫度)。藉由將該些活性物質成型為電極 並進行充放電,亦可見由膨脹收縮引起的變化,充放電過 程中亦是微晶尺寸保持130 nm以上於所得效果方面而言 較佳。即,藉由以儘可能接近上述活性物質的氧釋放溫度 的方式選擇煅燒溫度,方可獲得可逆電容明顯大的活性物 質。 本發明的鋰二次電池所用的非水電解質並無限定,可 使用通常提出用於鋰電池等的非水電解質。非水電解質所 用的非水溶劑可列舉:碳酸丙二酯(pr0pylene carbonate )、 碳酸乙二酯、碳酸丁二酯、碳酸氣乙二酯(chloroethylene carbonate)、碳酸乙烯酯等的環狀碳酸酯類;γ_丁内酉旨 (γ-butyrolactone )、γ-戊内酯等環狀酯類;碳酸二曱酯、 碳酸二乙酯、碳酸酯乙基曱基等的鏈狀碳酸酯類;曱酸曱 酯、乙酸曱酯、丁酸曱酯等的鏈狀酯類;四氫呋鳴 (tetrahydro furan)或其衍生物;1,3-二噁烷(l,3-dioxane)、 25 201125195 1,4-二0惡炫、1,2-二曱氧基乙烧(1,2-dimethoxy ethane)、1,4-二丁氧基乙烧、二乙二醇二甲_ (methyl diglyme)等的謎 類;乙腈(acetonitrile )、苯曱腈等的腈類;二氧戊環 (dioxolane)及其衍生物;環硫乙烷(ethylene sulfide)、 環丁礙(sulfolane )、續内酯(sultone )及其衍生物等的單 獨或該些的兩種以上的混合物等,但不限定於該些溶劑。尤女·心 “Green is better to use 50 (TC crystallization of a certain degree of composition for the heat r: surface: the temperature is too low, the crystallization is not fully carried out, Ιϋ 'by X-ray The intensity ratio of the diffraction peak of the (〇〇3) plane* (1 4) plane obtained by the diffraction measurement is 1 (_~) &lt; 115, and the capacitance of the 201125195 is lowered, so the less than the less than 9003⁄4 is better. In the invention, the calcination temperature must be set so as to smoothly crystallize, and it is important to reduce the impedance of the grain boundary, and the promotion method is more important. The crystallization loss is determined by visual observation of the electron microscope. θ Λ s snn. When scanning electron microscope observation, if the sample is synthesized = in = ', the sample is formed by nano-order particles, and the synthesis temperature is crystallized until: In addition, in the aspect of γ λ, another standard indicating the degree of crystallization is the above-mentioned six-, half-height width of the Ί scale. In the present invention, in order to improve Not only the discharge valley but also the A-rate discharge characteristics, preferably the 'shots belonging to the space group Ρ3! In the diffraction pattern, the full width at half maximum of the diffraction peak of the (GG3) plane is 〇15. The following is the case where the half-height width of the diffraction peak of the (114) plane is 〇25 or less. (〇〇3) The full width at half maximum of the diffraction peak is preferably 〇14. 〇15., (114) The full width at half maximum of the diffraction peak is preferably 0.23. ~0.25. To make the diffraction peak of the (003) plane The full width at half maximum is 〇15. The full width at half maximum of the diffraction peak of the (114) plane is 〇25. Below, the temperature of the sinter is also increased. As described above, the preferred calcination temperature is based on the oxygen release temperature of the active material. However, it is difficult to set the preferred range of the calcination temperature, but it is preferably 900 ° C to l 〇 5 〇 t:, more preferably 920 ° C to 1 〇 00. (:, can exhibit high characteristics The full width at half maximum of the diffraction peak is governed by the amount of deformation indicating the degree of mismatch of the crystal lattice, and the crystallite size as the minimum domain. The factors are determined according to the factor of the semi-high width. The degree of crystallinity must be separately grasped. The inventors confirmed by the detailed analysis of the full width at half maximum of the active material of the present invention. In the sample synthesized at a temperature lower than C, deformation is left in the crystal lattice, and the deformation can be almost removed by synthesis at a temperature higher than the temperature. Correction, the size of the crystallite becomes larger in proportion to the increase in the synthesis temperature. Therefore, the composition of the active material of the present invention is also only y in the system, and y is formed into particles having a sufficiently large crystallite size, whereby a good discharge capacity can be obtained. Specifically, it is preferred that A synthesis temperature (calcination temperature) in which the amount of deformation affecting the lattice constant is 1% or less and the crystallite size is increased to 15 Å or more. The active material is formed into an electrode and charged and discharged, and expansion is also observed. The change caused by shrinkage is also preferable in that the crystallite size is maintained at 130 nm or more in the charge and discharge process. Namely, by selecting the calcination temperature as close as possible to the oxygen release temperature of the above-mentioned active material, an active material having a reversible capacitance significantly large can be obtained. The nonaqueous electrolyte used in the lithium secondary battery of the present invention is not limited, and a nonaqueous electrolyte which is generally proposed for use in a lithium battery or the like can be used. Examples of the nonaqueous solvent used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and ethylene carbonate. ; γ-butyrolactone, γ-valerolactone and other cyclic esters; chain carbonates such as dinonyl carbonate, diethyl carbonate, carbonate ethyl fluorenyl; Chain esters such as decyl ester, decyl acetate, decyl butyrate; tetrahydrofuran or its derivatives; 1,3-dioxane, 25 201125195 1, 4-dimethoxy ethane, 1,2-dimethoxy ethane, 1,4-dibutoxyethane, methyl diglyme, etc. Mysteries; nitriles such as acetonitrile and benzoquinone; dioxolane and its derivatives; ethylene sulfide, sulfolane, and sultone And a derivative thereof, or the like, or a mixture of two or more of them, but is not limited to the solvents.

非水電解質所用的電解質鹽例如可列舉:LiC104、 LiBF4、LiAsF6、LiPF6、LiSCN、LiBr、Lil、Li2S04、 Li2B10Cl10、NaC104、Nal、NaSCN、NaBr、KC104、KSCN 等的含有鋰(Li)、鈉(Na)、鉀(K)中的一種的無機離 子鹽;LiCF3S03、LiN(CF3S02)2、LiN(C2F5S02)2、 LiN(CF3S02)(C4F9S02)、LiC(CF3S02)3、LiC(C2F5S02)3、 (CH3)4NBF4、(CH3)4NBr、(C2H5)4NC104、(C2H5)4NI、 (C3H7)4NBr、(n-C4H9)4NC104、(n-C4H9)4NI、順丁 烯二酸 -(C2H5)4N ( (C2H5)4N-maleate ) ' 苯曱酸-(C2H5)4N ((C2H5)4N-benzoate ) 、 酞酸-(C2H5)4N ((C^HAN-phtalate)、硬脂基礦酸链、辛基績酸鐘、十二 烷基苯磺酸鋰等的有機離子鹽等,該些離子性化合物可單 獨使用或混合使用兩種以上。 進而,藉由將LiBF4與LiN(C2F5S02)2之類的具有全氟 烷基的鐘鹽混合使用,可進一步降低電解質的黏度,故可 進一步提尚低溫特性,另外可抑制自放電,更為理想。 另外’亦可使用常溫熔融鹽或離子液體作為非水電解 質。 26 201125195 關於非水電解質中的電解質鹽的濃度,為了可靠地獲 得具有高的電池特性的非水電解質電池’較佳為〇丨m〇1/1 〜更佳為 0 5m〇1/1〜25m〇iA。 ▲負極材料並無限定’只要是可析出或吸藏裡離子的形 態’則可任意選擇。例如可列舉:u叫瓜肌所代表的 具有大晶石型結晶構造的鈦酸鋰等的鈦系材料,Si或Sb、 Sn系專的合金系材料鐘金屬,叙合金(裡-石夕、裡-鋁、链_ ,、鋰_錫、鋰-鋁-錫、鋰-鎵及伍氏易溶合金(Wood's metal) 等的含鐘金屬的合金),链複合氧化物(裡-鈦),氧化石夕, 除此之外可列舉:可吸藏•釋放鋰的合金、碳材料(例如石 墨(graphite)、硬碳(hardcarb〇n)、低溫煅燒碳、非晶 等)等。 正極活性物質的粉體及負極材料的粉體較理想的是平 均粒子尺寸為100 μιη以下。特別是為了提高非水電解質 電池的向輸出特性,正極活性物質的粉體較理想的是 μιη以下 、 马了以特定形狀而獲得粉體,可使用粉碎機或 刀級機。例如可使用研钵、球磨機(bau miu)、砂磨機、 振動球磨機、行星式球磨機(planet ball mill)、噴射磨機、 反喷磨機(counter jet mill)、渦旋氣流型喷射磨機或篩等。 办碎時’亦可使用共存有水或己烧(hexane )等的有機、、容 劑的濕式粉碎。分級方法並無制限定,_或風力分級二 等的乾式、濕式均是視需要而使用。 以上’對作為正極及負極的主要構成成分的正極活性 物質及負極材料進行了詳述,上述正極及負極中,除了上 27 201125195 含有導電劑、結著劑、增黏劑、 是砂電池性能缝不㈣響的電子傳導 ’則並無限定’通常可包括天然石墨(鱗狀石墨、 二,石墨、土狀石墨等)、人造石墨、碳黑(C的⑽ ac、乙炔黑(acetylene black)、科琴黑(Ketjenblack)、 碳晶鬚(carbon whisker)、碳纖維、金屬(銅、鎳、鋁' 銀、金等)粉、金屬纖維、導電性喊材料等的導電性材 料的一種或該些的混合物。 該些中,就電子傳導性及塗佈性的觀點而言,導電劑 車乂理心的疋乙炔黑。相對於正極負極的總重量,導電劑的 添加量較佳為0·1 wt% (重量百分比)〜5〇 wt%,特佳為 0.5 wt%〜30 wt%。特別是若將乙炔黑粉碎成〇] μιη〜〇 5 μιη的超微粒子而使用,則可減少需要的碳量,故較理想。 該些成分的混合方法為物理混合,理想的是均勻混合。因 此,能以乾式或濕式將V型混合機、S型混合機、擂潰機、 球磨機、行星式球磨機之類的粉體混合機混合。 上述結著劑通常可使用聚四氟乙烯 (polytetrafluoroethylene,PTFE )、聚偏二氟乙烯 (polyvinylidene difluoride,PVDF)、聚乙烯、聚丙烯等的 熱塑性樹脂,乙烯-丙烯-二烯三元共聚物 (ethylene-propylene-diene tei^polymer,EPDM )、石黃化 EPDM、苯乙烯丁二烯橡膠(styrene-butadiene rubber, SBR)、氟橡膠等的具有橡膠彈性的聚合物的一種或兩種以 28 201125195 上的混合物。相對於正極負極的總重量,結著劑的添加量 較佳為1 wt%〜50 wt〇/0,特佳為2 wt%〜3〇 wt%。 里 填料只要為不對電池性能造成不良影響的材料,則可 為任意材料。通常可使用聚丙烯、聚乙歸等的烯煙系聚合 物,非晶形二氧化矽、氧化鋁、沸石、玻璃、碳等。、二 填料的添加量’相對於正極負極的總重量,添加 為 30wt%以下。 ?隹為 正極及負極是藉由以下方式而合適地製作:將上述主 要構成成分(正極為正極活性物質,負極為負極材料)及 其他材料混練成合劑,混合至N_曱基吡咯烷酮 (N-methyl_Pyrrolidinone)、曱苯㈤職e)等的有機溶劑 中後,將所得的混合液塗佈於下文將詳述的集電體上, 行壓接並於50。(:〜25(TC左右的溫度下進行2、小時左右的 加熱處理。上述塗佈方法例如較理想的是使用敷料棍 (applicator roll)等的輥塗佈、網版塗佈(似咖咖㈣)、 刮刀(doctorblade)方式、旋轉塗佈(spmc〇ating)、棒塗 機(bar coateO等的手段塗佈成任意的厚度及任意的形 狀,但不限定於此。 隔離膜(separator)較佳為將表現出優異的高率放電 性能的多孔膜或不織布科獨或併用。構成非水電解質電 池用隔離膜的材料例如可列舉:聚乙稀、聚丙烯等所代表 的聚稀烴系樹脂’聚對苯二甲酸乙二醋、聚對苯二甲酸丁 二醋等所代表的聚g旨系樹脂,聚偏二氟乙稀、偏二氣乙稀_ 六敦丙稀共聚物、偏二氟乙;乙縣㈣共聚物、偏二 29 201125195 氟乙烯-四氟乙婦共聚物、偏二氣乙烯_三氟乙婦共聚物、 偏一氟乙烯_氟乙埽共聚物、偏二氟乙稀-六氟丙酮共聚 物、偏^一氟乙稀_乙稀共聚物、偏二敗乙稀-丙婦共聚物、 偏二氟乙稀-二氟丙烯共聚物、偏二氟乙稀_四氟乙烯-六氟 丙烯共聚物、偏二氟乙烯-乙烯-四氟乙烯共聚物等。 隔離膜的空孔率就強度的觀點而言較佳為98 v〇l% (體 積百分比)以下。另外,就充放電特性的觀點而言,空孔 率較佳為20 vol%以上。 另外,隔離膜例如亦可使用由丙烯腈、環氧乙烧 (ethylene oxide)、環氧丙烷、甲基丙烯酸甲酯、乙酸乙烯 酯(vinyl acetate)、乙烯基吡咯烷酮、聚偏二氟乙烯等的 t合物與電解貝構成的聚合物凝膠。若如上述般以凝膠狀 態而使用非水電解質,則就有防止漏液的效果方面而言較 佳。 進而,隔離膜若將如上所述的多孔膜或不織布等與聚 合物凝膠併用而使用,則電解質的保液性提高,故較為理 想。即,藉由形成在聚乙烯微孔膜的表面及微孔壁面包覆 厚度數μιη以下的親溶劑性聚合物的薄膜,將電解質保持 於上述薄膜的微孔内,則上述親溶劑性聚合物形成凝膠。 上述親溶劑性聚合物除了聚偏二氟乙烯以外,可列舉 具有環氧乙烧基或S旨基等的丙稀酸g旨單體、環氧單體、具 有異氰酸酯基的單體等交聯而成的聚合物等。該單體可併 用自由基起始劑而使用加熱或紫外線(UV),或使用電子 束(EB)等的活性光線等來進行交聯反應。 201125195 級, ’具有正極、負極及 、扁平型電池等可列 一人蕙池的構成並無特別限定 輥狀隔離膜的圓筒型電池、方型電池 舉作一例。 / [實例1] (實例1-1) 物及=,五水合物、硫_六水合物、硫賴七水合 ==七水合物以CG、N1、Mn、Mg各元素成為12.5: 而IHH75 · 1312的比率的方式溶解於離子交換水中 m此時’使其合計濃度為G.667 mol/1, ft 0 ml。繼而’於1 L (升)的燒杯師〇中準 的離子交換水,使用熱水浴保持於贼,滴加8 ' aOH’藉此將ρΗ值調整為12 〇。於該狀態下使氯氣 (Ar)鼓'泡30 min,將溶液内的溶存氧充分去除。以轉速 啊對燒杯内進行攪拌,以3 ml/min的速度滴加上述 硫酸鹽的混合水溶液。其間,使賴水浴將溫度保持於— 定,並間斷地滴加8 N的NaOH,藉此將pH值保持於一定。 同時,以0.83 ml/min的速度滴加作為還原劑的濃度為2 〇 mol/Ι的肼(hydrazine)水溶液50 ml。兩者滴加結束後, 於停止攪拌的狀態下靜止12 h以上,使共沈澱氫氧化物充 分進行粒子成長。 再者,上述順序中若各溶液的滴加速度過快,則無法 以元素水準獲得均勻的前驅物。例如於將滴加速度設定為 上述速度的10倍時,前驅物中的元素分布明顯變得不均 勻。另外,於使用此種不均勻的前驅物合成活性物質時, 31 201125195 锻燒後的元素的分布亦變得不均勻,無法發揮充分的電極 特性。附帶而言,於藉由固相法使用Li〇H.H20、C〇C〇H)2、 Ni(OH)2、MnOOH、Mg(OH)2作為原料粉體時,則更不均 勻,故欠佳。 繼而,藉由抽氣過濾取出共沈澱產物,於空氣環境中、 常壓下利用烘箱於l〇〇°C下乾燥。乾燥後以使粒經一致的 方式利用直徑約為120 mm(p的研缽粉碎數分鐘,獲得乾燥 粉末。 藉由X射線繞射測定確認到,該乾燥粉末為P_Ni(〇H)2 型的單相。另外,藉由ΕΡΜΑ測定確認到c〇、Ni、Mn均 勻地分布。 以相對於金屬元素(Ni + Mn + Co + Mg)的Li量滿足 表1的實例1-1的組成式的方式稱量氫氧化鋰一水合物粉 末(LiOH,H2〇) ’進行混合而獲得混合粉體。 繼而,以6MPa的壓力對混合粉體進行顆粒(pellet) 成型。供於顆粒成型的前驅物粉末的量是以合成後的產物 的重量為3 g的方式換算而確定。結果,成型後的顆粒的 直徑為25 mmcp,厚度為約1〇 mm〜12 mm。將上述顆粒載 置於全長為約1〇〇 mm的氧化鋁製舟(b〇at)中,放入至 箱型電氣爐中,於空氣環境中、常壓下於1〇〇(rc下鍛燒12 h。上述箱型電氣爐的内部尺寸為縱向10 cm、寬度20 cm、 冰度30 cm,於寬度方向2〇 cm間隔間放入電熱線。煅燒 ^,切斷加熱器的開關,保持將氧化鋁製舟置於爐内的狀 悲而自然放置冷卻。結果,爐的溫度於5小時後下降至約 32 201125195 200°C左右,其後的降溫速度稍慢。經過一晝夜後,確認到 爐的溫度為100°C以下,然後取出顆粒,使用研缽而粉碎 成粒徑一致的程度。 關於所得的活性物質,其組成為Examples of the electrolyte salt used for the nonaqueous electrolyte include lithium (Li) and sodium (LiC104, LiBF4, LiAsF6, LiPF6, LiSCN, LiBr, Lil, Li2S04, Li2B10Cl10, NaC104, Nal, NaSCN, NaBr, KC104, KSCN, etc.). An inorganic ion salt of one of Na) and potassium (K); LiCF3S03, LiN(CF3S02)2, LiN(C2F5S02)2, LiN(CF3S02)(C4F9S02), LiC(CF3S02)3, LiC(C2F5S02)3, ( CH3) 4NBF4, (CH3)4NBr, (C2H5)4NC104, (C2H5)4NI, (C3H7)4NBr, (n-C4H9)4NC104, (n-C4H9)4NI, maleic acid-(C2H5)4N ( C2H5)4N-maleate ) 'benzoic acid-(C2H5)4N ((C2H5)4N-benzoate), phthalic acid-(C2H5)4N ((C^HAN-phtalate), stearyl mineral acid chain, octyl acid clock An organic ionic salt such as lithium dodecylbenzenesulfonate or the like, which may be used singly or in combination of two or more. Further, by having a perfluoroalkane such as LiBF4 and LiN(C2F5S02)2 The mixed use of the base bell salt can further reduce the viscosity of the electrolyte, so that the low temperature characteristics can be further improved, and the self-discharge can be suppressed, which is more desirable. The ionic liquid is used as the non-aqueous electrolyte. 26 201125195 Regarding the concentration of the electrolyte salt in the non-aqueous electrolyte, in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics, it is preferably 〇丨m 〇 1 / 1 to more preferably 0. 5m〇1/1~25m〇iA. ▲The negative electrode material is not limited to 'as long as it can precipitate or absorb ions.' For example, it can be exemplified: u is a large spar type represented by melon muscle. Titanium-based material such as lithium titanate having a crystal structure, Si or Sb, Sn-based alloy-based material, clock metal, and alloy (Li-Shixi, Li-Aluminum, Chain_, Lithium-tin, Lithium-Aluminum- Tin, lithium-gallium and alloys containing clock metal such as Wood's metal, chain composite oxides (Li-titanium), oxidized stone eve, in addition to: absorbing and releasing An alloy of lithium, a carbon material (for example, graphite, hard carbon, hard alloy, low-temperature calcined carbon, amorphous, etc.), etc. The powder of the positive electrode active material and the powder of the negative electrode material are preferably average particle size. It is below 100 μηη, especially to improve the nonaqueous electrolyte battery. In the output characteristics, the powder of the positive electrode active material is preferably not more than μηη, and the powder is obtained in a specific shape, and a pulverizer or a knife-level machine can be used. For example, a mortar, a ball mill (bau miu), a sand mill, a vibratory ball mill, a planetary ball mill, a jet mill, a counter jet mill, a vortex jet mill or Sieves, etc. In the case of crushing, it is also possible to use wet pulverization of organic or solvent which coexists with water or hexane. The classification method is not limited, and the dry or wet type of the _ or the wind classification is used as needed. The above is a detailed description of the positive electrode active material and the negative electrode material which are main constituent components of the positive electrode and the negative electrode, and the positive electrode and the negative electrode include a conductive agent, a binder, a tackifier, and a sand cell performance slit in addition to the above 27 201125195. No (four) ringing electron conduction 'is not limited' can usually include natural graphite (scaly graphite, two, graphite, earthy graphite, etc.), artificial graphite, carbon black (C (10) ac, acetylene black, One or more of conductive materials such as Ketjenblack, carbon whisker, carbon fiber, metal (copper, nickel, aluminum 'silver, gold, etc.) powder, metal fiber, conductive material, etc. In the above, from the viewpoint of electron conductivity and coatability, the conductive agent is ruthenium acetylene black. The amount of the conductive agent added is preferably 0.1% by weight relative to the total weight of the positive electrode and the negative electrode. % (% by weight) ~ 5 〇 wt%, particularly preferably 0.5 wt% 〜 30 wt%. Especially if acetylene black is pulverized into ultrafine particles of 〇] μιη~〇5 μιη, the amount of carbon required can be reduced. Therefore, it is ideal. The mixing method of the components is physical mixing, and it is desirable to uniformly mix. Therefore, it is possible to mix a powder mixer such as a V-type mixer, an S-type mixer, a crusher, a ball mill, or a planetary ball mill in a dry or wet manner. The above-mentioned bonding agent can usually be a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF), polyethylene or polypropylene, and an ethylene-propylene-diene terpolymer. One or two of rubber-elastic polymers (ethylene-propylene-diene tei^polymer, EPDM), feldsparized butadiene rubber (SBR), fluororubber, etc. The mixture on 201125195. The amount of the binder added is preferably from 1 wt% to 50 wt〇/0, particularly preferably from 2 wt% to 3 〇 wt%, based on the total weight of the positive electrode and the negative electrode. The material that adversely affects the performance may be any material. Generally, a olefinic polymer such as polypropylene or polyethyl amide, amorphous cerium oxide, aluminum oxide, zeolite, glass, carbon, etc. may be used. The amount of the material to be added is 30% by weight or less based on the total weight of the positive electrode and the negative electrode. The positive electrode and the negative electrode are suitably produced by the following main components: the positive electrode is a positive electrode active material, and the negative electrode is a negative electrode. The material and other materials are kneaded into a mixture, and mixed into an organic solvent such as N-methyl-Pyrrolidinone or benzene (e) (e), and the resulting mixture is applied to a current collection which will be described in detail later. In the body, the line is crimped and placed at 50. (: ~25 (heat treatment for about 2 hours at a temperature of about TC. The above coating method is preferably, for example, roll coating using a applicator roll or screen coating (like a coffee maker) A method such as a doctor blade method, a spin coating method, or a bar coater (bar coate O) is applied to any thickness and any shape, but is not limited thereto. A separator is preferred. In order to use a porous film or a non-woven fabric which exhibits excellent high rate discharge performance, the material for forming a separator for a nonaqueous electrolyte battery is, for example, a polyolefin resin represented by polyethylene or polypropylene. Polyethylene terephthalate, polybutylene terephthalate, etc., represented by polyg-type resin, polyvinylidene fluoride, diethylene glycol, hexamethacrylic copolymer, defluoridation B; B County (4) Copolymer, partial 2 29 201125195 Vinyl fluoride-tetrafluoroethylene copolymer, partial ethylene ethylene _ trifluoroethylene copolymer, vinylidene fluoride _ fluoroethylene copolymer, vinylidene fluoride - hexafluoroacetone copolymer, partial fluoroethylene ethylene-ethylene copolymer, partial Ethylene-propylene copolymer, vinylidene fluoride-difluoropropene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-ethylene-tetrafluoroethylene copolymer, etc. The porosity of the separator is preferably 98 v〇l% (volume percent) or less from the viewpoint of the strength, and the porosity is preferably 20 vol% or more from the viewpoint of charge and discharge characteristics. As the separator, for example, acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride or the like can be used. When a non-aqueous electrolyte is used in a gel state as described above, it is preferable to use a non-aqueous electrolyte in the gel state as described above. Further, if the separator is as described above, When a porous film, a nonwoven fabric, or the like is used in combination with a polymer gel, the liquid retention property of the electrolyte is improved, that is, it is preferably formed on the surface of the polyethylene microporous film and the surface of the microporous layer to have a thickness of several μm or less. a film of a solvophilic polymer that will be charged The solvophilic polymer forms a gel in the micropores of the film. The solvophilic polymer includes, in addition to polyvinylidene fluoride, a propylene group having an epoxy group or an S group. a polymer obtained by crosslinking a dilute acid, a monomer, an epoxy monomer, or a monomer having an isocyanate group, etc. The monomer may be combined with a radical initiator to use heat or ultraviolet rays (UV), or to use electrons. A cross-linking reaction is carried out by using an active light such as a beam (EB). In the case of a battery having a positive electrode, a negative electrode, a flat battery, or the like, a cylindrical battery having a roll-shaped separator is not particularly limited. A square battery is cited as an example. / [Example 1] (Example 1-1) and =, pentahydrate, sulfur _ hexahydrate, sulfur sulphate sulphate == heptahydrate with CG, N1, Mn, Mg each element becomes 12.5: and IHH75 · The ratio of the ratio of 1312 was dissolved in the ion-exchanged water at this time 'the total concentration was G.667 mol/1, ft 0 ml. Then, in a 1 L (liter) beaker, the ion-exchanged water of the medium was kept in a thief using a hot water bath, and 8 ' aOH' was added to adjust the value of ρ 为 to 12 〇. In this state, the chlorine (Ar) drum was bubbled for 30 minutes, and the dissolved oxygen in the solution was sufficiently removed. The inside of the beaker was stirred at a rotation speed, and a mixed aqueous solution of the above sulfate was added dropwise at a rate of 3 ml/min. In the meantime, the temperature of the water bath was kept constant, and 8 N of NaOH was intermittently added thereto to keep the pH constant. At the same time, 50 ml of a hydrazine aqueous solution having a concentration of 2 〇 mol/Ι as a reducing agent was added dropwise at a rate of 0.83 ml/min. After the completion of the dropwise addition, the mixture was allowed to stand still for 12 hours or more while the stirring was stopped, and the coprecipitated hydroxide was sufficiently grown to grow the particles. Further, if the dropping rate of each solution is too fast in the above procedure, a uniform precursor cannot be obtained at the elemental level. For example, when the drop acceleration is set to 10 times the above speed, the element distribution in the precursor becomes significantly uneven. Further, when the active material is synthesized using such a non-uniform precursor, the distribution of the elements after calcination in 31 201125195 is also uneven, and sufficient electrode characteristics cannot be exhibited. Incidentally, when Li〇H.H20, C〇C〇H)2, Ni(OH)2, MnOOH, and Mg(OH)2 are used as the raw material powder by the solid phase method, they are more uneven, so Poor. Then, the coprecipitated product was taken out by suction filtration, and dried in an air atmosphere at normal pressure at 100 ° C in an oven. After drying, a dry powder was obtained by pulverizing the pellets in a uniform manner with a diameter of about 120 mm (p) for several minutes. It was confirmed by X-ray diffraction measurement that the dry powder was P_Ni(〇H)2 type. In addition, it was confirmed by ΕΡΜΑ measurement that c〇, Ni, and Mn were uniformly distributed. The amount of Li with respect to the metal element (Ni + Mn + Co + Mg) satisfies the composition formula of Example 1-1 of Table 1. The lithium hydroxide monohydrate powder (LiOH, H2 〇) was weighed and mixed to obtain a mixed powder. Then, the mixed powder was pelletized at a pressure of 6 MPa. The precursor powder for pellet molding The amount is determined by converting the weight of the synthesized product to 3 g. As a result, the molded pellet has a diameter of 25 mmcp and a thickness of about 1 mm to 12 mm. 1 〇〇mm alumina boat (b〇at), placed in a box-type electric furnace, calcined in an air atmosphere at normal pressure at 1 〇〇 (rc for 12 h. The above-mentioned box-type electric furnace The internal dimensions are 10 cm in length, 20 cm in width, 30 cm in ice, and 2 cm in width. Put the electric heating line between them. Calcination ^, cut off the heater switch, keep the aluminum boat in the furnace and let it cool naturally. As a result, the temperature of the furnace drops to about 32 after 2011. After about C, the temperature of the subsequent cooling was slightly slow. After a day and night, it was confirmed that the temperature of the furnace was 100 ° C or less, and then the particles were taken out and pulverized to a uniform particle size using a mortar. Composition

Lii.2Co01Ni0139Mg0011Mn0.55〇2 ’ 關於其結晶構造,使用 Cu (Κα)管球的粉末X射線繞射測定的結果為,確認到 c^NaFe〇2型的六方晶構造為主相,並且部分觀察到Lii.2Co01Ni0139Mg0011Mn0.55〇2 ' As for the crystal structure, the powder X-ray diffraction measurement using Cu (Κα) tube was confirmed to be the main phase of the c^NaFe〇2 type hexagonal crystal structure, and partial observation To

Li[Lii/3Mn2/3]〇2型的單斜晶中可見的20。〜30。附近的繞射 波峰。對S玄些所有的繞射線藉由Rjetveld法進行結晶構造 分析,結果與歸屬於空間群Ρ3ι12的結晶構造模型非常〜 致0 根據2Θ: 18.6±1。時的繞射波峰求出(〇〇3)面的繞射 波峰的面積,根據2Θ : 44.1±1。時的繞射波峰求出(114) 面的繞射波峰的面積,算出兩繞射波峰的強度比(面積比) 1 (003)/1(114),結果為 1.41。 ώ曰: 月饮嗶強度」’是指X射線檢測器對X射 數所得的數值的累計值,故於χ射線繞射圖中 寬度無差異或波峰ί中’於所比較的波峰的 . 的寬度非㊉乍時,只要比較波峰的高度 另比較波峰的高度,而且比較面積。 的繞射波峰求d、、'。果為〇·14。’根據2Θ : 44.14。時 0.23。。 ()面的繞射波峰的半高寬,結果為 33 201125195 進而,於電腦(computer)上對X射線繞射圖形的資 料進行Rietveld分析,該分析過程中,使高斯函數及勞二 兹函數所含的結晶參數精密化,根據如此而求出的結晶^ 數,分別計算晶格變形及微晶尺寸,結果微晶尺寸肋 (實例1-2〜實例1_5) 除了變更為表1的實例1-2〜實例1-5所示的煅燒溫产 (980°C、960。(:、940t、920。〇 以外,與實例 地合成本發明的活性物質。 7 X射線繞射測定的結果與實例丨-i相同,確認到 o^NaFeO2型的六方晶構造為主相,並且部分地觀察到20 visible in monoclinic crystals of Li[Lii/3Mn2/3]〇2 type. ~30. The nearby diffraction peaks. The crystal structure analysis of all the ray rays of S is determined by the Rjetveld method, and the result is very different from the crystal structure model attributed to the space group Ρ3ι12 according to 2Θ: 18.6±1. At the time of the diffraction peak, the area of the diffraction peak of the (〇〇3) plane is obtained, according to 2Θ: 44.1±1. At the time of the diffraction peak, the area of the diffraction peak of the (114) plane was obtained, and the intensity ratio (area ratio) of the two diffraction peaks (area ratio) 1 (003) / 1 (114) was calculated, and the result was 1.41. ώ曰: The monthly intensity of the drink” refers to the cumulative value of the X-ray detector's value for the X-ray, so there is no difference in the width of the X-ray diffraction pattern or the peak ' in the compared peak. When the width is not ten, as long as the height of the peak is compared, the height of the peak is compared, and the area is compared. The diffraction peaks are d,, '. The result is 〇·14. 'Based on 2Θ: 44.14. Time 0.23. . The half-height width of the diffraction peak of the () plane is 33 201125195. Further, the Rietveld analysis is performed on the data of the X-ray diffraction pattern on the computer. In the analysis process, the Gaussian function and the Laudz function are used. The crystal parameters contained therein were refined, and the crystal lattice and the crystallite size were calculated based on the crystal numbers thus obtained, and the crystallite size ribs (Example 1-2 to Example 1_5) were changed except for Example 1 of Table 1. 2 to the calcination temperature production shown in Examples 1-5 (980 ° C, 960 ° (:, 940 t, 920. 〇, the synthesis of the active material of the present invention is exemplified. 7 X-ray diffraction measurement results and examples 丨-i is the same, confirming that the hexagonal structure of the o^NaFeO2 type is the main phase, and partially observed

Li[Li wMn2/3]。2型的單斜晶中可見的2〇。〜3〇。附近的繞射 波峰。對該些所有的繞射線藉由Rietveld法進行纟士晶構造 分析,結果與歸屬於㈣群P3112的結晶構造模=常= 致。 、 與實例1-1同樣地算出繞射波峰的強度比 (〇〇3)/1(114),結果為 1.15〜1.35。 (比較例1-1〜比較例1-5) 除了變更為表1的比較例〜比較例丨 溫度(_。(:、80(TC、70(TC、5坑、1Wc)以二 實例M同樣地合成比較例的活性物質。 … 對於比較例1-1〜比較例1_4,盥眚你Μ , 興貫例同樣地進行 結晶構造分析,π果確認到可歸屬於空間群杓 線繞射圖案。 1 ^ 201125195 =比較例W ’空間群為⑶ 與實例1·1同樣地算出婊射&amp;益_/、 1 /个丨』 結果為射波峰的強度以面積比)1 (實例1-6〜實例丨_9) 及笱S二亡;t氫氧化物前驅物所含有的金屬元素的組成 ι·ϋ#二,物的混合量’按表1的實例1-6〜實例 人占二、且/進行變更,除此以外,與實例1-1同樣地 &amp;成本發明的活性物質。 、實例卜1同樣地進行結晶構造分析,縣峰認到可 知屬於空'群P3llWX射線繞射圖案。 έ士里f外’算出繞射波峰的強度比(面積比”(⑻3)〜114), 結果為1.35〜1.51。 (比較例丨-6〜比較例1_9) 比較例1-6〜比較例1-9的活性物質是設定為與實例 1 6〜實例i_9分別相同的固溶體的組成,並射段燒溫度變 更為’除此以外,與實例1-1同樣地合成。 與貫例1-1同樣地進行結晶構造分析,結果確認到可 歸屬於空間fP3“2的X射線繞射圖案。 另外算出繞射波峰的強度比(面積比)1(〇〇3)/1(114), 結果為1.12〜113。 (比較例1-10〜比較例M5) 自共沈澱氫氧化物前驅物所含有的金屬元素中去掉 Mg ’而將組成變更為UuC〇Q1NiQ_15Mn〇_55〇2,並變更為表 1的比較例M〇〜比較例M5所示的煅燒溫度(1〇〇〇°c、 35 201125195 90(TC、80(TC、700°C、55(TC、11〇(rc ),除此以外與 例1-1同樣地合成比較例的活性物質。 '、Li[Li wMn2/3]. 2 可见 visible in the type 2 monoclinic crystal. ~3〇. The nearby diffraction peaks. All of the diffraction rays were analyzed by the Rietveld method for the structure of the gentleman crystal, and the results were the same as those of the (4) group P3112. In the same manner as in Example 1-1, the intensity ratio (〇〇3)/1 (114) of the diffraction peak was calculated and found to be 1.15 to 1.35. (Comparative Example 1-1 to Comparative Example 1-5) The temperature was changed to the comparative example to the comparative example of Table 1 (_. (:, 80 (TC, 70 (TC, 5 pit, 1 Wc)) The active material of the comparative example was synthesized. For Comparative Example 1-1 to Comparative Example 1_4, the crystal structure analysis was carried out in the same manner as in the Example, and the π-fruit was confirmed to be attributable to the space group enthalpy diffraction pattern. 1 ^ 201125195 =Comparative example W 'Space group is (3) In the same way as in Example 1.·1, the radiance &amp; _ _, 1 / 丨 婊 is calculated. The result is the intensity of the peak of the wave with an area ratio of 1 (Example 1-6~) Example 丨 _9) and 笱 S two deaths; t hydroxide hydroxide precursor composition of metal elements ι · ϋ # two, the amount of the mixture 'according to the examples 1-6 to the example of Table 1 In the same manner as in Example 1-1, the active material of the invention was used in the same manner as in Example 1-1. In the same manner as in Example 1, the crystal structure analysis was carried out, and the county peak recognized that it was an empty 'group P3llW X-ray diffraction pattern. In the case of Shili f, the intensity ratio (area ratio) ((8)3) to 114) of the diffraction peak was calculated, and the result was 1.35 to 1.51. (Comparative Example 丨-6~Comparative Example 1_9) Comparative Example In the same manner as in Example 1-1, the active material of 1-6 to Comparative Example 1-9 was set to have the same solid solution as that of Example 16 to Example i-9, and the temperature of the firing stage was changed to 'Other than Example 1-1. The crystal structure analysis was carried out in the same manner as in Example 1-1, and it was confirmed that the X-ray diffraction pattern attributable to the space fP3 "2" was calculated. The intensity ratio (area ratio) of the diffraction peak was calculated (〇〇3). /1 (114), the result was 1.12 to 113. (Comparative Example 1-10 to Comparative Example M5) The Mg' was removed from the metal element contained in the coprecipitated hydroxide precursor, and the composition was changed to UuC〇Q1NiQ_15Mn〇_ 55〇2, and changed to the calcination temperature shown in Comparative Example M〇~Comparative Example M5 of Table 1 (1〇〇〇°c, 35 201125195 90 (TC, 80 (TC, 700°C, 55 (TC, 11) The active material of the comparative example was synthesized in the same manner as in Example 1-1 except for 〇(rc).

對於比較例M0〜比較m-14,與實例同樣 行結晶構造分析,結果確認到可歸屬於空間群PH]的X 關於比較例1-15 ’空間群為C2/IH,與P3ll2不同。 與實例1-1同樣地算出繞射波峰的強度比(面積比)夏 (〇〇3)/1(114),結果為 0.94〜1.422。 (比較例1-16) 為了與本發明的物質比較作為活性物質的特性,而入 成含有A1來代替 Mg的固溶^With respect to Comparative Examples M0 to M-14, the crystal structure analysis was carried out in the same manner as in the example. As a result, it was confirmed that X which is attributable to the space group PH] is different from P3ll2 in the case where the space group of Comparative Example 1-15' is C2/IH. In the same manner as in Example 1-1, the intensity ratio (area ratio) of the diffraction peaks was calculated in summer (〇〇3)/1 (114), and as a result, it was 0.94 to 1.422. (Comparative Example 1-16) In order to compare the properties of the active material with the substance of the present invention, solid solution containing A1 instead of Mg was prepared.

Lii.aCoojNio.wAlo.ouMnoMA。:。 將硫酸錳五水合物、硫酸鎳六水合物及硫酸鈷七水人 物以Co、Ni、Μη各元素成為12.69 : 18.28 : 69.03的比^ 的方式溶解於離子交換水中而製作混合水溶液。此時,j吏 其合計濃度為0.667 mol/卜體積為180 m卜繼而,於i L 的。燒杯中準備600 ml的離子交換水,使用熱水浴保持於 5〇p,滴加8N的NaOH,藉此將pH值調整為12.0。於該 狀態下使氬氣鼓泡30 min,將溶液内的溶存氧充分去除。 以轉速700 rpm對燒杯内進行攪拌,以3 ml/min的速度滴 加上述硫酸鹽的混合水溶液。其間,使用熱水浴將溫度保 持於一定,並間斷地滴加8 n的NaOH,藉此將pH值保持 於疋。同時’以0.83 ml/min的速度滴加作為還原劑的濃 度為2.0 m〇l/i的肼水溶液5〇瓜卜兩者滴加結束後,於停 36 201125195 止攪拌的狀態下靜止 分進行粒子成長。 12 h以上,藉此使共沈澱氫氧化物充 j而,藉由抽氣過濾而取出共沈澱產物,於空氣環境 一、吊壓下彻烘箱於。錢後,以使粒=Lii.aCoojNio.wAlo.ouMnoMA. :. Manganese sulfate pentahydrate, nickel sulfate hexahydrate, and cobalt sulfate heptahydrate were dissolved in ion-exchanged water in a ratio of 12.69: 18.28 : 69.03 to prepare a mixed aqueous solution. At this time, the total concentration of j吏 is 0.667 mol/bu and the volume is 180 m, followed by i L . 600 ml of ion-exchanged water was prepared in a beaker, kept at 5 〇p using a hot water bath, and 8 N of NaOH was added thereto, thereby adjusting the pH to 12.0. Argon gas was bubbled in this state for 30 minutes to sufficiently remove dissolved oxygen in the solution. The inside of the beaker was stirred at a number of revolutions of 700 rpm, and the mixed aqueous solution of the above sulfate was added dropwise at a rate of 3 ml/min. In the meantime, the temperature was kept constant using a hot water bath, and 8 n of NaOH was intermittently dropped to maintain the pH at 疋. At the same time, the concentration of 2.0 〇l/i of hydrazine aqueous solution as a reducing agent was added dropwise at a rate of 0.83 ml/min. After the addition of the sputum, the granules were suspended at a temperature of 36 201125195. growing up. For more than 12 h, the coprecipitated hydroxide is charged, and the coprecipitated product is taken out by suction filtration, and then air-cooled under a vacuum. After the money, to make the grain =

/一致的方式利用直徑為約12G mm(p的研料碎數分鐘= 得乾燥粉末。 X 以滿足表1的比較例1-16的組成式的方式稱量氫氧化 鋰一水合物粉末(Li〇H.H20)及氫氧化鋁,進行混合 獲得混合粉體。 15 接著,於6MPa的壓力下對混合粉體進行顆粒成型。 供於顆粒成型的前驅物粉末的量是以合成後的產物的重量 為3 g的方式換算而確定。結果,成型後的顆粒為直徑乃 mnup、厚度約1〇瓜瓜〜丨]mm。將上述顆粒載置於全長為 約100 mm的氧化紹製舟中,放入至箱型電氣爐中,於空 氣環境中、常壓下於l〇〇(TC下煅燒12h。上述箱型電氣爐 的内部尺寸為縱向1〇 cm、寬度20 cm、深度30 cm,於寬 度方向20 cm間隔間放入電熱線。煅燒後,切斷加熱器的 開關’保持將氧化鋁製舟置於爐内的狀態自然放置冷卻。 結果’爐的溫度於5小時後下降至約200〇C左右,其後的 降溫速度稍慢。經過一畫夜後,確認到爐的溫度變為1 〇 〇 〇c 以下’然後取出顆粒,使用研蛛粉碎成粒徑一致的程度。 關於所得的活性物質,其組成為 Lil.2C〇〇.iNi〇_i44Al〇.Q12Mn〇.544〇2 ’ 關於其結晶構造,使用 Cu (Κα)管球的粉末X射線繞射測定的結果為,觀察到 37 201125195 a-NaFe〇2型的六方晶構造為主相。對該些所有的繞射線藉 由Rietveld法進行結晶構造分析,結果與歸屬於空間群 P3il2的結晶構造模型非常一致。 (比較例1-17) 為了與本發明的物質比較作為活性物質的特性,而合 成含有 A1 代替 Mg 的固溶體 Lii.2C〇〇.iNi〇.1395Al〇 021Μη0·5395〇2。 對於共沈澱氫氧化物前驅物所含有的過渡金屬元素的 組成以及氫氧化鋰一水合物及氫氧化鋁的混合量,按表i 的比較例1-17所示的組成式進行變更,除此以外,與比車交 例1-16同樣地合成比較例的活性物質。 (比較例M8) 為了與本發明的物質比較作為活性物質的特性,而合 成含有Ti代替Mg的固溶體52〇2: 關於共沈澱氫氧化物前驅物所含有的過渡金屬元素的 組成以及氫氧化鋰一水合物及二氧化鈦的混合量,按表^ 的比較例1-18所示的組成式般進行變更,除此以外,與比 較例1-16同樣地合成比較例的活性物質。 (比較例1-19) 為了與本發明的物質比較作為活性物質的特性,而合 成含有Ti代替Mg的固溶體Lii 2C〇〇爲i5Ti〇 〇5Mn〇 5〇2。 關於共沈澱氫氧化物前驅物所含有的過渡金屬元素的 組成以及氫氧化鋰一水合物及二氧化鈦的混合量,按表工 的比較例M9所示的組成式進行變更,除此以外,與比較 38 201125195 例1-16同樣地合成比較例的活性物質。 (鐘二次電池的製作及評價) 使用實例1-1〜實例1-9及比較例w〜比較例丨_19的 各活!·生物貝作為鐘二次電池用正極活性物質,按以下順序 氣作鐘—欠電池,評價電池特性。 、,活性物質、乙快黑(AB)及聚偏二氟乙烯(pvdF) 以重量比85 : 8 : 7的比例混合,添加作為分散介質的N_/ Consistent manner using a diameter of about 12 G mm (p of the ground material for several minutes = dry powder. X) Lithium hydroxide monohydrate powder (Li) was weighed to satisfy the composition formula of Comparative Example 1-16 of Table 1. 〇H.H20) and aluminum hydroxide are mixed to obtain a mixed powder. 15 Next, the mixed powder is subjected to pellet molding under a pressure of 6 MPa. The amount of the precursor powder supplied to the pellet is a product of the synthesized product. The weight was determined by the conversion of 3 g. As a result, the formed pellets were mnup in diameter and about 1 cucurve-丨] mm in thickness. The pellets were placed in a boat of oxidized shrimp having a total length of about 100 mm. It is placed in a box-type electric furnace and calcined in an air atmosphere at normal pressure at 10 °C for 12 h. The internal dimensions of the above-mentioned box-type electric furnace are 1 cm in length, 20 cm in width and 30 cm in depth. A heating wire is placed between the intervals of 20 cm in the width direction. After the calcination, the switch for cutting off the heater 'maintains the state in which the alumina boat is placed in the furnace and is naturally placed and cooled. Result 'The temperature of the furnace drops to about 200 after 5 hours. 〇C or so, the subsequent cooling rate is slightly slower. After a painting night It is confirmed that the temperature of the furnace becomes 1 〇〇〇c or less' and then the granules are taken out and pulverized to a uniform particle size using a research spider. The composition of the obtained active material is Lil.2C〇〇.iNi〇_i44Al〇 .Q12Mn〇.544〇2 ' As for the crystal structure, a powder X-ray diffraction measurement using a Cu (Κα) bulb was observed as a main phase of the 37 201125195 a-NaFe〇2 type hexagonal crystal structure. All of these ray diffractions were analyzed by the Rietveld method, and the results were in good agreement with the crystal structure model attributed to the space group P3il2. (Comparative Examples 1-17) In order to compare the properties of the active material with the substance of the present invention, The solid solution Lii.2C〇〇.iNi〇.1395Al〇021Μη0·5395〇2 containing A1 instead of Mg is synthesized. The composition of the transition metal element contained in the coprecipitated hydroxide precursor and the lithium hydroxide monohydrate and The active material of the comparative example was synthesized in the same manner as in Example 1-16 except that the amount of the aluminum hydroxide was changed according to the composition formula shown in Comparative Example 1-17 of Table i. (Comparative Example M8) For the substance of the invention The solid solution 52〇2 containing Ti instead of Mg is synthesized as a property of the active material: the composition of the transition metal element contained in the coprecipitated hydroxide precursor and the mixing amount of lithium hydroxide monohydrate and titanium dioxide, The active material of the comparative example was synthesized in the same manner as in Comparative Example 1-16 except that the composition formula shown in Comparative Example 1-18 of Table 1 was changed. (Comparative Example 1-19) For the substance of the present invention Comparing the characteristics as an active material, a solid solution Lii 2C〇〇 containing Ti instead of Mg was synthesized as i5Ti〇〇5Mn〇5〇2. The composition of the transition metal element contained in the coprecipitated hydroxide precursor and the mixing amount of the lithium hydroxide monohydrate and the titanium oxide were changed according to the composition formula shown in the table of Comparative Example M9, and the comparison was made. 38 201125195 The active material of the comparative example was synthesized in the same manner as in Example 1-16. (Preparation and Evaluation of Clock Secondary Battery) Using each of the examples 1-1 to 1-9 and the comparative example w to the comparative example 丨19, the biobes are used as the positive electrode active material for the secondary battery, in the following order Gas clock - under battery, evaluate battery characteristics. , the active material, B-black (AB) and polyvinylidene fluoride (pvdF) are mixed at a weight ratio of 85:8:7, and N_ as a dispersion medium is added.

曱基吡咯烷嗣進行混練分散,製備塗佈液。再者,pvdF ,利用使固體成分轉分散的溶液,並進行固體重量換 异。將該塗佈液塗佈於厚度為2〇帅的銘落集電體上势 板。再者’所有電池扣成為同樣的試驗條件財 式將電極重量、厚度統一。 屬制2相對雜’為了㈣正極的單獨行為,而將裡金 二衣成。使鐘金屬密接於㈣集電體。其中,鐘二次 的谷量疋以成為充分正極控制的方式而製備。 EC/Ε^^λ疋湘使咖6以濃度為1 mGl/1的方式溶解於 液n C為體無6:7:7的混合溶劑中而成的溶 離膜是使祕聚丙烯酸㈣ =::r聚,微孔膜。另外,使丄= 苯二甲&gt; ,白的物〇〇作為參照電極。外裝體是使用由聚對 丙i薄⑴μη〇 /1⑼(5G μη〇 /金屬黏接性聚 邱5 (50,)構成的金屬樹脂複合薄膜,以正極端 式收容ΪΓ子及參照電極端子的開放端部露出在外部的方 電極’於上述金屬樹脂複合__面彼此相向的 39 201125195 熔著部分將成為注液孔的部分除外而進行氣密密封。 、將如上所述而製作的鋰二次電池於加它下供於5循严 的初期充放電步驟。電壓控制全部是對正極 = 2設定為電編A、電厂堅4.”的_以 充電’充電終止條件是設定為電流值衰減至1/6的時 放電是設定為電流αι ItA、終止電塵2〇 中於充電後及放電後設U分鐘的 實例1_1的鐘二次電池’於最初的充電時,自充 電電置超過l〇〇mAh/g的附近起,於 長期間觀察到電位變化相對較平坦的區域。附近的電位處 電位^而于充放電循環試驗。電愿控制全部是對正極 V Λ纽賴朗條件除了將轉驗設定為 同。於所絲敏放電步驟的條件相 電後及放電後設定30分鐘的休止時 電電容(mAh/g)」。 电电!。己錄為放 位谁:然^:说進订南率放電試驗。電Μ控制全部是對正極電 位進仃。充放電循環試驗的條 疋卞正極電 V (私Li/Li+ )以外,盘上、条件f /將充電電壓設定為4.3 其後的放電是設定為2、ItA 充放電步驟的條件相同。 電。於充電後及淤;^ 、、s止電壓2·〇 V的恆定電流放 -° ^ (rate) 將(003)面與(114)面的繞射波峰的強度比(面積 201125195 比)1(003)/1( 114)的算出結果、充放電循環試驗結果(0.1 c 電容)、速率比率示於表1中。 [表1] 41 201125195 --98- 速率比率 % 卜 00 (0 i〇 to Φ CO CO 5S o If) (0 m CO s a 寸 5 s s (O CO in in CM in to in in in O in S S (0 Ln CM ΪΛ ΙΟ in 1Λ 放電電容 mAh/g 242 233 225 210 201 203 218 245 211 185 165 152 115 o (0 135 142 170 168 | 223 186 166 154 116 g 194 181 183 172 波蜂強度比 I 003 / I H4 1.41 1.35 CNJ 1.23 1.15 1.48 1.51 1.47 1*35 CO 1» 1.05 0.95 1.42 1.13 1.12 1.12 1.13 1.414 ! 1.109 ! 1.108 〇 0.94 1.422 1.43 1.42 1.47 1.45 般燒溫度 °c 1000 980 960 940 920 1000 1000 1000 1000 900 800 700 550 1100 800 800 800 800 1000 900 800 700 550 1100 1000 1000 1000 1000 空間群 CM ▼— CO Q. CM a CM CO a CM CO a CM 产 CO 0. CM CO a. CSl CO a CNJ 产 CO Q. CM CO CL CNJ CO a Μ 产 CO a CsJ 产 CO 0. CNJ 产 CO 0. C2/m CM T— CO 0. r— CO a. CM 严 CO a CM CO CL 产 CO 0. CM CO CL CM 产 CO a Csi 产 co 0. CM 产 CO CL C2/m CM T- co 0. ι- ΓΟ a OJ T-&quot; CO 0. CM CO a 1 Li| 2C〇〇jNi〇 ΐ39Μβ〇.οπΜη〇55〇2 ; ; I Li1 2Co〇j Ni0j39Mg〇 01, Mn〇 55〇2 | Li! 2Co0 tNi013gMg0〇11Mn〇55〇2 LiJi2Co0_tNi0_139MgOOnMn〇.55〇2 Lii.2C〇〇.iNi0.139Mg0.ot #门0.55〇2 Li1t7Co0.09Ni01BMg002Mn054〇2 Lit 2iCo0&gt;2tNi〇oeMg002Mn〇5〇〇2 *-i t. 1〇〇. i N i〇 j 5 M g〇 〇3 Μ n〇_54 O 2 Li! 2Co〇〇8Ni〇 l5Mg001Mn〇56〇2 Lii ,2〇〇ο.ι Niai 39Mg〇.01,Mn0.55O2 Li, 2C〇〇jNiq 139Μ^οηΜη〇55〇2 Lii.2G〇o.iNi0.139Mg〇.0&quot;Mn0.55〇2 Lit.2Co〇 tNi〇 139Mg0〇i tMn〇55〇2 Li|_2Co0_1Ni〇&gt;l39Mg0&gt;〇nMn0_55〇2 Lit.i7G〇o.〇9Ni〇.i8Mg0.〇2Mna54〇2 Lii .21C o〇&gt;21N i0_06M g〇_02Mn〇_5002 ί-ΐι.ΐ8^〇〇.ιΝί〇 i5Mg〇&gt;〇3Mn〇54〇2 Lii.2Co008Ni015Mg〇01Mn〇s6〇2 L*i.2^°o.i Ni〇.i5Mn0_5502 Li1i2C〇〇.iNi0_15Mn0_55〇2 L卜2G〇o.i Ni〇.i5Mn0.5502 υ1_2〇ο0_1Νΐ〇ί|5Μη0&gt;55〇2 Li1_2Co〇.tNi0_)5Mn0_S5〇2 Lii.2C〇〇,iNi0.15Mn0.5502 Li! 2C〇〇.iNi〇 144AI〇〇12Mn〇544〇2 Li1_2Co0&gt;tNi0i1395Al0_〇2iMn〇_5395〇2 Li) 2C〇〇j N i〇 t δΤί0 Q3M n〇 52〇2 Li, 2C〇〇 iNi〇 ϊ5Τΐ0〇5Μη〇5〇2 實例1-1 實例1-2 實例1-3 i 實例1-4 I實例1-5| |實例1-6 I 實例1-7 實例1-8 I 實例1-9 比較例1-1 比較例1-2 比較例1-3 比較例1-4 比較例1-5 比較例1-6 比較例1-7 比較例1-8 |比較例1-9 I 比較例1-10 比較例1-11 比較例1-12 比較例1-13 比較例1-14 比較例1-15 比較彳列1-16 比較例1-17 比較例1-18 比較例1-1 9 201125195 於將鋰過渡金屬複合氧化物的固溶體所含有的金屬元 素的組成比率(金屬元素比率)設定為Lii+(x/3) Co i_x-y_zNiy/2Mgz/2Mn (2x/3) + (y/2) + (z/2) 時,實例卜 1 〜實例 1-5 為 x = 0.6、y = 0.278、ζ = 〇·〇22,實例 1-6 為 χ = 〇 51、 y = 0.36、Z=0.04,實例 1-7 為 x = 0.63、y==〇 12、ζ = 〇 〇4, 實例 1-8 為 \ = 0.54、3^〇.30、2 = 0.〇6,實例19為乂 = 〇 6〇、 y=0.3〇、ζ=0.〇2,均滿足上述金屬元素比率,具有可歸屬 於空間群P3il2的X射線繞射圖案’由义射線繞射測定所 得的(003)®與(114)面的繞射波峰的強度比為1(〇〇3)/1 川4) 21.15,故實例1-1〜實例丨_9的活性物質可獲得超過 200 mAh/g的放電電容、65%以上的速率比率。因此確認 到放電電容大,高率放電特性優異。 比較例Μ〜比較例丨_4的活性物質的上述 比率與實例Μ〜實例U相同,具有可歸屬於空間群 P3il2的X射線繞射圖案,但煅燒溫度分別 C、700。〇、550〇C ’低於實例w〜實例15的咖。。 〜920它,故繞射波峰的強度比小至, 僅可獲得低於2〇0 mAh/g的放電電容,速率比率亦為娜 另外,比較例1-5的活性物質的上述金屬元素比率與 實例1-1〜實例M相同,而缎燒溫度高幻咖。C,故^ 射波峰的強度比滿足y 15,但不具屬 於空間群P3!12的射線繞射随’故放電電容及速率比率 極攸。 43 201125195 比較例1-6〜比較例1-9的活性物質的上述金屬元素 比率分別與實例1-6〜實例1-9相同,具有可歸屬於空間群 P3J2的X射線繞射圖案,但煅燒溫度為8〇〇。〇,低於實 例1-6〜實例丨_9的1〇00。〇故繞射波峰的強度比小至1(〇〇3) /I(u4) &lt; 1.15 ’僅可獲得低於200 mAh/g的放電電容,速率 比率亦為56%以下。 比較例M0〜比較例M5的活性物質不含Mg,但該 活性物質亦如比較例丨-10般’於煅燒溫度為1000°C時, 鋰過渡金屬複合氧化物的固溶體具有可歸屬於空間群 P3J2的X射線繞射圖案,繞射波峰的強度比滿足 (ii4) ^ 1.15,可獲得超過200 mAh/g的放電電容。但是, 速率比率為52%’與比較例1-11〜比較例ι_15的活性物質 相同,高率放電特性差。因此,如實例Μ般,藉由使活 性物質含有Mg,並於1〇〇〇。〇下進行煅燒,放電電容及高 率放電特性一併提高,且如比較例M0般,若活性物質不 含Mg,則即便藉由在1〇〇〇。〇下煅燒而放電電容提高,高 率放電特性亦不提高。 進而,若將實例1-1與比較例M〇加以比較,則實例 1-1的活性物質的放電電容為242 mAh/g,相對於此,比較 例M0的活性物質的放電電容為223 mAh/g,故可知,藉 由以Mg替換一部分Ni,放電電容顯著提高❶如此般藉由 含有Mg而放電電容顯著提高的情況不可謂可預測。 另外’實例1-3與比較例M0為相同程度的放電電 容’但比較例1-10的活性物質是於1000°c下經煅燒的物 44 201125195 質,相對於此,實例1-3的活性物質是於960°C下經锻燒 的物質,因此可謂為了獲得相同程度的放電電容的活性物 質,而藉由含有Mg來於低煅燒溫度下實現。因此,藉由 採用本發明的活性物質,亦有可減少煅燒時供給於炮燒爐 的能量的效果。 另一方面’不含Mg的活性物質亦於煅燒溫度為900。〇 以下時,如比較例1-11〜比較例1-14般,繞射波峰的強度 比為1(。。3)/1(114) &lt;1.15 ;但若將煅燒溫度為900X:的比較 例1-1與比較例1-11加以比較,則含有Mg的比較例1-1 的活性物質的放電電容為185 mAh/g,相對於此,不含Mg 的比較例1-11的活性物質的放電電容為186 mAh/g;另 外’若將煅燒溫度為800°C的比較例1-2與比較例1-12加 以比較,則含有Mg的比較例1-2的活性物質的放電電容 為165 mAh/g,相對於此,不含Mg的比較例1-12的活性 物質的放電電容為166 mAh/g,故放電電容為相同程度(锻 燒溫度為700°C、550°C時亦為相同程度),即便以Mg替 換一部分Ni,放電電容亦不提高。 因此,為了使放電電容顯著提高,可謂不僅需要使鋰 過渡金屬複合氧化物的固溶體所含有的金屬元素的組成比 率為 Lii+ (x/3) C〇i-x-y-zNiy/2Mg2/2Mn (2x/3) + (y/2) + (z/2) ( X〉〇 y&gt;0、z&gt;〇、x + y + z&lt;l),而且需要使由X射線繞射測 定所得的(003)面與(114)面的繞射波峰的強度比為I(〇〇3) (in) ^ 1.15。 對於如比較例1-16〜比較例1-19般含有A1或Ti代替 45 201125195The mercaptopyrrolidinium is kneaded and dispersed to prepare a coating liquid. Further, pvdF was subjected to a solid weight exchange using a solution in which a solid component was dispersed. The coating liquid was applied to a potential plate of a collector body having a thickness of 2 inches. Furthermore, all battery deductions are the same test condition, and the electrode weight and thickness are unified. Dependent 2 is relatively heterogeneous. In order to (4) the sole behavior of the positive electrode, Lijin will be dressed. The clock metal is adhered to the (four) current collector. Among them, the grain amount of the second time is prepared in such a manner as to be sufficiently positively controlled. EC/Ε^^λ疋湘使咖6 is dissolved in a solution of liquid n C in a mixed solvent of 6:7:7 in a concentration of 1 mGl/1 to make the polyacrylic acid (4) =: : r poly, microporous membrane. Further, 丄 = benzophene &gt; white matter was used as a reference electrode. The outer casing is made of a metal-resin composite film composed of poly-p-i (1) μη〇/1(9) (5G μη〇/metal-adhesive polypyre 5 (50,)), and the terminal and the reference electrode terminal are accommodated at the positive electrode end. The square electrode 'exposed to the outside is exposed to the surface of the above-mentioned metal-resin composite_201119195. The portion where the melted portion becomes the liquid-filling hole is hermetically sealed, and the lithium-manufactured as described above is used. The secondary battery is supplied to the 5-cycle initial charge and discharge step. The voltage control is all set to the positive electrode = 2, the electric power is A, the power plant is strong. 4. The charging termination condition is set to the current value. When the attenuation is 1/6, the discharge is set to the current αι ItA, the end of the electric dust 2〇, and the U1 of the example 1_1 after the charging and U minutes after the discharge. From the vicinity of 〇〇mAh/g, a relatively flat region with a potential change was observed during the long period. The potential at the nearby potential was tested in the charge-discharge cycle. The control of the electric power was all in addition to the positive V Λ Nrayrand condition. Set the test to the same. The condition of the silk-discharge step is set to 30 minutes after the discharge and after the discharge, the electric capacitance (mAh/g) is set." Electric power!. Who has been recorded as a person who has been placed:: ^: Say the South rate discharge test. The Μ control is all about the positive potential. In addition to the charge and discharge cycle test, the positive electrode voltage V (private Li/Li+), on the disk, the condition f / sets the charging voltage to 4.3, and the discharge is set to 2. The conditions of the ItA charge and discharge steps are the same. Electricity. After charging and silting; ^, s stop voltage 2·〇V constant current discharge - ° ^ (rate) The (003) plane and (114) plane diffraction peak The calculation results of the intensity ratio (area 201125195 ratio) 1 (003) / 1 (114), the charge and discharge cycle test results (0.1 c capacitance), and the rate ratio are shown in Table 1. [Table 1] 41 201125195 --98- Rate ratio % 00 (0 i〇to Φ CO CO 5S o If) (0 m CO sa in 5 ss (O CO in in CM in to in in O in SS (0 Ln CM ΪΛ Λ in 1Λ discharge capacitor mAh) /g 242 233 225 210 201 203 218 245 211 185 165 152 115 o (0 135 142 170 168 | 223 186 166 154 116 g 194 181 183 172 Wave bee intensity ratio I 003 / I H4 1. 41 1.35 CNJ 1.23 1.15 1.48 1.51 1.47 1*35 CO 1» 1.05 0.95 1.42 1.13 1.12 1.12 1.13 1.414 ! 1.109 ! 1.108 〇0.94 1.422 1.43 1.42 1.47 1.45 Normally burnt temperature °c 1000 980 960 940 920 1000 1000 1000 1000 900 800 700 550 1100 800 800 800 800 1000 900 800 700 550 1100 1000 1000 1000 1000 Space group CM ▼ — CO Q. CM a CM CO a CM CO a CM CO 0. CM CO a. CSl CO a CNJ CO Q. CM CO CL CNJ CO a Μ CO a CsJ CO 0. CNJ CO 0. C2/m CM T— CO 0. r— CO a. CM Strict CO a CM CO CL CO 0. CM CO CL CM CO a Csi CO 0. CM CO CL C2/m CM T- co 0. ι- ΓΟ a OJ T-&quot; CO 0. CM CO a 1 Li| 2C〇〇jNi〇ΐ39Μβ〇.οπΜη〇55〇2 ; I Li1 2Co〇j Ni0j39Mg〇01, Mn〇55〇2 | Li! 2Co0 tNi013gMg0〇11Mn〇55〇2 LiJi2Co0_tNi0_139MgOOnMn〇.55〇2 Lii.2C〇〇.iNi0.139Mg0.ot #门0.55〇2 Li1t7Co0 .09Ni01BMg002Mn054〇2 Lit 2iCo0&gt;2tNi〇oeMg002Mn〇5〇〇2 *-i t. 1〇〇. i N i〇j 5 M g〇〇3 Μ n〇_54 O 2 Li! 2Co〇〇8Ni〇l5Mg001Mn 〇56〇2 Lii, 2〇〇ο. Niai 39Mg〇.01, Mn0.55O2 Li, 2C〇〇jNiq 139Μ^οηΜη〇55〇2 Lii.2G〇o.iNi0.139Mg〇.0&quot;Mn0.55〇2 Lit.2Co〇tNi〇139Mg0〇i tMn 〇55〇2 Li|_2Co0_1Ni〇&gt;l39Mg0&gt;〇nMn0_55〇2 Lit.i7G〇o.〇9Ni〇.i8Mg0.〇2Mna54〇2 Lii .21C o〇&gt;21N i0_06M g〇_02Mn〇_5002 ί- Ϊ́ι.ΐ8^〇〇.ιΝί〇i5Mg〇&gt;〇3Mn〇54〇2 Lii.2Co008Ni015Mg〇01Mn〇s6〇2 L*i.2^°oi Ni〇.i5Mn0_5502 Li1i2C〇〇.iNi0_15Mn0_55〇2 L Bu 2G 〇oi Ni〇.i5Mn0.5502 υ1_2〇ο0_1Νΐ〇ί|5Μη0&gt;55〇2 Li1_2Co〇.tNi0_)5Mn0_S5〇2 Lii.2C〇〇,iNi0.15Mn0.5502 Li! 2C〇〇.iNi〇144AI〇〇12Mn 〇544〇2 Li1_2Co0&gt;tNi0i1395Al0_〇2iMn〇_5395〇2 Li) 2C〇〇j N i〇t δΤί0 Q3M n〇52〇2 Li, 2C〇〇iNi〇ϊ5Τΐ0〇5Μη〇5〇2 Example 1-1 Examples 1-2 Examples 1-3 i Examples 1-4 I Examples 1-5| | Examples 1-6 I Examples 1-7 Examples 1-8 I Examples 1-9 Comparative Examples 1-1 Comparative Examples 1-2 Comparative Examples 1-3 Comparative Example 1-4 Comparative Example 1-5 Comparative Example 1-6 Comparative Example 1-7 Comparative Example 1-8 | Comparative Example 1-9 I Comparative Example 1-10 Comparative Example 1-11 Comparative Example 1-12 Comparative Example 1-13 Comparative Example 1-14 Comparative Example 1-15 Comparative 彳 1-16 Comparative Example 1-17 Comparative Example 1-18 Comparative Example 1-1 9 201125195 For complex oxidation of lithium transition metal The composition ratio (metal element ratio) of the metal element contained in the solid solution of the substance is set to Lii+(x/3) Co i_x-y_zNiy/2Mgz/2Mn (2x/3) + (y/2) + (z/2 When, Example 1 to Example 1-5 are x = 0.6, y = 0.278, ζ = 〇·〇22, and Examples 1-6 are χ = 〇51, y = 0.36, Z=0.04, and Examples 1-7 are x = 0.63, y==〇12, ζ = 〇〇4, examples 1-8 are \ = 0.54, 3^〇.30, 2 = 0.〇6, and Example 19 is 乂= 〇6〇, y=0.3 〇, ζ=0.〇2, both satisfying the ratio of the above-mentioned metal elements, having an X-ray diffraction pattern attributable to the space group P3il2's diffraction of (003)® and (114) planes obtained by the ray diffraction measurement The intensity ratio of the peaks is 1 (〇〇3) / 1 Sichuan 4) 21.15, so the active material of Example 1-1 to Example 丨9 can obtain a discharge capacity of more than 200 mAh/g and a rate ratio of 65% or more. Therefore, it was confirmed that the discharge capacity was large and the high rate discharge characteristics were excellent. The above ratio of the active material of Comparative Example 比较 to Comparative Example 44 was the same as that of Example Μ to Example U, and had an X-ray diffraction pattern attributable to the space group P3il2, but the calcination temperatures were C and 700, respectively. 〇, 550〇C ′ is lower than the coffee of example w~example 15. . ~920, so the intensity ratio of the diffraction peak is as small as that, only a discharge capacitance of less than 2 〇 0 mAh/g can be obtained, and the rate ratio is also Na. In addition, the ratio of the above metal elements of the active materials of Comparative Examples 1-5 is Example 1-1 ~ Example M is the same, while the satin burning temperature is high. C, so the intensity ratio of the wave peak satisfies y 15, but the ray diffraction that does not belong to the space group P3!12 is extremely close to the discharge capacitance and rate ratio. 43 201125195 The above-mentioned metal element ratios of the active materials of Comparative Examples 1-6 to Comparative Examples 1-9 are the same as those of Examples 1-6 to 1-9, respectively, and have an X-ray diffraction pattern attributable to the space group P3J2, but calcined. The temperature is 8 〇〇. 〇, less than 1〇00 of Example 1-6~Example丨_9. Therefore, the intensity ratio of the diffraction peak is as small as 1 (〇〇3) / I(u4) &lt; 1.15 ', and only a discharge capacitance of less than 200 mAh/g can be obtained, and the rate ratio is also 56% or less. The active materials of Comparative Example M0 to Comparative Example M5 did not contain Mg, but the active material was also as in Comparative Example 丨-10. When the calcination temperature was 1000 ° C, the solid solution of the lithium transition metal composite oxide was attributable to In the X-ray diffraction pattern of the space group P3J2, the intensity ratio of the diffraction peaks satisfies (ii4) ^ 1.15, and a discharge capacitance exceeding 200 mAh/g can be obtained. However, the rate ratio was 52%', which was the same as that of the active materials of Comparative Example 1-11 to Comparative Example ι_15, and the high rate discharge characteristics were inferior. Therefore, as in the case, the active substance contains Mg and is at 1 Torr. When calcination was carried out under the armpit, the discharge capacity and the high-rate discharge characteristics were improved together, and as in the case of Comparative Example M0, if the active material contained no Mg, it was at 1 Torr. When the crucible is calcined, the discharge capacity is increased, and the high-rate discharge characteristics are not improved. Further, when Example 1-1 was compared with Comparative Example M, the discharge capacity of the active material of Example 1-1 was 242 mAh/g, whereas the discharge capacity of the active material of Comparative Example M0 was 223 mAh/ g, it can be seen that by replacing a part of Ni with Mg, the discharge capacitance is remarkably improved, and thus the case where the discharge capacitance is remarkably improved by containing Mg is not predictable. Further, 'Examples 1-3 and Comparative Example M0 are discharge capacitors of the same degree', but the active material of Comparative Example 1-10 is a material 44 201125195 which is calcined at 1000 ° C. In contrast, the activity of Examples 1-3 The substance is a substance calcined at 960 ° C, and thus can be realized by obtaining Mg at a low calcination temperature in order to obtain an active material of the same degree of discharge capacity. Therefore, by using the active material of the present invention, the effect of supplying energy to the furnace at the time of firing can be reduced. On the other hand, the Mg-free active material was also calcined at a temperature of 900. In the following, as in Comparative Example 1-11 to Comparative Example 1-14, the intensity ratio of the diffraction peak was 1 (.3) / 1 (114) &lt;1.15; however, if the calcination temperature was 900X: In the case of Comparative Example 1-11, the discharge capacity of the active material of Comparative Example 1-1 containing Mg was 185 mAh/g, whereas the active material of Comparative Example 1-11 containing no Mg was used. The discharge capacity was 186 mAh/g; in addition, when Comparative Example 1-2 having a calcination temperature of 800 ° C was compared with Comparative Example 1-12, the discharge capacity of the active material of Comparative Example 1-2 containing Mg was 165 mAh/g, the discharge capacity of the active material of Comparative Example 1-12 containing no Mg was 166 mAh/g, so the discharge capacity was the same (the calcination temperature was 700 ° C, 550 ° C) To the same extent, even if a part of Ni is replaced by Mg, the discharge capacity does not increase. Therefore, in order to remarkably increase the discharge capacity, it is necessary to make the composition ratio of the metal element contained in the solid solution of the lithium transition metal composite oxide Lii+(x/3) C〇ixy-zNiy/2Mg2/2Mn (2x/ 3) + (y/2) + (z/2) ( X > 〇 y &gt; 0, z &gt; 〇, x + y + z &lt; l), and the (003) plane obtained by X-ray diffraction measurement is required The intensity ratio of the diffraction peak to the (114) plane is I (〇〇3) (in) ^ 1.15. For example, as in Comparative Example 1-16 to Comparative Example 1-19, A1 or Ti is substituted instead of 45 201125195

AA

Mg的經i〇〇(TC下煅燒的活性物質,鋰過渡金屬複合氧化 物的固溶體具有可歸屬於空間群P3J2的X射線繞射圖 案’繞射波峰的強度比滿足I (QQ3) /1(114〕2 1.15,但無法獲 得超過200 mAh/g的放電電容,高率放電特性亦差。 如上所述,本發明的活性物質藉由滿足「鋰過渡金屬 複合氧化物的固溶體所含有的金屬元素的組成比率滿足 Lii+ (x/3) Co^x.y^Niy^Mg^Mn (2χ/3) + (y/2) + (ζ/2) ( χ&gt;〇 ' y&gt; 〇 ^ z&gt;0、x + y+z&lt;1)」、「具有可歸屬於空間群Ρ3ι12的χ 射線繞射圖案」、「由X射線繞射測定所得的(〇〇3)面與 (114)面的繞射波峰的強度比為1(〇。3)/1(114) ^ 15」三 個要件,可獲得超過200 mAh/g的大的放電電容,且可謂 高率放電特性優異。 [實例2] (實例2_1) 與實例1-1同樣地於煅燒溫度1000¾下合成組成為 Lii.2Co01Ni〇 139Mg0.011Mn〇.55〇2 的活性物質。 關於所得的活性物質的結晶構造,與實例1_丨同樣地 進行使用Cu (Κα)管球的粉末X射線繞射測定,結果確 δ忍到a-NaFe〇2型的六方晶構造為主相’並且部分觀察到The intensity ratio of the diffracted Mg under the TC (the active material of the lithium transition metal composite oxide, the X-ray diffraction pattern attributable to the space group P3J2) is satisfied with I (QQ3) / 1 (114) 2 1.15, but a discharge capacity of more than 200 mAh/g cannot be obtained, and high rate discharge characteristics are also poor. As described above, the active material of the present invention satisfies "a solid solution of a lithium transition metal composite oxide" The composition ratio of the metal element contained satisfies Lii+(x/3) Co^xy^Niy^Mg^Mn(2χ/3) + (y/2) + (ζ/2) ( χ&gt;〇' y&gt; 〇^ z&gt ;0, x + y+z &lt;1)", "having a ray diffraction pattern attributable to the space group Ρ3ι12", and "(3) plane and (114) plane obtained by X-ray diffraction measurement" The intensity ratio of the diffraction peak is 1 (〇.3)/1(114)^15", and a large discharge capacitance exceeding 200 mAh/g can be obtained, and the high-rate discharge characteristics are excellent. [Example 2] (Example 2_1) An active material having a composition of Lii.2Co01Ni〇139Mg0.011Mn〇.55〇2 was synthesized at a calcination temperature of 10003⁄4 in the same manner as in Example 1-1. Regarding the crystal structure of the obtained active material, Example 1_丨 A powder X-ray diffraction measurement using a Cu (Κα) bulb was carried out in the same manner, and as a result, it was confirmed that δ endured the hexagonal structure of the a-NaFe〇2 type as the main phase' and was partially observed.

LitL—Mri2/3]。2型的單斜晶中可見的2〇。〜3〇。附近的繞射 波峰。對這些所有的繞射線藉由Rietveld法進行結晶構造 分析,結果與歸屬於空間群P3l12的結晶構造模型非常一 致。 另外’由2Θ : 18.6±1。時的繞射波峰求出(〇〇3)面的 46 201125195 繞射波峰的半高寬,結果為〇 14。, 射波:求出(114)面的繞射波峰的半高寬:結果土為= 進而,對X射線祕圖形㈣料於電腦场RRietvdd 分析過程中’使高斯函數及勞似函數所含的 參數精密化,根據如此而求出的結晶參數分別算出晶 格變形及微晶尺寸,結果微晶尺寸為180nm。 (實例2-2〜實例2-10) 知對於共沈殿氫氧化物前驅物所含有的金屬元素的組成 及氫氧化鋰一水合物的混合量,按表2的實例2_2〜實例 2_1〇所示的組成式進行變更,除此以外,與實例2-丨同樣 地合成本發明的活性物質。 X射線繞射測定的結果與實例2U相同,確認到 a-NaFe〇2型的六方晶構造為主相,並且部分觀察到 LitLi^MndO2型的單斜晶中可見的2〇。〜30。附近的繞射 波峰。對該些所有的繞射線藉由Rietveld法進行結晶構造 分析,結果與歸屬於空間群Ρ3ι12的結晶構造模型非常— 致。 另外’由2Θ : 18.6±1。時的繞射波峰求出(003)面的 繞射波峰的半高寬,結果為0.14。〜0.15。,由2Θ : 44.1±1。 時的繞射波峰求出(114)面的繞射波峰的半高寬,結果為 0.23〇〜0.25。。 進而,與實例2-1同樣地算出微晶尺寸,結果微晶尺 寸為 180 nm〜200 nm。 (比較例2-1〜比較例2-4 ) 47 201125195 自共沈澱氫氧化物前驅物所含有的金屬元素中去掉 Mg ’按表2的比較例2-1〜比較例2-4所示的組成式進行 變更’對於比較例2-1〜比較例2-4,將煅燒溫度分別變更 為 1000°C、900°C、800°C、700°C,除此以外,與實例 2-1 同樣地合成比較例的活性物質。 與實例2-1同樣地求出(003)面、(114)面的繞射波 峰的半高寬,算出微晶尺寸。 (比較例2-5〜比較例2-7) 對於比較例2-5〜比較例2-7,將與實例2-2 (煅燒溫 度l〇〇〇°C)相同組成的固溶體的煅燒溫度分別變更為 700°C、800°C、900°C,除此以外,與實例2-1同樣地合成 比較例的活性物質。 與實例2-1同樣地求出(〇〇3)面、(114)面的繞射波 峰的半高寬,算出微晶尺寸。 (比較例2-8〜比較例2-14) 比較例2-8〜比較例2-10是設定為與實例2-3、實例 2-卜實例2-4相同的固溶體組成,比較例2-11〜比較例2-14 是設定為與實例2-7〜實例2-10相同的固溶體組成,並將 炮燒溫度從1000°C變更為900°C ’除此以外,與實例2-1 同樣地合成比較例的活性物質。 與貫例2-1同樣地求出(〇〇3)面、(il4)面的繞射波 峰的半高寬,算出微晶尺寸。 (比較例2-15、比較例2-16) 對於共沈殿氫氧化物前驅物所含有的過渡金屬元素的 48 201125195 組成及氫氧化裡一水合物的混合量,按表2的比較例 2-15、比較例2-16所示的組成式進行變更,除此以外,與 實例2-1同樣地合成比較例的活性物質。 與實例2-1同樣地求出(003)面、(114)面的繞射波 峰的半高寬,算出微晶尺寸。 (比較例2-17) 與比較例1-16同樣地合成含有A1代替Mg的活性物 質 LiuCoo.iNio.wAlo.ouMno.wC^。 (比較例2-18) 與比較例1-17同樣地合成含有A1代替Mg的活性物 質 LiuCoo.iNio.msAlo.c^iMno.s^O!。 (比較例2-19) 與比較例1-18同樣地合成含有Ti代替Mg的活性物 質 LiuCoo.iNiojsTio.t^Mno.wC^。 (比較例2-20) 與比較例1-19同樣地合成含有Ti代替Mg的活性物 質 LiuCoo.iNio.uTio.osMnojC^。 (鋰二次電池的製作及評價) 使用實例2-1〜實例2-10及比較例2-1〜比較例2-20 的各活性物質作為鋰二次電池用正極活性物質,按與實例 1相同的順序製作鋰二次電池,評價電池特性。 將半高寬的測定結果、結晶尺寸的算出結果、充放電 循環試驗結果(0.1 C電容)、速率比率示於表2中。 [表2] 49 201125195 ^-98^ s s δ s 寸w s 0Λ z10 1·° s s s s s s ε s s s s tL u u ω/χ&lt;αι 鉍铗钗柘 tv03&quot; 趔 趔 ΝΙΓΧΙ-, liw+&lt;sl)^*+(εοο) *οοοπ Ζ Λ χ ζ0ΖΛε2~、-Μ5!Ί~ο~、£Σ~/·-ζπ~0^、~υ2&quot;··-π】π w寸一 ou εβ-SI 06-061 &quot;6·-«61 901·- Ώβι on s- 991 S3 Ns Λ寸3 OS ~s 53 -s ~s 3Z zs oe·-061 ow·-OtH οει 0·°··-on οει OM ou OS OS ou ow 061 0rol 081 OS 081 06-06-OS oe·-081 08·-LitL—Mri2/3]. 2 可见 visible in the type 2 monoclinic crystal. ~3〇. The nearby diffraction peaks. The crystal structure analysis of all these ray rays by the Rietveld method is very consistent with the crystal structure model attributed to the space group P3l12. In addition, 'by 2Θ: 18.6±1. At the time of the diffraction peak, the half-height of the diffracted peak of the 2011 1953 surface is obtained. The result is 〇 14. , the wave: find the full width at half maximum of the diffraction peak of the (114) plane: the result is = and further, the X-ray secret image (4) is expected to be included in the computer field RRietvdd analysis process to make the Gaussian function and the labor function The parameters were refined, and the lattice deformation and the crystallite size were calculated from the crystal parameters thus obtained, and the crystallite size was 180 nm. (Example 2-2 to Example 2-10) It is understood that the composition of the metal element contained in the hydroxide precursor of the common hall and the mixing amount of the lithium hydroxide monohydrate are as shown in Example 2_2 to Example 2_1 of Table 2 The active material of the present invention was synthesized in the same manner as in Example 2-丨 except that the composition formula was changed. The results of the X-ray diffraction measurement were the same as in Example 2U, and it was confirmed that the hexagonal structure of the a-NaFe〇2 type was the main phase, and the 2〇 visible in the monoclinic crystal of the LitLi^MndO2 type was partially observed. ~30. The nearby diffraction peaks. The crystal structure analysis of all the diffraction rays by the Rietveld method is very consistent with the crystal structure model belonging to the space group Ρ3ι12. In addition, 'by 2Θ: 18.6±1. At the time of the diffraction peak, the full width at half maximum of the diffraction peak of the (003) plane was obtained, and as a result, it was 0.14. ~0.15. , by 2Θ : 44.1±1. At the time of the diffraction peak, the full width at half maximum of the diffraction peak of the (114) plane was obtained, and as a result, it was 0.23 〇 to 0.25. . Further, the crystallite size was calculated in the same manner as in Example 2-1, and as a result, the crystallite size was 180 nm to 200 nm. (Comparative Example 2-1 to Comparative Example 2-4) 47 201125195 The Mg was removed from the metal element contained in the hydroxide precursor of the coprecipitation, as shown in Comparative Example 2-1 to Comparative Example 2-4 of Table 2 In the case of Comparative Example 2-1 to Comparative Example 2-4, the calcination temperature was changed to 1000 ° C, 900 ° C, 800 ° C, and 700 ° C, respectively, and the same as Example 2-1. The active material of the comparative example was synthesized. The full width at half maximum of the diffraction peaks of the (003) plane and the (114) plane were obtained in the same manner as in Example 2-1, and the crystallite size was calculated. (Comparative Example 2-5 to Comparative Example 2-7) For Comparative Example 2-5 to Comparative Example 2-7, calcination of a solid solution having the same composition as that of Example 2-2 (calcination temperature l〇〇〇°C) was carried out. The active material of the comparative example was synthesized in the same manner as in Example 2-1 except that the temperature was changed to 700 ° C, 800 ° C, and 900 ° C, respectively. The full width at half maximum of the diffraction peaks of the (〇〇3) plane and the (114) plane were obtained in the same manner as in Example 2-1, and the crystallite size was calculated. (Comparative Example 2-8 to Comparative Example 2-14) Comparative Example 2-8 to Comparative Example 2-10 were set to have the same solid solution composition as in Example 2-3, Example 2-B Example 2-4, and Comparative Example 2-11 to Comparative Example 2-14 were set to the same solid solution composition as in Examples 2-7 to 2-10, and the firing temperature was changed from 1000 ° C to 900 ° C. In addition, examples and examples 2-1 The active material of the comparative example was synthesized in the same manner. The full width at half maximum of the diffraction peaks of the (〇〇3) plane and the (il4) plane were obtained in the same manner as in Example 2-1, and the crystallite size was calculated. (Comparative Example 2-15, Comparative Example 2-16) The composition of the transition metal element contained in the common hydroxide precursor of the 48 201125195 and the mixing amount of the hydroxide monohydrate were as shown in Comparative Example 2 of Table 2. 15. The active material of the comparative example was synthesized in the same manner as in Example 2-1 except that the composition formula shown in Comparative Example 2-16 was changed. The full width at half maximum of the diffraction peaks of the (003) plane and the (114) plane were obtained in the same manner as in Example 2-1, and the crystallite size was calculated. (Comparative Example 2-17) An active substance containing A1 instead of Mg was synthesized in the same manner as in Comparative Example 1-16, LiuCoo.iNio.wAlo.ouMno.wC^. (Comparative Example 2-18) An active substance containing A1 instead of Mg was synthesized in the same manner as in Comparative Example 1-17, LiuCoo.iNio.msAlo.c^iMno.s^O!. (Comparative Example 2-19) An active material containing Ti instead of Mg was synthesized in the same manner as in Comparative Example 1-18, LiuCoo.iNiojsTio.t^Mno.wC^. (Comparative Example 2-20) An active material containing Ti instead of Mg was synthesized in the same manner as in Comparative Example 1-19. LiuCoo.iNio.uTio.osMnojC^. (Production and Evaluation of Lithium Secondary Battery) Each of the active materials of Examples 2-1 to 2-10 and Comparative Example 2-1 to Comparative Example 2-20 was used as a positive electrode active material for a lithium secondary battery, and Example 1 was used. A lithium secondary battery was fabricated in the same order, and battery characteristics were evaluated. The measurement results of the full width at half maximum, the calculation results of the crystal size, the charge and discharge cycle test results (0.1 C capacitance), and the rate ratio are shown in Table 2. [Table 2] 49 201125195 ^-98^ ss δ s inch ws 0Λ z10 1·° ssssss ε ssss tL uu ω/χ&lt;αι 铋铗钗柘tv03&quot; 趔趔ΝΙΓΧΙ-, liw+&lt;sl)^*+ (εοο) *οοοπ Ζ Λ χ ζ0ΖΛε2~, -Μ5!Ί~ο~, £Σ~/·-ζπ~0^,~υ2&quot;··-π】π w inch-ou εβ-SI 06-061 &quot ;6·-«61 901·- Ώβι on s- 991 S3 Ns Λ inch 3 OS ~s 53 -s ~s 3Z zs oe·-061 ow·-OtH οει 0·°··-on οει OM ou OS OS Ou ow 061 0rol 081 OS 081 06-06-OS oe·-081 08·-

SO ε'0 8ΖΌ 6ΖΌ so 6-0 8-0 SO 3Ό 8S -3 5.0 3Ό ε.ο so εζ.ο SO so so so so so 寸s ε'0 so SO no no 9L.0 95 95 no 91Ό 95 a.o ΖΛΌ Ls -s s ·0 uo wo ΜΌ w-o no PIO WIO ΜΌ 寸一Ό tnd 寸-0 寸5 ο ο ο 5 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο εεεό εε·ο SS 005 090.0 sod S00 zloo οηο.0 so.o ΖΞΌ §00 SOO Id 0 0 0 0 0900 35.0 soo W5.0 sl.o 0900 os.o Nto.o id 30Ό &quot;εεΌ ss.o ε.ο s s ε_0 05Ό 85Ό s-0 S3 S3 SZO 3 s s s s ε·ο s εο 08-0 os.o OSO ss szo 85Ό 9 9 9 9 9 9 9 9 9.0 os.o SSO SSO SSO ·0 90 90 9Ό 9Ό 90SO ε'0 8ΖΌ 6ΖΌ so 6-0 8-0 SO 3Ό 8S -3 5.0 3Ό ε.ο so εζ.ο SO so so so so so so inch s ε'0 so SO no no 9L.0 95 95 no 91Ό 95 Ao ΖΛΌ Ls -ss ·0 uo wo ΜΌ wo no PIO WIO 寸 inch Ό tnd inch-0 inch 5 ο ο ο 5 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ·ο SS 005 090.0 sod S00 zloo οηο.0 so.o ΖΞΌ §00 SOO Id 0 0 0 0 0900 35.0 soo W5.0 sl.o 0900 os.o Nto.o id 30Ό &quot;εεΌ ss.o ε.ο Ss ε_0 05Ό 85Ό s-0 S3 S3 SZO 3 ssss ε·ο s εο 08-0 os.o OSO ss szo 85Ό 9 9 9 9 9 9 9 9 9.0 os.o SSO SSO SSO ·0 90 90 9Ό 9Ό 90

000.0 000.0 oso SSO Φ卜SO SSO woooocson.o^zonooo^ «os.oc5S.OM5»2f S.0OOJ ^OSOC2SOM2«3~2-0〇〇*-.-□ 3οε5.0Ε250ώ5®-·-ζ_°οοβ2··-η Z09SOU5~10.0MS2.--ZSO°S r·--1 2083.0=2^8.03^-.0^-000^1-1-1 ~0SOC5S5.0MSSC5I2500~II-, WOS.0C2--ootoss-.o-z-.0〇〇«-□ ~°s,oc5e8OMs5-OI2ro0ur--J «OSOC508.0W25-.O^Z-.OOON.-D z°ss.ou2§oss5rol2so°rlj-, 208.0=208.032551-.0002.13 2OSOc5s-02tOOQZ-J-} ~o s°'u 2 S 5J-.0O 02 J-| NOS0C5W-.05-.0〇〇«-□ ZOSS.0 JslOJ-.oo°'-l-l ZOSOUSSOgssroj-ooos.·--, ~o5s&quot;0c2-s.0s5*5-z-°o°s-·-- «Oesocs«-O.OM2W- 0-z- ooos- WOI.OC5SOOW2«-.0-Z-0〇0»*-·-□ wos.oc5eodM2JZ-OOON.-D ~0®·ου23.032ζιΌΙ2ιΌΟϋ~·-ρι NOWW.OC2®5.0M2W«-.0-Z-.OOON.-^ ZOSOU2eg.0323 5l250°sn 308.0=210325-012-0002--1 ζο8.0υ5ιιοΌ353·'-ζ·οοϋ~·-η 9T3?&quot;qq St 丨S$sq1 MIZ5&quot;^ ετζ5^^ U—Z5窠e 01 丨 25馨^ 6—z5粲玉 Tz5&quot;-9lz?^&quot; s—-^^qq 寸-3r-4m- ?妾錨e 杏錨&quot; L--_牟耷qi OTZf#Jjt! 612 5^1 ?-条^i 卜—-每駟一 9—二杳 ?3:拉 工 f^v Z丨Z Tg 一 °~oon °lvn°~z/-c~、--zn°c*、*c5®、-n】n (O CM ιο l〇 194 181 180 180 0.24 0.24 0.14 0.14 o' Ο 0.012 0.021 0.288 0.279 to (〇 o o Lit^CootNig i44Al0012Mn〇S44〇2 LitJCo0 tNi〇 1395Ala〇2iMn053g5〇2 比較例2-17 比較例2-18 《ooon ζ°ζ/·-~、·-2π°*、-css!2n°〔sc2sn〕n ιη 〇 ιη ιη 183 172 180 190 0.24 0.25 0.14 0.15 6 ο 0.06 0.1 0.24 0.2 (D (〇 ό ό Li,jCo〇 1Ni015Ti003MnOH〇2 Lit.2Co0.tNi0.1sTi0.0SMn0.sO2 比較例2-19 比較例2-20000.0 000.0 oso SSO Φ 卜 SO SSO woooocson.o^zonooo^ «os.oc5S.OM5»2f S.0OOJ ^OSOC2SOM2«3~2-0〇〇*-.-□ 3οε5.0Ε250ώ5®-·-ζ_°οοβ2 ··-η Z09SOU5~10.0MS2.--ZSO°S r·--1 2083.0=2^8.03^-.0^-000^1-1-1 ~0SOC5S5.0MSSC5I2500~II-, WOS.0C2-- Ootoss-.oz-.0〇〇«-□ ~°s,oc5e8OMs5-OI2ro0ur--J «OSOC508.0W25-.O^Z-.OOON.-D z°ss.ou2§oss5rol2so°rlj-, 208.0= 208.032551-.0002.13 2OSOc5s-02tOOQZ-J-} ~os°'u 2 S 5J-.0O 02 J-| NOS0C5W-.05-.0〇〇«-□ ZOSS.0 JslOJ-.oo°'-ll ZOSOUSSOgssroj -ooos.·--, ~o5s&quot;0c2-s.0s5*5-z-°o°s-·-- «Oesocs«-O.OM2W- 0-z- ooos- WOI.OC5SOOW2«-.0- Z-0〇0»*-·-□ wos.oc5eodM2JZ-OOON.-D ~0®·ου23.032ζιΌΙ2ιΌΟϋ~·-ρι NOWW.OC2®5.0M2W«-.0-Z-.OOON.-^ ZOSOU2eg. 0323 5l250°sn 308.0=210325-012-0002--1 ζο8.0υ5ιιοΌ353·'-ζ·οοϋ~·-η 9T3?&quot;qq St 丨S$sq1 MIZ5&quot;^ ετζ5^^ U-Z5窠e 01 丨25馨^6-z5粲玉Tz5&quot;-9lz?^&quot; s—-^^qq inch-3r-4m- ?妾 anchor e apricot anchor&quot; L--_牟耷qi OTZf#Jjt! 612 5^ 1 ?-条^i Bu--Every A 9-two 杳?3: pull work f^v Z丨Z Tg one °~oon °lvn°~z/-c~, --zn°c*, *c5®, -n]n (O CM ιο L〇194 181 180 180 0.24 0.24 0.14 0.14 o' Ο 0.012 0.021 0.288 0.279 to (〇oo Lit^CootNig i44Al0012Mn〇S44〇2 LitJCo0 tNi〇1395Ala〇2iMn053g5〇2 Comparative Example 2-17 Comparative Example 2-18 "ooon ζ °ζ/·-~,·-2π°*, -css!2n°[sc2sn]n ιη 〇ιη ιη 183 172 180 190 0.24 0.25 0.14 0.15 6 ο 0.06 0.1 0.24 0.2 (D (〇ό ό Li, jCo〇 1Ni015Ti003MnOH〇2 Lit.2Co0.tNi0.1sTi0.0SMn0.sO2 Comparative Example 2-19 Comparative Example 2-20

OS 201125195 實例2-1〜實例2-6、比較例2-5〜比較例2-10是於設 想 固溶體 xLi[Li1/3Mn2/3]02-yLiNi1/2Mn1/2〇2-zLiMgi/2Mn1/2〇r (1-x-y-z) LiCo02 (x&gt;0、y&gt;〇、z&gt;0、x + y+z&lt;l)的 基礎上’按照藉由Mg2+1/2Mn4+1/2來替換構成LiNi1/2Mn1/202 的Νθ+^Μη4'/2部分的思想,以滿足式Li1+ ( x/3 ) C〇i-x.y.zNiy/2Mgz/2Mn (2x/3) + (y/2) + (z/2) (x&gt;0 ' y&gt;0 ' z&gt;0 ' x + y + z&lt;l)的方式設定各金屬元素的組成比率(金屬元 素比率)。 關於實例2-1〜實例2-6,上述金屬比率在本發明的規 定範圍内’(003)面的繞射波峰的半高寬為0.14。〜0.15。, 且(114)面的繞射波峰的半高寬為〇.23。〜0.25。。 比較例2-5〜比較例2-7的上述金屬元素比率與實例 2-2相同’但煅燒溫度分別為700°C、800°C、900°C,低於 實例2-2的1000°C,故(003)面的繞射波峰的半高寬分 別為 0.31。、0.21。、0.17。,大於實例 2-2 的 0.14。,(114) 面的繞射波峰的半高寬亦分別為0.45。' 0.31。、0.28。,大 於實例2-2的0.24。。 另外,關於微晶尺寸,實例2-2為180nm,相對於此, 比較例2-5〜比較例2-7分別為80 nm、110 nm、140 nm, 可知煅燒溫度越低則微晶尺寸越小。 比較例2-8〜比較例2-10的上述金屬元素比率與實例 2-3、實例2-;1、實例2-4相同,但煅燒溫度為900°C,低於 實例2-3、實例2-;!、實例2-4的1000°C,故(003)面的 51 201125195 繞射波峰的半高寬為0.16。〜0.17。,大於實例2-3、.實例 2-1、實例2-4的0.14。,(114)面的繞射波峰的半高寬亦 為0.28°〜〇.29。,大於實例2-3、實例2-1、實例2-4的0.23。 〜0.24。。 另外,關於微晶尺寸,實例2-3、實例2-1、實例2-4 為180 nm〜200 nm,相對於此,比較例2-8〜比較例2-10 為130 nm〜140 nm,微晶尺寸小。 實例2-7〜實例2-10、比較例2-11〜比較例2-14是於 同 樣 設 想 固溶冑 xLi[Li1/3Mn2/3]02-yLiNi1/2Mn1/2〇2-zLiMg1/2Mn1/2〇2-(1-x-y-z) LiCo02 (x&gt;0、y&gt;0、z&gt;0、x + y+z&lt;l)的 基礎上’按照藉由[Mgl/2Mni/2]3+來替換構成 的[Lii/3Mn2/3]3+部分的思想,以滿足式 Li1+ (x/3)C〇l-x,y-zNiy/2Mgz/2Mll(2x/3) + (y/2) + (z/2) (X&gt;〇、y&gt;〇、z &gt;〇、x + y+z&lt;l)的方式設定各金屬元素比率。 關於實例2_7〜實例2-10,上述金屬比率在本發明的 規定範圍内’(〇〇3 )面的繞射波峰的半高寬為〇 14。〜 0.15。,且(114)面的繞射波峰的半高寬為〇.23。〜〇 25。。 比較例2-11〜比較例2-14的上述金屬元素比率與實 例2-7〜實例2-10相同,但煅燒溫度為9〇(TC,低於實例 2-7〜實例2-10的1000°C,故(003)面的繞射波峰的半高 寬大至0.16°〜0.17°’(114)面的繞射波峰的半高寬亦大 至 0.28。〜0.29。。 另外,關於微晶尺寸’實例2-7〜實例2-1〇為18〇 nm 52 201125195 〜200 nm,相對於此,比較例2-11〜比較例2-14為130 nm 〜140 nm,微晶尺寸小。 固溶體滿足上述金屬元素比率、(〇〇3)面的繞射波峰 的半高寬為0.15。以下、且(114)面的繞射波峰的半高寬 為0.25。以下的實例2-1〜實例2-10的活性物質可獲得超過 200 mAh/g的放電電容,與除了固溶體不含Mg以外和實 例2-2為相同組成的比較例2-1〜比較例2-4的活性物質相 比較’ 0.1 C的放電電容提高。另外’實例2-1〜實例2-1〇 的活性物質的速率比率為58%以上’與比較例2-1〜比較 例2-4的活性物質相比較,確認到速率比率顯著提高,高 率放電特性優異。 相對於此,如比較例2-5〜比較例2-14的活性物質 般,即便固 &gt;谷體滿足上述金屬元素比率,於()面的终 射波峰的半高寬超過〇.15。、(114)面的繞射波峰 二 超過0.25°時,僅可獲得低於200 mAh/g的放電電容, 比率亦為54%以下,與除了固溶體不含Mg以外和實 相同的比較例2·1〜比較例2_4的活性物動目比較 的放電電容、速率比率(高率放電特性)均未提言· 另外,比較例W的活性物_ ( ^ = 的半高寬為0.15。以下,且二&amp; 、旳繞射波峰 為0.25。以下,即,在本發明的、波峰的半高寬 發明的範圍外的比較例2_2〜比 ,”上述半高寬在本 固溶體不含Mg時,不僅、、志丨〜 的提岗,於 僅減小(〇〇3)面及(叫面的繞 53 201125195 射波峰的半1’而且高率放電特性不可謂提高。 比較例 2-15 是於成為 Lii+、Mn4+、见2+、c〇3+、μ§2+ 的件下以Mg來替換相當於X = G、y=2/3、z = G的活性 =¾ 一LiCo1/3Ni1/3Mn1/3〇2㈤一部分過渡金屬位點,具體而 。了出相當於x = 〇、y = 〇 56、z=〇 1〇時的結果。锻捧 溫,?實例相同而A _。。,⑽)及(114)繞射波; 的半南寬亦㈣。此時,賴可保持價數條件,但如非專 利文獻6所錢,與作為不含Mg的上述活性物質的比較 例2-16相比’儘管為相同的般燒溫度⑽及 繞射波峰的半高寬,亦可見放電餘的降低。 峰上 1實例2侧活性物質的(〇〇3)面的繞射波 ^t2^Tair&quot;T j ^(114) 1為0.25叮,隨之微晶尺寸亦大至18〇腿 放電特性提高。 同半 相對於此’比較例2_2〜比較例2_14的活性物質 隨之微晶尺寸小至14Gnm以下,高率放電特性 不提馬。 另外’比較你⑴的活性物質的半高寬小至與實例21 〜實例2-1G相同程度,故微晶尺寸為⑽⑽卩上但由 於固溶體不含Mg,故高率放電特性不提言。 比較例2·15的活性物質含有Mg,^尺寸為180nm 以上,但於過渡金屬位點含有Li+,G] c的放電電容、速 率比率(高率放電特性)均未提高。 比較例2-i6的活性物質的微晶尺寸為i8〇M以上, 54 201125195 高率放電特性優異,但過渡金屬位點含有Li+,ο」c的放 電電容未提高。 因此,為了維持尚的放電電谷並且使高率放電特性提 昇’較佳為使固溶體滿足上述金屬元素比率,並且使微晶 尺寸為180 nm以上。 關於如比較例2-17〜比較例2-20般含有A1或Ti代替 Mg的經l〇〇(TC下煅燒的活性物質,鋰過渡金屬複合氧化 物的固溶體具有可歸屬於空間群P3J2的X射線繞射圖 案’ X射線繞射圖中(003 )面的繞射波峰的半高寬為〇」5。 以下,且(114)面的繞射波峰的半高寬為0.25。以下,但 無法獲得超過200 mAh/g的放電電容’高率放電特性亦差。 如以上所述,本發明的活性物質藉由滿足「鋰過渡金 屬複合氧化物的固溶體所含有的金屬元素的組成比率滿足 ^1+ Cx/3) COj.x_y.zNiy/2Mgz/2Mn (2χ/3) + (y/2) + (z/2)( X&gt;〇 ' y&gt; 〇 &gt; z&gt;〇、x + y + z&lt;l)」'「具有可歸屬於空間群P3il2的x 射線繞射圖案」、「X射線繞射圖中(003 )面的繞射波峰的 半高寬為0.15。以下,且(114)面的繞射波峰的半高寬為 0.25°以下」三個要件,可獲得超過200 mAh/g的大的放電 電容,且可謂高率放電特性顯著提高。 [實例3] (實例3-1) 與實例 1-1 同樣地合成組成為 Lii.2Co〇.丨Nio.^Mgo.ouMno.55。2的活性物質(與實例2中的 貫例2-1相同的活性物質)。 55 201125195 (比較例3·1) 自共沈殿氫氧化物前驅物所含有的金屬元素中去掉 Mg ’除此以外’與實例3-1同樣地合成比較例3_1的活性 物質(與實例2中的比較例2-1相同的活性物質)。 (比較例3-2) 對於共沈殿氫氧化物前驅物所含有的過渡金屬元素的 組成及虱氧化鐘一水合物的混合量,按表3的比較例3 2 所示的組成式進行變更’除此以外,與實例3_丨同樣地合 成 LiCoo.nNimMgo.ouMnowC^ 的活性物質。 (比較例3-3) 自共沈澱氫氧化物前驅物所含有的金屬元素中去掉 Mg,除此以外,與比較例3-2同樣地合成比較例3-3的活 性物質(與實例2中的比較例2-16相同的活性物質)。 與實例2同樣地求出(〇〇3)面的繞射波峰的半高寬、 (114)面的繞射波峰的半高寬,算出微晶尺寸。 比較例 3-2 的活性物質為 Li[Li1/3Mn2/3]02(x): 〇 〇〇〇,OS 201125195 Example 2-1 to Example 2-6, Comparative Example 2-5 to Comparative Example 2-10 are contemplated as solid solution xLi[Li1/3Mn2/3]02-yLiNi1/2Mn1/2〇2-zLiMgi/2Mn1 /2〇r (1-xyz) LiCo02 (x&gt;0, y&gt;〇, z&gt;0, x + y+z&lt;l) is based on 'replacement by Mg2+1/2Mn4+1/2 The idea of Νθ+^Μη4'/2 part of LiNi1/2Mn1/202 to satisfy the formula Li1+ ( x/3 ) C〇ix.y.zNiy/2Mgz/2Mn (2x/3) + (y/2) + ( z/2) (x &gt; 0 ' y &gt; 0 ' z &gt; 0 ' x + y + z &lt; l) The composition ratio (metal element ratio) of each metal element is set. With respect to the examples 2-1 to 2-2, the above metal ratio is within the prescribed range of the present invention, and the half-height width of the diffraction peak of the '003' plane is 0.14. ~0.15. And the full width at half maximum of the diffraction peak of the (114) plane is 〇.23. ~0.25. . The above metal element ratios of Comparative Example 2-5 to Comparative Example 2-7 were the same as those of Example 2-2', but the calcination temperatures were 700 ° C, 800 ° C, and 900 ° C, respectively, which was lower than 1000 ° C of Example 2-2. Therefore, the half-height width of the diffraction peak of the (003) plane is 0.31. 0.21. , 0.17. , greater than 0.14 of Example 2-2. The half-height of the diffraction peak of the (114) plane is also 0.45. '0.31. 0.28. , greater than 0.24 of Example 2-2. . Further, regarding the crystallite size, Example 2-2 was 180 nm, whereas Comparative Example 2-5 to Comparative Example 2-7 were 80 nm, 110 nm, and 140 nm, respectively, and it was found that the lower the calcination temperature, the more the crystallite size was. small. The above metal element ratios of Comparative Example 2-8 to Comparative Example 2-10 were the same as those of Example 2-3, Example 2-; 1, Example 2-4, but the calcination temperature was 900 ° C, which was lower than Examples 2-3, Examples. 2-;!, 1000 °C of Example 2-4, so the half-height of the diffraction peak of 51 201125195 of the (003) plane is 0.16. ~0.17. , greater than Example 2-3, Example 2-1, and Example 2-4 of 0.14. The half-height of the diffraction peak of the (114) plane is also 0.28°~〇.29. , greater than 0.23 of Example 2-3, Example 2-1, and Example 2-4. ~0.24. . In addition, regarding the crystallite size, Examples 2-3, 2-1, and Examples 2-4 are 180 nm to 200 nm, whereas Comparative Examples 2-8 to 2-10 are 130 nm to 140 nm. The crystallite size is small. Examples 2-7 to 2-10, and Comparative Examples 2-11 to 2-14 are similarly assumed to be solid solution 胄xLi[Li1/3Mn2/3]02-yLiNi1/2Mn1/2〇2-zLiMg1/2Mn1/ 2〇2-(1-xyz) LiCo02 (x&gt;0, y&gt;0, z&gt;0, x + y+z&lt;l) is based on 'replacement by [Mgl/2Mni/2]3+ The idea of the [Lii/3Mn2/3]3+ part to satisfy the formula Li1+ (x/3)C〇lx, y-zNiy/2Mgz/2Mll(2x/3) + (y/2) + (z/2 (X&gt; 〇, y &gt; 〇, z &gt; 〇, x + y + z &lt; l) The ratio of each metal element is set. With respect to Examples 2-7 to 2-10, the above-described metal ratio is within the range of the present invention, and the full width at half maximum of the diffraction peak of the '(3) plane is 〇 14. ~ 0.15. And the full width at half maximum of the diffraction peak of the (114) plane is 〇.23. ~〇 25. . The above metal element ratios of Comparative Examples 2-11 to Comparative Examples 2-14 were the same as those of Examples 2-7 to 2-10, but the calcination temperature was 9 Torr (TC, which was lower than 1000 of Examples 2-7 to 2-10). °C, so the half-height of the diffraction peak of the (003) plane is as large as 0.16°~0.17°. The half-height width of the diffraction peak of the (114) plane is also as large as 0.28.~0.29. In addition, regarding the crystallite size 'Example 2-7~Example 2-1〇 is 18〇nm 52 201125195~200 nm, whereas Comparative Example 2-11 to Comparative Example 2-14 are 130 nm to 140 nm, and the crystallite size is small. The half-height width of the diffraction peak of the (〇〇3) plane is 0.15. The half-height width of the diffraction peak of the (114) plane is 0.25. Examples 2-1 to below The active material of 2-10 can obtain a discharge capacity of more than 200 mAh/g, and the active material phase of Comparative Example 2-1 to Comparative Example 2-4 having the same composition as Example 2-2 except that the solid solution does not contain Mg. The discharge capacity of '0.1 C was increased. In addition, the rate ratio of the active materials of 'Example 2-1 to Example 2-1〇 was 58% or more' compared with the active materials of Comparative Examples 2-1 to 2-4, The rate ratio was remarkably improved, and the high rate discharge characteristics were excellent. On the other hand, as in the case of the active materials of Comparative Example 2-5 to Comparative Example 2-14, even if the solids contained the above-mentioned metal element ratio, the () surface was satisfied. The half-height of the final shot peak exceeds 〇.15. When the diffraction peak of the (114) plane exceeds 0.25°, only the discharge capacitance of less than 200 mAh/g can be obtained, and the ratio is also 54% or less. The discharge capacity and the rate ratio (high rate discharge characteristics) of the active materials of Comparative Example 2·1 to Comparative Example 2_4, which are the same as those of the solid solution, which are not substantially the same as Mg, are not mentioned. _ (the full width at half maximum of ^ = is 0.15. Hereinafter, the second &amp; 旳 diffraction peak is 0.25. Hereinafter, in the comparative example 2_2~ ratio outside the range of the half-height width invention of the present invention, "When the solid solution contains no Mg, the above-mentioned solid solution does not only have the hoisting of the 丨 丨 , but only the ( 〇〇 3 ) surface and the half of the 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 The high rate discharge characteristics are not improved. Comparative Example 2-15 is to become Lii+, Mn4+, see 2+, c〇3+, μ§2+ Substituting Mg for the equivalent of X = G, y=2/3, z = G activity = 3⁄4 a LiCo1/3Ni1/3Mn1/3〇2 (5) part of the transition metal site, specifically the equivalent of x = 〇, y = 〇56, z=〇1〇 results. Forging the temperature, the same example and A _.., (10)) and (114) diffracted waves; the semi-south width is also (four). At this time, the valence condition is maintained, but the amount of money in Non-Patent Document 6 is compared with Comparative Example 2-16 which is the above-mentioned active material containing no Mg, although the same burning temperature (10) and diffraction peaks are used. Half width and width, it can also be seen that the discharge is reduced. On the peak, the diffraction wave of the (〇〇3) plane of the active material of Example 2 is 0.25 T, and the crystallite size is also as large as 18 〇. In the same manner, the active material of Comparative Example 2_2 to Comparative Example 2-14 was as small as the crystallite size to 14 Gnm or less, and the high rate discharge characteristics were not evaluated. Further, the half-height of the active material of (1) is as small as that of the examples 21 to 2-1G, so that the crystallite size is (10) (10), but since the solid solution does not contain Mg, the high-rate discharge characteristics are not mentioned. The active material of Comparative Example 2·15 contained Mg and had a size of 180 nm or more. However, the discharge capacity and rate ratio (high rate discharge characteristics) containing Li+ and G] c at the transition metal site were not improved. The active material of Comparative Example 2-i6 had a crystallite size of i8 〇M or more, and 54 201125195 was excellent in high rate discharge characteristics, but the transition metal site contained Li+, and the discharge capacity of ο"c was not improved. Therefore, in order to maintain the discharge electric valley and increase the high rate discharge characteristics, it is preferable that the solid solution satisfies the above metal element ratio and the crystallite size is 180 nm or more. With respect to Comparative Example 2-17 to Comparative Example 2-20, A1 or Ti was substituted for Mg, and the solid solution of the lithium transition metal composite oxide was classified as a space group P3J2. The X-ray diffraction pattern 'the full width at half maximum of the diffraction peak of the (003) plane in the X-ray diffraction pattern is 〇"5. Hereinafter, the full width at half maximum of the diffraction peak of the (114) plane is 0.25. However, it is not possible to obtain a discharge capacitor of more than 200 mAh/g. The high rate discharge characteristics are also poor. As described above, the active material of the present invention satisfies the composition of the metal element contained in the solid solution of the lithium transition metal composite oxide. The ratio satisfies ^1+ Cx/3) COj.x_y.zNiy/2Mgz/2Mn (2χ/3) + (y/2) + (z/2)( X&gt;〇' y&gt;〇&gt;z&gt;〇, x + y + z &lt;l)"'" has an x-ray diffraction pattern attributable to the space group P3il2", and "the full width at half maximum of the diffraction peak of the (003) plane in the X-ray diffraction pattern is 0.15 or less. The (114) half-height of the diffraction peak of the surface is 0.25° or less. Three large discharge capacitors exceeding 200 mAh/g can be obtained, and the high-rate discharge characteristics are remarkably improved. [Example 3] (Example 3-1) An active material having a composition of Lii.2Co〇.丨Nio.^Mgo.ouMno.55. 2 was synthesized in the same manner as in Example 1-1 (Comparative Example 2-1 in Example 2) The same active substance). 55 201125195 (Comparative Example 3·1) The active material of Comparative Example 3_1 was synthesized in the same manner as in Example 3-1 except that Mg was removed from the metal element contained in the hydroxide precursor of the common hall. Comparative Example 2-1 the same active substance). (Comparative Example 3-2) The composition of the transition metal element contained in the hydroxide precursor of the common hall and the mixing amount of the cerium oxide clock monohydrate were changed according to the composition formula shown in Comparative Example 32 of Table 3. Except for the above, the active material of LiCoo.nNimMgo.ouMnowC^ was synthesized in the same manner as in Example 3_丨. (Comparative Example 3-3) The active material of Comparative Example 3-3 was synthesized in the same manner as in Comparative Example 3-2 except that Mg was removed from the metal element contained in the coprecipitated hydroxide precursor (in Example 2) Comparative Example 2-16 the same active substance). In the same manner as in Example 2, the full width at half maximum of the diffraction peak of the (〇〇3) plane and the full width at half maximum of the diffraction peak of the (114) plane were obtained, and the crystallite size was calculated. The active material of Comparative Example 3-2 is Li[Li1/3Mn2/3]02(x): 〇 〇〇〇,

LiNi^MiimC^ (y) : 0.641、LiMg1/2Mn1/2〇2 (z) : 〇 〇26、LiNi^MiimC^ (y) : 0.641, LiMg1/2Mn1/2〇2 (z) : 〇 〇26,

LiCo〇2 ( 1-x-y-z) : 0.333、( 003 )面的繞射波峰的半 ^ 寬 為0.14°,(114)面的繞射波峰的半高寬為〇.23。,微晶尺 寸為190 nm。 (鋰二次電池的製作及評價) 使用實例3-1及比較例3-1〜比較例3-3的各活性物質 作為鋰二次電池用正極活性物質,按與實例1相同的順序 製作鋰二次電池,評價電池特性。 56 201125195 (DSC測定方法) 對於按與實例1相同的順序製作、進行了初期充放電 步驟賴二次電池,進行電流壓4.3V 15 小時的怪疋電流恆定電壓充電。 繼而’於露點(dewpoint) -4(TC以下的氬氣箱中將電 ^竭取出正極’以3 衝壓機(punch)衝壓正極 =,將,1羯與合劑層一起封入至DSC (示差掃描熱量 二析)’収用的不鏽鋼製鋼巾,供於DSC測定。DSC測 疋中將Al2〇3用於參考(reference),於氬氣環境中進行 至/皿,400C的測定。升溫速度設定為穴/min。 武樣的填充方法、發熱波峰的讀取方法:依照JIS K 7121-1987 (塑膠的轉移溫度測定方法)來進行。 將充放電循環試驗結果(0.1 C電容)、速率比率、DSC 發熱波峰溫度示於表3中。 [表3] 組成 放電電容 速率比率 DSC mAh/g % 發熱波峰溫度 ----- 實例3-1 ~~---___ 匕較例3-1 ~~~~_ &amp;較例3-2 ---------- —---—--- /0C _Ll^co〇.iNi〇.l38Mg0011Mn0!i5〇, 242 71 297 L li 2C〇〇.iNi015Mn〇 55〇2 223 52 277 LlC〇〇.33Ni0.3JMg00,3Mn0.33〇2 120 63 314 此較例3-3 ------- 1ίοο〇.33Νΐ〇.33Μη0.33〇2 145 88 314 如表3所示’對非富含鋰的鋰鎳锰鈷複合氧化物(比 57 201125195 較例3-3 )應用Mg的比較例3-2的活性物質的放電電容劣 化,並且熱穩定性無變化,相對於此,對富含鋰系的裡鎳 藏始複合氧化物(比較例3-1)應用Mg的實例3-1的活性 物質的放電電容提高,並且充電狀態下的熱穩定性亦提高。 [產業上之可利用性] 本發明的鋰二次電池用活性物質由於放電電容大,且 高率放電特性優異,故可有效用於電動車用電源、電子機 器用電源、電力儲藏用電源等的鋰二次電池。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 * 益 【主要元件符號說明】 益 58LiCo〇2 (1-x-y-z): The half-width of the diffraction peak of the 0.333 and (003) plane is 0.14°, and the full width at half maximum of the diffraction peak of the (114) plane is 〇.23. The microcrystal size is 190 nm. (Production and Evaluation of Lithium Secondary Battery) Using each active material of Example 3-1 and Comparative Example 3-1 to Comparative Example 3-3 as a positive electrode active material for a lithium secondary battery, lithium was produced in the same manner as in Example 1. The secondary battery was evaluated for battery characteristics. 56 201125195 (DSC measurement method) The initial charge and discharge process was carried out in the same order as in Example 1. The secondary battery was subjected to a constant current charging with a current voltage of 4.3 V for 15 hours. Then, in the dewpoint -4 (the argon gas tank below TC is taken out of the positive electrode), the positive electrode is punched by 3 punches, and 1 羯 is sealed with the mixture layer to DSC (differential scanning heat) 2. Analysis] 'Used stainless steel steel towel for DSC measurement. Al2〇3 is used for reference in DSC measurement, and is measured in argon atmosphere to / dish, 400C. The heating rate is set to hole / Min. Filling method of the sample and reading method of the hot peak: According to JIS K 7121-1987 (measurement method of transfer temperature of plastic). Results of charge and discharge cycle test (0.1 C capacitor), rate ratio, DSC heat peak The temperature is shown in Table 3. [Table 3] Composition discharge rate rate ratio DSC mAh/g % Heat peak temperature ---- Example 3-1 ~~---___ 匕 Comparative example 3-1 ~~~~_ &amp;Comparative Example 3-2 ---------- —------- /0C _Ll^co〇.iNi〇.l38Mg0011Mn0!i5〇, 242 71 297 L li 2C〇〇.iNi015Mn 〇55〇2 223 52 277 LlC〇〇.33Ni0.3JMg00,3Mn0.33〇2 120 63 314 This example 3-3 ------- 1ίοο〇.33Νΐ〇.33Μη0.33〇2 145 88 314 as shown in Table 3' Non-lithium-rich lithium nickel manganese cobalt composite oxide (compared with 57, 201125195, Comparative Example 3-3) The discharge capacity of the active material of Comparative Example 3-2 to which Mg is applied is deteriorated, and the thermal stability is unchanged, whereas Lithium-rich lycopene complex composite oxide (Comparative Example 3-1) The discharge capacity of the active material of Example 3-1 using Mg was increased, and the thermal stability in the charged state was also improved. Since the active material for a lithium secondary battery of the present invention has a large discharge capacity and high discharge rate characteristics, it can be effectively used for a lithium secondary battery such as an electric vehicle power source, an electronic device power source, or a power storage power source. Although the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that the present invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of protection of the invention is subject to the definition of the scope of the patent application. [Simplified description of the diagram] * Benefits [Key component symbol description] Benefit 58

Claims (1)

201125195 七、申請專利範圍: 1. 一種鋰二次電池用活性物質,其含有具有a_NaFe〇2 型結晶構造的鐘過渡金屬複合氧化物的固溶體,並且該裡 二次電池用/舌性物質的特徵在於:上述固溶體所含有的金 屬元素的組成比率滿足Li1+ (x/3) C〇l x y為/2Mgz/2Mn (μ) + (y/2) + (z/2) (X&gt;〇、y&gt;〇、Z&gt;〇、X + y+z&lt;1),具有可歸屬 於空間群即2的χ射線繞射圖案,具有超過2〇〇心心 的放電電容。 2. -種鐘二次電池用活性物質,其含有具有a_NaFe〇2 型結晶構造驗過渡金屬複合氧化物的固溶體,該鐘二次 電池用活性物質的賴在於:上述固溶體所含有的金屬元 素的組成比率滿足 Lil+ (x/3) C(Wy zNiy/2Mgz/2Mn _ + _ + (z/2)U&gt;〇'y&gt;o'z&gt;o、x+y+z&lt;1)’ 具有可歸屬於空 間群P3l12的X射線繞射圖案,由义射線繞射測定所得的 (_面與(m)面的繞射波峰的強度比為1(_ &gt;11^0 1 3. 裡經二次電池用活性物f,其含有具有a_Na 型結晶構造賴過渡金屬複合氧化物的固溶體,該鐘二欠 電池用活性物質的特徵在於4相溶賴含有的金屬元 素的組成比率滿足 Li1+ (x/3) dy_zNiy/2Mgz/2Mn + _ + (ζ/2) x〉〇、y&gt;o、z&gt;o、x+y+z&lt;1;),具有可歸屬於空 間群P3U2的X射線繞射圖案,由χ射線繞射測定所得= (003)面的繞射波峰的半高寬為〇 15。以下,且〇而 的繞射波峰的半高寬為0.25。以下。 59 201125195 4種鐘一-人電池用活性物質,其含有具有^漏 变結晶構造的㈣渡金屬複合氧化物的固溶體,該鐘二次 電池用活性物質的特徵在於:上述HI溶體所含有的金屬元 素的組成比率滿足 Lil〜3) Uiy/2Mgz/2Mn (2x/3) + (y/2) + (z/2) x&gt;〇、y&gt;G、z&gt;G、x+y+z&lt;1),具有可歸屬於空 間群P3! 12的x射線繞射圖案,由χ射線繞射測定所得的 (003)面與(114)面的繞射波峰的強度比為1_)/1(114) $1-15 ’及(GG3)面的繞射波峰的半高寬為〇 15。以下, 且(114)面的繞射波峰的半高寬為〇25。以下。 5. 如申請專利範㈣1項至第4項中任-項所述之經 二次電池用活性物質,其是於92(rc〜1〇〇〇C)c的煅燒溫度 下經煅燒而成。 6. 如申請專利範圍第1項至第4項中任一項所述之鋰 二次電池用活性物質,其中上述鋰過渡金屬複合氧化物的 固溶體是使用共沈殿法而製造。 7. 如申請專利範圍第1項至第4項中任一項所述之鋰 二次電池用活性物質,其中上述鋰過渡金屬複合氧化物的 固溶體所含有的金屬元素的組成比率為1/3 &lt;χ&lt;2/3、〇&lt;y &lt;2/3、0&lt;ζ&lt;0·3。 8. 如申請專利範圍第1項至第4項中任一項所述之鐘 二次電池用活性物質,其中上述鋰過渡金屬複合氧化物的 固溶體是由 Li[Li1/3Mn2/3]〇2、LiNi1/2Mni/2〇2、LiCo〇2 及 LiMgmMn^O2四種成分的固溶體構成。 9. 如申請專利範圍第1項至第4項中任一項所述之鐘 201125195 -次電池用活性物質,其_上频過渡金屬複合氧化物 固f體中,構成的各元素的價數為uI+、Mn4+、Νρ+、cq3+ '、 1〇.如申請專利範圍第1項至第4項中任一項所述 鐘二次電池用活性物質’其中上频過渡金屬複合氧化 的合成後的微晶尺寸為150 nm以上。 11. 一種鋰二次電池用電極,含有如申請專利範 項至第4項中任―項所述之鐘二次電池用活性物質。 12. -種ϋ二次電池,包含如申請專利範㈣“ 述之鋰二次電池用電極。 、斤 13. -独二次電池的製造方法,其是採用充 正極的最大到達電位為4.3V(VS U/Li+)以下的充^ 造專利範圍第12項所述之鐘二次電池的 中出現的電位變化至少達到相對較平坦的==圍 61 201125195 四、 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: 益 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無 201125195ιχ 爲第9_9131830號中文說明書無劃線修]£胃 曼專利說明書 修正日f:100年1月13彳| ,1. 年月e Γ&quot; 補L (本說明書格式、 ※申請案號: ※申請曰: 步驟,請勿任意更動,※記號部分請勿填寫) ^°//lA (χ〇^ ※工pc分類:个从冬々〆 一、發明名稱:(中文/英文) 鐘二次電池用活性物質、經二次電池用電極、鐘二次 電池及其製造方法 ACTIVE MATERIAL FOR LITHIUM SECONDARY 〇 BATTERY, ELECTRODE FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY AND FABRICATING METHOD THEREOF 二、中文發明摘要: 經二次電池用活性物質含有具有a-NaFe02型結晶構 造的鐘過渡金屬複合氡化物的固溶體,該鋰二次電池用活 性物質的特徵在於:上述固溶體所含有的金屬元素的組成 比率滿足 LiRG/wCchiy.zNiyaMgwMnQx/y + iyO + wz) (X &gt;0、y&gt;0、z&gt;0、x + y + z&lt;1),具有可歸屬於空間群P3ll2 的X射線繞射圖案’且具有超過2〇〇 mAh/g的放電電容。 另外,除了上述特徵以外,鋰二次電池用活性物質的特徵 在於:由X射線繞射測定所得的(〇〇3)面與(114)面的 繞射波峰的強度比為2U5,及/或(003)面 的繞射波峰的半高寬為0.15。以下、且(114)面的繞射波 峰的半高寬為0.25°以下。 201125195“ 修正日期:1〇〇年1月13日 爲第99131830號中文說明書無劃線修;ϊεμ 〇 ❹ 放電性能及充放電循環性紐異、高能量密度的非水電解 質二次電池的正極活性物質」(第6頁自下往上第7行〜第 7頁第4行)、「申請專利範圍第5項的正極活性物質的特 徵在於:上述複合氧化物的總㈣_為·..以下,且使用 CuKa射線的粉末\射線繞射_ 2Θ〜ι±ι。時的繞射波 峰相對於2Θ-18.6±1。時的繞射波峰的相對強度比為⑽ 以上、1.〇5以下。根據此種構成,特別可形成能製造高率 充放電循環性能優異、高能量密度(高放電電 ί上第V行第質9二百欠:池的正極活性物質」(第8頁自下 第3行)、「申請專利範圍第6項的正 ===於:增合氧化_比表面積為. α射線的粉末X射線繞射圖的2Θ = 峰相對於2㈣8.6±1。日_射波峰的 可形成:製造-皁二⑽以下。根據此種構成,特別 =能及充放電循環性能優異、高能 里在度C间放電電谷)的非水 物質」(第9頁第4行〜第 質—人電,也的正極活性 Mg作為Μ的特定組成的第錄〇仃旦並未揭示,於採用 定範圍内時,放電電St上述相對強⑽ 以上、0.20。以下,且==繞射波峰的半高寬為0.05。 高寬為0.10。以上、44,1士1〇時的繞射波峰的半 成能製•丄At θ . 下。根據此種構成,特別可形 成k具有㈣量密度(高放電電幻、充放電循環性能 20112519' i第Hl830號中文說明書無劃線修正頁修正日斯1〇〇年]月i3日 優異的非水電解質一次電池的正極活性物質」(第9頁第 11行〜第16行),但並未揭示,於採用Mg作為M的特定 組成的活性物質的上述繞射波峰的半高寬在特定範圍内 時,高率放電特性顯著提高。 專利文獻3中揭示有「一種鋰二次電池用活性物質, 其含有具有a-NaFe〇2型結晶構造的鋰過渡金屬複合氧化 物的固溶體,且該鋰二次電池用活性物質的特徵在於:上 述固溶體所含有的Li、Co、Ni及Mn的組成比滿足 Lii+i/3xC〇i.x.yNiy/2Mn2x/3+y/2 (x + y^l ^ 〇^y . i_x.y = z^ , 於 Li[Li1/3Mn2/3]〇2 (χ) -LiNi1/2MnI/2〇2 (y) _Uc〇〇2 ⑴ 系三角相圖中,(x,y,z)是以存在於以點A( 〇 45, 〇 55, 〇 &gt;、 點 B(0.63, 0.37, 0)、點 C(0.7, 0.25, 0.05)、點 d(〇.67, 〇·ΐ8 0.15)、點 E (0.75, 0, 〇·25)、點 F (〇·55, 〇, 0.45)及點 G (0.45, 0.2, 0.35 )作為頂點的七角形ABCDEFg的線上或 内部的範圍的值來表示,並且,由X射線繞射測定所得的 (003)面與(1〇4)面的繞射波峰的強度比於充放電前為 I (003) /1 (104) ^1.56、於放電末為 I (〇〇3) j (1〇4) &gt;1」(申請專利範圍第1項)的發明、「一種鋰二次電池的 製造方法,其是採用充電時的正極的最大到達電位為 V(vs. Li/Li+)以下的充電方法的用以製造如申請專利範圍 第9項所述之鋰二次電池的製造方法,其特徵在於包括以 下步驟:進行在超過4.3 V(vs Li/Li+)、且為4 8 V以下(vs Li/Li+)的正極電位範圍中出現的電位變化至少達到相對較 平坦區域的充電」(申請專利範圍第1〇項)的發明,另外 201125195 修正曰期:1〇〇年1月13曰 爲第991細帽巾織明書自 支:明i 了根據半高寬來辨別結晶性程度,必須 刀別把握。發特們藉由詳細分析本發明活、 寬而確認到,於罐C以下的溫度下合成的試樣P二 格内殘存變形,藉由在該溫度以上的溫度下合成,可^ 去除變形。另外,微晶的尺寸與合成溫度的 變r因此,本發明活性物質的組成亦於系内幾 的變形,且旨麵賴晶尺寸充分成長輸子, Ο 放”容。具體而言可知,較佳為採用影響晶‘ 吊數的,又形里為1%以下、且微晶尺寸成長至15〇細以上 的合成溫度(峨溫度)。藉由將該些活性物f成型為電極 並進灯充放電’亦可見姆脹收縮引起_化,充放電過 程中亦是微晶尺寸保持13G nm以上於所得效果方面而言 較佳。即,藉由以儘可能接近上述活性物#的氧釋放溫^ 的方式選猶燒溫度,村獲得可逆韓明顯大的活性物 質。 本發明的鋰二次電池所用的非水電解質並無限定,可 〇 使用通常提出用於鐘電池等的非水電解f。非^電解質所 用的非水/谷劑可列舉:碳酸丙二自旨(、 碳酸乙二g旨、碳酸丁二醋、碳酸氯乙二醋(chloroethylene carbonate )、碳酸乙烯酯等的環狀碳酸酯類;丫_ 丁内酯 (γ-butyrolactone)、γ-戊内酯等環狀酯類;碳酸二曱酯、 碳酸一乙酯'碳酸酯乙基曱基等的鏈狀碳酸酯類;曱酸曱 酯、乙酸曱酯、丁酸曱酯等的鏈狀酯類;四氳呋喃 (tetmhydro furan)或其衍生物;惡院(nd^ane)、 25 201125195, 爲第^9131830號中文說明書無劃線修正頁 修正日期:100年1月13日 1,4-二11惡炫、1,2-二曱氧基乙烧(l,2-dimethoxy ethane)、1,4-二丁氧基乙炫'、二乙二醇二曱醚(methyl diglyme )等的醚 類;乙腈(acetonitrile )、苯曱腈等的腈類;二氧戊環 (dioxolane )及其衍生物;環硫乙烧(ethylene sulfide )、 環丁礙(sulfolane)、續内酯(sultone)及其衍生物等的單 獨或該些的兩種以上的混合物等,但不限定於該些溶劑。 非水電解質所用的電解質鹽例如可列舉:LiC104、 LiBF4、LiAsF6、LiPF6、LiSCN、LiBr、Lil、Li2S04、 Li2B10Cl10、NaC104、Nal、NaSCN、NaBr、KC104、KSCN 等的含有鋰(Li)、納(Na)、鉀(K)中的一種的無機離 子鹽;LiCF3S03、LiN(CF3S02)2、LiN(C2F5S02)2、 LiN(CF3S02)(C4F9S02)、LiC(CF3S02)3、LiC(C2F5S02)3、 (CH3)4NBF4、(CH3)4NBr、(C2H5)4NC104、(C2H5)4NI、 (C3H7)4NBr、(n-C4H9)4NC104、(n-C4H9)4NI、順丁 烯二酸 -(C2H5)4N ( (C2H5)4N-maleate )、苯曱酸-(C2H5)4N ((C2H5)4N-benzoate )、酞酸-(C2H5)4N ( (C2H5)4N- phthalate)、硬脂基磺酸鋰、辛基磺酸鋰、十二烷基苯磺酸 鐘等的有機離子鹽等,該些離子性化合物可單獨使用或混 合使用兩種以上。 進而’藉由將LiBF4與LiN(C2FsS〇2)2之類的具有全氟 烧基的鋰鹽混合使用,可進一步降低電解質的黏度,故可 進一步提高低溫特性,另外可抑制自放電,更為理想。 另外,亦可使用常溫熔融鹽或離子液體作為非水電解 質。 26 201125195“ 爲第—腦號中文說明書無劃線修正頁 修正曰斯勘年】月ΐ3曰 止攪拌的狀態下靜止12 h以上,藉此使共沈澱氫氧化物充 分進行粒子成長。 繼而,藉由抽氣過濾而取出共沈澱產物,於空氣環境 中、常壓下利用烘箱於1〇〇。〇下乾燥。乾燥後,以使粒徑 一致的方式利用直徑為約120 mmcp的研蛛粉碎數分鐘,押 得乾燥粉末。 &amp; 以滿足表1的比較例1-16的組成式的方式稱量氫氧化 鋰一水合物粉末(LiOH,H2〇)及氫氧化鋁,進行混合而獲 I 得混合粉體。 σ &amp; 接著,於6MPa的壓力下對混合粉體進行顆粒成型。 供於顆粒成型的前驅物粉末的量是以合成後的產物的重量 為3 g的方式換算而確定。結果,成型後的顆粒為直徑25 ιηιηφ、厚度約1〇 mm〜i2 mm。將上述顆粒載置於全長為 約100 mm的氧化鋁製舟中,放入至箱型電氣爐中,於空 氣環境中、常壓下於100(TC下煅燒121^上述箱型電氣^ 的内部尺寸為縱向10 cm、寬度20 cm、深度30 cm,於寬 〇 度方向20 cin間隔間放入電熱線。煅燒後,切斷加熱器的 開關,保持將氧化鋁製舟置於爐内的狀態自然放置冷卻。 結果’爐的溫度於5小時後下降至約2CKTC左右,其後的 降溫速度稍慢。經過一晝夜後’確認到爐的溫度變為丨〇 〇它 以下,然後取出顆粒,使用研缽粉碎成粒徑一致的程度。 關於所得的活性物質,其組成為 LiuCoo iNioiAloouMnoiC^ ’關於其結晶構造,使用cu (Κα)管球的粉末X射線繞射測定的結果為,觀察到 37 201125195, 修正日期:100年1月13日 爲第99131830號中文說明 a NaFe〇2型的六方晶構造為主相。對該些所有的繞射線藉 由Rietveld法進行結晶構造分析,結果與歸屬於空^ P3il2的結晶構造模型非常一致。 (比較例1-17 ) 為了與本發明的物質比較作為活性物質的特性,而合 成含有A1代替 Mg的固溶^ LiiWoo 〇21Mii〇 5395 02。 對於共沈凝氫氧化物前驅物所含有的過渡金屬元素的 組成以及氫氧化鋰一水合物及氫氧化鋁的混合量,按表! 的比較例1-17所示的組成式進行變更,除此以外,與比 例M6同樣地合成比較例的活性物質。 又 (比較例1-18) 為了與本發明的物質比較作為活性物質的特性,而合 成含有Ti代替Mg的固溶體Lii 2c〇〇 _ i5Ti〇 〇3Mn。 、關於共沈澱氫氧化物前驅物所含有的過渡金屬元素2的 、成X及風氧化鐘一水合物及二氧化鈦的混合量,按▲ 1 的比較例M8所示的組成式般進行變更,除此以外,與比 較&gt;1 1 16同樣地合成比較例的活性物質。 (比較例1-19) 、人為了與本發明的物質比較作為活性物質的特性,而合 成含有Ti代替Mg的固溶體Lil 2C〇〇 iNi〇 l5Ti0 05Mn〇為 關於共沈澱虱氧化物前驅物所含有的過渡金屬元素的 組成以及氫氧化鐘一水合物及二氧化鈦的混合量,按表1 的比較例1-19所示的組成式進行變更,除此以外,與比較 38 201125195」 ' 爲第99131830號中文說明書無劃線修正頁修正日期:100年1月13日 組成及氫氧化裡一水合物的混合量,按表2的比較例 2-15、比較例2-16所示的組成式進行變更,除此以外,與 實例2-1同樣地合成比較例的活性物質。 與實例2-1同樣地求出(003)面、(114)面的繞射波 峰的半高寬,算出微晶尺寸。 (比較例2-17) 與比較例1-16同樣地合成含有A1代替Mg的活性物 質 LiuCoo.iNio.wAlo.ouMno.wC^。 〇 (比較例2-18) 與比較例M7同樣地合成含有A1代替Mg的活性物 質 LiuCoo.iNio.msAlo.c^iMno.s^C^。 (比較例2-19) 與比較例1-18同樣地合成含有Ti代替Mg的活性物 質 Li12Coo.1Nioj5Tioo3Mno.52O2。 (比較例2-20) 與比較例1-19同樣地合成含有Ti代替Mg的活性物 Q 質 Lii,2Co〇.iNi015Ti0 05Mn0 502。 (鋰二次電池的製作及評價) 使用實例2-1〜實例2-10及比較例2-1〜比較例2-20 的各活性物質作為鋰二次電池用正極活性物質,按與實例 1相同的順序製作鐘二次電池,評價電池特性。 將半高寬的測定結果、結晶尺寸的算出結果、充放電 循環試驗結果(0.1 C電容)、速率比率示於表2中。 [表2] 49 201125195 ΠΊα 叹 5 OOIsEnHT 攀 u-ale se 济^齋^ s/q&lt;ul EC ^v晻# 碱岵+(-0 1牦升(εοο) 2—λ-χ—- &quot;ooon NOW、£sw'-a5j-Jz0~/ic5*、--zn~oc®、wcs5-n--J s s s s s s s 0m OS s s OS s ww s s ses s s s s nL u u 92 0 二 &quot;6-02 0°&gt;1 St mEH s^. Oil s-οω&quot;· ωω- B S3 CS3 sz H s zs es ws Ge·- ΟΞ OS 0«l 0&quot;产ora- f οΐ 0«_onouos sou°n cm tm cm oos cm cm §1 OS 0»^ §·-SI 5.0 ε-ο8Sso Λ3s.°so8Sso S'G i ss 3.0 sso &quot;'0 SO 5.0 S3 E3 so WN.0so ε-ο SO sd HO -.0 95 9-0 ©5 i'o -Ό 95 a° -*0 Is -s s '0 uo 寸5 2Ό &quot;-Ό 2Ό 寸10 i 寸一Ό ΪΌ 寸'0 寸一Ό 寸-0 είΗΌ s-0 εεεο io 0000 zasOusssj-EOO9-1 005 ss.o 000Ό NO«noc5»D.OMS-2ssooo^ 090Ό s OS 0 ZQS.OUSISSii-.ooos.5 gs°·0 8SS.0°3su5s0^2*555oosl5 寸zo.o0 ©so NOSSOUSNSOSSSJZSOGZi'-J gl°o rto Bso zoiousitlsssl.ol-OOQSr5 os.o oiz.o 9Ό°*su&quot;s,032sj-.ooqz---j 30Ό 85Ό 9Ό ϋο5ώυ2-”3·035§ΌΙ-.οοοζ·--ι Klq0 id s™os.0u5s0_a352.0~z-OOQ··--&quot; 9°°·°t-so 9Ό Ν°κ0υ2ε0α.0325·-ζ5ο0?·-η «00.0 ss 9Ό 2°seussoosss'--doo2n s°°s-0 9.0 ζ°δου5§.0355·-ζ30ϋζ·'-η 0 no 9Ό°lc520!-doo2-n 0 s 9Ό 2°ss.ouss--5--ooqz5 0 3 9Ό 2qsu2sJ-.OOON-n 〇0 9Ό eoss.0cssJzl0。&quot;5 §°-0·0 OS.G wosdu2s.o32er---0n°81----1 zs.o 3 8S.G zolu2i52®【®!N5co®5·--so.o s 9£0 20|&amp;1152508281025〇°臣1.1.二 Ν5Ό ε.ο SS.G ?o*soll5eooOa2*J'zsoo?·--'-&quot; S5 OS 5 90 3°SSU5S‘S5S055。0--3-, §0.0 ss 9Ό os.o OR.O 9Ό ^Olc5«-O.OM55- 3δΌ 88ΖΌ 9Ό NOSS0u5i,0s2i.'-N5OON-n 900Ό ss 9Ό 20550=21.0325----=00---1 Ns.o ais 9Ό 508-ου^5Ό85βει.·--.αο&quot;Ί3 911-4-3^- ST??&quot;- wl-#^^ 2丨3冢餐^ 餐Θ u—g5^--0TS#^-e—z ?&quot;&quot; 8— z5&quot;&quot; 卜 i^l ε 丨 z?粲 qi ε—-#怒- Ts吞 05?私 β—z冢拉 s?^' 9— z f_i£· T« ?z苳鉍 s?fc. z ΙΊ Νοοοπ *2νπ &lt;0 CM ΙΟ «Ο 1Θ4 181 180 180 0.24 0.24 0.14 0.14 5 5 0.012 0.021 0.288 0.279 &lt;0 φ d d Li f Ni0,144 Al0&gt;012Mn0-M*O2 Lii^CoajNio |399A}0_02tMn0.a3«s〇2 比較例2-17 比較例2-18 °00π ΜΟ?·-^、·-ζπ°N、luuzn NOLSCWSn-l u&gt; cn in in 183 172 180 190 0.24 0.25 0.14 0.15 V· ΤΟ o 0.06 0.1 0.24 0.2 0.6 0.6 Lii_2C〇Q_iNiD jSTi0O3Mn0e2O2 U1.2Coo.1Nioj5Tio.05Mno.5O2 比較例2-19 比較例2-20 201125195ιχ 爲第9_9131830號中文說明書無劃線修]£胃 曼專利說明書 修正日f:100年1月13彳| ,1. 年月e Γ&quot; 補L (本說明書格式、 ※申請案號: ※申請曰: 步驟,請勿任意更動,※記號部分請勿填寫) ^°//lA (χ〇^ ※工pc分類:个从冬々〆 一、發明名稱:(中文/英文) 鐘二次電池用活性物質、經二次電池用電極、鐘二次 電池及其製造方法 ACTIVE MATERIAL FOR LITHIUM SECONDARY 〇 BATTERY, ELECTRODE FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY AND FABRICATING METHOD THEREOF 二、中文發明摘要: 經二次電池用活性物質含有具有a-NaFe02型結晶構 造的鐘過渡金屬複合氡化物的固溶體,該鋰二次電池用活 性物質的特徵在於:上述固溶體所含有的金屬元素的組成 比率滿足 LiRG/wCchiy.zNiyaMgwMnQx/y + iyO + wz) (X &gt;0、y&gt;0、z&gt;0、x + y + z&lt;1),具有可歸屬於空間群P3ll2 的X射線繞射圖案’且具有超過2〇〇 mAh/g的放電電容。 另外,除了上述特徵以外,鋰二次電池用活性物質的特徵 在於:由X射線繞射測定所得的(〇〇3)面與(114)面的 繞射波峰的強度比為2U5,及/或(003)面 的繞射波峰的半高寬為0.15。以下、且(114)面的繞射波 峰的半高寬為0.25°以下。 201125195ι 爲第&lt;9131830號中文說明書無劃線修正頁修正曰期:100年1月13曰 三、英文發明摘要: An active material for lithium secondary battery contains a solid solution of lithium transition metal composite oxide having a-NaFe02 type crystalline structure. The active material for lithium secondary battery is characterized by composite ratio of the metal element in the solid solution satisfying Lil+(x/3)C〇i-x-y-zNiy/2Mgz/2Mn(2x/3)+(y/2)+(z/2) y&gt;〇; Z&gt;0; x + y + z&lt;l), having a X-ray diffraction pattern belonging to space group P3112, and having discharge capacitance exceeding 200mAh/g. In addition to the foregoing features, the active material for lithium secondary battery is characterized by intensity ratio of the diffraction peak of (003) surface to (114) surface measured by X-ray diffraction being I(003)/I(114) 21.15, and/or half width of the (003) surface diffraction peak being 0.15° or less, and half width of the (114) surface diffraction peak being 0.25° or less.201125195 VII. Patent application scope: 1. An active material for a lithium secondary battery, which contains a solid solution of a clock transition metal composite oxide having a crystal structure of a_NaFe〇2 type, and a secondary battery/tongue substance It is characterized in that the composition ratio of the metal element contained in the solid solution satisfies Li1+(x/3) C〇lxy is /2Mgz/2Mn (μ) + (y/2) + (z/2) (X&gt;〇 , y &gt; 〇, Z &gt; 〇, X + y + z &lt; 1), having a x-ray diffraction pattern attributable to the space group, i.e., having a discharge capacitance of more than 2 centroids. 2. An active material for a secondary battery, comprising a solid solution having a transition metal complex oxide having a crystal structure of a_NaFe〇2 type, wherein the active material for the secondary battery depends on: the solid solution The composition ratio of the metal element satisfies Lil+(x/3) C(Wy zNiy/2Mgz/2Mn _ + _ + (z/2)U&gt;〇'y&gt;o'z&gt;o, x+y+z&lt;1) ' With an X-ray diffraction pattern attributable to the space group P3112, the intensity ratio of the diffraction peaks of the _ plane and the (m) plane obtained by the ray diffraction is 1 (_ &gt; 11^0 1 3. An active material f for a secondary battery containing a solid solution of a transition metal complex oxide having an a_Na type crystal structure, and the active material of the battery for the second battery is characterized by a composition ratio of a metal element contained in the four-phase matrix Satisfying Li1+(x/3) dy_zNiy/2Mgz/2Mn + _ + (ζ/2) x〉〇, y&gt;o, z&gt;o, x+y+z&lt;1;), having a space group P3U2 In the X-ray diffraction pattern, the half-height width of the diffraction peak of the (003) plane obtained by the diffraction of the x-ray is 〇15. Below, the half-height of the diffraction peak of the ridge is 0.25 or less. 59 20112 5195 4 kinds of clock-active materials for a human battery, comprising a solid solution of a (tetra) metal composite oxide having a leaky crystal structure, wherein the active material for a secondary battery is characterized in that the HI solution is contained The composition ratio of the metal element satisfies Lil~3) Uiy/2Mgz/2Mn (2x/3) + (y/2) + (z/2) x&gt;〇, y&gt;G, z&gt;G, x+y+z&lt;lt ; 1), having an x-ray diffraction pattern attributable to the space group P3! 12, the intensity ratio of the diffraction peaks of the (003) plane and the (114) plane obtained by the x-ray diffraction measurement is 1_)/1 ( 114) The half-height of the diffraction peaks of the $1-15 ' and (GG3) faces is 〇15. Hereinafter, the full width at half maximum of the diffraction peak of the (114) plane is 〇25. the following. 5. The secondary battery active material according to any one of the items (4) to 4, which is obtained by calcination at a calcination temperature of 92 (rc~1〇〇〇C)c. 6. The active material for a lithium secondary battery according to any one of claims 1 to 4, wherein the solid solution of the lithium transition metal composite oxide is produced by a co-precipitation method. The active material for a lithium secondary battery according to any one of the above-mentioned, wherein the lithium transition metal composite oxide has a composition ratio of a metal element of the solid solution of the lithium transition metal composite oxide of 1 /3 &lt;χ&lt;2/3, 〇&lt;y &lt;2/3, 0 &lt;ζ&lt;0·3. 8. The active material for a clock secondary battery according to any one of claims 1 to 4, wherein the solid solution of the lithium transition metal composite oxide is Li[Li1/3Mn2/3] 〇2, LiNi1/2Mni/2〇2, LiCo〇2 and LiMgmMn^O2 are solid solution compositions of four components. 9. The clock of 201125195 for a secondary battery according to any one of the first to fourth aspects of the patent application, wherein the valence of each element is formed in the upper-frequency transition metal composite oxide solid body The composition of the active material for a clock secondary battery according to any one of claims 1 to 4, wherein the synthesis of the upper frequency transition metal composite oxidation is carried out by uI+, Mn4+, Νρ+, cq3+', 1〇. The crystallite size is above 150 nm. An electrode for a lithium secondary battery, comprising the active material for a secondary battery according to any one of the above-mentioned items of the present invention. 12. A secondary battery for a lithium-ion secondary battery, comprising the electrode for a lithium secondary battery as described in the patent application (4), and the method for producing a secondary secondary battery, which is a maximum reaching potential of 4.3V using a positive electrode. (VS U/Li+) The following changes in the potential of the secondary battery described in the above-mentioned patent range 12 are at least relatively flat == surrounding 61 201125195 IV. Designated representative figure: (1) The designated representative figure is: None (2) The symbol of the symbol of the representative figure is simple: Yiwu. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: No 201125195ιχ For the Chinese manual No. 9_9131830, no underline repair] £ stomachman patent specification revision date f: 100 years January 13彳|, 1. year month e Γ&quot; supplement L (this manual format, ※ application number: ※ application 曰: steps, please do not change, ※ mark part Do not fill in) ^°//lA (χ〇^ ※Working pc classification: one from Dongying I, invention name: (Chinese / English) Clock secondary battery active material, secondary battery electrode, clock two Secondary battery and its manufacturer ACTIVE MATERIAL FOR LITHIUM SECONDARY 〇BATTERY, ELECTRODE FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY AND FABRICATING METHOD THEREOF II. Abstract: The secondary battery active material contains a clock transition metal composite telluride having a crystal structure of a-NaFe02 type. In the solid solution, the active material for a lithium secondary battery is characterized in that the composition ratio of the metal element contained in the solid solution satisfies LiRG/wCchiy.zNiyaMgwMnQx/y + iyO + wz) (X &gt;0, y&gt; , z &gt; 0, x + y + z &lt; 1), having an X-ray diffraction pattern ' attributable to the space group P3ll2 and having a discharge capacitance exceeding 2 mAh/g. In addition, in addition to the above features, lithium two The secondary battery active material is characterized in that the intensity ratio of the diffraction peaks of the (〇〇3) plane and the (114) plane obtained by X-ray diffraction measurement is 2U5, and/or the diffraction peak of the (003) plane The full width at half maximum is 0.15. The full width at half maximum of the diffraction peaks of the (114) plane is 0.25° or less. 201125195 “Revised date: January 13, 1999 is the 99131830 Chinese manual without line repair ; ϊεμ 正极 The positive electrode active material of the non-aqueous electrolyte secondary battery with the discharge performance and the charge and discharge cycle, and the high energy density" (page 6 from bottom to bottom, line 7 to page 7, line 4), The positive electrode active material of the fifth aspect of the invention is characterized in that the total (four)_ of the above composite oxide is .. or less, and the powder of the CuKa ray is used as a ray diffraction _ 2 Θ to ι ± ι. The diffraction peak at the time is relative to 2Θ-18.6±1. The relative intensity ratio of the diffraction peaks at the time is (10) or more and 1. 〇5 or less. According to such a configuration, it is possible to form a positive electrode active material which is excellent in high-rate charge-discharge cycle performance and high in energy density (high-discharge electric power on the V-th row of the first nine hundred owes: pool) (page 8 from next 3 lines), "Positive application of the sixth item of the patent range === to: increase the oxidation_specific surface area. The 2 Θ of the powder X-ray diffraction pattern of the α ray = the peak relative to the 2 (four) 8.6 ± 1. The formation of the peaks: the production - soap two (10) or less. According to this configuration, in particular, non-aqueous substances which are excellent in charge and discharge cycle performance and high-energy in-between electric discharges" (page 9, line 4~ The first----------------------------------------------------------------------------------------------------------------------------------------------- The full width at half maximum of the peak is 0.05. The height and width are 0.10. The semi-energy of the diffraction peak above 44, 1 ± 1 丄 丄At θ. Under this configuration, especially k can be formed (4) Volume density (high discharge phantom, charge and discharge cycle performance 20112519' i Hl830 Chinese manual without line correction Correction of the positive electrode active material of the non-aqueous electrolyte primary battery which is excellent on the day of the first day of the month of the first day of the year (page 9, line 11 to line 16), but does not disclose the use of Mg as the specific composition of M When the full width at half maximum of the diffraction peak of the active material is within a specific range, the high rate discharge characteristics are remarkably improved. Patent Document 3 discloses "an active material for a lithium secondary battery containing a-NaFe〇2 type crystal. A solid solution of a lithium transition metal composite oxide having a structure, wherein the composition ratio of Li, Co, Ni, and Mn contained in the solid solution satisfies Lii+i/3xC〇 IxyNiy/2Mn2x/3+y/2 (x + y^l ^ 〇^y . i_x.y = z^ , in Li[Li1/3Mn2/3]〇2 (χ) -LiNi1/2MnI/2〇2 (y) _Uc〇〇2 (1) In the triangular phase diagram, (x, y, z) is present at point A (〇45, 〇55, 〇&gt;, point B(0.63, 0.37, 0), point C (0.7, 0.25, 0.05), point d (〇.67, 〇·ΐ8 0.15), point E (0.75, 0, 〇·25), point F (〇·55, 〇, 0.45), and point G (0.45 , 0.2, 0.35 ) as the apex of the octagonal ABCDEFg online or internal fan The value of the surrounding is shown, and the intensity ratio of the diffraction peaks of the (003) plane and the (1〇4) plane obtained by X-ray diffraction measurement is I (003) /1 (104) ^1.56 before charge and discharge. In the invention of I (〇〇3) j (1〇4) &gt;1" (Application No. 1) at the end of discharge, "a method for producing a lithium secondary battery, which uses a positive electrode during charging" A method of manufacturing a lithium secondary battery according to claim 9, wherein the method of manufacturing a lithium secondary battery according to claim 9 is characterized in that it comprises the following steps: performing at a voltage exceeding 4.3 V (vs Li/Li+), and the invention that the potential change occurring in the positive electrode potential range of 4 8 V or less (vs Li/Li+) reaches at least the charge of the relatively flat region (the patent application is the first item), and 201125195 Corrected flood season: January 13th, 1st year, the 991th cap towel weaving book is self-supporting: Ming i has to distinguish the degree of crystallinity according to the full width at half maximum. By analyzing the activity and the width of the present invention in detail, it was confirmed that the sample P remaining in the temperature at the temperature below the tank C remained deformed, and the deformation was removed by synthesizing at a temperature higher than the temperature. In addition, the size of the crystallites and the change in the synthesis temperature are such that the composition of the active material of the present invention is also slightly deformed within the system, and the size of the crystallites is sufficiently grown to increase the size of the input, and it is known that It is a synthesis temperature (峨 temperature) which affects the number of crystals and has a shape of 1% or less and a crystallite size of 15 μm or more. By forming the active materials f into electrodes and charging the lamps The discharge 'also shows that the expansion and contraction cause _, and the crystallite size is maintained at 13 G nm or more in the charge and discharge process, which is preferable in terms of the obtained effect. That is, by releasing the temperature by oxygen as close as possible to the above active material # The non-aqueous electrolyte used in the lithium secondary battery of the present invention is not limited, and the non-aqueous electrolyte f which is generally proposed for use in a clock battery or the like can be used. ^The non-aqueous/troreal agent used for the electrolyte may be a cyclic carbonate such as propylene carbonate, hexamethylene carbonate, chloroethylene carbonate or ethylene carbonate. ;丫_ a cyclic ester such as γ-butyrolactone or γ-valerolactone; a chain carbonate such as dinonyl carbonate or ethyl carbonate 'carbonate ethyl fluorenyl; decyl phthalate or hydrazine acetate Chain esters such as esters, decanoic acid esters, etc.; tetmhydro furan or its derivatives; deficiencies (nd^ane), 25 201125195, for the Chinese manual of No. 9131830, no scribe correction date : January 13, 100 1,4-two 11 dioxin, 1,2-dimethoxy ethane, 1,4-dibutoxy ethoxy, and diol Ethers such as methyl diglyme; nitriles such as acetonitrile and benzoquinone; dioxolane and its derivatives; ethylene sulfide; (sulfolane), a sultone, a sultone, a derivative thereof, or the like, or a mixture of two or more thereof, and the like, but is not limited thereto. Examples of the electrolyte salt used for the nonaqueous electrolyte include LiC104 and LiBF4. LiAsF6, LiPF6, LiSCN, LiBr, Lil, Li2S04, Li2B10Cl10, NaC104, Nal, NaSCN, NaBr, KC104, KSCN, etc. contain lithium (Li ), an inorganic ion salt of one of nano (Na) and potassium (K); LiCF3S03, LiN(CF3S02)2, LiN(C2F5S02)2, LiN(CF3S02)(C4F9S02), LiC(CF3S02)3, LiC(C2F5S02 3, (CH3)4NBF4, (CH3)4NBr, (C2H5)4NC104, (C2H5)4NI, (C3H7)4NBr, (n-C4H9)4NC104, (n-C4H9)4NI, maleic acid-(C2H5 4N ((C2H5)4N-maleate), benzoic acid-(C2H5)4N ((C2H5)4N-benzoate), phthalic acid-(C2H5)4N ((C2H5)4N- phthalate), lithium stearyl sulfonate An organic ionic salt such as lithium octyl sulfonate or dodecylbenzenesulfonic acid, or the like, and these ionic compounds may be used alone or in combination of two or more. Further, by using LiBF4 in combination with a lithium salt having a perfluoroalkyl group such as LiN(C2FsS〇2)2, the viscosity of the electrolyte can be further lowered, so that the low-temperature characteristics can be further improved, and self-discharge can be suppressed. ideal. Further, a normal temperature molten salt or an ionic liquid can also be used as the nonaqueous electrolyte. 26 201125195 "Improve the 曰 勘 勘 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 The coprecipitated product was taken out by suction filtration, and dried in an air atmosphere at normal pressure in an oven at a temperature of 1 Torr. After drying, the number of pulverized spiders having a diameter of about 120 mmcp was used in such a manner that the particle diameters were uniform. In a minute, the dry powder was taken. &amp; Lithium hydroxide monohydrate powder (LiOH, H2〇) and aluminum hydroxide were weighed in such a manner as to satisfy the composition formula of Comparative Example 1-16 of Table 1, and mixed to obtain I. The powder was mixed. σ & Next, the mixed powder was subjected to pellet molding under a pressure of 6 MPa. The amount of the precursor powder supplied to the pellet was determined by converting the weight of the synthesized product to 3 g. The formed pellets have a diameter of 25 ιηιηφ and a thickness of about 1 mm to 2 mm. The particles are placed in an aluminum boat of about 100 mm in total length and placed in a box-type electric furnace in an air environment. Under normal pressure Calcined at 100 °C (the above internal dimensions of the box type electrical ^ is 10 cm in the longitudinal direction, 20 cm in width, 30 cm in depth, and placed in the interval of 20 cin in the width direction. After the calcination, the heater is turned off. The switch keeps the aluminum boat in the state of the furnace and naturally cools it. The result 'the temperature of the furnace drops to about 2 CKTC after 5 hours, and the cooling rate thereafter is slightly slower. After a day and night, the furnace is confirmed. The temperature is changed to below it, and the particles are taken out and pulverized to a uniform particle size using a mortar. Regarding the obtained active material, the composition is LiuCoo iNioiAloouMnoiC^ 'About its crystal structure, using cu (Κα) tube The result of the powder X-ray diffraction measurement is observed in 37 201125195, the date of revision: January 13, 100 is the 99131830 Chinese description a NaFe〇2 type hexagonal crystal structure is the main phase. The ray was analyzed by the Rietveld method, and the results were in good agreement with the crystal structure model attributed to the space P3il2. (Comparative Example 1-17) In order to compare the properties of the active material with the substance of the present invention, The solid solution containing A1 instead of Mg is synthesized. LiiWoo 〇21Mii〇5395 02. For the composition of the transition metal element contained in the coprecipitated hydroxide precursor and the mixing amount of lithium hydroxide monohydrate and aluminum hydroxide, according to the table! In the same manner as in the case of the ratio M6, the active material of the comparative example was synthesized in the same manner as in the case of the comparative example 1-17. (Comparative Example 1-18) The characteristics of the active material were compared with the substance of the present invention. And a solid solution Lii 2c〇〇_i5Ti〇〇3Mn containing Ti instead of Mg was synthesized. The amount of the transition metal element 2 contained in the coprecipitated hydroxide precursor, X, and the amount of the mixture of the wind oxidation clock monohydrate and the titanium oxide is changed in accordance with the composition formula shown in Comparative Example M8 of ▲ 1 . Other than this, the active material of the comparative example was synthesized in the same manner as in the comparison &gt;1 1 16 . (Comparative Example 1-19) In order to compare the characteristics of the active material with the substance of the present invention, a solid solution Lim 2C〇〇iNi〇l5Ti0 05Mn〇 containing Ti instead of Mg was synthesized as a coprecipitated cerium oxide precursor. The composition of the transition metal element contained and the mixing amount of the hydrazine hydroxide monohydrate and the titanium oxide were changed according to the composition formula shown in Comparative Example 1-19 of Table 1, and the comparison was made with the comparison of 2011. No. 99131830 Chinese text specification No-line correction page Revision date: The composition of the composition on January 13, 100, and the composition of the hydroxide monohydrate, according to the composition formulas of Comparative Examples 2-15 and Comparative Examples 2-16 of Table 2. The active material of the comparative example was synthesized in the same manner as in Example 2-1 except that the change was carried out. The full width at half maximum of the diffraction peaks of the (003) plane and the (114) plane were obtained in the same manner as in Example 2-1, and the crystallite size was calculated. (Comparative Example 2-17) An active substance containing A1 instead of Mg was synthesized in the same manner as in Comparative Example 1-16, LiuCoo.iNio.wAlo.ouMno.wC^. 〇 (Comparative Example 2-18) An active substance containing A1 instead of Mg was synthesized in the same manner as in Comparative Example M7, LiuCoo.iNio.msAlo.c^iMno.s^^. (Comparative Example 2-19) An active substance Li12Coo.1Nioj5Tioo3Mno.52O2 containing Ti instead of Mg was synthesized in the same manner as in Comparative Example 1-18. (Comparative Example 2-20) In the same manner as in Comparative Example 1-19, an active material Q Lii, 2Co〇.iNi015Ti0 05Mn0 502 containing Ti instead of Mg was synthesized. (Production and Evaluation of Lithium Secondary Battery) Each of the active materials of Examples 2-1 to 2-10 and Comparative Example 2-1 to Comparative Example 2-20 was used as a positive electrode active material for a lithium secondary battery, and Example 1 was used. A clock secondary battery was fabricated in the same order to evaluate battery characteristics. The measurement results of the full width at half maximum, the calculation results of the crystal size, the charge and discharge cycle test results (0.1 C capacitance), and the rate ratio are shown in Table 2. [Table 2] 49 201125195 ΠΊα sigh 5 OOIsEnHT climbing u-ale se 济^斋^ s/q&lt;ul EC ^v暗# alkali 岵+(-0 1牦升(εοο) 2—λ-χ—- &quot; Ooon NOW, £sw'-a5j-Jz0~/ic5*, --zn~oc®, wcs5-n--J sssssss 0m OS ss OS s ww ss ses ssss nL uu 92 0 2&quot;6-02 0° &gt;1 St mEH s^. Oil s-οω&quot;· ωω- B S3 CS3 sz H s zs es ws Ge·- ΟΞ OS 0«l 0&quot;Production ora- f οΐ 0«_onouos sou°n cm tm cm oos Cm cm §1 OS 0»^ §·-SI 5.0 ε-ο8Sso Λ3s.°so8Sso S'G i ss 3.0 sso &quot;'0 SO 5.0 S3 E3 so WN.0so ε-ο SO sd HO -.0 95 9 -0 ©5 i'o -Ό 95 a° -*0 Is -ss '0 uo inch 5 2Ό &quot;-Ό 2Ό inch 10 i inch one inch ΪΌ inch '0 inch one inch inch-0 είΗΌ s-0 εεεο Io 0000 zasOusssj-EOO9-1 005 ss.o 000Ό NO«noc5»D.OMS-2ssooo^ 090Ό s OS 0 ZQS.OUSISSii-.ooos.5 gs°·0 8SS.0°3su5s0^2*555oosl5 inch zo. O0 ©so NOSSOUSNSOSSSJZSOGZi'-J gl°o rto Bso zoiousitlsssl.ol-OOQSr5 os.o oiz.o 9Ό°*su&quot;s,032sj-.ooqz---j 30Ό 85Ό 9Ό ϋο5ώυ2-”3·035§ΌΙ- .οοοζ·--ι Klq0 id sTMos.0u5 S0_a352.0~z-OOQ··--&quot; 9°°·°t-so 9Ό Ν°κ0υ2ε0α.0325·-ζ5ο0?·-η «00.0 ss 9Ό 2°seussoosss'--doo2n s°°s- 0 9.0 ζ°δου5§.0355·-ζ30ϋζ·'-η 0 no 9Ό°lc520!-doo2-n 0 s 9Ό 2°ss.ouss--5--ooqz5 0 3 9Ό 2qsu2sJ-.OOON-n 〇0 9Ό eoss.0cssJzl0. &quot;5 §°-0·0 OS.G wosdu2s.o32er---0n°81----1 zs.o 3 8S.G zolu2i52®[®!N5co®5·--so.os 9£0 20|&1152508281025〇°chen1.1. 二Ν5Ό ε.ο SS.G ?o*soll5eooOa2*J'zsoo?·--'-&quot; S5 OS 5 90 3°SSU5S'S5S055.0--3-, §0.0 ss 9Ό os.o OR.O 9Ό ^Olc5«-O.OM55- 3δΌ 88ΖΌ 9Ό NOSS0u5i,0s2i.'-N5OON-n 900Ό ss 9Ό 20550=21.0325----=00---1 Ns.o Ais 9Ό 508-ου^5Ό85βει.·--.αο&quot;Ί3 911-4-3^- ST??&quot;- wl-#^^ 2丨3冢 meal^ Meal u-g5^--0TS#^ -e-z ?&quot;&quot; 8— z5&quot;&quot; 卜i^l ε 丨z?粲qi ε—-#怒- Ts 吞05? Private β-z冢拉 s?^' 9- z f_i£ · T« ?z苳铋s?fc. z ΙΊ Νοοοπ *2νπ &lt;0 CM ΙΟ «Ο 1Θ4 181 180 180 0.24 0.24 0.14 0.14 5 5 0.012 0.021 0.288 0.279 &lt;0 φ dd Li f Ni0,144 Al0&gt;012Mn0 -M*O2 Lii^CoajNio |399A}0_02tMn0.a3«s〇2 Comparative Example 2-17 Comparative Example 2-18 °00π ΜΟ?·-^,·-ζπ°N,luuzn NOLSCWSn-l u&gt; cn in in 183 172 180 190 0.24 0.25 0.14 0.15 V· ΤΟ o 0.06 0.1 0.24 0.2 0.6 0.6 Lii_2C Q_iNiD jSTi0O3Mn0e2O2 U1.2Coo.1Nioj5Tio.05Mno.5O2 Comparative Example 2-19 Comparative Example 2-20 201125195ιχ For the Chinese manual No. 9_9131830, no underline repair] £ stomachman patent specification revision date f: 100 years January 13彳| 1. Year of the month e Γ&quot; Supplement L (This manual format, ※Application number: ※Application曰: Steps, please do not change any more, please do not fill in the ※ part) ^°//lA (χ〇^ ※工pc分类: 一从冬々〆一, Invention name: (Chinese / English) Clock secondary battery active material, secondary battery electrode, clock secondary battery and its manufacturing method ACTIVE MATERIAL FOR LITHIUM SECONDARY 〇BATTERY, ELECTRODE FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY AND FABRICATING METHOD THEREOF II. Abstract: The secondary battery active material contains a solid solution of a clock transition metal complex telluride having an a-NaFe02 type crystal structure, and the lithium secondary battery is active. The substance is characterized in that the composition ratio of the metal element contained in the solid solution satisfies LiRG/wCchiy.zNiyaMgwMnQx/y + iyO + wz) (X &gt; 0, y &gt; 0, z &gt; 0, x + y + z &lt; 1), having an X-ray diffraction pattern ' attributable to the space group P3ll2 and having a discharge capacitance exceeding 2 mAh/g. Further, in addition to the above-described features, the active material for a lithium secondary battery is characterized in that the intensity ratio of the diffraction peaks of the (〇〇3) plane and the (114) plane obtained by X-ray diffraction measurement is 2U5, and/or The half-height width of the diffraction peak of the (003) plane is 0.15. The half-height width of the diffraction peak of the (114) plane is 0.25 or less. 201125195ι is the Chinese version of the <9131830 no-line correction page revision period: January, January, 2013, English abstract: An active material for lithium secondary battery contains a solid solution of lithium transition metal composite oxide having a- The active material for the lithium secondary battery is characterized by composite ratio of the metal element in the solid solution satisfying Lil+(x/3)C〇ixy-zNiy/2Mgz/2Mn(2x/3)+(y/ 2)+(z/2) y&gt;〇;Z&gt;0; x + y + z&lt;l), having a X-ray diffraction pattern belonging to space group P3112, and having discharge capacitance exceeding 200 mAh/g. In addition to The original features, the active material for the lithium battery is characterized by intensity ratio of the diffraction peak of (003) surface to (114) surface measured by X-ray diffraction being I(003)/I(114) 21.15, and/ Or half width of the (003) surface diffraction peak being 0.15° or less, and half width of the (114) surface diffractio n peak being 0.25° or less.
TW099131830A 2009-12-29 2010-09-20 Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and fabricating method thereof TWI489682B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299100 2009-12-29

Publications (2)

Publication Number Publication Date
TW201125195A true TW201125195A (en) 2011-07-16
TWI489682B TWI489682B (en) 2015-06-21

Family

ID=44540793

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131830A TWI489682B (en) 2009-12-29 2010-09-20 Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and fabricating method thereof

Country Status (2)

Country Link
JP (1) JP5648792B2 (en)
TW (1) TWI489682B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379379B2 (en) 2011-09-05 2016-06-28 Shoei Chemical Inc. Cathode material for lithium ion secondary batteries, cathode member for lithium ion secondary batteries, lithium ion secondary battery, and method for producing cathode material for lithium ion secondary batteries

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825006B2 (en) * 2011-09-22 2015-12-02 藤倉化成株式会社 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP5958926B2 (en) * 2011-11-08 2016-08-02 国立研究開発法人産業技術総合研究所 Lithium manganese composite oxide and method for producing the same
CN105789610A (en) * 2012-02-16 2016-07-20 株式会社杰士汤浅国际 Active material for non-aqueous electrolyte secondary cell, method for manufacturing active material, electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2013171825A (en) * 2012-02-23 2013-09-02 Nissan Motor Co Ltd Positive electrode active material
JP6066306B2 (en) 2012-07-04 2017-01-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
KR101592185B1 (en) 2012-07-10 2016-02-05 주식회사 엘지화학 Electrode Assembly and Lithium Secondary Battery Comprising the Same
WO2014041926A1 (en) * 2012-09-12 2014-03-20 株式会社日立製作所 Positive electrode active material for lithium-ion secondary cell, positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell using same
WO2015001631A1 (en) * 2013-07-03 2015-01-08 株式会社日立製作所 Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
KR101794097B1 (en) * 2013-07-03 2017-11-06 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
WO2018012384A1 (en) 2016-07-14 2018-01-18 株式会社Gsユアサ Lithium-transition-metal composite oxide, transition metal hydroxide precursor, method for manufacturing transition metal hydroxide precursor, method for manufacturing lithium-transition-metal composite oxide, positive-electrode active material for nonaqueous-electrolyte secondary cell, electrode for nonaqueous-electrolyte secondary cell, nonaqueous-electrolyte secondary cell, and power storage device
CN118335898B (en) * 2024-04-30 2025-02-07 北京当升材料科技股份有限公司 Positive electrode active material and preparation method thereof, positive electrode sheet, battery and electrical equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849343A1 (en) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
EP1372202B8 (en) * 2001-03-14 2013-12-18 GS Yuasa International Ltd. Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
US6855461B2 (en) * 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP4510331B2 (en) * 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4635386B2 (en) * 2001-07-13 2011-02-23 株式会社Gsユアサ Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP4316656B1 (en) * 2008-07-25 2009-08-19 三井金属鉱業株式会社 Lithium transition metal oxide with layer structure
JP5272870B2 (en) * 2009-04-17 2013-08-28 株式会社Gsユアサ Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5700274B2 (en) * 2009-08-21 2015-04-15 株式会社Gsユアサ Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379379B2 (en) 2011-09-05 2016-06-28 Shoei Chemical Inc. Cathode material for lithium ion secondary batteries, cathode member for lithium ion secondary batteries, lithium ion secondary battery, and method for producing cathode material for lithium ion secondary batteries
TWI556494B (en) * 2011-09-05 2016-11-01 昭榮化學工業股份有限公司 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2011154997A (en) 2011-08-11
JP5648792B2 (en) 2015-01-07
TWI489682B (en) 2015-06-21

Similar Documents

Publication Publication Date Title
TW201125195A (en) Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and fabricating method thereof
US10297822B2 (en) Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
KR101729174B1 (en) Lithium secondary battery active material, lithium secondary battery electrode, lithium secondary battery, and method for manufacturing same
KR101574958B1 (en) Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
JP5861992B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5904371B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5050834B2 (en) Active material for lithium secondary battery, lithium secondary battery and method for producing the same
JP5773054B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5757138B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5871187B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5946011B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5700274B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method for producing the same
JP5757139B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2019149222A (en) Cathode active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, manufacturing method of transition metal hydroxide precursor, manufacturing method of cathode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2009123400A (en) Active material for lithium secondary battery, and lithium secondary battery
JP4706991B2 (en) Method for manufacturing lithium secondary battery
JP6460575B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP5757140B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, lithium transition metal composite oxide, method for producing the positive electrode active material, etc., and non-aqueous electrolyte secondary battery
JP5787079B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5207151B2 (en) Active material for lithium secondary battery, lithium secondary battery and method for producing the same
JP2013020715A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and manufacturing method of nonaqueous electrolyte secondary battery