[go: up one dir, main page]

TW201124776A - Backlight module and liquid crystal display - Google Patents

Backlight module and liquid crystal display Download PDF

Info

Publication number
TW201124776A
TW201124776A TW99101017A TW99101017A TW201124776A TW 201124776 A TW201124776 A TW 201124776A TW 99101017 A TW99101017 A TW 99101017A TW 99101017 A TW99101017 A TW 99101017A TW 201124776 A TW201124776 A TW 201124776A
Authority
TW
Taiwan
Prior art keywords
light guide
light
guide plate
sub
backlight module
Prior art date
Application number
TW99101017A
Other languages
Chinese (zh)
Other versions
TWI412839B (en
Inventor
Jun Zhu
Yan Zhao
He Zhang
Guo-Fan Jin
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99101017A priority Critical patent/TWI412839B/en
Publication of TW201124776A publication Critical patent/TW201124776A/en
Application granted granted Critical
Publication of TWI412839B publication Critical patent/TWI412839B/en

Links

Landscapes

  • Planar Illumination Modules (AREA)

Abstract

The present invention related to a backlight module including light guide plate and light sources. The light guide plate includes at least two units. The light sources are divided into at least two groups located corresponding to the at least two units respectively. Each group of light sources is controlled independently. The light radiated from each group of light sources get out from the light guide plate in a form of plane light through each of the at least two units. There is no mixture between the output light from the at least two groups of light sources. A liquid crystal display using the backlight module is also provided.

Description

201124776 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種背光模組以及液晶顯示器,尤其涉及一 種直下式背光模組以及採用該直下式背光模組的液晶顯 示器。 【先前技術】 [0002] 液晶顯示器的液晶面板大多係投射型的液晶顯示元件, 本身不能發光,必須提供一背光源,為液晶面板提供充 足的亮度使其能夠正常顯示圖像,以達到飽滿的色彩顯 〇 示效果。傳統的液晶顯示器大多採用冷陰極螢光燈作為 背光源,惟由於發光二極體背光源具有色域範圍寬、低 壓驅動、壽命長、低電磁輻射等優勢,已成為小型便攜 式終端液晶顯不器的重要組成元件’在中大型尺寸液晶 顯示器背光源中,發光二極體也正在逐步取代冷陰極螢 光燈。 [0003] 背光源係使液晶顯示器實現顯示功能不可缺少的組成部 r 份,液晶顯示器在顯示時通常用不同亮度的比值,即液 晶顯示屏幕上同一點最亮(白色顯示)時與最暗(黑色顯示 )時的亮度比值來表示液晶顯示器的對比度。對比度越大 則圖像越清晰醒目,色彩越鮮明艷麗,而對比度越小則 整個屏幕顯得較灰。 [0004] 背光源通常包括光源與導光板,按照光源放置位置的不 同,背光模組可以分為直下式和侧置式兩類。直下式背 光模組係指將光源置於導光板正下方,直接照明。而側 置式背光模組一般將光源置於導光板的侧面,光線由侧 099101017 表單編號 A0101 第 3 頁/共 37 頁 0992002042-0 201124776 面耦合入導光板,在導光板内形成全反射並不斷向前傳 播。通過對全反射條件的破壞,實現導光板出光面均勻 射出光線。 [0005] 現有技術提供一種液晶顯示器,該液晶顯示器包括一液 晶面板和一背光源,所述背光源包括一導光板、一反射 膜和複數發光二極體,該導光板包括一底面、一與該底 面相對的出光面以及連接所述底面和出光面的侧面。該 複數發光二極體均勻分佈於所述導光板側面一側。該反 射膜設置於所述導光板底面一側。上述液晶顯示器工作 時,所述複數發光二極體接收由外部電源的持續供電訊 號後發出光線,所發出的光線經由導光板或經由導光板 及反射膜後形成較均勻的平面光射向所述液晶面板,即 所述背光源向液晶面板提供持續性的平面光,該液晶面 板控制光通過量,最終實現圖像在液晶顯示器上的顯示 〇 [0006] 然而,所述液晶顯示器工作時,該背光源在電源作用下 一直處於最亮的狀態,不隨所要顯示畫面的亮度而改變 ,因此在一定程度上增大了整個背光源的功率損耗;另 外,液晶面板也不可能完全阻隔光線,因此液晶顯示器 實現全黑的畫面非常困難,無法實現液晶顯示器的高對 比度需求,同時也降低了液晶顯示的動態對比度(動態對 比度係在某個瞬間屏幕最亮和最暗處的亮度比值)。 【發明内容】 [0007] 有鑒於此,提供一種可以提高液晶顯示器對比度及動態 對比度的背光模組以及液晶顯示器,以解決上述技術問 099101017 表單編號A0101 第4頁/共37頁 0992002042-0 201124776 [0008] [0009] Ο [0010] ο 題實為必要。 一種背光模組,其包括導光板及光源,該導光板包括至 少二模塊,所述光源分成至少二組分別對應所述導光板 的至少二模塊設置,每組光源分別受單獨控制,每組光 源射出的光線經由該導光板的與該組光源對應的模塊形 成平面光射出,且所述至少兩個模塊之間無光線混合。 一種液晶顯示器,其包括:液晶面板及背光模組,所述 背光模組為該液晶面板提供平面光,使所述液晶面板顯 示圖像,其中,該背光模组包括導光板及光源,該導光 板包括至少二模塊,所述光源分成至少二組分別對應所 述導光板的至少二模塊設置’每组光源分別受單獨控制 ,每組光源射出的光線經由該導光板的與該組光源對應 的模塊形成平面光射出,且所述至少兩個模塊之間無光 線混合。 相對於先前技術’所述背光模組被區分為相互獨立驅動 的區域,因此每一區域的亮態或態单受其他區域的影 響;另外,導光板内部每一模塊之間無光線混合,因此 所述背光模組相鄰兩個處於亮態和暗態區域之間無光線 混合’即處於暗態的區域基本不受相鄰的處於亮態區域 的影響,故,所述背光模組每個區域對應的照明區域相 對固定。在某一瞬間液晶顯示器的某些區域顯示黑色圖 像’而某些區域顯示白/彩色圖像時,液晶面板與黑色圖 像對應的區域的背面可達到無光照射’同時液晶面板與 白/彩色圖像對應的區域的背面有高亮度的背光照射,因 此’可以實現在某瞬間液晶顯示器屏幕最亮和最暗處的 099101017 表單編號Α0101 第5頁/共37頁 0992002042-0 201124776 亮度比值較高’即可提高液晶顯示器的對比度及動態對 比度。 【實施方式】 [0011] 以下將結合附圖詳細說明本發明實施方式提供的背光模 組以及液晶顯不|§。 [0012] 請參閱圖1 ’本發明第一實施例提供一種液晶顯示器1, 其包括一液晶面板10和一背光源(未標示),所述背光 源為該液晶面板10提供平面光,使所述液晶面板10顯示 圖像。該背光源包括背光模組20和背光電路(圖未示) ,所述背光電路用於驅動該背光模組20 〇 [0013] 所述背光模組20包括光源200、導光板201、反射板204 、微棱鏡系統206、偏振轉換系統208以及散射板210。 該反射板204、導光板201、微棱鏡系統206、偏振轉換 系統2 0 8以及散射板210依次層疊設置。所述光源2 〇 〇設 置於所述導光板201 —側’由該光源=2:〇 0、出射的光線經由 導光板201、微棱鏡系統206、偏/振:轉:換系統2〇8以及散 射板210直接出射或者由談光源200出射的光線在導光板 201内部產生反射後再被反射板204反射經由導光板2〇1 、微棱鏡系統206、偏振轉換系統208以及散射板21〇後 出射。 [0014] 099101017 所述導光板201包括至少二子導光板202,該子導光板 202包括一底面212 ’ 一與該底面212相對的出光面214以 及連接所述底面212和所述出光面214的側面216,且所 述底面21 2包括一底面中心218 ’所述底面212設置有複 數散射網點220,所述出光面214具有凹面222。該至少 0992002042-0 表單編號A0101 第6頁/共37頁 201124776 Ο [0015] 二子導光板202的厚度不限,可以根據實際情況選擇。所 述至少二子導光板2〇2以侧面216相互拼接形成所述導光 板201 ’每相鄰子導光板202的相對接合的二侧面216中 至少一個側面216上設置有反射物226,且當位於導光板 201邊緣的子導光板202的部份側面216成為導光板2〇1的 外側面時均設置有反射物226。所述反射物226可為反射 膜、通過腐蝕形成的複數微結構或反射填充物。相互拼 接的該至少二子導光板202的底面212相鄰並共面,所述 出光面214也相鄰並共面。所述子導光板202為一方形、 矩形或其他多邊形的遴明基板。所遂透明基板的材料可 為工程塑料、聚曱基丙烯酸甲酯(ΡΜΜΑ)或玻璃等。 ❹ 該微棱鏡系統206可以為透射式增光膜或反射式增光膜, 用以將從導光板201射出的光進行有效調整,使得導光板 201射出的光線在整體上具有一定的集中度,從而調整導 光板201射出光線的整體亮度。所述偏振轉換系統208設 置於微棱鏡系統206上,且設置於微棱鏡系統206的遠離 出光面214的一側。該偏振轉換系統208根據光線的偏振 方向用於控制、調整光線的傳播。所述散射板210設置於 偏振轉換系統208上,且設置於偏振轉換系統208的遠離 出光面214的一側。該散射板210用於將從出光面214射 出的光線進一步分散和均勻化。可以理解,該微棱鏡系 統206、偏振轉換系統208以及散射板210為一可選擇結 構0 所述光源200為一點光源,如:螢光燈或發光二極體( LED)等。本實施例中,所述光源200為單色的發光二極 099101017 表單编號A0101 第7頁/共37頁 0992002042-0 [0016] 201124776 體。 [0017] 所述光源200設置於該子導光板202正下方與底面212的 中心218相對的位置。所述反射板204設置於該子導光板 202底面212的一側,其與該光源200對應之處具有光穿 透部(未標示),即所述光穿透部可為反射膜204上形成 的空心或透明膜。所述微棱鏡系統206、偏振轉換系統 208以及散射板210依次設置在該複數子導光板202的出 光面214 —側。 [0018] 所述背光電路集成有複數LED驅動器(圖未示),該LED驅 . .... 動器的個數與所述子導光板202的個數對應,用於驅動每 一子導光板底面212處設置的光源200 » [0019] 本實施例中具體的,所述子導光板202為邊長為50毫米的 方形的PMMA基板’其個數為複數個,所述反射物226為反 射膜。為了更清楚說明所述反射物226在複數子導光板 202的側面216上的具體貼覆方式,下面參照圖2進行說明 。假設相互拼接的所述複數子導光板202呈n(n為大於2的 整數)行m(m為大於2的整數)列分佈,並將某一子導光板 的位置用Xixj表示,其中i的取值範圍為2…n,〕·的取 值範圍為1. 2…m ’所述子導光板X 與X--斜庫,201124776 VI. Description of the Invention: [Technical Field] The present invention relates to a backlight module and a liquid crystal display, and more particularly to a direct type backlight module and a liquid crystal display using the direct type backlight module. [Prior Art] [0002] Liquid crystal panels of liquid crystal displays are mostly projection type liquid crystal display elements, which cannot emit light by themselves, and must provide a backlight source to provide sufficient brightness for the liquid crystal panel to enable normal display of images to achieve fullness. The color display shows the effect. Conventional liquid crystal displays mostly use cold cathode fluorescent lamps as backlights. However, since the light-emitting diode backlight has the advantages of wide color gamut range, low voltage driving, long life, low electromagnetic radiation, etc., it has become a small portable terminal liquid crystal display. An important component of the 'in the medium and large size LCD backlights, LEDs are gradually replacing cold cathode fluorescent lamps. [0003] The backlight is a component of the liquid crystal display that is indispensable for the display function. The liquid crystal display usually uses a ratio of different brightness when displaying, that is, the same point on the liquid crystal display screen is the brightest (white display) and the darkest ( The brightness ratio when black is displayed indicates the contrast of the liquid crystal display. The higher the contrast, the sharper the image, the brighter the color, and the smaller the contrast, the grayer the entire screen. [0004] A backlight generally includes a light source and a light guide plate. The backlight module can be classified into a direct type and a side type according to different positions of the light source. The direct-type backlight module refers to direct illumination of the light source directly under the light guide plate. The side-mounted backlight module generally places the light source on the side of the light guide plate, and the light is coupled into the light guide plate by the side 099101017, the form number A0101, and the surface of the light guide plate, forming a total reflection in the light guide plate and continuously Pre-propagation. By destroying the total reflection condition, the light-emitting surface of the light guide plate is uniformly emitted. [0005] The prior art provides a liquid crystal display, the liquid crystal display includes a liquid crystal panel and a backlight, the backlight includes a light guide plate, a reflective film, and a plurality of light emitting diodes, the light guide plate includes a bottom surface, a a light-emitting surface opposite to the bottom surface and a side surface connecting the bottom surface and the light-emitting surface. The plurality of light emitting diodes are evenly distributed on one side of the light guide plate. The reflective film is disposed on a side of the bottom surface of the light guide plate. When the liquid crystal display is in operation, the plurality of light-emitting diodes receive a continuous power supply signal from an external power source, and emit light, and the emitted light passes through the light guide plate or through the light guide plate and the reflective film to form a relatively uniform planar light. a liquid crystal panel, that is, the backlight provides continuous planar light to the liquid crystal panel, the liquid crystal panel controls the light throughput, and finally realizes the display of the image on the liquid crystal display. [0006] However, when the liquid crystal display is in operation, the liquid crystal display The backlight is always in the brightest state under the action of the power supply, and does not change with the brightness of the displayed picture, so the power loss of the entire backlight is increased to some extent; in addition, the liquid crystal panel cannot completely block the light, so It is very difficult for a liquid crystal display to achieve a black screen, which cannot achieve the high contrast requirement of the liquid crystal display, and also reduces the dynamic contrast of the liquid crystal display (the dynamic contrast ratio is the brightness ratio of the brightest and darkest portions of the screen at a certain moment). SUMMARY OF THE INVENTION [0007] In view of this, a backlight module and a liquid crystal display capable of improving the contrast and dynamic contrast of a liquid crystal display are provided to solve the above-mentioned technical problem 099101017 Form No. A0101 Page 4 / Total 37 Page 0992002042-0 201124776 [ [0009] ο [0010] ο The question is really necessary. A backlight module includes a light guide plate and a light source, the light guide plate includes at least two modules, and the light source is divided into at least two groups respectively corresponding to at least two modules of the light guide plate, and each group of light sources is separately controlled, each group of light sources The emitted light is emitted by the module corresponding to the set of light sources of the light guide plate, and no light is mixed between the at least two modules. A liquid crystal display, comprising: a liquid crystal panel and a backlight module, wherein the backlight module provides planar light to the liquid crystal panel, wherein the liquid crystal panel displays an image, wherein the backlight module comprises a light guide plate and a light source, and the light guide The light panel includes at least two modules, and the light source is divided into at least two groups respectively corresponding to at least two modules of the light guide plate. Each group of light sources is separately controlled, and light emitted by each group of light sources is corresponding to the group of light sources via the light guide plate. The module forms planar light exiting and there is no light mixing between the at least two modules. Compared with the prior art, the backlight module is divided into regions that are driven independently of each other, so the brightness state or state of each region is affected by other regions; in addition, there is no light mixing between each module inside the light guide plate, The backlight module has no light mixing between two adjacent bright and dark regions, that is, the region in the dark state is substantially unaffected by the adjacent bright regions, so each of the backlight modules The corresponding illumination area of the area is relatively fixed. When a certain area of the liquid crystal display shows a black image at a certain moment, and some areas display a white/color image, the back side of the area corresponding to the black image and the black image can achieve no light illumination while the liquid crystal panel and white/ The back side of the area corresponding to the color image has high-brightness backlight illumination, so 'can achieve the brightest and darkest part of the LCD screen at a certain moment. 099101017 Form No. 1010101 Page 5/37 Page 0992002042-0 201124776 Brightness Ratio High's can improve the contrast and dynamic contrast of the LCD. [Embodiment] Hereinafter, a backlight module and a liquid crystal display provided by an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 , a first embodiment of the present invention provides a liquid crystal display 1 including a liquid crystal panel 10 and a backlight (not labeled), and the backlight provides planar light to the liquid crystal panel 10 . The liquid crystal panel 10 displays an image. The backlight module includes a backlight module 20 and a backlight circuit (not shown), and the backlight circuit is used to drive the backlight module 20. [0013] The backlight module 20 includes a light source 200, a light guide plate 201, and a reflection plate 204. The microprism system 206, the polarization conversion system 208, and the diffuser plate 210. The reflector 204, the light guide plate 201, the microprism system 206, the polarization conversion system 208, and the diffusion plate 210 are stacked in this order. The light source 2 is disposed on the side of the light guide plate 201. The light source is emitted from the light source=2: 〇0, and the light emitted through the light guide plate 201, the microprism system 206, the partial/vibration: conversion system 2〇8, and The light emitted by the diffusing plate 210 or emitted by the light source 200 is reflected inside the light guide plate 201 and then reflected by the reflecting plate 204 through the light guide plate 2〇1, the microprism system 206, the polarization conversion system 208, and the scattering plate 21, and then exits. . [0014] The light guide plate 201 includes at least two sub-light guide plates 202, and the sub-light guide plate 202 includes a bottom surface 212', a light-emitting surface 214 opposite to the bottom surface 212, and a side surface connecting the bottom surface 212 and the light-emitting surface 214. 216, and the bottom surface 21 2 includes a bottom surface 218 ′. The bottom surface 212 is provided with a plurality of scattering dots 220, and the light emitting surface 214 has a concave surface 222. The at least 0992002042-0 Form No. A0101 Page 6 of 37 201124776 Ο [0015] The thickness of the two sub-light guide plates 202 is not limited and can be selected according to actual conditions. The at least two sub-light guide plates 2〇2 are spliced to each other with the side faces 216 to form the light guide plate 201. At least one of the two side faces 216 of each of the opposite joints of the adjacent sub-light guide plates 202 is provided with a reflector 226, and is located at When the partial side surface 216 of the sub-light guide plate 202 at the edge of the light guide plate 201 becomes the outer side surface of the light guide plate 2〇1, a reflector 226 is provided. The reflector 226 can be a reflective film, a plurality of microstructures formed by etching, or a reflective filler. The bottom surfaces 212 of the at least two sub-light guide plates 202 that are joined to each other are adjacent and coplanar, and the light-emitting surfaces 214 are also adjacent and coplanar. The sub-light guide plate 202 is a square, rectangular or other polygonal shaped substrate. The material of the transparent substrate may be an engineering plastic, polymethyl methacrylate or glass. The microprism system 206 can be a transmissive brightness enhancement film or a reflective brightness enhancement film for effectively adjusting the light emitted from the light guide plate 201, so that the light emitted from the light guide plate 201 has a certain concentration as a whole, thereby adjusting The light guide plate 201 emits the overall brightness of the light. The polarization conversion system 208 is disposed on the microprism system 206 and disposed on a side of the microprism system 206 that is remote from the light exit surface 214. The polarization conversion system 208 is used to control and adjust the propagation of light according to the polarization direction of the light. The scatter plate 210 is disposed on the polarization conversion system 208 and disposed on a side of the polarization conversion system 208 that is remote from the light exit surface 214. The diffusing plate 210 is for further dispersing and homogenizing the light emitted from the light exit surface 214. It can be understood that the microprism system 206, the polarization conversion system 208, and the scattering plate 210 are a selectable structure. The light source 200 is a point source such as a fluorescent lamp or a light emitting diode (LED). In this embodiment, the light source 200 is a single-color light-emitting diode 099101017 Form No. A0101 Page 7 of 37 0992002042-0 [0016] 201124776 Body. [0017] The light source 200 is disposed at a position directly opposite to the center 218 of the bottom surface 212 directly below the sub-light guide plate 202. The reflector 204 is disposed on a side of the bottom surface 212 of the sub-light guide 202, and has a light penetrating portion (not labeled) corresponding to the light source 200, that is, the light penetrating portion may be formed on the reflective film 204. Hollow or transparent film. The microprism system 206, the polarization conversion system 208, and the scattering plate 210 are sequentially disposed on the side of the light emitting surface 214 of the plurality of sub-light guide plates 202. [0018] The backlight circuit is integrated with a plurality of LED drivers (not shown), and the number of the LED drivers corresponds to the number of the sub-light guide plates 202 for driving each sub-guide The light source 200 is disposed at the bottom surface 212 of the light plate. [0019] Specifically, in the embodiment, the sub-light guide plate 202 is a square PMMA substrate having a side length of 50 mm, the number of which is plural, and the reflector 226 is Reflective film. In order to more clearly illustrate the specific manner of attachment of the reflector 226 to the side 216 of the plurality of sub-light guides 202, it will be described below with reference to FIG. It is assumed that the plurality of sub-light guide plates 202 spliced together are n (n is an integer greater than 2) rows m (m is an integer greater than 2) column distribution, and the position of a certain sub-light guide plate is represented by Xixj, where i The value range is 2...n, and the range of values is 1. 2...m 'the sub-guide plate X and X-- oblique library,

Ixj 2xj 耵知 所述子導光板X2xj與X3xj 一一對應,以此類推,所述子導 光板X (Π-1) xj與Xnxj 一一對應;所述子導光板Xixl與Xix 2—一對應,所述子導光板Xix2與Χιχ3 一一對應,此類X 推’所述子導光板Xix (m-D與Xixm一-對應。則,所述 反射物226的具體貼覆方式包括:所述子導光板^的與 子導光板相對的侧面216上貼覆所述反射膜,^述子 099101017 表單編號A0101 第8頁/共37頁 0992002042-0 201124776 導光板X2xj的與子導光板X3xj相對的側面216上貼覆所述 反射膜,以此類推,所述子導光板X 1、.的與子導光Ixj 2xj knows that the sub-light guide plates X2xj and X3xj are in one-to-one correspondence, and so on, the sub-light guide plates X (Π-1) xj are in one-to-one correspondence with Xnxj; the sub-light guide plates Xixl and Xix 2 - one correspond to each other. The sub-light guide plate Xix2 is in one-to-one correspondence with the Χιχ3, and the X-pushing the sub-light guide plate Xix (mD and Xixm-correspondence. Then, the specific manner of attaching the reflector 226 includes: the sub-guide The reflective film is attached to the side surface 216 of the light plate opposite to the sub-light guide plate, and the surface 216 opposite to the sub-light guide plate X3xj of the light guide plate X2xj is shown in Fig. 09101017 Form No. A0101 Page 8 of 37 0992002042-0 201124776 Attaching the reflective film, and so on, the sub-light guide X 1 , .

(n-W X J 板Xnxj相對的側面216上貼覆所述反射膜;所述子導光板 Xixl的與子導光板X.相對的側面216上貼覆所述反射臈 1 X ^ ’所述子導光板X 的與子導光板X 相對的侧面216上 ixZ i x3 貼覆所述反射膜,以此類推,所述子導光板Xix (m l)的 與子導光板Xixni相對的侧面216上貼覆所述反射膜。另外 ’當位於導光板201邊緣的子導光板202的部份側面216 成為導光板201的外側面時均設置有反射物226。可選擇 〇 地’在所述每一子導光板202的四側面216均可設置所述 反射物226。可以理解,所述導光板201可以看作被區分 為複數個模塊,每一模塊與每一子導光板202對應’並且 每一子導光板202的部份側面216遵循預定的規律設置反 射物226的方式,達到所述導光板201的每一模塊之間無 光線混合。 [0020] 請參閱圖3,所述散射網點220分佈於圍繞底面中心218的 複數個環形上。所述環形可以為圓形,橢圓形或任意的 〇 多邊形。所述鄰近子導光板202邊緣的散射網點220的分 佈與子導光板202的形狀相匹配’如子導光板202為方形 ,則鄰近子導光板邊緣的散射網點220呈方形分佈。所述 複數個環形均勻的以底面中心218為中心同心設置’即相 鄰的二環形之間的間距相同。進一步地,每二相鄰的環 形之間的間距沿著遠離底面中心218的方向逐漸遞減。可 以理解,沿遠離底面中心218的方向’光束的強度會減弱 ,所以該結構有利於增強靠近子導光板2 0 2邊緣的光照度 099101017 表單編號A0101 0992002042-0 201124776 ’使整個子導光板202出光均勻。優選地,相鄰二環形之 間的間距為0. 5毫米〜2毫米。所述複數環形中,每—環形 上的散射網點220的密度沿遠離底面中心21 8的方向逐漸 遞增。所述散射網點220於同一環形上均勻分佈,且相鄰 一散射網點2 2 0的間距為〇. 1毫米〜1毫米。所述散射網點 220可為凸點’凹槽或凸點與凹槽的組合。所述散射網點 220的形狀包括錐體、長方體、立方體、橢球、圓球及半 圓球中的一種或多種。所述散射網點220的粒徑可以為 〇. 1毫米〜0. 5毫米。所述散射網點220的材料為油墨、鈦 系化合物或石夕系化合物 [0〇21 ] 根據導光板202的不同形狀,遠離底面..中心.218,即靠近 底面邊緣的區域,散射網點220分佈於複數個η邊形環上 ,且η大於等於3。所述圓環的環數與η邊形環的環數比小 於20:1。而在圓環與η邊形環之間的過渡區域234,該散 射網點220分佈於以底面中心218為圓心的複數個圓弧上 [0022] 本實施例中具體的,在邊長為50毫米的方形子導光板2〇2 的底面212上設置二十圈分佈於環形上的散射網點“ο。 其中’從底面_心21 8開始’前十五圈散射網點2 2 〇分佈 於以底面中心218為圓心的圓環上,後五圈散射網點22〇 分佈於以底面中心218為中心的方形環上。而且,靠近底 面中心218的第一圈圓環240的直徑大於8毫米,以使光源 2 0 0發出的光束不被該圓環上的散射網點2 2 〇散射,可直 接進入子導光板202内。沿遠離底面中心218的方向,最 後一圈圓環236與靠近底面中心218的第一圈方形環238 099101017 表單編號A0101 第10頁/共37頁 0992002042-0 201124776 相切。相鄰兩個的環形之間的間距為1毫米。所述散射網 點220的形狀為半圓球,其半徑為〇. 3毫米,且同一環形 上,相鄰兩個散射網點220的間距為〇· 6毫米。 [0023] 請參閱圖4,所述凹面222設置於所述子導光板202出光面 214的與底面212中心218相對應的位置’且凹入子導光 板202内部。該凹面222可以為一半球面' 圓錐面或類圓 錐面等。所述凹面222包括一第一部224及一第二部225 〇 。在所迷第一部224上光線入射角度大於全反射臨界角度 ,在所述第二部225上光線入射角度小於全反射臨界角度 。該第二部225設置有反射結構228 ’所述反射結構228 可為反射祺、通過腐蝕形成的複數微結構或反射填充物 。所述四面222係通過將子導光板202的出光面214挖去 一繞子導光板202的中心轴旋轉而形成的旋轉體形成。該 旋轉體包括一底圓盤(未標示)及一頂點(未標示),其具 有垂直於所述底圓盤旅且貫.穿所述頂點的中心線,所述 底圓盤半徑若設定為R,則其最優選尚滿足以下關係式:(the reflective film is attached to the opposite side 216 of the nW XJ board Xnxj; the side surface 216 of the sub-light guide plate Xixl opposite to the sub-light guide plate X is attached to the sub-light guide plate of the reflection 臈1 X ^ ' IXZ i x3 is attached to the side surface 216 of the X opposite to the sub-light guide plate X, and so on, and the side surface 216 of the sub-light guide plate Xix (ml) opposite to the sub-light guide plate Xixni is attached A reflective film 226 is additionally provided with a reflector 226 when a portion of the side surface 216 of the sub-light guide plate 202 located at the edge of the light guide plate 201 becomes the outer side surface of the light guide plate 201. Alternatively, each of the sub-light guide plates 202 may be disposed. The reflector 226 can be disposed on the four sides 216. It can be understood that the light guide plate 201 can be regarded as being divided into a plurality of modules, each module corresponding to each sub-light guide plate 202 and each sub-light guide plate 202 The partial side 216 follows the predetermined regular manner of setting the reflector 226 to achieve no light mixing between each module of the light guide plate 201. [0020] Referring to FIG. 3, the scattering dots 220 are distributed around the center of the bottom surface. a plurality of rings 218. The ring may be a shape, an ellipse or an arbitrary 〇 polygon. The distribution of the scattering dots 220 at the edge of the adjacent sub-light guide plate 202 matches the shape of the sub-light guide plate 202. If the sub-light guide plate 202 is square, the scattering near the edge of the sub-light guide plate The dots 220 are distributed in a square shape. The plurality of rings are uniformly arranged concentrically around the center 218 of the bottom surface, that is, the spacing between the adjacent two rings is the same. Further, the spacing between each two adjacent rings is away from each other. The direction of the bottom center 218 is gradually decreasing. It can be understood that the intensity of the beam will be weakened in the direction away from the center 218 of the bottom surface, so the structure is advantageous for enhancing the illuminance near the edge of the sub-light guide plate 02 09101017 Form No. A0101 0992002042-0 201124776 ' 5毫米〜2毫米。 The spacing between the adjacent two rings is 0.5 mm ~ 2 mm. In the plurality of rings, the density of the scattering dots 220 on each ring is away from the center of the bottom surface 21 The direction of 8 is gradually increased. The scattering dots 220 are evenly distributed on the same ring, and the spacing of adjacent scattering dots 2 2 0 is 〇. 1 millimeter. 〜1 mm. The scattering dot 220 may be a bump 'groove or a combination of a bump and a groove. The shape of the scattering dot 220 includes a cone, a cuboid, a cube, an ellipsoid, a sphere, and a semi-spherical sphere. The material of the scattering dot 220 is ink, titanium compound or Shishi compound [0〇21] according to the light guide plate. The scattering dot 220 may have a particle diameter of 1 mm to 0.5 mm. The different shapes of 202 are far from the bottom surface.. Center 218, that is, the area near the edge of the bottom surface, the scattering dots 220 are distributed over a plurality of η-shaped rings, and η is greater than or equal to 3. The ring number of the ring and the ring number ratio of the η-ring ring are less than 20:1. And in the transition region 234 between the ring and the η-shaped ring, the scattering dots 220 are distributed on a plurality of circular arcs centered on the center 218 of the bottom surface. [0022] Specifically, in the embodiment, the side length is 50 mm. The bottom surface 212 of the square sub-light guide plate 2〇2 is provided with twenty-circle scattering mesh points distributed on the ring shape “ο. where 'from the bottom surface _ heart 21 8 'the first fifteen circles of the scattering dot 2 2 〇 is distributed at the center of the bottom surface 218 is the center of the circle, and the last five circles of the scattering dots 22 are distributed on the square ring centered on the center 218 of the bottom surface. Moreover, the diameter of the first ring 240 near the center 218 of the bottom surface is greater than 8 mm to make the light source The light beam emitted by 200 is not scattered by the scattering mesh point 2 2 该 on the ring, and can directly enter the sub-light guide plate 202. In the direction away from the center 218 of the bottom surface, the last ring 236 and the center near the bottom center 218 One ring square ring 238 099101017 Form No. A0101 Page 10 / Total 37 page 0992002042-0 201124776 Tangent. The spacing between adjacent rings is 1 mm. The shape of the scattering dot 220 is a semi-spherical sphere with a radius For 〇. 3 mm, and the same ring The spacing between two adjacent scattering dots 220 is 〇·6 mm. [0023] Referring to FIG. 4, the concave surface 222 is disposed at a position corresponding to the center 218 of the bottom surface 212 of the light emitting surface 214 of the sub-light guide plate 202. 'and recessed into the interior of the sub-light guide plate 202. The concave surface 222 may be a semi-spherical 'conical surface or a conical surface, etc. The concave surface 222 includes a first portion 224 and a second portion 225 〇. The ray incidence angle on 224 is greater than the total reflection critical angle, and the ray incidence angle is less than the total reflection critical angle on the second portion 225. The second portion 225 is provided with a reflective structure 228' The plurality of microstructures or reflective fillers are formed by etching. The four sides 222 are formed by digging a light-emitting surface 214 of the sub-light guide plate 202 to form a rotating body formed by rotating a central axis of the sub-light guide plate 202. The rotating body includes a rotating body. a bottom disc (not shown) and a vertex (not labeled) having a centerline perpendicular to the bottom disc and passing through the apex, and if the radius of the bottom disc is set to R, the most Preferably, the following relationship is still satisfied

R = H * tan θ Η為子導光板202>|度,係子導光板 202的全反射臨界角度。其中,如上所述導光板202選用 PMMA材料時,所述導光板202的全反射臨界角度已 定,即42度。所述子導光板202厚度Η優選的為5mm。即 可計算出所述凹面222在該出光面214上的底圓盤半徑尺值 為4.5mm。可以理解,所述凹面222在該出光面214上的 底圓盤半徑r滿足關係式R = H* tan ^時’所述出光面 uc 099101017 表單編號A0101 第11頁/共37頁 0992002042-0 201124776 214的除凹面222以外的區域上,由光滅200出射的光線 的入射角度大於全反射臨界角度。 [0024] 本實施例中具體的,所述凹面222為圓錐面,其所述中心 線與所述子導光板2〇2的中心軸相重疊。該圓錐形四面 222的第一部224及第二部225的個數分別為一,並且所 述第一部224及第二部225的連接處形成一圓環形全反射 臨界帶(未標示)。該圓環形全反射臨界帶的半徑若設定 為Rf ,則其滿足以下關係式·· Rf= (h-H) * ( / )氺 cos ( α + ),其中 sin ot: cos υ ' . ''.;.::::...-..... .〒:V-'.'V . ,h為圓錐形凹面222在所述中心線上的深度,α係圓錐 形凹面222的錐角。所述圓攀形凹面222的深度h應該滿足 以下條件:0<h<H ;所述圓錐形凹面222的錐角α滿足 以下關係式:a=tan_1 (R/h)。圓錐形凹面222的深度 h優選的為2mm,此時可計算得到1^ = 1. 247 mm。 ί [0025] 本實施例的液晶顯示器1工作時,與每一子導光板202對 應的LED光源200由個所述LEO驅'動器接收on或off的驅 動訊號。若液晶顯示器1在某區域顯示黑色圖像,對應的 一個所述LED驅動器發出of f訊號指令與該區域對應的子 導光板底面212處的LED光源200不發光,即與該區域對 應的子導光板出光面214無光出射,所述液晶面板1〇的與 其對應的區域顯示較暗的黑晝面;若液晶顯示器1在某區 域顯示白/彩色圖像,對應的LED驅動器發出〇n訊號,接 收on訊號的LED光源200被點亮發出光束,由LED光源2〇〇 發出光束入射與其對應的每一子導光板202,射入對應子 099101017 表單編號A0101 第12頁/共37頁 0992002042-0 201124776 Ο Ο 導光板202内部的光束由出光面及侧面上一次或多次產生 反射後光束部份經底面21 2上設置的反射膜204及散射網 點220反射並散射後再在出光面214產生折射由該子導光 板202的出光面214射出,進入所述液晶面板1〇的與該子 導光板202對應的區域’使該區域顯示白/彩色畫面。即 ,所述背光模組20被區分為與所述子導光板202對應的複 數區塊,背光模組20每一區塊對應的照明區域相對固定 ,可以理解為每一區塊之間無光線混合。其中,在有光 照射的每一子導光板2 0 2内部光束一部份到達出光面214 後,入射角度大於全反射臨界角度的一部份光線在出光 面214的凹面222以外的其他區域及凹面222的第一部224 上產生反射後進入對應子導光板2〇2内部’入射角度小於 全反射臨界角度的另一部份光線被所述凹面222第二部 225上設置的反射結構228反射後進入對應子導光板202 内部’另一部份到達侧面216後被反射物226反射後進入 對應子導光板202内部,如!上所遽::,:4出龙面214和側面 216上反射後的光束部份經^面別备土設置的反射膜204 及散射網點220反射並散射後再在出光面214產生折射後 由該子導光板202的出光面214射出。即,這樣從具有光 射出的每一子導光板202射出的光線分佈比較均勻,從而 背光源具有較為均一的發光亮度。 [0026] 可以理解’本實施例所提供的導光板2〇1並不限應用於本 實施例所提供的背光模組20中。即該導光板201可以根據 實際需要應用於不同結構的背光模組2〇中,以提高背光 模組20的出光均勻性及動態對比度。 099101017 表單編號Α0101 第13頁/共37頁 0992002042-0 201124776 [0027] 所述背光模組2 〇因所述光源2 0 0的獨立驅動,被區分為相 互獨立驅動的複數區塊,可以理解的每個區塊的亮態或 暗態係不受其他區塊的影響;另外,所述子導光板側面 216設置有反射膜,因此所述背光模組20相鄰兩個處於亮 態和暗態區塊之間無光線混合,即處於暗態的區塊基本 不受相鄰的處於亮態區塊的影響,故,所述背光模組20 每一區塊對應的照明區域相對固定。在某一瞬間液晶顯 示器1的某些區域顯示黑色圖像,而某些區域顯示白/彩 色圖像時,液晶面板1〇與黑色圖像對應的區域的背面可 達到無光照射,同時液晶面板10與白/彩色圖像對應的區 域的背面有高亮度的背光照射,因此,可以實現在某一 瞬間液晶顯示器1屏幕最亮和最暗處的亮度比值較高,即 可提高液晶顯示器1的對比度及動態對比度。液晶顯示器 1工作時,背光源消耗的功率係變化而非恒定的,在某一 瞬間黑色顯示區域較大時較多的LED處於關閉狀態,相反 的黑色顯示區域較小時較少的LED處於關閉狀態,即不係 所有的LED始終都處於開啟狀態,因此,不僅可降低背光 源總的功耗,還可延長LED的使用壽命。 [0028] 請參閱圖5 ’本發明第二實施例提供一種液晶顯示器(圖 未示),其與本發明第一實施例所提供的液晶顯示器1的 結構基本相同,其區別在於:所述導光板301的子導光板 302每四個可以看成係一個子導光板組303,所述每一子 導光板組303相當於第一實施例所述的每一子導光板202 ,並遵循第一實施例所述的子導光板202設置反射物326 的規律。另外,所述背光電路集成的LED驅動器(圖未示) 099101017 表單編號A0101 第14頁/共37頁 0992002042-0 201124776 的個數與所述子導光板組303個數相同,該每一LED驅動 器用於驅動每一子導光板組303中四個子導光板302底面 312處設置的光源3〇〇,即每四個光源300作為一光源組 受單獨驅動。可以理解,所述導光板301被區分為複數模 塊’每一模塊與每一子導光板組3〇3對應,並且每一子導 光板組303中的部份子導光板302的侧面316遵循預定的 規律設置反射物326的方式,達到所述導光板301的每一 模塊之間無光線混合。 [0029]Ο [0030] Ο 請一併參閱圖6及圖7,本發明第三實施例提供一種液晶 顯示器4,其包括一液晶面板5〇和一背光源(未標示), 所述月光源為該液晶面板50提供..平面光,使所述液晶面 板50顯示圖像。該背光源包括背光模組4〇和背光電路( 圖未示)’所述背光電路用於驅動該背光模組4〇。 所述背光模組40包括光源400、導光板401、反射板404 、微棱鏡系統406、偏振轉_系統408以為散射板410。 該反射板404、導光板401、微棱鏡系綠406、偏振轉換 系統4 0 8以及散射板410依次層養設置。所述光源4 〇 〇設 置於所述導光板401—側,由該光源4〇〇出射的光線經由 導光板401、微棱鏡系統406、偏振轉換系統4〇8以及散 射板410直接出射或者由該光源4〇〇出射的光線在導光板 401内部產生反射後再被反射板4〇4反射經由導光板4〇1 、微棱鏡系統406、偏振轉換系統408以及散射板41〇後 出射。 [0031] 099101017 所述導光板401包括一底面412,一與該底面412相對的 出光面414以及連接所述底面412和所述出光面414的侧 表單编號A0101 第15頁/共37頁 0992002042-0 201124776 面416,且所述底面412設置有複數散射網點420,所述 出光面414具有凹面422,該導光板401由反射物426間隔 形成至少二區域(可以看作係至少二模塊.)。所述反射物 426可為反射膜或反射填充物。 [0032] 本實施例中具體的,所述導光板401由所述反射物426均 勻間隔形成四相等的方形區域402。其中,所述反射物 426為反射填充物。所述導光板401被反射物426間隔方 式具體如下:首先,提供一方形的PMMA基體;其次,採 用鐳射切割方式等切割所述基體形成“十”字形裂痕, 所述“十”字形裂痕可貫穿所迷基體,也可不貫穿所述 基體,即由基體的上方向下切割使底部相連無裂痕;最 後’對應該“十”字形裂痕,植入反射填充物,該“十 ”字形裂痕由反射填充物將基體均勻間隔為四個區域402 以形成所述導光板401。 [0033] 可以理解,所述導光板401被“十”字形反射物426均勻 間隔形成四個相等的方形區碱4 0 2時’還可以採用下列技 術手段:首先,提供一具一定高度的“十”字形反射物 426,然後射出成型的方式形成所述導光板4〇1。 [0034] 將所述每一區域402看作為四均等大小的子方形區域403 的集合體,每一子方形區域403在所述底面412上具有一 中心418。 [0035] 所述凹面422在每一區.域402均勻分佈四個,即每一凹面 402在每一子方形區域403上與所述底面中心418相對。 每一凹面422與本發明第一實施例所述背光模組2〇每一子 099101017 表單編號A0101 第16頁/共37頁 0992002042-0 201124776 [0036] [0037] Ο [0038] 〇 [0039] [0040] 099101017 導光板202上的凹面222結構相同。 Μ述散射網點420在每一子方形區域403上,圍繞所述中 心418分佈。在每子方形區域上所述散射網點420 的其體分佈方式和結構與本發明第一實施例所述背光模 银2〇每一子導光板202上的散射網點220分佈方式和結構 相同。 所述光源400為一點光源’如:螢光燈或發光二極體( 0D)等。本實施例中,所述光源400為單色的發光二極 gA 〇 锻 所述光源400設置於所述導光板401底面412—側在子方 形區域403正下方中心418相對的位置。所述反射板404 設置於該導光板401的底面412—側,其與該光源4〇〇對 應之處具有光穿透部(未標示),即所述先穿透部可為 空心或透明。所述微棱鏡系統406 '偏振轉換系統408以 及散射板410依次設置在該:導系板4〇 1的出光面414一侧 該微棱鏡系統406、偏振轉換系統4〇8以及散射板410與 本發明第一實施例所述背光模組20的微棱鏡系統2〇6、偏 振轉換系統208以及散射板21〇相同。 所述背光電路集成有四個LED驅動器(圖未示),該每一 LED驅動器用於驅動每一區域402中所述底面412處設置 的四個光源400,即每四個光源4〇〇對應每一區域4〇2受 單獨驅動。 所述導光板401的底面412和四個側面416上可以進一步 表單編號A0101 第Π頁/共37頁 0992002042-0 [0041] 201124776 設置有增反膜,用以增強底面41 2和側面41 6的反射功效 。導光板401的出光面414上可以設置有增亮膜、散射膜 等光學膜。 [0042] 本發明所提供的液晶顯示器並不限於上述實施方式所述 ,如圖1至7所示的導光板可以係僅在出光面上設置所述 散射網點,還可以係出光面及底面均設置所述散射網點 。當在所述導光板底面與出光面上均設置所述散射網點 時,光束於導光板的底面與出光面之間可以多次被散射 網點反射和散射,從而使得出光面射出的光更加均勻。 [0043] 還如圖1至7所示的導光板底面具有一光源容置部,其與 所述凹面相對設置,該光源容置部具有一中心線,該中 心線與所述凹面的中心線相重疊。所述光源設置於該光 源容置部内部。所述反射板設置在導光板底面一侧,且 與所述光源容置部一併形成收容腔體收容所述光源。 [0044] 所述光源容置部為一凹槽,且該凹槽的内表面可以為一 球面、圓錐面或類圓錐面等。所述光源容置部通過將導 光板底面挖去一繞所述中心線旋轉而形成的旋轉體形成 。所述光源容置部的形狀與所述凹面的形狀可以相同或 不同。 [0045] 請參閱圖8,所述光源容置部與凹面均可為一挖去一個由 三角形繞所述中心線旋轉而形成的旋轉體後形成的結構 〇 [0046] 請參閱圖9,所述凹面可為一挖去一個由三角形繞所述中 心線旋轉而形成的旋轉體後形成的結構,所述光源容置 099101017 表單編號A0101 第18頁/共37頁 0992002042-0 201124776 部可以為一挖去一個由任意曲線繞所述中心線旋轉形成 的旋轉體後形成的結構。 [0047] [0048] Ο [0049] [0050] [0051] Ο [0052] [0053] [0054] [0055] [0056] 請參閱圖10,所述凹面可為一挖去一個由三角形繞所述 中心線旋轉而形成的旋轉體後形成的結構,所述光源容 置部可以為一挖去一個由梯形繞所述中心線旋轉形成的 旋轉體後形成的結構。 請參閱圖11,所述光源容置部與凹面均可為一挖去一個 半球體後形成的結構。 請參閱圖12,所述凹面可為一挖去一個半球體後形成的 結構,所述光源容置部可為一挖去一個由任意曲線繞所 述中心線旋轉形成的旋轉體後形成的結構。 可以理解,將所述光源設置於該光源容置部内部可進一 步減小背光模組的厚度。 另外,本領域技術人員還可在本發明精神内做其他變化 ,當然,這些依據本發明精神所做的變化,都應包含在 本發明所要求保護的範圍之内。 【圖式簡單說明】 圖1為本發明液晶顯示器的第一實施例的結構示意圖。 圖2為圖1所不液晶顯不益的導光板的結構不意圖。 圖3為圖2所示導光板中的子導光板的底面散射網點分 佈示意圖。 圖4為圖2所示導光板中的子導光板的出光面凹面的示 099101017 表單編號Α0101 第19頁/共37頁 0992002042-0 201124776 [0057] 意圖。 [0058] 圖5為本發明液晶顯示器的第二實施例的導光板的結 [0059] 構示意圖。 [0060] 圖6為本發明液晶顯示器的第三實施例的結構示意圖。 [0061] 圖7為圖6所示液晶顯示器的導光板的結構示意圖。 [0062] 圖8至圖1 2為本發明液晶顯示器採用的不同結構的導光板 的局部示意圖。 【主要元件符號說明】 [0063] 液晶顯示器:1、4 [0064] 散射板:210、410 [0065] 液晶面板:10、50 [0066] 底面:21 2、41 2 [0067] 背光模組:20、40 [0068] 出光面:21 4、41 4 [0069] 光源:200、400 [0070] 側面:21 6、31 6、41 6 [0071] 導光板:201、301、401 [0072] 底面中心:21 8、41 8 [0073] 子導光板:202、302 [0074] 散射網點:220、420 099101017 表單編號A0101 第20頁/共37頁 0992002042-0 201124776 [0075]反射板:204、404 [0076] 凹面:222、322、422 [0077] 微棱鏡系統:206、406 [0078] 反射物:226、326、426 [0079] 偏振轉換系統:208、408 [0080] 過度區域:234 [0081] 第一圈方形環:238 Ο [0082] 反射結構:228 [0083] 第一部:224 [0084] 第一圓環:240 [0085] 子導光板:303 [0086] 區域:402 [0087] 子方形區域:403 〇 [0088] 最後一圈:236 [0089] 第二部:225 [0090] 圓環z 099101017 表單編號A0101 第21頁/共37頁 0992002042-0R = H * tan θ Η is the sub-light guide plate 202 > | degree, the total reflection critical angle of the sub-light guide plate 202. Wherein, when the PMMA material is selected as the light guide plate 202 as described above, the total reflection critical angle of the light guide plate 202 is determined to be 42 degrees. The thickness Η of the sub-light guide plate 202 is preferably 5 mm. That is, the radius of the bottom disk of the concave surface 222 on the light-emitting surface 214 can be calculated to be 4.5 mm. It can be understood that when the radius r of the bottom disk of the concave surface 222 on the light-emitting surface 214 satisfies the relationship of R = H* tan ^, the light-emitting surface uc 099101017, the form number A0101, the 11th page, the total number of pages, 0992002042-0, 201124776 In the region other than the concave surface 222 of 214, the incident angle of the light emitted by the light extinguishing 200 is greater than the total reflection critical angle. [0024] Specifically, in the embodiment, the concave surface 222 is a conical surface, and the center line overlaps with a central axis of the sub-light guide plate 2〇2. The number of the first portion 224 and the second portion 225 of the conical four-sided surface 222 is one, and the junction of the first portion 224 and the second portion 225 forms a circular total reflection critical band (not labeled). . If the radius of the circular total reflection critical band is set to Rf, it satisfies the following relationship: Rf = (hH) * ( / ) 氺 cos ( α + ), where sin ot: cos υ ' . ''. ;.::::...-......〒:V-'.'V., h is the depth of the conical concave surface 222 on the center line, and the taper angle of the α-shaped conical concave surface 222. The depth h of the circular concave concave surface 222 should satisfy the following condition: 0 < h <H; the cone angle α of the conical concave surface 222 satisfies the following relationship: a = tan_1 (R / h). The depth h of the conical concave surface 222 is preferably 2 mm, at which point 1^ = 1. 247 mm can be calculated. [0025] When the liquid crystal display 1 of the embodiment operates, the LED light source 200 corresponding to each sub-light guide plate 202 receives a driving signal of on or off by the LEO driver. If the liquid crystal display 1 displays a black image in a certain area, the corresponding one of the LED drivers emits an f signal command to the LED light source 200 at the bottom surface 212 of the sub-light guide plate corresponding to the area, that is, the sub-guide corresponding to the area. The light-emitting surface 214 of the light-emitting panel emits no light, and the corresponding area of the liquid crystal panel 1 显示 displays a darker black surface; if the liquid crystal display 1 displays a white/color image in a certain area, the corresponding LED driver emits a 〇n signal, The LED light source 200 receiving the on signal is illuminated to emit a light beam, and the LED light source 2 emits a light beam incident on each of the sub-light guide plates 202 corresponding thereto, and is incident on the corresponding sub- 099101017. Form No. A0101 Page 12 of 37 0992002042-0 201124776 Ο Ο The light beam inside the light guide plate 202 is reflected by the light-emitting surface and the side surface one or more times, and the light beam is partially reflected and scattered by the reflection film 204 and the scattering mesh point 220 provided on the bottom surface 21 2, and then refracted on the light-emitting surface 214. The light-emitting surface 214 of the sub-light guide plate 202 is emitted, and enters a region corresponding to the sub-light guide plate 202 of the liquid crystal panel 1 to display a white/color image in the region. That is, the backlight module 20 is divided into a plurality of blocks corresponding to the sub-light guide plate 202, and the illumination area corresponding to each block of the backlight module 20 is relatively fixed, which can be understood as no light between each block. mixing. Wherein, after a portion of the internal light beam of each of the sub-light guides 20 2 having the light irradiation reaches the light-emitting surface 214, a portion of the light having an incident angle greater than the critical angle of the total reflection is outside the concave surface 222 of the light-emitting surface 214 and The first portion 224 of the concave surface 222 is reflected and then enters the interior of the corresponding sub-light guide plate 2〇2. Another portion of the light whose incident angle is less than the critical angle of total reflection is reflected by the reflective structure 228 disposed on the second portion 225 of the concave surface 222. After entering the interior of the corresponding sub-light guide plate 202, the other portion reaches the side surface 216 and is reflected by the reflector 226 to enter the interior of the corresponding sub-light guide plate 202, such as the reflection on the surface of the dragon surface 214 and the side surface 216. The rear beam portion is reflected and scattered by the reflective film 204 and the scattering mesh point 220 disposed on the surface of the surface, and then refracted on the light-emitting surface 214, and then emitted from the light-emitting surface 214 of the sub-light guide plate 202. That is, the light emitted from each of the sub-light guide plates 202 having the light is distributed relatively uniformly, so that the backlight has a relatively uniform luminance. It can be understood that the light guide plate 2〇1 provided by the embodiment is not limited to be applied to the backlight module 20 provided in this embodiment. That is, the light guide plate 201 can be applied to the backlight module 2〇 of different structures according to actual needs, so as to improve the light uniformity and dynamic contrast of the backlight module 20. 099101017 Form No. 1010101 Page 13 of 37 0992002042-0 201124776 [0027] The backlight module 2 is divided into multiple blocks independently driven by the independent driving of the light source 200, which can be understood. The bright state or the dark state of each block is not affected by other blocks; in addition, the side surface 216 of the sub-light guide plate is provided with a reflective film, so that the two adjacent backlight modules 20 are in a bright state and a dark state. There is no light mixing between the blocks, that is, the blocks in the dark state are substantially unaffected by the adjacent blocks in the bright state. Therefore, the illumination area corresponding to each block of the backlight module 20 is relatively fixed. At some instant, some areas of the liquid crystal display 1 display a black image, and in some areas, when a white/color image is displayed, the back side of the area corresponding to the black image of the liquid crystal panel 1 可 can achieve no light illumination, and the liquid crystal panel 10 The back side of the area corresponding to the white/color image has high-brightness backlight illumination. Therefore, it is possible to achieve a higher brightness ratio at the brightest and darkest portions of the screen of the liquid crystal display 1 at a certain moment, thereby improving the liquid crystal display 1 Contrast and dynamic contrast. When the liquid crystal display 1 is in operation, the power consumed by the backlight changes rather than constant. When the black display area is large at a certain moment, more LEDs are turned off, and when the opposite black display area is smaller, fewer LEDs are turned off. The state, that is, not all LEDs are always on, therefore, not only can reduce the total power consumption of the backlight, but also extend the life of the LED. [0028] Please refer to FIG. 5, a second embodiment of the present invention provides a liquid crystal display (not shown), which is basically the same as the liquid crystal display 1 provided by the first embodiment of the present invention, and the difference is that the guide Each of the sub-light guide plates 302 of the light plate 301 can be regarded as a sub-light guide plate group 303, and each of the sub-light guide plate groups 303 is equivalent to each of the sub-light guide plates 202 described in the first embodiment, and follows the first The sub-light guide plate 202 described in the embodiment sets the regularity of the reflector 326. In addition, the LED driver integrated in the backlight circuit (not shown) 099101017 Form No. A0101 Page 14 of 37 0992002042-0 201124776 is the same number as the sub-light guide group 303, each LED driver The light source 3 is disposed at the bottom surface 312 of the four sub-light guide plates 302 in each of the sub-light guide plate groups 303, that is, each of the four light sources 300 is separately driven as a light source group. It can be understood that the light guide plate 301 is divided into a plurality of modules 'each module corresponding to each of the sub-light guide plate groups 3〇3, and the side surface 316 of a portion of the sub-light guide plates 302 in each of the sub-light guide plate groups 303 follows a predetermined schedule. The manner of the reflector 326 is regularly set to achieve no light mixing between each module of the light guide plate 301. [0030] Ο Referring to FIG. 6 and FIG. 7 together, a third embodiment of the present invention provides a liquid crystal display 4 including a liquid crystal panel 5A and a backlight (not labeled), the moon light source. The liquid crystal panel 50 is provided with planar light to cause the liquid crystal panel 50 to display an image. The backlight includes a backlight module 4 and a backlight circuit (not shown). The backlight circuit is used to drive the backlight module 4〇. The backlight module 40 includes a light source 400, a light guide plate 401, a reflection plate 404, a microprism system 406, and a polarization conversion system 408 as a diffusion plate 410. The reflector 404, the light guide plate 401, the microprism system green 406, the polarization conversion system 408, and the diffusion plate 410 are sequentially stacked. The light source 4 is disposed on the side of the light guide plate 401, and the light emitted by the light source 4 is directly emitted through the light guide plate 401, the microprism system 406, the polarization conversion system 4〇8, and the diffusion plate 410 or The light emitted from the light source 4 产生 is reflected inside the light guide plate 401 and then reflected by the reflection plate 4〇4 through the light guide plate 4〇1, the microprism system 406, the polarization conversion system 408, and the diffusion plate 41, and then emitted. [0031] 099101017 The light guide plate 401 includes a bottom surface 412, a light exit surface 414 opposite to the bottom surface 412, and a side form number A0101 connecting the bottom surface 412 and the light exit surface 414. Page 15 / 37 pages 0992002042 -0 201124776 face 416, and the bottom surface 412 is provided with a plurality of scattering dots 420, the light-emitting surface 414 has a concave surface 422, the light guide plate 401 is formed by the reflector 426 to form at least two regions (can be regarded as at least two modules.) . The reflector 426 can be a reflective film or a reflective filler. [0032] Specifically, in the embodiment, the light guide plate 401 is evenly spaced by the reflectors 426 to form four equal square regions 402. Wherein, the reflector 426 is a reflective filler. The manner in which the light guide plate 401 is spaced by the reflector 426 is as follows: firstly, a square PMMA substrate is provided; secondly, the substrate is cut by a laser cutting method or the like to form a "ten"-shaped crack, and the "ten"-shaped crack can be penetrated. The base body may not penetrate the base body, that is, cut from the upper side of the base body to make the bottom portion connected without cracks; finally, 'corresponding to the ten-shaped crack, implanting a reflective filler, and the "ten"-shaped crack is filled by reflection. The substrate is evenly spaced into four regions 402 to form the light guide plate 401. [0033] It can be understood that the light guide plate 401 is evenly spaced by the "decagon" reflector 426 to form four equal square regions of alkali 4 0 2 'the following technical means can also be used: First, provide a certain height" The ten-shaped reflector 426 is then injection molded to form the light guide plate 4〇1. [0034] Each of the regions 402 is viewed as an aggregate of four equally sized sub-square regions 403, each of which has a center 418 on the bottom surface 412. [0035] The concave surfaces 422 are evenly distributed four in each zone. The domains 402 are opposite each other on the sub-square area 403. Each concave surface 422 and the backlight module 2 according to the first embodiment of the present invention are each 099101017. Form No. A0101 Page 16 / Total 37 Page 0992002042-0 201124776 [0036] [0038] Ο [0039] [0040] 099101017 The concave surface 222 on the light guide plate 202 has the same structure. The scatter grid dots 420 are distributed around the center 418 on each sub-square region 403. The distribution pattern and structure of the scattering dots 420 on each sub-square region are the same as those of the scattering dots 220 on each of the sub-light guide plates 202 of the first embodiment of the present invention. The light source 400 is a point light source such as a fluorescent lamp or a light emitting diode (OD). In this embodiment, the light source 400 is a single-color light-emitting diode GA. The light source 400 is disposed on a bottom surface 412 of the light guide plate 401 at a position opposite to a center 418 directly below the sub-region 403. The reflecting plate 404 is disposed on the bottom surface 412 of the light guiding plate 401, and has a light transmitting portion (not labeled) corresponding to the light source 4', that is, the first penetrating portion may be hollow or transparent. The microprism system 406 'the polarization conversion system 408 and the scattering plate 410 are sequentially disposed on the light-emitting surface 414 side of the guide plate 4〇1, the microprism system 406, the polarization conversion system 4〇8, and the diffusion plate 410 and the present The microprism system 2〇6, the polarization conversion system 208, and the scattering plate 21〇 of the backlight module 20 of the first embodiment of the invention are the same. The backlight circuit is integrated with four LED drivers (not shown) for driving the four light sources 400 disposed at the bottom surface 412 of each of the regions 402, that is, corresponding to each of the four light sources. Each zone 4〇2 is driven separately. The bottom surface 412 and the four side surfaces 416 of the light guide plate 401 may further have a form number A0101. The third page/total 37 page 0992002042-0 [0041] 201124776 is provided with an anti-reflection film for reinforcing the bottom surface 41 2 and the side surface 41 6 Reflective effect. An optical film such as a brightness enhancement film or a scattering film may be disposed on the light-emitting surface 414 of the light guide plate 401. The liquid crystal display provided by the present invention is not limited to the above embodiment, and the light guide plate shown in FIGS. 1 to 7 may be provided with the scattering mesh point only on the light emitting surface, and may also be configured to be both the light surface and the bottom surface. Set the scattering dots. When the scattering mesh point is disposed on both the bottom surface and the light-emitting surface of the light guide plate, the light beam can be reflected and scattered by the scattering mesh point multiple times between the bottom surface of the light guide plate and the light-emitting surface, so that the light emitted from the light-emitting surface is more uniform. [0043] The bottom surface of the light guide plate as shown in FIGS. 1 to 7 has a light source accommodating portion opposite to the concave surface, the light source accommodating portion has a center line, and the center line and the center line of the concave surface Overlapping. The light source is disposed inside the light source accommodating portion. The reflector is disposed on a bottom surface of the light guide plate, and forms a receiving cavity together with the light source accommodating portion to receive the light source. [0044] The light source accommodating portion is a groove, and an inner surface of the groove may be a spherical surface, a conical surface or a conical surface. The light source accommodating portion is formed by digging a bottom surface of the light guide plate to a rotating body formed by rotating around the center line. The shape of the light source accommodating portion may be the same as or different from the shape of the concave surface. [0045] Referring to FIG. 8, the light source accommodating portion and the concave surface may be a structure formed by digging a rotating body formed by rotating a triangle around the center line. [0046] Please refer to FIG. The concave surface may be a structure formed by digging a rotating body formed by rotating a triangle around the center line, the light source accommodating 099101017 Form No. A0101 Page 18/37 Page 0992002042-0 201124776 Part may be one A structure formed by digging a rotating body formed by rotating an arbitrary curve around the center line is dug. [0048] [0055] [0055] [0055] [0056] Referring to FIG. 10, the concave surface may be a digging of a circle by a triangle The structure formed by the rotating body formed by the rotation of the center line, the light source accommodating portion may be a structure formed by digging a rotating body formed by a trapezoidal rotation around the center line. Referring to FIG. 11, the light source accommodating portion and the concave surface may be a structure formed after one hemisphere is dug. Referring to FIG. 12, the concave surface may be a structure formed by digging a hemisphere, and the light source accommodating portion may be a structure formed by digging a rotating body formed by rotating an arbitrary curve around the center line. . It can be understood that the light source is disposed inside the light source receiving portion to further reduce the thickness of the backlight module. In addition, other changes in the spirit of the invention may be made by those skilled in the art, and it is to be understood that these changes are intended to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a first embodiment of a liquid crystal display of the present invention. FIG. 2 is a schematic view of the structure of the light guide plate in which the liquid crystal display of FIG. 1 is unfavorable. Fig. 3 is a schematic view showing the distribution of scattering dots on the bottom surface of the sub-light guide plate in the light guide plate shown in Fig. 2. 4 is a view showing the concave surface of the light-emitting surface of the sub-light guide plate in the light guide plate shown in FIG. 2 099101017 Form No. 1010101 Page 19 of 37 0992002042-0 201124776 [0057] Intention. 5 is a schematic structural view of a light guide plate of a second embodiment of the liquid crystal display of the present invention. [0058] FIG. 6 is a schematic structural view of a third embodiment of a liquid crystal display according to the present invention. 7 is a schematic structural view of a light guide plate of the liquid crystal display shown in FIG. 6. 8 to FIG. 12 are partial schematic views of a light guide plate of different structures used in the liquid crystal display of the present invention. [Main component symbol description] [0063] Liquid crystal display: 1, 4 [0064] Scattering plate: 210, 410 [0065] Liquid crystal panel: 10, 50 [0066] Bottom surface: 21 2, 41 2 [0067] Backlight module: 20, 40 [0068] Light-emitting surface: 21 4, 41 4 [0069] Light source: 200, 400 [0070] Side: 21 6, 31 6, 41 6 [0071] Light guide plate: 201, 301, 401 [0072] Center: 21 8, 41 8 [0073] Sub-light guide plate: 202, 302 [0074] Scattering mesh point: 220, 420 099101017 Form No. A0101 Page 20 / Total 37 page 0992002042-0 201124776 [0075] Reflector: 204, 404 Concave surface: 222, 322, 422 [0077] Microprism system: 206, 406 [0078] Reflectors: 226, 326, 426 [0079] Polarization conversion system: 208, 408 [0080] Excessive area: 234 [0081 The first ring square ring: 238 Ο [0082] Reflective structure: 228 [0083] First part: 224 [0084] First ring: 240 [0085] Sub-light guide plate: 303 [0086] Area: 402 [0087] Sub-square area: 403 〇 [0088] Last lap: 236 [0089] Part 2: 225 [0090] Ring z 099101017 Form No. A0101 Page 21 / Total 37 Page 0992002042-0

Claims (1)

201124776 七、申請專利範圍: 1 . 一種背光模組,其包括: 導光板,其包括至少二模塊;以及 光源,其分成至少二組分別對應所述導光板的至少二模 塊設置,每組光源分別受單獨控制,每組光源射出的光 線經由該導光板的與該組光源對應的模塊形成平面光射 出,並且所述至少二模塊之間無光線混合。 2.如申請專利範圍第1項所述的背光模組,其中,所述光 源為發光二極體。 3 .如申請專利範圍第1項所述的背光模組,其中,所述導 光板進一步包括一底面,一與該底面相對的出光面以及 連接所述底面和所述出光面的側面,所述導光板的至少 二模塊係將所述導光板由反射物間隔成至少二區域而形 成。 4 .如申請專利範圍第3項所述的背光模組,其中,所述每 組光源在導光板底面一側,對應所述導光板的每一區域 設置。 5 .如申請專利範圍第4項所述的背光模組,其中,所述導 光板出光面一側,在每一區域相對光源設置有凹面,該 凹面使出射光均勻化。 6 .如申請專利範圍第5項所述的背光模組,其中,所述凹 面為半圓球面、.圓錐面或類圓錐面,該凹面包括一底圓 盤和一頂點,其具有垂直於所述底圓盤並且貫穿所述頂 點的中心線。 7 .如申請專利範圍第6項所述的背光模組,其中,所述凹 099101017 表單編號A0101 第22頁/共37頁 0992002042-0 201124776 面包括光線入射角度大於導光板全反射臨界角的第一部 與光線入射角度小於導光板全反射臨界角的第二部,該 第二部設置有反射結構。 8 .如申請專利範圍第6項所述的背光模組,其中,所述凹 面底圓盤半徑為R,其滿足以下關係式:R = H*t;an Λ 其中,Η為導光板厚度,0/系導光板的全反射角。 9.如申請專利範圍第8項所述的背光模組,其中,所述凹 面為圓錐面時,所述第一部與第二部的連接處形成一環 形全反射臨界帶,所述環形全反射臨界帶的半徑為Rf, 其滿足以下關係式:Rf= (h-H) * ( · / sin a COS^ )氺 cos ( α + Λ ), θ° 其中,h為圓錐形凹面的深度,α:係圓錐形凹面的錐角。 Q 10 .如申請專利範圍第7項所述的背光模組,其中,所述導光 板底面對應每一凹面設置有光源容置部,所述光源容置部 為一通過將導光板底面挖去一繞所述凹面中心線旋轉而形 成的旋轉體形成的凹槽。 11 .如申請專利範圍第3項所述的背光模組,其中,所述每一 區域為四子方形區域的集合,所述每一子方形區域於所述 底面具有一中心。 12 .如申請專利範圍第11項所述的背光模組,其中,所述導光 板的底面設置有散射網點,所述散射網點圍繞該子方形區 099101017 表單編號A0101 第23頁/共37頁 0992002042-0 201124776 域中心軸呈複數環形分佈,且鄰近子方形區域邊緣的散射 網點的分佈與子方形區域的形狀相匹配。 13 . 14 . 15 . 16 . 17 . 18 . 如申請專利範圍第1項所述的背光模組,其中,所述導光 板的至少二模塊為至少二子導光板組,每一子導光板組包 括至少一子導光板,所述每一子導光板包括一底面,一與 該底面相對的出光面以及連接所述底面和所述出光面的側 面,所述至少二子導光板組以侧面相互拼接,每一相對接 合的側面中至少一側面上設置有反射物。 如申請專利範圍第13項所述的背光模組,其中,所述每一 組光源對應每一子導光板組,所述每一組光源中的至少一 光源對應設置在一子導光板底_面一侧__。 如申請專利範圍第13項所述的背光模組,其中,所述每一 子導光板組之子導光板的個數為一。 如申請專利範圍第13項所述的背光模組,其中,所述每一 子導光板組之子導光板的個數為四。 如申請專利範圍第16項所述的背光模組,其中,所述子導 光板的出光面包括凹面,其與所述子導光板的底面一側的 光源相對,且所述凹面包括光線入射角度大於導光板全反 射臨界角的第一部與光線入射角度小於導光板全反射臨界 角的第二部,該第二部設置有反射結構。 如申請專利範圍第17項所述的背光模組,其中,所述凹面 包括一底圓盤,所述底圓盤半徑為R,其滿足以下關係式 :R = H 氺 tan Θ 其中,Η為導光板厚度 Θ 係導光板 的全反射角。 19 如申請專利範圍第18項所述的背光模組,其中,所述凹面 099101017 表單編號Α0101 第24頁/共37頁 0992002042-0 201124776 為圓錐面,所述第一部與第二部的連接處形成一環形全反 射臨界帶,所述環形全反射臨界帶的半徑為Rf,其滿足以 下關係式:Rf= (h-H) * ( / sin oc cos t/ *cos (a + ,其中,h為圓錐形凹面的深度,α係 圓錐形凹面的錐角。 20 .如申請專利範圍第13項所述的背光模組,其中,所述導光201124776 VII. Patent application scope: 1. A backlight module, comprising: a light guide plate comprising at least two modules; and a light source, which is divided into at least two groups respectively corresponding to at least two modules of the light guide plate, each group of light sources respectively The light emitted by each group of light sources is formed by planar light emission through a module corresponding to the group of light sources, and no light is mixed between the at least two modules. 2. The backlight module of claim 1, wherein the light source is a light emitting diode. The backlight module of claim 1, wherein the light guide plate further comprises a bottom surface, a light emitting surface opposite to the bottom surface, and a side surface connecting the bottom surface and the light emitting surface, At least two modules of the light guide plate are formed by spacing the light guide plate into at least two regions by the reflector. The backlight module of claim 3, wherein each of the light sources is disposed on a bottom surface side of the light guide plate corresponding to each of the light guide plates. 5. The backlight module of claim 4, wherein the light-emitting surface side of the light guide plate is provided with a concave surface relative to the light source in each of the regions, the concave surface homogenizing the emitted light. 6. The backlight module of claim 5, wherein the concave surface is a semi-spherical surface, a conical surface or a conical surface, the concave surface comprising a bottom disc and a vertex having a perpendicular to the The bottom disc and runs through the centerline of the apex. 7. The backlight module of claim 6, wherein the concave 099101017 form number A0101 page 22/37 pages 0992002042-0 201124776 surface includes a light incident angle greater than a critical angle of the total reflection of the light guide plate A second portion having a light incident angle smaller than a critical angle of total reflection of the light guide plate, the second portion being provided with a reflective structure. 8. The backlight module of claim 6, wherein the concave bottom disk has a radius R, which satisfies the following relationship: R = H*t; an Λ wherein Η is the thickness of the light guide plate, 0/ is the total reflection angle of the light guide plate. 9. The backlight module of claim 8, wherein when the concave surface is a conical surface, the junction of the first portion and the second portion forms a circular total reflection critical band, the annular full The radius of the reflection critical band is Rf, which satisfies the following relationship: Rf = (hH) * ( · / sin a COS^ ) 氺 cos ( α + Λ ), θ° where h is the depth of the conical concave surface, α: The cone angle of the conical concave surface. The backlight module of claim 7, wherein the bottom surface of the light guide plate is provided with a light source accommodating portion corresponding to each concave surface, and the light source accommodating portion is formed by burying the bottom surface of the light guide plate a groove formed by a rotating body formed by rotating about the concave center line. 11. The backlight module of claim 3, wherein each of the regions is a collection of four sub-square regions, each of the sub-square regions having a center on the bottom surface. The backlight module of claim 11, wherein the bottom surface of the light guide plate is provided with a scattering mesh point, the scattering mesh point surrounds the sub-square area 099101017 Form No. A0101 Page 23 / Total 37 Page 0992002042 -0 201124776 The central axis of the domain is distributed in a circular shape, and the distribution of the scattering dots adjacent to the edge of the sub-square region matches the shape of the sub-square region. 13 . 15 . 15 . 17 . 18 . The backlight module of claim 1 , wherein at least two modules of the light guide plate are at least two sub-light guide plates, each of the sub-light guide plates includes At least one sub-light guide plate, each of the sub-light guide plates includes a bottom surface, a light-emitting surface opposite to the bottom surface, and a side surface connecting the bottom surface and the light-emitting surface, the at least two sub-light guide plate groups are spliced side by side, A reflector is disposed on at least one of the sides of each of the opposite joints. The backlight module of claim 13, wherein each of the light sources corresponds to each of the sub-light guide plates, and at least one of the light sources of each of the sets of light sources is correspondingly disposed at a bottom of the sub-light guide plate. Side __. The backlight module of claim 13, wherein the number of the sub-light guide plates of each of the sub-light guide plates is one. The backlight module of claim 13, wherein the number of the sub-light guide plates of each of the sub-light guide plates is four. The backlight module of claim 16, wherein the light-emitting surface of the sub-light guide plate comprises a concave surface opposite to a light source on a bottom surface side of the sub-light guide plate, and the concave surface includes a light incident angle a first portion greater than a critical angle of total reflection of the light guide plate and a second portion having a light incident angle smaller than a critical angle of total reflection of the light guide plate, the second portion being provided with a reflective structure. The backlight module of claim 17, wherein the concave surface comprises a bottom disc, and the bottom disc has a radius R, which satisfies the following relationship: R = H 氺 tan Θ where Η The thickness of the light guide plate is the total reflection angle of the light guide plate. The backlight module of claim 18, wherein the concave surface 099101017 form number Α 0101 page 24 / total 37 page 0992002042-0 201124776 is a conical surface, the connection of the first part and the second part Forming a circular total reflection critical band having a radius Rf satisfying the following relationship: Rf=(hH) * ( / sin oc cos t/ *cos (a + , where h is The depth of the conical concave surface, the conical angle of the α-shaped conical concave surface. The backlight module according to claim 13, wherein the light guide 板邊緣的子導光板的部分側面成為導光板的側面時均設置 有反射物。 21 .如申請專利範圍第13項所述的背光模組,其中,所述子導 光板的底面設置有複數散射網點,所述複數散射網點圍繞 該子導光板中心軸呈多個環形分佈,且鄰近子導光板邊緣 的散射網點的分佈與子導光板的形狀相匹配。 22 .如申請專利範圍第3項或第13項所述的背光模組,其中, 所述反射物為反射膜、通過腐蝕形成的複數微結構或反射 填充物。 23 . —種液晶顯示器,其包括:液晶面板及背光模組,所述背 光模組為該液晶面板提供平面光,使所述液晶面板顯示圖 像,其中,所述背光模組係權利要求1至22項任意一項所 述的背光模組。 0992002042-0 099101017 表單編號A0101 第25頁/共37頁A part of the side surface of the sub-light guide plate at the edge of the board is provided with a reflector when it is a side surface of the light guide plate. The backlight module of claim 13, wherein the bottom surface of the sub-light guide plate is provided with a plurality of scattering mesh points, and the plurality of scattering mesh points are distributed in a plurality of rings around the central axis of the sub-light guide plate, and The distribution of the scattering dots adjacent to the edge of the sub-light guide plate matches the shape of the sub-light guide plate. The backlight module of claim 3, wherein the reflector is a reflective film, a plurality of microstructures formed by etching, or a reflective filler. A liquid crystal display comprising: a liquid crystal panel and a backlight module, wherein the backlight module provides planar light to the liquid crystal panel, wherein the liquid crystal panel displays an image, wherein the backlight module is claimed in claim 1 The backlight module of any of the 22 items. 0992002042-0 099101017 Form No. A0101 Page 25 of 37
TW99101017A 2010-01-15 2010-01-15 Backlight module and liquid crystal display TWI412839B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99101017A TWI412839B (en) 2010-01-15 2010-01-15 Backlight module and liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101017A TWI412839B (en) 2010-01-15 2010-01-15 Backlight module and liquid crystal display

Publications (2)

Publication Number Publication Date
TW201124776A true TW201124776A (en) 2011-07-16
TWI412839B TWI412839B (en) 2013-10-21

Family

ID=45047210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101017A TWI412839B (en) 2010-01-15 2010-01-15 Backlight module and liquid crystal display

Country Status (1)

Country Link
TW (1) TWI412839B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568658B2 (en) 2013-12-11 2017-02-14 Hon Hai Precision Industry Co., Ltd. Backlight module and method for manufacturing the same
TWI588401B (en) * 2015-08-26 2017-06-21 Direct type of lighting
CN112162433A (en) * 2020-10-16 2021-01-01 业成科技(成都)有限公司 Backlight module and layout method of light emitting diodes thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI315434B (en) * 2005-12-29 2009-10-01 Young Lighting Technology Corp Light emitting module
KR101232614B1 (en) * 2006-01-18 2013-02-13 삼성디스플레이 주식회사 Diffusing plate and backlight assembly having a plurality of domains
TW200846591A (en) * 2007-05-16 2008-12-01 Ya Hsin Ind Co Ltd Planar light-source generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568658B2 (en) 2013-12-11 2017-02-14 Hon Hai Precision Industry Co., Ltd. Backlight module and method for manufacturing the same
TWI588401B (en) * 2015-08-26 2017-06-21 Direct type of lighting
CN112162433A (en) * 2020-10-16 2021-01-01 业成科技(成都)有限公司 Backlight module and layout method of light emitting diodes thereof

Also Published As

Publication number Publication date
TWI412839B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
CN102052600B (en) Backlight module and liquid crystal display
KR101396658B1 (en) Light Cube and Flat Light Unit and Liquid Crystal Display Device including the same
CN107505769B (en) Backlight structure and display device
US7597467B2 (en) Lighting unit and liquid crystal display device using the lighting unit
JP4156348B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME FOR BACKLIGHT
KR101113236B1 (en) Backlight unit for dynamic image and display device using same
CN100460949C (en) Surface light source device, lighting unit and light beam control member
US8246235B2 (en) Illumination system for luminaires and display device
US20090147513A1 (en) Backlighting led power devices
CN106842701B (en) Backlight module and liquid crystal display
CN100421000C (en) Backlight unit and liquid crystal display using the backlight unit
US7543965B2 (en) Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
JP2010153257A (en) Backlight unit and liquid crystal display equipped with the same
WO2010126007A1 (en) Planar lighting device and liquid crystal display device with same
CN101510027A (en) Liquid crystal display apparatus
JP2008177158A (en) Led backlight with bare chip led
CN102937268A (en) Light guide plate, backlight module and display device
CN114114752B (en) Backlight module and display device
JP2011517040A (en) LIGHTING SYSTEM, BACKLIGHT SYSTEM, AND DISPLAY DEVICE
JP2023552154A (en) Backlight module and display screen
US11294235B2 (en) Optical film for mini LED or micro LED backlight unit
JP2006344409A (en) Light fixture, and display device provided with the same
EP2450742B1 (en) Backlight source and thinning method for the same and liquid crystal device with the same
CN100533788C (en) Light emitting device, backlight unit using same as light source, and field sequential LCD device using same
TWI410711B (en) Back light module and liquid crystal display having the same