TW201123229A - High-k material - Google Patents
High-k material Download PDFInfo
- Publication number
- TW201123229A TW201123229A TW98144429A TW98144429A TW201123229A TW 201123229 A TW201123229 A TW 201123229A TW 98144429 A TW98144429 A TW 98144429A TW 98144429 A TW98144429 A TW 98144429A TW 201123229 A TW201123229 A TW 201123229A
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon black
- high dielectric
- dielectric material
- combination
- resin
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 28
- 239000000843 powder Substances 0.000 claims abstract description 78
- 239000002131 composite material Substances 0.000 claims abstract description 43
- 229920005989 resin Polymers 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims abstract description 23
- 239000003989 dielectric material Substances 0.000 claims abstract description 22
- 239000000919 ceramic Substances 0.000 claims abstract description 12
- 239000006229 carbon black Substances 0.000 claims description 39
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 19
- 239000003822 epoxy resin Substances 0.000 claims description 15
- 229920000647 polyepoxide Polymers 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 13
- 239000002270 dispersing agent Substances 0.000 claims description 9
- 239000011787 zinc oxide Substances 0.000 claims description 9
- 239000004848 polyfunctional curative Substances 0.000 claims description 8
- 125000003277 amino group Chemical group 0.000 claims description 6
- 239000002952 polymeric resin Substances 0.000 claims description 6
- 229920003002 synthetic resin Polymers 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 claims description 2
- 229920002396 Polyurea Polymers 0.000 claims description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 2
- 239000004844 aliphatic epoxy resin Substances 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 239000004305 biphenyl Substances 0.000 claims description 2
- 235000010290 biphenyl Nutrition 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 239000004843 novolac epoxy resin Substances 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims 2
- 239000004575 stone Substances 0.000 claims 2
- 229910002367 SrTiO Inorganic materials 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 claims 1
- 238000005266 casting Methods 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 238000004945 emulsification Methods 0.000 claims 1
- 229920000768 polyamine Polymers 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 15
- 239000002243 precursor Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000007822 coupling agent Substances 0.000 description 7
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 150000001721 carbon Chemical class 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000011858 nanopowder Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- -1 metal oxide titanium oxide Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- 229910005544 NiAg Inorganic materials 0.000 description 1
- 229920006978 SSBR Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- KZCYIWWNWWRLBQ-UHFFFAOYSA-P diazanium 3-methanidylbutan-2-one titanium(2+) dihydrate Chemical compound [NH4+].[NH4+].O.O.[Ti++].CC([CH2-])C([CH2-])=O.CC([CH2-])C([CH2-])=O KZCYIWWNWWRLBQ-UHFFFAOYSA-P 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- JDVIRCVIXCMTPU-UHFFFAOYSA-N ethanamine;trifluoroborane Chemical compound CCN.FB(F)F JDVIRCVIXCMTPU-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- LIXVMPBOGDCSRM-UHFFFAOYSA-N nonylbenzene Chemical compound CCCCCCCCCC1=CC=CC=C1 LIXVMPBOGDCSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical group [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920001896 polybutyrate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000003229 sclerosing agent Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical group CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 description 1
- PADPILQDYPIHQQ-UHFFFAOYSA-L zinc;diperchlorate;hexahydrate Chemical compound O.O.O.O.O.O.[Zn+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O PADPILQDYPIHQQ-UHFFFAOYSA-L 0.000 description 1
- ZHNNHZFCTWXJND-UHFFFAOYSA-L zinc;sulfate;dihydrate Chemical compound O.O.[Zn+2].[O-]S([O-])(=O)=O ZHNNHZFCTWXJND-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
201123229 六、發明說明: 【發明所屬之技術領域】 本發明係關於高介電材料組成,更特別關於組成中的 導電·絕緣複合粉體及/或導電-半導複合粉體。 【先前技術】 為了要滿足電子產品高功能化、高速高頻的需求,電 子構裝基板上的主動元件及被動元件必需增加。這使得電 路板面積增加且提高成本。為了達到輕薄短小的需求,電 路件密度勢必增加,造成電磁干擾與雜訊增加且降低 :罪度。為了解決此一問題,需要改良被動元件,例如電 容的整合(integration)。為了達到上述目的,兼具高分子之 機械性質與喊高介電性質的高分子—喊複合材料是此 電谷材料的最佳選擇,它也是目前國内外埋入式電容介 =材料發展的主要趨勢。這幾年埋人式電容技術大量被討 :’雖‘然埋人式被動元件技術的開發已逐步進人產品實際 ’實際上仍有很大的進步空間,也成為近年來相 =薇商積極爭取之技術領域,而專利的發表也出現了 白豕肀鳴的景象。 材料= 容介電材料的應用,如何提高複合 純的陶型材料開發的瓶頸與重點。單 :::由,咖規則,使得電偶極偏=的陶究 早由添加高含量高介電常數的*效應會被 材料的介電常數值是相當有限的,而且六來提供複合 添加篁過高將使得 201123229 械性質降低,與銅箱間的接著力將大幅下降,因 供了以:數3複合㈣中添加導電性奈米粉體提 , u ^另途徑。但導電粉體的增加亦將同 低材料統的介電常數而導致漏電流的增加,這會降 求。規性及可靠度’並限制其在電子產業的應用需 ㈣i/又相關性專利大多為揭露電容製作方法、粉體種 (V 1方樹脂等,並無針對兼具低漏電流(Leakage201123229 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a high dielectric material composition, and more particularly to a conductive/insulating composite powder and/or a conductive-semiconducting composite powder in a composition. [Prior Art] In order to meet the demand for high functionality and high speed and high frequency of electronic products, active components and passive components on the electronic component substrate must be increased. This increases the board area and increases the cost. In order to meet the demand for light, thin and short, the density of circuit components is bound to increase, causing electromagnetic interference and noise to increase and decrease: sin. In order to solve this problem, it is necessary to improve the passive components, such as the integration of capacitance. In order to achieve the above objectives, a polymer-shock composite material that combines the mechanical properties of a polymer with the high dielectric properties is the best choice for this electric valley material. It is also the main development of buried capacitors at home and abroad. trend. In recent years, a lot of buried capacitor technology has been discussed: 'Although the development of the human passive component technology has gradually entered the actual product', there is still a lot of room for improvement, and it has become active in recent years. In the field of technology, and the publication of patents, there is also a scene of white humming. Material = Application of dielectric materials, how to improve the bottleneck and focus of composite pure ceramic materials development. Single:::,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Too high will make the 201123229 mechanical properties lower, and the adhesion between the copper box and the copper box will be greatly reduced, because the supply of: 3 composite (four) added conductive nano powder, u ^ another way. However, the increase in the conductive powder will also result in an increase in leakage current due to the dielectric constant of the low material system, which will be reduced. Regulation and reliability' and limit its application in the electronics industry. (IV) i/related patents are mostly exposed capacitor manufacturing methods, powder species (V 1 resin, etc., not for low leakage current (Leakage
電常數、及高電容密度等特性的結構及材料 本發明之重點在揭露具高介電常數(dk>⑽)之有機/ …、機混成㈣’其巾添加導電·铸性及/或導電_絕緣複合 粉體取代導電性粉體(碳黑)。此外本發明強調在高介電常 數下對,緣電阻以及漏電流可進行控制,村別於其他 公司或單位的專利。在此提出幾篇與本案相關之專利或論 文,並比較其與本案之差異,以彰顯本發明之特色。 文獻中常用於碳材表面改質Ti〇2的手法為溶膠凝膠法 (、sol-gel)以及水熱法,由於水熱法需要在高溫高壓的條件下 進行反應因此以sol-gel的方法最為常用,Sigmund等人 (Adv. Mater. 2009, 21,1-7)今年於 advanced material 期刊上 發表一篇利用溶膠凝膠法在奈米碳管(carb〇n nanotube)的 表面包覆Ti02層將其應用在光觸媒催化的領域,Structure and material of characteristics such as electric constant and high capacitance density The focus of the present invention is to disclose an organic material having a high dielectric constant (dk > (10)), and a machine mixture (four) 'the addition of conductive, cast and/or conductive _ The insulating composite powder replaces the conductive powder (carbon black). In addition, the present invention emphasizes that the edge resistance and the leakage current can be controlled under a high dielectric constant, and the patents of other companies or units are different. Several patents or papers related to the case are presented here, and the differences from the case are compared to highlight the features of the present invention. The method commonly used in the literature to modify the surface of carbon material Ti〇2 is sol-gel method (sol-gel) and hydrothermal method. Because the hydrothermal method needs to carry out the reaction under high temperature and high pressure, the method of sol-gel is adopted. Most commonly used, Sigmund et al. (Adv. Mater. 2009, 21, 1-7) published a TiO 2 layer on the surface of a carb〇n nanotube using a sol-gel method. Apply it to the field of photocatalyst catalysis,
Dong_Hwang Chen 等人(Nanotechnology,2009, 20, 105704) 也利用相同的手法在Ag、NiAg奈米粒子的表面包覆Ti〇2 增加該材料在可見光的光催化效率。另外Rutlsdge等人 (Adv. Mater. 2009, 21,1252-1256)則是利用 LbL 的方法在 201123229 奈米纖維表面吸附上Ti〇2的奈米粉體直接省略了後段水解 的步驟’並將這類型的材料應用在防護衣(pr〇tective clothing system)、感測器(sensor)等領域。 在美國專利US5830930中,Cabot公司揭露一種應用 於橡膠增強材料之雙相奈米填料(CSDPF: carb〇n/smC()n dual phase fillers),利用高溫下含矽化合物之蒸汽改質碳 黑’其可為四乙氧基矽烷(TEOS: tetra-ethy 1-ortho-silicate) 、 四 甲氧美 石夕院 (TMOS:tetra-methyl-ortho-Silicate),其填充的 SS-BR(溶聚 丁苯橡膠)三元奈米復合材料中,由於填料形成的網絡結構 少’填料與填料間作用力小,填料與基質SSBR間作用力 大。其碳黑經改質後未經清洗’直接與橡膠混合,Si含量 較高且僅提及在橡膠產業之應用。 在美國專利 US7137423 及 US7351763 中,TheDong_Hwang Chen et al. (Nanotechnology, 2009, 20, 105704) also used the same method to coat Ti〇2 on the surface of Ag and NiAg nanoparticles to increase the photocatalytic efficiency of the material in visible light. In addition, Rutlsdge et al. (Adv. Mater. 2009, 21, 1252-1256) used the LbL method to adsorb the Ti〇2 nanopowder on the surface of the 201123229 nanofiber directly omitting the post-hydrolysis step' and this type The material is applied in the fields of pr〇tective clothing system, sensor and the like. In U.S. Patent No. 5,813,930, Cabot discloses a dual phase nanofiller (CSDPF: carb〇n/smC() n dual phase fillers) for use in rubber reinforcements, utilizing steam-modified carbon black containing cerium compounds at high temperatures. It can be TEOS: tetra-ethy 1-ortho-silicate, TMOS: tetra-methyl-ortho-Silicate, and its filled SS-BR (soluble polybutyrate) In the benzene rubber) ternary nanocomposite, the network structure formed by the filler is small, the interaction between the filler and the filler is small, and the interaction between the filler and the matrix SSBR is large. Its carbon black has not been cleaned after being modified and is directly mixed with rubber. The Si content is high and only mentioned in the rubber industry. In US Patent US7137423 and US7351763, The
Goodyear Tire& Rubber公司揭露應用於橡膠產業之碳黑, 其填充材料組成為⑴35〜95phr或50〜95phr之矽醇(Silanol) 官能化之碳黑表面,石夕膠表面有-OH (Si-OH) ; (2) 5〜65phr 或5〜50phr合成之非定形或沉澱型之以〇2與未改質之碳黑 混合,且利用限定鏈長結構之特殊偶合劑再與改質碳黑反 應以提高與樹脂間之相容性。上述方法以混合石夕膠方式改 善碳黑填充之特性。 在曰本專利JP1101375中,TOKAI RUBBER公司揭 露應用於橡膠產業之改質導體材料,如碳粉體、碳纖維、 乳化辞導電粉體等’其比電阻(Specific resistance)小於 106Ω·(;ιη,其係利用比電阻大於之偶合劑 201123229 (coupling agent)如碎院為主的偶合劑(sjiane_based C0Upiing agent)、鈦為主之偶合劑(titanium_based C0Upiing agent)、或 紹為主之偶合劑(aluminate-base coupling agent)等,以提高 導體材料之比電阻。因此經過矽烷改質的碳黑粉體大都應 用在橡膠產業當中,與本發明之應用領域有明顯的差異。 【發明内容】 本發明提供一種高介電材料,包括(a) 〇.6至1重量份 _ 之複合粉體,係導電-絕緣複合粉體、導電_半導複合粉體、 或上述之組合;(b) 58至79重量份之高介電陶瓷粉體;以 及(c) 20至41重量份之有機樹脂。 【實施方式】 由於導電性奈米粉體於施加電場時所產生的界面偏極 化作用(interfacial polarization mechanism),使可移動的電 • 荷受界面阻擾或被材料拘留住,並利用奈米微粒的高表面 ,以強化此作用’提供了增進高分子—陶瓷複合材料介電 常數的途徑。但上述做法會同時增加複材系統的介電損 失’導致漏電流的增加而侷限這類材料的應用性。本發明 首先提供導電粉體如過渡金屬、過渡金屬合金、碳黑、碳 j維、或上述之組合,其中碳黑包括高結構碳黑、低結構 碳黑、表面具有_C00H或_〇H官能基之碳黑、或上述之組 合。接著在導電粉體表面修飾一層不連續的半導體材料如 金屬氧化物氧化鈦、氧化鋅、鋁氧化鋅、或上述之組合, 201123229 =成導電〜半導複合粉體,或在導電粉體表面修 :’、:、'、邑緣材料如氧化矽以形成導電'絕緣複合粉體。二田 、不、續即修飾之半導體材料或絕緣材料並 ^ 電粉體’而會露出部份導電粉體表面。在 電粉體其被料的表面與未被修飾的表面 0 7之間。—* J )丨於0.4至 被士八^導電粉體被修飾的表面比例高於切範圍甚至 被=王U錦,則會喪失原本導電粉體的功效,使得Dk值 不如預期。但若導電粉體被修飾的表面比:低於上 迷粑圍,則粉體的特性趨近導電粉體,無法達到降低漏 流的功效。 -' 在一實施例中,可採用高導電性的碳黑粉體,在其表 面修飾半導體材料Ti〇2所使用的方法為layer-by-layer (簡Goodyear Tire & Rubber discloses carbon black for use in the rubber industry. The filling material consists of (1) 35 to 95 phr or 50 to 95 phr of Silanol functionalized carbon black surface. The surface of the Shiki gum has -OH (Si-OH). (2) 5~65phr or 5~50phr of synthetic amorphous or precipitated type 〇2 mixed with unmodified carbon black and reacted with modified carbon black by a special coupling agent of defined chain length structure Improve compatibility with resins. The above method improves the characteristics of the carbon black filling by mixing the Shiki gum. In the patent JP1101375, TOKAI RUBBER discloses modified conductor materials used in the rubber industry, such as carbon powder, carbon fiber, emulsified conductive powder, etc., whose specific resistance is less than 106 Ω·(; A coupling agent having a specific resistance greater than the coupling agent 201123229 (coupling agent) such as a sjiane_based C0Upiing agent, a titanium-based coupling agent (titanium_based C0Upiing agent), or a coupling agent (aluminate-base) A coupling agent or the like is used to increase the specific resistance of the conductor material. Therefore, the carbon black powder modified by decane is mostly used in the rubber industry, and is significantly different from the application field of the present invention. [Invention] The present invention provides a high The dielectric material comprises (a) 6.6 to 1 part by weight of the composite powder, which is a conductive-insulating composite powder, a conductive semi-conductive composite powder, or a combination thereof; (b) 58 to 79 parts by weight a high dielectric ceramic powder; and (c) 20 to 41 parts by weight of an organic resin. [Embodiment] Due to the interface polarization of the conductive nanopowder when an electric field is applied Interfacial polarization mechanism, which allows the movable electric charge to be blocked by the interface or detained by the material, and utilizes the high surface of the nanoparticle to enhance this effect' provides a dielectric constant for enhancing the polymer-ceramic composite. However, the above method will increase the dielectric loss of the composite material system at the same time, resulting in an increase in leakage current and limiting the applicability of such materials. The present invention first provides conductive powders such as transition metals, transition metal alloys, carbon black, carbon. Dimension, or a combination thereof, wherein the carbon black comprises a high structure carbon black, a low structure carbon black, a carbon black having a _C00H or _〇H functional group on the surface, or a combination thereof, and then a layer of discontinuity is modified on the surface of the conductive powder. Semiconductor materials such as metal oxide titanium oxide, zinc oxide, aluminum zinc oxide, or a combination thereof, 201123229 = conductive ~ semi-conductive composite powder, or repaired on the surface of conductive powder: ',:, ', edge material Such as yttrium oxide to form a conductive 'insulating composite powder. Ertian, no, continue to modify the semiconductor material or insulating material and ^ electric powder' will expose part of the conductive The surface of the body is between the surface of the electric powder and the surface of the unmodified surface 0. —* J ) 0.4 0.4 to the surface of the surface of the conductive powder modified by the electric powder is higher than the cut range or even = Wang Wujin will lose the effect of the original conductive powder, making the Dk value not as expected. However, if the surface ratio of the conductive powder is modified: lower than the upper bound, the characteristics of the powder approach the conductive powder, and the effect of reducing leakage can not be achieved. - In one embodiment, a highly conductive carbon black powder may be used, and the method used to modify the semiconductor material Ti〇2 on its surface is a layer-by-layer.
稱L b L ),利用靜電吸引力的方式將相反電性的前驅物吸附 在導電碳黑粉體的表面,因為前驅物本身具有相反的電 性’因此可經由自組裝(self-assembly)的方式依序吸附在碳 黑的表面。實驗中所使用的Ti〇2前驅物為TaLH (Titanium(IV)bis(ammoniumlactato)dihydroxide),與一般形 成Ti〇2的前驅物如Ti(〇H)4或Ti(0R)4相較具有下列優 點.TALH在室溫下為相當穩定的水溶性化合物、水解的 過程容易控制。總括來說可以降低水解過程的溫度,且避 免因外在環境的影響(PH値、溶劑種類、酸鹼性)降低再現 性,並提高可靠度。隨著吸附層數的改變,可調控外圍包 覆層的厚度與前驅物的含量,接著再經由高溫锻燒的步驟 將前驅物中的有機部份燒掉。煅燒的過程中PDADMAC (polydiallyldimethylammonium chloride)會燒掉,只留下前 201123229 驅物TALH中的鈦離子轉變成氧化鈦結構以修飾粉體的部 份表面,形成導電-半導複合粉體。該複合粉體的結構以及 表面形貌皆經過XRD、TEM的鑑定,証明不連續的氧化欽 層修飾部份碳黑表面。 在一實施例中’可採用南導電性的碳黑粉體,並在其 表面修飾絕緣材料Si〇2。取前驅物如四乙氧美石夕产L b L ), the opposite electrical precursor is adsorbed on the surface of the conductive carbon black powder by electrostatic attraction, because the precursor itself has opposite electrical properties, so it can be self-assembled. The method is sequentially adsorbed on the surface of the carbon black. The Ti〇2 precursor used in the experiment is TaLH (Titanium(IV)bis(ammoniumlactato)dihydroxide), and has the following characteristics compared with the precursors generally forming Ti〇2 such as Ti(〇H)4 or Ti(0R)4. Advantages. TALH is a fairly stable water-soluble compound at room temperature, and the hydrolysis process is easy to control. In summary, the temperature of the hydrolysis process can be lowered, and the influence of the external environment (PH値, solvent type, acid-base) can be avoided, and the reliability can be improved. As the number of adsorbed layers changes, the thickness of the peripheral cladding layer and the content of the precursor can be adjusted, and then the organic portion of the precursor is burned off by the high temperature calcination step. During the calcination process, PDADMAC (polydiallyldimethylammonium chloride) will be burned off, leaving only the titanium ions in the former 201123229 TALH to be converted into a titanium oxide structure to modify the surface of the powder to form a conductive-semiconducting composite powder. The structure and surface morphology of the composite powder were identified by XRD and TEM, which proved that the discontinuous oxidation layer modified part of the carbon black surface. In an embodiment, a south conductive carbon black powder may be used, and the insulating material Si〇2 is modified on the surface thereof. Precursor such as tetraethoxymethas
Fisher Chemical)進 (TEOS : tetra-ethyl-ortho-silicate,講自Fisher Chemical) (TEOS: tetra-ethyl-ortho-silicate, from
行前處理並清洗烘乾’催化劑可為鹽酸、硫酸、確酸、醋 酸、氨水等,溶劑為曱醇、乙醇、丙醇等短醇類,處理後 以120°C〜220°C烘乾後,得到不連續氧化矽層修飾的導電 碳黑複合粉體。 在-實施例中,導電粉體如碳黑先經氧化鋅前驅物預 處理,做法如下述。導電碳黑先以氧化辞前驅物如醋酸辞 (zinc acetate dihydmte,Zn(CH3COO)2 · 2h2〇)、過氯酸鋅 (zinc perchlorate hexahydrate ’(Zn(C1〇4)2 . 6H2〇)進行前處 理並清洗烘乾,催化劑可為氫氧化鈉、氫氧化卸、氨水等, •溶劑為曱醇、乙醇、丙醇等短醇類,處理後以12代〜22〇 °C烘乾後’得到科續氧化鋅層修飾的導電碳黑複合粉體。 取上述部份表面修飾之導電粉體取代原先添加的高導 電性碳黑粉體,搭配高介電陶竟材料混捧入有機樹脂中, 可有效改善高介電有機/無機混成材料在高頻下高漏電流 與低絕緣電阻的問題。其組成配方包括: ⑻導電·絕緣複合粉體或是導電·半導性複合粉體,或 上述之組合; (b)高介電陶瓷粉體;以及 201123229 (c) 20至41重量份之有機樹脂。 以20至41重量份之有機樹脂為基準,複合粉體之重 量比例介於0.6至1重量份,而高介電陶瓷粉體之重量比 例介於58至79重量份。若複合粉體之重量比例過高,則 介電常數和漏電流會伴隨著增加。若複合粉體之重量比例 過低,則介電常數的增加會不足。若高介電陶瓷粉體之重 量比例過高,則會影響後續製程的加工性。 上述之高介電陶瓷粉體可為BaTi03、Ba(Sr)Ti03、 SrTi03、NPO、含有金屬離子掺雜物之上述組成、或上述 之組合,其粒徑介於30nm至2μιη之間。上述有機樹脂可 為酚樹脂、環氧樹脂、或上述之組合,其中環氧樹脂包含 雙酚Α系環氧樹脂、環狀脂肪族環氧樹脂、萘基環氧樹脂、 聯苯基環氧樹脂、酚醛環氧樹脂、或上述之組合。 在本發明一實施例中,上述高介電材料可進一步包含 3.5至5.0重量份之硬化劑、1.8至2.5重量份之高分子分散 劑、1.0至1.5重量份之高分子柔軟劑、或上述之組合。硬 化劑可為雙胺、雙酐、酚樹脂、或上述之組合,其作用在 於提高環氧樹脂之間的交聯密度。若硬化劑的添加量超過 上述範圍,則樹脂的熱安定性會變差。高分子分散劑含有 胺基/氨基,可為聚醯胺、聚醯胺-醯亞胺、聚脲、聚氨酯、 或上述之組合,其作用在於與粉體具有良好的附著性且又 與有機樹脂之間具有優良的相容性或些許反應性,可大幅 提高材料系統的对熱性與穩定性。若高分子分散劑的添加 量超過上述範圍,則殘留過多的分散劑亦會影響材料系統 的熱安定性。高分子柔軟劑可為含羥基之高分子樹脂、含 201123229 叛基之南分子樹脂、含丙稀基之1¾分子樹脂、含胺基/氨基 之高分子樹脂、含脂肪鏈之環氧樹脂、或上述之組合,其 作用在於維持材料系統的柔軟性達到後段製程加工性的需 求。 本發明將探討不同修飾比例與添加不同含量的導電-半導性複合粉體對複合材料介電性質與漏電流性質之影 響,所得到之高介電混成物可藉由傳統玻纖布含浸方式、 精密塗佈技術或是網板印刷技術而製得高介電材料,其介 電常數大於100,在操作電壓下其絕緣電阻大於1ΜΩ,漏 電流小於50毫安培,極適於作為電容性電路板之介電材 料。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明 如下: 【實施例】 實施例1-2的粉體 將10g之導電碳黑(購自Degussa,粒徑約為30nm)置 入100毫升(5wt%)之TALH水溶液,攪拌24小時後過 濾清洗數次並烘乾,接著將此表面含有TALH吸附之導電 碳黑置入400°C之烘箱高溫煅燒2小時,煅燒過程中會除 去前驅物TALH中的有機官能基,並形成不連續的TiOx 結構修飾在導電碳黑表面,即本發明之導電-半導複合粉 體。經過XRD、TEM的鑑定,上述不連續的氧化鈦層僅修 201123229 飾部份碳黑表面而非完全包覆碳黑。 實施例3-5的粉體 將10g之導電碳黑(購自Degussa,粒徑約為30nm)置 入100毫升(5wt°/〇)之TALH水溶液,攪拌24小時後過濾清 洗數次並烘乾,接著將此表面含有TALH吸附之導電碳黑 重新分散在200 ml預先配製的PDADMAC( 1 mgml'O.Ol M NaCl)水溶液中,攪拌24小時之後,過濾清洗數次並 烘乾’接著再將此表面含有TALH/PDADMAC吸附之導電 碳黑重新分散在100毫升(5wt%)之TALH水溶液中,重 覆交替的進行這些實驗的流程步驟可以得到所需要層數 Ti〇2包覆的複合粉體。 實施例6-7的粉體 將10g之導電碳黑置入5〇〇毫升之〇.7wt% TEOS、 0.7wt%去離子水、及〇.〇3wt%催化劑(NH4OH)酒精溶液, 60°C下攪拌2小時,後過濾清洗數次並烘乾,接著將此表面 含有SiOx吸附之導電碳黑置入21〇乞之烘箱高溫緞燒2小 時’緞燒過程中會除去前驅物TEOS中的有機官能基,並 形成不連續的SiOx結構修飾在導電碳黑表面,即本發明之 導電-半導複合粉體。經過XRD、ΤΈΜ的鑑定,上述不連 續的二氧化石夕層僅修飾部份碳黑表面而非完全包覆碳黑。 將l〇g之導電碳黑置入500毫升之0 2〇wt%之醋酸鋅 (zinc acetate dihydrate ’ Zn(CH3C00)2.2H20)、0.05wt%之催 化劑(KOH)的曱醇溶液,6〇。〇下攪拌2小時後過濾清洗數 201123229 次並烘乾’接著將此表面含有ZnO吸附之導電碳黑置入21 〇 °C之烘箱高溫煅燒2小時,煅燒過程中會除去前驅物二水 合醋酸鋅中的有機官能基,並形成不連續的ZnO結構修飾 在導電碳黑表面,即本發明之導電-半導複合粉體。經過 XRD、TEM的鑑定,上述不連續的二氧化矽層僅修飾部份 碳黑表面而非完全包覆碳黑。 高介電材料的製備方式: • 在本發明中,首先將環氧樹脂,包括双酚A二缩水甘 油 _(bisphenol-A diglycidyl ether)【828EL、Shell Chem】、 四漠双紛 A 二缩水甘油醚(tetrabromo disphenol-A diglcidyl ether)【EHCLON 153、DIC】、環狀脂肪族環氧樹脂(cyci〇 aliphatic epoxy resin)【EPPN-502H、日本化藥】、多官能Pretreatment before treatment and washing and drying 'catalyst can be hydrochloric acid, sulfuric acid, acid, acetic acid, ammonia, etc., the solvent is short alcohol such as decyl alcohol, ethanol, propanol, etc., after drying at 120 ° C ~ 220 ° C after treatment A conductive carbon black composite powder modified by a discontinuous ruthenium oxide layer is obtained. In the embodiment, the conductive powder such as carbon black is pretreated with a zinc oxide precursor as follows. Conductive carbon black is preceded by an oxidation precursor such as zinc acetate dihydmte (Zn(CH3COO) 2 · 2h2〇) or zinc perchlorate hexahydrate '(Zn(C1〇4)2.6H2〇) Treatment, washing and drying, the catalyst can be sodium hydroxide, hydroxide dehydration, ammonia water, etc. • The solvent is short alcohol such as decyl alcohol, ethanol, propanol, etc., after drying, it is dried after 12 generations ~ 22 ° ° C. The conductive carbon black composite powder modified by the zinc oxide layer is replaced by the above-mentioned partially modified conductive powder to replace the previously added high-conductivity carbon black powder, and is mixed with the high dielectric ceramic material into the organic resin. It can effectively improve the high leakage current and low insulation resistance of high dielectric organic/inorganic hybrid materials at high frequency. The composition of the composition includes: (8) Conductive/insulating composite powder or conductive/semiconductive composite powder, or above a combination of (b) a high dielectric ceramic powder; and 201123229 (c) 20 to 41 parts by weight of an organic resin. The weight ratio of the composite powder is from 0.6 to 1 based on 20 to 41 parts by weight of the organic resin. Weight by weight, and the weight ratio of high dielectric ceramic powder Between 58 and 79 parts by weight. If the weight ratio of the composite powder is too high, the dielectric constant and the leakage current are accompanied by an increase. If the weight ratio of the composite powder is too low, the increase in the dielectric constant may be insufficient. If the weight ratio of the high dielectric ceramic powder is too high, it will affect the processability of the subsequent process. The above high dielectric ceramic powder may be BaTi03, Ba(Sr)TiO3, SrTi03, NPO, containing metal ion dopants. The above composition, or a combination thereof, has a particle diameter of between 30 nm and 2 μm. The organic resin may be a phenol resin, an epoxy resin, or a combination thereof, wherein the epoxy resin comprises a bisphenol fluorene epoxy resin and a ring. An aliphatic epoxy resin, a naphthyl epoxy resin, a biphenyl epoxy resin, a novolac epoxy resin, or a combination thereof. In an embodiment of the invention, the high dielectric material may further comprise 3.5 to 5.0 weight. a sclerosing agent, 1.8 to 2.5 parts by weight of a polymer dispersant, 1.0 to 1.5 parts by weight of a polymer softener, or a combination thereof. The hardener may be a bisamine, a dianhydride, a phenol resin, or a combination thereof. Its role is to improve Crosslinking density between oxygen resins. If the amount of the hardener added exceeds the above range, the thermal stability of the resin may be deteriorated. The polymer dispersant contains an amine group/amino group, which may be a polyamide or a polyamide. An imine, a polyurea, a polyurethane, or a combination thereof, which has a good adhesion to a powder and an excellent compatibility or a slight reactivity with an organic resin, and can greatly improve the heat resistance of a material system. And stability. If the amount of the polymer dispersant added exceeds the above range, excessive dispersant may also affect the thermal stability of the material system. The polymer softener may be a hydroxyl-containing polymer resin, including 201123229 South molecular resin, propylene-containing 13⁄4 molecular resin, amine/amino-containing polymer resin, aliphatic chain-containing epoxy resin, or a combination thereof, which functions to maintain the flexibility of the material system to achieve post-processability Demand. The invention will investigate the influence of different modification ratios and the addition of different content of conductive-semiconducting composite powder on the dielectric properties and leakage current properties of the composite material, and the obtained high dielectric mixture can be impregnated by the traditional fiberglass cloth. High-dielectric material with precision coating technology or screen printing technology, its dielectric constant is greater than 100, its insulation resistance is greater than 1ΜΩ under operating voltage, and leakage current is less than 50mA, which is very suitable as a capacitive circuit. The dielectric material of the board. The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the appended claims. 10 g of conductive carbon black (purchased from Degussa, particle size of about 30 nm) was placed in 100 ml (5 wt%) of TALH aqueous solution, stirred for 24 hours, filtered and washed several times and dried, and then the surface contained TALH-adsorbed conductive carbon. Black is placed in an oven at 400 ° C for high temperature calcination for 2 hours. During calcination, the organic functional groups in the precursor TALH are removed, and a discontinuous TiOx structure is formed on the surface of the conductive carbon black, that is, the conductive-semiconducting composite of the present invention. Powder. After XRD and TEM identification, the above discontinuous titanium oxide layer only repaired the surface of the carbon black instead of completely covering the carbon black. Powder of Example 3-5 10 g of conductive carbon black (purchased from Degussa, particle size of about 30 nm) was placed in a 100 ml (5 wt ° / 〇) TALH aqueous solution, stirred for 24 hours, filtered and washed several times and dried. Then, the conductive carbon black containing TALH adsorption on the surface was redispersed in 200 ml of pre-formed aqueous solution of PDADMAC (1 mgml 'O.Ol M NaCl), stirred for 24 hours, filtered and washed several times and dried. The conductive carbon black adsorbed on the surface containing TALH/PDADMAC was redispersed in 100 ml (5 wt%) of TALH aqueous solution, and the process steps of these experiments were repeated alternately to obtain the desired number of layers of Ti〇2 coated composite powder. . Powder of Example 6-7 10 g of conductive carbon black was placed in 5 mL of 〇. 7 wt% TEOS, 0.7 wt% deionized water, and 〇. 3 wt% catalyst (NH4OH) alcohol solution, 60 ° C Stir for 2 hours, then filter and wash several times and dry, then place the surface containing SiOx-adsorbed conductive carbon black into a 21-inch oven for 2 hours. Satin burning process will remove the organic matter in the precursor TEOS. The functional group and the discontinuous SiOx structure are modified on the surface of the conductive carbon black, that is, the conductive-semiconductive composite powder of the present invention. After XRD and ruthenium identification, the above-mentioned discontinuous SiO2 layer only modifies part of the carbon black surface rather than completely coating the carbon black. 1 g of the conductive carbon black was placed in 500 ml of a solution of 0 wt% zinc acetate (zinc acetate dihydrate ‘Zn(CH3C00) 2.2H20), 0.05 wt% of a catalyst (KOH) in decyl alcohol, 6 Torr. After stirring for 2 hours, the number of filtered cleanings was 201123229 times and dried. Then, the conductive carbon black containing ZnO adsorbed on the surface was placed in an oven at 21 ° C for 2 hours, and the precursor zinc sulfate dihydrate was removed during the calcination. The organic functional group is formed and a discontinuous ZnO structure is formed on the surface of the conductive carbon black, that is, the conductive-semiconductive composite powder of the present invention. After XRD and TEM identification, the discontinuous ceria layer only modified part of the carbon black surface instead of completely coating the carbon black. Preparation of high dielectric materials: • In the present invention, first epoxy resin, including bisphenol-A diglycidyl ether [828EL, Shell Chem], Sishuangshuang A diglycidyl Ether (tetrabromo disphenol-A diglcidyl ether) [EHCLON 153, DIC], cyci〇aliphatic epoxy resin [EPPN-502H, Nippon Chemical], multi-functional
基環氧樹脂(multifunctional epoxy resin)【EHCLON HP 7200H、DIC】,加入適量的DMF,而後加熱至9〇°c〜95 °C使環氧樹脂完全溶解,降溫到室溫,使其成為樹脂溶液。 # 依第1表之比例取適量樹脂溶液加入約佔整體樹脂 1.8〜2.5重量份的高分子分散劑及DMF/曱苯作為混合溶 劑,攪拌均勻之後加入實施例1-7之複合粉體或比較例ι_2 中未修飾的導電粉體,使用均質機高速分散之後升溫到80 t再加入適量的硬化劑二胺基二苯基砜(Diaminodiphenyl sulfone ’簡稱DDS,購自ACROS),以及適量的催化劑三 氟化蝴乙基胺(Boron trifluoride mono-ethylamine,簡稱 BF3-MEA,購自ACROS)。當硬化劑及催化劑完全溶解於 樹脂溶液後,再加入適量的高分子柔軟劑,其約佔實際組 13 201123229 成的l .〇〜〗ς 1 Α •重量份,待其完全溶解而後降至室溫,使其成 >飾或未修飾的碳黑/樹脂複合材料。 /、 將:介電陶瓷粉體(BaTi〇3)加入上述碳黑/樹脂複合材 二以问速攪拌均勻,形成本發明之高介電複合材料混成 溶液(如表一所示)。將所配製不同組成比例的高介電複合 材料此成溶液塗佈於銅箔上,並使用烘箱將溶劑趕掉有效 控制樹知的B-Stage,使其部分硬化(partially cure)形成背 膠銅v# RCC,並分別將此背膠銅箔與銅箔使用熱壓機進行 高溫壓合硬化,形成電容性基板材料,最後分別測試其電 氣特性,歸納於表二。 表一實施例與比較例之高介電材料組成 _ •组成(S) 比較例1 比較例2 實施例1 實施例2 實施例3 實施例4 實施例5 碳黑/樹脂binder 21.66 21.51 21.66 21.51 21.51 21.51 21.51 硬化劑 2.3 2.3 2.3 2.3 2.3 2.3 2.3 催化劑 0.04 0.04 0.04 0.04 0.04 0.04 0.04 分散劑 3.0 3.0 3.0 3.0 3.0 3.0 3.0 柔軟劑 1.52 1.52 1.52 Γ 1.52 1.52 1.52 1.52 _ -一 未修飾之導電粉體 0.86 1.20 無 無 無 無 「無 LbL修飾層數 0 0 1* 1* 3* 3* 3* 導電-半導性複合粉體 無 無 0.86 1.20 1.20 1.20 1.20 陶瓷粉體 100 99.5 100 99.5 99.5 99.5 99.5 組成(g) 實施例6 實施例7 碳黑/樹脂binder 20.06 20.51 硬化劑 2.1 2.1 催化劑 0.05 0.06 分散劑 1.11 1.11 柔軟劑 0.69 0.69 純碳黑 無 無 LbL修飾層數 Si02 ZnO 導電-半導性複合粉體 0.533 0.528 陶瓷粉體 34.6 34.4 201123229 在第!表中’*指的是不連續的層狀氧化欽修飾導電碳 黑的部份表面,其氧化碳的修飾結構可為單層(實施例卜2) 或三層(實施例3·5)。至於不連續的層狀氧化列观,實施 例6)及氧化鋅(ZnO,實施例7),其修飾結構均為單層。 表二實施例與比較例之n測試Polyfunctional epoxy resin [EHCLON HP 7200H, DIC], add appropriate amount of DMF, and then heat to 9 ° ° ° ~ 95 ° C to completely dissolve the epoxy resin, cool to room temperature, make it into a resin solution . # According to the ratio of the first table, add an appropriate amount of resin solution to add 1.8~2.5 parts by weight of the polymer resin to the polymer dispersant and DMF/nonylbenzene as a mixed solvent. After stirring evenly, add the composite powders of Examples 1-7 or compare them. The unmodified conductive powder in Example ι_2 was heated to 80 t after high-speed dispersion using a homogenizer, and then an appropriate amount of hardener Diaminodiphenyl sulfone (DDS, purchased from ACROS) was added, and an appropriate amount of catalyst III was added. Boron trifluoride mono-ethylamine (abbreviated as BF3-MEA, available from ACROS). When the hardener and the catalyst are completely dissolved in the resin solution, an appropriate amount of the polymer softener is added, which accounts for about 1 232 ς ς Α Α 重量 实际 , 2011 2011 2011 2011 2011 2011 , , , , , , , , , , , , , , , , , , Warm, make it a < embossed or unmodified carbon black / resin composite. /, a dielectric ceramic powder (BaTi〇3) is added to the above carbon black/resin composite material, and the mixture is uniformly stirred at a desired rate to form a high dielectric composite material mixed solution of the present invention (as shown in Table 1). The solution of the high dielectric composite material prepared in different composition ratios is coated on the copper foil, and the solvent is used to remove the solvent from the B-Stage of the effective control tree to partially cure the copper backing. v# RCC, and the adhesive copper foil and copper foil were respectively pressed and hardened by a hot press to form a capacitive substrate material, and finally the electrical characteristics were tested, and are summarized in Table 2. High dielectric material composition of the first embodiment and the comparative example _ • Composition (S) Comparative Example 1 Comparative Example 2 Example 1 Example 2 Example 3 Example 4 Example 5 Carbon black/resin binder 21.66 21.51 21.66 21.51 21.51 21.51 21.51 Hardener 2.3 2.3 2.3 2.3 2.3 2.3 2.3 Catalyst 0.04 0.04 0.04 0.04 0.04 0.04 0.04 Dispersant 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Softener 1.52 1.52 1.52 Γ 1.52 1.52 1.52 1.52 _ - An unmodified conductive powder 0.86 1.20 None No No No No LbL modified layer number 0 0 1* 1* 3* 3* 3* Conductive-semiconducting composite powder No 0.86 1.20 1.20 1.20 1.20 Ceramic powder 100 99.5 100 99.5 99.5 99.5 99.5 Composition (g) Example 6 Example 7 Carbon black/resin binder 20.06 20.51 Hardener 2.1 2.1 Catalyst 0.05 0.06 Dispersant 1.11 1.11 Softener 0.69 0.69 Pure carbon black without LbL modified layer SiO 2 ZnO Conductive-semiconducting composite powder 0.533 0.528 Ceramic Powder 34.6 34.4 201123229 In the !! table, the ** refers to a part of the surface of the discontinuous layered oxidized modified conductive carbon black, and the modified structure of the oxidized carbon may be a single layer ( Example 2) or three layers (Example 3·5). As for the discontinuous layered oxidation scheme, Example 6) and zinc oxide (ZnO, Example 7) have a modified structure of a single layer. Two examples and comparative examples of n test
介電常數 (1MHz) >電損失 (1MHz) _厚度(Aim) 0-1712 0-2118Dielectric constant (1MHz) > Electrical loss (1MHz) _Thickness (Aim) 0-1712 0-2118
剝離強度 (lb/in) 比車乂例1 2所使用的是沒有經過表面改質的導電碳 黑’當粉體的添加量提高時,介電常數/介電損失也跟著提 15 201123229 較例2甚至“呆作電壓謂下,其漏電流相當嚴重(比 為樹脂當中=而無去量測)且絕緣電阻非常小。實施m-7 比較例1/實二 組成比例的複合粉體之後的結果,從 修錦的:二、比較例2/實施例2中看出當添加經過 性的粉•代縣導雜㈣u電㈣ 低碳里〜表面上修飾不連續的層狀Ti〇2可降 不明顯:另:;:r使界面偏極化的機制受到影響: 粉體的H n7^102的半導體特性會平衡部分導電 提高絕緣電阻:=Γ果同時降低複合材料的漏電流及 和碳黑比==壓。、彳 〇)或疋實施例2-3中辦力口 TiO修德 =所_符合上述推論。綜上所述,本= ‘的丄雷:ι·同組成的導電_半導性複合粉體來調控複合材 兵=4性’同時可使系統的漏電流降低或維持在可接 I古=圍’其製程加工性也不會有明顯的差異,可完全符 。门J電材料之特性如DK> 100、絕緣電阻大於Ω、 =電流小於50Amps。而實施例6_7則分別為在碳黑表面 > Si02以及ZnO的結果,纟TGA的分析可知經改質 的導電粉體㈣解溫度由5机分別提高為 603°C 以及 596 f,此舉應該是二氧切或氧化辞成份所致,另外由表二 中亦可發現經改質的“其耐受電壓㈣度已有改善。 旦比較例^與實施例8_1〇係使用雙層高介電結構,其性 質里測如表一所不。比較例3是將比較例2的背膠銅箔與 ”電书數車乂低的介電層⑽〜5〇、厚度〜9㈣)進行雙層壓合 201123229 所形成的雙層高介電結構,實施例8-10是將實施例2、6、 7的背膠銅箔與與介電常數較低的介電層(DK〜50、厚度 〜9μηι)進行雙層壓合所形成的雙層高介電結構。藉由這樣的 製程可以大幅降低材料系統的漏電流,並增加絕緣電阻與 操作電壓,可有效提高其應用性。由以上的結果得知,藉 由在導電性粉體的表面進行改質所形成的複合粉體的確有 提高介電常數並伴隨降低漏電流之功效。Peel strength (lb/in) is less than that used in the ruthenium example. 2 Conductive carbon black without surface modification. When the amount of powder added is increased, the dielectric constant/dielectric loss is also followed by 15 201123229. 2 even if the voltage is too low, the leakage current is quite serious (compared to the resin = no measurement) and the insulation resistance is very small. After the implementation of m-7 comparative example 1 / real two composition ratio of the composite powder As a result, from the comparison of the brocade: II, Comparative Example 2 / Example 2, when the addition of the pass-through powder, the generation of the miscellaneous (four) u electricity (four) low carbon ~ surface modification of the layered Ti〇2 can be reduced Not obvious: another:;:r The mechanism of polarization of the interface is affected: The semiconductor properties of the powder H n7^102 will balance part of the conductivity to improve the insulation resistance: = the effect of reducing the leakage current of the composite material and the carbon black Ratio == pressure., 彳〇) or 疋 实施 2-3 实施 实施 实施 2-3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Conductive composite powder to regulate composite soldiers = 4 sex 'At the same time, the leakage current of the system can be reduced or maintained at the same time. There is no obvious difference in processability, which can be completely matched. The characteristics of the gate J electrical material are DK> 100, the insulation resistance is greater than Ω, and the current is less than 50 Amps, while the embodiment 6_7 is on the carbon black surface > As a result of ZnO, the analysis of 纟TGA shows that the temperature of the modified conductive powder (4) is increased from 5 to 603 ° C and 596 f, respectively, which should be caused by dioxo or oxidized components. It has also been found that the modified "the withstand voltage (four) degree has been improved. In the comparative example and the embodiment 8_1, a double-layer high dielectric structure was used, and the properties were measured as shown in Table 1. Comparative Example 3 is a two-layer high dielectric structure in which the backing copper foil of Comparative Example 2 and the dielectric layers (10) to 5 〇 and the thickness of -9 (four) of the electric book number are double-laminated, 201123229. Embodiment 8-10 is a double layer formed by double-bonding the backing copper foils of Examples 2, 6, and 7 with a dielectric layer (DK~50, thickness ~9μηι) having a low dielectric constant. Dielectric structure. By such a process, the leakage current of the material system can be greatly reduced, and the insulation resistance and the operating voltage can be increased, and the applicability can be effectively improved. From the above results, it is known that the surface of the conductive powder is used. The composite powder formed by the modification does have an effect of increasing the dielectric constant and concomitantly reducing the leakage current.
表三雙層電容性基板材料之電性測試 電氣特性 比較例3 實施例8 實施例9 實施例10 電容値(F) 3.7xl0'9 3.3x10·9 2.75xl0'9 2.44xl0*9 介電常數(1MHz) 150 115 96 97 介電損失(1MHz) 0.136 0.077 0.043 0.060 厚度(//m) 36 31 31 35 操作電壓(V) 2.0 10 10 10 10 漏電流密度 (A/mm2) 1·27χ10-5 >10^ 2.81Χ10'8 3.18x10-10 1.71xl〇·10 絕緣電阻(Ω ) 1.57xl03 <104 3.56x10s 3.14x10'° 5.85χ1010 剝離強度(lb/in) 5.6 5.4 5.3 5.5 • 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作任意之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 17 201123229 【圖式簡單說明】 無。 【主要元件符號說明】 無。Table 3 Electrical test electrical properties of double-layer capacitive substrate material Comparative Example 3 Example 8 Example 9 Example 10 Capacitance 値 (F) 3.7xl0'9 3.3x10·9 2.75xl0'9 2.44xl0*9 Dielectric constant (1MHz) 150 115 96 97 Dielectric loss (1MHz) 0.136 0.077 0.043 0.060 Thickness (//m) 36 31 31 35 Operating voltage (V) 2.0 10 10 10 10 Leakage current density (A/mm2) 1·27χ10-5 >10^ 2.81Χ10'8 3.18x10-10 1.71xl〇·10 Insulation resistance (Ω) 1.57xl03 <104 3.56x10s 3.14x10'° 5.85χ1010 Peel strength (lb/in) 5.6 5.4 5.3 5.5 • Although the present invention The present invention has been described in terms of several preferred embodiments, and is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. 17 201123229 [Simple description of the diagram] None. [Main component symbol description] None.
1818
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98144429A TWI423281B (en) | 2009-12-23 | 2009-12-23 | High-k material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98144429A TWI423281B (en) | 2009-12-23 | 2009-12-23 | High-k material |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201123229A true TW201123229A (en) | 2011-07-01 |
TWI423281B TWI423281B (en) | 2014-01-11 |
Family
ID=45046608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98144429A TWI423281B (en) | 2009-12-23 | 2009-12-23 | High-k material |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI423281B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI690960B (en) * | 2018-09-12 | 2020-04-11 | 鈺冠科技股份有限公司 | Capacitor, capacitor packaging structure and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0060035B1 (en) * | 1981-02-12 | 1985-08-21 | Kureha Kagaku Kogyo Kabushiki Kaisha | Dielectric films and process for preparing same |
JP4188631B2 (en) * | 2002-07-15 | 2008-11-26 | Necトーキン株式会社 | Manufacturing method of solid electrolytic capacitor |
TWI378960B (en) * | 2008-03-20 | 2012-12-11 | Ind Tech Res Inst | Organic/inorganic hybrid material of dielectric composition with electrostatic discharge protection property |
-
2009
- 2009-12-23 TW TW98144429A patent/TWI423281B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI690960B (en) * | 2018-09-12 | 2020-04-11 | 鈺冠科技股份有限公司 | Capacitor, capacitor packaging structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI423281B (en) | 2014-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103862039B (en) | Nucleocapsid structure nano-particle of copper and preparation method thereof | |
CN104788909B (en) | A kind of heat conductive insulating composite and preparation method thereof | |
JP5970288B2 (en) | Manufacturing method of oxide dielectric material / polymer composite film | |
CN102159498B (en) | Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material | |
CN104115237B (en) | Metal paste mixing and its manufacturing method | |
CN105722625B (en) | Surface treated metal powder and its manufacturing method | |
JP2013122003A (en) | Heat conductive filler and manufacturing method thereof | |
CN102115317A (en) | High dielectric material | |
Zhou et al. | Effect of coupling agents on the dielectric properties of aluminum particles reinforced epoxy resin composites | |
CN103013317B (en) | Environment-friendly nano-silver conductive ink adhesive force promoting coating slurry and preparation method thereof | |
CN105121070B (en) | Composite oxides coated metal powder, its manufacture method, conductive paste and monolithic ceramic electronic component using composite oxides coated metal powder | |
CN109942997A (en) | A kind of graphene oxide-barium titanate dielectric composite film and preparation method thereof | |
CN110698859A (en) | A silica-coated modified barium titanate/polysulfone dielectric composite material and preparation method thereof | |
CN113429600A (en) | Silver-titanium dioxide filler doped polyvinylidene fluoride dielectric composite film and preparation method thereof | |
CN103408896B (en) | A kind of epoxy resin composite material containing Nanometer Copper and preparation method thereof | |
CN110684222A (en) | Polymer-based composite dielectric material and preparation method thereof | |
CN102745988A (en) | Preparation method of shell/core nano ceramic dielectric powder material | |
CN106519516B (en) | A kind of dielectric composite material and preparation method thereof based on paraffin cladding barium titanate nano particle | |
Sadhu et al. | Enhanced dielectric properties and energy storage density of interface controlled ferroelectric BCZT-epoxy nanocomposites | |
Wang et al. | Structural modification of carbon black for improving the dielectric performance of epoxy based composites | |
JP5935156B2 (en) | Method for producing ceramic-coated graphite | |
TW201044463A (en) | Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same | |
TW201123229A (en) | High-k material | |
JP4867130B2 (en) | Insulated ultrafine powder, method for producing the same, and high dielectric constant resin composite material using the same | |
JP2015036440A (en) | Surface-treated metal powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |