TW201119350A - DLP link system with multiple projectors - Google Patents
DLP link system with multiple projectors Download PDFInfo
- Publication number
- TW201119350A TW201119350A TW99113621A TW99113621A TW201119350A TW 201119350 A TW201119350 A TW 201119350A TW 99113621 A TW99113621 A TW 99113621A TW 99113621 A TW99113621 A TW 99113621A TW 201119350 A TW201119350 A TW 201119350A
- Authority
- TW
- Taiwan
- Prior art keywords
- synchronization signal
- signal
- image
- light valve
- exemplary embodiment
- Prior art date
Links
- 239000011521 glass Substances 0.000 claims description 364
- 238000000034 method Methods 0.000 claims description 169
- 230000005540 biological transmission Effects 0.000 claims description 81
- 238000012545 processing Methods 0.000 claims description 59
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 9
- 238000001429 visible spectrum Methods 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims 5
- 241000219112 Cucumis Species 0.000 claims 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 claims 1
- 238000005286 illumination Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 239000004973 liquid crystal related substance Substances 0.000 description 250
- 210000002858 crystal cell Anatomy 0.000 description 47
- 230000007704 transition Effects 0.000 description 31
- 239000003990 capacitor Substances 0.000 description 30
- 230000007246 mechanism Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 12
- 230000003750 conditioning effect Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 230000008054 signal transmission Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 241000282376 Panthera tigris Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 101000894525 Homo sapiens Transforming growth factor-beta-induced protein ig-h3 Proteins 0.000 description 2
- 102100021398 Transforming growth factor-beta-induced protein ig-h3 Human genes 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 208000028485 lattice corneal dystrophy type I Diseases 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 241000254158 Lampyridae Species 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 230000036278 prepulse Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
201119350 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於呈現在觀看者看來為三維的視訊影像 之影像處理系統。 本申請案係關於2009年5月18曰申請之美國臨時專利申 請案第61/179,248號(代理人案號第〇92847 〇〇〇〇2〇號),該 申請案之内容係以全文引用方式併入本文中。 本申請案係關於2009年10月20曰申請之美國臨時專利申 晴案第61/253,150號(代理人案號第〇92847 〇〇〇〇67號),該 申請案之内容係以引用方式併入本文中。 本申請案係關於2009年11月16曰申請之美國臨時專利申 3月案第61/261,663號(代理人案號第〇92847 〇〇〇〇98號),該 申請案之内容係以引用方式併入本文中。 本申凊案主張以下均在2〇〇9年η月16曰申請之美國實用 專利申請案中之每一者的申請日期之權利:第12/619,518 號、第 12/619,517號、第 12/619,309號、第 12/619,415號、 第 12/619,400 號、第 12/619,431號、第 12/619,163 號、第 12/619,456號、第12/619,102號,所有該等中請案之内容係 以引用方式併入本文中。 【實施方式】 在以下圖式及描述中,相同部件在說明書及圖式中始終 分別用相同參考數字標記。諸圖未必按比例繪製。本發明 之特定特徵可以誇大的比例或以稍微示意性之形式展示, 且為清楚及簡明起見,可能不展示習知元件之—些細節。 147660.doc 201119350 本發明可能具有不同形式之實施例。特定實施例將被詳細 描述且展示於圖式中,但應瞭解,本發明内容被視為本發 明之原理之一範例’且不欲將本發明限於本文中所說明及 所描述者。應充分認識到’下文所論述之實施例之不同教 不可單獨地或以任何合適組合使用以產生所要結果。熟習 此項技術者將在閲讀實施例之以下詳細描述及參考隨附圖 式之後容易瞭解上文所提及之各種特性,以及下文將較詳 細描述之其他特徵及特性。 先參看圖1’ 一種用於觀看一電影螢幕1〇2上的三維 (「3D」)電影之系統1〇〇包括一副三維眼鏡1〇4,其具有一 左光閥106及一右光閥108。在一例示性實施例中,三維眼 鏡104包括—框架,且光閥106及108被設置為安裝且支撐 在該柩架内之左觀看透鏡及右觀看透鏡。 在一例示性實施例中,光閥106及108為液晶單元,其在 單兀*自不透明轉至透明時打開,且在單元自透明轉回至不 透明時關閉。在此情況下,透明被定義為透射足以使三維 眼鏡104之使用者看到一投射在電影螢幕1〇2上之影像的 光。在一例示性實施例中,三維眼鏡1 〇4之使用者可能能 夠在二維眼鏡104之光閥106及/或108之液晶單元變為25% 至30%透射時看到投射在電影螢幕1〇2上之影像。因此, 在光閥106及/或108之液晶單元變為25%至3〇%透射時,認 為液B曰單元打開。在光閥1 〇6及/或108之液晶單元打開 時’液晶單元亦可能透射多於25%至30%之光。 在一例不性實施例中,三維眼鏡104之光閥1〇6及108包 147660.doc 201119350 枯利用低黏度、高折射率之液晶材料(諸如, MLC6080)之具有PI單元組態的液晶單元。.在—例示性實 施例中,調整PI單元厚度’使得該ρι單元在其鬆弛狀離下 形成】/2波阻滯器。在一例示性實施例中’將ρι單元製造地 較厚’使得在不到完全鬆弛時達成1/2波狀態。合適液晶材 料中之一者為由Merck製造2MLC6〇8〇,但可使用具有足 夠高光學各向異性、低旋轉黏度及/或雙折射率之任何液 晶。二維眼鏡104之光閥106及1〇8亦可使用小單元間隙, 包括(例如)4微米之間隙。此外,具有足夠高折射率及低黏 度之液晶亦可適合用於三維眼鏡1〇4之光閥1〇6及1〇8中。 在一例示性實施例中,三維眼鏡1〇4之光閥1〇6及1〇8之 二單元基於電控雙折射(「ECB」)原理工作。雙折射意謂 著當不施加電壓或施加一小止檔電壓(catch v〇ltage)時,Η 早兀對於偏振方向平行於Pi單元分子之長維之光及偏振方 向垂直於長維之光具有不同折射率⑽及ne。差n〇ne=^為 光學各向異性。Δηχίΐ為光學厚度,其中d為單元之厚度。 當時,當將Pi單元相對於偏光器之軸線成45。置 放時,該單元充當%波阻滯器。因此’光學厚度是重要的 (不僅是厚度)。在-例示性實施例中,三維眼鏡1〇4之光間 106及108之Pi單元被製造成光學上過厚,此意謂著 △ηχ(1>1/2λ。較高的光學各向異性意謂著單元愈薄單元鬆 弛愈快。在一例示性實施例中,當施加電壓時,三維眼鏡 104之光閥106及108之Pi單元之分子的長軸垂直於基板垂 直配向(homeotropic alignment),因此此狀態下無雙折 147660.doc 201119350 射,且因為偏光器之透射軸線交又,所以不透射光。在一 例示性實施例中,將偏光器交又之Pi單元稱為以常白模式 (normally white mode)工作且其在不施加電壓時透射光。 偏光器之透射轴線彼此平行地定向的pi單元以常黑模式 (normally black mode)工作,亦即,該等單元在施加一電 壓時透射光。 在-例*性實施例.中,當自Pi單元移除高電壓時,光間 106及/或108之打開開始。此為一鬆弛過程,意謂著η單元 中之液晶(「LC」)分子轉回至平衡狀態,亦即,分子與配 向層(亦即,基板之摩擦方向)對準。pi單元之鬆弛時間取 決於單元厚度及流體之旋轉黏度。 -般而言,Pi單元愈薄’鬆弛愈快。在一例示性實施例 中’重要參數並非Pi單元間Μ本身,而是乘積編,其中 △η為LC流體之雙折射率。在一例示性實施例中,為了提 供打開狀態下之最大光透射,pi單元之對正光學阻滯 (head-on optical retardati〇n)(And)應為 λ/2。較高之雙折射 率允許較薄單元且因此允許較快之單元鬆他。$ 了提供可 能的最快切換,使用具有低旋轉黏度及較高雙折射率之 流體(諸如,EM industries 生產之 MLC 6〇8〇)。 在一例示性實施例中,除了在Pi單元中使用具有低旋轉 黏度及較高雙折射率之切換流體之外,為了達成自不透明 至透明狀態之較快切換,亦將Pi單元製造成光學上過厚, 使得在不到完全鬆料達成1/2波狀態。通常,調整Η單元 厚度,使得該Pi單元在其鬆弛狀態下形成1/2波阻滞器。然 147660.doc 201119350 後,將Pi單元製造成光學上過厚使得在不到完全鬆弛時達 成%波狀態導致自不透明至透明狀態之較快切換。以此方 式’例示性實施例之光閥106及108提供與先前技術^^光閥 裝置相比而言增強之打開速度,其在一例示性實驗實施例 中提供了預期之外的結果。 . 在一例示性實施例中,可接著使用一止擋電壓以在…單 元中之LC分子旋轉過頭之前停止該等lc分子之旋轉。藉 由以此方式停止Pi單元中之LC分子之旋轉,光透射得以保 持在其峰值或其峰值附近。 在一例示性實施例中,系統100進一步包括一具有一中 央處理單元(「CPU」)110a之信號傳輸器11〇,其將一信號 傳輸向電影螢幕1 02。在一例示性實施例中,該傳輸信號 反射離開電影螢幕102而射向一信號感測器丨丨2 ^該傳輸作 號可為(例如)紅外線(「IR」)信號、可見光信號、多色作 號或白光中之一或多者。在一些實施例中,該傳輸信號被 直接傳輸向信號感測器112 ’且因此可能不反射離開電影 螢幕102。在一些實施例中,該傳輸信號可為(例如)_射頻 (「RF」)信號,其不反射離開電影螢幕102。 . 信號感測器112可操作地耦接至CPU 114。在一例示性實 . 施例中,信號感測器112偵測該傳輸信號且將該信號之存 在傳達至CPU 114。CPU 110a及CPU 114可(例如)各自包括 一通用可程式化控制器、一特殊應用積體電路 (「ASIC」、一類比控制器、一局域化控制器、一分散式 控制器、一可程式化狀態控制器及/或前述裝置之—或多 147660.doc 201119350 個組合。 CPU 114可操作地耦接至一左光閥控制器116及一右光閥 控制器118以用於監視及控制該等光閥控制器之操作。在 一例示性實施例中,左光閥控制器116及右光閥控制器118 又可操作地耦接至三維眼鏡1 〇4之左光閥1 〇6及右光閥1 〇8 以用於監視及控制左光閥及右光閥之操作。光閥控制器 1 16及11 8可(例如)包括一通用可程式化控制器、一 ASIc、 一類比控制器、一類比或數位開關、一局域化控制器、一 分散式控制器、一可程式化狀態控制器及/或前述裝置之 一或多個組合。 一電池120可操作地耦接至至少CPU 114且提供用於操作 二維眼鏡104之CPU、信號感測器112及光閥控制器116及 118中之一或多者的電力。一電池感測器ι22可操作地耦接 至CPU 114及電池12〇以用於監視該電池中剩餘的電力之 量。 在一例示性實施例中,CPU 114可監視及/或控制信號感 測器112、光閥控制器116及118及電池感測器122中之一或 多者的操作。替代性地或額外地,信號感測器丨丨2、光閥 控制器116及118及電池感測器122中之一或多者可包括一 單獨的專用控制器及/或複數個控制器,其可能亦或可能 不監視及/或控制信號感測器112、光閥控制器116及118及 電池感測器122中之一或多者。替代性地或額外地,CPU 114之操作可至少部分地分散於三維眼鏡ι〇4之其他元件中 之一或多者之間。 147660.doc 201119350 在一例示性實施例中’信號感測器i 12、CPU 114、光閥 控制器116及118、電池120及電池感測器122安裝且支撐在 三維眼鏡1〇4之框架内。若電影螢幕102位於一電影院内, 則可提供一投影器130以用於將一或多個視訊影像投射於 该電影螢幕上。在一例示性實施例中,信號傳輸器丨丨〇可 緊接投影器130定位或可包括於投影器13〇内。在一例示性 實施例中,投影器130可包括(例如)下列各者中之一或多 者:一電子投影裝置、一機電投影裝置、一電影投影器、 一數位視訊投影器,或用於將一或多個視訊影像顯示於電 影螢幕102上的一電腦顯示器。替代性地,或除了電影螢 幕102之外,亦可使用一電視(「τν」)或其他視訊顯示裝 置,諸如一平面螢幕TV、一電漿TV、一 LCD TV,或用於 顯不影像以供三維眼鏡之使用者檢視的其他顯示裝置,其 可(例如)包括可緊接該顯示裝置之顯示器表面定位及/或位 於5亥顯不裝置之顯示器表面内的信號傳輸器11〇或用於發 信號至三維眼鏡i 〇4之一額外信號傳輸器。 在一例示性貫施例中,在系統1 〇〇之操作期間,Cpu π 4 依據由信號感測器112自信號傳輸器110接收之信號及/或 依據由CPU自電池感測器122接收之信號而控制三維眼鏡 104之光閥106及1〇8之操作。在一例示性實施例中,cpu 114可指導左光閥控制器116打開左光閥106及/或指導右光 閥控制器118打開右光閥1〇8。 在一例不性實施例中,.光閥控制器n 6及n 8藉由在光閥 之液辱單元上施加一電壓來分別控制光閥106及108之操 147660.doc 201119350 作。在一例示性實施例中,施加在光閥1〇6及1〇8之液晶單 元上的電壓在負與正之間交替。在一例示性實施例中,不 管所施加之電壓為正或是為負,光閥106及1〇8之液晶單元 均以相同方式打開及關閉。交替所施加的電壓防止光閥 106及108之液晶單元之材料於單元之表面析出。 在一例示性實施例中,在系統丨00之操作期間,如圖2及 圖3中所說明,該系統可實施一左右光閥方法2〇〇,在該方 法中’若在202a中,左光閥1〇6關閉且右光閥1〇8打開,則 在20’2b中’分別藉由光閥控制器116及118將一高電壓 202ba施加至左光閥1〇6及將無電壓202bb隨後接著一小止 撞電壓2 0 2 b c施加至右光閥1 〇 8。在一例示性實施例中,將 高電壓202ba施加至左光閥1〇6使左光閥關閉,且不施加電 壓至右光閥10 8會開始打開右光閥。在一例示性實施例 中’隨後將小止擋電壓202bc施加至右光閥log可防止右光 閥中之液晶在右光閥108之打開期間旋轉過頭。結果,在 202b,左光閥106被關閉且右光閥108被打開。 若在202c中,左光閥106被打開且右光閥1 〇8被關閉,則 在2 02d中,分別藉由光閥控制器118及116,將一高電壓 202da施加至右光閥108且將無電壓202db隨後接著一小止 擔電塵2 0 2 d c施加至左光闊106。在·-例不性實施例中,將 咼電壓202da施加至右光閥108使右光閥關閉,且不施加電 壓至左光閥10 6會開始打開左光閥。在一例示性實施例 中,隨後將小止擋電壓202dc施加至左光閥1〇6可防止左光 閥中之液晶在左光閥1 〇 6之打開期間旋轉過頭。結果,在 147660.doc -10- 201119350 202d ’左光閥i〇6被打開且右光閥1〇8被關閉。 在一例示性實施例中,202b及202d中所使用的止擋電壓 之量值在202b及202d中所使用的高電壓之量值的約1〇%至 2 0 %的犯圍内。 在一例示性實施例中,在系統100之操作期間,在方法 200期間,在202b中左光閥106關閉且右光閥1〇8打開的時 間期間,為右眼呈現一視訊影像,且在2〇2d中左光閥【 打開且右光閥108關閉的時間期間,為左眼呈現一視訊影 像。在一例示性實施例中,視訊影像可顯示於下列各者中 之或夕者上.電影院螢幕102、一 LCD電視螢幕、一數 位光源處理(「DLP」)電視、一數位光源處理投影器、一 電漿螢幕及其類似者。 在一例示性實施例中,數位光源處理投影器併有可自 Texas lnstruments購得的習知i晶片數位光源處理投影系統 及/或習知3晶片數位光源處理投影系統。 在一例示性實施例中,在系統100之操作期間,cPU i 14 將指導每一光閥1〇6及1〇8在呈現意欲用於該光閥及檢視者 眼睛之影像時打開。在一例示性實施例中,一同步信號可 用以使光閥106及1 〇8在正確時間打開。 在-例示性實施例中,一同步信號係由信號傳輸器"〇 傳輸且該同步信號可(例如)包括一紅外光。在一例示性實 施例中,信號傳輸器110將該同步信號傳輸至一反射性表 面,且該表面將該信號反射至定位且安裝於三維眼鏡1〇4 之框木内的彳§ #b感測||丨⑴該反射性表面可(例如)為電影 147660.doc 201119350 院螢幕102或位於電影螢暮上志_ 4 。茧眷上或附近的另一反射性裝置, 以使得三維眼鏡104之使用去如玉雨 使用者在觀看電影時大體上面對該 反射體。在一例示性實施例中,护 J T 15唬傳輸器11 0可將該同 步信號直接發送至感測器丨i 2。右一办丨_ 在例不性實施例中,信 3虎感測器1 1 2可包括一安裝且去措jt - & 衣叉揮在二維眼鏡104之框架上 的光電二極體。 -亥同ν L號可在每-左右鏡頭光閥序列·開始時提供 一脈衝。該同步信號可更為頻繁’(例如)提供-脈衝以指 V每光閥1 06或1 08之打開。該同步信號可較不頻繁, (例如)每光閥序列200、每五個光閥序列或每1〇〇個光間序 列提供-次脈衝。CPU 114可具有—内部計時器以在同步 信號不存在的情況下維持適當光閥定序。 在-例示性實施例中,光閥1〇6及1〇8中之黏性液晶材料 與窄單元間隙之組合可產生一光學上過厚之單元。光閥 106及108中之液晶在施加有電壓時阻擋光透射。在移除施 加之電壓後,光閥i 〇6及丨〇8中之液晶中的分子旋轉回至對 準層之^向。對準層將該等液晶單元中之分子定向以允許 光透射。在一光學上過厚之液晶單元中,該等液晶分子在 移除電力之後迅速地旋轉且因此使光透射迅速地增加,但 是接著分子旋轉過頭且光透射減小。自液晶單元分子之旋 轉開始直至光透射穩定(亦即,液晶分子旋轉停止)的時間 為真正的切換時間。 在一例不性實施例中,當光閥控制器i 16及! 18將小的止 擋電壓施加至光閥106及1〇8時,此止擋電壓在該等光閥中 147660.doc 12 201119350 之該等液晶單元旋轉過頭之前停止該等液晶單元之旋轉。 藉由在光閥106及1〇8中之該等液晶單元中之分子旋轉過頭 之前停止該等分子之旋轉,穿過該等光閥中之該等液晶單 元中之該等分子的光透射保持在其峰值或峰值附近。因 此,有效的切換時間為自光閥106及108中之液晶單元開始 其旋轉,直至液晶單元中之分子之旋轉停止在峰值光透射 點處或附近。 現參看圖4,透射指代透射穿過光閥1〇6或1〇8之光的 量,其中透射值1指代穿過光閥106或108之液晶單元之最 大或接近最大光透射點。因此’對於能夠最多透射37%之 光的光閥106或108而言,透射位準1指示光閥1〇6或1〇8正 透射可用光之最大量(亦即’ 37%)。當然,視所使用的特 定液晶單元而定,光閥106或108所透射之光的最大量可為 任意量,包括(例如)33%、30%或者顯著較多或較少。 如圖4中所說明,在一例示性實驗實施例中,操作光閥 106或108,且在方法200之操作期間量測光透射4〇(^在光 閥106或108之例示性實驗實施例中,光閥在大約〇5毫秒 内關閉,接著在光閥循環的前一半中在約7毫秒内保持關 閉,然後光閥在約1毫秒内打開至最大光透射的約9〇%, 且接著光閥在約7毫秒内保持打開,且然後_。作為比 較,亦在方法200之操作期間操作—可購得光閥,該光閥 展現光透射術。在方法之操作期間,本例示性實施例 之光閥106及108之光透射在約t毫秒内達到約⑽至规之 透射性(亦即,最大光透射之約9〇%),如圖4所示,而另一 147660.doc 13 201119350 光閥僅在約2.5毫秒之後達到約25%至30%之透射性(亦即, 最大光透射之約90%) ’如圖4所示。因此,本例示性實施 例之光閥106及108比可購得光閥提供一顯著較快回應之操 作。此為一意外結果。 現參看圖5 ’在一例示性實施例中,系統ι〇0實施一操作 方法500,在該方法中,在502中,信號感測器114自信號 傳輸器11 0接收一紅外線同步(「Sync」)脈衝。在504中, 若三維眼鏡104不處於執行模式(run MODE),則在506中 CPU 114判定二維眼鏡1〇4是否處於關閉模式(off MODE)。在506中若CPU 114判定三維眼鏡1〇4不處於關閉 模式下,則在508中CPU 114繼續正常處理,然後返回 502。在506中若CPU 114判定三維眼鏡1〇4處於關閉模式 下,則CPU 114在510中清除同步反相器(「si」)及驗證旗 標以為下一個加密信號準備CPU 114,在512中起始光閥 106及108之一暖機序列,然後繼續進行正常操作5〇8且返 在504中若三維眼鏡104處於執行模式,則在514中cpu 114判定三維眼鏡104是否已經組態以用於加密。在514中 ’則 CPU 114繼續 508201119350 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an image processing system for presenting a video image that is three-dimensional to a viewer. This application is related to U.S. Provisional Patent Application No. 61/179,248, filed on May 18, 2009 (Attorney Docket No. No. 92847 〇〇〇〇2〇), the contents of which are incorporated by reference in its entirety. Incorporated herein. This application is related to U.S. Provisional Patent Application No. 61/253,150 (Attorney Docket No. 〇92847 〇〇〇〇67) filed on October 20, 2009, the content of which is incorporated by reference. The manner is incorporated herein. This application is related to U.S. Provisional Patent Application No. 61/261,663 (Attorney Docket No. 〇92847 〇〇〇〇98) filed on November 16, 2009, the content of which is The citations are incorporated herein by reference. This application claims the following right of application for each of the US utility patent applications filed in the 〇〇 曰 曰 曰 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 619,309, 12/619,415, 12/619,400, 12/619,431, 12/619,163, 12/619,456, 12/619,102, all of which are incorporated by reference. The manner is incorporated herein. [Embodiment] In the following drawings and description, the same components are denoted by the same reference numerals throughout the specification and the drawings. The figures are not necessarily drawn to scale. The specific features of the present invention may be shown in an exaggerated proportion or in a somewhat schematic form, and the details of the conventional elements may not be shown for clarity and conciseness. 147660.doc 201119350 The invention may have different forms of embodiment. The specific embodiments are described in detail and shown in the drawings, and are in the It should be fully appreciated that the various teachings of the embodiments discussed below may not be used individually or in any suitable combination to produce the desired result. Those skilled in the art will readily appreciate the various features mentioned above, as well as other features and characteristics which are described in more detail below, in the following detailed description of the embodiments. Referring first to FIG. 1 'A system for viewing a three-dimensional ("3D") movie on a movie screen 1 〇 2 includes a pair of 3D glasses 1 〇 4 having a left light valve 106 and a right light valve 108. In an exemplary embodiment, three-dimensional eyepiece 104 includes a frame, and light valves 106 and 108 are configured to mount and support left and right viewing lenses within the truss. In an exemplary embodiment, light valves 106 and 108 are liquid crystal cells that open when the single turn* is turned from opaque to transparent and closed when the unit is turned from transparent to opaque. In this case, transparency is defined as transmitting light sufficient for the user of the 3D glasses 104 to see an image projected on the movie screen 1〇2. In an exemplary embodiment, a user of the 3D glasses 1 可能 4 may be able to see the projection on the movie screen 1 when the liquid crystal cells of the light valves 106 and/or 108 of the 2D glasses 104 become 25% to 30% transmissive. 〇 2 on the image. Therefore, when the liquid crystal cells of the light valves 106 and/or 108 become 25% to 3% transmission, it is considered that the liquid B unit is opened. The liquid crystal cell may also transmit more than 25% to 30% of the light when the liquid crystal cells of the light valves 1 〇 6 and/or 108 are turned on. In an exemplary embodiment, the light valves 1〇6 and 108 of the 3D glasses 104 are packaged 147660.doc 201119350. A liquid crystal cell having a PI cell configuration of a low viscosity, high refractive index liquid crystal material such as MLC6080 is utilized. In the exemplary embodiment, the PI unit thickness is adjusted such that the unit is formed in its relaxed shape by a /2-wave retarder. In an exemplary embodiment, 'the ι unit is made thicker' such that a 1/2 wave state is achieved when not fully relaxed. One of suitable liquid crystal materials is 2MLC6〇8〇 manufactured by Merck, but any liquid crystal having sufficiently high optical anisotropy, low rotational viscosity, and/or birefringence can be used. The light valves 106 and 1 of the two-dimensional glasses 104 may also use small cell gaps including, for example, a 4 micron gap. Further, a liquid crystal having a sufficiently high refractive index and a low viscosity can also be suitably used in the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4. In an exemplary embodiment, the two units of light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 operate on the principle of electronically controlled birefringence (“ECB”). Birefringence means that when no voltage is applied or a small stop voltage (catch v〇ltage) is applied, the long-dimensional light whose polarization direction is parallel to the Pi unit molecule and the polarization direction are perpendicular to the long-dimensional light Different refractive indices (10) and ne. The difference n〇ne=^ is optical anisotropy. Δηχίΐ is the optical thickness, where d is the thickness of the unit. At that time, when the Pi unit was 45 with respect to the axis of the polarizer. When placed, this unit acts as a % wave blocker. Therefore 'optical thickness is important (not just thickness). In the exemplary embodiment, the Pi cells of the light beams 106 and 108 of the 3D glasses 1〇4 are made optically too thick, which means Δηχ(1>1/2λ. Higher optical anisotropy. It means that the thinner the unit is, the faster the unit relaxes. In an exemplary embodiment, when a voltage is applied, the long axes of the molecules of the Pi cells of the light valves 106 and 108 of the three-dimensional glasses 104 are perpendicular to the homeotropic alignment of the substrate. Therefore, in this state, there is no double fold 147660.doc 201119350, and since the transmission axis of the polarizer is again, the light is not transmitted. In an exemplary embodiment, the Pi unit of the polarizer is referred to as the normally white mode. Normally white mode operates and transmits light when no voltage is applied. The pi elements of the polarizers whose transmission axes are oriented parallel to each other operate in a normally black mode, that is, the cells are applying a voltage. In the case of the embodiment, when the high voltage is removed from the Pi unit, the opening of the light 106 and/or 108 begins. This is a relaxation process, meaning the liquid crystal in the η unit ( "LC") the molecule turns back to equilibrium That is, the molecules are aligned with the alignment layer (ie, the rubbing direction of the substrate). The relaxation time of the pi unit depends on the thickness of the cell and the rotational viscosity of the fluid. - Generally, the thinner the Pi cell is, the faster it relaxes. In the exemplary embodiment, the 'important parameter is not the Pi cell Μ itself, but the product code, where Δη is the birefringence of the LC fluid. In an exemplary embodiment, to provide maximum light transmission in the open state, pi The unit's head-on optical retardation (And) should be λ/2. Higher birefringence allows for thinner cells and thus allows faster units to loosen. The fastest switching, using fluids with low rotational viscosity and high birefringence (such as MLC 6〇8〇 produced by EM industries). In an exemplary embodiment, in addition to having a low rotational viscosity in the Pi unit and In addition to the higher birefringence switching fluid, the Pi cell is also made optically too thick in order to achieve a faster switching from opaque to transparent state, so that a 1/2 wave state is achieved in less than complete loosening. Adjustment order The thickness is such that the Pi unit forms a 1/2 wave retarder in its relaxed state. After 147660.doc 201119350, the Pi unit is made optically too thick to achieve a % wave state when not fully relaxed, resulting in self-opaqueness. Faster switching to a transparent state. In this manner, the light valves 106 and 108 of the exemplary embodiment provide enhanced opening speeds as compared to prior art light valve devices, which are provided in an exemplary experimental embodiment. Out of expectations. In an exemplary embodiment, a stop voltage can then be used to stop the rotation of the lc molecules before the LC molecules in the ... unit are rotated over the head. By stopping the rotation of the LC molecules in the Pi unit in this manner, the light transmission is maintained at its peak or its peak. In an exemplary embodiment, system 100 further includes a signal transmitter 11A having a central processing unit ("CPU") 110a that transmits a signal to the movie screen 102. In an exemplary embodiment, the transmission signal is reflected off the movie screen 102 and directed to a signal sensor ^2. The transmission number can be, for example, an infrared ("IR") signal, a visible light signal, or a multi-color. One or more of the number or white light. In some embodiments, the transmitted signal is transmitted directly to signal sensor 112' and thus may not be reflected off movie screen 102. In some embodiments, the transmission signal can be, for example, a radio frequency ("RF") signal that is not reflected off the movie screen 102. Signal sensor 112 is operatively coupled to CPU 114. In an exemplary embodiment, signal sensor 112 detects the transmitted signal and communicates the presence of the signal to CPU 114. The CPU 110a and the CPU 114 can, for example, each include a universal programmable controller, a special application integrated circuit ("ASIC", an analog controller, a localized controller, a distributed controller, and a A combination of a stylized state controller and/or the aforementioned device - or a plurality of 147660.doc 201119350. The CPU 114 is operatively coupled to a left light valve controller 116 and a right light valve controller 118 for monitoring and control The operation of the light valve controllers. In an exemplary embodiment, the left light valve controller 116 and the right light valve controller 118 are operatively coupled to the left light valve 1 〇 6 of the 3D glasses 1 〇 4 and The right light valve 1 〇 8 is used to monitor and control the operation of the left and right light valves. The light valve controllers 1 16 and 11 8 can, for example, include a universal programmable controller, an ASIc, an analog control One or more combinations of a class, analog or digital switch, a localized controller, a distributed controller, a programmable state controller, and/or the foregoing. A battery 120 is operatively coupled to at least The CPU 114 also provides a CPU, signal for operating the two-dimensional glasses 104. Power of one or more of sensor 112 and light valve controllers 116 and 118. A battery sensor ι 22 is operatively coupled to CPU 114 and battery 12 for monitoring the remaining power in the battery In an exemplary embodiment, CPU 114 may monitor and/or control the operation of one or more of signal sensor 112, light valve controllers 116 and 118, and battery sensor 122. Alternatively or Additionally, one or more of signal sensor 丨丨 2, light valve controllers 116 and 118, and battery sensor 122 may include a separate dedicated controller and/or a plurality of controllers, which may or may One or more of signal sensor 112, light valve controllers 116 and 118, and battery sensor 122 may not be monitored and/or controlled. Alternatively or additionally, operation of CPU 114 may be at least partially dispersed Between one or more of the other components of the 3D glasses ι 4 147660.doc 201119350 In an exemplary embodiment, 'signal sensor i 12, CPU 114, light valve controllers 116 and 118, battery 120 and The battery sensor 122 is mounted and supported within the frame of the 3D glasses 1〇4. If the movie screen 102 Located in a movie theater, a projector 130 can be provided for projecting one or more video images onto the movie screen. In an exemplary embodiment, the signal transmitter 丨丨〇 can be positioned next to the projector 130. Or may be included in the projector 13A. In an exemplary embodiment, the projector 130 may include, for example, one or more of the following: an electronic projection device, an electromechanical projection device, a movie projector , a digital video projector, or a computer display for displaying one or more video images on the movie screen 102. Alternatively, or in addition to the movie screen 102, a television ("τν") or other video display device such as a flat screen TV, a plasma TV, an LCD TV, or for displaying an image may be used. Other display devices for viewing by a user of the 3D glasses, which may, for example, include a signal transmitter 11 可 that can be positioned next to the display surface of the display device and/or located within the display surface of the display device or Signal to one of the 3D glasses i 〇 4 additional signal transmitter. In an exemplary embodiment, during operation of system 1 C, Cpu π 4 is received by signal sensor 112 from signal transmitter 110 and/or by CPU from battery sensor 122. The operation of the light valves 106 and 1 to 8 of the 3D glasses 104 is controlled by signals. In an exemplary embodiment, cpu 114 may direct left light valve controller 116 to open left light valve 106 and/or direct right light valve controller 118 to open right light valve 1〇8. In an exemplary embodiment, the light valve controllers n 6 and n 8 control the operation of the shutters 106 and 108, respectively, by applying a voltage to the liquid immersion unit of the light valve. In an exemplary embodiment, the voltages applied to the liquid crystal cells of the light valves 1〇6 and 1〇8 alternate between negative and positive. In an exemplary embodiment, the liquid crystal cells of the shutters 106 and 1 are both opened and closed in the same manner, regardless of whether the applied voltage is positive or negative. The alternating applied voltage prevents the material of the liquid crystal cells of the light valves 106 and 108 from being deposited on the surface of the cell. In an exemplary embodiment, during operation of system 丨00, as illustrated in Figures 2 and 3, the system can implement a left and right light valve method 2〇〇, in the method 'if in 202a, left When the light valve 1〇6 is closed and the right light valve 1〇8 is opened, a high voltage 202ba is applied to the left light valve 1〇6 and the no voltage 202bb by the light valve controllers 116 and 118 respectively in 20′2b. A small stop voltage 2 0 2 bc is then applied to the right light valve 1 〇8. In an exemplary embodiment, applying a high voltage 202ba to the left shutter 1〇6 causes the left shutter to close, and applying no voltage to the right shutter 108 begins to open the right shutter. Subsequent application of the small stop voltage 202bc to the right shutter log in an exemplary embodiment prevents the liquid crystal in the right shutter from rotating over the opening of the right shutter 108. As a result, at 202b, the left shutter 106 is closed and the right shutter 108 is opened. If in 202c, the left shutter 106 is opened and the right shutter 1 〇 8 is closed, then in 02 02, a high voltage 202da is applied to the right shutter 108 by the shutter controllers 118 and 116, respectively. The voltage-free 202db is followed by a small charge of dust 2 0 2 dc applied to the left wide 106. In an exemplary embodiment, applying a chirp voltage 202da to the right shutter 108 causes the right shutter to close, and applying no voltage to the left shutter 106 will begin to open the left shutter. In an exemplary embodiment, subsequent application of the small stop voltage 202dc to the left shutter 1〇6 prevents the liquid crystal in the left shutter from rotating over the opening of the left shutter 1 〇 6 . As a result, at 147660.doc -10- 201119350 202d 'the left light valve i 〇 6 is opened and the right light valve 1 〇 8 is closed. In an exemplary embodiment, the magnitude of the stop voltage used in 202b and 202d is within about 1% to about 20% of the magnitude of the high voltage used in 202b and 202d. In an exemplary embodiment, during operation of system 100, during the time of method 200, during the time when left light valve 106 is closed and right light valve 1〇8 is open in 202b, a video image is presented for the right eye, and During the time when the left light valve is turned on and the right light valve 108 is turned off, a video image is presented for the left eye. In an exemplary embodiment, the video image may be displayed on or among the following: a cinema screen 102, an LCD television screen, a digital light source processing ("DLP") television, a digital light source processing projector, A plasma screen and the like. In an exemplary embodiment, the digital light source processes the projector and has a conventional i-chip digital light source processing projection system and/or a conventional 3-wafer digital light source processing projection system commercially available from Texas Instruments. In an exemplary embodiment, during operation of system 100, cPU i 14 will direct each of the light valves 1〇6 and 1〇8 to open when presenting an image intended for the light valve and the viewer's eye. In an exemplary embodiment, a synchronization signal can be used to cause shutters 106 and 1 〇 8 to open at the correct time. In an exemplary embodiment, a synchronization signal is transmitted by a signal transmitter " and the synchronization signal can, for example, comprise an infrared light. In an exemplary embodiment, signal transmitter 110 transmits the synchronization signal to a reflective surface, and the surface reflects the signal to a location and is mounted within the frame of 3D glasses 1〇4. ||丨(1) The reflective surface can be, for example, a movie 147660.doc 201119350 Cinema Screen 102 or located on the Movie Firefly _ 4 . Another reflective device on or near the crotch allows the use of the 3D glasses 104 to face the reflector substantially as the user of the jade rain watches while watching the movie. In an exemplary embodiment, the guard signal 110 can transmit the synchronization signal directly to the sensor 丨i 2 . Right-hand 丨 In the exemplary embodiment, the letter 3 sensor 1 1 2 may include a photodiode that mounts and measures the jt- & fork on the frame of the two-dimensional glasses 104. - Haitong ν L can provide a pulse at the beginning of each-left and right lens light valve sequence. The sync signal can be more frequently 'for example, supplied with a pulse to refer to the opening of V every light valve 106 or 108. The synchronization signal may be less frequent, for example, providing a -order pulse per light valve sequence 200, every five light valve sequences, or every one optical sequence. The CPU 114 may have an internal timer to maintain proper light valve sequencing in the absence of a synchronization signal. In the exemplary embodiment, the combination of the viscous liquid crystal material in the light valves 1〇6 and 1〇8 and the narrow cell gap produces an optically overly thick unit. The liquid crystals in the light valves 106 and 108 block the transmission of light when a voltage is applied. After the applied voltage is removed, the molecules in the liquid crystals in the light valves i 〇 6 and 丨〇 8 are rotated back to the alignment layer. The alignment layer orients the molecules in the liquid crystal cells to allow light transmission. In an optically thick liquid crystal cell, the liquid crystal molecules rapidly rotate after the power is removed and thus the light transmission is rapidly increased, but then the molecules are rotated too far and the light transmission is reduced. The time from the rotation of the liquid crystal cell molecules until the light transmission is stabilized (i.e., the liquid crystal molecules are stopped) is the true switching time. In an exemplary embodiment, when the light valve controller i 16 and ! 18 When a small stop voltage is applied to the light valves 106 and 1〇8, the stop voltage stops the rotation of the liquid crystal cells before the liquid crystal cells of the light valves 147660.doc 12 201119350 rotate over the head. Light transmission of the molecules in the liquid crystal cells in the light valves is stopped by stopping the rotation of the molecules before the molecules in the liquid crystal cells in the light valves 106 and 1 are rotated over the head Near its peak or peak. Therefore, the effective switching time is that the liquid crystal cells in the light valves 106 and 108 start their rotation until the rotation of the molecules in the liquid crystal cell stops at or near the peak light transmission point. Referring now to Figure 4, transmission refers to the amount of light transmitted through light valve 1〇6 or 1〇8, where transmission value 1 refers to the maximum or near maximum light transmission point of the liquid crystal cell passing through light valve 106 or 108. Thus, for a light valve 106 or 108 capable of transmitting up to 37% of the light, the transmission level 1 indicates that the light valve 1〇6 or 1〇8 is transmitting the maximum amount of available light (i.e., '37%). Of course, depending on the particular liquid crystal cell used, the maximum amount of light transmitted by the light valve 106 or 108 can be any amount, including, for example, 33%, 30%, or significantly more or less. As illustrated in FIG. 4, in an exemplary experimental embodiment, the light valve 106 or 108 is operated and the light transmission is measured during operation of the method 200. (An exemplary experimental embodiment of the light valve 106 or 108) Medium, the light valve is closed in approximately 毫秒5 milliseconds, then remains closed for approximately 7 milliseconds in the first half of the light valve cycle, and then the light valve opens to approximately 9〇% of the maximum light transmission in approximately 1 millisecond, and then The light valve remains open for approximately 7 milliseconds and then _. For comparison, also operates during operation of method 200 - a light valve is commercially available that exhibits light transmission. During the operation of the method, this exemplary implementation For example, the light transmission of the light valves 106 and 108 reaches about (10) to the transmission of the gauge within about t milliseconds (i.e., about 9% of the maximum light transmission), as shown in Figure 4, while the other 147660.doc 13 The 201119350 light valve achieves a transmission of about 25% to 30% after only about 2.5 milliseconds (i.e., about 90% of the maximum light transmission) 'as shown in Figure 4. Thus, the light valve 106 of the present exemplary embodiment and 108 provides a significantly faster response than the commercially available light valve. This is an unexpected result. 5 In an exemplary embodiment, system ι〇0 implements an operational method 500 in which signal sensor 114 receives an infrared sync ("Sync") pulse from signal transmitter 110. In 504, if the 3D glasses 104 are not in the execution mode (run MODE), the CPU 114 determines in 506 whether the 2D glasses 1〇4 is in the off mode (off MODE). In 506, if the CPU 114 determines the 3D glasses 1 〇4 is not in the off mode, then the CPU 114 continues normal processing at 508 and then returns to 502. If the CPU 114 determines in 506 that the 3D glasses 1〇4 are in the off mode, the CPU 114 clears the sync inverter in 510. ("si") and the verification flag are prepared for the next encrypted signal to prepare the CPU 114, starting a warming sequence of one of the light valves 106 and 108 in 512, and then continuing the normal operation 5〇8 and returning to the 504 if the 3D glasses 104 is in the execution mode, then cpu 114 determines in 514 whether the 3D glasses 104 have been configured for encryption. At 514, then the CPU 114 continues 508.
。在510中若傳入信號為三脈衝同步信號 ,貝1J在5 18中 若三維眼鏡104已經組態以用於加密 中之正常操作且進行至502 »在514 組態以用於加密,則在516中CPU 1 1 147660.doc 201119350 CPU 114使用信號感測器112自信號傳輸器u〇接收組態資 料。在520中CPU 114接著將該接收到的組態資料解密以判 定其是否有效。在520中,若該接收到的組態資料有效, 則在522中CPU 114檢查以查看新的,纟且態出(「CONID」)是 否匹配先前CONID。在一例示性實施例中,先前c〇nID可 儲存於一記憶體裝置(諸如’非揮發性記憶體裝置)中,該 記憶體裝置在三維眼鏡104之製造或現場程式化期間可操 作地耦接至CPU 114。在522中,若新的c〇NID不匹配先前 CONID,則在524中CPU 114指導三维眼鏡1〇4之光閥1〇6及 108進入透明模式(CLEAR MODE)。在522中,若新的 CONID匹配先前CONID,則在526中cpu 114設定31及 CONID旗標以觸發正常模式光閥序列以用於檢視三維影 像。 在一例示性實施例中,在執行或正常模式下,三維眼鏡 HM完全可操作。在—例示性實施例中,在關閉模式下, 該三維眼鏡不可操作。在一例示性實施例中,在正常模式 下,該三維眼鏡可操作且可實施方法2〇(^ 。在:例不性實施例十,信號傳輸器ιι〇可靠近影院投影 器130疋位。在一例示性實施例中’信號傳輸器⑽(尤其) 將同v L戒(「sync信號」)發送至三維眼鏡⑽之信號感 測器⑴。信號傳輸HU0可改為或額外地自影院投影器 ^及/或任何顯示器及/或任何發射器裝置接㈣步信號。 在-例示性實施例中,一加 104與不含有正被士 + 丨万it 一'准眼鏡 確加雄k號之信號傳輸器110—起操作。此 I47660.doc -15· 201119350 外’在-例示性實施例中’該加密傳輸器信號將不會正確 地致動未經配備以接收及處理加密信號之三維眼鏡1〇4。 在-例示性實施财’信號傳輸器110亦可將加密資料發 送至三維眼鏡104。 現參看® 6,在-例示性實施例巾,在操作期間系統 100實施一操作方法600,在該方法中,在6〇2中該系統 =定信號傳輸lino是否因為恰好在6G2中傳來電力而被重 設。在6G2中’若信號傳輸器u⑽為恰好傳來電力而被重 又則在604中該號傳輸器產生一新的隨機同步反相旗 标在602中,若信號傳輸器110不具有一通電重設狀況, 則在606中信號傳輸器110之CPU U〇a判定是否已使用相同 同步編碼超出—預定時間量。在—例示性實施例中,6〇6 中之預疋日寺pa’可為四個小時’或一典型電影之長度,或任 何其他合適時間。在_中,若相同同步編碼已被使用了 4 J夺以上,則在6〇4中信號傳輸器11〇之cpu ii〇a產生一新 的同步反相旗標。 H〇8中,信號傳輸器110之CPU u〇a接著判定該信號傳 輸益疋否仍在從投影器13〇接收一信號。在608中,若信號 傳輸器UG並非仍在從投影ϋ 130接收-信號,則在61〇中 :號傳輪H 11G可使用其自身的内部同步產生器繼續在適 時門將同步信號發送至信號感測器11 2。 〇操作期間,信號傳輸器11 〇可(例如)在兩脈衝同步信 號與三脈衝同步信號之間交替。在-例示性實施例t,兩 脈衝同步“號指導三維眼鏡104打開左光閥108,且三脈衝 147660.doc -16- 201119350 同步信號指導三維眼鏡104打開右光閥106。在一例示性實 施例中,信號傳輸器Π 0可在每η個信號之後發送一加密信 號。 在612中,若信號傳輸器110判定其應發送三脈衝同步信 號,則在614中該信號傳輸器判定自上一個加密循環起的 信號計數。在一例示性實施例中,信號傳輸器110在每十 個信號中僅發送一次加密信號。然而,在一例示性實施例 中,加密信號之間可存在較多或較少信號循環。在614 中,若信號傳輸器110之CPU 110a判定此並非第η個三脈衝 同步信號,則在616中CPU指導該信號傳輸器發送—標準 的三脈衝同步信號。若該同步信號為第η個三脈衝信號, 則在61 8中信號傳輸器11 〇之cpu 110a將該資料加密且在 620中CPU 110a發送一具有嵌入的組態資料之三脈衝同步 信號。在612中,若信號傳輸器11〇判定其不應發送三脈衝 同步信號,則在622中該信號傳輸器發送兩脈衝同步信 號。 。 現參看圖7及圖8 ’在一例示性實施例中,在系統100之 操作期間,信號傳輸器110實施一操作方法700,在該方法 中,組合該等同步脈衝與經編碼組態資料,然後由信號傳 輸器110加以傳輪。科丄 得% 评吕之’信號傳輸器110包括一產生一 時脈信號8 0 0之韋锻允加n± 體内。P時鐘。在702中,信號傳輸器n〇 之CPU 11 〇a判定拄邮> 〇上 J疋日寻脈k旒800是否處於時脈循環8〇2之開始 處。在7 0 2中,名;^丄咕油 右15就傳輸器110之CPU 110a判定時脈信號 800處於時脈循環 <開始處’則在7〇4中該信號傳輸器之 147660.doc 201119350 CPU檢查以查看一組態資料信號8 疋问還疋低。若組態 資料信號804為高,則在706中蔣 〒將―貧料脈衝信號8〇6設定 為一高值。若組態資料信號8〇4A/f …低’則在708中將資料脈 衝信號806設定為一低值。在—例 例不性實施例中,資料脈 衝信號806可能已包括同步信號。 现因此,在710中組合資料 脈衝信號806與同步信號且在7丨〇 社中由信號傳輸器110加以 傳輸。 在一例示性實施例中,在加密摔 也伸tF之則或之後,組態資 料信號804之加密形式可在每一 j步6唬序列期間、在 預定數目個同步信號序列之德、旗λ门止 俊嵌入同步信號序列中、與 同步信號序列重疊或與同步作妹皮 艾u 唬序列組合地發送。此外, 組態資料信號804之加密形诖·5J·少工 _ 在形式可在兩脈衝同步信號或三脈 衝同步信號或其兩者上或任何其他數目個脈衝之信號上發 送。另外,不管是否在傳輸之任—端加密同步信號,可在 同步彳S號序列之傳輸之間傳輸該加密組態資料。 在—例示性實施例中’可(例如)使用曼徹斯特編碼提供 組態資料信號804之編碼(具有或不具有同步信號序列 現參看圖2、圖5、圖8、圖9及圖1〇,在一例示性實施例 中,在系統100之操作期間,三維眼鏡1〇4實施一操作方法 900 ’在該方法中,在902中,三維眼鏡1〇4之cpu ιι4檢查 、-星模式逾時。在一例示性實施例中,902中的喚醒模 式逾時之存在由一時脈信號902a提供,該時脈信號具有一 持續時間為1〇〇毫秒之高脈衝9〇2aa,纟可每兩秒或其他預 疋夺間段出現。在一例示性實施例中,高脈衝902aa之存 147660.doc -18- 201119350 在指示一喚醒模式逾時。 在9〇2中,若cpu (⑷貞測到—喚醒逾日夺則在9〇4中古亥 咖使用信號感測器112檢查—同步信號之存在或不存 在。在9〇4一中,若CPU 114伯測到—同步信號,則在906中 该CPU使三維眼鏡1()4處於—透明操作模式下。在一例示 性實施例中,在透明操作模式下,該三維眼鏡實施方法 200及500中的一或多者的至少幾個部分:接收同步脈衝, 及/或處理組態資料804。在一例示性實施例中,在透明操 作模式下’該三維眼鏡至少可提供方法㈣之操作,如下 文所描述。 士在904中’若CPU114未偵測到-同步信f虎,則在中 该CPU使三維眼鏡1()4處於—關閉操作模式下,且接著在 ^中’該CPU檢查-唤醒模式逾時。在—例示性實施例 :在關閉操作模式下’該三維眼鏡不提供正常操作模式 或透明操作模式之特徵。 例不陡實施例中,當三維眼鏡處於關閉模式或透明 模式時’三維眼鏡104實施方法9〇〇。 現參相似圖12,在—例㈣實施例中,在系統100 _作期間’三維眼鏡104實施—暖機操作方法⑽,在 。亥方去中,在1102中’三維眼鏡之cpu 114檢查三維眼鏡 :通電。在-例示性實施例中’可藉由一使用者啟動一 、電開關或藉由一自動喚醒序列將三維眼鏡ι〇4通電。在 ,維眼鏡1〇4通電的情況下,三維眼鏡之光間腸ι〇8可 需要一暖機序列。在-時間段中不具有電力的光 147660.doc 19 201119350 閥106及108之液晶單元之分子可能處於一不明確狀態下。 在1102中,若三維眼鏡1〇4之CPU 114偵測到該三維眼鏡 之通電,則在1104中該CPU分別將交變電壓信號11〇钻及 1104b施加至光閥1〇6及1〇8。在一例示性實施例中,施加 至光閥106及108之電壓在正峰值與負峰值之間交替以避免 光閥之液晶單元中的離子化問題。在一例示性實施例中, 電壓信號11 04a及11 〇4b彼此至少部分地不同相。或者,電 壓信號1104a及1 l〇4b可能同相或完全不同相。在一例示性 實施例中’電壓信號11 〇4a及11 04b中之一者或兩者可在一 零電壓與一峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至光閥1 〇6及108,以使得光閥 之液晶單元處於一明確操作狀態。在一例示性實施例中, 施加電壓信號1104a及1104b至光閥106及108使該等光閥同 時或在不同時間打開及關閉。或者,施加電壓信號u 〇4a 及1104b使光閥106及108—直關閉。. If the incoming signal is a three-pulse synchronization signal at 510, if the 3D glasses 104 have been configured for normal operation in encryption and proceed to 502 » configured at 514 for encryption, then CPU 1 1 147660.doc 201119350 CPU 114 uses signal sensor 112 to receive configuration data from signal transmitter u. The CPU 114 then decrypts the received configuration data at 520 to determine if it is valid. In 520, if the received configuration data is valid, then at 522 the CPU 114 checks to see if the new one is present and the status ("CONID") matches the previous CONID. In an exemplary embodiment, the previous c〇nID may be stored in a memory device (such as a 'non-volatile memory device') that is operatively coupled during manufacture or field programming of the 3D glasses 104. Connected to the CPU 114. In 522, if the new c〇NID does not match the previous CONID, then in 524 the CPU 114 directs the light valves 1〇6 and 108 of the 3D glasses 1〇4 to enter the transparent mode (CLEAR MODE). In 522, if the new CONID matches the previous CONID, then at 526 cpu 114 sets 31 and the CONID flag to trigger the normal mode light valve sequence for viewing the three dimensional image. In an exemplary embodiment, the 3D glasses HM are fully operational in the Execute or Normal mode. In an exemplary embodiment, the 3D glasses are inoperable in the off mode. In an exemplary embodiment, in the normal mode, the 3D glasses are operable and can implement the method 2(^. In the example embodiment 10, the signal transmitter ιι can be clamped close to the cinema projector 130. In an exemplary embodiment, the 'signal transmitter (10) (especially) transmits the same v L ("sync signal") to the signal sensor (1) of the 3D glasses (10). The signal transmission HU0 can be changed to or additionally from the cinema projection. And/or any display and/or any transmitter device connected to the (four) step signal. In the exemplary embodiment, one plus 104 does not contain the positive + 丨 million it The signal transmitter 110 operates as such. This I47660.doc -15· 201119350 external 'in the exemplary embodiment' the encrypted transmitter signal will not properly actuate the 3D glasses that are not equipped to receive and process the encrypted signal. 1 - 4. In the exemplary implementation, the signal transmitter 110 can also send encrypted data to the 3D glasses 104. Referring now to 6, in the exemplary embodiment, the system 100 implements an operational method 600 during operation, In this method, the system is in 6〇2 = Whether the fixed signal transmission lino is reset because it just transmits power in 6G2. In 6G2, if the signal transmitter u(10) is re-transmitted just for the incoming power, then in 604 the transmitter generates a new random. The sync inversion flag is at 602. If the signal transmitter 110 does not have a power-on reset condition, then in step 606 the CPU U〇a of the signal transmitter 110 determines whether the same sync code has been used for more than a predetermined amount of time. In an exemplary embodiment, the pre-dial temple pa' in 6〇6 may be four hours' or the length of a typical movie, or any other suitable time. In _, if the same synchronization code has been used 4 J If the above is successful, a new synchronous inversion flag is generated in the cpu ii〇a of the signal transmitter 11〇4. In the H〇8, the CPU u〇a of the signal transmitter 110 then determines the signal transmission benefit. Whether a signal is still being received from the projector 13A. In 608, if the signal transmitter UG is not still receiving the - signal from the projector 130, then in the 61:: the number H 11G can use its own internal synchronization The generator continues to send the sync signal to the signal sensing at the appropriate time 11 2. During operation, the signal transmitter 11 may alternate between, for example, a two-pulse sync signal and a three-pulse sync signal. In the exemplary embodiment t, the two-pulse sync "number guides the 3D glasses 104 to open the left light Valve 108, and three pulses 147660.doc -16 - 201119350 The synchronization signal directs the 3D glasses 104 to open the right light valve 106. In an exemplary embodiment, the signal transmitter Π 0 can transmit an encrypted signal after every n signals. In 612, if signal transmitter 110 determines that it should transmit a three-pulse synchronization signal, then at 614 the signal transmitter determines the signal count from the last encryption cycle. In an exemplary embodiment, signal transmitter 110 transmits the encrypted signal only once per ten signals. However, in an exemplary embodiment, there may be more or fewer signal cycles between the encrypted signals. In 614, if CPU 110a of signal transmitter 110 determines that this is not the nth three-pulse sync signal, then in 616 the CPU directs the signal transmitter to transmit a standard three-pulse sync signal. If the sync signal is the nth three-pulse signal, then the cpu 110a of the signal transmitter 11 encrypts the data in 61 8 and the CPU 110a transmits a three-pulse sync signal with the embedded configuration data at 620. In 612, if signal transmitter 11 determines that it should not transmit a three-pulse sync signal, then at 622 the signal transmitter transmits a two-pulse sync signal. . Referring now to Figures 7 and 8 'in an exemplary embodiment, during operation of system 100, signal transmitter 110 implements an operational method 700 in which the synchronization pulses and encoded configuration data are combined, It is then passed by the signal transmitter 110. The 信号 之 ′ ′ ′ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ P clock. In 702, the CPU 11 〇a of the signal transmitter n〇 determines whether or not the 疋 & & 寻 寻 寻 寻 寻 旒 旒 旒 旒 旒 旒 旒 旒 旒 。 。 。 。 。 。 。 。 。 是否 是否 是否 是否 是否 是否 是否 是否In 702, the name of the 右 右 right 15 on the transmitter 110 of the CPU 110 determines that the clock signal 800 is in the clock cycle < at the beginning ' then in the 7 〇 4 of the signal transmitter 147660.doc 201119350 The CPU checks to see if a configuration data signal is still low. If the configuration data signal 804 is high, then in 706, Jiang 〒 sets the "lean pulse signal 8" 6 to a high value. If the configuration data signal 8〇4A/f ...low' is set, the data pulse signal 806 is set to a low value in 708. In an exemplary embodiment, the data pulse signal 806 may already include a synchronization signal. Thus, the data pulse signal 806 and the synchronization signal are combined and transmitted by the signal transmitter 110 in 710. In an exemplary embodiment, the encrypted form of the configuration data signal 804 may be in the sequence of each predetermined number of synchronization signal sequences, flag λ, during or after the encryption. The gate is embedded in the synchronization signal sequence, overlaps with the synchronization signal sequence, or is transmitted in combination with the synchronization sequence. In addition, the cryptographic profile of the profile data signal 804 can be transmitted on the two-pulse sync signal or the three-pulse sync signal or both or any other number of pulses. In addition, the encrypted configuration data can be transferred between transmissions of the synchronization 彳S number sequence, whether or not the synchronization signal is encrypted at the end of the transmission. In an exemplary embodiment, the encoding of the configuration data signal 804 can be provided, for example, using Manchester encoding (with or without a synchronization signal sequence. Referring now to Figures 2, 5, 8, 9, and 1 , In an exemplary embodiment, during operation of system 100, 3D glasses 1A implement an operational method 900'. In this method, in 902, cpu ιι4 of 3D glasses 1 检查 4 is checked, and - star mode is timed out. In an exemplary embodiment, the presence of the awake mode timeout in 902 is provided by a clock signal 902a having a high pulse of 9 〇 2 aa duration of 1 〇〇 milliseconds, or every two seconds or Other pre-capture intervals occur. In an exemplary embodiment, the high pulse 902aa is stored 147660.doc -18-201119350 in indicating a wake-up mode timeout. In 9〇2, if cpu ((4) is detected - The wake-up time-of-day capture is checked by the signal sensor 112 at 9:4, and the presence or absence of the synchronization signal is detected. In the case of the CPU 14, if the CPU 114 detects the synchronization signal, then in 906, The CPU causes the 3D glasses 1() 4 to be in the transparent operation mode. In an embodiment, in the transparent mode of operation, the 3D glasses implement at least portions of one or more of the methods 200 and 500: receiving synchronization pulses, and/or processing configuration data 804. In an exemplary embodiment In the transparent operation mode, the 3D glasses can at least provide the operation of the method (4), as described below. In 904, if the CPU 114 does not detect the synchronization letter f, the CPU makes the 3D glasses 1 () 4 is in the off-operation mode, and then in the 'CPU check-wake mode timeout. In the exemplary embodiment: in the off mode of operation' the 3D glasses do not provide a normal mode of operation or a transparent mode of operation In the case of the non-steep embodiment, the 3D glasses 104 implement the method 9 when the 3D glasses are in the closed mode or the transparent mode. Referring now to FIG. 12, in the embodiment (IV), during the system 100 '3D glasses 104 implementation - warm-up operation method (10), in the middle of the way, in 1102 '3D glasses cpu 114 check 3D glasses: power-on. In the exemplary embodiment, 'a user can start oneThe electric switch or the three-dimensional glasses ι 4 is energized by an automatic wake-up sequence. In the case where the spectacles 1 〇 4 are energized, the light-to-bed 〇 8 of the 3D glasses may require a warm-up sequence. Light without electric power 147660.doc 19 201119350 The molecules of the liquid crystal cells of valves 106 and 108 may be in an ambiguous state. In 1102, if the CPU 114 of the 3D glasses 1〇4 detects the energization of the 3D glasses, Then, in 1104, the CPU applies the alternating voltage signal 11 and 1104b to the light valves 1〇6 and 1〇8, respectively. In an exemplary embodiment, the voltage applied to the light valves 106 and 108 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, voltage signals 11 04a and 11 〇 4b are at least partially out of phase with one another. Alternatively, the voltage signals 1104a and 1 l〇4b may be in phase or completely out of phase. In one exemplary embodiment, one or both of the voltage signals 11 〇 4a and 104b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 1 〇 6 and 108 such that the liquid crystal cells of the light valve are in an unambiguous operating state. In an exemplary embodiment, voltage signals 1104a and 1104b are applied to shutters 106 and 108 to cause the shutters to open and close at the same time or at different times. Alternatively, application of voltage signals u 〇 4a and 1104b causes shutters 106 and 108 to be closed.
在施加電壓信號1104a及11 04b至光閥106及108期間,在 1106中,CPU 114檢查一暖機逾時。在11〇6中,若CPU 114偵測到一暖機逾時,則在1108中該cpu將停止將電壓 信號1104a及1104b施加至光閥106及108。 在一例示性實施例中,在1104及11 06中,CPU 114在一 足以致動該等光閥之該等液晶單元之時間段中將電壓信號 11 04a及1 1 04b施加至光閥1 〇6及1 〇8。在一例示性實施例 中,CPU 114在兩秒之逾時時段中將電壓信號}丨〇4a及 1 1 0 4 b施加至光閥1 〇 6及10 8。在一例示性實施例中,電壓 I47660.doc -20- 201119350 信號1104a及ll〇4b之最大量值可為14伏特。在一例示性實 施例中’ 11G6中之逾時時段可為兩秒。在_例示性實施例 中’電壓信號iHMa及U〇4b之最大量值可大於或小於以伏 特,且逾時時段可更長或更短。在一例示性實施例中,在 方法1100期間,⑽114可以一不同於用於觀看電影之速 率的速率打開及關閉光閥106及108。在—例示性實施例 中在1104中,施加至光閥及1〇8之電壓信號11〇私及 1104b以一不同於用於觀看電影之速率的速率交替。在一 例示性實施例中’在1104中,施加至光閥1〇6及1〇8之電壓 :言號不交替,且在暖機時間段期間被持續施加,且因此該 等光閥之液晶單元在整個暖機時段中可保持不透明。在一 例示性實施例中’暖機方法1100可在同步信號存在或不存 在的情況下發生。因此,方法11〇〇為三維眼鏡ι〇4提供一 暖機操作模式。在-例示性實施例中,在實施暖機方法 1100之後,三維眼鏡處於一正常執行操作模式下且接著可 實施方法200。或者,纟一例示性實施例中在實施暖機 方法11GG之後’三維眼鏡處於-透明操作模式下且接著可 實施下文所描述之方法13〇〇。 現參看圖13及圖14,在一例示性實施例中,在系統⑽ 之操作期間,三維眼鏡1〇4實施一操作方法13〇〇,在該方 法中,在蘭中,CPU 114檢查以查看由信號感測器丄⑵貞 測到的同步信號是有效還是無效。在13〇2中,若cpu HA 判疋同步信號無效,則在13G4中該cpu將電壓信號13仏 及1304b施加至三維眼鏡1〇4之光閥1〇6及1〇8。在一例示性 147660.doc -21 · 201119350 實施例中,施加至光閥106及108之電壓在正峰值與負峰值 之間交替以避免光閥之液晶單元中的離子化問題。在—例 示性實施例中,電壓信號n 〇4&及丨丨〇4b中之一者或兩者可 在一零電壓與一峰值電壓之間交替。在一例示性實施例 中,可將其他形式之電壓信號施加至光閥1〇6及1〇8,以使 得光閥之液晶單元保持打開,使得三維眼鏡1〇4之使用者 可透過糾正常地查H例示性實施射,施加電壓 信號1104&及i 104b至光閥106及1〇8使該等光閥打開。 在施加電壓信號13043及13〇41)至光閥1〇6及1〇8期間在 1306中’ CPU 114檢查-清除逾時卜⑹㈣_叫。在 1306 中,若 CPU 1 CPU將停止將電壓 108 ° 14偵測到一清除逾時,則在1308中該 信號13〇4&及U〇4b施加至光閥106及 因此,在一例示性實施例中,若三維眼鏡HM未偵測到 一有效同步信號,則該三维 — > 、准眼鏡可轉至一透明操作模式且 貫鉍方法1300。在透明操作 、 软式下,在一例示性實施例 中’二維眼鏡1 〇 4之光關丨^ n 及108均保持打開,使得觀看 者可通過三維眼鏡之光閥正 于靦看 ., Λ 也觀看。在一例示性實施例 中,她加一正負交替的恆定 电&以將三維眼鐘之#關1 η/ς 及108之液晶單元維持在— 详艮镜之九閥106 在2至3伏特之範圍内,二狀態。該怪定電壓可(例如) 明光閥之任何其他電壓&電壓可為適合維持適度透 104之光閥及108可保 例不性實施财,三維眼鏡 證一加密信號。在—例示月,直至該三維眼鏡能夠驗 ,、’實施例令,可以允許三維眼鏡 147660.doc -22. 201119350 之使用者正常地觀看之一速率交替地打開及關閉三維眼鏡 之光閥106及108。 因此’方法1300提供一種清除三維眼鏡1 〇4之操作之方 法,且藉此提供一透明操作模式。 現參看圖1 5 ’在一例示性實施例中,在系統1 〇〇之操作 期間’三維眼鏡1 〇4實施一種監視電池12〇之方法15〇〇,在 該方法中’在1 502中,三維眼鏡之CPU 114使用電池感測 器122判定電池之剩餘可用壽命。在15〇2中,若三維眼鏡 之cpu II4判定電池120之剩餘可用壽命不足,則在15〇4中 CPU提供低電池壽命狀況之一指示。 在一例示性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段。在一例示性實施例中,充足的剩 餘電池壽命可由三維眼鏡之製造商預先設定及/或由三維 眼鏡之使用者程式化。 在一例示性實施例中,在1504中,三維眼鏡104之CPU U4將藉由使三維眼鏡之光閥ι〇6及ι〇8緩慢閃爍、藉由使 光閥同時以可被三維眼鏡之使用者看見之一中等速率閃 爍、藉由使一指示燈閃光、藉由產生一可聽聲音及其類似 動作而指示一低電池壽命狀況 在一例示性實施例中,若三維眼鏡1〇4之CPU 114偵測到 剩餘電池壽命不足以持續一規定時間段,則在丨5〇4中三維 眼鏡之CPU將指示一電池電力偏低狀況且接著防止使用者 開啟三維眼鏡。 在一例示性實施例中’每當三維眼鏡轉變至透明操作模 147660.doc •23· 201119350 式時,三維眼鏡1〇4之CPU 114判定剩餘電池壽命是否足 夠。 在一例不性實施例中’若三維眼鏡之Cpu 114判定電池 將持續至少預定足夠時間量,則三維眼鏡將繼續正常操 作。正常操作可包括保持在透明操作模式下五分鐘,同時 檢查來自信號傳輸器11〇之有效信號,然後轉至一關閉模 式’在該模式中三維眼鏡104週期性地醒來以檢查來自信 號傳輸器之信號。 在一例示性實施例中,三維眼鏡i 〇4之cpu i丨4恰在關掉 三維眼鏡之前檢查電池電力偏低狀況。在一例示性實施例 中’若電池120將不能持續該預定的足夠剩餘壽命時間, 則光閥106及1 08將開始緩慢閃爍。 在一例示性實施例中,若電池12〇將不能持續該預定的 足夠剩餘壽命時間,則光閥1〇6及/或1〇8將在兩秒内處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 内處於一透明狀況(亦即,液晶單元打開)。光閥丄〇6及/或 108關閉及打開的時間段可為任何時間段。 在一例示性實施例中,三維眼鏡1〇4可在任何時間(包括 在暖機期間、在正常操作期間、在透明模式期間、在斷電 模式期間,或於任何狀況之間轉變時)檢查電池電力偏低 狀況。在一例示性實施例中,若在觀看者可能在看電影之 中途時偵測到一低電池壽命狀況,則三維眼鏡1〇4可不立 即指示該電池電力偏低狀況。 在一些實施例中,若三維眼鏡1〇4之CPU 114偵測到一電 147660.doc -24- 201119350 池電力偏低位準’則使用者將不能夠將三維眼鏡通電。 現參看圖16,在一例示性實施例中,一測試器16〇〇可緊 接三維眼鏡104定位以便證實三維眼鏡在正常工作。在一 例示性實施例中,測試器1600包括用於將測試信號l6〇〇b 傳輸至該三維眼鏡之信號感測器丨12的一信號傳輸器 1600a。在一例示性實施例中,測試信號16〇〇b可包括一同 步信號’其具有一低頻率速率以使三維眼鏡1 〇4之光閥1 〇6 及108以可被三維眼鏡之使用者看見之一低速率閃爍。在 一例示性實施例中’光閥106及108不能回應於測試信號 1 600b而閃爍可指示三維眼鏡1 〇4不能正常操作。 現參看圖17 ’在一例示性實施例中,三維眼鏡1 〇4進一 步包括一可操作地耦接至CPU 114、光閥控制器116及 118、電池120之電荷泵17〇0,其用於將電池之輸出電壓轉 換成一較高輸出電壓以供操作光閥控制器之用。 參看圖18、圖18a、圖18c、圖18c及圖18d,提供三維眼 鏡1 800之一例示性實施例,該三維眼鏡在設計及操作上實 質上等同於上文所說明及描述之三維眼鏡1〇4,惟下文所 說明的方面除外。三維眼鏡1800包括一左光閥18〇2、一右 光閥1804、一左光閥控制器1806、一右光閥控制器18〇8、 一CPU 1810、一電池感測器丨812、一信號感測器1814及一 電荷泵1 8 1 6。在一例示性實施例中,三維眼鏡丨8〇〇之左光 閥1802、右光閥1804、左光閥控制器1806、右光閥控制器 1808、CPU 1810、電池感測器1812、信號感測器1814及電 荷系1816的設計及操作實質上等同於上文所描述及說明的 147660.doc -25· 201119350 三維眼鏡104之左光閥106、右光閥108、左光閥控制器 11 6、右光閥控制器118、CPU 114、電池感測器122、信號 感測器112及電荷泵1700。 在一例示性實施例中,三維眼鏡1 800包括以下組件:During the application of voltage signals 1104a and 104b to shutters 106 and 108, in 1106, CPU 114 checks for a warm-up timeout. In 11〇6, if CPU 114 detects a warm-up timeout, then in 1108 the cpu will stop applying voltage signals 1104a and 1104b to light valves 106 and 108. In an exemplary embodiment, in 1104 and 106, the CPU 114 applies voltage signals 11 04a and 1 1 04b to the light valve 1 〇 6 during a period of time sufficient to actuate the liquid crystal cells of the light valves. And 1 〇 8. In an exemplary embodiment, CPU 114 applies voltage signals 丨〇4a and 1 1 0 4 b to light valves 1 〇 6 and 10 8 in a two second time period. In an exemplary embodiment, the maximum magnitude of the voltages I47660.doc -20-201119350 signals 1104a and 11b4b may be 14 volts. The timeout period in '11G6' may be two seconds in an exemplary embodiment. In the exemplary embodiment, the maximum magnitude of the voltage signals iHMa and U〇4b may be greater or less than volts, and the timeout period may be longer or shorter. In an exemplary embodiment, during method 1100, (10) 114 may open and close light valves 106 and 108 at a different rate than the rate at which the movie is viewed. In the exemplary embodiment, in 1104, the voltage signals 11 and 1104b applied to the light valve and 1〇8 alternate at a different rate than the rate at which the movie is viewed. In an exemplary embodiment, 'in 1104, the voltages applied to the light valves 1〇6 and 1〇8: the words do not alternate, and are continuously applied during the warm-up period, and thus the liquid crystals of the light valves The unit remains opaque throughout the warm-up period. In an exemplary embodiment, the warm-up method 1100 can occur in the presence or absence of a synchronization signal. Therefore, the method 11 provides a warm-up mode of operation for the three-dimensional glasses ι〇4. In an exemplary embodiment, after the warm-up method 1100 is implemented, the 3D glasses are in a normal execution mode of operation and then the method 200 can be implemented. Alternatively, in an exemplary embodiment, after the warm-up method 11GG is implemented, the 3D glasses are in the -transparent mode of operation and then the method 13 described below can be implemented. Referring now to Figures 13 and 14, in an exemplary embodiment, during operation of the system (10), the 3D glasses 1A implement an operational method 13A in which the CPU 114 checks to view Whether the sync signal detected by the signal sensor 丄(2) is valid or invalid. In 13〇2, if the cpu HA judges that the synchronization signal is invalid, the cpu applies voltage signals 13A and 1304b to the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 in 13G4. In an exemplary embodiment of 147660.doc - 21 · 201119350, the voltages applied to light valves 106 and 108 alternate between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, one or both of the voltage signals n 〇 4 & and 丨丨〇 4b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 1〇6 and 1〇8 to keep the liquid crystal cell of the light valve open, so that the user of the 3D glasses 1〇4 can correct the problem. The H is exemplarily implemented, and the voltage signals 1104 & and i 104b are applied to the light valves 106 and 1 使 8 to cause the light valves to open. During the application of the voltage signals 13043 and 13〇41) to the light valves 1〇6 and 1〇8, the CPU 114 checks the -out timeout (6)(4)_call. In 1306, if the CPU 1 CPU will stop detecting the voltage 108° 14 for a clear timeout, then in 1308 the signals 13〇4& and U〇4b are applied to the light valve 106 and thus, in an exemplary implementation For example, if the 3D glasses HM do not detect a valid synchronization signal, the 3D-> and the glasses can be transferred to a transparent operation mode and the method 1300 is performed. In a transparent operation, soft mode, in an exemplary embodiment, the 'two-dimensional glasses 1 〇 4 light barriers n and 108 are kept open, so that the viewer can see through the light valve of the three-dimensional glasses. Λ Also watch. In an exemplary embodiment, she adds a positive and negative alternating constant current & to maintain the liquid crystal cell of the #3 11 ς/ς and 108 of the three-dimensional eye clock - the nine-valve 106 of the mirror is at 2 to 3 volts. Within the range, two states. The strange voltage can be, for example, any other voltage & voltage of the light valve that can be used to maintain a moderately transparent light valve and 108 can be used to protect the 3D glasses. In the month of exemplification, until the 3D glasses can be tested, the embodiment can allow the user of the 3D glasses 147660.doc -22. 201119350 to normally open and close the light valve 106 of the 3D glasses at a rate 108. Thus, the method 1300 provides a method of clearing the operation of the 3D glasses 1 , 4 and thereby providing a transparent mode of operation. Referring now to Figure 1 5 'in an exemplary embodiment, during operation of system 1 ', '3D glasses 1 实施 4 implement a method 15 of monitoring battery 12 〇〇 in which 'in 1 502, The CPU 114 of the 3D glasses uses the battery sensor 122 to determine the remaining useful life of the battery. In 15〇2, if the cpu II4 of the 3D glasses determines that the remaining usable life of the battery 120 is insufficient, the CPU provides an indication of a low battery life condition at 15〇4. In an exemplary embodiment, insufficient remaining battery life may, for example, be any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life may be pre-set by the manufacturer of the 3D glasses and/or programmed by the user of the 3D glasses. In an exemplary embodiment, in 1504, the CPU U4 of the 3D glasses 104 will be used by the 3D glasses by making the light valves simultaneously flashing the light valves ι6 and ι8 of the 3D glasses. One of the medium rate flickers is seen, indicating a low battery life condition by flashing an indicator light, by generating an audible sound, and the like, in an exemplary embodiment, if the CPU of the 3D glasses 1〇4 114 detects that the remaining battery life is insufficient for a specified period of time, then the CPU of the 3D glasses in 丨5〇4 will indicate a low battery condition and then prevent the user from turning on the 3D glasses. In an exemplary embodiment, whenever the 3D glasses are shifted to the transparent operation mode 147660.doc • 23· 201119350, the CPU 114 of the 3D glasses 1〇4 determines whether the remaining battery life is sufficient. In an exemplary embodiment, if the CPU 114 of the 3D glasses determines that the battery will continue for at least a predetermined amount of time, the 3D glasses will continue to operate normally. Normal operation may include remaining in the transparent mode of operation for five minutes while checking the valid signal from the signal transmitter 11 and then going to an off mode in which the 3D glasses 104 wake up periodically to check from the signal transmitter Signal. In an exemplary embodiment, the cpu i丨4 of the 3D glasses i 〇 4 checks for a low battery power condition just before turning off the 3D glasses. In an exemplary embodiment, if the battery 120 will not last for the predetermined sufficient remaining life time, the shutters 106 and 108 will begin to flash slowly. In an exemplary embodiment, if the battery 12〇 will not last for the predetermined sufficient remaining life time, the light valve 1〇6 and/or 1〇8 will be in an opaque condition within two seconds (ie, the liquid crystal cell Off) and then in a transparent condition within one tenth of a second (ie, the liquid crystal cell is turned on). The period in which the light valve 丄〇6 and/or 108 is closed and opened may be any period of time. In an exemplary embodiment, the 3D glasses 1〇4 can be inspected at any time, including during warm-up, during normal operation, during transparent mode, during power-down mode, or between any conditions. Battery power is low. In an exemplary embodiment, if a low battery life condition is detected while the viewer is likely to be in the middle of a movie, the 3D glasses 1〇4 may not immediately indicate that the battery power is low. In some embodiments, if the CPU 114 of the 3D glasses 1〇4 detects an electric 147660.doc -24-201119350 pool power low level, the user will not be able to power the 3D glasses. Referring now to Figure 16, in an exemplary embodiment, a tester 16 can be positioned in close proximity to the 3D glasses 104 to verify that the 3D glasses are functioning properly. In an exemplary embodiment, tester 1600 includes a signal transmitter 1600a for transmitting test signal 16B to the signal sensor 丨12 of the 3D glasses. In an exemplary embodiment, the test signal 16〇〇b may include a synchronization signal 'which has a low frequency rate such that the light valves 1 〇 6 and 108 of the 3D glasses 1 〇 4 are visible to the user of the 3D glasses. One of the low speeds flashes. In an exemplary embodiment, the light valves 106 and 108 are not responsive to the test signal 1 600b and flashing may indicate that the 3D glasses 1 〇 4 are not operating properly. Referring now to Figure 17, in an exemplary embodiment, the 3D glasses 1 further includes a charge pump 17A operatively coupled to the CPU 114, the light valve controllers 116 and 118, and the battery 120 for use in The output voltage of the battery is converted to a higher output voltage for operation of the light valve controller. Referring to Figures 18, 18a, 18c, 18c and 18d, an exemplary embodiment of a 3D glasses 1 800 is provided that is substantially identical in design and operation to the 3D glasses 1 described and described above. 〇 4, except for the aspects described below. The 3D glasses 1800 includes a left light valve 18〇2, a right light valve 1804, a left light valve controller 1806, a right light valve controller 18〇8, a CPU 1810, a battery sensor 丨812, and a signal. The sensor 1814 and a charge pump 1 8 16 are provided. In an exemplary embodiment, the left light valve 1802, the right light valve 1804, the left light valve controller 1806, the right light valve controller 1808, the CPU 1810, the battery sensor 1812, the sense of signal The design and operation of the detector 1814 and the charge system 1816 are substantially identical to the 147660.doc -25·201119350 left light valve 106, right light valve 108, and left light valve controller 11 6 of the 3D glasses 104 described and illustrated above. The right light valve controller 118, the CPU 114, the battery sensor 122, the signal sensor 112, and the charge pump 1700. In an exemplary embodiment, 3D glasses 1 800 includes the following components:
名稱 值/ID : R12 10K R9 100K D3 BAS7004 R6 4.7K D2 BP104FS R1 10M C5 _luF R5 20K U5-2 MCP6242 R3 10K C6 _luF C7 _001uf C10 •33uF R7 1M D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M R11 330K U6 MCP111 R13 100K U3 PIC16F636 Cl 47uF C2 .luF R8 10K RIO 20K R14 10K R15 100K 01 NDS0610 D6 MAZ31200 D5 BAS7004 LI lmh Cll luF C3 • luF U1 4052 R511 470 C8 .luF C4 .luF 147660.doc -26- 201119350 名稱 值/ID U2 4052 R512 470 C1 47uF C11 luf 左透鏡 LCD 1 右透鏡 LCD 2 BT1 3 V Li 在一例示性實施例中,左光閥控制器1 806包括一數位控 制類比開關U1,該開關在CPU 18 10的控制下,視操作模 式而在左光閥1802上施加一電壓以用於控制左光閥之操 作。以類似方式,右光閥控制器1808包括一數位控制類比 開關U2,該開關在CPU 1 810的控制下,視操作模式而在 右光閥1 804上施加一電壓以用於控制右光閥之操作。在一 例示性實施例中,U1及U2為習知的可自unisonic Technologies或Texas Instruments購得的零件號碼分別為 UTC 4052及TI 4052的數位控制類比開關。 如一般熟習此項技術者將認識到,4052數位控制類比開 關包括控制輸入信號A、B及INHIBIT(禁止)(「INH」)、開 關 1/0½ 號 X〇、XI、X2、X3、Υ〇、γι、γ2及 γ3,以及輸 出信號X及Y,且進一步提供以下真值表: 真值表 控制輸入 禁止 選擇 接通開關 B A 0 0 0 Υ〇 Χ0 0 0 1 γι χι 0 1 0 Υ2 Χ2 0 1 1 Υ3 Χ3 1 X X 無 x=任意值 147660.doc -27- 201119350 且’如圖1 9中所說明,4052數位控制類比開關亦提供一 功能圖1900。因此’ 4052數位控制類比開關提供各自具有 兩個獨立開關的數位控制類比開關,其准許左光閥控制器 1806及右光閥控制器1808選擇性地在左光閥18〇2及右光閥 1804上施加一受控電壓以控制光閥之操作。 在一例示性實施例中’ CPU 18 10包括一微控制器U3, 其用於產生用於控制左光閥控制器1806及右光閥控制器 1 808之數位控制類比開關U1及U2之操作的輸出信號a、 B、C、D及E。微控制器U3之輸出控制信號a、B及C將以 下輸入控制信號A及B提供給數位控制類比開關u丨及U2中 之每一者:Name Value/ID : R12 10K R9 100K D3 BAS7004 R6 4.7K D2 BP104FS R1 10M C5 _luF R5 20K U5-2 MCP6242 R3 10K C6 _luF C7 _001uf C10 •33uF R7 1M D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M R11 330K U6 MCP111 R13 100K U3 PIC16F636 Cl 47uF C2 .luF R8 10K RIO 20K R14 10K R15 100K 01 NDS0610 D6 MAZ31200 D5 BAS7004 LI lmh Cll luF C3 • luF U1 4052 R511 470 C8 .luF C4 .luF 147660.doc -26- 201119350 Name Value /ID U2 4052 R512 470 C1 47uF C11 luf Left lens LCD 1 Right lens LCD 2 BT1 3 V Li In an exemplary embodiment, the left light valve controller 1 806 includes a digital control analog switch U1, which is in the CPU 18 Under the control of 10, a voltage is applied to the left shutter 1802 depending on the mode of operation for controlling the operation of the left shutter. In a similar manner, the right light valve controller 1808 includes a digital control analog switch U2 that, under the control of the CPU 1 810, applies a voltage to the right light valve 1 804 depending on the mode of operation for controlling the right light valve. operating. In an exemplary embodiment, U1 and U2 are conventional digitally controlled analog switches available from unisonic Technologies or Texas Instruments with part numbers UTC 4052 and TI 4052, respectively. As will be appreciated by those skilled in the art, the 4052 digital control analog switch includes control input signals A, B and INHIBIT ("INH"), switch 1/01⁄2 X〇, XI, X2, X3, Υ〇 , γι, γ2, and γ3, and output signals X and Y, and further provide the following truth table: Truth table control input disable selection switch ON switch BA 0 0 0 Υ〇Χ0 0 0 1 γι χι 0 1 0 Υ2 Χ2 0 1 1 Υ3 Χ3 1 XX No x=arbitrary value 147660.doc -27- 201119350 and 'as illustrated in Figure 19. The 4052 digital control analog switch also provides a functional diagram 1900. Thus the '4052 digital control analog switch provides digital control analog switches each having two independent switches that permit the left light valve controller 1806 and the right light valve controller 1808 to selectively be in the left light valve 18〇2 and the right light valve 1804. A controlled voltage is applied to control the operation of the light valve. In an exemplary embodiment, 'CPU 18 10 includes a microcontroller U3 for generating operations for controlling the left light valve controller 1806 and the right light valve controller 1 808 to control the operation of the analog switches U1 and U2. Output signals a, B, C, D, and E. The output control signals a, B, and C of the microcontroller U3 provide the following input control signals A and B to each of the digital control analog switches u丨 and U2:
U3-輸出控制信號 U1-輸入控制信號 U2-輸入控制信號 A A B A C B B 在一例示性實施例中,微控制器U3之輸出控制信號D及 E提供或以其他方式實現數位控制類比開關川及U2之開關 I/O信號 X0、XI、X2、X3、Y0、Yl、Y2及 Y3。 U3-輸出控制信號 U1-開關I/O信號 U2-開關I/O信號 D X3,Y1 X0,Y2 E Χ3,Υ1 Χ0,Υ2 在一例示性實施例中’ CPU 1810之微控制器U3為可自 Microchip購得的可程式化微控制器,型號為PIC16F636。 在一例示性實施例中,電池感測器1812包括用於感測電 池120之電壓的一電力偵測器U6。在一例示性實施例中, 電力偵測器U6為可自Microchip購得之型號為MCP111的微 147660.doc -28- 201119350 功率電壓偵測器。 在例不性實施例中’信號感測器丨8丨4包括用於感測信 號傳輸盗U〇對信號(包括同步信號及/或組態資料)之傳輸 的光電一極體02。在一例示性實施例中,光電二極體 D2為可自〇sram購得之型號為bP1〇4FS的光電二極體。在 一例不性實施例中,信號感測器1814進一步包括運算放大 器U5-1及U5-2,及相關信號調節組件:電阻器R1、R2、 R3、R4、R5、R6、R7、R9、R1 i 及 R12、電容器 C5、 C6、C7及C10,以及肖特基二極體D丨及D3。 在一例示性實施例中’電荷泵丨8丨6使用一電荷泵將電池 120之輸出電壓之量值自3 V放大至-12 V。在一例示性實 施例中’電荷泵1 8 1 6包括一 MOSFET Q1、一肖特基二極體 D5、一電感器l 1及一齊納二極體D6。在一例示性實施例 中’提供電荷泵1 8 16之輸出信號以作為左光閥控制器1 806 之數位控制類比開關U1之開關I/O信號X2及Y0之輸入信 號’及右光閥控制器1 808之數位控制類比開關U2之開關 I/O信號X3及Y1之輸入信號。 如圖20中所說明,在一例示性實施例中,在三維眼鏡 1800之操作期間,在CPU 18 10之控制信號A、B、C、D及 E的控制下’數位控制類比開關⑴及U2可在左光閥1802及 右光閥1804中之一者或兩者上提供各種電壓。詳言之,在 CPU 1810之控制信號a、B、C、D及E的控制下,數位控 制類比開關U1及U2可提供:1)左光閥1802及右光閥1804中 之一者或兩者上的正或負15伏特;2)左光閥及右光閥中之 147660.doc •29· 201119350 一者或兩者上的在2至3伏特範圍内之正或負電壓;或3)在 左光閥及右光閥中之一者或兩者上提供〇伏特(亦即,中性 狀態)。在一例示性實施例中,在CPU 18 10之控制信號A、 B、C、D及E的控制下,數位控制類比開關υι及U2可藉由 (例如)組合+3伏特與-12伏特來提供15伏特,從而達成左光 閥1802及右光閥1804中之一者或兩者上的15伏特之差異 (differential)。在一例示性實施例中,在cpu 1810之控制 信號A、B、C、D及E的控制下,數位控制類比開關ui及 U2可(例如)藉由用一分壓器(包括組件R8&R1〇)將電池ι2〇 之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 或者’在CPU 1 8 1 0之控制信號A、B、C、D及E的控制 下,數位控制類比開關⑴及仍可提供:υ左光閥18〇2及右 光閥1 804中之一者或兩者上的正或負丨5伏特;2)左光閥及 右光閥中之一者或兩者上的約2伏特之正或負電壓;3)左 光閥及右光閥中之一者或兩者上的約3伏特之正或負電 壓,或4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即,中性狀態)。在一例示性實施例中,在Cpu 1 8 1 〇之 控制信號A、B、C、D及E的控制下,數位控制類比開關 u 1及U2可藉由(例如)組合+3伏特與-12伏特來提供15伏 特’從而達成左光閥18〇2及右光閥1804中之一者或兩者上 的1 5伏特之差異。在一例示性實施例中,在cpu 1 8丨〇之 控制信號A、B、C、D及E的控制下,數位控制類比開關 u 1及U2可(例如)藉由用一分壓器(包括組件R8及R丨〇)將電 池12 0之3伏特輸出電壓減少至2伏特來提供2伏特止擋電 147660.doc •30· 201119350 壓。 現參看圖2 1及圖22,在一例示性實施例中,在三維眼鏡 1 800之操作期間,該三維眼鏡執行一正常執行操作模式 2 100,在該模式中,將由CPU 1 8 10產生之控制信號a、 B、C、D及E用以控制左光閥控制器1 806及右光閥控制器 1808之操作,從而又依據信號感測器1814所偵測到的同步 信號之類型來控制左光閥1802及右光閥1804之操作。 詳言之,在2102中,若CPU 1810判定信號感測器1814已 接收一同步信號,則在2104中,該CPU判定所接收的同步 信號之類型。在一例示性實施例中,一包括3個脈衝之同 步信號指示左光閥1802應關閉且右光閥1 804應打開,而一 包括2個脈衝之同步信號指示該左光閥應打開且該右光閥 應關閉。更一般而言,可將任何數目個不同脈衝用以控制 左光閥1802及右光閥1804之打開及關閉。 在2104中,若CPU 1810判定所接收的同步信號指示左光 閥1802應關閉且右光閥18〇4應打開,則在2106中,該CPU 將控制信號A、B、C、D及E傳輸至、左光閥控制器18〇6及右 光閥控制器1808,以將一高電壓施加至左光閥丨8〇2且將無 電壓隨後接著一小止檔電壓施加至右光閥丨8〇4。在一例示 性實施例中’在2106中施加至左光閥1802的高電壓之量值 為15伏特。在一例示性實施例中,在21〇6中施加至右光閥 1804的止擋電壓之量值為2伏特。在一例示性實施例中, 在21 06中,藉由將控制信號〇之操作狀態(其可為低、高或 打開)控制為打開,藉此啟用分壓器組件尺8及R1 〇之操作, 147660.doc 31 201119350 且將控制信號E維持在一高狀態而將止擋電壓施加至右光 閥1804。在一例示性實施例中,21〇6令該止擋電壓至右光 閥1804之施加被延遲一預定時間段,以允許該右光閥之液 曰曰内之分子在5亥預疋時間段期間較快速地旋轉。在該預定 時間段期滿之後隨後施加該止擋電壓接著防止右光閥18〇4 中之液晶内之分子在右光閥之打開期間旋轉過頭。 或者,在2 104中,若CPU 1820判定所接收的同步信號指 示左光閥1802應打開且右光閥丨8〇4應關閉,則在2丨〇8中, 該CPU將控制信號a、b、c、D及E傳輸至左光閥控制器 1806及右光閥控制器18〇8,以將一高電壓施加至右光閥 1 804且將無電壓隨後接著一小止擋電壓施加至左光閥 1802。在一例示性實施例中,在21〇8中施加至右光閥18〇4 的咼電壓之里值為15伏特。在一例示性實施例中,在21 〇 8 中施加至左光閥1802的止擋電壓之量值為2伏特。在一例 不性實施例中,在2 1 08中,藉由將控制信號£)控制為打 開’藉此啟用分壓器組件以及尺⑺之操作,且將控制信號 E維持在一高位準而將該止擋電壓施加至左光閥18〇2。在 一例不性實施例中,2108中該止擋電壓至左光閥18〇2之施 加被延遲一預定時間段,以允許左光閥之液晶内之分子在 該預定時間段期間較快速地旋轉。在該預定時間段期滿之 後隨後施加止擋電壓接著防止左光閥丨8〇2中之液晶内之分 子在左光閥之打開期間旋轉過頭。 在一例示性實施例中’在方法21〇〇期間,在步驟21〇6及 2108之後續重複中’施加至左光閥18〇2及右光閥18〇4之電 147660.doc -32- 201119350 壓交替地為正及負’以防止對左光閥及右光閥之液晶單元 之損害。 因此,方法2100為三維眼鏡18〇〇提供一正常或執行操作 模式。 現參看圖23及圖24,在一例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一暖機操作方法23〇〇,在 該方法中,將由CPU 1810產生之控制信號A、B、c、〇及 E用以控制左光閥控制器18〇6及右光閥控制器18〇8之操 作’從而又控制左光閥1802及右光閥18〇4之操作。 在2302中,三維眼鏡之cPU 1810檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡181〇可透過一使用者 啟動一通電開關或透過一自動喚醒序列而通電。在三維眼 鏡1810通電的情況下,三維眼鏡之光閥18〇2及18〇4可能 (例如)需要一暖機序列。在一時間段中不具有電力的光閥 1802及1804之液晶單元可能處於一不明確狀態下。 在2302中,若三維眼鏡1800之cpu 1810偵測到該三維眼 鏡之通電,則在2304中,該CPU分別將交變電壓信號 2304a及2304b施加至左光閥18〇2及右光閥180〇在一例示 性實施例中’施加至左光閥18〇2及右光閥1804之電壓在正 峰值與負峰值之間交替以避免光閥之液晶單元中的離子化 問題。在一例示性實施例中,電壓信號23〇4a及23〇4b可彼 此至少部分地不同相。在一例示性實施例中,電壓信號 23 04a及2304b中之一者或兩者可在一零電壓與一峰值電壓 之間交替。在一例示性實施例中,可將其他形式之電壓信 147660.doc -33- 201119350 號施加至左光閥1802及右光閥1 804,以使得光閥之液晶單 元處於一明確操作狀態。在一例示性實施例中’施加電壓 信號2304a及2304b至左光閥1802及右光閥1804使該等光閥 同時或在不同時間打開及關閉。或者,施加電壓信號 23 04a及23 04b至左光閥1802及右光閥1 804可使該等光閥保 持關閉。 在施加電壓信號2304a及2304b至左光閥1802及右光閥 1804期間,在2306中,CPU 1810檢查一暖機逾時。在2306 中’若CPU 1810偵測到一暖機逾時,則在2308中,CPU將 停止施加電壓信號2304a及2304b至左光閥1802及右光閥 1804 ° 在一例示性實施例中,在2304及2306中,CPU 1810在一 足以致動該等光閥之液晶單元之時間段中將電壓信號 2304a及2304b施加至左光閥18〇2及右光閥1804。在一例示 性貫施例中’ CPU 1 8 10在兩秒之時段中將電壓信號23〇4a 及2304b施加至左光閥1 8〇2及右光閥1 8〇4。在一例示性實 施例中,電壓信號23 04a及23 04b之最大量值可為15伏特。 在一例示性實施例中,2306中之逾時時段可為兩秒。在一 例示性實施例中,電壓信號23〇4a及23〇仆之最大量值可大 於或小於15伏特,且逾時時段可更長或更短。在一例示性 實施例中,在方法2300期間,CPU 181〇可以一不同於可用 於觀看電影之速率的速率打開及關閉左光閥副2及右光間 1804。在一例示性實施例中,在2304中,施加至左光閥 1802及右光閥i8G4之電壓信號不交替,且在暖機時間段期 I47660.doc •34· 201119350 門持、’男把加且因此該等光閥之液晶單元在整個暖機時段 中可保持不透明。在—例示性實施例中,暖機方法23〇〇可 在同步信號存在或不存在的情況下發生。因此,方法23〇〇 為三維眼鏡1800提供一暖機操作模式。在一例示性實施例 中,在實施暖機方法2300之後,三維眼鏡18〇〇處於一正常 或執行操作模式下且接著可實施方法2丨〇〇。或者,在一例 示性實施例中,在實施暖機方法23〇〇之後,三維眼鏡18〇〇 處於一透明操作模式下且接著可實施下文所描述之方法 2500 〇 現參看圖25及圖26,在一例示性實施例中,在三維眼鏡 1 800之操作期間,三維眼鏡實施一操作方法,在該方 法中,由CPU 1 8 10產生之控制信號A、B、cE用以 控制左光閥控制器1806及右光閥控制器18〇8之操作,從而 又依據由k號感測器1 814接收的同步信號來控制左光閥 1802及右光閥1804之操作。 在2502中,CPU 1 8 10檢查以查看信號感測器丨8丨4所偵測 到的同步彳a说疋有效還是無效。在2502中,若CPU 1 8 10判 定同步信號無效,則在2504中,CPU將電壓信號25〇4a及 2504b施加至三維眼鏡18〇〇之左光閥18〇2及右光閥18〇4。 在一例示性實施例中,施加至左光閥18〇2及右光閥18〇4之 電壓2504a及2504b在正峰值與負峰值之間交替以避免光閥 之液晶單元中的離子化問題。在一例示性實施例中,電壓 b號2504a及2504b中之一者或兩者可在一零電壓與一冷值 電壓之間交替。在一例示性實施例中,可將其他形式之電 147660.doc •35· 201119350 壓信號施加至左光閥1 802及右光閥1 804,以使得光閥之液 晶單元保持打開,因此三維眼鏡1 8〇〇之使用者可透過光閥 正常地觀看》在一例示性實施例中,施加電壓信號25〇4a 及2504b至左光閥1802及右光閥1804使該等光閥打開。U3-output control signal U1-input control signal U2-input control signal AABACBB In an exemplary embodiment, the output control signals D and E of the microcontroller U3 provide or otherwise implement the digital control analog switch and the U2 switch I/O signals X0, XI, X2, X3, Y0, Yl, Y2, and Y3. U3-output control signal U1-switch I/O signal U2-switch I/O signal D X3, Y1 X0, Y2 E Χ3, Υ1 Χ0, Υ2 In an exemplary embodiment, the microcontroller U3 of the CPU 1810 is A programmable microcontroller available from Microchip, model number PIC16F636. In an exemplary embodiment, battery sensor 1812 includes a power detector U6 for sensing the voltage of battery 120. In an exemplary embodiment, power detector U6 is a micro 147660.doc -28-201119350 power voltage detector available from Microchip under the model number MCP111. In the exemplary embodiment, the signal sensor 丨8丨4 includes a photodiode 02 for sensing the transmission of the signal transmission signal (including the synchronization signal and/or configuration data). In an exemplary embodiment, the photodiode D2 is a photodiode of the type bP1〇4FS available from 〇sram. In an exemplary embodiment, signal sensor 1814 further includes operational amplifiers U5-1 and U5-2, and associated signal conditioning components: resistors R1, R2, R3, R4, R5, R6, R7, R9, R1 i and R12, capacitors C5, C6, C7 and C10, and Schottky diodes D and D3. In an exemplary embodiment, 'charge pump 丨8丨6 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3 V to -12 V. In an exemplary embodiment, the charge pump 1 8 16 includes a MOSFET Q1, a Schottky diode D5, an inductor 11 and a Zener diode D6. In an exemplary embodiment, 'the output signal of the charge pump 1 8 16 is provided as the input signal of the switch I/O signals X2 and Y0 of the digital control switch 1 U1 of the left light valve controller 1 806 and the right light valve control The digits of the device 1 808 control the input signals of the switch I/O signals X3 and Y1 of the analog switch U2. As illustrated in FIG. 20, in an exemplary embodiment, during operation of the 3D glasses 1800, under the control of the control signals A, B, C, D, and E of the CPU 18 10, the digital control analog switches (1) and U2 are controlled. Various voltages may be provided on one or both of the left shutter 1802 and the right shutter 1804. In detail, under the control of the control signals a, B, C, D and E of the CPU 1810, the digital control analog switches U1 and U2 can provide: 1) one or both of the left light valve 1802 and the right light valve 1804 Positive or negative 15 volts on the person; 2) 147660.doc in the left and right light valves • 29·201119350 Positive or negative voltage in the range of 2 to 3 volts on one or both; or 3) A volt (i.e., neutral state) is provided on one or both of the left and right shutters. In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 18 10, the digital control analog switches υι and U2 can be combined, for example, by +3 volts and -12 volts. 15 volts is provided to achieve a differential of 15 volts on one or both of the left and right shutters 1802 and 1804. In an exemplary embodiment, under the control of control signals A, B, C, D, and E of cpu 1810, the digital control analog switches ui and U2 can be used, for example, by using a voltage divider (including components R8 & R1〇) reduces the 3 volt output voltage of the battery to 2 volts to provide a 2 volt stop voltage. Or 'under the control of the CPU 1 8 10 control signals A, B, C, D and E, the digital control analog switch (1) and still provide: one of the left light valve 18〇2 and the right light valve 1 804 Positive or negative 丨 5 volts on either or both; 2) positive or negative voltage of approximately 2 volts on one or both of the left and right light valves; 3) left and right light valves A positive or negative voltage of about 3 volts on one or both, or 4) a volt volt (i.e., neutral state) is provided on one or both of the left and right shutters. In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 1 8 1 , the digital control analog switches u 1 and U 2 can be combined by, for example, +3 volts with - 12 volts provides 15 volts' to achieve a difference of 15 volts on one or both of the left and right shutters 1804. In an exemplary embodiment, under the control of cpu 1 8丨〇 control signals A, B, C, D, and E, the digital control analog switches u 1 and U2 can be used, for example, by using a voltage divider ( Including components R8 and R丨〇) reduces the 3 volt output voltage of the battery to 2 volts to provide a 2 volt stop 147660.doc • 30· 201119350 pressure. Referring now to Figures 21 and 22, in an exemplary embodiment, during operation of the 3D glasses 1 800, the 3D glasses perform a normal execution mode of operation 2 100, in which mode will be generated by the CPU 1 8 10 Control signals a, B, C, D, and E are used to control the operation of left shutter controller 1 806 and right shutter controller 1808, thereby controlling based on the type of synchronization signal detected by signal sensor 1814. The operation of the left light valve 1802 and the right light valve 1804. In particular, in 2102, if CPU 1810 determines that signal sensor 1814 has received a synchronization signal, then in 2104, the CPU determines the type of synchronization signal received. In an exemplary embodiment, a synchronization signal comprising 3 pulses indicates that the left light valve 1802 should be closed and the right light valve 1 804 should be open, and a synchronization signal comprising 2 pulses indicates that the left light valve should be open and The right light valve should be closed. More generally, any number of different pulses can be used to control the opening and closing of the left and right shutters 1802, 1804. In 2104, if the CPU 1810 determines that the received synchronization signal indicates that the left light valve 1802 should be closed and the right light valve 18〇4 should be open, then in 2106, the CPU transmits control signals A, B, C, D, and E. To, left light valve controller 18〇6 and right light valve controller 1808 to apply a high voltage to left light valve 丨8〇2 and apply no voltage followed by a small stop voltage to right light valve 丨8 〇 4. The amount of high voltage applied to left light valve 1802 in 2106 in an exemplary embodiment is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the right shutter 1804 in 21〇6 is 2 volts. In an exemplary embodiment, in 21 06, the operation of the voltage divider component 8 and R1 is enabled by controlling the operational state of the control signal (which may be low, high or open) to be open. , 147660.doc 31 201119350 and the control signal E is maintained at a high state and a stop voltage is applied to the right shutter 1804. In an exemplary embodiment, 21〇6 causes the application of the stop voltage to the right shutter 1804 to be delayed for a predetermined period of time to allow the molecules within the liquid diaphragm of the right shutter to be within a predetermined period of time. Rotate faster during the period. Subsequent application of the stop voltage after expiration of the predetermined period of time then prevents molecules within the liquid crystal in the right shutter 18〇4 from rotating over the opening of the right shutter. Alternatively, in 2104, if the CPU 1820 determines that the received synchronization signal indicates that the left light valve 1802 should be open and the right light valve 丨8〇4 should be closed, then in 2丨〇8, the CPU will control signals a, b , c, D, and E are transmitted to the left light valve controller 1806 and the right light valve controller 18〇8 to apply a high voltage to the right light valve 1 804 and apply no voltage followed by a small stop voltage to the left Light valve 1802. In an exemplary embodiment, the value of the 咼 voltage applied to the right shutter 18〇4 in 21〇8 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the left shutter 1802 in 21 〇 8 is 2 volts. In an exemplary embodiment, in 2 1 08, by controlling the control signal £) to turn on 'by enabling the operation of the voltage divider component and the ruler (7), and maintaining the control signal E at a high level This stop voltage is applied to the left light valve 18〇2. In an exemplary embodiment, the application of the stop voltage to the left shutter 18〇2 in 2108 is delayed for a predetermined period of time to allow the molecules in the liquid crystal of the left shutter to rotate faster during the predetermined period of time. . Subsequent application of the stop voltage after the expiration of the predetermined period of time then prevents the molecules in the liquid crystal in the left shutter 丨8〇2 from rotating excessively during the opening of the left shutter. In an exemplary embodiment, during the method 21, during the subsequent iterations of steps 21〇6 and 2108, the 'applied to the left light valve 18〇2 and the right light valve 18〇4 147660.doc -32- 201119350 The pressure is alternately positive and negative 'to prevent damage to the liquid crystal unit of the left and right light valves. Thus, method 2100 provides a normal or operational mode of operation for 3D glasses 18A. Referring now to Figures 23 and 24, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement a warm-up operation method 23, in which the control signal A generated by the CPU 1810, B, c, 〇 and E are used to control the operation of the left light valve controller 18〇6 and the right light valve controller 18〇8 to thereby control the operation of the left light valve 1802 and the right light valve 18〇4. In 2302, the cPU 1810 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 3D glasses 181 can be powered by a user activation of a power switch or by an automatic wake up sequence. In the case where the three-dimensional eyeglasses 1810 are energized, the light valves 18〇2 and 18〇4 of the three-dimensional glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 1802 and 1804 that do not have power for a period of time may be in an ambiguous state. In 2302, if the cpu 1810 of the 3D glasses 1800 detects the energization of the 3D glasses, in 2304, the CPU applies the alternating voltage signals 2304a and 2304b to the left light valve 18〇2 and the right light valve 180〇, respectively. In an exemplary embodiment, the voltage applied to the left and right shutters 18, 2, 1804 alternates between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, voltage signals 23〇4a and 23〇4b may be at least partially out of phase with each other. In an exemplary embodiment, one or both of voltage signals 23 04a and 2304b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals 147660.doc - 33 - 201119350 may be applied to the left and right shutters 1802 and 804 such that the liquid crystal cells of the shutter are in an operational state. In an exemplary embodiment, the application of voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804 causes the shutters to open and close simultaneously or at different times. Alternatively, application of voltage signals 23 04a and 23 04b to left shutter 1802 and right shutter 1 804 may cause the shutters to remain closed. During the application of voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804, in 2306, CPU 1810 checks for a warm-up timeout. In 2306, 'If CPU 1810 detects a warm-up timeout, then in 2308, the CPU will stop applying voltage signals 2304a and 2304b to left-light valve 1802 and right-light valve 1804°. In an exemplary embodiment, In 2304 and 2306, CPU 1810 applies voltage signals 2304a and 2304b to left light valve 18〇2 and right light valve 1804 during a period of time sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment, the CPU 1 8 10 applies voltage signals 23 〇 4a and 2304b to the left and right shutters 18 〇 2 and 2 324 in a period of two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 23 04a and 23 04b can be 15 volts. In an exemplary embodiment, the timeout period in 2306 can be two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 23〇4a and 23 may be greater or less than 15 volts, and the timeout period may be longer or shorter. In an exemplary embodiment, during method 2300, CPU 181 can open and close left and right light valve 1 and 2, respectively, at a rate different from the rate at which the movie can be viewed. In an exemplary embodiment, in 2304, the voltage signals applied to the left light valve 1802 and the right light valve i8G4 are not alternated, and during the warm-up period I47660.doc • 34· 201119350 the door holding, 'male plus And thus the liquid crystal cells of the light valves can remain opaque throughout the warm-up period. In an exemplary embodiment, the warm-up method 23 can occur in the presence or absence of a synchronization signal. Thus, method 23A provides a warm-up mode of operation for 3D glasses 1800. In an exemplary embodiment, after the warm-up method 2300 is implemented, the 3D glasses 18 are in a normal or operational mode of operation and then the method 2 can be implemented. Alternatively, in an exemplary embodiment, after the warm-up method 23 is performed, the 3D glasses 18 are in a transparent mode of operation and then the method 2500 described below can be implemented. Referring now to Figures 25 and 26, In an exemplary embodiment, during operation of the 3D glasses 1 800, the 3D glasses implement an operational method in which control signals A, B, cE generated by the CPU 1 8 10 are used to control left light valve control. The operation of the 1860 and right light valve controllers 18〇8, in turn, controls the operation of the left and right light valves 1802 and 1804 in accordance with the synchronization signals received by the k sensor 1 814. In 2502, the CPU 1 8 10 checks to see if the sync 彳a detected by the signal sensor 丨8丨4 is valid or invalid. In 2502, if the CPU 1 8 10 determines that the synchronization signal is invalid, in 2504, the CPU applies the voltage signals 25〇4a and 2504b to the left light valve 18〇2 and the right light valve 18〇4 of the three-dimensional glasses 18〇〇. In an exemplary embodiment, the voltages 2504a and 2504b applied to the left and right shutters 18, 2, and 4, 4, 4 are alternated between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, one or both of voltage b numbers 2504a and 2504b may alternate between a zero voltage and a cold value voltage. In an exemplary embodiment, other forms of electrical 147660.doc • 35·201119350 pressure signals may be applied to the left and right shutters 1 802 and 804 to keep the liquid crystal cells of the light valve open, thus 3D glasses A user of 1 〇〇 can normally view through the light valve. In an exemplary embodiment, voltage signals 25 〇 4a and 2504b are applied to the left and right light valves 1802 and 1804 to cause the light valves to open.
在施加電壓信號2504a及2504b至左光閥〗802及右光閥 1804期間,在2506中,CPU 1810檢查一清除逾時。在25〇6 中,若CPU 181(H貞測到一清除逾時,則在2508中,CPU 1810將停止將電壓信號25〇“及25〇4b施加至光閥18〇2及 1804。 因此,在一例示性實施例中,若三維眼鏡18〇〇未偵測到 一有效同步信號,則三維眼鏡可轉至一透明操作模式且實 施方法2500。在透明操作模式下,在一例示性實施例中, 三維眼鏡1800之光閥1802及18〇4均保持打開,使得觀看者 可透過三維眼鏡之光閥正常地觀看。在一例示性實施例 中,施加一正負交替之恆定電壓以將三維眼鏡18〇〇之光閥 1802及18G4之液晶單元維持在-透明狀態。該怪定電壓可 (例如)在2至3伏特之範圍内,但該恆定電壓可為適合維持 適度透明光閥之任何其他電壓。在一例示性實施例中,三 維眼鏡1800之光閥1802及18〇4可保持透明直至三維眼鏡 能夠驗證-加密信號及/或直至_清除模式逾時。在一^ 示性實施例中,三維眼鏡_之光㈣Q2及職可 明’直至三維眼鏡能夠驗證一加密信號,且然後可實施方 法2⑽及/或在25G6中若發生—料,則可實施方法刪。 在-例示性實施例中’三維眼鏡咖之光閥職及顧可 147660.doc .36 · 201119350 以允許三維眼鏡之使用者正常地觀看之速率交替地打開及 關閉。 因此,方法2500提供一種清除三維眼鏡18〇〇之操作的方 法,且藉此提供一透明操作模式。 現參看圖27及圖28,在一例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一種監視電池12〇之方法 2700,在該方法中,將由CPU 181〇產生之控制信號a、 B、C、D及E用以控制左光閥控制器18〇6及右光閥控制器 1808之操作,從而又依據由電池感測器1812偵測到的電池 120之狀況來控制左光閥1802及右光閥18〇4之操作。 在2702中,二維眼鏡之CPU 1810使用電池感測器1812判 定電池120之剩餘可用壽命。在27〇2中,若三維眼鏡丨8〇〇 之CPU 1 8 1 0判定電池120之剩餘可用壽命不足,則在2704 中,該CPU提供一低電池壽命狀況之一指示。 在一例示性實施例中’不足的剩餘電池壽命可(例如)為 小於3小時之任何時段。在一例示性實施例中,足夠的剩 餘電池壽命可由三維眼鏡1800之製造商預先設定及/或由 三維眼鏡之使用者程式化。 在一例示性實施例中,在2704中,三維眼鏡1800之CPU 1810將藉由使三維眼鏡之左光閥18〇2及右光閥18〇4緩慢閃 爍、藉由使光閥以可被三維眼鏡之使用者看見之一中等速 率同時閃爍、藉由使一指示燈閃光、藉由產生一可聽聲音 及其類似動作來指示一低電池壽命狀況。 在一例示性實施例中,若三維眼鏡1800之CPU 1 810偵測 147660.doc •37· 201119350 到剩餘電池哥命不足以持續一規定時間段,則在27〇4中, 一、准眼鏡之CPU將指示一電池電力偏低狀況且接著防止使 用者開啟三維眼鏡。 在例不性實施例中,每當該三維眼鏡轉變至關閉模式 及/或透明操作模式時,三維眼鏡18〇〇之cpu 1810判定剩 餘電池壽命是否足夠。 在—例示性實施例中,若三維眼鏡1 800之CPU 1 8 10判定 該電池將持續至少該預定足夠時間量,則該三維眼鏡將繼 續正常操作。舉例而言,正常操作可包括在五分鐘内保持 在透明操作模式下’同時檢查來自信號傳輸器u 〇之信 號’然後轉至關閉模式或開啟模式,在該模式中三維眼鏡 1 800週期性地醒來以檢查來自該信號傳輸器之——信號。 在一例示性實施例中,三維眼鏡1800之CPU 18 10恰在關 掉該三維眼鏡之前檢查一電池電力偏低狀況。在一例示性 實施例中’若電池120不能持續該預定的足夠剩餘壽命時 間’則光閥1 802及1 804將開始緩慢閃爍。 在一例示性實施例中,若電池120不能持續該預定的足 夠剩餘壽命時間,則光閥1802及/或1804將在兩秒中處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 中處於一透明狀況(亦即,液晶單元打開)。光閥1802及/或 1 804關閉及打開的時間段可為任何時間段。在一例示性實 施例中,光閥1802及1804之閃爍同步於提供電力至信號感 測器1814,以准許該信號感測器檢查一來自信號傳輸器 110之信號。 147660.doc -38 - 201119350 在—例示性實施例中,三維眼鏡18〇〇可在任何時間(包 括在暖機期間、在正常操作期間、在透明模式期間、在斷 電模式期間,或於任何狀況之間轉變時)檢查一電池電力 偏低狀況。在__例示性實施例巾,若在觀看者可能在看電 影之中途時偵測到一低電池壽命狀況,則三維眼鏡1800可 不立即指示該電池電力偏低狀況。 在些貫施例中,若三維眼鏡1800之CPU 1810偵測到一 電池電力偏低位準,則使用者將不能夠將該三維眼鏡通 電。 現參看圖29,在一例示性實施例中,在三維眼鏡丨8〇〇之 操作期間’三維眼鏡實施一使三維眼鏡停機之方法,在該 方法中’將由CPU 1810產生之控制信號a、B、C、D及E 用以控制左光閥控制器1 806及右光閥控制器丨808之操作, 從而又依據電池感測器1 812所偵測到的電池12〇之狀況來 控制左光閥1 802及右光閥1 804之操作。詳言之,若三維眼 鏡1800之使用者選擇使該三維眼鏡停機或cpu 1 81 〇選擇使 該三維眼鏡停機,則施加至三維眼鏡之左光閥丨8〇2及右光 閥1804之電壓均被設定為零。 參看圖30、圖3〇a、圖30b及圖30c,提供三維眼鏡3000 之一例示性實施例’該三維眼鏡在設計及操作上實質上等 同於上文所說明及描述的三維眼鏡104,惟下文所說明的 方面除外。三維眼鏡3000包括一左光閥3002、一右光閥 3004、一左光閥控制器3006、一右光閥控制器3008、一共 同光閥控制器3010、一 CPU 3012、一信號感測器3014、一 147660.doc •39· 201119350 電荷泵3016及一電壓供應器3018。在一例示性實施例中, 三維眼鏡3000之左光閥3002、右光閥3004、左光閥控制器 3006、右光閥控制器3008、CPU 3012、信號感測器3014及 電荷泵3016之設計及操作實質上等同於上文所描述及說明 的三維眼鏡104之左光閥106、右光閥108、左光閥控制器 116、右光閥控制器118、CPU 114、信號感測器112及電荷 泵1 700,惟下文所描述且本文中所說明的方面除外。 在一例示性實施例中,三維眼鏡3000包括以下組件: 名稱 值/ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 •OOluF R9 47K R11 1M C1 • luF C9 • luF D1 BAS7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 • luF C12 47uF C2 • luF LCD1 左光閥 C14 .luF LCD2 右光閥 U1 4053 U6 4053 C4 .luF U4 4053 147660.doc -40- 201119350 名稱 值/ID R14 10K R15 100K Q1 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF Q2 R16 1M R1 1M ΒΤ1 3V Li 在一例示性實施例中,左光閥控制器3006包括一數位控 制類比開關U1,該開關在共同控制器3010(其包括一數位 控制類比開關U4)及CPU 3012的控制下,視操作模式而在 左光閥3002上施加一電壓以用於控制左光閥之操作。以類 似方式,右光閥控制器3008包括一數位控制類比開關U6, 該開關在共同控制器30 10及CPU 30 12的控制下,視操作模 式而在右光閥3004上施加一電壓以用於控制右光閥3004之 操作。在一例示性實施例中,Ul、U4及U6為習知可自 Unisonic Technologies購得之零件號碼為UTC 4053的數位 控制類比開關。 如一般熟習此項技術者將認識到,UTC 4053數位控制類 比開關包括控制輸入信號A、B、C及INHIBIT(「INH」)、 開關I/O信號Χ〇、XI、Υ0、Υ1、Ζ0及Ζ1和輸出信號X、Υ 及Ζ,且進一步提供如下真值表: 147660.doc -41 - 201119350 真值表 控制輸入 禁止 選擇 接通開關 C B A UTC 4053 11 C - 11 X X X X n-JU 11γ γ γ γ ο ο ο ο ζ ζ ζ ζDuring the application of voltage signals 2504a and 2504b to left shutter 802 and right shutter 1804, in 2506, CPU 1810 checks for a clearout. In 25〇6, if CPU 181 (H贞 detects a clear timeout, then in 2508, CPU 1810 will stop applying voltage signals 25〇 and 25〇4b to light valves 18〇2 and 1804. Therefore, In an exemplary embodiment, if the 3D glasses 18 do not detect a valid synchronization signal, the 3D glasses can be rotated to a transparent mode of operation and the method 2500 is implemented. In the transparent mode of operation, in an exemplary embodiment The light valves 1802 and 18〇4 of the 3D glasses 1800 are kept open, so that the viewer can normally view through the light valve of the 3D glasses. In an exemplary embodiment, a positive and negative alternating constant voltage is applied to the 3D glasses. The liquid crystal cell of the light valve 1802 and 18G4 of 18 维持 is maintained in a transparent state. The strange voltage can be, for example, in the range of 2 to 3 volts, but the constant voltage can be any other suitable for maintaining a moderately transparent light valve. Voltage. In an exemplary embodiment, the light valves 1802 and 18〇4 of the 3D glasses 1800 may remain transparent until the 3D glasses are capable of verifying - encrypting the signal and/or until the _clear mode is timed out. In an illustrative embodiment , 3D glasses _ (4) Q2 and the job can be 'until the 3D glasses can verify an encrypted signal, and then the method 2 (10) can be implemented and/or if the material occurs in the 25G6, the method can be deleted. In the exemplary embodiment, the '3D glasses coffee Light Valve Officer and Gu Ke 147660.doc .36 · 201119350 alternately opens and closes at a rate that allows the user of the 3D glasses to view normally. Thus, method 2500 provides a method of clearing the operation of 3D glasses 18 , and borrows This provides a transparent mode of operation. Referring now to Figures 27 and 28, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement a method 2700 of monitoring the battery 12, in which the CPU The control signals a, B, C, D, and E generated by the 181 用以 are used to control the operation of the left light valve controller 18〇6 and the right light valve controller 1808, thereby depending on the battery detected by the battery sensor 1812. The operation of the left light valve 1802 and the right light valve 18〇4 is controlled by the condition of 120. In 2702, the CPU 1810 of the two-dimensional glasses uses the battery sensor 1812 to determine the remaining usable life of the battery 120. In 27〇2, if Three-dimensional The CPU 1 8 1 0 determines that the remaining usable life of the battery 120 is insufficient, and in 2704, the CPU provides an indication of a low battery life condition. In an exemplary embodiment, 'the remaining battery life is insufficient. Any time period of less than 3 hours can be, for example, in an exemplary embodiment, sufficient remaining battery life can be pre-set by the manufacturer of the 3D glasses 1800 and/or programmed by the user of the 3D glasses. In an embodiment, in 2704, the CPU 1810 of the 3D glasses 1800 will slowly flash by the left light valve 18〇2 and the right light valve 18〇4 of the 3D glasses, so that the light valve can be used by the user of the 3D glasses. One of the medium speeds is seen to be blinking at the same time, by flashing an indicator light, by producing an audible sound and the like to indicate a low battery life condition. In an exemplary embodiment, if the CPU 1 810 of the 3D glasses 1800 detects 147660.doc • 37·201119350 until the remaining battery life is insufficient for a predetermined period of time, then in 27〇4, The CPU will indicate a low battery condition and then prevent the user from turning on the 3D glasses. In an exemplary embodiment, whenever the 3D glasses transition to the off mode and/or the transparent mode of operation, the cpu 1810 of the 3D glasses 18 determines if the remaining battery life is sufficient. In an exemplary embodiment, if the CPU 1 8 10 of the 3D glasses 1 800 determines that the battery will continue for at least the predetermined amount of time, the 3D glasses will continue to operate normally. For example, normal operation may include remaining 'while checking the signal from the signal transmitter u '' in the transparent mode of operation for five minutes and then moving to the off mode or the on mode, in which the 3D glasses 1 800 are periodically Wake up to check the signal from the signal transmitter. In an exemplary embodiment, CPU 18 10 of 3D glasses 1800 checks for a low battery condition just prior to turning off the 3D glasses. In an exemplary embodiment, light valves 1 802 and 1 804 will begin to flash slowly if battery 120 cannot continue for the predetermined sufficient remaining life time. In an exemplary embodiment, if the battery 120 is unable to sustain the predetermined sufficient remaining life time, the light valve 1802 and/or 1804 will be in an opaque condition for two seconds (ie, the liquid crystal cell is off) and then at ten It is in a transparent condition in one second (that is, the liquid crystal cell is turned on). The period of time during which the light valve 1802 and/or 1 804 is closed and opened may be any period of time. In an exemplary embodiment, the blinking of light valves 1802 and 1804 is synchronized with providing power to signal sensor 1814 to permit the signal sensor to check a signal from signal transmitter 110. 147660.doc -38 - 201119350 In an exemplary embodiment, the 3D glasses 18 can be at any time (including during warm up, during normal operation, during transparent mode, during power down mode, or at any time When the situation changes, check for a low battery power condition. In the exemplary embodiment, if a low battery life condition is detected while the viewer is likely to be watching the movie, the 3D glasses 1800 may not immediately indicate that the battery is in a low power condition. In some embodiments, if the CPU 1810 of the 3D glasses 1800 detects a low level of battery power, the user will not be able to power the 3D glasses. Referring now to Figure 29, in an exemplary embodiment, during operation of the 3D glasses, the 3D glasses implement a method of stopping the 3D glasses in which the control signals a, B generated by the CPU 1810 are ' , C, D, and E are used to control the operation of the left light valve controller 1 806 and the right light valve controller 丨 808, thereby controlling the left light according to the condition of the battery 12 detected by the battery sensor 1 812. Operation of valve 1 802 and right shutter 1 804. In detail, if the user of the 3D glasses 1800 chooses to stop the 3D glasses or cpu 1 81 〇 select to stop the 3D glasses, the voltages applied to the left light valve 丨8〇2 and the right light valve 1804 of the 3D glasses are both Is set to zero. Referring to Figures 30, 3a, 30b and 30c, an exemplary embodiment of a 3D glasses 3000 is provided which is substantially identical in design and operation to the 3D glasses 104 described and described above, Except as described below. The 3D glasses 3000 includes a left light valve 3002, a right light valve 3004, a left light valve controller 3006, a right light valve controller 3008, a common light valve controller 3010, a CPU 3012, and a signal sensor 3014. , 147660.doc • 39· 201119350 Charge pump 3016 and a voltage supply 3018. In an exemplary embodiment, the left light valve 3002, the right light valve 3004, the left light valve controller 3006, the right light valve controller 3008, the CPU 3012, the signal sensor 3014, and the charge pump 3016 of the 3D glasses 3000 are designed. And operating the left light valve 106, the right light valve 108, the left light valve controller 116, the right light valve controller 118, the CPU 114, the signal sensor 112, and substantially the same as the three-dimensional glasses 104 described and illustrated above. Charge pump 1 700, except as described below and as described herein. In an exemplary embodiment, the 3D glasses 3000 includes the following components: Name Value / ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 • OOluF R9 47K R11 1M C1 • luF C9 • luF D1 BAS7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 • luF C12 47uF C2 • luF LCD1 left light valve C14 .luF LCD2 right light valve U1 4053 U6 4053 C4 .luF U4 4053 147660.doc -40 - 201119350 Name value/ID R14 10K R15 100K Q1 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF Q2 R16 1M R1 1M ΒΤ1 3V Li In an exemplary embodiment, the left light valve controller 3006 includes a digital control analog switch U1, the switch, under the control of the common controller 3010 (which includes a digital control analog switch U4) and the CPU 3012, applies a voltage to the left light valve 3002 depending on the mode of operation for controlling the operation of the left light valve. In a similar manner, the right light valve controller 3008 includes a digital control analog switch U6 that, under the control of the common controller 30 10 and the CPU 30 12, applies a voltage to the right light valve 3004 for operation mode for The operation of the right light valve 3004 is controlled. In an exemplary embodiment, U1, U4, and U6 are digitally controlled analog switches of the part number UTC 4053 available from Unisonic Technologies. As will be appreciated by those skilled in the art, the UTC 4053 digital control analog switch includes control input signals A, B, C and INHIBIT ("INH"), switch I/O signals Χ〇, XI, Υ0, Υ1, Ζ0 and Ζ1 and output signals X, Υ and Ζ, and further provide the following truth table: 147660.doc -41 - 201119350 Truth meter control input disable selection switch CBA UTC 4053 11 C - 11 XXXX n-JU 11γ γ γ γ ο ο ο ο ζ ζ ζ ζ
11 11 X X X X o o lqγ γ γ γ 11 IX Ί1 ζ ζ ζ ζ 1 XXX 無 X=任意值 且,如圖31中所說明,UTC 4053數位控制類比開關亦提供 一功能圖3100。因此,UTC 4053提供各自具有三個獨立開 關的數位控制類比開關,其准許左光閥控制器3006及右光 閥控制器3008及共同光閥控制器3010在CPU 3012的控制下 在左光閥3002及右光閥3004上選擇性地施加一受控電塵, 以控制該等光閥之操作。 在一例示性實施例中,CPU 3〇12包括一微控制器U2, 其用於產生用於控制左光閥控制器3〇〇6及右光閥控制器 3008之數位控制類比開關⑴、…及別共同光閥控制器 3(Η0之數位控制類比開關U4之操作的輸出信號a、b、c、 D、E、F及 G。 微控制器U2之輸出控刹卢♦ J k 市5虎 A、B、c、D、E、F 及 G 將 以下輸入控制信號A、B、r » tmu扣w C及INH提供給數位控制類比開 關Ul、U6及U4中之每—者. 147660.doc -42- 201119350 U2-輸出控制信號 U1 -輸入控制信號 U6-輸入控制信號 U4-輸入控制信號 A A, B B Α,Β C C ΙΝΗ D A E F C G B 在一例示性實施例中,將U1之輸入控制信號INH接地, 且將U6之輸入控制信號C及INH接地。 在一例示性實施例中,數位控制類比開關Ul、U6及U4 之開關I/O信號X0、XI、Y0、Y1、Z0及Z1具備以下輸 入: U1-開關 I/O信號 U1之輸入 U6-開關 I/O信號 U6之輸入 U4-開關 I/O信號 U4之輸入 X0 U4之X xo Ul之z U4之Y XO U4之Z XI V-bat XI V-bat XI 電荷泵3016 之輸出 Y0 V-bat Y0 V-bat Y0 U4之Z Y1 U4之X Y1 Ul之Z U4之Y Y1 電荷泵3016 之輸出 Z0 GND zo GND zo U2之E Z1 U4之X Z1 GND Z1 電壓供應器 3018之輸出 在一例示性實施例中,CPU 3012之微控制器U2為可自11 11 X X X X o o lqγ γ γ γ 11 IX Ί1 ζ ζ ζ ζ 1 XXX None X=any value Also, as illustrated in Figure 31, the UTC 4053 digital control analog switch also provides a functional diagram 3100. Thus, the UTC 4053 provides digital control analog switches each having three independent switches that permit the left light valve controller 3006 and the right light valve controller 3008 and the common light valve controller 3010 to be in the left light valve 3002 under the control of the CPU 3012. And a controlled electric dust is selectively applied to the right light valve 3004 to control the operation of the light valves. In an exemplary embodiment, the CPU 3〇12 includes a microcontroller U2 for generating digital control analog switches (1), ... for controlling the left shutter controller 3〇〇6 and the right shutter controller 3008, And the common light valve controller 3 (Η0 digital control analog switch U4 operation output signals a, b, c, D, E, F and G. Microcontroller U2 output control brake ♦ J k city 5 tiger A, B, c, D, E, F, and G provide the following input control signals A, B, r » tmu buckle w C and INH to each of the digital control analog switches Ul, U6, and U4. 147660.doc -42- 201119350 U2-output control signal U1 - input control signal U6 - input control signal U4- input control signal AA, BB Α, Β CC ΙΝΗ DAEFCGB In an exemplary embodiment, the input control signal INH of U1 is grounded, And the input control signals C and INH of U6 are grounded. In an exemplary embodiment, the digital I/O signals X0, XI, Y0, Y1, Z0, and Z1 of the analog control analog switches U1, U6, and U4 have the following inputs: U1-switch I/O signal U1 input U6-switch I/O signal U6 input U4-switch I/O No. U4 input X0 U4 X xo Ul z U4 Y XO U4 Z XI V-bat XI V-bat XI Charge pump 3016 output Y0 V-bat Y0 V-bat Y0 U4 Z Y1 U4 X Y1 The output of the Y Y1 charge pump 3016 of Z Z4 is Z0 GND zo GND zo U2 of the U Z1 U4 X Z1 GND Z1 Output of the voltage supply 3018 In an exemplary embodiment, the microcontroller U2 of the CPU 3012 is from
Microchip購得的可程式化微控制器,型號為PIC16F636。 在一例示性實施例中,信號感測器3014包括用於感測信 號傳輸器110對信號(包括同步信號及/或組態資料)之傳輸 的一光電二極體D3。在一例示性實施例中,光電二極體 D3為可自Osram購得之型號為BP104FS的光電二極體。在 一例示性實施例中,信號感測器30 14進一步包括運算放大 147660.doc -43- 201119350 器U5-1 ' U5-2及U3 ’及相關信號調節組件:電阻器r2、 R3、R5、R_7、R8、R9、R10、Rll、R12及 R13、電容器 Cl、C7及C9和肖特基二極體⑴及出,該等組件可(例如) 藉由透過控制增益而防止對感測到的信號之削波(clipping) 來調節信號。 在一例示性實施例中,電荷泵3〇16使用一電荷泵將電池 120之輸出電壓之量值自3 v放大至_12 v。在一例示性實 施例中’電荷泵3016包括一MOSFET Q1、一肖特基二極體 D6、一電感器L1及一齊納二極體D7。在一例示性實施例 中’提供電荷泵3016之輸出信號以作為共同光閥控制器 3010之數位控制類比開關1;4之開關1/〇信號:^1及¥1的輸入 k號’及左光閥控制器3〇〇6、右光閥控制器3〇〇8及共同光 閥控制器3010之數位控制類比開關、116及114的輸入電 壓 VEE 〇 在一例示性實施例中,電壓供應器3018包括一電晶體 Q2 ' 一電容器C5及電阻器R1及R16。在一例示性實施例 中,電壓供應器3 018提供1 v信號以作為共同光閥控制器 3010之數位控制類比開關U4之開關1/〇信號Z1的輸入信 號。在一例示性實施例中,電壓供應器3〇18提供一不接地 (ground lift) ° 如圖3 2中所說明’在一例示性實施例中,在三維眼鏡 3 000之操作期間’在cpu 3〇12之控制信號a、B、c、D、 E、F及G的控制下’數位控制類比開關υι、U6及U4可在 左光閥3002及右光閥3〇〇4中之一者或兩者上提供各種電 147660.doc •44- 201119350A programmable microcontroller available from Microchip, model number PIC16F636. In an exemplary embodiment, signal sensor 3014 includes a photodiode D3 for sensing the transmission of signals (including synchronization signals and/or configuration data) by signal transmitter 110. In an exemplary embodiment, the photodiode D3 is a photodiode of the type BP104FS available from Osram. In an exemplary embodiment, signal sensor 30 14 further includes operational amplification 147660.doc -43-201119350 U5-1 'U5-2 and U3' and associated signal conditioning components: resistors r2, R3, R5, R_7, R8, R9, R10, R11, R12 and R13, capacitors C1, C7 and C9 and Schottky diode (1) and out, these components can be prevented from being sensed, for example, by controlling the gain The clipping of the signal is used to adjust the signal. In an exemplary embodiment, charge pump 3〇16 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3v to _12v. In an exemplary embodiment, charge pump 3016 includes a MOSFET Q1, a Schottky diode D6, an inductor L1, and a Zener diode D7. In an exemplary embodiment, 'the output signal of the charge pump 3016 is provided as the digital control analog switch 1 of the common light valve controller 3010; the switch 1/〇 signal of 4: the input k number of ^1 and ¥1' and left The light valve controller 3〇〇6, the right light valve controller 3〇〇8, and the digital light source controller 3010 control the input voltage VEE of the analog switches 116 and 114. In an exemplary embodiment, the voltage supply 3018 includes a transistor Q2' a capacitor C5 and resistors R1 and R16. In an exemplary embodiment, voltage supply 3 018 provides a 1v signal as an input signal to switch 1/〇 signal Z1 of digital switch analog switch U4 of digital shutter controller 3010. In an exemplary embodiment, voltage supply 3 〇 18 provides a ground lift ° as illustrated in FIG. 3 2 'in an exemplary embodiment, during operation of 3D glasses 3 000 ' at cpu Under the control of 3〇12 control signals a, B, c, D, E, F and G, the digital control analog switches υι, U6 and U4 can be one of the left light valve 3002 and the right light valve 3〇〇4. Or a variety of electricity available on both 147660.doc •44- 201119350
壓。詳言之’在CPU 3012之控制信號A、B、c、D、E、F 及G的控制下,數位控制類比開關、口6及口4可提供:i) 左光閥3002及右光閥3004中之一者或兩者上的正或負15伏 特;2)左光閥及右光閥十之一者或兩者上的正或負2伏 特;3)左光閥及右光閥甲之一者或兩者上的正或負3伏 特,及4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即,中性狀態)。 在一例示性實施例中,如圖32中所說明,藉由分別控制 數位控制類比開關U1及U6中之產生施加在左光閥及右光 閥上的輸出信號X及γ之開關之操作,控制信號八控制左光 閱3002之操作且控制信號B控制右光閥3004之操作。在一 例不性實施例中,將數位控制類比開關UI及U6中之每一 者的控制輸入A及B連接在一起,使得兩對輸入信號之間 的切換同時發生,且將選定輸入轉送至左光閥3〇〇2及右光 閥3004之端子。在一例示性實施例中,來自cpu 3〇12之控 制信號A控制數位控制類比開關m中的前兩個開關,且來 自該CPU之控制信號b控制數位控制類比開關U6f的前兩 個開關。 在一例示性實施例中,如圖32中所說明,左光閥3〇〇2及 右光閥3004中之每一者的端子中之一者始終連接至3 v。 因此,在一例示性實施例中,在CPU 3012之控制信號A、 B、C、D、E、F及G的控制下,操作數位控制類比開關 Ul、U6及U4以將-12 V、3 V、! ¥或0 v送至左光閥3〇〇2 及右光閥3004之其他端子。結果,在一例示性實施例中, 147660.doc -45- 201119350 在CPU 3 012之控制信號A、B、c、D、E、F及G的控制 下’操作數位控制類比開關U1、U6及U4以在左光閥3002 及右光閥3004之端子上產生15 V、0 V、2 V或3 V之電位 差。 在一例示性實施例中,不使用數位控制類比開關U6之第 三開關,且將該第三開關之所有端子接地。在一例示性實 施例中’使用數位控制類比開關川之第三開關以便省電。 詳言之’在一例示性實施例中,如圖3 2中所說明,控制 信號C控制數位控制類比開關m中之產生輸出信號z的開 關之操作。結果,當控制信號C為一數位高值時,數位控 制類比開關U4之輸入信號inh亦為一數位高值,藉此使數 位控制類比開關U4之所有輸出通道關閉。結果,當控制信 號c為一數位高值時,左光閥3〇〇2及右光閥3〇〇4短路,藉 此准許一半的電荷在光閥之間轉移,藉此省電且延長電池 120之壽命。 在一例不性實施例中,藉由使用控制信號C使左光閥 3002及右光閥3〇〇4短路,在處在關閉狀態下的一個光閥上 所收集之大量電荷可用以恰在另一光閥轉至關閉狀態之前 使該另一光閥部分地帶電’藉此節約原本必須完全由電池 120提供的電荷之量。 在一例示性實施例中,當由CPU 3012產生之控制信號c 為一數位高值時’例如,當時處於關閉狀態下且其上具有 15 V電位差的左光閥3〇〇2之帶負電的板卜12 v)被連接至當 時處於打開狀態下且仍充電至+1 V且其上具有2 v電位差 I47660.doc -46- 201119350 的右光閱3〇〇4之帶更多負電之板。在一例示性實施例中, 光閥3002及3004兩者上之帶正電的板將被充電至+3 v。在 一例示性實施例中,由CPU 3012產生之控制信號c在接近 左光閥3002之關閉狀態的結束時且恰在右光閥3〇〇4之關閉 狀態之前的一短時間段中轉至一數位高值。當由cPU 3〇12 產生之控制k唬C為一數位高值時,數位控制類比開關U4 上之禁止端子INH亦為一數位高值。結果,在一例示性實 施例中,U4之所有輸出通道X、丫及z皆處於關閉狀態下。 此允許儲存在左光閥3002及右光閥3〇〇4之板上之電荷分散 在该等光閥之間’使得兩個光閥上之電位差為大約丨7/2 v 或8.5 V。由於光閥30〇2及3004的一個端子始終連接至3 V ’光閥3002及3004之負端子於是處在_5 5 V。在一例示 性實施例中,由CPU 3012產生之控制信號c接著變為一數 位低值,且藉此將光閥3002及3004之負端子彼此斷開。接 著’在一例示性實施例中’右光閥3〇〇4之關閉狀態開始, 且藉由操作數位控制類比開關U4,電池120進一步將右光 閥之負端子充電至-12 V。結果,在一例示性實驗實施例 中,在三維眼鏡3000之正常執行操作模式(如下文參考方 法3300所描述)期間達成大約4〇%之電力節約。 在一例示性實施例中’提供由CPU 3012產生之控制信號 c以作為一在由CPU產生之控制信號A或B自高轉變至低或 自低轉變至高時自高轉變至低的短持續時間脈衝,以藉此 開始下一個左光閥打開/右光閥關閉或右光閥打開/左光閥 關閉。 147660.doc -47· 201119350 現參看圖33及圖34,在一例示性實施例中,在三維眼鏡 3000之操作期間,該二維眼鏡執行一正常執行操作模式 3300,在該模式中,將由CPU 3〇12產生之控制信號A、 B、C、D、E、F及G用以控制左光閥控制器3〇〇6及右光閥 控制器3008以及中央光閥控制器3〇1〇之操作,從而又依據 信號感測器3014所偵測到的同步信號之類型來控制左光閥 3002及右光閥3004之操作。 詳言之,在3302中,若CPU 3012判定信號感測器3〇14已 接收一同步信號,則在3304中,使用由cpu 3〇12產生之控 制信號A、B、C、D、E、F&G控制左光閥控制器3〇〇6及 右光閥控制器3008以及中央光閥控制器3〇1〇之操作,以在 左光閥3002與右光閥3004之間轉移電荷,如上文參看圖32 所描述。 在一例示性實施例中,在3304中,在大約〇 2毫秒中將 由CPU 301 2產生之控制彳g號c設定為一高數位值,以藉此 使左光閥3002及右光閥3004之端子短路,且因此在左光閥 與右光閥之間轉移電荷。在一例示性實施例中,在33〇4 中,在大約0.2毫秒中將由CPU 3〇12產生之控制信號c設定 為一 π數位值,以藉此使左光閥3〇〇2及右光閥3〇〇4之帶更 多負電之端子短路,纟因此在左光闕與右光闊<間轉移電 何。因此,提供控制信號C以作為一短持續時間脈衝,其 在控制信號A或冑轉變至低或自低轉變至高時或在此 之别自㈤轉變至低。結果’在交替於打開左光間/關閉右 光閥與關閉左光閥/打開右光閥之間的循環期Μ,在三維 147660.doc •48· 201119350 眼鏡3000之操作期間提供電力節約。 在3306中,CPU 3012接著判定所接收的同步信號之類 型。在一例示性實施例中,一包括2個脈衝之同步信號指 示左光閥3002應打開且右光閥3004應關閉,而一包括3個 脈衝之同步信號指示該右光閥應打開且該左光閥應關閉。 在一例示性實施例中,可使用其他不同數目及格式之同步 k號來控制左光閥3002及右光閥30〇4之交替打開及關閉。 在3306中,若CPU 3012判定所接收的同步信號指示左光 閥3002應打開且右光閥3004應關閉,則在3308中,該CPU 將控制仏唬A、B、C、D、E、F及G傳輸至左光閥控制器 3006及右光閥控制器3008以及共同光閥控制器3〇1〇,以在 右光閥3004上施加一高電壓且將無電壓隨後接著一小止擋 電壓施加至左光閥3002。在一例示性實施例中,在33中 施加在右光閥3004上的高電壓之量值為15伏特。在一例示 性貫施例中,在3308中施加至左光閥3〇〇2的止擒電壓之量 值為2伏特。在一例示性實施例中,在33〇8中,藉由將控 制k號D之操作狀態控制為低及將控制信號ρ之操作狀態 (其可為低或高)控制為高,將該止擋電壓施加至左光閥 3002。在一例示性實施例中,33〇8中之該止擋電壓至左光 閥3 002之施加被延遲一預定時間段’以允許該左光閥之液 晶内之分子較快遠地旋轉。在該預定時間段期滿之後,隨 後施加止擋電壓將防止左光閥3〇〇2中之液晶内之分子在左 光閥之打開期間旋轉過頭。在一例示性實施例中,在33〇8 中δ玄止擋電壓至左光閥3 〇〇2之施加被延遲約1毫秒。 147660.doc •49· 201119350 或者’在3306中,若CPU 3012判定所接收的同步信號指 示左光閥3002應關閉且右光閥3004應打開,則在33 10中, 該CPU將控制信號a、B、C、D、E、F及G傳輸至左光閥 控制器3006及右光閥控制器3008以及共同光閥控制器 3010,以在左光閥3002上施加一高電壓且將無電壓隨後接 著一小止擋電壓施加至右光閥3004。在一例示性實施例 中,在3310中施加在左光閥3002上的高電壓之量值為15伏 特。在一例示性實施例中,在3310中施加至右光閥3004的 止擔電壓之量值為2伏特。在一例示性實施例中,在3 3 10 中’藉由將控制信號F控制為高且將控制信號G控制為低, 將該止擋電壓施加至右光閥3〇〇4。在一例示性實施例中, 在33 1 0中該止擋電壓至右光閥3004之施加被延遲一預定時 間4又’以允5午S亥右光閥之液晶内之分子較快速地旋轉。在 該預定時間段期滿之後’隨後施加止擋電壓將防止右光閥 3004中之液晶内之分子在右光閥之打開期間旋轉過頭。在 一例示性實施例中,在33 10中該止擋電壓至右光閥3〇〇4之 施加被延遲約1毫秒。 在一例示性實施例中,在方法3300期間,在步驟3308及 3310之後續重複中’施加至左光閥3〇〇2及右光閥3〇〇4之電 壓交替地為正及負’以防止對左光閥及右光閥之液晶單元 之損害。 因此’方法3300為三維眼鏡3000提供一正常或執行操作 模式。 現參看圖3 5及圖3 6,在一例示性實施例中,在三維眼鏡 147660.doc •50- 201119350 3000之刼作期間,該三維眼鏡實施一暖機操作方法35〇〇, 在該方法中,將由CPU 3〇12產生之控制信號A、B、C、 D、E、F及G用以控制左光閥控制器3〇〇6及右光閥控制器 3008以及中央光閥控制器3〇 1〇之操作,從而又控制左光閥 3002及右光閥3004之操作。 在3502中,該三維眼鏡之cpu 3012檢查該三維眼鏡之通 電。在一例示性實施例中’三維眼鏡3 〇〇〇可藉由一使用者 啟動一通電開關、藉由一自動喚醒序列及/或藉由信號感 測器3 014感測一有效同步信號而通電。在三維眼鏡3〇〇〇通 電的情況下’該三維眼鏡之光閥3〇〇2及3〇〇4可能(例如)需 要一暖機序列。在一時間段中不具有電力的光閥3〇〇2及 3004之液晶單元可能處於一不明確狀態下。 在3502中’若三維眼鏡3〇〇〇之CPU 30 12偵測到該三維眼 鏡之通電,則在3504中,該CPU分別將交變電壓信號施加 至左光閥3 0 0 2及右光閥3 0 0 4。在一例示性實施例中,施加 至左光閥3002及右光閥3004之電壓在正峰值與負峰值之間 交替以避免光閥之液晶單元中的離子化問題。在一例示性 貫施例中’施加至左光閥3002及右光閥3004之電壓信號可 彼此至少部分地不同相。在一例示性實施例中,施加至左 光閥3002及右光閥3004之電壓信號中之一者或兩者可在一 零電壓與一峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至左光閥3002及右光閥3004, 以使得光閥之液晶單元處於一 破操作狀態。在一例示性 實施例中,施加電麈信號至左光閥3 0 〇 2及右光閥3 〇 〇 4使該 147660.doc •51 - 201119350 等光閥同時或在不同時間打開及關閉。 在施加電壓信號至左光閥3002及右光閥3004期間,在 3506中’ CPU 3012檢查一暖機逾時。在3506中,若CPU 3012偵測到一暖機逾時,則在3508中,該CPU將停止將電 壓信號施加至左光閥3002及右光閥3004。 在一例示性實施例中,在3504及3 5 06中,CPU 3012在一 足以致動該等光閥之該等液晶單元之時間段中將電壓信號 施加至左光閥3002及右光閥3004。在一例示性實施例中 CPU 3 0 1 2在兩秒之時段中將電壓信號施加至左光閥3 〇〇2及 右光閥3004。在一例示性實施例中,施加至左光閥3〇〇2及 右光閥3004之電壓信號之最大量值可為15伏特。在一例示 性實施例中’ 3506中之逾時時段可為兩秒。在一例示性實 施例中,施加至左光閥3002及右光閥3〇〇4之電壓信號之最 大量值可大於或小於15伏特,且逾時時段可更長或更短。 在一例示性實施例中,在方法3500期間,cpu 3〇12可以一 不同於可用於觀看電影之速率的速率打開及關閉左光閥 3002及右光閥3004。在一例示性實施例中,在35〇4中施 加至左光閥3002及右光閥3〇〇4之電壓信號在暖機時間段期 間不父替且被恆定施加’且因此該等光閥之該等液晶單元 在整個暖機時段中可保持不透明。在_例示性實施例中, 暖機方法3500可在同步信號存在或不存在的情況下發生。 因此’方法3500為三維眼鏡3_提供_暖機操作模式。在 -例示性實施例中,在實施暖機方法3⑽之後,三維 3000處於-正常操作模式、執行操作模式或透明操作模式 147660.doc -52- 201119350 下,且接著可實施方法3300。 現參看圖37及圖38 ’在一例示性實施例中,在三維眼鏡 3000之操作期間,該三維眼鏡實施一操作方法3700,在該 方法中’將由CPU 3012產生之控制信號A、b、C、D、 E、F及G用以控制左光閥控制器3006及右光閥控制器3〇〇8 以及共同光閥控制器3010之操作’從而又依據由信號感測 器3014接收的同步信號來控制左光閥3〇〇2及右光閥3〇〇4之 操作。 在3702中,CPU 3012檢查以查看信號感測器3〇 14所偵測 到的同步信號是有效還是無效。在3702中,若CPU 3012判 定同步信號無效,則在3704中,該CPU將電壓信號施加至 三維眼鏡3000之左光閥3002及右光閥3004。在一例示性實 施例中,在3704中施加至左光閥3002及右光閥3004之電壓 在正峰值與負峰值之間交替以避免光闊之液晶單元中的離 子化問題。在一例示性實施例中,在37〇4中施加至左光閥 3〇〇2及右光閥3004之電壓在正峰值與負峰值之間交替以提 供頻率為60 Hz的方波信號。在一例示性實施例中,該 方波信號在+3 V與-3 V之間交替。在一例示性實施例中, 在3 704中施加至左光閥3002及右光閥3004之電壓信號中之 一者或兩者可在一零電壓與一峰值電壓之間交替。在一例 示性實施例中,在3704中,可將其他形式(包括其他頻率) 之電壓信號施加至左光閥3002及右光閥3004,以使得光閱 之液晶單元保持打開,因此三維眼鏡3〇〇〇之使用者可透過 光閥正常地觀看。在一例示性實施例中,在37〇4中施加電 147660.doc -53· 201119350 壓信號至左光閥3002及右光閥3004使該等光閥打開。 在3704中施加電壓信號至左光閥3〇〇2及右光閥3〇〇4期 間,在3706中,CPU 3012檢查一清除逾時。在37〇6中,若 CPU 3012偵測到一清除逾時,則在37〇8中,cpu儿^將 停止施加電壓信號至光閥3〇〇2及3〇〇4,此可接著使三維眼 鏡3000處於一關閉操作模式。在一例示性實施例中,該清 除逾時之持續時間可長達(例如)約4小時。 因此,在一例示性實施例中,若三維眼鏡3〇〇〇未偵測到 一有效同步信號,則該三維眼鏡可轉至一透明操作模式且 實施方法3700。在透明操作模式下,在—例示性實施例 中,三維眼鏡3000之光閥3〇〇2及3〇〇4均保持打開,使得觀 看者可透過三維眼鏡之光閥正常地觀看。在—例示性實施 例中,施加-正負交替的恒定電壓以將三維眼鏡胸之光 閥3002及3004之液晶單元維持在一透明狀態,定電塵 可(例如)為2伏特’但姉定電壓可為適合維持適度透明光 闊之任何其他電壓。在一例示性實施例中,三維眼鏡3_ 之光,_及3_可保持透明,直至該三維⑽Pressure. In detail, under the control of the control signals A, B, c, D, E, F and G of the CPU 3012, the digital control analog switch, port 6 and port 4 can provide: i) left light valve 3002 and right light valve Positive or negative 15 volts on one or both of 3004; 2) positive or negative 2 volts on either or both of the left and right shutters; 3) left and right shutters One or both of the positive or negative 3 volts, and 4) provide a volt (i.e., neutral state) on one or both of the left and right shutters. In an exemplary embodiment, as illustrated in FIG. 32, by controlling the operation of the switches of the digital control analog switches U1 and U6 that generate the output signals X and γ applied to the left and right shutters, respectively, as illustrated in FIG. The control signal eight controls the operation of the left light reading 3002 and the control signal B controls the operation of the right light valve 3004. In an exemplary embodiment, the digital control analog switches are combined with the control inputs A and B of each of the switches UI and U6 such that switching between the two pairs of input signals occurs simultaneously and the selected input is forwarded to the left. The terminals of the light valve 3〇〇2 and the right light valve 3004. In an exemplary embodiment, control signal A from cpu 3〇12 controls the first two switches in digital control analog switch m, and control signal b from the CPU controls the first two switches of digital control analog switch U6f. In an exemplary embodiment, as illustrated in Figure 32, one of the terminals of each of the left shutter 3〇〇2 and the right shutter 3004 is always connected to 3v. Therefore, in an exemplary embodiment, under the control of the control signals A, B, C, D, E, F, and G of the CPU 3012, the digital control analog switches U1, U6, and U4 are operated to turn -12 V, 3 V,! ¥ or 0 v is sent to the left light valve 3〇〇2 and the other terminals of the right light valve 3004. As a result, in an exemplary embodiment, 147660.doc -45-201119350 operates the digital control analog switches U1, U6 under the control of the control signals A, B, c, D, E, F, and G of the CPU 3 012. U4 produces a potential difference of 15 V, 0 V, 2 V or 3 V at the terminals of left light valve 3002 and right light valve 3004. In an exemplary embodiment, the third switch of analog control switch U6 is not used and the terminals of the third switch are grounded. In an exemplary embodiment, the digital switch is used to control the analog switch to save power. DETAILED DESCRIPTION In an exemplary embodiment, as illustrated in Figure 32, control signal C controls the operation of the digital control analog switch to generate a switch for output signal z. As a result, when the control signal C is a digital high value, the input signal inh of the digital control analog switch U4 is also a high value, thereby causing all of the output channels of the digital control analog switch U4 to be turned off. As a result, when the control signal c is a digital high value, the left light valve 3〇〇2 and the right light valve 3〇〇4 are short-circuited, thereby permitting half of the charge to be transferred between the light valves, thereby saving power and extending the battery. 120 life expectancy. In an exemplary embodiment, by using the control signal C to short the left light valve 3002 and the right light valve 3〇〇4, a large amount of charge collected on a light valve in a closed state can be used to just another The other light valve portion is charged before a light valve is turned to the off state, thereby saving the amount of charge that would otherwise have to be completely provided by the battery 120. In an exemplary embodiment, when the control signal c generated by the CPU 3012 is a digital high value 'e.g., the left light valve 3 〇〇 2 that is in the off state at the time and has a potential difference of 15 V thereon is negatively charged. The board 12 v) is connected to a board with a more negative power of the right light reading 3〇〇4 which is then turned on and is still charged to +1 V and has a potential difference of Iv60.doc -46-201119350. In an exemplary embodiment, the positively charged plates on both of the light valves 3002 and 3004 will be charged to +3 volts. In an exemplary embodiment, the control signal c generated by the CPU 3012 is transferred to a short period of time near the end of the closed state of the left shutter 3002 and just before the closed state of the right shutter 3〇〇4. A high number of digits. When the control k唬C generated by cPU 3〇12 is a high value, the digital control analog switch IN4 is also a digital high value. As a result, in an exemplary embodiment, all of the output channels X, 丫, and z of U4 are in a closed state. This allows the charge stored on the plates of the left light valve 3002 and the right light valve 3〇〇4 to be dispersed between the light valves such that the potential difference across the two light valves is about 丨7/2 v or 8.5 V. Since one terminal of the light valves 30〇2 and 3004 is always connected to the negative terminals of the 3 V 'light valves 3002 and 3004, it is at _5 5 V. In an exemplary embodiment, the control signal c generated by the CPU 3012 then becomes a digital low value, and thereby the negative terminals of the light valves 3002 and 3004 are disconnected from each other. The battery 120 then further charges the negative terminal of the right shutter to -12 V by the 'off-state of the right light valve 3〇〇4 in the exemplary embodiment, and by operating the digital control analog switch U4. As a result, in an exemplary experimental embodiment, approximately 4% power savings is achieved during the normal execution mode of operation of the 3D glasses 3000 (as described below with reference to Method 3300). In an exemplary embodiment, 'the control signal c generated by the CPU 3012 is provided as a short duration from high to low when the control signal A or B generated by the CPU transitions from high to low or from low to high. Pulse to start the next left light valve open / right light valve closed or right light valve open / left light valve closed. 147660.doc -47· 201119350 Referring now to Figures 33 and 34, in an exemplary embodiment, during operation of the 3D glasses 3000, the 2D glasses perform a normal execution mode of operation 3300, in which mode will be performed by the CPU The control signals A, B, C, D, E, F and G generated by 3〇12 are used to control the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3〇1〇 Operation, thereby controlling the operation of the left and right light valves 3002 and 3004 according to the type of synchronization signal detected by the signal sensor 3014. In detail, in 3302, if the CPU 3012 determines that the signal sensor 3〇14 has received a synchronization signal, then in 3304, the control signals A, B, C, D, E generated by the cpu 3〇12 are used. F&G controls the operation of left light valve controller 3〇〇6 and right light valve controller 3008 and central light valve controller 3〇1〇 to transfer charge between left light valve 3002 and right light valve 3004, as above See Figure 32 for a description. In an exemplary embodiment, in 3304, the control 彳g number c generated by the CPU 301 2 is set to a high digit value in about 〇2 milliseconds, thereby causing the left shutter 3002 and the right shutter 3004 to The terminals are shorted and thus the charge is transferred between the left and right shutters. In an exemplary embodiment, in 33〇4, the control signal c generated by the CPU 3〇12 is set to a π-digit value in about 0.2 milliseconds, thereby thereby causing the left light valve 3〇〇2 and the right light. The terminal of the valve 3〇〇4 is more short-circuited with the negative terminal, so the transfer between the left light and the right light is changed. Therefore, the control signal C is provided as a short duration pulse which transitions to low when the control signal A or 胄 transitions to low or low transition to high or here (five). As a result, power savings were provided during the operation of the three-dimensional 147660.doc •48·201119350 glasses 3000 during the cycle between the opening of the left light/closing of the right light valve and the closing of the left light valve/opening of the right light valve. In 3306, CPU 3012 then determines the type of synchronization signal received. In an exemplary embodiment, a synchronization signal comprising 2 pulses indicates that the left light valve 3002 should be open and the right light valve 3004 should be closed, and a synchronization signal comprising three pulses indicates that the right light valve should be open and the left The light valve should be closed. In an exemplary embodiment, alternate numbers K of different numbers and formats may be used to control the alternate opening and closing of the left and right light valves 3002, 30, 4. In 3306, if the CPU 3012 determines that the received synchronization signal indicates that the left shutter 3002 should be open and the right shutter 3004 should be closed, then in 3308 the CPU will control 仏唬A, B, C, D, E, F And G are transmitted to the left light valve controller 3006 and the right light valve controller 3008 and the common light valve controller 3〇1〇 to apply a high voltage on the right light valve 3004 and no voltage followed by a small stop voltage Applied to the left light valve 3002. In an exemplary embodiment, the amount of high voltage applied to the right shutter 3004 in 33 is 15 volts. In an exemplary embodiment, the value of the snubber voltage applied to the left shutter 3 〇〇 2 in 3308 is 2 volts. In an exemplary embodiment, in 33〇8, by controlling the operation state of the control k number D to be low and controlling the operation state of the control signal ρ (which may be low or high) to be high, The voltage is applied to the left light valve 3002. In an exemplary embodiment, the application of the stop voltage to the left shutter 3 002 in 33 〇 8 is delayed by a predetermined period of time ' to allow the molecules within the liquid crystal of the left shutter to rotate faster. Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the left shutter 3〇〇2 from rotating excessively during the opening of the left shutter. In an exemplary embodiment, the application of the delta stop voltage to the left light valve 3 〇〇 2 in 33〇8 is delayed by about 1 millisecond. 147660.doc •49· 201119350 or 'in 3306, if CPU 3012 determines that the received synchronization signal indicates that left light valve 3002 should be closed and right light valve 3004 should be open, then in 33 10, the CPU will control signal a, B, C, D, E, F, and G are transmitted to the left light valve controller 3006 and the right light valve controller 3008 and the common light valve controller 3010 to apply a high voltage on the left light valve 3002 and will be no voltage subsequently A small stop voltage is then applied to the right shutter 3004. In an exemplary embodiment, the amount of high voltage applied to left light valve 3002 in 3310 is 15 volts. In an exemplary embodiment, the amount of the stop voltage applied to the right shutter 3004 in 3310 is 2 volts. In an exemplary embodiment, the stop voltage is applied to the right shutter 3〇〇4 by controlling the control signal F to be high and controlling the control signal G to be low in 3 3 10 . In an exemplary embodiment, the application of the stop voltage to the right shutter 3004 is delayed by a predetermined time 4 in 33 1 0 to allow the molecules in the liquid crystal of the right shutter to rotate faster. . Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the right shutter 3004 from rotating excessively during the opening of the right shutter. In an exemplary embodiment, the application of the stop voltage to the right shutter 3〇〇4 is delayed by approximately 1 millisecond in 33 10 . In an exemplary embodiment, during the method 3300, the voltages applied to the left and right shutters 〇〇2 and 3 交替4 are alternately positive and negative during subsequent iterations of steps 3308 and 3310. Prevent damage to the liquid crystal cells of the left and right shutters. Thus, method 3300 provides a normal or operational mode of operation for 3D glasses 3000. Referring now to Figures 35 and 3, in an exemplary embodiment, during operation of the 3D glasses 147660.doc • 50-201119350 3000, the 3D glasses implement a warm-up operation method 35〇〇, in the method The control signals A, B, C, D, E, F, and G generated by the CPU 3〇12 are used to control the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3 The operation of the first light valve 3002 and the right light valve 3004 are controlled. In 3502, the cpu 3012 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 'three-dimensional glasses 3' can be powered by a user initiating a power-on switch, by an automatic wake-up sequence, and/or by sensing a valid synchronization signal by the signal sensor 3 014. . In the case where the 3D glasses are powered, the light valves 3〇〇2 and 3〇〇4 of the 3D glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 3〇〇2 and 3004 which do not have electric power for a period of time may be in an ambiguous state. In 3502, if the CPU 30 12 of the 3D glasses 3 detects the energization of the 3D glasses, in 3504, the CPU respectively applies an alternating voltage signal to the left light valve 3 0 0 2 and the right light valve. 3 0 0 4. In an exemplary embodiment, the voltage applied to the left and right shutters 3002, 3004 alternates between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, the voltage signals applied to the left and right shutters 300, 300, 3004 may be at least partially out of phase with one another. In an exemplary embodiment, one or both of the voltage signals applied to the left shutter 3002 and the right shutter 3004 may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right shutters 3002, 3004 such that the liquid crystal cells of the shutter are in a broken operating state. In an exemplary embodiment, applying a power signal to the left shutter 3 0 〇 2 and the right shutter 3 〇 〇 4 causes the 147660.doc • 51 - 201119350 light valve to open and close at the same time or at different times. During the application of the voltage signal to the left and right shutters 3002, 3004, the CPU 3012 checks a warm-up timeout in 3506. In 3506, if CPU 3012 detects a warm-up timeout, then in 3508, the CPU will stop applying a voltage signal to left light valve 3002 and right light valve 3004. In an exemplary embodiment, in 3504 and 35 06, the CPU 3012 applies a voltage signal to the left and right light valves 3002, 3004 during a period of time sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment, the CPU 301 applies a voltage signal to the left and right shutters 32 and 3004 for a period of two seconds. In an exemplary embodiment, the maximum magnitude of the voltage signal applied to the left and right shutters 3, 2, 3004 can be 15 volts. The timeout period in '3506 in an exemplary embodiment may be two seconds. In an exemplary embodiment, the maximum amount of voltage signals applied to left and right shutters 3002, 3, 4, 4 may be greater or less than 15 volts, and the timeout period may be longer or shorter. In an exemplary embodiment, during method 3500, cpu 3〇12 can open and close left and right shutters 3002 and 3004 at a different rate than can be used to view the movie. In an exemplary embodiment, the voltage signals applied to the left and right light valves 3002 and 3〇〇4 in 35〇4 are not replaced during the warm-up period and are constantly applied 'and thus the light valves The liquid crystal cells can remain opaque throughout the warm-up period. In an exemplary embodiment, the warm-up method 3500 can occur in the presence or absence of a synchronization signal. Thus, the method 3500 provides a warm-up mode of operation for the 3D glasses 3_. In an exemplary embodiment, after the warm-up method 3 (10) is implemented, the three-dimensional 3000 is in a normal operating mode, an operational mode of operation, or a transparent mode of operation 147660.doc -52 - 201119350, and then method 3300 can be implemented. Referring now to Figures 37 and 38, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement an operational method 3700 in which the control signals A, b, C to be generated by the CPU 3012 are implemented. , D, E, F, and G are used to control the operation of the left light valve controller 3006 and the right light valve controller 3〇〇8 and the common light valve controller 3010, and in turn according to the synchronization signal received by the signal sensor 3014. To control the operation of the left light valve 3〇〇2 and the right light valve 3〇〇4. In 3702, the CPU 3012 checks to see if the sync signal detected by the signal sensor 3 〇 14 is active or inactive. In 3702, if the CPU 3012 determines that the synchronization signal is invalid, then in 3704, the CPU applies a voltage signal to the left and right shutters 3002 and 3004 of the 3D glasses 3000. In an exemplary embodiment, the voltage applied to left shutter 302 and right shutter 3004 in 3704 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell. In an exemplary embodiment, the voltage applied to left light valve 3〇〇2 and right light valve 3004 at 37〇4 alternates between a positive peak and a negative peak to provide a square wave signal having a frequency of 60 Hz. In an exemplary embodiment, the square wave signal alternates between +3 V and -3 V. In an exemplary embodiment, one or both of the voltage signals applied to left and right shutters 3002, 3004 in 3704 may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, in 3704, other forms (including other frequencies) of voltage signals may be applied to the left and right shutters 3002, 3004 such that the liquid crystal unit remains open, thus the 3D glasses 3 Users of 〇〇〇 can be viewed normally through the light valve. In an exemplary embodiment, an electric 147660.doc -53·201119350 pressure signal is applied to the left light valve 3002 and the right light valve 3004 in 37〇4 to cause the light valves to open. When a voltage signal is applied to the left light valve 3〇〇2 and the right light valve 3〇〇4 in 3704, in 3706, the CPU 3012 checks for a clear timeout. In 37〇6, if the CPU 3012 detects a clearing timeout, then in 37〇8, the CPU will stop applying the voltage signal to the light valves 3〇〇2 and 3〇〇4, which can then make the three-dimensional The glasses 3000 are in a closed mode of operation. In an exemplary embodiment, the duration of the clearing time may be as long as, for example, about 4 hours. Thus, in an exemplary embodiment, if the 3D glasses 3 do not detect a valid synchronization signal, the 3D glasses can be rotated to a transparent mode of operation and method 3700 can be implemented. In the transparent mode of operation, in the exemplary embodiment, the light valves 3〇〇2 and 3〇〇4 of the 3D glasses 3000 remain open so that the viewer can view normally through the light valve of the 3D glasses. In an exemplary embodiment, a constant voltage alternating between positive and negative is applied to maintain the liquid crystal cells of the light valves 3002 and 3004 of the three-dimensional glasses chest in a transparent state, and the electric dust can be, for example, 2 volts 'but the voltage is set It can be any other voltage suitable to maintain a moderately transparent width. In an exemplary embodiment, the light of the 3D glasses 3_, _ and 3_ may remain transparent until the three dimensions (10)
加iSi、^ 。在一例示性音尬y ^ A J不性貫施例中,可以允許三維眼鏡之 使用者正常地觀看之—4, 、率父替地打開及關閉三維眼鏡 3000 之光閥 3002 及 3004。 因此,方法3700提供一種清除三維眼鏡扣⑼之操作的方 法,且藉此提供一透明操作模式。 現參看圖39及圖41,在—彻_ t 在例不性實施例中,在三維眼鏡 3000之操作期間,該三維 規貫知一刼作方法3900,在該 147660.doc •54· 201119350 方法中,將由CPU 3012產生之控制信號A、B、c、D、 E、F及G用以在光閥3002與3〇〇4之間轉移電荷。在39〇2 中,CPU 3G12判定-有效同步信號是否已由信號感測器 偵㈣到。若CPU3012m —有效同步信號已由信號感 測器3014偵測到,則在3904中,該CPU產生控制信號c, 其形式為一持續(在一例示性實施例中)約2〇〇叫之短持續 時間脈衝。在一例示性實施例中,在方法39〇〇期間,電荷 在光閥3002與3004之間的轉移在控制信號c之短時脈衝期 間發生,貫夤上如上文參看圖33及圖34所描述。 在3906中,CPU 3012判定控制信號C是否已自高轉變至 低。若CPU 3012判定控制信號C已自高轉變至低,則在 3908中,CPU改變控制信號a或b之狀態,然後三維眼鏡 3000可繼續其正常操作,(例如)如上文參看圖33及圖“所 描述及說明。 現參看圖30a、圖40及圖41,在一例示性實施例中,在 二維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4000,在該方法中,將由CPU 3〇12產生之控制信號r(:4及 RC5用以在三維眼鏡3000之正常或暖機操作模式期間操作 電荷泵3016,如上文參看圖32、圖33、圖34、圖35及圖% 所描述及說明。在4002中,CPU 3012判定一有效同步信號 是否已由信號感測器3014偵測到。若CPU 3012判定一有效 同步信號已由信號感測器3014偵測到,則在4〇〇4中,該 CPU產生呈一系列短持續時間脈衝之形式的控制信號 RC4 〇 147660.doc -55- 201119350 在例不性實施例中,控制信號RC4之脈衝控制電晶體 Q1之操作以藉此將電荷轉移至電容器C丨3,直至該電容器 上之電位達到一預定位準。詳言之,當控制信號rc4切換 至低值時’電晶體Q1將電感器L1連接至電池120。結 果’電感IsLl儲存來自電池12〇之能量。接著,當控制信 號RC4切換至一高值時,儲存於電感器以中之能量被轉移 至電容斋C13。因此,控制信號RC4之脈衝不斷地將電荷 轉移至電容器C13,直至電容器C13上之電位達到一預定 位準。在一例示性實施例中,控制信號RC4繼續,直至電 容器C13上之電位達到_12 v。 在一例示性實施例中,在4〇〇6中,cpu 3〇丨2產生一控制 k號RC5。結果,提供一輸入信號RA3,其具有一隨電容 器C13上之電位增加而減小之量值。詳言之,當電容器 C1 3上之電位接近該預定值時’齊納二極體D?開始導電, 藉此減少輸入控制信號RA3之量值。在4008中,CPU 3012 判疋輸入控制彳§號RA3之量值是否小於一預定值。若cpu 3012判定輸入控制信號RA3之量值小於該預定值,則在 4010中’該CPU停止產生控制信號RC4及RC5。結果,電 荷向電容器C13之轉移停止。 在一例示性實施例中,在三維眼鏡3000之操作期間,方 法4000可在方法3900之後實施。 現參看圖30a、圖42及圖43,在一例示性實施例中,在 三維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4200,在該方法中,將由CPU 3012產生之控制信號A、 147660.doc -56- 201119350 B、C、D、E、F、G、RA4、RC4及RC5用以判定當三維眼 鏡3000已切換至一關閉狀況時電池12〇之操作狀態。在 4202中,CPU 30 12判定三維眼鏡3000是關閉還是打開。若 CPU 3012判定三維眼鏡3000關閉,則在42〇4中,該cpu判 定是否已經過一預定逾時時段。在一例示性實施例中,該 逾時時段長度為2秒。 # 若CPU 30 12判定已經過該預定逾時時段,則在42〇6中, 該CPU判定信號感測器3〇14在一預定先前時間段中所偵測 到的同步脈衝之數目是否超過一預定值。在一例示性實施 例中’在4206中’預定先前時間段為自電池12〇之最近替 換以來已經過的時間段。 若CPU 3012判定信號感測器3〇14在一預定先前時間段中 偵測到的同步脈衝之數目超過一預定值,則在42〇8中,該 CPU產生作為一短持續時間脈衝的控制信號e,在421〇 中,該cpu將作為一短持續時間脈衝的控制信號RA4提供 給b號感測器3 014,且在4212中,該CPU分別雙態觸發控 制1s號A及B之操作狀態。在一例示性實施例中,若信號 感測器3014在一預定先前時間段中所偵測到的同步脈衝之 數目超過一預定值,則此可指示電池12〇中之剩餘電力為 低。 或者,若CPU 3012判定信號感測器3014在一預定先前時 間段中偵測到的同步脈衝之數目未超過一預定值,則在 4210中’該CPU將作為一短持續時間脈衝的控制信號RA4 k供給信號感測器3〇 14,且在4212中’該CPU分別雙態觸 147660.doc •57· 201119350 發控制信號A及B之操作狀態。在一例示性實施例中,若 k號感測器3 014在一預定先前時間段中偵測到的同步脈衝 之數目未超過一預定值,則此可指示電池丨2 〇中之剩餘電 力不為低。 在一例示性實施例中’在4208及4212中,控制信號a及 B雙態觸發與控制信號e之短持續時間脈衝之組合使三維眼 鏡3000之光閥3002及3004關閉(在控制信號e之短持續時間 脈衝期間除外)。結果’在一例示性實施例中’藉由在一 短時間段中使三維眼鏡之光閥急速打開(flash 〇pen),光閥 3002及3004將電池120中剩餘之電力為低的一視覺指示提 供給三維眼鏡3〇〇〇之使用者。在一例示性實施例中,在 42 10中將;作為一短持續時間脈衝的控制信號RA4提供給信 號感測器3014准許該信號感測器在所提供的脈衝之持續時 間期間搜尋及偵測同步信號。 在一例示性實施例中,控制信號A及B之雙態觸發(並不 亦k供控制彳έ號E之短持續時間脈衝)使三維眼鏡3 〇 〇 〇之光 閥3002及3 004保持關閉。結果,在一例示性實施例中,藉 由不在一短時間段中使三維眼鏡之光閥急速打開,光閥 3002及3004將電池120中剩餘之電力不為低的一視覺指示 提供給三維眼鏡3000之使用者。 在缺少一時序時脈之實施例中,可根據同步脈衝來量測 時間。CPU 3012可將電池12〇中之剩餘時間判定為電池可 繼續操作經過的同步脈衝之數目之一因數且接著藉由使光 閥3002及3004急速打開及關閉而將一視覺指示提供給三維 147660.doc •58· 201119350 眼鏡3000之使用者。 現參看圖44至圖55,在一例示性實施例中,三維眼鏡 104、1800及3000中之一或多者包括一框架前部4402、一 鼻樑架4404、右鏡腿4406及左鏡腿4408。在一例示性實施 例中,框架前部4402容納三維眼鏡104 ' 1800及3000中之 一或多者之控制電路及電源供應器(如上所述),且進一步 界定用於固持上述右ISS光閥及左ISS光閥之右透鏡開口 4410及左透鏡開口 4412。在一些實施例中,框架前部4402 抱合以形成一右翼4402a及一左翼4402b。在一些實施例 中,三維眼鏡104、1800及3000之控制電路的至少部分容 納於翼4402a及4402b之任一者或兩者中。 在一例示性實施例中,右鏡腿4406及左鏡腿4408自框架 前部4402延伸且包括隆脊4406a及4408a,且各自具有一蛇 形形狀,鏡腿之遠端與鏡腿之至框架前部之各別連接處相 比靠得較近。以此方式,當一使用者佩戴三維眼鏡1 04、 1800及3000時,鏡腿4406及4408之末端緊靠使用者之頭部 且固定就位。在一些實施例中,鏡腿4406及4408之彈簧率 由雙重彎曲來增強,而隆脊4406a及4408a的間距及深度控 制該彈簧率。如圖55所示,一些實施例不使用雙彎曲形 狀,而是使用一簡單的曲線型鏡腿4406及4408。 現參看圖48至圖55,在一例示性實施例中,三維眼鏡 104、1800及3 000中之一或多者之控制電路容納於框架前 部(其包括右翼4402a)中’且電池容納於右翼44〇2a中。此 外,在一例示性實施例中,經由一在右翼4402a之内側上 147660.doc -59- 201119350 的開口提供對三維眼鏡3000之電池12〇之取用,該門口 -蓋4414封閉,該蓋4414包括用於緊密配合及密封式唾: 右翼4402a之一 〇型環密封件441 6。 參看圖49至圖55 ’在-些實施例中,電池位於—由蓋 4414及蓋内部4415形成之電池蓋總成中。電池蓋他可藉 由(例如)超音波熔接而附接至電池蓋内部4415。觸點Μ/? 可自蓋内部44丨5伸出以將電自電池12〇傳導至(例如)位於右 翼4402a内之觸點。 、 "蓋内部4415在該蓋之一内部部分上可具有周向間隔開之 徑向楔緊元件(keying element)4418。蓋4414可具有定位於 該蓋之一外部表面上的周向間隔開之凹陷442〇〇 在-例示性實施例中,如圖49至圖51中所說明,可使用 一鑰匙(key)4422操控蓋4414,該鑰匙包括用於緊密配合及 嚙合該蓋之凹陷4420的複數個突起4424。以此方式,可將 蓋4414相對於三維眼鏡1〇4、18〇〇及3〇〇〇之右翼44〇以自一 關閉(或鎖定)位置旋轉至一打開(或解鎖)位置。因此’可 藉由使用鑰匙4422將蓋4414與三維眼鏡3000之右翼44〇2a 嚙合而相對於環境封閉三維眼鏡丨〇4、丨8〇〇及3〇〇〇之控制 電路及電池。參看圖55,在另—實施例中,可使用输匙 4426 ° 見參看圖56,彳5號感測器5600之一例示性實施例包括 可操作地耦接至一解碼器56〇4之窄帶通濾波器56〇2。信 號感測5600繼而可操作地耦接至一 cpu 56〇4。窄帶通濾 波器5602可為一類比及/或數位帶通濾波器,其可具有適 147660.doc 201119350 於准許-同步串列資料信號通過而遽出及移除頻帶外雜訊 之通帶。 ’ 在一例示性實施例中,CPU 56〇4可(例如)為三維眼鏡 104、1800 或 3000之 CPU 114、CPU 1810或 CPU 3012。 在一例示性實施例中,在操作期間,信號感測器5600自 。一信號傳輸器5606接收-信號。在—例示性實施例中,信 號傳輸器5606可(例如)為信號傳輸器11〇。 在-例示性實施财,由信號傳輸器观傳輸至信號感 測器5600之信號测包括—或多個資料位w7Q2,立各自 由-時脈脈衝5 7 0 4居先。在—例示性實施例中,在信號感 測器5600之操作期間,因為資料之每一位元57〇2由一時脈 脈衝5704居先,所以信號感測器之解碼器篇可容易地解 碼長資料位元字組°因&’信號感測器5_能夠容易地接 收及解碼來自信號傳輸器56〇6之同步串列資料傳輸。盘之 相比’為非同步資料傳輸之長資料^组通常難以用一 有效及/或無錯方式傳輸及解馬。因&,信號感測器5_ 提供用於接收資料傳輸之-改良式系、统。此外,在信_ 測器5 _之操作中使用同步串列f料傳輸確保可容易地解 碼長資料位元字組。 見多看圖58,一種用於調節一使用於三維眼鏡之同 步信號之系統5_之-例示性實施例包括用於感測一同步 信號自信號傳輸器11〇之傳輪的一信號感測器贤在一 J 丁性實轭例中’仏號感測器58〇2經調適以感測該同步信 號自信號傳輸器m之傳輸’該同步信號具有主要在電磁 147660.doc -61· 201119350 見光部分中的分量。在若干替代實施例中,信號 孕802可皱§周適以感測該同步信號自信號傳輸器 之傳輸’該同步作號且古 , 唬具有可旎並非主要在電磁波譜之可見 光部分中的分量’諸如紅外線信號。 正規器5804可操作地耗接至信號感測器58〇2及三維眼 鏡3000之CPU 3〇12 ’該正規器用於正規化該信號感測器所 須測到的同步信號及將該正規化同步信號傳輸至該CPU。 在一例示性實施例中,正規器5804可使用類比及/或數 位電路來貫施且可經調適以正規化該偵測到的同步信號之 振幅及/或形狀。以此方式,在一例示性實施例中,在三 維眼鏡3000之操作期間可適應信號感測器58〇2所偵測到的 同步尨號之振幅及/或形狀之大幅變化。舉例而言,若信 號傳輸器110與信號感測器5802之間的間距在正常使用中 可能大幅變化,則三維眼鏡3〇〇〇之信號感測器所偵測到的 同步心號之振幅可大幅變化。因此’用於正規化信號感測 器5802所偵測到的同步信號之振幅及/或形狀之一構件將 增強三維眼鏡3000之操作。 用於調節一輸入信號以正規化該輸入信號之振幅及/或 形狀之系統之實例揭示於(例如)以下美國專利中:第 3,124,797 號、第 3,488,604 號、第 3,652,944 號、第 3,927,663 號、第 4,270,223 號、第 6,081,565 號及第 6,272,103號,該等專利之揭示内容以引用的方式併入本文 中。此等美國專利之揭示内容及/或教示可全部或部分地 組合以實施正規器5 804之全部或一部分。在一例示性實施 I47660.doc -62· 201119350 例中’正規器58G4之功能性之全部或―部分可由㈣3〇i2 實施。 在—例示性實施例中,正規器58〇4可另外地或替代性地 自信號感測器5802接收傳入同步信號,且調整該傳入同步 信號之放大及/线該傳人同步信號之峰間振幅穩定以產 生一隨後自該正規器傳輸至cpu 3〇12之輸出信號。在一替 代實施例中,CPU 114及/或Cpu 1810可取代cpu 3〇12, 或除CPU 3012之外,還可使用CPU 114及/或cpu 181〇。 現參看圖59,在一例示性實施例中,正規器58〇4包括一 增益控制元件5806、一放大器及脈衝調節元件581〇及一同 步振幅及形狀處理單元5812。 在一例示性實施例中,增益控制元件58〇6接收並處理由 L號感測器5802提供的同步輸入信號及由同步振幅及形狀 處理單元58 12提供的增益調整信號,以產生一衰減輸出信 號以供放大器及脈衝調節元件5 810處理。 在一例示性實施例中,放大器及脈衝調節元件581〇處理 由増益控制元件5806輸出的信號以產生一正規化同步信號 以傳輸至CPU 3012。 在一例示性實施例中,用於調節同步信號之系統58〇〇可 用於三維眼鏡104、1800或3000中。 現參看圖59a至圖59d ’在系統5800之一例示性實驗實施 例中’一能量主要在可見光譜内之電磁同步信號由信號咸 測器5802感測及/或被處理以產生一信號5902以傳輪至増 益控制元件5806。在一例示性實驗實施例中,同步信號 147660.doc -63- 201119350 59〇一2之峰間振幅在約1 0至1 V之範圍中。在—例示性實 驗實鈿例中,信號59〇2接著由增益控制元件π⑽處理以產 生一 k號5904以傳輸至放大器及脈衝調節元件581〇。在— 例不性實驗實施例中,信號59〇4之振幅高達約丄mV ^在— j八it貫驗貫施例中,信號59〇4接著由放大器及脈衝調節 元件5810處理以產生一信號5906以傳輸至CPU 3012。在一 例示性實施例中,信號59〇6之峰間振幅高達約3 V。在— 仞示性λ驗實知例中,信號5906被回饋至同步振幅及形狀 處理單7L5812以產生一回饋控制信號59〇8以傳輸至增益控 制tl件5806。在一例示性實驗實施例中,回饋控制信號 5908為一緩慢變化之信號或DC信號。 因此,系統5800之例示性實驗實施例表明,該系統可調 &感測到的同步彳§號之放大且使感測到的同步信號之蜂間 振幅穩定。參看圖58、圖59、圖59a、圖59b、圖59c及圖 59d所說明及描述的系統58〇〇之操作之例示性實驗結果是 預期之外的。 現參看圖60、圖60a及圖60b,三維眼鏡6000之一例示性 實施例貫質上等同於上文所描述之三維眼鏡丨8〇〇,惟下文 所說明的方面除外。 在一例示性實施例中,三維眼鏡6000包括三維眼鏡之左 光閥1802、右光閥1804、左光閥控制器1806、右光閥控制 器1 808、CPU 1810及電荷泵1 816,該等組件包括其對應功 能性。 二維眼鏡6000包括一信號感測器6002,其實質上類似於 147660.doc • 64 - 201119350 三維眼鏡1800之信號感測器1 8 14、經修改以包括增益控制 元件5806、放大器及脈衝調節元件5810及同步振幅及形狀 處理單元5812,該信號感測器可操作地耦接至微控制器 U4。在一例示性實施例中,微控制器U4為一可自Texas Instruments購得之 Texas Instruments MSP430F2011PWR 積 體電路。在一例示性實施例中,微控制器U4亦可操作地耦 接至CPU 1810。在一例示性實施例中,信號感測器6002之 光電二極體D2能夠偵測具有在可見光譜中之分量的電磁信 號。 在一例示性實施例中,增益控制元件5806包括場效電晶 體Q100。 在一例示性實施例中,放大器及脈衝調節元件5810包括 運算放大器U5及U6、電阻器R2、R3、R5、R6、R7、 RIO、R12、R14 及 R16、電容器 C5、C6、C7、C8、C10、 (:12、(:14及(:15’及肖特基障壁二極體〇1。 在一例示性實施例中,同步振幅及形狀處理單元58 12包 括NPN電晶體Q101、電阻器Ri〇〇、r1〇i及ri〇2,和電容 器 C13及C100。 在一例示性實施例中’在三維眼鏡6000之操作期間,信 號感測器6002自信號傳輸器i 10接收信號,該等信號可(例 如)包括用於操作三維眼鏡6000之組態資料及/或同步信 號。 在一例示性實施例中’在三維眼鏡6〇〇〇之操作期間’ Q100控制光電二極體D2之信號輸出。詳言之,在一例示 147660.doc -65- 201119350 性實施例中,當Q1〇〇之閘極上之電壓(其為^^上之電壓) 為0 V時,Q1 〇〇斷開且光電二極體D2之信號輸出不被衰 減。隨著Q100之閘極上之電壓增加,Q1〇〇接通且將電流 之部分自光電二極體D2傳導至接地,藉此使光電二極體 D2之L 5虎輸出衰減。輸出偵測器q 1 〇 i偵測來自光電二極 體D2之所得輸由信號之量值且調整〇1〇〇之閘極上之電壓 以使來自光電二極體D2之輸出信號穩定。 在一例不性實施例中,在三維眼鏡6〇〇〇之操作期間,若 光電一極體D2之彳§號輸出具有過大振幅,則來自放大器及 脈衝調節元件5810(包括場效電晶體Q1〇〇)之輸出將開始一 大擺動電壓。當放大器及脈衝調節元件581〇(包括場效電 晶體Q100)之擺動電壓變得過高時,卩1〇1將一適當修改之 電壓信號傳遞至Q100之閘極,此將可控地使流過Qi〇〇之 電流之一適當部分傳至接地。因此,在一例示性實施例 中,在三維眼鏡6000之操作期間,放大器及脈衝調節元件 5810之輸出處的電壓溢流(v〇hage 〇verfl〇w)愈大,自光電 二極體D2經由Q100傳導至接地的電流之百分比愈大。結 果,隨後被提供給放大器及脈衝調節元件581〇之所得信號 不會將運算放大器U5及U6過激勵至飽和。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間微 控制器U4比較輸入信號in—A與IN—B以判定是否存在一傳 入同步脈衝。若微控制器U4判定該傳入同步脈衝為用於打 開左光閥1802之一同步脈衝,則該微控制器將該傳入同步 脈衝轉換成一 2脈衝同步脈衝。或者,若微控制器u4判定 147660.doc • 66 - 201119350 〆專同/脈衝為用於打開右光閥⑽4之—同步脈衝,則 該微控制器將該傳人同步脈衝轉換成-3脈衝同步脈衝、。 因此微控制器U4解碼該傳入同步脈衝以操作三維眼鏡 6000之左光閥1802及右光閥18〇4。 在:例示性實施例中,在三維眼鏡6〇〇〇之操作期間微 控制器U4進-步提l卜鎖定迴路,即使該同步信號在 段時間中不存在(諸如,若該三維眼鏡之佩戴者注視偏 離於。亥傳入同步#號之方向的方向),該鎖定迴路亦使得 二維眼鏡6 0 0 0能夠操作。 現參看圖61 ’ 一種用於調節使用於三維眼鏡1〇4、 1800、3000或6000之一同步信號之系統61 〇〇之一例示性實 施例包括用於感測一同步信號自信號傳輸器11〇之傳輸的 信號感測器5802。在一例示性實施例中,信號感測器58〇2 經調適以感測具有主要在電磁波谱之可見光部分十的分量 的同步信號自信號傳輸器110之傳輸。 一習知動態範圍減小及對比度增強元件61 02可操作地柄 接至信號感測器5802及三維眼鏡3000之CPU 3012以用於減 小該信號感測器所偵測到的同步信號之動態範圍及增強該 同步信號内之對比度,以及將該正規化同步信號傳輸至該 CPU。或者,CPU 114及/或1810可取代CPU 3012,或除 CPU 3012之外,還可使用CPU 114及/或CPU 1810。 在一例示性實施例中,在三維眼鏡3000中使用動態範圍 減小及對比度增強元件6102增強了該三維眼鏡感測及處理 由信號傳輸器11〇傳輸的具有主要在電磁波譜之可見光部 147660.doc -67- 201119350 分中的分量之同步信號之能力。 現參看圖62,一種用於觀看一顯示器上之三維影像之系 統6200之一例示性實施例包含用於將用於使用者之左眼及 右眼之影像及一同步信號傳輸至一顯示表面6204上的一投 影器6202。系統6200之使用者可佩戴三維眼鏡1〇4、 1800、3 000或6000(其可根據或可不根據圖58至圖61之實 施例之教示進一步加以修改)’以藉此可控地准許將左眼 影像及右眼影像呈現給該使用者之左眼及右眼。 在一例示性實施例中’投影器62〇2可為可購得之TexasAdd iSi, ^. In an exemplary case, the user of the 3D glasses can be allowed to normally view the light valves 3002 and 3004 of the 3D glasses 3000. Thus, method 3700 provides a method of clearing the operation of a three-dimensional eyeglass buckle (9) and thereby providing a transparent mode of operation. Referring now to Figures 39 and 41, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D method is known as a method 3900, in the method of 147660.doc • 54· 201119350 The control signals A, B, c, D, E, F, and G generated by the CPU 3012 are used to transfer charge between the light valves 3002 and 3〇〇4. In 39〇2, the CPU 3G12 determines whether the valid sync signal has been detected by the signal sensor (4). If the CPU 3012m - the active sync signal has been detected by the signal sensor 3014, then in 3904 the CPU generates a control signal c in the form of a continuous (in an exemplary embodiment) about 2 short calls. Duration pulse. In an exemplary embodiment, during method 39A, the transfer of charge between light valves 3002 and 3004 occurs during a short pulse of control signal c, as described above with reference to Figures 33 and 34. . In 3906, CPU 3012 determines if control signal C has transitioned from high to low. If the CPU 3012 determines that the control signal C has transitioned from high to low, then in 3908, the CPU changes the state of the control signal a or b, and then the 3D glasses 3000 can continue its normal operation, for example, as described above with reference to FIG. 33 and FIG. Illustrated and illustrated. Referring now to Figures 30a, 40, and 41, in an exemplary embodiment, during operation of the two-dimensional glasses 3000, the three-dimensional glasses implement an operational method 4000 in which the CPU 3 The control signals r (:4 and RC5) generated by 〇12 are used to operate the charge pump 3016 during normal or warm-up mode of operation of the 3D glasses 3000, as described above with reference to Figures 32, 33, 34, 35, and And in 4002, the CPU 3012 determines whether an active synchronization signal has been detected by the signal sensor 3014. If the CPU 3012 determines that a valid synchronization signal has been detected by the signal sensor 3014, then at 4〇〇 4, the CPU generates a control signal RC4 in the form of a series of short duration pulses 〇 147660.doc -55 - 201119350 In an exemplary embodiment, the pulse of control signal RC4 controls the operation of transistor Q1 to thereby Charge transfer to capacitor C丨3 until the potential on the capacitor reaches a predetermined level. In detail, when the control signal rc4 is switched to a low value, the transistor Q1 connects the inductor L1 to the battery 120. As a result, the inductor IsLl is stored from the battery. Then, when the control signal RC4 is switched to a high value, the energy stored in the inductor is transferred to the capacitor C13. Therefore, the pulse of the control signal RC4 continuously transfers the charge to the capacitor C13 until The potential on capacitor C13 reaches a predetermined level. In an exemplary embodiment, control signal RC4 continues until the potential on capacitor C13 reaches _12v. In an exemplary embodiment, in 4〇〇6, Cpu 3〇丨2 generates a control k number RC5. As a result, an input signal RA3 is provided which has a magnitude which decreases as the potential on capacitor C13 increases. In detail, when the potential on capacitor C1 3 is close to the At the predetermined value, 'Zener diode D? starts to conduct electricity, thereby reducing the magnitude of the input control signal RA3. In 4008, the CPU 3012 determines whether the magnitude of the input control 彳§ RA3 is less than a predetermined value. 3012 judgment When the magnitude of the incoming control signal RA3 is less than the predetermined value, the CPU stops generating the control signals RC4 and RC5 at 4010. As a result, the transfer of charge to the capacitor C13 is stopped. In an exemplary embodiment, in the 3D glasses 3000 During operation, method 4000 can be implemented after method 3900. Referring now to Figures 30a, 42 and 43, in an exemplary embodiment, during operation of 3D glasses 3000, the 3D glasses implement an operational method 4200, In the method, the control signals A, 147660.doc - 56 - 201119350 B, C, D, E, F, G, RA4, RC4 and RC5 generated by the CPU 3012 are used to determine when the 3D glasses 3000 have been switched to a closed condition. Battery 12 operating state. In 4202, the CPU 30 12 determines whether the 3D glasses 3000 are closed or open. If the CPU 3012 determines that the 3D glasses 3000 is off, then in 42〇4, the CPU determines whether a predetermined timeout period has elapsed. In an exemplary embodiment, the timeout period is 2 seconds in length. # If the CPU 30 12 determines that the predetermined timeout period has elapsed, then in 42〇6, the CPU determines whether the number of synchronization pulses detected by the signal sensor 3〇14 in a predetermined previous period exceeds one. Predetermined value. In the exemplary embodiment, 'in 4206' the predetermined previous time period is the time period that has elapsed since the most recent replacement of the battery 12'. If the CPU 3012 determines that the number of synchronization pulses detected by the signal sensor 3〇14 in a predetermined previous period exceeds a predetermined value, then in 42〇8, the CPU generates a control signal as a short duration pulse. e, in 421〇, the cpu is supplied to the b-th sensor 3 014 as a short duration pulse control signal RA4, and in 4212, the CPU respectively triggers the operation states of the 1s No. A and B respectively. . In an exemplary embodiment, if the number of sync pulses detected by signal sensor 3014 during a predetermined previous time period exceeds a predetermined value, this may indicate that the remaining power in battery 12 is low. Alternatively, if the CPU 3012 determines that the number of synchronization pulses detected by the signal sensor 3014 during a predetermined previous time period does not exceed a predetermined value, then in 4210 the CPU will act as a control signal RA4 for a short duration pulse. k is supplied to the signal sensor 3〇14, and in 4212, the CPU is in a dual state touch 147660.doc •57·201119350 to send the operational states of the control signals A and B. In an exemplary embodiment, if the number of sync pulses detected by the k-th sensor 3 014 in a predetermined previous period does not exceed a predetermined value, this may indicate that the remaining power in the battery 不 2 不 is not It is low. In an exemplary embodiment, 'in 4208 and 4212, the combination of the control signal a and B toggles and the short duration pulse of the control signal e causes the shutters 3002 and 3004 of the 3D glasses 3000 to be closed (at the control signal e) Except for short duration pulse periods). The result 'in an exemplary embodiment' is a visual indication that the light valves 3002 and 3004 have low power remaining in the battery 120 by rapidly opening the shutter of the three-dimensional glasses for a short period of time. Provided to users of 3D glasses. In an exemplary embodiment, the control signal RA4, which is a short duration pulse, is provided to the signal sensor 3014 in 42 10 to permit the signal sensor to search and detect during the duration of the provided pulse. Synchronization signal. In an exemplary embodiment, the two-state triggering of control signals A and B (not the short duration pulse of control apostrophe E) keeps light valves 3002 and 3 004 of the 3D glasses 3 closed. . As a result, in an exemplary embodiment, the light valves 3002 and 3004 provide a visual indication that the remaining power in the battery 120 is not low to the three-dimensional glasses by not rapidly opening the light valve of the three-dimensional glasses in a short period of time. 3000 users. In an embodiment lacking a timing clock, the time can be measured based on the sync pulse. The CPU 3012 can determine the remaining time in the battery 12〇 as one of the number of synchronization pulses that the battery can continue to operate and then provide a visual indication to the three-dimensional 147660 by rapidly opening and closing the light valves 3002 and 3004. Doc •58· 201119350 Users of glasses 3000. Referring now to FIGS. 44-55, in an exemplary embodiment, one or more of the three-dimensional glasses 104, 1800, and 3000 include a frame front portion 4402, a nose bridge 4404, a right temple 4406, and a left temple 4408. . In an exemplary embodiment, frame front portion 4402 houses control circuitry and power supply (as described above) of one or more of three-dimensional glasses 104' 1800 and 3000, and is further defined for holding the right ISS light valve described above And a right lens opening 4410 and a left lens opening 4412 of the left ISS light valve. In some embodiments, the frame front portion 4402 is engaged to form a right wing 4402a and a left wing 4402b. In some embodiments, at least a portion of the control circuitry of the 3D glasses 104, 1800, and 3000 is received in either or both of the wings 4402a and 4402b. In an exemplary embodiment, right temple 4406 and left temple 4408 extend from frame front portion 4402 and include ridges 4406a and 4408a, and each have a serpentine shape with the distal end of the temple and the temple to frame The front joints are closer together. In this manner, when a user wears the three-dimensional glasses 104, 1800, and 3000, the ends of the temples 4406 and 4408 abut the user's head and are fixed in place. In some embodiments, the spring rates of temples 4406 and 4408 are enhanced by double bending, while the pitch and depth of ridges 4406a and 4408a control the spring rate. As shown in Fig. 55, some embodiments do not use a double curved shape, but instead use a simple curved type of temples 4406 and 4408. Referring now to Figures 48-55, in an exemplary embodiment, control circuitry for one or more of the three-dimensional glasses 104, 1800, and 3,000 is housed in the front of the frame (which includes the right wing 4402a) and the battery is housed in Right wing 44〇2a. Moreover, in an exemplary embodiment, access to the battery 12 of the 3D glasses 3000 is provided via an opening on the inside of the right wing 4402a 147660.doc -59-201119350, the door-cover 4414 is closed, the cover 4414 Includes a tight fit and sealed saliva: one of the right wing 4402a 〇 type ring seals 4416. Referring to Figures 49-55, in some embodiments, the battery is located in a battery cover assembly formed by a cover 4414 and a cover interior 4415. The battery cover can be attached to the battery cover interior 4415 by, for example, ultrasonic welding. The contact Μ/? can extend from the inner portion 44丨5 to conduct electricity from the battery 12〇 to, for example, a contact located within the right wing 4402a. The "cover inner portion 4415 can have circumferentially spaced apart radial keying elements 4418 on one of the inner portions of the cover. The cover 4414 can have circumferentially spaced apart recesses 442 positioned on an exterior surface of the cover. In an exemplary embodiment, as illustrated in Figures 49-51, a key 4422 can be manipulated. Cover 4414, the key includes a plurality of protrusions 4424 for tightly fitting and engaging the recess 4420 of the cover. In this manner, the cover 4414 can be rotated relative to the 3D glasses 1〇4, 18〇〇 and 3〇〇〇 right wing 44〇 from a closed (or locked) position to an open (or unlocked) position. Therefore, the control circuit and the battery of the three-dimensional glasses 丨〇4, 丨8〇〇, and 3〇〇〇 can be closed with respect to the environment by engaging the cover 4414 with the right wing 44〇2a of the three-dimensional glasses 3000 by using the key 4422. Referring to FIG. 55, in another embodiment, a port 4426 can be used. See FIG. 56. An illustrative embodiment of the 彳5 sensor 5600 includes a narrow band operatively coupled to a decoder 56〇4. Pass filter 56〇2. Signal sensing 5600 is then operatively coupled to a CPU 56〇4. The narrow bandpass filter 5602 can be an analog and/or digital bandpass filter that can have the passband of the out-of-band noise for permitting and synchronizing the serial data signals through the 147660.doc 201119350. In an exemplary embodiment, the CPU 56〇4 may be, for example, a CPU 114, a CPU 1810, or a CPU 3012 of the 3D glasses 104, 1800, or 3000. In an exemplary embodiment, signal sensor 5600 is self-operating during operation. A signal transmitter 5606 receives the - signal. In an exemplary embodiment, signal transmitter 5606 can be, for example, a signal transmitter 11A. In an exemplary implementation, the signal transmission transmitted by the signal transmitter to the signal sensor 5600 includes - or a plurality of data bits w7Q2, each of which is preceded by a - clock pulse 5 7 0 4 . In the exemplary embodiment, during operation of signal sensor 5600, since each bit 57 〇 2 of the data is preceded by a clock pulse 5704, the decoder portion of the signal sensor can be easily decoded long. The data bit block ° can be easily received and decoded by the & 'signal sensor 5_' from the synchronous serial data transmission from the signal transmitter 56〇6. It is often difficult to transmit and resolve horses in an efficient and/or error-free manner compared to the long data set for asynchronous data transmission. Because &, the signal sensor 5_ provides an improved system for receiving data transmission. In addition, the use of synchronous serial f-material transmission in the operation of the signal detector 5 ensures that long data bit blocks can be easily decoded. Referring to Figure 58, a system for adjusting a synchronization signal for three-dimensional glasses - an exemplary embodiment includes a signal sensing for sensing a synchronization signal from a signal transmitter 11 In a J-simplified yoke example, the apostrophe sensor 58〇2 is adapted to sense the transmission of the synchronization signal from the signal transmitter m. The synchronization signal has a primary focus on electromagnetic 147660.doc -61·201119350 The component in the part. In a number of alternative embodiments, the signal 802 can be wrinkled to sense the transmission of the synchronization signal from the signal transmitter. The synchronization has a significant component, and has a component that is not primarily in the visible portion of the electromagnetic spectrum. 'such as infrared signals. The normalizer 5804 is operatively coupled to the signal sensor 58〇2 and the CPU of the 3D glasses 3000. The regularizer is used to normalize the synchronization signal to be detected by the signal sensor and synchronize the normalization. The signal is transmitted to the CPU. In an exemplary embodiment, the normalizer 5804 can be implemented using analog and/or digital circuitry and can be adapted to normalize the amplitude and/or shape of the detected synchronization signal. In this manner, in an exemplary embodiment, large variations in the amplitude and/or shape of the synchronization sigma detected by signal sensor 58A2 can be accommodated during operation of three-dimensional glasses 3000. For example, if the spacing between the signal transmitter 110 and the signal sensor 5802 may vary greatly during normal use, the amplitude of the synchronization heart number detected by the signal sensor of the 3D glasses 3 may be Great changes. Thus, one of the components used to normalize the amplitude and/or shape of the synchronization signal detected by signal sensor 5802 will enhance the operation of 3D glasses 3000. Examples of systems for adjusting an input signal to normalize the amplitude and/or shape of the input signal are disclosed in, for example, U.S. Patent Nos. 3,124,797, 3,488,604, 3,652,944, 3,927,663. Nos. 4, 270, 223, 6, 081, 565, and 6, 272, 103, the disclosures of each of which are incorporated herein by reference. The disclosures and/or teachings of such U.S. patents may be combined in whole or in part to implement all or a portion of the normalizer 5 804. In an exemplary implementation of I47660.doc -62. 201119350, all or part of the functionality of the 'normalizer 58G4' may be implemented by (4) 3〇i2. In an exemplary embodiment, the normalizer 58A may additionally or alternatively receive an incoming synchronization signal from the signal sensor 5802 and adjust the amplification of the incoming synchronization signal and/or the peak of the transmitted synchronization signal. The amplitude is stabilized to produce an output signal that is subsequently transmitted from the normal to cpu 3〇12. In an alternate embodiment, CPU 114 and/or CPU 1810 may be substituted for cpu 3〇12, or CPU 114 and/or cpu 181〇 may be used in addition to CPU 3012. Referring now to Figure 59, in an exemplary embodiment, the normalizer 58A includes a gain control component 5806, an amplifier and pulse conditioning component 581, and a sync amplitude and shape processing unit 5812. In an exemplary embodiment, gain control component 58A6 receives and processes the sync input signal provided by L-sensor 5802 and the gain adjustment signal provided by sync amplitude and shape processing unit 58 12 to produce an attenuated output. The signal is processed by the amplifier and pulse conditioning component 5 810. In an exemplary embodiment, the amplifier and pulse conditioning component 581 processes the signal output by the benefit control component 5806 to produce a normalized synchronization signal for transmission to the CPU 3012. In an exemplary embodiment, system 58 for adjusting the synchronization signal can be used in 3D glasses 104, 1800 or 3000. Referring now to Figures 59a-59d, in an exemplary experimental embodiment of system 5800, an electromagnetic synchronization signal that is primarily in the visible spectrum is sensed by signal detector 5802 and/or processed to produce a signal 5902. The pass to the benefit control element 5806. In an exemplary experimental embodiment, the amplitude of the peaks of the synchronization signal 147660.doc -63 - 201119350 59〇2 is in the range of about 10 to 1 V. In an exemplary experimental example, signal 59〇2 is then processed by gain control element π(10) to produce a k number 5904 for transmission to amplifier and pulse conditioning component 581〇. In the example of an inaccurate experiment, the amplitude of the signal 59〇4 is as high as about 丄mV ^. In the example, the signal 59〇4 is then processed by the amplifier and the pulse conditioning component 5810 to generate a signal. 5906 for transmission to the CPU 3012. In an exemplary embodiment, the peak-to-peak amplitude of signal 59〇6 is as high as about 3 V. In the illustrative lambda verification example, signal 5906 is fed back to sync amplitude and shape processing block 7L5812 to generate a feedback control signal 59〇8 for transmission to gain control tg member 5806. In an exemplary experimental embodiment, feedback control signal 5908 is a slowly varying signal or DC signal. Thus, an exemplary experimental embodiment of system 5800 shows that the system can be tuned & sensed by the amplification of the 彳§ number and stabilizes the inter-bee amplitude of the sensed synchronization signal. Exemplary experimental results of the operation of system 58 illustrated and described with reference to Figures 58, 59, 59a, 59b, 59c, and 59d are unexpected. Referring now to Figures 60, 60a and 60b, an exemplary embodiment of three-dimensional glasses 6000 is substantially equivalent to the three-dimensional eyeglasses described above except for the aspects described below. In an exemplary embodiment, the 3D glasses 6000 include a left light valve 1802, a right light valve 1804, a left light valve controller 1806, a right light valve controller 1808, a CPU 1810, and a charge pump 1 816 of the 3D glasses. Components include their corresponding functionality. The two-dimensional glasses 6000 include a signal sensor 6002 that is substantially similar to 147660.doc • 64 - 201119350 3D glasses 1800 signal sensor 1 8 14 modified to include gain control element 5806, amplifier and pulse conditioning components 5810 and a synchronous amplitude and shape processing unit 5812 operatively coupled to the microcontroller U4. In an exemplary embodiment, microcontroller U4 is a Texas Instruments MSP430F2011 PWR integrated circuit available from Texas Instruments. In an exemplary embodiment, microcontroller U4 is also operatively coupled to CPU 1810. In an exemplary embodiment, photodiode D2 of signal sensor 6002 is capable of detecting an electromagnetic signal having a component in the visible spectrum. In an exemplary embodiment, gain control element 5806 includes field effect transistor Q100. In an exemplary embodiment, the amplifier and pulse conditioning component 5810 includes operational amplifiers U5 and U6, resistors R2, R3, R5, R6, R7, RIO, R12, R14, and R16, capacitors C5, C6, C7, C8, C10, (:12, (:14 and (:15') and Schottky barrier diodes 。1. In an exemplary embodiment, the sync amplitude and shape processing unit 58 12 includes an NPN transistor Q101, a resistor Ri 〇〇, r1〇i and ri〇2, and capacitors C13 and C100. In an exemplary embodiment, during operation of the 3D glasses 6000, the signal sensor 6002 receives signals from the signal transmitter i 10, such signals It may, for example, include configuration data and/or synchronization signals for operating the 3D glasses 6000. In an exemplary embodiment, 'Q100 controls the signal output of the photodiode D2 during operation of the 3D glasses 6〇〇〇 In detail, in an example embodiment of 147660.doc -65-201119350, when the voltage on the gate of Q1〇〇 (which is the voltage on ^^) is 0 V, Q1 〇〇 is disconnected and photoelectric The signal output of diode D2 is not attenuated. With the gate on Q100 Increase, Q1〇〇 turns on and conducts part of the current from the photodiode D2 to ground, thereby attenuating the L 5 tiger output of the photodiode D2. The output detector q 1 〇i detects from the photodiode The resulting value of the polar body D2 is input by the magnitude of the signal and the voltage on the gate of the 〇1〇〇 is adjusted to stabilize the output signal from the photodiode D2. In one example, in the three-dimensional glasses 6〇〇〇 During the operation, if the output of the photodiode D2 has an excessive amplitude, the output from the amplifier and the pulse adjusting component 5810 (including the field effect transistor Q1〇〇) will start a large swing voltage. When the amplifier and the pulse When the swing voltage of the adjustment element 581〇 (including the field effect transistor Q100) becomes too high, 卩1〇1 transmits a suitably modified voltage signal to the gate of Q100, which will controllably flow through Qi〇〇 One of the currents is appropriately transferred to ground. Thus, in an exemplary embodiment, during operation of the 3D glasses 6000, the voltage at the output of the amplifier and pulse conditioning component 5810 overflows (v〇hage 〇verfl〇w) The larger the self-photoelectric diode D2 The greater the percentage of current conducted from Q100 to ground. As a result, the resulting signal that is subsequently provided to the amplifier and pulse conditioning component 581 does not overdrive the operational amplifiers U5 and U6 to saturation. In an exemplary embodiment, During operation of the 3D glasses, the microcontroller U4 compares the input signals in_A and IN_B to determine whether there is an incoming sync pulse. If the microcontroller U4 determines that the incoming sync pulse is for turning on the left light One of the valves 1802 synchronizes the pulses, and the microcontroller converts the incoming sync pulse into a 2-pulse sync pulse. Alternatively, if the microcontroller u4 determines that the 147660.doc • 66 - 201119350 〆 / / pulse is used to turn on the sync valve of the right light valve (10) 4, the microcontroller converts the passed sync pulse into a -3 pulse sync pulse ,. The microcontroller U4 therefore decodes the incoming sync pulse to operate the left shutter 1802 and the right shutter 18〇4 of the 3D glasses 6000. In an exemplary embodiment, the microcontroller U4 advances the lock loop during operation of the 3D glasses 6〇〇〇 even if the synchronization signal does not exist for a period of time (such as if the 3D glasses are worn The gaze is deviated from the direction in which the direction of the direction of the synchronization ## is transmitted, and the lock loop also enables the two-dimensional glasses 600 to operate. Referring now to Figure 61, an exemplary embodiment for adjusting a synchronization signal for use in one of three-dimensional glasses 1, 4, 1800, 3000 or 6000 includes an embodiment for sensing a synchronization signal from a signal transmitter 11 The signal sensor 5802 transmitted. In an exemplary embodiment, signal sensor 58A is adapted to sense the transmission of a synchronization signal having a component of the visible light portion of the electromagnetic spectrum from signal transmitter 110. A conventional dynamic range reduction and contrast enhancement component 61 02 is operatively coupled to the signal sensor 5802 and the CPU 3012 of the 3D glasses 3000 for reducing the dynamics of the synchronization signal detected by the signal sensor Range and enhance contrast within the sync signal and transmit the normalized sync signal to the CPU. Alternatively, CPU 114 and/or 1810 may replace CPU 3012 or, in addition to CPU 3012, CPU 114 and/or CPU 1810. In an exemplary embodiment, the use of the dynamic range reduction and contrast enhancement component 6102 in the 3D glasses 3000 enhances the 3D glasses sensing and processing by the signal transmitter 11A having a visible light portion 147660 primarily in the electromagnetic spectrum. Doc -67- 201119350 The ability to synchronize the components of the component. Referring now to Figure 62, an exemplary embodiment of a system 6200 for viewing a three-dimensional image on a display includes transmitting images and a synchronization signal for a left eye and a right eye of a user to a display surface 6204. A projector 6202 on the top. A user of system 6200 can wear 3D glasses 1〇4, 1800, 3 000 or 6000 (which may be further modified depending on or may not be modified in accordance with the teachings of the embodiments of Figures 58-61) to thereby controllably permit left The eye image and the right eye image are presented to the left and right eyes of the user. In an exemplary embodiment, the projector 62 〇 2 may be commercially available Texas.
Instruments三維數位光源處理投影器。如一般熟習此項技 術者將認識到,該Texas lnstruments三維數位光源處理投 影器藉由以下方式操作:將一投影器之12〇 Hz輸出劃分在 左眼與右眼之間(每一者60 Hz),而同步信號在主動資料傳 輸之間的超短黑暗時間期間傳出。以此方式,呈現用於觀 看者之左眼及右眼之影像,且該等影像與用於指導三維眼 鏡3〇〇〇打開左觀看光閥或右觀看光閥之同步信號交錯。 在一例示性實施例中,該Texas Instruments(「τι」)三 維數位光源處理投影器可為叫晶片數位光源處理投影: 統及/或一 3晶片數位光源處理投影系統。 在一例示性實施例中’由投影器_2產生之該等同步作 號包括主要在可見光譜内之電磁能量。 益6202包括一 τΐ 3晶片數 在一例示性實施例 光源處理投影系統及一内建樓案飼服器62心,該内建 案祠服器可操作_接至用於將三維影像散發至投影 147660.doc -68- 201119350 6202的雲端或其他類型之一網路6206。 在一例示性實施例中’系統6200經進一步調適以提供對 以下二維格式中之一或多者的支援:1)並列式(side-by-side),2)上下式(over_under) ; 3)棋盤型;4)翻頁式;及5) 多視圖視訊編碼。在一例示性實施例中,系統62〇〇進一步 經调適而以每秒96個圖框(「Fps」)、12〇 FPS或144 FPS之 速率將影像提供給該系統之使用者。 現參看圖63及圖64,一投影顯示系統6300之一例示性實 施例包括一空間光調變器,更具體言之,一光調變器陣列 63 05 ’其中光調變器陣列63〇5中之個別光調變器採取對應 於正由顯示系統6300顯示之一影像之影像資料的一狀態。 光调變器陣列6305可(例如)包括一數位微鏡面裝置 (「DMD」),其中每一光調變器為一定位微鏡面。舉例而 言,在光調變器陣列6305中之光調變器為微鏡面光調變器 之顯示系統中,來自一光源63 10之光可反射離開或反射向 一顯示平面6315。來自光調變器陣列63〇5中之光調變器之 反射光之組合產生對應於影像資料之一影像。 一控制器6320協調該影像資料至光調變器陣列63〇5中之 載入、控制光源6310等。控制器6320可耦接至一前端單元 6325,該前端單元可負責對輸入視訊信號之操作,諸如, 將類比輸入信號轉換為數位輸入信號、Y/C分離、自動色 度控制、自動消色器(automatic color killer)等。前端單元 6325可接著將已處理視訊信號提供給控制器632〇,該已處 理視訊仏號可含有來自待顯示的多個影像串流之影像資 147660.doc -69 - 201119350 料。舉例而言,當用作為一立體顯示系統時,前端單元 6325可將來自兩個影像串流的影像資料提供給控制器 6320 ’每一串流含有相同場景之不同視角之影像。或者, ‘用作為多視圖顯示系統(multi_view display system)時, 前端單元6325可將來自多個影像串流的影像資料提供給控 制益6320,其中每一串流含有非相關内容之影像。控制器 6320可為一特殊應用積體電路(「ASIC」)、一通用處理器 等’且可用以控制投影顯示系統63 00之一般操作。一記愧 體6330可用以儲存影像資料、序列色彩資料,及影像之顯 示中所使用的各種其他資訊。 如圖64中所說明,控制器632〇可包括一序列產生器 6350、一同步信號產生器6355及一脈寬調變(PWM)單元 6360。序列產生器635〇可用以產生色序(c〇i〇r “叩印“), 其規定將由光源6310產生的色彩及持續時間,以及控制被 載入至光調變器陣列6305中之影像資料。除產生色序之 外,序列產生器6350亦可具有將該等色序(及其部分)重新 排序且重聽織之能力’以幫助減少可能負面影響影像品 質之雜訊(PWM雜訊)。 同步信號產生器6355可產生使三維眼鏡(例如,其可為 三維㈣_、18G()' 3_或_)與正被顯示的影像同步 之信號。該等同步信號可插入至由序列產生器635〇產生之 色序中且接著可由投影顯示系統63〇〇顯示。根據一實施 例,因為由同步信號產生器6355產生之該等同步信號係由 投影顯示系統6300顯示,所以通常在三維眼鏡(例如,直 147660.doc 201119350 可包括三維眼鏡l〇4、1800、3 000或6000)處於一阻斷觀看 狀態時(例如,當三維眼鏡(例如,其可包括三維眼鏡丨〇4、 1800、3000或6000)之光閥均處於關閉狀態時),將該等同 步信號插入至色序中。此可允許同步信號由三維眼鏡(例 如’其可包括三維眼鏡104、1800、3000或6000)偵測,但 防止使用者實際看到同步信號。可將含有同步信號之色序 提供給PWM單元6360,其可將色序轉換為一 PWM序列, 該PWM序列被提供給光調變器陣列6305及光源63 10。 投影顯示系統6300所投射之影像可由佩戴(例如)三維眼 鏡104、1800、3000或6000之使用者觀看到。 觀看器機構之其他實例可為根據本例示性實施例之教示 加以修改的護目鏡、眼鏡 '帶目鏡之頭盔等。該等觀看器 機構可含有可允許觀看器機構偵測由投影顯示系統63 〇〇顯 示之同步信號的一或多個感測器。該等觀看器機構可利用 多種光閥以使使用者能夠及不能夠看到投影顯示系統所顯 示之影像。該等光閥可為電子光閥、機械光閥、液晶光閥 等°電子光閥可阻斷光或使光通過,或可基於施加的電位 之極性而改變電子偏光器之極性。液晶光閥可以一類似方 式操作,其中電位改變液晶之定向^機械光閥可在(例如) 一馬達將機械光阻斷器移入及移出位置時阻斷光或使光通 過0 若投影顯示系統63 00以基於(例如)一晶體參考的—固定 速率操作,則可存在一優點。輸入至該投影顯示系統的信 號之圖框率可經轉換以匹配投影顯示系統63〇〇之圖框率。 I47660.doc -71- 201119350 該轉換過程通常丟棄及/或添加多個行以彌補任何時序 差。最後,可能需要重複及/或丟棄一完整圖框。從觀看 益機構之觀點來看,一優點可為較易於追蹤_ PWM序列之 黑暗時間及使同步信號同步。此外,此可使觀看器機構能 夠濾出干擾且長時間地保持鎖定至PWM序列。此可能在觀 看器機構未能偵測到同步信號時發生。舉例而言,此可在 正常操作狀況下,在觀看器機構上之偵測器被阻斷或方向 偏離顯示平面的情況下發生^ 現參看圖65及圖66 ’其展示一觀看器機構(例如,其可 為三維眼鏡104、1800、3000或6000,其可根據或可不根 據圖58至圖61之教示加以修改)之例示性的左眼光閥狀熊 65 10及右眼光閥狀態65 20,及由(例如)pwm單元產生之 PWM序列之一高階視圖6530。在一例示性實施例中,在任 何給定時間,應僅有觀看器機構(例如,其可為三維眼鏡 104、1800、3000或6000,其可根據或可不根據圖w至圖 61之教示加以修改)的兩個光閥中的一者處於打開狀,離。 然而’在一例示性實施例中,觀看器機構(例如,其可為 三維眼鏡104、1800、3000或6000,其可根據或可不根據 圖5 8至圖61之教示加以修改)之兩光閥可同時處於關閉或 打開狀態。 在一例示性實施例中,觀看器機構(例如,其可為三維 眼鏡104、1800、3000或6000 ’其可根據或可不根據圖58 至圖61之教示加以修改)之光閥狀態之單一循環654〇包括 左眼光闊狀態65 10及右眼光閥狀態6520之單一循環。在循 147660.doc -72- 201119350 環6540開始時,左眼光閥自關閉狀態轉變至打開狀態,一 間隔6542說明發生該狀態轉變之時間跨度。在一段=間之 後,左眼光閥在-狀態轉變間隔6544期間轉變回至關閉狀 態。當左眼光閥自打開狀態轉變至關閉狀態時,右眼之光 閥狀態開始在狀態轉變間隔6544期間自關閉狀態轉變至打 開狀態。 當左眼光閥在一間隔6546期間打開時,可顯示與一將由 左眼觀看之影像相關之影像資料。因此,pWM序列含有用 以顯不意欲供左眼觀看之影像的控制指令。 狀I、圖6530包括表示用於顯示一左眼影像之pwM控制 私之方框6548,其涵蓋間隔6546。間隔6546通常在左 眼光閥το成其至打開狀態之轉變之後開始。此可歸因於觀 看器機構(例如,其可為三維眼鏡104、1800、3000或 6000,其可根據或可不根據圖“至圖^丨之教示加以修改) 之打開狀&與_狀態之間的有限轉變時間。在左眼光闕 開始其向關閉狀態之轉變之後發生一類似延遲。接著,當 左眼光閥關閉且右眼光閥開啟時,例如,在脈衝及 6552期間,可顯示與將由右眼觀看之影像相關之一影像資 料。狀態圖6530包括表示用於顯示一右眼影像之pwM控制 指令之一方框6554,其涵蓋間隔6556。 在狀態圖6530中’用於左眼之PWM序列6548與用於右眼 之PWM序列65 54之間的時間通常可留空而沒有任何pwM 控制指令。舉例而言’方框6558在光閥轉變時間(諸如, 間1^ 6544及6560)期間發生。可進行此操作(例如)以防止在 147660.doc •73· 201119350 間隔⑽期間當左眼光闊自打開狀態轉變至關閉狀離時, 右眼看見模糊的左眼資料’及在間隔656〇期間當右眼光閥 自打開狀態轉變至關閉狀態時,左眼看 百見棋糊的右眼資 料。此等時間間隔可接著用以顯示同步 J 7 說。並非為空而 沒有任何PWM控制指令,由方框⑽表示之時間可含有顯 示同步信號所需的PWM控制指令,以及同步信號可能需要 提供的任何資料及操作模式資訊。 而 如圖66中所說明,在方框⑽之時間間隔期間,可傳輸 且顯示-例示性同步信號6_,其包括可用以表示何時開 始光閥狀態之下-循環的—簡單時序同步信號。舉例而 言,當觀看器機構(例如,其可為三維眼鏡1〇4、18〇〇、 3000或_(),其可根據或可不根據_至圖61之教示加以 修改)偵測到同步信號時,該觀看^機構可開始左眼光間 自關閉狀態至打開狀態之轉變、保持一規定(可能經預先 程式化)之時間1,開始左眼光閥自打開狀態至關閉狀態 之轉變,開始右眼光閥自關閉狀態至打開狀態之轉變、保 持一規定(可能經預先程式化)之時間量,且開始右眼光閥 自打開狀態至關閉狀態之轉變。在一例示性實施例中,左 眼光閥轉變及右眼光閥轉變可同時發生或可按需要交錯。 可在方框6558期間發生的圖66中所說明之同步信號66〇〇 可(例如)在PWM控制序列在約時間66〇5處結束之後大約 270微秒時開始。舉例而言,同步信號66〇〇可接著轉變至 一尚狀態歷時約6微秒,且接著轉變回至一低狀態歷時約 24微秒。舉例而言,同步信號66〇〇可接著轉變回至高狀態 147660.doc •74- 201119350 歷時約6微秒’且接著轉變回至低狀態,直至方框6558結 束0 可顯示可能更複雜之同步信號。舉例而言,同步信號可 規定光閥打開持續時間、應開始轉變之時間、哪一隻眼之 光閥應首先轉變、顯示系統之操作模式(諸如,三維影像 或多視圖)、控制資料、資訊等。此外,可編碼同步信 號,使得僅經授權之觀看器機構(例如,其可為三維眼鏡 104、i_、3_或_〇,其可根據或可不根據圖“至圖 61之教示加以修改)能夠處理同步信號中所含之資訊。同 步信號之總體複雜性可取決於許多㈣,其包括:同步信 號之所需功能、維持對與顯示系統一起使用之周邊設備之 控制的需要、可用的同步信號發信持續時間等。 同步信號可顯示為可由顯示系統產生之任何色彩。在利 用-固定色序之顯示系統(諸如’一使用色輪之顯示系統) 中,單-色彩可用以顯示同步信號。舉例而言在一使用 紅色、綠色、Μ色、青色、洋紅色、黃色及白色的七色多 原色顯示系統中,料色彩中之任一者皆可用以顯示同步 信號。然@ ’在―例示性實施财,色彩可為黃色,因為 黃色為較明亮色料之—者,且❹其對其他色彩之顯示 造成的負面影響可較小。或者,一較暗的色彩(諸如藍色) 可用以顯示同步信號。㈣藍色可為較佳的,因為使用較 暗色彩可使同步信號勒;π &旦£ & 〇 琉奴不今易由觀看者偵測。雖然較佳使 用單-色彩來顯示同步信號’但可使用多個色彩。舉例而 言,可能以用以顯示同步信號之色彩來編碼資訊。在一未 I47660.doc -75· 201119350 利用固定色序之顯示系統中,可使用任何色彩。另外,雖 然論述了七色多原色顯示系統,但可使用具有不同數目個 顯不色彩之其他顯示系統,且其不應被解釋為侷限於本例 示性實施例之範疇或精神。 在一例示性實施例中,為了准許同步信號之顯示_____ 觀看者偵測到同步k號之顯示,可在左眼光閥及右眼光閥 均處於關閉狀態時顯示同步信號。如圖65中所說明,狀態 圖6530顯不表不用於顯示同步信號之pWM控制指令的一方 框6558,其包含於間隔6544及656〇中。間隔“料及“⑼之 持續時間可取決於許多因素,諸如同步信號之複雜性、同 步信號之任何編碼之存在、同步信號中所載運之資料等。 另外’間隔6544及656G之持續時間可取決於諸如光闊轉變 時間之因素。舉例而言’若光閥轉變時間長,則間隔6544 及⑽亦應為長的以確保光閥在同步信號之顯示之前均關 或者不需要在方框6558所表示之整個間隔中產生同 步L喊$然希望觀看者不能谓測到同步信號,但當顯示 =統之黑色位準之亮度中等增加時,同步信號之顯 為可偵測的。 %爹有圆67 ..一片…π 丁,牡糸統6300之择十 :間,該系統實施-方法咖,在該方法中,在67。… =來自-第—影料流之-第_影像。在—例示性實衣 在㈣5中’漸進式地或交錯地顯示整個影势 :要:制(諸如,顯示持續時間限制、影像品質限制等): ^要求顯示該第—影像之-部分。舉例而言,可顯示^ 147660.doc •76· 201119350 —影像之-單-場(sing】e field)。在已顯示來自 — 像串流之該第-影像之後,接著在671〇中 知 第二影像串流之-第二影像。再一次,可^不來自一 ^可僅顯示該影像之—部分。然而,所顯示的第一: 之里及所顯示的第二影像之量較佳實質上 時間可不同。 a有’ 在顯示該第-影像及該第二影像後,接著在咖中1 影顯示系統義可顯示一同步信號。然而,該同步作號: 顯不可在任何時間發生’且用於顯示該同步信號之一例示 ’生時間可為當該投影顯示系統之觀看者可能不能在視覺上 偵測該同步信號時。舉例而言,觀看者可能正使用電子光 閱護目鏡’因此可在每一眼上之光閥關閉時顯示該同步信 戒。投影顯示系統義可判定何時關閉光閥,因為(例如) 投影顯示系統通常在_初始組態操作期間、在一先前所顯 不之同步信號中或在一製造商規定之持續時間(其為投影 顯不系統及觀看器機構(例如’其可為三維眼鏡1〇4、 1800、3000或6000,其可根據或可不根據圖58至圖61之教 丁加以修改)兩者已知)中規定光閥何時將關閉。然而,投 影顯示系統6 3 0 0未必需要為了適當操作而判定何時關閉光 閥通* ’尸、要在☆有意欲用於任一眼之pWM控制序列的 夺期(老如’方框6558)之開始或結束處顯示同步信號,觀 看器機構(例如’其可為三維眼鏡ι〇4、18〇〇、3_或 6000,其可根據或可不根據圖58至圖“之教示加以修改) 之製造商就可設定光閥轉變之時間以遮蔽(讓让〇叫同步 147660.doc •77· 201119350 秸唬。一旦在6715中,投影顯示系統6300已顯示同步信 號,該投影顯示系統就可返回顯示來自該第一影像串流及 該第二影像串流之影像(或影像之部分)。 現參看圖68,在一例示性實施例中,在系統63〇〇之操作 期間,該系統實施一方法68〇〇,在該方法中,在68〇5及 68 10中,觀看器機構(例如,其可為三維眼鏡丨、18〇〇、 3000或6000,其可根據或可不根據圖58至圖61之教示加以 修改)尋找同步信號(在6805中),且檢查以查看該機構偵測 到的信號是否為同步信號(在681〇中)。若該信號並非同步 仏號,則該觀看器機構(例如,其可為三維眼鏡1〇4、 18〇〇、侧或6刪,其可根據或可不根據圖58至圖61之教 示加以修改)可返回6805中之尋找同步信號。 右忒仏號為同步信號,則該觀看器機構(例如,其可為 三維眼鏡m、测、3_或6_,其可根據或可^根據 圖58至圖61之教示加以修改)可等待一規定時間量(在⑻$ 令)’且然後執行-諸如改變狀態轉變之規定第一動作(在 682〇中)。g觀看器機構(例如,其可為三維眼鏡、 聊、3_或6_,其可根據或可不根據圖58至圖61之教 示加以修改)可接著等待另一規定時間量(在船中),且然 後執行另一規定第二動作(在683〇中卜在該規定第二動作 完成後,該觀看器機構(例如,其可為三維眼鏡1〇4、 刪、3_或6_,其可根據或可不根據圖沿㈣之教 不加以修改)可返回6805中之尋找同步信號。 現參看圖69,在—例示性實施例中,^統63 00之操作 I47660.doc •78- 201119350 期間,該系統實施一方法6900,在該方法中,在69〇5中, 顯不一與一左眼影像相關聯之同步信號(在69〇5中),繼而 在6910中顯示該左眼影像。在671〇中顯示該左眼影像之 後,在6915中,顯示系統6300可顯示一與一右眼影像相關 聯之同步#號,繼而在6920中顯示該右眼影像。在一例示 性實施例中’可在可能不能確保對同步信號之㈣的顯示 系統中使用方法6900。在此顯示系統中,不可使用先前同 步信號以判定何時轉變’且僅在偵測到一相關聯同步信號 時發生轉變。 現參看圖7G,在-例示性實施例中,在系統義之操作 期間,該系統實施一方法7000,在該方法中在7〇〇5中, 偵測-同步信號。在7005中’若同步信號含有一很少出現 的開始序列及/或停止序列,則可辅助對同步信號之偵 測。另外,若僅在觀看器機構(例如,其可為三維眼鏡 1〇4、_、侧或嶋,其可根據或可不根據圖58至圖 社教示加以修改)處於規^狀態(諸如,觀看器機構之光 閥關閉)時顯示同步信號,則觀看器機構中之控制硬體可 經組態以在其處於較狀態時嘗試進行同步信號偵測。一 旦觀看器機構(例如,其可為三維眼鏡1〇4、刪、麗或 6000’其可根據或可不根據圖巧至圖“之教示加以修改) 偵:到同步信號,在7〇10中可完整地接收同步信號。若有 中,可解碼同步信號。在接收及解碼同步信 號後,右需要,在7_中,觀看器機構(例如,盆可為三 維眼鏡ΠΜ、蘭、3_或6_,其可根據或可絲據圖 147660.doc •79· 201119350 58至圖61之教示加以修改)可執行由同步信號規定或在同 步信號中規定之動作。 在一例示性實施例中,以上參看圖63至圖7〇描述的系統 之教示可全部或部分地併入系統62〇〇中及/或取代系統 6200之全部或一些。 一液晶光閥具有一液晶,藉由將一電壓施加至該液晶, 該液晶會旋轉’且接著該液晶在少於一毫秒的時間内達成 至少25°/。的光透射率。當液晶旋轉至一具有最大光透射之 點時,一裝置將該液晶之旋轉停止在該最大光透射點,且 然後在一時間段中將該液晶保持在該最大光透射點。可將 女裝在一機器可讀媒體上之一電腦程式用以促進此等實施 例中之任一者。 一系統藉由使用一副液晶光閥眼鏡來呈現三維視訊影 像,s亥眼鏡具有一第一液晶光閥及一第二液晶光閥,及經 調適以打開s亥第一液晶光閥之一控制電路。該第一液晶光 閥可在少於一毫秒的時間内打開至一最大光透射點,此 時,该控制電路可施加一止擋電壓以在一第一時間段中將 «亥第一液晶光閥保持在該最大光透射點,且然後關閉該第 一液晶光閥。接下來,該控制電路打開該第二液晶光閥, 其中該第二液晶光閥在少於—毫秒的時間内打開至一最大 光透射點,且然後施加一止擋電壓以在一第二時間段中將 該第二液晶光閥保持在該最大光透射點,Μ後關閉該第 二液晶光閥。該第一時間段對應於為觀看者之一第一眼呈 現-影像’且該第二時間段對應於為觀看者之一第二眼呈 147660.doc 201119350 現一影像。可將安袭在—機器可 偶B貫媒體上之一電腦程 以促進本文中所描述的實施例中之任一者。 在一例示性實_巾,該㈣電路經調相使用-同步 信號來判定該第一時間段及該第二時間段。在-例示性實 施例十,該止擋電壓為2伏特。 在一例示性實施例中,咭备士止 T °哀取大先透射點透射多於32%的 光。 在-例示性實施例中,一發射器提供一同步信號,且今 同步信號使該控制電路打開該等液晶光閥中之—者。在二 例示性實施例中,1玄同步信號包含-加密信號。在-例示 性實施例中’該三維眼鏡之控制電路將僅在驗證—加密作 號之後進行操作。 σ 在-例示性實施财,該控制電路具有—電池感測器且 可經調適以提供一電池電力偏低狀況之一指示。電池電力 偏低狀況之該指示可為一液晶光閥在一時間段中關閉、且 然後在一時間段申打開。 上在-例示性實施例中,該控制電路經調適則貞測—同步 信號且在彳貞測到該同步信號之後開始操作該等液晶光間。 在-例示性實施例中,該加密信號將僅操作具有經調適 以接收該加密信號之—控制電路的—副液晶眼鏡。 在一例不性實施例令,一測試-信號以可被佩戴該副液晶 光閥眼鏡的一人看見的一速率操作該等液晶光閥。 在-例示性實施例中’一副眼鏡具有具有一第一液晶光 閥之一第-透鏡及具有-第二液晶光閥之一第二透鏡。液 147660.doc -81. 201119350 晶光閥均具有可在少於一毫秒的時間内打開之一液晶及交 $也β第-液晶光閥及該第二液晶光閥之—控制電 路。當液Μ閥打開時,液晶定向被保持在―最大光透射 點,直至該控制電路關閉光閥。 在-例示性實施例中,一止擋電壓將該液晶保持在該最 大光透射點。該最大光透射點可透射多於32%的光。 在-例示性實施例中’一發射器提供一同步信號且該 同步信號使該控制電路打開該等液晶光閥中之一者。在一 些實施例中,t玄同步信號包括一加密信號。在一例示性實 施例中’該控制電路將僅在驗證了該加密信號之後進行操 作。在—例示性實施例中,該控制電路包括-電池感測器 且可經調適以提供一電池電力偏低狀況之一指示。電池電 力偏低狀况之遠指不可為液晶光閥在—時間段中關閉且接 者在一時間段中打開。在一例示性實施例中,該控制電路 經調適以偵測一同步信號且在其偵測到該同步信號之後開 始操作該等液晶光閥。 該加密信號可僅操作具有經調適以接收該加密信號之一 控制電路的一副液晶眼鏡。 在一例示性實施例中’-測試信號以可被佩戴該副液晶 光閥眼鏡的一人看見的一速率操作該等液晶光閥。 在一例示性實施例中,藉由以下操作向一觀看者呈現三 維視訊影像:使用液晶光閥眼鏡;在少於一毫秒的時間内 打開忒第一液晶光閥;在一第一時間段中將該第一液晶光 閥保持在一最大光透射點;關閉該第一液晶光閥,接著在 147660.doc •82- 201119350 少於-毫秒的時間内打開該第二液晶光間 :時:㈣第二液晶光間保持在-最大光透射點:: ::::::於為觀看者之—第,"像,二 第-夺間奴對應於為觀看者之一第二眼呈現一影像。 在例不ϋ實施例中,藉由—止擔電壓將該液晶光閱保 持,該最大光透m讀電财為2伏特。在一例示 性貫施例中,該最大光透射點透射多於32%的光。 在一例示性實施例中’-發射器提供-同步信號,該同 步信號使該控制電路打開該等液晶光閥中之—者。在—此 實施例t,該同步信號包含—加密信號。 - 在一例示性實施例中,該控制電路將僅在驗證了該加密 信號之後進行操作。 _在一例示性實施例中,-電池感測器監視電池中的電力 量。在-例示性實施例中,該控制電路經調適以提供一電 池電力偏低狀況之_扣-#,_ 扣不。電池電力偏低狀況之該指示可 為一液晶光閥在一昧en· I BB cm 時間奴中關閉且接著在一時間段中打 開。 在-例示性實施例中,該控制電路經調適則貞測一同步 信號且在仙到該同步信號之後開始操作該等液晶光閥。 在U示陡實知例中,該加密信號將僅操作具有經調適以 接收該加密信號之—控制電路的一副液晶眼鏡。 在例不性實施例中,一測試信號以可被佩戴該副液晶 光閥a艮鏡的-人看見之—速率操作該等液晶光閱。 在-例*性實施財,一種用讀供三維視訊影像之系 147660.doc -83- 201119350 統可包括一副眼鏡,其具有具有一第一液晶光閥之一第一 透鏡及具有一第二液晶光閥之一第二透鏡。該等液晶光閥 可具有一液晶且可在少於一毫秒的時間内打開。一控制電 路可交替地打開該第一液晶光閥及該第二液晶光閥,且將 液晶定向保持在一最大光透射點’直至該控制電路關閉該 光閥。此外,該系統可具有一電池電力偏低指示器,其包 括.電池,一感測器,其能夠判定該電池中剩餘的電力 里,一控制器,其經調適以判定該電池中剩餘的電力量是 否足以讓該副眼鏡在比一預定時間長的時間中操作;及一 指不器,其用以在該副眼鏡不能在比該預定時間長的時間 中操作的情況下向一觀看者發信號。在一例示性實施例 中,該電池電力偏低指示器以—預定速率打開及關閉左液 晶光閥及右液晶光閥。在—例示性實施例中,該預定時間 量為大於三個小時H示性實施例中,在判定該電池 中剩餘的電力量不足以讓該副眼鏡在比該預定時間量長的 時間中操作之後’㈣池電力偏低指示器可操作至少三 天。在一例示性實施例中,該控制器可藉由按該電池中剩 餘的同步脈衝之數目量測時間來判定該電池中剩餘的電力 量。 在用於提供二維視訊影像之一例示性實施例中,藉由具 有包括-第-液晶光閥及一第二液晶光閥之一副三轉看 眼鏡;在少於-毫秒的時間内打開該第一液晶光閥;在一 第一時間段中將該第一 關閉該第一液晶光闊, 液晶光閥保持在一最大光透射點; 且然後在少於一毫秒的時間内打開 147660.doc -84· 201119350 。弟二液晶光閥;在一第二時間段中將該第二液晶光閥保 持在—最大光透射點而提供影像。該第一時間段對應於為 觀看者之-第-眼呈現—影像,且該第二時間段對應於為 觀看者之第二眼呈現一影像。在此例示性實施例中,該三Instruments three-dimensional digital light source processing projector. As will be appreciated by those skilled in the art, the Texas lnstruments three-dimensional digital light source processing projector operates by dividing a 12 Hz output of a projector between the left and right eyes (each 60 Hz). ), while the sync signal is transmitted during the ultra-short dark time between active data transmissions. In this manner, images for the left and right eyes of the viewer are presented, and the images are interleaved with the synchronization signals used to direct the three-dimensional eyeglasses to open the left or right viewing light valves. In an exemplary embodiment, the Texas Instruments ("τι") three-dimensional digital light source processing projector can process a projection system for a wafer digital light source: a system and/or a 3-chip digital light source processing projection system. In an exemplary embodiment, the synchronization artifacts produced by projector_2 include electromagnetic energy primarily in the visible spectrum.益6202 includes a τ ΐ 3 wafer number in an exemplary embodiment of the light source processing projection system and a built-in housing server 62, the built-in server is operable to be used to distribute the three-dimensional image to the projection 147660.doc -68- 201119350 6202 Cloud or other type of network 6206. In an exemplary embodiment, system 6200 is further adapted to provide support for one or more of the following two-dimensional formats: 1) side-by-side, 2) over_under; Chessboard type; 4) page turning; and 5) multiview video coding. In an exemplary embodiment, system 62 is further adapted to provide images to users of the system at a rate of 96 frames per second ("Fps"), 12 〇 FPS, or 144 FPS. Referring now to Figures 63 and 64, an illustrative embodiment of a projection display system 6300 includes a spatial light modulator, and more particularly, a light modulator array 63 05 'where the light modulator array 63〇5 The individual optical modulators take a state corresponding to the image data being displayed by the display system 6300. The light modulator array 6305 can, for example, comprise a digital micromirror device ("DMD"), wherein each light modulator is a positioning micromirror. For example, in a display system in which the light modulator in the light modulator array 6305 is a micromirror light modulator, light from a light source 63 10 can be reflected off or reflected toward a display plane 6315. The combination of the reflected light from the optical modulator in the optical modulator array 63〇5 produces an image corresponding to one of the image data. A controller 6320 coordinates the loading of the image data into the optical modulator array 63〇5, controls the light source 6310, and the like. The controller 6320 can be coupled to a front end unit 6325, which can be responsible for the operation of the input video signal, such as converting the analog input signal into a digital input signal, Y/C separation, automatic chromaticity control, automatic color eliminator (automatic color killer) and so on. The front end unit 6325 can then provide the processed video signal to the controller 632, which can contain image information from a plurality of video streams to be displayed 147660.doc -69 - 201119350. For example, when used as a stereoscopic display system, the front end unit 6325 can provide image data from two video streams to the controller 6320' each stream containing images of different viewing angles of the same scene. Alternatively, when used as a multi_view display system, the front end unit 6325 can provide image data from a plurality of video streams to the control benefit 6320, wherein each stream contains images of non-related content. Controller 6320 can be a special application integrated circuit ("ASIC"), a general purpose processor, etc. and can be used to control the general operation of projection display system 63 00. A body 6330 can be used to store image data, sequence color data, and various other information used in the display of the image. As illustrated in Figure 64, the controller 632A can include a sequence generator 6350, a sync signal generator 6355, and a pulse width modulation (PWM) unit 6360. A sequence generator 635 can be used to generate a color sequence (c〇i〇r "print") that specifies the color and duration to be produced by the light source 6310, as well as controlling the image data loaded into the light modulator array 6305. . In addition to generating the color sequence, sequence generator 6350 can also have the ability to reorder the color sequences (and portions thereof) and re-hear the fabric to help reduce noise (PWM noise) that can negatively impact image quality. The sync signal generator 6355 can generate a signal that causes the 3D glasses (e.g., it can be three-dimensional (4)_, 18G()' 3_ or _) synchronized with the image being displayed. The synchronization signals can be inserted into the color sequence produced by sequence generator 635 and can then be displayed by projection display system 63. According to an embodiment, because the synchronization signals generated by the synchronization signal generator 6355 are displayed by the projection display system 6300, typically in 3D glasses (eg, straight 147660.doc 201119350 may include 3D glasses l4, 1800, 3 000 or 6000) when in a blocking viewing state (for example, when the light valves of the 3D glasses (for example, they may include 3D glasses 4, 1800, 3000 or 6000) are in the off state), the synchronization signals are Insert into the color sequence. This may allow the synchronization signal to be detected by the 3D glasses (e.g., it may include 3D glasses 104, 1800, 3000 or 6000), but prevents the user from actually seeing the synchronization signal. The color sequence containing the sync signal can be provided to a PWM unit 6360 which converts the color sequence into a PWM sequence which is provided to the light modulator array 6305 and the light source 63 10 . The image projected by projection display system 6300 can be viewed by a user wearing, for example, three-dimensional eyepieces 104, 1800, 3000 or 6000. Other examples of viewer mechanisms may be goggles, eyeglasses, eyepiece helmets, and the like, modified in accordance with the teachings of the illustrative embodiments. The viewer mechanisms can include one or more sensors that allow the viewer mechanism to detect synchronization signals displayed by the projection display system 63. The viewer mechanisms can utilize a variety of light valves to enable and disable viewing of the image displayed by the projection display system. The light valves may be electronic light valves, mechanical light valves, liquid crystal light valves, etc. The electronic light valve may block or pass light, or may change the polarity of the electronic polarizer based on the polarity of the applied potential. The liquid crystal shutter can be operated in a similar manner, wherein the potential changes the orientation of the liquid crystal. The mechanical light valve can block or pass light through, for example, a projection display system 63 when a motor moves the mechanical light blocker into and out of position. 00 can be operated at a fixed rate based on, for example, a crystal reference. The frame rate of the signal input to the projection display system can be converted to match the frame rate of the projection display system 63. I47660.doc -71- 201119350 This conversion process usually discards and/or adds multiple rows to compensate for any timing differences. Finally, it may be necessary to repeat and/or discard a complete frame. From the point of view of the viewing mechanism, one advantage is that it is easier to track the dark time of the _PWM sequence and synchronize the synchronization signals. In addition, this allows the viewer mechanism to filter out interference and remain locked to the PWM sequence for extended periods of time. This may occur when the viewer mechanism fails to detect the sync signal. For example, this can occur under normal operating conditions where the detector on the viewer mechanism is blocked or directionally offset from the display plane. Referring now to Figures 65 and 66, a viewer mechanism is shown (e.g., An exemplary left eye light valve bear 65 10 and right eye light valve state 65 20, which may be 3D glasses 104, 1800, 3000 or 6000, which may or may not be modified according to the teachings of FIGS. 58-61, and A high order view 6530 of one of the PWM sequences generated by, for example, a pwm unit. In an exemplary embodiment, at any given time, there should be only a viewer mechanism (eg, it can be 3D glasses 104, 1800, 3000, or 6000, which may or may not be based on the teachings of Figures w-61) One of the two light valves modified) is open, away. However, in an exemplary embodiment, the viewer mechanism (eg, which may be 3D glasses 104, 1800, 3000, or 6000, which may or may not be modified in accordance with the teachings of FIGS. 58-61), may be Can be turned off or on at the same time. In an exemplary embodiment, the viewer mechanism (eg, it may be a single cycle of 3D glasses 104, 1800, 3000, or 6000 'which may or may not be modified in accordance with the teachings of FIGS. 58-61) The 654〇 includes a single cycle of the left eye wide state 65 10 and the right eye light valve state 6520. At the beginning of the 165660.doc -72-201119350 ring 6540, the left eye light valve transitions from the closed state to the open state, and an interval 6542 illustrates the time span at which the state transition occurs. After a period of =, the left eye light valve transitions back to the off state during the -state transition interval 6544. When the left-eye light valve transitions from the open state to the closed state, the light valve state of the right eye begins to transition from the closed state to the open state during the state transition interval 6544. When the left eye light valve is opened during an interval 6546, image data associated with an image to be viewed by the left eye can be displayed. Therefore, the pWM sequence contains control commands for images that are not intended for viewing by the left eye. Shape I, Figure 6530 includes a block 6548 representing the pwM control private for displaying a left eye image, which covers the interval 6546. The spacing 6546 typically begins after the transition of the left eye light valve το to its open state. This may be attributed to the viewer mechanism (eg, it may be 3D glasses 104, 1800, 3000 or 6000, which may or may not be modified according to the teachings of the figures "to the teachings") A finite transition time between. A similar delay occurs after the left eye diaphragm begins its transition to the off state. Then, when the left eye light valve is closed and the right eye light valve is open, for example, during the pulse and 6552, the display and the right will be displayed by the right One of the image data associated with the image viewed by the eye. State diagram 6530 includes one of the pwM control instructions for displaying a right eye image, block 6554, which covers the interval 6556. In the state diagram 6530, the PWM sequence for the left eye 6548 The time between the PWM sequence 65 54 for the right eye can generally be left blank without any pwM control commands. For example, 'block 6558 occurs during the light valve transition time (such as between 1^6544 and 6560). This can be done (for example) to prevent the left eye from seeing blurred left eye data 'and at interval 6' when the left eye is wide open from the open state to the closed position during the 147660.doc •73· 201119350 interval (10) During the 56〇 period, when the right-eye light valve is turned from the open state to the closed state, the left eye sees the right eye data of the past. These time intervals can then be used to display the synchronization J 7. It is not empty without any PWM control commands. The time indicated by block (10) may contain the PWM control commands required to display the synchronization signal, as well as any data and operational mode information that the synchronization signal may need to provide. As illustrated in Figure 66, during the time interval of block (10) An exemplary synchronization signal 6_ can be transmitted and displayed, including a simple timing synchronization signal that can be used to indicate when the light valve state is under-cycled. For example, when the viewer mechanism (eg, it can be 3D glasses 1 〇4, 18〇〇, 3000 or _(), which may or may not be modified according to the teaching of _ to FIG. 61. When the synchronization signal is detected, the viewing mechanism can start the self-closing state between the left eye lights to the open state. The transition of the first eye valve to the closed state begins with the change of the specified time (possibly pre-programmed), and the right eye light valve is self-closing. The transition of the open state, maintaining a predetermined amount of time (possibly pre-programmed), and beginning the transition of the right eye light valve from the open state to the closed state. In an exemplary embodiment, the left eye light valve transition and the right eye light valve transition Can occur simultaneously or can be interleaved as desired. The synchronization signal 66 图 illustrated in Figure 66, which can occur during block 6558, can be, for example, approximately 270 microseconds after the PWM control sequence ends at approximately 66 〇 5 To begin, for example, the sync signal 66 can then transition to a state for about 6 microseconds, and then transition back to a low state for about 24 microseconds. For example, the sync signal 66 can then be converted. Going back to the high state 147660.doc •74-201119350 lasts about 6 microseconds' and then transitions back to the low state until block 6558 ends 0, which may display a more complex synchronization signal. For example, the synchronization signal may specify the duration of the light valve opening, the time at which the transition should begin, which light valve should be first shifted, the operating mode of the display system (such as three-dimensional image or multi-view), control data, information, etc. . Moreover, the synchronization signal can be encoded such that only authorized viewer mechanisms (eg, which can be 3D glasses 104, i_, 3_ or _〇, which may or may not be modified according to the teachings of the figures "to 61") Processing the information contained in the synchronization signal. The overall complexity of the synchronization signal may depend on a number of (4), including: the desired function of the synchronization signal, the need to maintain control of peripheral devices used with the display system, the available synchronization signals The duration of the transmission, etc. The synchronization signal can be displayed as any color that can be produced by the display system. In a display system that utilizes a fixed color sequence (such as a display system using a color wheel), a single color can be used to display the synchronization signal. For example, in a seven-color multi-primary display system using red, green, ochre, cyan, magenta, yellow, and white, any of the material colors can be used to display the synchronization signal. However, @ '在表示例In the implementation of the money, the color can be yellow, because yellow is the brighter color, and its negative impact on the display of other colors can be less. A darker color (such as blue) can be used to display the sync signal. (4) Blue can be preferred because the darker color can be used to synchronize the signal; π & Viewer detection. Although it is better to use single-color to display the sync signal 'but multiple colors can be used. For example, the information may be encoded with the color used to display the sync signal. One does not I47660.doc -75· 201119350 Any color can be used in a display system using fixed color sequence. In addition, although a seven-color multi-primary display system is discussed, other display systems having different numbers of apparent colors can be used, and should not be construed as being limited The scope or spirit of the present exemplary embodiment. In an exemplary embodiment, in order to permit the display of the synchronization signal _____ the viewer detects the display of the synchronization k number, the left eye light valve and the right eye light valve are both closed. The synchronization signal is displayed. As illustrated in Figure 65, state diagram 6530 does not show a block 6558 for the pWM control command to display the synchronization signal, which is included in intervals 6544 and 656. The duration of "and" (9) may depend on a number of factors, such as the complexity of the synchronization signal, the presence of any code of the synchronization signal, the information carried in the synchronization signal, etc. Additionally, the duration of the interval 6544 and 656G may depend on, for example, For example, if the light valve transition time is long, the intervals 6544 and (10) should also be long to ensure that the light valve is off before the display of the synchronization signal or that it is not required to be represented in block 6558. Synchronization L is generated throughout the interval. It is hoped that the viewer cannot measure the synchronization signal, but when the brightness of the black level of the display = system is increased, the synchronization signal is detectable. %爹 has a circle of 67. A piece of ... π Ding, oysters 6300 choice ten: between, the system implementation - method coffee, in this method, at 67. ... = from - the first - the video stream - the first image. In the case of an exemplary wearer, the entire image is displayed progressively or staggered in (4) 5: To: (such as display duration limit, image quality limit, etc.): ^Requires the display of the -image-part. For example, you can display ^ 147660.doc • 76· 201119350 — Image-sing e field. After the first image from the stream is displayed, the second image of the second video stream is then known at 671. Once again, it can be used to display only the part of the image. However, the amount of the first image displayed and the second image displayed may preferably differ substantially in time. a has ' After displaying the first image and the second image, a synchronization signal can be displayed in the video display system. However, the synchronization number: is not visible at any time' and is used to display one of the synchronization signals. The lifetime may be when the viewer of the projection display system may not be able to visually detect the synchronization signal. For example, the viewer may be using an electronic light reading goggles' so that the synchronization signal can be displayed when the light valve on each eye is closed. The projection display system can determine when to close the light valve because, for example, the projection display system is typically during an initial configuration operation, in a previously displayed synchronization signal, or at a manufacturer-specified duration (which is a projection) The system and the viewer mechanism (eg, which may be 3D glasses 1〇4, 1800, 3000 or 6000, which may or may not be modified according to the teachings of Figures 58-61) are defined in the light) When will the valve close. However, the projection display system 630 does not necessarily need to determine when to close the light valve for proper operation, the corpse, which is intended to be used in any eye pWM control sequence (as in 'box 6558) The sync signal is displayed at the beginning or end, and the viewer mechanism (eg, 'which may be 3D glasses ι 4, 18 〇〇, 3 _ or 6000, which may or may not be modified according to the teachings of FIG. 58 to FIG. The quotient can set the time of the light valve transition to mask (let the squeak sync 147660.doc •77· 201119350 唬. Once in 6715, the projection display system 6300 has displayed the sync signal, the projection display system can return to display from The first image stream and the image of the second image stream (or portions of the image). Referring now to Figure 68, in an exemplary embodiment, during operation of system 63, the system implements a method 68. In this method, in 68〇5 and 6810, the viewer mechanism (for example, it may be three-dimensional glasses, 18〇〇, 3000 or 6000, which may or may not be according to FIGS. 58-61) Teaching to modify) looking for Synchronizing the signal (in 6805) and checking to see if the signal detected by the mechanism is a sync signal (in 681〇). If the signal is not a sync nickname, then the viewer mechanism (eg, it can be three-dimensional The glasses 1〇4, 18〇〇, side or 6 are deleted, which may or may not be modified according to the teachings of Fig. 58 to Fig. 61) may return to find the synchronization signal in 6805. The right apostrophe is the synchronization signal, then the viewing The mechanism (for example, it may be 3D glasses m, Measured, 3_ or 6_, which may be modified according to or may be modified according to the teachings of Figures 58-61) may wait for a specified amount of time (at (8)$ order)' and Then perform a prescribed first action (such as changing the state transition) (in 682 )). g viewer mechanism (eg, it can be 3D glasses, chat, 3_ or 6_, which may or may not be according to Figures 58-61 The teachings are modified) can then wait for another specified amount of time (in the ship) and then perform another prescribed second action (in 683 卜, after the specified second action is completed, the viewer mechanism (eg, It can be 3D glasses 1〇4, deleted, 3_ or 6_, which Depending on or may not be modified according to the teaching of Figure (4), the search for the synchronization signal in 6805 may be returned. Referring now to Figure 69, in the exemplary embodiment, during operation I47660.doc • 78-201119350, The system implements a method 6900 in which, in 69〇5, a synchronization signal associated with a left eye image (in 69〇5) is displayed, and then the left eye image is displayed in 6910. After the left eye image is displayed in 671 ,, in 6915, the display system 6300 can display a sync # number associated with a right eye image, and then display the right eye image in 6920. In an exemplary embodiment, method 6900 can be used in a display system that may not be able to ensure (4) the synchronization signal. In this display system, the previous sync signal cannot be used to determine when to transition' and the transition occurs only when an associated sync signal is detected. Referring now to Figure 7G, in an exemplary embodiment, during system operation, the system implements a method 7000 in which a sync-synchronization signal is detected in 7〇〇5. In 7005, if the synchronization signal contains a rarely occurring start sequence and/or stop sequence, the detection of the synchronization signal can be assisted. In addition, if only in the viewer mechanism (for example, it may be 3D glasses 1, 4, _, side or 嶋, which may or may not be modified according to the teachings of FIG. 58 to the teachings), it is in a state (such as a viewer). The synchronization signal is displayed when the light valve of the mechanism is turned off, and the control hardware in the viewer mechanism can be configured to attempt synchronous signal detection when it is in a relatively low state. Once the viewer mechanism (for example, it can be 3D glasses 1〇4, 、, 丽, or 6000', it may or may not be modified according to the teachings of the figure to the figure.) Detect: to the synchronization signal, in 7〇10 Completely receive the sync signal. If there is, the sync signal can be decoded. After receiving and decoding the sync signal, right, in 7_, the viewer mechanism (for example, the basin can be 3D glasses, blue, 3_ or 6_ , which may be modified according to the teachings of FIG. 147660.doc • 79·201119350 58 to FIG. 61. The actions specified by the synchronization signal or specified in the synchronization signal may be performed. In an exemplary embodiment, the above reference is made. The teachings of the systems depicted in Figures 63-7 can be incorporated, in whole or in part, into system 62 and/or in place of all or some of system 6200. A liquid crystal shutter has a liquid crystal by applying a voltage to the Liquid crystal, the liquid crystal will rotate 'and then the liquid crystal achieves a light transmittance of at least 25° in less than one millisecond. When the liquid crystal is rotated to a point having maximum light transmission, a device rotates the liquid crystal Stop at The large light transmits the dots and then maintains the liquid crystal at the maximum light transmission point for a period of time. A computer program on a machine readable medium can be used to facilitate any of these embodiments. A system presents a three-dimensional video image by using a pair of liquid crystal shutter glasses, the first glass liquid crystal valve and a second liquid crystal light valve, and adapted to open one of the first liquid crystal light valves a control circuit. The first liquid crystal light valve can be opened to a maximum light transmission point in less than one millisecond. At this time, the control circuit can apply a stop voltage to be in a first period of time. a liquid crystal light valve is maintained at the maximum light transmission point, and then the first liquid crystal light valve is closed. Next, the control circuit opens the second liquid crystal light valve, wherein the second liquid crystal light valve is less than - millisecond Opening to a maximum light transmission point, and then applying a stop voltage to maintain the second liquid crystal light valve at the maximum light transmission point in a second period of time, and then closing the second liquid crystal light valve. The first time period corresponds to the view One of the first eyes presents an image - and the second time period corresponds to one of the viewers' second eyes being 147660.doc 201119350. The image can be attacked on one of the machine's even media. The computer program facilitates any of the embodiments described herein. In an exemplary embodiment, the (four) circuit is phase modulated using a sync signal to determine the first time period and the second time period. - Illustrative Embodiment 10, the stop voltage is 2 volts. In an exemplary embodiment, the 士 士 T 哀 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大A transmitter provides a synchronization signal, and the synchronization signal causes the control circuit to open in the liquid crystal shutters. In the two exemplary embodiments, the 1-synchronization signal includes an -encrypted signal. In the exemplary embodiment, the control circuitry of the 3D glasses will operate only after the verification-encryption process. σ In an exemplary implementation, the control circuit has a battery sensor and can be adapted to provide an indication of a low battery condition. The indication of a low battery power condition may be that a liquid crystal light valve is turned off for a period of time and then turned on for a period of time. In the above-exemplary embodiment, the control circuit is adapted to detect the sync signal and begin operating between the liquid crystals after detecting the sync signal. In an exemplary embodiment, the encrypted signal will only operate as a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In an exemplary embodiment, a test-signal operates the liquid crystal shutters at a rate that can be seen by a person wearing the pair of liquid crystal shutter glasses. In the exemplary embodiment, a pair of glasses has a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve. Liquid 147660.doc -81. The 201119350 crystal light valve has a control circuit that can open one of the liquid crystals and the beta liquid crystal light valve and the second liquid crystal light valve in less than one millisecond. When the liquid helium valve is opened, the liquid crystal orientation is maintained at the "maximum light transmission point" until the control circuit closes the light valve. In an exemplary embodiment, a stop voltage maintains the liquid crystal at the point of maximum light transmission. The maximum light transmission point can transmit more than 32% of the light. In an exemplary embodiment, a transmitter provides a synchronization signal and the synchronization signal causes the control circuit to open one of the liquid crystal shutters. In some embodiments, the t-synchronization signal includes an encrypted signal. In an exemplary embodiment, the control circuitry will operate only after verifying the encrypted signal. In an exemplary embodiment, the control circuit includes a battery sensor and can be adapted to provide an indication of a low battery condition. A far lower battery power condition means that the liquid crystal light valve cannot be turned off during the time period and the receiver is turned on for a period of time. In an exemplary embodiment, the control circuit is adapted to detect a synchronization signal and to begin operating the liquid crystal shutters after it detects the synchronization signal. The encrypted signal can operate only a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In an exemplary embodiment, the '-test signal operates the liquid crystal shutters at a rate that can be seen by a person wearing the pair of liquid crystal valve glasses. In an exemplary embodiment, a three-dimensional video image is presented to a viewer by using liquid crystal shutter glasses; opening the first liquid crystal shutter in less than one millisecond; in a first time period Holding the first liquid crystal light valve at a maximum light transmission point; closing the first liquid crystal light valve, and then opening the second liquid crystal light within 147660.doc • 82-201119350 for less than - milliseconds: (4) The second liquid crystal light is maintained at - the maximum light transmission point:: :::::: for the viewer - the first, "image, the second - the slave is corresponding to presenting one of the viewers to the second eye image. In an embodiment, the liquid crystal is maintained by a stop voltage, which is 2 volts. In an exemplary embodiment, the maximum light transmission point transmits more than 32% of the light. In an exemplary embodiment, the '-transmitter provides a sync signal that causes the control circuit to turn on the liquid crystal shutters. In this embodiment t, the synchronization signal contains an encrypted signal. - In an exemplary embodiment, the control circuit will only operate after verifying the encrypted signal. In an exemplary embodiment, the battery sensor monitors the amount of power in the battery. In an exemplary embodiment, the control circuit is adapted to provide a battery power low condition of the buckle-#, _ buckle. This indication of a low battery power condition can be a liquid crystal light valve that is turned off in a ·en·I BB cm time slave and then turned on for a period of time. In an exemplary embodiment, the control circuit is adapted to detect a synchronization signal and begin operating the liquid crystal shutters after the synchronization signal. In the U-Simplified example, the encrypted signal will only operate a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In an exemplary embodiment, a test signal is operated at a rate that can be seen by a person wearing the pair of liquid crystal shutters. A method for reading a three-dimensional video image, 147660.doc-83-201119350, may include a pair of glasses having a first lens having a first liquid crystal light valve and having a second A second lens of a liquid crystal light valve. The liquid crystal light valves can have a liquid crystal and can be turned on in less than one millisecond. A control circuit alternately opens the first liquid crystal light valve and the second liquid crystal light valve and maintains the liquid crystal orientation at a maximum light transmission point ' until the control circuit closes the light valve. Additionally, the system can have a battery power low indicator including a battery, a sensor capable of determining the remaining power in the battery, a controller adapted to determine the remaining power in the battery Whether the amount is sufficient for the pair of glasses to operate for a longer period of time than a predetermined time; and a finger for sending to a viewer if the pair of glasses cannot be operated for a longer period of time than the predetermined time signal. In an exemplary embodiment, the battery power low indicator turns the left liquid crystal light valve and the right liquid crystal light valve on and off at a predetermined rate. In an exemplary embodiment, the predetermined amount of time is greater than three hours. In an exemplary embodiment, determining that the amount of power remaining in the battery is insufficient to operate the pair of glasses for a period of time longer than the predetermined amount of time After that, the '(4) pool power low indicator can be operated for at least three days. In an exemplary embodiment, the controller can determine the amount of power remaining in the battery by measuring the time of the number of synchronization pulses remaining in the battery. In an exemplary embodiment for providing a two-dimensional video image, the glasses are viewed by having a third-to-three-receiving lens comprising a -first liquid crystal light valve and a second liquid crystal light valve; opening in less than - milliseconds The first liquid crystal light valve; in a first period of time, the first liquid crystal shutter is closed, the liquid crystal light valve is maintained at a maximum light transmission point; and then the 147660 is turned on in less than one millisecond. Doc -84· 201119350 . The second liquid crystal light valve; in a second period of time, the second liquid crystal light valve is maintained at a maximum light transmission point to provide an image. The first time period corresponds to a video for the viewer's - first-eye representation, and the second time period corresponds to presenting an image for the second eye of the viewer. In this exemplary embodiment, the three
維觀看眼鏡感測該電池中剩餘的電力量、判定該電池S 餘的電力量是否足以讓該副眼鏡在比一預定時間長的時間 中操作,且接著在該眼鏡不能在比該預定時間長的時間中 操作的情況下向一觀看者指示一電池電力偏低信號。該指 示器可以一預定速率打開及關閉該等透鏡。該電池將持續 的預定時間量可為三個小時以上。在—例示性實施例中, 在判定該電池中剩餘的電力量不足以讓該副眼鏡在比該預 定時間量長的時間中操作之後,該電池電力偏低指示器操 作至少三天。在一例示性實施例中,該控制器藉由按該電 池可持續經過的同步脈衝之數目量測時間來判定該電池中 剩餘的電力量。 在用於k供二維視訊影像之一例示性實施例中該系統 包括:一副眼鏡,其包含具有一第一液晶光閥之一第一透 鏡及具有—第二液晶光U二透鏡,該等液晶光閥具 有一液晶及小於一毫秒之一打開時間。一控制電路可交替 地打開該第-液晶光閥及該第二液晶光閥,且液晶定向被 保持在一最大光透射點,直至該控制電路關閉該光閥。此 外,一同步裝置包括:一信號傳輸器,其發送一對應於一 為一第一眼呈現之影像之信號;—信號接收器,其感測該 信號;及一控制電路,其經調適以在為該第一眼呈現該影 147660.doc -85- 201119350 像的-時間段期間打開該第一光閥。在一例示性實施例 中’该"ίέ 5虎為一紅外光。 在一例示性實施例中,該信號傳輸器將該信號投射向一 反射器’該信號由該反射器反射,且該信號接收器偵測該 經反射信號。在-些實施例中,該反射器為—電影院榮 幕。在—例示性實施例中,該信號傳輸器自-影像投影器 (諸如,電影投影器)接收一時序信號。在一例示性實施例 中該l號為&頻仏$。在一例示性實施例中,該信號 為具有-預定間隔的-系列脈衝。在該信號為具有—預定 間隔的-系列脈衝之例示性實施例中,第一預定數目個脈 衝打開$第-液晶光閥,且第三預絲目個脈衝打開該第 一液晶光閥。 在用於提供三維視訊影像之一例示性實施例中,提供影 像之方法包括:具有包含一第一液晶光閥及一第二液晶光 閥之一副三維觀看眼鏡;在少於一毫秒的時間内打開該第 一液晶光閥;在一第一時間段中將該第一液晶光閥保持在 一最大光透射點;關閉該第一液晶光閥,且然後在少於一 毫秒的時間内打開該第二液晶光閥;在—第二時間段中將 該第二液晶光閥保持在一最大光透射點。該第一時間段對 應於為觀看者之左眼呈現一影像,且該第二時間段對應於 為觀看者之右眼呈現一影像。該信號傳輸器可傳輸一對應 於為左眼呈現之該影像的信號,及感測該信號,該三維觀 看眼鏡可使用該信號來判定何時打開該第一液晶光閥。在 一例示性實施例中’該信號為一紅外光。在—例示性實施 147660.doc -86- 201119350 例中,該信號傳輸器將該信號投射向一反射器(其將該信 號反射向該三維觀看目艮鏡)’且該眼鏡中之該信號接收器 偵測該經反射信號。在一例示性實施例中,該反射器為一 電影院螢幕。 在一例示性實施例中,信號傳輸器自一影像投影器接收 一時序信號。在一例示性實施例中,該信號為一射頻信 號。在一例示性實施例中,該信號可為具有一預定間隔的 一系列脈衝。第一預定數目個脈衝可打開該第一液晶光 閥,且第二預定數目個脈衝可打開該第二液晶光閥。 在一種用於提供二維視訊影像之系統之一例示性實施例 中,一副眼鏡具有具有一第一液晶光閥之一第一透鏡及具 有一第二液晶光閥之一第二透鏡,該等液晶光閥具有一液 晶及小於一毫秒之一打開時間。一控制電路交替地打開該 第一液晶光閥及S亥第一液晶光閥,且液晶定向被保持在一 最大光透射點,直至該控制電路關閉該光閥。在一例示性 實施例中,-同步系統包含:—反射裝置,其位於該副眼 鏡前方;及一信號傳輸器,其將一信號發送向該反射裝 置。該信號對應於一為觀看者之一第一眼呈現之影像。一 信號接收器感測自該反射裝置反射的信號,且然後,一控 制電路在為該第一眼呈現該影像的_時間段期間打開該第 一光闊。 在一例示性實施例中,該信號為一紅外光。在一例示性 實施例中,該反射器為-電影院螢幕。在—例示性實施例 中,該信號傳輸器自一影像投影器接收一時序信號。該作 147660.doc -87· 201119350 f虎可為具有-預定間隔的-系列脈衝。在一例示性實施例 中,該k號為具有一預定間隔的—系列脈衝,且第一預定 數目個脈衝打開該第-液晶光閥,且第二預定數目個脈衝 打開該第二液晶光閥。 在用於提供三維視訊影像之一例示性實施例中,可藉由 具有包含-第-液晶光閥及一第二液晶光間之一副三⑽ 看眼鏡;在少於一毫秒的時間内打開該第一液晶光閥;在 -第-時間段中將該第一液晶光閥保持在一最大光透射 點;關閉該第-液晶光閥,且然後在少於一毫秒的時間内 打開s玄第二液晶光閥;且然後在一第二時間段中將該第二 液晶光閥保持在一最大光透射點而提供影像。該第一時間 段對應於為觀看者之-第一眼呈現一影像,且該第二相 段對應於為觀看者之一第二眼呈現一影像。在一例示性實 把例中,該傳輸器傳輸一對應於為一第一眼呈現之影像的 、.外線彳。號。該二維觀看眼鏡感測該紅外線信號,且然後 使用該紅外線信號觸發該第一液晶光閥之打開。在一例示 性實轭例中,该信號為一紅外光。在一例示性實施例中, 該反射器為一電影院螢幕。在一例示性實施例中’該信號 傳輸益自一影像投影器接收一時序信號。該時序信號可為 具有一預定間隔的一系列脈衝。在一些實施例中,第—預 疋數目個脈衝打開該第一液晶光闕’且第二預定數目個脈 衝打開該第二液晶光閥。 在—例示性實施例中,一種用於提供三維視訊影像之系 統包括-副眼鏡,其具有具有一第一液晶光閥之—第一透 147660.doc -88- 201119350 鏡及具有一第二液晶光閥之一第二透鏡,該等液晶光閥具 有一液晶及小於一毫秒之一打開時間。該系統亦可具有一 控制電路’其交替地打開該第一液晶光閥及該第二液晶光 閥’且將液晶定向保持在一最大光透射點,直至該控制電 路關閉該光閥。該系統亦可具有一測試系統,其包含:一 l號傳輸器,一信號接收器;及一測試系統控制電路,其 經調適成以可被一觀看者看見之一速率打開及關閉該第一 光閥及該第二光閥。在一例示性實施例中,該信號傳輸器 不自一投影器接收一時序信號。在一例示性實施例中,該 信號傳輸器發射一紅外線信號。該紅外線信號可為一系列 脈衝。在另一例示性實施例中,該信號傳輸器發射一射頻 信號。該射頻信號可為一系列脈衝。 在-種用於提供三維視訊影像之方法之—例示性實施例 中,該方法可包括:具有包含一第一液晶光閥及一第二液 晶光閥之-副三維觀看眼鏡;在少於一毫秒的時間内打門 =-液晶光閱士第一時間段中將該第一液晶光閥: 持在一最大光透射點;_閉該第-液晶光間,且然後在少 於-毫秒的時間内打開該第二液晶光闊;及在一 =將該第二液晶光閥保持在—最大光透射點。在:= 現-影像,且二:應於為觀看者之-第-眼呈 像且及第-時間段對應於為觀看者之一第 現-影像。在一例示性實施例中,、 號傳輸向該三维觀看# P “ 11將一剩試信 錢看眼鏡,_鏡接著藉由該三維 感測盗接收該測試信號, .上 且然後由於該測試信號而使 147660.doc •89· 201119350 用一控制電路打開及關閉該第—液晶光閥及該第二液晶光 閥,其中該等液晶光閥以佩戴該眼鏡之一觀看者可觀察到 的速率打開及關閉。 在一例示性實施例中,該信號傳輸器不自一投影器接收 一時序信號。在一例示性實施例中,該信號傳輸器發射一 紅外線信號,其可為一系列脈衝。在一例示性實施例中, 該信號傳輸器發射一射頻信號。在一例示性實施例中,該 射頻信號為一系列脈衝。 一種用於提供三維視訊影像之系統之一例示性實施例可 包括一副眼鏡,其包含具有一第一液晶光閥之一第一透鏡 及具有一第二液晶光閥之一第二透鏡,該等液晶光閥具有 一液晶及小於一毫秒之一打開時間。該系統亦可具有一控 制電路,其交替地打開該第一液晶光閥及該第二液晶光 閥,將液晶定向保持在一最大光透射點,且然後關閉光 閥。在一例示性實施例中,一自動開啟(aut〇_〇n)系統包含 一信號傳輸器、一信號接收器,且其中該控制電路經調適 成以一第一預定時間間隔啟動該信號接收器、判定該信號 接收器是否正在自該信號傳輸器接收—信號、在該信號接 收器在一第二時間段内未自該信號傳輸器接收到該信號的 情況下撤鎖啟動該信號接收器,且在該信號接收器自該信 娩傳輸器接收到該信號的情況下以一對應於該信號的間隔 交替地打開該第一光閥及該第二光閥。 在一例示性實施例中,該第一時間段為至少兩秒,且該 第二時間段可為不超過100毫秒。在—例示性實施例中, 147660.doc •90· 201119350 直至該信號接收器自該信號傳輪 該等液晶光閥保持打開 器接收一信號。- 性實施例中,—㈣於提供三維視訊影像之方 =ίΓ具有包含—第一液晶光間及-第二液晶光間: ’觀看眼鏡;在少於一毫秒的時間内打開該第一液 BB :闊;在—第—時間段中將該第—液晶光閥保持在一最 大光透射點’ Μ閉該第一液晶光閥,且然後在少於—毫争I、 的時間内打開該第二液晶光闊;及在一第二時間段中將該 第-液晶光閥保持在―最大光透射點。在—例示性實施例 中,該第一時間段對應於為觀看者之一第一眼呈現一影 像’且該第二時間段對應於為觀看者之—第二眼呈現—影 像。在-例示性實施例中,該方法可包括以—第—預定時 間間隔啟動一信號接收器、判定該信號接收器是否正在自 該信號傳輸器接收一信號、在該信號接收器在一第二時間 段内未自該信號傳輸器接收到該信號的情況下撤銷啟動該 信號接收器,及在該信號接收器自該信號傳輸器接收到該 信號的情況下以一對應於該信號的間隔打開及關閉該第一 光閥及該第二光閥。在一例示性實施例中,該第一時間段 為至少兩秒。在一例示性實施例中,該第二時間段為不超 過100毫秒。在一例示性實施例中’該等液晶光閥保持打 開,直至該信號接收器自該信號傳輸器·接收一信號。 在一例示性實施例中,一種用於提供三維視訊影像之系 統可包括一副眼鏡,其包含具有一第一液晶光閥之一第一 透鏡及具有一第二液晶光閥之一第二透鏡,該等液晶光閥 147660.doc •91- 201119350 具有一液晶及小於—喜 一 、耄移之—打開時間。該系統亦可具有 曰二其可交替地打開該第-液晶光閥及該第二液 :’且將液晶定向保持在一最大光透射點,直至該控 制電路關閉該伞pq 先閥。在一例示性實施例中,該控制電路經 調適以:持該第-液晶光閱及該第二液晶光闊打開。在一 例不性貫施例中’該控制電路保持該等透鏡打開,直至該 控制電路偵測到一同步信號。在一例示性實施例中,施加 至该等液晶光閥之電壓在正負之間交替。 種用於提供二維視訊影像之裝置之一實施例中,一 丨隹觀看眼鏡包含一第一液晶光閱及一第二液晶光闊, 其中该第-液晶光閥可在少於一毫秒的時間内打開,其中 該第二液晶光閥可在少於一毫秒的時間内打開;以一使該 等液晶光閥看上去為透明透鏡之速率打開及關閉該第一液 晶光閥及該第二液晶光I在—實施例中,該控制電路保 持該等透鏡打開,直至該控制電路偵測到一同步信號❶在 一實施例中,該等液晶光閥在正負之間交替。 在一例示性實施例中,一種用於提供三維視訊影像之系 統可包括一副眼鏡,其包含具有一第一液晶光閥之一第一 透鏡及具有一第二液晶光閥之一第二透鏡,該等液晶光閥 具有一液晶及小於一毫秒之一打開時間。該系統亦可包括 一控制電路,其交替地打開該第一液晶光閥及該第二液晶 光閥’且將液晶保持在一最大光透射點,直至該控制電路 關閉該光閥。在一例示性實施例中,—發射器可提供一门 步信號,其中該同步信號之一部分經加密。可操作地連接 147660.doc •92· 201119350 至該控制電路之一感測器可經調適以接收該同步信號,且 可僅在接收到一加密信號之後才以對應於該同步信號之一 型樣打開及關閉該第一液晶光閥及該第二液晶光閥。 在一例示性實施例中,該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中,該同步信號為具有— 預定間隔的一系列脈衝,且第一預定數目個脈衝打開該第 一液晶光閥,且第二預定數目個脈衝打開該第二液晶光 閥。在一例示性實施例中,該系列脈衝之一部分經加密。 在一例示性實施例中,該系列脈衝包括預定數目個未經加 密脈衝隨後接著預定數目個經加密脈衝。在一例示性實施 例中,僅在接收到兩個連續加密信號之後才以對應於該同 步仏號之一型樣打開及關閉該第一液晶光閥及該第二液a 光閥。 ~ Ba 在種用於提供三維視訊影像之方法之一例示性實施例 中°亥方法可包括:具有包含一第一液晶光閥及_第二液 晶光閥之一副三維觀看眼鏡;在少於一毫秒的時間内打開 該第一液晶光閥;在一第一時間段中將該第一液晶光閥保 持在最大光透射點;關閉該第一液晶光閥,且然後在少 於一毫秒的時間内打開該第二液晶光閥;及在一第二時間 ’又中將6亥第二液晶光閥保持在一最大光透射點《在—例示 性實施例中,該第一時間段對應於為觀看者之一第—眼呈 現一影像’且該第二時間段對應於為觀看者之一第二眼呈 現一影像。在一例示性實施例中,一發射器提供一同步作 號,其中該同步信號之一部分經加密。在一例示性實施例 147660.doc •93· 201119350 中,一感測器可操作地連接至該控制電路且經調適以接收 該同步信號,且僅在接收到一加密信號之後才以對應於該 同步信號之一型樣打開及關閉該第一液晶光閥及該第二液 晶光閥。 在一例示性實施例中,該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中,該同步信號為具有一 預定間隔的一系列脈衝,且其中第一預定數目個脈衝打開 該第一液晶光閥,且其中第二預定數目個脈衝打開該第二 液晶光閥。在一例示性實施例中,該系列脈衝之一部分經 加密。在一例示性實施例中,該系列脈衝包括預定數目個 未經加密脈衝隨後接著預定數目個經加密脈衝。在—例示 性實施例中’僅在接收到兩個連續加密信號之後才以對應 於該同步信號之一型樣打開及關閉該第一液晶光閥及該第 二液晶光閥。 應理解’在不脫離本發明之範缚的情況下,可對上述内 容進行改變。儘管已展示且描述了具體實施例,但在不脫 離本發明之精神或教示的情況下,熟習此項技術者可進行 修改。所描述的實施例僅為例示性的且非限制性的。許多 改變及修改係可能的且在本發明之範疇内。此外,該等例 示性實施例之一或多個元素可全部或部分地與其他例示性 實施例中之一或多者之一或多個元素組合或取代其他例示 性實施例中之一或多者之一或多個元素。因此,保護範嘴 不限於所描述之實施例,而是僅受以下申請專利範圍限 制’申請專利範圍之範疇應包括申請專利範圍之標的的所 147660.doc •94· 201119350 有荨效物。 【圖式簡單說明】 圖1為一種用於提供三維影像之系統之—例 1〜不性實施例 的說明。 圖2為一種用於操作圖1之系統之方法 W不性實施例 - 的流程圖。 圖3為圖2之方法之操作的圖形說明。 圖4為圖2之方法之操作之一例示性實驗實施例的圖形說 明。 圖5為一種用於操作圖丨之系統之方法之—例示性實施例 的流程圖。 圖6為一種用於操作圖丨之系統之方法之—例示性實施例 的流程圖。 圖7為種用於刼作圖1之系統之方法之—例示性實施例 的流程圖。 圖8為圖7之方法之操作的圖形說明。The dimension viewing glasses sense the amount of power remaining in the battery, determine whether the amount of power remaining in the battery S is sufficient for the pair of glasses to operate for a longer period of time than a predetermined time, and then the glasses cannot be longer than the predetermined time In the case of an operation in time, a battery power low signal is indicated to a viewer. The indicator can open and close the lenses at a predetermined rate. The battery will last for a predetermined amount of time of more than three hours. In an exemplary embodiment, the battery power low indicator operates for at least three days after determining that the amount of power remaining in the battery is insufficient to operate the pair of glasses for a longer period of time than the predetermined amount of time. In an exemplary embodiment, the controller determines the amount of power remaining in the battery by measuring the time of the number of synchronization pulses that the battery can continue to pass. In an exemplary embodiment for k for two-dimensional video images, the system includes: a pair of glasses including a first lens having a first liquid crystal light valve and a second liquid crystal light U lens The liquid crystal light valve has a liquid crystal and an opening time of less than one millisecond. A control circuit alternately opens the first liquid crystal light valve and the second liquid crystal light valve, and the liquid crystal orientation is maintained at a point of maximum light transmission until the control circuit closes the light valve. In addition, a synchronization device includes: a signal transmitter that transmits a signal corresponding to an image presented by a first eye; a signal receiver that senses the signal; and a control circuit that is adapted to The first light valve is opened during the - time period for the first eye to present the image 147660.doc -85 - 201119350. In an exemplary embodiment, the "" 5 tiger is an infrared light. In an exemplary embodiment, the signal transmitter projects the signal toward a reflector. The signal is reflected by the reflector, and the signal receiver detects the reflected signal. In some embodiments, the reflector is a cinema theater. In an exemplary embodiment, the signal transmitter receives a timing signal from a video projector, such as a movie projector. In an exemplary embodiment, the number 1 is & In an exemplary embodiment, the signal is a series of pulses having a predetermined interval. In an exemplary embodiment where the signal is a series of pulses having a predetermined interval, a first predetermined number of pulses opens the $-th liquid crystal shutter and a third pre-wire pulse opens the first liquid crystal shutter. In an exemplary embodiment for providing a three-dimensional video image, the method for providing an image includes: having a first three-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; in less than one millisecond Opening the first liquid crystal light valve; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then opening in less than one millisecond The second liquid crystal light valve maintains the second liquid crystal light valve at a maximum light transmission point during the second time period. The first time period corresponds to presenting an image to the left eye of the viewer, and the second time period corresponds to presenting an image to the right eye of the viewer. The signal transmitter can transmit a signal corresponding to the image presented for the left eye and sense the signal, the three-dimensional viewing glasses can use the signal to determine when to open the first liquid crystal shutter. In an exemplary embodiment, the signal is an infrared light. In an exemplary implementation 147660.doc -86-201119350, the signal transmitter projects the signal toward a reflector that reflects the signal toward the three-dimensional viewing lens" and the signal is received in the eyeglass The detector detects the reflected signal. In an exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector. In an exemplary embodiment, the signal is a radio frequency signal. In an exemplary embodiment, the signal can be a series of pulses having a predetermined interval. A first predetermined number of pulses can open the first liquid crystal shutter, and a second predetermined number of pulses can open the second liquid crystal shutter. In an exemplary embodiment of a system for providing a two-dimensional video image, a pair of glasses has a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve. The liquid crystal light valve has a liquid crystal and an opening time of less than one millisecond. A control circuit alternately opens the first liquid crystal light valve and the first liquid crystal light valve, and the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit closes the light valve. In an exemplary embodiment, the -synchronization system includes: - a reflective device located in front of the secondary eyeglass; and a signal transmitter that transmits a signal to the reflective device. The signal corresponds to an image presented to the first eye of one of the viewers. A signal receiver senses the signal reflected from the reflective device, and then a control circuit opens the first optical width during a time period during which the first eye is presented with the image. In an exemplary embodiment, the signal is an infrared light. In an exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector. The work 147660.doc -87· 201119350 f can be a series of pulses with a predetermined interval. In an exemplary embodiment, the k number is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal light valve, and a second predetermined number of pulses opens the second liquid crystal light valve . In an exemplary embodiment for providing a three-dimensional video image, the glasses can be viewed by having one of the three-in-one liquid crystal light valve and one second liquid crystal light (10); opening in less than one millisecond The first liquid crystal light valve; maintaining the first liquid crystal light valve at a maximum light transmission point in the -first period; closing the first liquid crystal light valve, and then opening the s 玄 in less than one millisecond a second liquid crystal light valve; and then maintaining the second liquid crystal light valve at a maximum light transmission point for a second period of time to provide an image. The first time period corresponds to presenting an image to the first eye of the viewer, and the second phase corresponds to presenting an image to the second eye of one of the viewers. In an exemplary embodiment, the transmitter transmits an outer line 对应 corresponding to the image presented for a first eye. number. The two-dimensional viewing glasses sense the infrared signal and then use the infrared signal to trigger the opening of the first liquid crystal light valve. In an exemplary embodiment of the yoke, the signal is an infrared light. In an exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmission facilitates receipt of a timing signal from an image projector. The timing signal can be a series of pulses having a predetermined interval. In some embodiments, a first pre-pulse number turns on the first liquid crystal stop' and a second predetermined number of pulses opens the second liquid crystal light valve. In an exemplary embodiment, a system for providing a three-dimensional video image includes a pair of glasses having a first liquid crystal light valve - a first through 147660.doc -88 - 201119350 mirror and having a second liquid crystal A second lens of the light valve, the liquid crystal light valve having a liquid crystal and an opening time of less than one millisecond. The system can also have a control circuit 'which alternately opens the first liquid crystal light valve and the second liquid crystal light valve' and maintains the liquid crystal orientation at a point of maximum light transmission until the control circuit closes the light valve. The system can also have a test system comprising: a transmitter number 1, a signal receiver; and a test system control circuit adapted to open and close the first at a rate that can be seen by a viewer a light valve and the second light valve. In an exemplary embodiment, the signal transmitter does not receive a timing signal from a projector. In an exemplary embodiment, the signal transmitter transmits an infrared signal. The infrared signal can be a series of pulses. In another exemplary embodiment, the signal transmitter transmits a radio frequency signal. The RF signal can be a series of pulses. In an exemplary embodiment of the method for providing a three-dimensional video image, the method may include: having a first three-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; Hit the gate in milliseconds = - the liquid crystal light valve in the first time period of the first liquid crystal light valve: holding at a maximum light transmission point; _ closing the first liquid crystal light, and then less than - milliseconds Opening the second liquid crystal light in time; and maintaining the second liquid crystal light valve at a maximum light transmission point. In: = now-image, and two: should be the viewer's - first-eye image and the first-period corresponds to one of the viewer's first-images. In an exemplary embodiment, the number transmission to the three-dimensional viewing #P"11 will leave a test message to the glasses, and the mirror will then receive the test signal by the three-dimensional sensing stolen, and then due to the test Signaling 147660.doc •89·201119350 to open and close the first liquid crystal light valve and the second liquid crystal light valve with a control circuit, wherein the liquid crystal light valves are at a rate observable by a viewer wearing the glasses Turning on and off. In an exemplary embodiment, the signal transmitter does not receive a timing signal from a projector. In an exemplary embodiment, the signal transmitter transmits an infrared signal, which can be a series of pulses. In an exemplary embodiment, the signal transmitter transmits a radio frequency signal. In an exemplary embodiment, the radio frequency signal is a series of pulses. An exemplary embodiment of a system for providing a three-dimensional video image may include a pair of glasses comprising a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve, the liquid crystal light valve having a liquid crystal and less than one millisecond One of the opening times. The system can also have a control circuit that alternately opens the first liquid crystal light valve and the second liquid crystal light valve to maintain the liquid crystal orientation at a maximum light transmission point and then close the light valve. In an exemplary embodiment, an auto-on (aut〇_〇n) system includes a signal transmitter, a signal receiver, and wherein the control circuit is adapted to activate the signal receiver at a first predetermined time interval, Determining whether the signal receiver is receiving a signal from the signal transmitter, and unlocking the signal receiver if the signal receiver does not receive the signal from the signal transmitter for a second period of time, and The first light valve and the second light valve are alternately opened at an interval corresponding to the signal when the signal receiver receives the signal from the signal transmitter. In an exemplary embodiment, the The first time period is at least two seconds, and the second time period may be no more than 100 milliseconds. In the exemplary embodiment, 147660.doc •90·201119350 until the signal receiver is from the signal transmission wheel The liquid crystal light valve keeps the opener receiving a signal. - In the embodiment, - (d) provides a three-dimensional video image = Γ contains - the first liquid crystal light and - the second liquid crystal light: 'watch glasses; Opening the first liquid BB in a period of less than one millisecond; widening; maintaining the first liquid crystal light valve at a maximum light transmission point in the -first period, closing the first liquid crystal light valve, and then Opening the second liquid crystal light in a time less than -1, and maintaining the first liquid crystal light valve at a "maximum light transmission point" in a second period of time. In an exemplary embodiment, the The first time period corresponds to presenting an image 'to the first eye of one of the viewers' and the second time period corresponding to the second eye presenting image for the viewer. In an exemplary embodiment, the method may include Activating a signal receiver at a predetermined time interval, determining whether the signal receiver is receiving a signal from the signal transmitter, and not receiving the signal from the signal transmitter during the second time period In case of signal, cancel the letter Receivers, and opening and closing the first valve and the second light to a light valve corresponding to the interval of the signal in the case where the signal from the signal receiver receives the transmitted signal. In an exemplary embodiment, the first period of time is at least two seconds. In an exemplary embodiment, the second time period is no more than 100 milliseconds. In an exemplary embodiment, the liquid crystal shutters remain open until the signal receiver receives a signal from the signal transmitter. In an exemplary embodiment, a system for providing a three-dimensional video image may include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve These liquid crystal light valves 147660.doc •91- 201119350 have a liquid crystal and less than—his, one shift—open time. The system can also have a second liquid that alternately opens the first liquid crystal light valve and the second liquid: ' and maintains the liquid crystal orientation at a maximum light transmission point until the control circuit closes the umbrella pq first valve. In an exemplary embodiment, the control circuit is adapted to: open the first liquid crystal and the second liquid crystal. In an example of a discontinuity, the control circuitry keeps the lenses open until the control circuit detects a synchronization signal. In an exemplary embodiment, the voltage applied to the liquid crystal shutters alternates between positive and negative. In one embodiment of the apparatus for providing a two-dimensional video image, a viewing glasses include a first liquid crystal light and a second liquid crystal light, wherein the first liquid crystal light valve can be less than one millisecond. Opening in time, wherein the second liquid crystal light valve can be opened in less than one millisecond; opening and closing the first liquid crystal light valve and the second at a rate that causes the liquid crystal light valves to appear as transparent lenses Liquid crystal light I, in an embodiment, the control circuit keeps the lenses open until the control circuit detects a synchronization signal. In one embodiment, the liquid crystal light valves alternate between positive and negative. In an exemplary embodiment, a system for providing a three-dimensional video image may include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve The liquid crystal light valves have a liquid crystal and an opening time of less than one millisecond. The system can also include a control circuit that alternately opens the first liquid crystal shutter and the second liquid crystal shutter ' and maintains the liquid crystal at a point of maximum light transmission until the control circuit closes the light valve. In an exemplary embodiment, the transmitter can provide a gate signal wherein a portion of the synchronization signal is partially encrypted. Operablely connected 147660.doc • 92· 201119350 to one of the control circuits, the sensor can be adapted to receive the synchronization signal, and can only correspond to one of the synchronization signals after receiving an encrypted signal The first liquid crystal light valve and the second liquid crystal light valve are opened and closed. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal light valve, and a second predetermined number of pulses opens the second liquid crystal light valve . In an exemplary embodiment, one of the series of pulses is partially encrypted. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In an exemplary embodiment, the first liquid crystal light valve and the second liquid a light valve are opened and closed in a pattern corresponding to one of the synchronization apostrophes only after receiving two consecutive encrypted signals. ~ Ba In an exemplary embodiment for providing a three-dimensional video image, the method may include: having a first liquid crystal light valve and a second liquid crystal light valve, one of the three-dimensional viewing glasses; Opening the first liquid crystal light valve within one millisecond; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then less than one millisecond Opening the second liquid crystal light valve in time; and maintaining the second liquid crystal light valve at a maximum light transmission point in a second time 'in the exemplary embodiment, the first time period corresponds to An image is presented for one of the viewers' eyes - and the second time period corresponds to presenting an image for the second eye of one of the viewers. In an exemplary embodiment, a transmitter provides a synchronization number, wherein a portion of the synchronization signal is partially encrypted. In an exemplary embodiment 147660.doc • 93· 201119350, a sensor is operatively coupled to the control circuit and adapted to receive the synchronization signal and only after receiving an encrypted signal to correspond to the One of the synchronizing signals opens and closes the first liquid crystal light valve and the second liquid crystal light valve. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and wherein a first predetermined number of pulses opens the first liquid crystal light valve, and wherein a second predetermined number of pulses turns on the second liquid crystal Light valve. In an exemplary embodiment, one of the series of pulses is partially encrypted. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In the exemplary embodiment, the first liquid crystal light valve and the second liquid crystal light valve are opened and closed in a pattern corresponding to one of the synchronization signals only after receiving two consecutive encrypted signals. It is to be understood that the above changes may be made without departing from the scope of the invention. While the embodiment has been shown and described, it will be modified by those skilled in the art without departing from the scope of the invention. The described embodiments are merely illustrative and not limiting. Many variations and modifications are possible and are within the scope of the invention. In addition, one or more of the elements of the exemplary embodiments may be combined in whole or in part with one or more of one or more of the other exemplary embodiments or in place of one or more of the other exemplary embodiments. One or more elements. Therefore, the protection nozzle is not limited to the described embodiments, but is limited only by the scope of the following patent application. The scope of the patent application scope should include the 147660.doc •94·201119350 which is the subject of the patent application scope. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing an example of a system for providing a three-dimensional image. 2 is a flow chart of a method for operating the system of FIG. 1 . Figure 3 is a graphical illustration of the operation of the method of Figure 2. Figure 4 is a graphical illustration of an exemplary experimental embodiment of one of the operations of the method of Figure 2. Figure 5 is a flow diagram of an exemplary embodiment of a method for operating a system of the drawings. Figure 6 is a flow diagram of an exemplary embodiment of a method for operating a system of the drawings. Figure 7 is a flow diagram of an exemplary embodiment of a method for creating the system of Figure 1. Figure 8 is a graphical illustration of the operation of the method of Figure 7.
圖9為一種用於操作圖1之系統之方法之一例示性實施例 的流程圖D ' 圖1 0為圖9之方法之操作的圖形說明。 • 圖11為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖。 圖12為圖11之方法之操作的圖形說明。 圖13為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖。 147660.doc •95· 201119350 圖14為圖13之方法之操作的圖形說明。 圖1 5為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖。 圖16為一種用於操作圖1之系統之方法之一例示性實施 例的說明。 圖17為圖1之系統的三維眼鏡之一例示性實施例的說 明。 圖18、圖18a、圖18b、圖18c及圖18d為三維眼鏡之一例 示性貫施例的示意說明。 圖19為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 的光閥控制器之數位控制的類比開關的示意說明。 圖20為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 的光閥控制器之數位控制的類比開關、光閥及CPU之控制 信號的示意說明。 圖21為圖18、圖183、圖1813、圖18c及圖18d之三維眼鏡 之操作之—例示性實施例的流程圖說明。 圖22為圖18、圖1 8a及圖18b之三維眼鏡之操作之一例示 性實施例的圖形說明。 圖23為圖18、圖i8a、圖18b、圖18c及圖18d之三維眼鏡 之操作之—例示性實施例的流程圖說明。 圊24為圖.18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖25為圖18、圖i8a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 147660.doc -96· 201119350 圖26為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖27為圖18、圖18a、圖18b、圖18c及圖I8d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖28為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖29為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖30、圖30a、圖30b及圖30c為三維眼鏡之一例示性實 施例的示意說明。 圖31為圖30、圖30a、圖30b及圖30c之三維眼鏡的光闊 控制器之數位控制的類比開關的示意說明。 圖32為圖30'圖30a、圖30b及圖30c之三維眼鏡的光闊 控制器之數位控制的類比開關之操作的示意說明。 圖33為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖34為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖35為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖36為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖37為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 147660.doc -97· 201119350 圖38為圖30、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖39為圖3〇、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖40為圖3〇、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖41為圖30'圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖42為圖30、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖43為圖30、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖44為;維眼鏡之一例示性實施例的俯視圖。 圖45為圖44之三維眼鏡的後視圖。 圖46為圖44之三維眼鏡的仰視圖。 圖47為圖44之三維眼鏡的正視圖。 圖48為圖44之三維眼鏡的透視圖。 圖49為使用鑰匙來操縱圖44之三維眼鏡之電池的外殼蓋 的透視圖。 圖50為用以操縱圖44之三維眼鏡之電池的外殼蓋之鑰匙 的透視圖。 圖51為圖44之三維眼鏡之電池的外殼蓋之透視圖。 圖52為圖44之三維眼鏡的侧視圖。 圖53為圖44之三維眼鏡之外殼蓋、電池及〇型環密封件 147660.doc •98- 201119350 之側視透視圖。 圖5 4為圖4 4之二維眼鏡之外殼蓋、電池及〇型環密封件 之仰視透視圖。 圖55為圖44之眼鏡之一替代實施例及用以操縱圖50之外 殼蓋的鑰匙之一替代實施例的透視圖。 圖5 6為一在例示性實施例中之—或多者中使用的信號感 測器之一例示性實施例之示意說明。 圖57為一適合使用於圖56之信號感測器的例示性資料信 號之圖形說明。 圖5 8為一種用於調節用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖59為一種用於調節用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖59a至圖59d為圖58及圖59之系統之操作之例示性實驗 結果的圖形說明。 圖60、圖60a及圖60b為三維眼鏡之一例示性實施例之示 意說明。 圖61為一種用於調節用於三維眼鏡中之—同步信號之系 統之一例示性實施例的方塊圖。 圖6 2為一種供佩戴三維眼鏡之一使用者觀看三維影像之 系統之一例示性實施例的方塊圖。 圖63及圖64為一種用於與三維眼鏡一起使用之顯示系統 之一例示性實施例的方塊圖。 圖65及圖66為圖63及圖64之顯示系統之操作之例示性實 147660.doc -99- 201119350 施例的圖形說明。 圖67至圖70為圖63及圖64之顯示系統之操作之例示性實 施例的流程圖說明。 【主要元件符號說明】 100 系統 102 電影螢幕 104 三維眼鏡 106 左光閥 108 右光閥 110 信號傳輸器 110a 中央處理單元(CPU) 112 信號感測器 114 中央處理單元 116 左光閥控制器 118 右光閥控制器 120 電池 122 電池感測器 130 投影器 200 左右光閥方法/左右鏡頭光閥序列 202ba 高電壓 202bb 無電壓 202bc 小止擋電壓 202da 高電壓 202db 無電壓 147660.doc •100· 201119350 202dc 小止擋電壓 400 光透射 402 光透射 500 操作方法 600 操作方法 700 操作方法 800 時脈信號 802 時脈循環 804 組態資料信號 806 資料脈衝信號 900 操作方法 902a 時脈信號 902aa 南脈衝 1100 暖機操作方法 1104a 電壓信號 1104b 電壓信號 1300 方法 1304a 電壓信號 1304b 電壓信號 1500 監視電池120之方法 1600 測試器 1600a 信號傳輸器 1600b 測試信號 1700 電荷泵 -101 - 147660.doc 201119350 1800 三維眼鏡 1802 左光閥 1804 右光閥 1806 左光閥控制器 1808 右光閥控制器 1810 中央處理單元 1812 電池感測器 1814 信號感測器 1816 電荷泵 1900 功能圖 2100 方法 2300 暖機操作方法 2304a 電壓信號 2304b 電壓信號 2500 操作方法 2504a 電壓信號 2504b 電壓信號 2700 監視電池120之方法 3000 三維眼鏡 3002 左光閥 3004 右光閥 3006 左光閥控制器 3008 右光閥控制器 3010 共同光閥控制器 147660.doc -102- 201119350 3012 中央處理單元 3014 信號感測器 3016 電荷泵 3018 電壓供應器 3100 功能圖 3300 方法/正常執行操作模式 3500 暖機操作方法 3700 操作方法 3900 操作方法 4000 操作方法 4200 操作方法 4402 框架前部 4402a 右翼 4402b 左翼 4404 鼻樑架 4406 右鏡腿 4406a 隆脊 4408 左鏡腿 4408a 隆脊 4410 右透鏡開口 4412 左透鏡開口 4414 蓋 4415 蓋内部 4416 〇型環密封件 -103- 147660.doc 201119350 4417 觸點 4418 楔緊元件 4420 凹陷 4422 錄匙 4424 突起 4426 鑰匙 5600 信號感測器 5602 窄帶通濾波器 5604 解碼器 5604 CPU 5606 信號傳輸器 5700 信號 5702 資料位元 5704 時脈脈衝 5800 系統 5802 信號感測器 5804 正規器 5806 增益控制元件 5810 放大器及脈衝調節元件 5812 同步振幅及形狀處理單元 5902 同步信號 5904 信號 5906 信號 5908 回饋控制信號 147660.doc -104- 201119350 6000 6002 6100 6102 6202 6202a 6204 6206 6300 6305 6310 6315 6320 6325 6330 6350 6355 6360 6510 6520 6530 6540 6542 6544 三維眼鏡 信號感測器 系統 動態範圍減小及對比度增強元件 投影器 内建檔案伺服器 顯示表面 網路 顯不糸統 光調變器陣列 光源 顯示平面 控制器 前端單元. 記憶體 序列產生器 同步信號產生器 脈寬調變(PWM)單元 左眼光閥狀態 右眼光閥狀態 高階視圖/狀態圖 光閥狀態之單一循環 間隔 狀態轉變間隔 147660.doc -105- 201119350 6546 間隔 6548 方框 6550 脈衝 6552 脈衝 6554 方框 6556 間隔 6558 方框 6560 間隔 6600 同步信 6605 時間 6700 方法 6800 方法 6900 方法 7000 方法 A 控制輸 控制信 B 控制輸 控制信 C 微控制 Cl 電容器 C2 電容器 C3 電容器 C4 電容器 C5 電容器 入信號/微控制器之輸出信號/ 號 入信號/微控制器之輸出信號/ 號 器之輸出信號/控制信號 147660.doc - 106 201119350 C6 電容器 C7 電容器 C8 電容器 C9 電容器 C10 電容器 C11 電容器 C12 電容器 C13 電容器 C14 電容器 C15 電容器 C100 電容器 D 微控制 D1 肖特基 D2 光電二 D3 肖特基 D5 肖特基 D6 肖特基 D7 齊納二 E 微控制 F 輸出信 G 輸出信 INHIBIT(INH) 控制輸 IN_A 輸入信 IN_B 輸入信 器之輸出信號/控制信號 二極體 極體 二極體 二極體 二極體 極體 器之輸出信號/控制信號 號 號 入信號 號 號 147660.doc •107- 201119350Figure 9 is a flow diagram D' of an exemplary embodiment of a method for operating the system of Figure 1. Figure 10 is a graphical illustration of the operation of the method of Figure 9. • Figure 11 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1. Figure 12 is a graphical illustration of the operation of the method of Figure 11. Figure 13 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1. 147660.doc • 95· 201119350 Figure 14 is a graphical illustration of the operation of the method of Figure 13. Figure 15 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1. Figure 16 is an illustration of one exemplary embodiment of a method for operating the system of Figure 1. Figure 17 is an illustration of one exemplary embodiment of a 3D glasses of the system of Figure 1. 18, 18a, 18b, 18c and 18d are schematic illustrations of an exemplary embodiment of a 3D glasses. Figure 19 is a schematic illustration of the analog switch of the digital control of the light valve controller of Figures 3, 18a, 18b, 18c and 18d. Figure 20 is a schematic illustration of the analog switches, light valves, and CPU control signals for the digital control of the light valve controller of Figures 3, 18a, 18b, 18c, and 18d. Figure 21 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 183, 1813, 18c, and 18d. Figure 22 is a graphical illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a and 18b. Figure 23 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, i8a, 18b, 18c and 18d.圊24 is a graphical illustration of one exemplary embodiment of the operation of the 3D glasses of Figs. 18, 18a, 18b, 18c, and 18d. Figure 25 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, i8a, 18b, 18c, and 18d. 147660.doc -96· 201119350 Figure 26 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 27 is a flow chart illustration of one exemplary embodiment of the operation of the three-dimensional glasses of Figures 18, 18a, 18b, 18c, and Id. Figure 28 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 29 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. 30, 30a, 30b and 30c are schematic illustrations of an exemplary embodiment of a 3D glasses. Figure 31 is a schematic illustration of an analog switch for digital control of the optical wide controller of the 3D glasses of Figures 30, 30a, 30b and 30c. Figure 32 is a schematic illustration of the operation of the analog switch of the digital control of the optical wide controller of Figures 3a, 30b, and 30c. Figure 33 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 34 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 35 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 36 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 37 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. 147660.doc -97· 201119350 Figure 38 is a graphical illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 30, 3A, 3B, and 3C. Figure 39 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 3A, 3A, 3B, and 3C. Figure 40 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 3A, 3A, 3B, and 3C. Figure 41 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30', 30a, 30b, and 30c. Figure 42 is a flow chart illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 30, 3a, 3b, and 3c. Figure 43 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 3A, 3B, and 3C. Figure 44 is a top plan view of one exemplary embodiment of a spectacles. Figure 45 is a rear elevational view of the 3D glasses of Figure 44. Figure 46 is a bottom plan view of the 3D glasses of Figure 44. Figure 47 is a front elevational view of the 3D glasses of Figure 44. Figure 48 is a perspective view of the 3D glasses of Figure 44. Figure 49 is a perspective view of the housing cover of the battery of the 3D glasses of Figure 44 using a key. Figure 50 is a perspective view of the key of the housing cover for operating the battery of the 3D glasses of Figure 44. Figure 51 is a perspective view of the outer casing cover of the battery of the three-dimensional glasses of Figure 44. Figure 52 is a side elevational view of the 3D glasses of Figure 44. Figure 53 is a side elevational view of the housing cover, battery and 〇-ring seal of Figure 3 of Figure 44 147660.doc • 98- 201119350. Figure 5 is a bottom perspective view of the outer casing cover, battery and jaw ring seal of the two-dimensional eyeglasses of Figure 44. Figure 55 is a perspective view of an alternate embodiment of one of the glasses of Figure 44 and an alternative embodiment of a key for manipulating the outer cover of Figure 50. Figure 56 is a schematic illustration of one exemplary embodiment of a signal sensor used in one or more of the exemplary embodiments. Figure 57 is a graphical illustration of an exemplary data signal suitable for use with the signal sensor of Figure 56. Figure 58 is a block diagram of an exemplary embodiment of a system for adjusting a synchronization signal for use in 3D glasses. Figure 59 is a block diagram of an exemplary embodiment of a system for adjusting a synchronization signal for use in 3D glasses. Figures 59a through 59d are graphical illustrations of exemplary experimental results of the operation of the systems of Figures 58 and 59. Figures 60, 60a and 60b are schematic illustrations of one exemplary embodiment of a 3D glasses. Figure 61 is a block diagram of an exemplary embodiment of a system for adjusting a sync signal for use in 3D glasses. Figure 6 is a block diagram of an exemplary embodiment of a system for viewing a three-dimensional image by a user wearing a three-dimensional eyeglass. Figures 63 and 64 are block diagrams of one exemplary embodiment of a display system for use with 3D glasses. 65 and 66 are graphical illustrations of an illustrative embodiment of the operation of the display system of Figs. 63 and 64, 147660.doc-99-201119350. 67 through 70 are flowchart illustrations of an illustrative embodiment of the operation of the display system of Figs. 63 and 64. [Main component symbol description] 100 System 102 Movie screen 104 3D glasses 106 Left light valve 108 Right light valve 110 Signal transmitter 110a Central processing unit (CPU) 112 Signal sensor 114 Central processing unit 116 Left light valve controller 118 Right Light valve controller 120 Battery 122 Battery sensor 130 Projector 200 Left and right light valve method / Left and right lens light valve sequence 202ba High voltage 202bb No voltage 202bc Small stop voltage 202da High voltage 202db No voltage 147660.doc •100· 201119350 202dc Small stop voltage 400 Light transmission 402 Light transmission 500 Operation method 600 Operation method 700 Operation method 800 Clock signal 802 Clock cycle 804 Configuration data signal 806 Data pulse signal 900 Operation method 902a Clock signal 902aa South pulse 1100 Warm-up operation Method 1104a Voltage Signal 1104b Voltage Signal 1300 Method 1304a Voltage Signal 1304b Voltage Signal 1500 Method of Monitoring Battery 120 1600 Tester 1600a Signal Transmitter 1600b Test Signal 1700 Charge Pump-101 - 147660.doc 201119350 1800 3D Glasses 1802 Left Light 1804 Right light valve 1806 Left light valve controller 1808 Right light valve controller 1810 Central processing unit 1812 Battery sensor 1814 Signal sensor 1816 Charge pump 1900 Function diagram 2100 Method 2300 Warm-up operation method 2304a Voltage signal 2304b Voltage signal 2500 Method of operation 2504a Voltage signal 2504b Voltage signal 2700 Method of monitoring battery 120 3000 3D glasses 3002 Left light valve 3004 Right light valve 3006 Left light valve controller 3008 Right light valve controller 3010 Common light valve controller 147660.doc -102- 201119350 3012 Central Processing Unit 3014 Signal Sensor 3016 Charge Pump 3018 Voltage Supply 3100 Function Diagram 3300 Method / Normal Execution Mode 3500 Warm-Up Operation Method 3700 Operation Method 3900 Operation Method 4000 Operation Method 4200 Operation Method 4402 Frame Front 4402a Right Wing 4402b Left wing 4404 nose frame 4406 right temple 4406a ridge 4408 left temple 4408a ridge 4410 right lens opening 4412 left lens opening 4414 cover 4415 cover inner 4416 〇 ring seal -103- 147660.doc 201119350 4417 contact 4418 wedge Component 4420 Depression 4422 Recording Key 4424 Protrusion 4426 Key 5600 Signal Sensor 5602 Narrow Bandpass Filter 5604 Decoder 5604 CPU 5606 Signal Transmitter 5700 Signal 5702 Data Bit 5704 Clock Pulse 5800 System 5802 Signal Sensor 5804 Normalizer 5806 Gain Control Element 5810 Amplifier and Pulse Conditioning Element 5812 Synchronous Amplitude and Shape Processing Unit 5902 Synchronization Signal 5904 Signal 5906 Signal 5908 Feedback Control Signal 147660.doc -104- 201119350 6000 6002 6100 6102 6202 6202a 6204 6206 6300 6305 6310 6315 6320 6325 6330 6350 6355 6360 6510 6520 6530 6540 6542 6544 3D glasses signal sensor system dynamic range reduction and contrast enhancement components projector built-in file server display surface network display system modulator array light source display plane controller front unit Memory sequence generator sync signal generator pulse width modulation (PWM) unit left eye light valve state right eye light valve state high order view / state diagram light valve state single loop interval state transition interval 147660.doc -105- 201119350 6546 Interval 6548 Box 6550 Pulse 6552 Pulse 6554 Box 6556 Interval 6558 Box 6560 Interval 6600 Synchronization Letter 6605 Time 6700 Method 6800 Method 6900 Method 7000 Method A Control Transmission Control B Control Transmission Control C Micro Control Cl Capacitor C2 Capacitor C3 Capacitor C4 Capacitor C5 Capacitor In Signal/Microcontroller Output Signal / Incoming Signal / Microcontroller Output Signal / Timer Output Signal / Control Signal 147660.doc - 106 201119350 C6 Capacitor C7 Capacitor C8 Capacitor C9 Capacitor C10 Capacitor C11 Capacitor C12 Capacitor C13 Capacitor C14 Capacitor C15 Capacitor C100 Capacitor D Micro Control D1 Schottky D2 Photoelectric Two D3 Schottky D5 Schottky D6 Schottky D7 Zener II E Micro Control F Output Letter G Output Letter INHIBIT (INH ) Control input IN_A Input signal IN_B Input signal output signal / Control signal Diode body diode diode diode body output signal / control signal number into signal number 147660.doc • 107 - 201119350
Ll 電感器 LCD1 左透鏡/左光閥 LCD2 右透鏡/右光閥 R1 電阻器 R2 電阻器 R3 電阻器 R4 電阻器 R5 電阻器 R6 電阻器 R7 電阻器 R8 分壓器組件/電阻器 R9 電阻器 RIO 分壓器組件/電阻器 R11 電阻器 R12 電阻器 R13 電阻器 R14 電阻器 R15 電阻器 R16 電阻器 R100 電阻器 R101 電阻器 R102 電阻器 R511 電阻器 R512 電阻器 147660.doc - 108- 201119350 RA3 輸入控制信號 RA4 控制信號 RC4 控制信號 RC5 控制信號 Q1 MOSFET Q2 電晶體 Q100 場效電晶體 Q101 NPN電晶體/輸出偵測器 U1 數位控制類比開關 U2 數位控制類比開關 U3 微控制器/運算放大器 U4 數位控制類比開關 U4 微控制器 U5 運算放大器 U6 運算放大器 U6 電力偵測器/數位控制類比開關 U5-1 運算放大器 U5-2 運算放大器 VEE 輸入電壓 X 輸出信號 XO 開關I/O信號 XI 開關I/O信號 X2 開關I/O信號 X3 開關I/O信號 147660.doc -109- 201119350 Υ 輸出信號 Υ0 開關I/O信號 Υ1 開關I/O信號 Υ2 開關I/O信號 Υ3 開關I/O信號 Ζ 輸出信號 ζο 開關I/O信號 Ζ1 開關I/O信號 147660.doc · 110-Ll Inductor LCD1 Left Lens / Left Light Valve LCD2 Right Lens / Right Light Valve R1 Resistor R2 Resistor R3 Resistor R4 Resistor R5 Resistor R6 Resistor R7 Resistor R8 Divider Assembly / Resistor R9 Resistor RIO Voltage divider component / resistor R11 resistor R12 resistor R13 resistor R14 resistor R15 resistor R16 resistor R100 resistor R101 resistor R102 resistor R511 resistor R512 resistor 147660.doc - 108- 201119350 RA3 input control Signal RA4 Control Signal RC4 Control Signal RC5 Control Signal Q1 MOSFET Q2 Transistor Q100 Field Effect Transistor Q101 NPN Transistor/Output Detector U1 Digital Control Analog Switch U2 Digital Control Analog Switch U3 Microcontroller/Operation Amplifier U4 Digital Control Analogy Switch U4 Microcontroller U5 Operational Amplifier U6 Operational Amplifier U6 Power Detector / Digital Control Analog Switch U5-1 Operational Amplifier U5-2 Operational Amplifier VEE Input Voltage X Output Signal XO Switch I/O Signal XI Switch I/O Signal X2 Switch I/O Signal X3 Switch I/O Signal 147660.doc -109- 2011193 50 Υ Output signal Υ0 Switch I/O signal Υ1 Switch I/O signal Υ2 Switch I/O signal Υ3 Switch I/O signal Ζ Output signal ζο Switch I/O signal Ζ1 Switch I/O signal 147660.doc · 110-
Claims (1)
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17924809P | 2009-05-18 | 2009-05-18 | |
US25315009P | 2009-10-20 | 2009-10-20 | |
US26166309P | 2009-11-16 | 2009-11-16 | |
US12/619,163 US20100157027A1 (en) | 2008-11-17 | 2009-11-16 | Clear Mode for 3D Glasses |
US12/619,415 US20100157029A1 (en) | 2008-11-17 | 2009-11-16 | Test Method for 3D Glasses |
US12/619,518 US20100177254A1 (en) | 2008-11-17 | 2009-11-16 | 3D Glasses |
US12/619,456 US20100149320A1 (en) | 2008-11-17 | 2009-11-16 | Power Conservation System for 3D Glasses |
US12/619,309 US20100157031A1 (en) | 2008-11-17 | 2009-11-16 | Synchronization for 3D Glasses |
US12/619,517 US20100157178A1 (en) | 2008-11-17 | 2009-11-16 | Battery Sensor For 3D Glasses |
US12/619,102 US20100165085A1 (en) | 2008-11-17 | 2009-11-16 | Encoding Method for 3D Glasses |
US12/619,431 US20100149636A1 (en) | 2008-11-17 | 2009-11-16 | Housing And Frame For 3D Glasses |
US12/619,400 US20100157028A1 (en) | 2008-11-17 | 2009-11-16 | Warm Up Mode For 3D Glasses |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201119350A true TW201119350A (en) | 2011-06-01 |
Family
ID=44909359
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99113621A TW201119350A (en) | 2009-05-18 | 2010-04-28 | DLP link system with multiple projectors |
TW99113620A TW201112736A (en) | 2009-05-18 | 2010-04-28 | Synchronization signal for use with 3D glasses |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99113620A TW201112736A (en) | 2009-05-18 | 2010-04-28 | Synchronization signal for use with 3D glasses |
Country Status (1)
Country | Link |
---|---|
TW (2) | TW201119350A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI613502B (en) * | 2013-03-18 | 2018-02-01 | 精工愛普生股份有限公司 | Projector and control method |
TWI856126B (en) * | 2019-07-02 | 2024-09-21 | 美商萊特美特股份有限公司 | Photonics stabilization circuitry |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI482484B (en) * | 2011-06-17 | 2015-04-21 | Wistron Corp | 3d display system and method thereof |
-
2010
- 2010-04-28 TW TW99113621A patent/TW201119350A/en unknown
- 2010-04-28 TW TW99113620A patent/TW201112736A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI613502B (en) * | 2013-03-18 | 2018-02-01 | 精工愛普生股份有限公司 | Projector and control method |
TWI856126B (en) * | 2019-07-02 | 2024-09-21 | 美商萊特美特股份有限公司 | Photonics stabilization circuitry |
Also Published As
Publication number | Publication date |
---|---|
TW201112736A (en) | 2011-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2315449A2 (en) | Normalization of a synchronization signal for 3D glasses | |
TW201216687A (en) | Universal 3D glasses | |
TW201142359A (en) | 3D projector | |
US20110234775A1 (en) | DLP Link System With Multiple Projectors and Integrated Server | |
US20120050266A1 (en) | Normalization of a synchronization signal for 3d glasses | |
TW201119350A (en) | DLP link system with multiple projectors | |
US20110228062A1 (en) | 3D Glasses with OLED Shutters | |
EP2323415A2 (en) | A system for viewing 3D images using 3D glasses having left and right shutters | |
US20110221876A1 (en) | Solar Powered 3D Glasses | |
EP2337360A1 (en) | Solar powered 3D glasses | |
EP2364033A2 (en) | 3D glasses with RF synchronization | |
TW201209452A (en) | Universal 3D glasses | |
EP2373047A2 (en) | Universal 3D glasses for use with televisions | |
TW201118424A (en) | Active 3D glasses with OLED shutters | |
EP2337369A1 (en) | Active 3D glasses with OLED shutters | |
TW201108713A (en) | 3D shutter glasses for use with LCD displays | |
EP2364034A2 (en) | 3D Shutter Glasses for use with LCD Displays | |
TW201140144A (en) | Battery housing and cover for 3D glasses | |
TW201118423A (en) | Solar powered 3D glasses | |
CA2735342A1 (en) | Universal 3d glasses for use with televisions | |
TW201127020A (en) | 3D glasses with RF synchronization |