201119182 六、發明說明: f發明所屬之技術領域】 本發明為-種再生絲供電聽及其供電方法,特別 是有關一種與非再生能源供電系統並聯,並且一同供電认 負载的再生能源供電系統及其供電方法。 '° f先前技術】 根據聯合國環境規劃署CUNEP)的定義,「再生能源」 、(ReneWableenergy)係指王里論上能取之不盡的天然資:、,」 過拉中不會產生污染物’例如太陽能、風能、地熱能、水 力能、,潮沙能、生質能等,都是轉化自然界的能量成為電 能,並在短時間内就可以再生。 另外,傳統的直流(DC)電的獲取有以下兩種方式,第 一係由交流電源(市電)逆變轉換而成,第二係由直流電源經 升壓或降壓轉換而成。近年來,隨著再生能源,例如太陽 能的興起,由太陽能板提供的直流電成為一種新趨勢。然 而,無論是由交流電源、直流電源或者太陽能轉換而來的 直流電’-般採用單獨對直流負載進行供電的方式,因此, 直流負載通常以單一方式獲取電能。 士在前述單一的供電方式中,當直流電單一來自太陽能 板枯,供給直流負載的直流電將因為天候、環境的影響而 發生不穩定的現象。另外,當直流電單一來自交流電源或 直流電源時,則無法實現綠色環保的目的。 【發明内容】 有鑑於此,本發明提供一種再生能源供電系統及其供 電方法。本發明主要將再生能源轉換來的直流.電源和非再 生旎源供電系統進行並聯,以供電給一負載使用。並且, 201119182 透過優先順序的電能分配控制,使再生能源優先以最大限 度的電能利用率(power Usage Effectiveness )對負載供電, 同打,使非再生能源供電系統以最小限度的電能利用率對 負載供電’從而實現綠色環保的目的。 本發明之貫施例提供的再生能源供電系統用來供電給 - 負载,其係包括有一電力產生模組、一第一轉換模組、 • 一儲能模組、一第二轉換模組及一反饋控制模組。其中, 電力產生模組用來接收大自然再生能源並轉換成一再生電 鲁 此。第一轉換模组則是並聯耦接於電力產生裴置,用來接 收再生電能並轉換成—第一供應電力。儲能模組並聯輕接 於第-轉麵組,用來減第—供應電能麵存成,備用 電力。第二轉換模組並聯耦接於第一轉換模組與儲能模 組,用來接收第一供應電力及/或備用電力並轉換成—第二 供應電力供給負載使用。反饋控制模組麵接於第二轉換模 組與負载,用來檢測非再生能源供電系統供給負載的一、輸 入電力,並根據輸入電力與一預設值比對的結果控制第二 • 轉換模組調整第二供應電力輸出的電量。 卫 一 本發明之實施例提供的再生能源供電方法,其步驟包 括.首先,判斷供給負載的一輸入電力是否超過—預設電 里,接著,判斷結果若為是,則再生電能供應負載所需的 電量’以令供給負載的輪入電力不超過該預設電量;相反 的,判斷結果若為否,則維持再生電能供應負載 量。 …综上所述,本發明之實施例將再生能源所提供的直流 電源和非再生能源供電系統提供的直流電源並聯在“ 同時,透過對負載電流的偵測,加以控制再生能源和非 201119182 生能源供電系統對負載供電的電能分配優先之順序,使再 生能源優先以最大限度電能利用率對負載供電,並且,使 非再生能源供電系統以最小限度電能利用率對負載供電, 從而實現綠色環保的目的。 為了使貴審查委員能更進一步暸解本發明特徵及技 術内容,請參閱以下有關本發明之詳細說明與附圖,然而 所附圖式僅提供參考與說明用,並非用來對本發明加以限 制。 【實施方式】 '請參考第一圖,第一圖為本發明之一實施例的再生能 源供電系統功能方塊示意圖。本實施例之再生能源供電系 統1和一非再生能源供電系統2並聯,並且供同用來供電 給—負載3使用。前述之負載3可以是一直流負載,而非 再生能源供電系統2可以是一電源轉接器(ADApTER)鱼 市電的電連結應用系統。其中,本實施例之再生能源供電 :!統I/括有一電力產生模組1〇、一第一轉換模組12、-:此杈組〗4、一第二轉換模組16及—反饋控制模組Η。 &復參考第-®。電力產生模組1G用來接收大自然再生 再生電能P1。電力產生模組1〇可以是-太 能其他可以接收大自財生能職轉換成電 °弟一轉換模组12並聯麵接於電力產生裝置10, :攸"力產生模組10接收再生電能ρι,並且 組12可以是一降壓型dc/dc轉換模組。201119182 VI. Technical Description: The invention relates to a regenerative silk power supply and a power supply method thereof, and particularly relates to a regenerative energy supply system which is connected in parallel with a non-renewable energy supply system and which is powered by a load and Its power supply method. '° f prior art】 According to the definition of UNEP (CUNEP), “Renewable Energy” (ReneWableenergy) refers to the inexhaustible natural resources that Wang Li said: “, “There will be no pollutants in the pull” For example, solar energy, wind energy, geothermal energy, hydropower, tidal sand energy, biomass energy, etc., all convert energy into natural energy and can be regenerated in a short time. In addition, conventional direct current (DC) power is obtained in two ways. The first system is converted from an AC power source (mains), and the second system is converted from a DC power source by step-up or step-down conversion. In recent years, with the rise of renewable energy sources such as solar energy, direct current provided by solar panels has become a new trend. However, direct current, whether converted from AC power, DC power, or solar energy, uses a separate method of supplying DC loads. Therefore, DC loads typically acquire power in a single manner. In the above single power supply mode, when the direct current is directly from the solar panel, the direct current supplied to the DC load will be unstable due to weather and environmental influences. In addition, when the direct current is from an AC power source or a DC power source, the purpose of environmental protection cannot be achieved. SUMMARY OF THE INVENTION In view of the above, the present invention provides a renewable energy power supply system and a power supply method thereof. The invention mainly connects the DC power source and the non-regeneration power source power supply system converted from the renewable energy source in parallel to supply power to a load. Moreover, 201119182 prioritizes the power distribution control to prioritize the regenerative energy to maximize the power usage effectiveness of the load, so that the non-renewable energy supply system can supply the load with minimal power utilization. 'To achieve the purpose of green environmental protection. The regenerative energy supply system provided by the embodiment of the present invention is used for supplying power to a load, which includes a power generation module, a first conversion module, an energy storage module, a second conversion module, and a Feedback control module. The power generation module is configured to receive the natural renewable energy and convert it into a regenerative power. The first conversion module is coupled in parallel to the power generation device for receiving the regenerative electric energy and converting into the first supply electric power. The energy storage module is connected in parallel to the first-rotating surface group to reduce the first-supply electric energy surface storage and standby power. The second conversion module is coupled in parallel to the first conversion module and the energy storage module for receiving the first supply power and/or the backup power and converting into the second supply power supply load. The feedback control module is connected to the second conversion module and the load, and is used for detecting the input power of the non-renewable energy supply system to supply the load, and controlling the second conversion mode according to the result of the comparison of the input power with a preset value. The group adjusts the amount of power supplied by the second supply of electricity. The regenerative power supply method provided by the embodiment of the invention includes the steps of: first, determining whether an input power supplied to the load exceeds a preset power, and then, if the determination result is yes, regenerating the power supply load required The amount of power is such that the wheeled power supplied to the load does not exceed the preset amount; conversely, if the result of the determination is no, the amount of the regenerative power supply is maintained. In summary, the embodiment of the present invention connects the DC power supply provided by the renewable energy source and the DC power supply provided by the non-renewable energy power supply system in parallel "at the same time, through the detection of the load current, the control of the renewable energy source and the non-201119182 The energy supply system prioritizes the power distribution of the load power supply, so that the renewable energy source preferentially supplies power to the load with maximum power utilization, and enables the non-renewable energy power supply system to supply power to the load with minimum power utilization, thereby achieving green environmental protection. The detailed description of the present invention and the accompanying drawings are to be understood by the accompanying drawings, [Embodiment] Please refer to the first figure. The first figure is a functional block diagram of a regenerative energy supply system according to an embodiment of the present invention. The regenerative energy supply system 1 of the present embodiment is connected in parallel with a non-renewable energy supply system 2, And for the same power supply to use - load 3. The aforementioned load 3 can A DC load, instead of the regenerative energy supply system 2, may be an electric adapter application system of the power adapter (ADApTER). In this embodiment, the regenerative energy supply of the embodiment: a system 1 includes a power generation module 1第一, a first conversion module 12, -: the 杈 group 4 4, a second conversion module 16 and a feedback control module Η. & complex reference --. The power generation module 1G is used to receive large Naturally regenerated and regenerated electric energy P1. The electric power generation module 1〇 can be - too other can receive large self-financial power to convert into electric electricity, and a conversion module 12 is connected in parallel to the electric power generating device 10, :攸" The generating module 10 receives the regenerative electric energy ρι, and the group 12 can be a step-down dc/dc conversion module.
12,其係將二圓結储能模組14並接於第一轉換模組 …、:仗弟-轉換㈣且12所取得的第―供應電能W 201119182 ^子成=用電力Vp。儲能模組14可以是—個二次電池 :’第―轉齡組16並軸接於第—轉換模組^ 月匕极組…係用來接收第一供應電力V1 A/或備用= P’亚將弟―供應電力V1及/或備用電力Vp轉換成第 二供應電力V2以供給負載3使n+、^轉換成一第 %可以是-制❹C/DC轉之弟:轉換模組 !6 考圖。反饋控制模組17柄接於第二轉換模組12, the second round junction energy storage module 14 is connected to the first conversion module ...,: the younger-converted (four) and 12 obtained the first - supply electric energy W 201119182 ^ sub-conversion = power Vp. The energy storage module 14 can be a secondary battery: a 'first-old age group 16 and a shaft-connected to the first-conversion module ^ month drain group ... is used to receive the first supply power V1 A / or spare = P 'Asian brother--supply power V1 and/or backup power Vp is converted into second supply power V2 to supply load 3 to convert n+, ^ into a first % can be - system C / DC turn brother: conversion module! 6 test Figure. The feedback control module 17 is connected to the second conversion module
人負载3 ’其係用來檢測非再生能源供電系統2供 载曰3的一輸入電力Va (如,電流)’其中,輸入電力%可 以是-直流電力。如第-圖所示,反馈控制模組17包括一 =樣單元m、-功率分配單元172及—控制單元m。盆 中’取樣單元no用來取樣輸人電力Va的大小 輸 。電力Ja的大小對應產生-取樣信號Vs。請連 -圖’第―圖為本發明之—實施觸功率分配單元内部電 路示意圖。功率分配單元172内部包含有一放大單元Ο· 與一誤差放大單元OPA2。 如第二圖所示,功率分配單元172之放大單元〇pAi 輕接於,樣單元17Q,其係用來將取樣信號%進行反向放 十,接著,經反向放大後的取樣信號Vs,被送至誤差放大 單凡OPA2 誤纽大料QPA2崎運算反肖放大後的取 樣信號Vs’與-預設值Vref(如,5V),並且產生一比對結 果=號Vr。誤差放大單元0PA2將比對結果信號Vr送給控 制單元174 ’如此,控制單元174依據比對結果信號Vr, =以控制第二轉換模組16令功率電晶體(未標示)的導通 日守間,進而控制第二轉換模組16調整第二供應電力¥2輸 出的電量。 201119182 復參考第一圖與第二圖。當非再生能源供電系統2提 供給負載3的電能超過一預設電量,例如】w時,此時, 控制單元174送給第二轉換模組16 —個低電位(low level) 之比對結果信號Vr’用以增大第二轉換模組16中功率電晶 體的導通時間,進而讓電力產生模組10及/或儲能模組14 提供給負載3的電能增加,使得負載3可以完全從電力產 生模組10及/或儲能模組14獲取電能,以達到綠色環保的 目的。 復參考第一圖。本實施例之再生能源供電系統丨將電 力產生模組10提供直流再生電能?1經第一轉換模組12的 降壓處理後再對儲能模組14充電,以進行再生電能存儲。 另外,經降壓後的再生電能P1再經第二轉換模組16的升 壓處理後’係與非再生能源供電系統2並聯以共同供電於 負載3。 、 + 1她例之冉生能源供電系統1係對非再生彳 源供電系統2提供給負載3的輸人電力Va (電流信號. 進=取樣’此取樣信號Vs經功率分配單元172處理後,^ :第二轉換模組令電晶體驅動器(未標示),電晶體s =透過對功率電晶體導通時間的控制,進而控制電力) f 〇及/讀能馳14提供給負载3電能的百分比 曰ΐ Ϊ所消耗的總電能中,當第二轉換模組16中功率1 日曰體導通時間越長時,雷为甚 接料自番, 力產生模組10及/或儲能模組1 2、、.,。負载3所占的電能百分比越Α,而從非再 電糸統2提供給負載3所占的電能百分比則越小。/〜 生雷本實施例之再生能源供電系統1將可以與射 月我電系統—同並聯於負載3,並且,依據非再生㈣ 201119182 供電系統2提供給負載3的輪入電力Va,加以調整電力 產生模組10及/或儲能模組]4提供給負載3電能的百分 比,達到負載3電能分配與平衡的優先順序控制。 配合第一圖與第二圖,請參考第三圖。第三圖為本實 施例之再生能源供電系統的操作方法流程示意圖。如第三 圖所示’本實施例之再生能源供電方法包含有如下步驟: 首先,判斷非再生能源供電系統2供應到負載3的輪入電 力Va是否超過一預設電量(sl00),意即,比對運算反向 放大後的取樣信號Vs’與預設值Vref。 接著’當判斷結果為”是”,則再生電能P1增加供應 負載3的電量’以令供給負載3的輸入電力Va不超過..預設 電量(S102) ’意即’控制單元174送給第二轉換模組16 一個低電位(low level)之比對結果信號Vi,,用以增大第二轉 換模組16中功率電晶體的導通時間,進而讓電力產生模組 10及/或儲能模組14提供給負载3的電能增加,使得負載3 可以盡可能地從電力產生模組10及/或儲能模組14獲取電 能,以達到綠色環保的目的。 另外,當判斷結果為”否”,則維持再生電能p丨供應 負載3的電量(S104),意即,電力產生模组1〇及/或儲能 模組14持續提供給負载3所需的電能,使得負載3完全從 電力產生模組10及/或儲能模組14獲取電能,以達到綠色 環保的目的。 [S 1 在步驟S104中’再生電能pi還會對儲能模組14充電, 以將備用電力Vp存放在儲能模組]4中接著,判斷再生 電能Ρ1是否足夠供應負載3所需的電量(S106),當步驟 S106的判斷結果為”是”,則維持再生電能?1供應負載3 9 201119182 =,需的電$(sl〇4)。另外’當步驟的判斷結果為’, ’則負載3所需的電量將會由再與 vp共同供應(S108)。 电刀 後’接著判斷再生電能ρι是否無法供應 )。當步驟S110的判斷結果為,,是,’,則由備 篇沾外供應負載3所需的電量(S112)。當步驟Sl10的 果為’否”,則維持再生電能P1與備用電力外共 同i、應負載3所需的電量(sl〇8)。 ^步琢S112後’接著判斷該備用電力Vp是否足夠供 =,,、、3所需的電量(SU4)。當步驟MM的满結果為” =持備用電力Vp供應負載3所需的電量(su2)。 =⑽14的判斷結果為,,否”,則由備用電力外與輸 入力Va共同供應負载3所需的電量(S116)。 在步称S116後’接著判斷備用電力是否無 =帅)。當步驟咖的判斷結果為,,是,,,則由輸二 Y Va供應負載3所需的電量(s 12 0 )。當步驟S118的判 果為否,則維持備用電力Vp與輸入電力Va共同 供應負載3所需的電量(S116)。 、 參考第四圖’第四圖為本發明之實施例之第一電力供 應,程示意圖。如第四圖所示,當太陽光照比較強烈時, 本貫施例之再生也源供電系統i中的電力產生模組將可 喊生足觸再生魏P1。再生電能ρι ―方面用來對儲能 模、、且14充包,以進行再生電能的存儲,另一方面,再生電 能P1經由第二轉換模組16以對負載3供電。如此,在太 陽光照比較強騎況下’麵生能驗電祕2幾乎不提 供電能給負载3,而負載3所需消耗的電能則完全由太陽能 201119182 電力產生模組ίο優先提供,+ 線條所示。 、電能流向如第四圖中虛 參考五圖,第五圖為太路叫 _ 流程示意圖。如第五圖所中免=之貫施例之第二電力供應 例之再生能源供電系統]中的^太陽光不強烈時,本實施 電能P1經由第二轉換模組^f模㈣產生的再生 耗的電能,此時,儲能以提供負載3所需消 供部分的電能給負載3使用^^乐二轉換模組16會提 如此,在太陽光照不強烈情況二她不足的再生電能P1。 同樣不提供電能給負載3,㈣1再生能源供電系統2 力產生模、组i0與儲能麵14 f 3所需消耗的電能則由電 如第五圖中虛線條所示。提供,此時’電能流向 參考第六圖,第六圖為* ^ 應流程示意圖。如第六圖所^之貫施例之第三電力供 之再生能源供電系統1中的雷 無太陽光時,本實施例 電能Η給負載3使用,此時刀產生模組10無法提供再生 儲能模組14提供。儲能模:14 ^ 3所需的電能將完全由 第二轉換模紕16以對負载3 f預存的備用電力VP經由 非再生能祕電_2同樣τ都t陰雨天情況下, 所需消耗的電能則完全由儲能模組14:= 向如第六圖t虛線條所示。 ^電此洲· 應流=二發施例之第四電力供 之再生能源供電线The human load 3' is used to detect an input power Va (e.g., current) of the non-regenerative power supply system 2 for carrying 曰3, wherein the input power % may be - direct current power. As shown in the first figure, the feedback control module 17 includes a = sample unit m, a power distribution unit 172, and a control unit m. The 'sampling unit no' in the basin is used to sample the size of the input power Va. The size of the power Ja corresponds to the generated-sampled signal Vs. Please refer to the diagram of the internal circuit of the implementation of the touch power distribution unit. The power distribution unit 172 internally includes an amplification unit Ο· and an error amplification unit OPA2. As shown in the second figure, the amplification unit 〇pAi of the power distribution unit 172 is connected to the sample unit 17Q, which is used to reverse the sampling signal %, and then the inversely amplified sampling signal Vs, It is sent to the error amplification single OPA2 error Q7, the sampling signal Vs' and the preset value Vref (for example, 5V), and a comparison result = the number Vr. The error amplifying unit 0PA2 sends the comparison result signal Vr to the control unit 174'. The control unit 174 controls the second conversion module 16 to control the conduction period of the power transistor (not shown) according to the comparison result signal Vr, = And controlling the second conversion module 16 to adjust the amount of power output by the second supply power ¥2. 201119182 Refer to the first and second figures. When the power supplied by the non-renewable energy power supply system 2 to the load 3 exceeds a predetermined power amount, for example, w, at this time, the control unit 174 sends the second conversion module 16 a low level comparison result. The signal Vr' is used to increase the on-time of the power transistor in the second conversion module 16, thereby increasing the power supplied by the power generation module 10 and/or the energy storage module 14 to the load 3, so that the load 3 can be completely The power generation module 10 and/or the energy storage module 14 obtains electrical energy to achieve environmental protection. Refer to the first figure. The regenerative power supply system of the present embodiment provides the DC power generation by the power generation module 10? After the step-down process of the first conversion module 12, the energy storage module 14 is charged to perform regenerative energy storage. In addition, the decompressed regenerative electric energy P1 is further connected to the non-renewable energy supply system 2 in parallel by the boosting process of the second conversion module 16 to supply power to the load 3. + 1 her example of the energy supply system 1 to the non-regenerative power supply system 2 to the input power of the load 3 Va (current signal. Intake = sampling 'this sampling signal Vs is processed by the power distribution unit 172, ^ : The second conversion module makes the transistor driver (not shown), the transistor s = controls the power transistor on-time, and then controls the power) f 〇 and / / reads the percentage of energy supplied to the load 3总 中 总 Ϊ 中 , , 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二,,.,. The percentage of the energy occupied by the load 3 is higher, and the percentage of the power supplied from the non-re-energized system 2 to the load 3 is smaller. /~ The thundering power supply system 1 of the present embodiment will be able to be connected to the load 3 in parallel with the solar system, and adjusted according to the wheeled power Va supplied to the load 3 by the non-regenerative (4) 201119182 power supply system 2. The power generation module 10 and/or the energy storage module 4 provide a percentage of the power of the load 3 to achieve priority control of the load 3 power distribution and balance. For the first and second figures, please refer to the third figure. The third figure is a schematic flow chart of the operation method of the renewable energy power supply system of the embodiment. As shown in the third figure, the regenerative power supply method of the present embodiment includes the following steps: First, it is determined whether the wheel-in power Va supplied from the non-renewable energy power supply system 2 to the load 3 exceeds a predetermined power amount (sl00), that is, The inversely amplified sampling signal Vs' and the preset value Vref are compared. Then, 'when the judgment result is YES, the regenerative electric energy P1 increases the electric quantity of the supply load 3' so that the input electric power Va supplied to the load 3 does not exceed: the preset electric quantity (S102) 'meaning that the control unit 174 gives the The second conversion module 16 has a low level comparison result signal Vi for increasing the on-time of the power transistor in the second conversion module 16, thereby allowing the power generation module 10 and/or energy storage. The power supply provided by the module 14 to the load 3 is increased, so that the load 3 can obtain power from the power generation module 10 and/or the energy storage module 14 as much as possible to achieve the purpose of environmental protection. In addition, when the determination result is "NO", the amount of power of the regenerative electric energy p丨 supply load 3 is maintained (S104), that is, the power generation module 1 and/or the energy storage module 14 is continuously supplied to the load 3 The electric energy enables the load 3 to completely obtain electric energy from the power generation module 10 and/or the energy storage module 14 to achieve the purpose of environmental protection. [S 1 in step S104, 'the regenerative electric energy pi will also charge the energy storage module 14 to store the backup electric power Vp in the energy storage module 4', and then determine whether the regenerative electric energy Ρ1 is sufficient to supply the electric power required by the load 3. (S106), when the determination result of step S106 is "YES", the regenerative electric energy is maintained? 1 supply load 3 9 201119182 =, the required electricity $ (sl 〇 4). Further, when the judgment result of the step is ', ', the amount of power required for the load 3 will be supplied together with vp (S108). After the electric knife, it is then determined whether the regenerative electric energy ρι cannot be supplied. When the result of the determination in step S110 is YES, ', the amount of power required to supply the load 3 is prepared by the preparation (S112). When the result of the step S10 is "NO", the amount of power required to recharge the regenerative electric energy P1 and the standby electric power i (sl 〇 8) is maintained. ^ After step S112, it is then determined whether the standby electric power Vp is sufficient for =,,,, 3 required power (SU4). When the full result of step MM is "= the amount of power required to supply load 3 with standby power Vp (su2). If the result of the determination of (10) 14 is "No", the amount of power required for the load 3 is supplied from the outside of the standby power to the input force Va (S116). After the step S116, "following whether the standby power is not = handsome" is performed. The result of the judgment of the coffee is,,,,,, the amount of electric power (s 12 0 ) required to supply the load 3 by the second Y V V. When the result of the step S118 is NO, the standby electric power Vp is supplied together with the input electric power Va. The power required by the load 3 (S116). Referring to the fourth figure, the fourth figure is a schematic diagram of the first power supply according to an embodiment of the present invention. As shown in the fourth figure, when the sun is relatively strong, the present is The regeneration of the embodiment is also the power generation module in the source power supply system i, which can be used to regenerate the Wei P1. The regenerative power ρι is used to store the energy storage module, and 14 to regenerate the stored electrical energy. On the other hand, the regenerative electric energy P1 is supplied with power to the load 3 via the second conversion module 16. Thus, in the case of strong sunlight, the surface energy can hardly provide power to the load 3, while the load 3 The electricity to be consumed is completely powered by solar energy 201119182 The generation module ίο is preferentially provided, and the + line is shown. The power flow direction is as shown in the fourth figure in the virtual reference five picture, and the fifth picture is the y road called _ flow diagram. As shown in the fifth figure, the free example of the application In the case of the second-generation power supply system, the solar energy is not strong, the power P1 is regenerated by the second conversion module (f), and at this time, the energy is supplied to provide the load 3 Need to eliminate part of the power to the load 3 using ^ ^ Le two conversion module 16 will mention this, in the case of solar light is not strong second, her insufficient regenerative energy P1. Also does not provide power to the load 3, (four) 1 renewable energy supply system 2 The power required to generate the mode, the group i0 and the energy storage surface 14 f 3 is represented by the electric line as indicated by the broken line in the fifth figure. At this time, the electric energy flow refers to the sixth picture, and the sixth picture is *^ The schematic diagram of the process. As shown in the sixth embodiment, the third power supply of the regenerative energy supply system 1 is free of sunlight, and the power enthalpy of the embodiment is used for the load 3, and the knife generation module 10 cannot be used at this time. Provided by the regenerative energy storage module 14. Storage mode: 14 ^ 3 required The electric energy will be completely from the second conversion module 16 to the standby power VP pre-stored to the load 3f via the non-regenerative energy. The same τ is in the rainy day, and the required power is completely consumed by the energy storage module 14. := As shown in the dotted line of the sixth figure t. ^Electricity of this continent · Yingliu = the fourth power supply of the second embodiment of the renewable energy supply line
Vp經由第二轉換模組16不足以提供員存的備用電力 能時,非再纽絲將諸供部㈣=的馬電 201119182 使用’以補償不足的備用電力Vp。如此’在前述情況下, 負載3所需消耗的電能係由儲能模組14與非再生能源供電 系統2共同提供,此時,電能流向如第七圖中虛線條所示。 參考第八圖,第八圖為本發明之實施例之第五電力供 應流程示意圖。如第八圖所示,在無太陽光以及本實施例 之再生能源供電系統1中的儲能模組14預存的備用電力 Vp非常弱’不能再供電於負載3時,負載3所需用的電能, 將完全由非再生能源供電系統2提供,此時,電能流向如 第八圖中虛線條所示。 綜上所述’本發明之實施例主要將太陽能轉換來的直 流電源和非再生能源供電系統進行並聯,以供電給負載使 用並且’透過對負載電流的^貞測’加以控制太陽能和非 再生能源供電系統對負載供電的電能分配優先之順序,使 太陽肖b以最大限度的電能利用率(p〇wer usage Effectiveness)對負載供電,同時,使非再生能源供電系統 以最小限度的電能利用率對負載供電,從而實現綠色環保 的目的。 .按’以上所述,僅為本發明最佳之具體實施例,惟本 發明之特徵並不侷限於此’任何熟悉該項技藝者在本發明 之領域内’可輕易思及之變化或修飾,皆可涵蓋在以下本 案之專利範圍。 【圖式簡單說明】 第一圖為本發明之一實施例的再生能源供電系統功能 方塊示意圖; 弟一圖為本發明之·一實施例的功率分配單元内部電路 示意圖; 12 201119182 第三圖為本實施例之再生能源供電系統的操作方法流 程示意圖; 第四圖為本發明之實施例之第一電力供應流程示意 圖; 第五圖為本發明之實施例之第二電力供應流程示意 圖; 第六圖為本發明之實施例之第三電力供應流程示意 圖; 第七圖為本發明之實施例之第四電力供應流程示意 圖;及 第八圖為本發明之實施例之第五電力供應流程示意 圖。 【主要元件符號說明】 再生能源供電糸統1 電力產生模組10 第一轉換模組12 儲能模組14 第二轉換模組16 反饋控制模組17 非再生能源供電系統2 負載3 再生電能P1 第一供應電力VI 第二供應電力V2 輸入電力Va 取樣信號Vs 201119182 備用電力Vp 取樣單元170 功率分配單元Π2 控制單元174 放大單元OPA1 誤差放大單元OPA2 反向放大後的取樣信號Vs’ 預設值Vref 比對結果信號VrWhen Vp is insufficient to provide the backup power of the subscriber via the second conversion module 16, the non-renewed wire uses the supply unit (4) = horsepower 201119182 to compensate for insufficient backup power Vp. Thus, in the foregoing case, the electric energy required for the load 3 is supplied by the energy storage module 14 together with the non-renewable energy supply system 2, and at this time, the electric energy flows as indicated by the broken line in the seventh figure. Referring to the eighth embodiment, an eighth diagram is a schematic diagram of a fifth power supply flow according to an embodiment of the present invention. As shown in the eighth figure, the standby power Vp prestored in the energy storage module 14 in the absence of sunlight and the regenerative power supply system 1 of the present embodiment is very weak, 'when the load 3 cannot be re-powered, the load 3 is required. The electrical energy will be provided entirely by the non-renewable energy supply system 2, at which point the electrical energy flow is as indicated by the dashed line in Figure 8. In summary, the embodiment of the present invention mainly connects a solar-converted DC power source and a non-renewable energy power supply system in parallel to supply power to a load and control solar energy and non-renewable energy through 'measurement of load current'. The power supply system prioritizes the power supply to the load, so that the solar power can supply the load with maximum power utilization, and at the same time, the non-renewable energy supply system is minimized. Load power supply, so as to achieve the purpose of environmental protection. The above description is only the preferred embodiment of the present invention, but the features of the present invention are not limited to the 'any variation or modification that can be easily considered in the field of the present invention. , can be covered in the following patent scope of this case. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a functional block diagram of a regenerative energy supply system according to an embodiment of the present invention; a first diagram of an internal circuit of a power distribution unit according to an embodiment of the present invention; 12 201119182 The schematic diagram of the operation method of the regenerative power supply system of the present embodiment; the fourth diagram is a schematic diagram of the first power supply flow according to the embodiment of the present invention; and the fifth figure is a schematic diagram of the second power supply flow according to the embodiment of the present invention; FIG. 7 is a schematic diagram of a fourth power supply flow according to an embodiment of the present invention; FIG. 7 is a schematic diagram of a fourth power supply flow according to an embodiment of the present invention; and FIG. 8 is a schematic diagram of a fifth power supply flow according to an embodiment of the present invention. [Main component symbol description] Renewable energy supply system 1 Power generation module 10 First conversion module 12 Energy storage module 14 Second conversion module 16 Feedback control module 17 Non-renewable energy supply system 2 Load 3 Regenerative power P1 First supply power VI Second supply power V2 Input power Va Sample signal Vs 201119182 Backup power Vp Sampling unit 170 Power distribution unit Π2 Control unit 174 Amplification unit OPA1 Error amplification unit OPA2 Reverse amplified sample signal Vs' Preset value Vref Alignment result signal Vr
1414