201116356 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種無鉛銲料合金,尤指一種做為軟銲 材料之含辞之錫-銦基無鉛銲料合金。 【先前技術】 於電子產品之組裝中,係採用銲料以將各種電子元件 銲接於印刷電路板上。纟中,尤以軟銲更是電子產品 製程中最重要之連接技術之一。 在軟銲材料之選擇上,一般以低熔點且具良好延展性 之金屬材料為考量。錫^合金是傳統上被廣泛運用的鲜 料,但由於RqHS等禁㈣法令,所以近年來無料料 發與研究是非常重要的課題。論銲料基本上都是以錫為 再添加其他合金元素所形成。除了目前最受重視的錫: 銀-銅合金外,其他如錫务錫_鋅與錫銦等合金,201116356 VI. Description of the Invention: [Technical Field] The present invention relates to a lead-free solder alloy, and more particularly to a tin-indium-based lead-free solder alloy containing a soldering material. [Prior Art] In the assembly of electronic products, solder is used to solder various electronic components to a printed circuit board. In the middle, especially soldering is one of the most important connection technologies in electronic products. In the selection of solder materials, metal materials with low melting point and good ductility are generally considered. Tin alloys are traditionally widely used as fresh materials. However, due to the prohibition of (4) laws such as RqHS, the development of materials and research in recent years is a very important issue. It is said that solder is basically formed by adding other alloying elements to tin. In addition to the most important tins currently available: silver-copper alloys, other alloys such as tin-tin-zinc and tin-indium,
以做為無鉛銲料。 製程巾,係先料純低之銲㈣化後 j材連接。其巾’⑫㈣料(料)與待連接基 ^交=散情形,而於界面處產生—層介金屬化合物生 佳,而屬化合物層過厚’容易造成銲點機械特性不 亦會造成固化順痒抟键 象 銲製程造成1 銲點微結構,進而對軟 “衣““響。因此’如何準確 的溶解行為與介金屬相的成長,將會左右銲點;;的優劣材 201116356 藉此,目前需發展出一種無鉛銲料合金,其组成元素 簡易’故於合金製備尚較容易。同時,在軟銲過程中原子 擴散路徑較易預測’而可使銲點性質最佳化,進而提升電 子產品可靠度。 【發明内容】 本發明之主要目的係在提供一種無鉛銲料合金,其可 有效降低銲料熔湯過冷現象、減緩基材於銲料合金中之溶 解速率、以及減緩介金屬相生成速率,俾能提升銲點性質二 為達成上述目的,本發明係提供—種錫姻基之無 料合金,係、包括:15〜25 wt%之銦;G⑸5㈣之辞;以 「餘量為錫」係指藉由添加錫使無叙 鈐枓合金總組成達丨〇〇 wt%。 等優料料合金,係於具有熔點低及濕潤性佳 2點之錫·喊銲料合金巾,添加少量讀,而 辞之無料料合金。藉此,可解決銦取得不易且成 合金,藉由添加少量之鋅t可:時,本發明之無料料 象、減緩基材於銲料合金巾=低銲料料過冷現 成速率。此外,與市場上常用:解連率、以及介金屬相生 發明之無鉛銲料合金只用到^五兀之合金相比,本 加容易。 』—種金屬元素,故合金製備更 201116356 於本發明之無鉛銲料合金中,可選擇性的包括: 0.01〜2.0 wt%之第一金屬’其係選自由Sb、Bi、Ge、Fe、 A1、Ag ' Cu、Ce及La所組成之群組。 於本發明之無鉛銲料合金中,可更選擇性的包括: 〇·01〜2·0 wt%之第二金屬,其係選自由Sb、Bi、Ge、Fe、 A1、Ag、Cu、Ce及La所組成之群組。 此外,於本發明之無鉛銲料合金中,可更包括其他微 量之不純物或添加物。 於本發明之無錯銲料合金中,較佳係包括:15〜25 wt〇/〇 之銦' 0.05〜1.5 wt%之鋅、以及73 5〜84 95 wt%之錫。更佳 為,無鉛銲料合金係包括:2〇 wt%之銦、〇 〇5〜i 5 wt%之鋅、 以及78.5〜79.95 wt%之錫。最佳為,無鉛銲料合金係包括: 20 wt%之麵、〇.5〜1.〇 wt〇/〇之辞、以及79〜79 5 wt%之錫。 於本發明一具體較佳實施例中,無鉛銲料合金係包 括.20 wt%之钢、0.5 wt%之鋅、以及79.5 wt%之錫。 此外’於本發明另一具體較佳實施例中,無鉛銲料合 金係包括:20 wt%之銦、〇.7 wt%之鋅、以及79.3 wt%之錫。 再者,於本發明再一具體較佳實施例中,無鉛銲料合 金係包括:20 wt%之銦、1 .〇 wt%之鋅 '以及79 〇 wt%之錫。 【實施方式】 製備無鉛銲料合金 201116356 接下來’將依照下表1之無鉛銲料合金組成,製作本發 明各實施例及比較例之無鉛銲料合金《其中,無鉛銲料合 金之各成分比例係以重量百分比(Wt%)表示之。 表1 無船銲料合金組成(wt%) 錫(Sn) 姻(In) 鋅(Zn) 鋁(A1) 銀(Ag) 實施例1 79.5 20 0.5 -- — 實施例2 79.3 20 0.7 — --- 實施例3 79.0 20 1.0 — * - 實施例4 83.5 15 1.0 0.5 — •實施例5 72 25 1.5 0.5 1.0 比較例 80 20 -- -- -- 取上述比例之各金屬元素混合’藉由加熱將所有金屬 元素炫融後,再快速冷卻金屬混合物,則可製得本發明各 實施例及比較例之無敍輝料合金。 檢測無鉛銲料合金性質 分別取7 mg之實施例1〜3及比較例之無鉛銲料合金,以 微差掃描熱卡計(DSC),以5°C/min速率加熱至3〇〇 〇c,持 溫5分鐘後,再以5°C/min速率降溫至室溫。其所測得之液 相線溫度、固相線溫度與固化起始溫度係列於下表2中。其 中,過冷程度係為液相線溫度與固化起始溫度之差值。 表2 固相線溫 度(0C) 液相線溫 度(0C) 固化起始 溫度(°c) 過冷程度 (°C) 201116356As a lead-free solder. Process towel, the first low-quality welding (four) after the j material connection. The towel '12 (four) material (material) is connected with the base to be connected, and the layer is formed at the interface, and the layer of the metal compound is good, and the compound layer is too thick, which may cause the mechanical properties of the solder joint to cause curing. The itch-key welding process results in a solder joint microstructure, which in turn makes a soft "clothing". Therefore, 'how to accurately dissolve the behavior and the growth of the intermetallic phase will affect the solder joints;; the good and bad materials 201116356 At present, a lead-free solder alloy needs to be developed, and its composition is simple. Therefore, it is easier to prepare the alloy. At the same time, the atomic diffusion path is easier to predict during the soldering process, and the solder joint properties can be optimized, thereby improving the electronic product. SUMMARY OF THE INVENTION The main object of the present invention is to provide a lead-free solder alloy which can effectively reduce the phenomenon of solder melting and supercooling, slow down the dissolution rate of the substrate in the solder alloy, and slow down the rate of formation of the intermetallic phase.俾 提升 提升 提升 提升 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二; With "tin balance" means the addition of tin by the Syrian-free seal the overall composition of the alloy Tu Shu took office wt%. The superior material alloy is a tin-free solder alloy towel with a low melting point and good wettability. It is added with a small amount of read, and the material is not material. Thereby, it is possible to solve the problem that indium is difficult to obtain and alloying, and by adding a small amount of zinc t, the non-material image of the present invention can be slowed down to the solder alloy towel = low solder material supercooling ready rate. In addition, it is easier to use than the alloys that are commonly used in the market: the de-bonding rate and the intermetallic form of the invention. 』—A metal element, so alloy preparation 201116356 in the lead-free solder alloy of the present invention, optionally comprising: 0.01~2.0 wt% of the first metal' is selected from Sb, Bi, Ge, Fe, A1 A group consisting of Ag ' Cu, Ce, and La. In the lead-free solder alloy of the present invention, the second metal may be more selectively selected from the group consisting of Sb, Bi, Ge, Fe, A1, Ag, Cu, Ce, and A group of La. Further, in the lead-free solder alloy of the present invention, other micro-impurities or additives may be further included. In the error-free solder alloy of the present invention, it is preferred to include: 15 to 25 wt% of bismuth indium '0.05 to 1.5 wt% of zinc, and 73 to 585 to 95% by weight of tin. More preferably, the lead-free solder alloy system comprises: 2% wt% of indium, 〇 5~i 5 wt% of zinc, and 78.5 to 79.95 wt% of tin. Preferably, the lead-free solder alloy system comprises: 20 wt% of the face, 〇.5~1. 〇 wt〇/〇, and 79 to 79 5 wt% of tin. In a particularly preferred embodiment of the invention, the lead-free solder alloy comprises .20 wt% steel, 0.5 wt% zinc, and 79.5 wt% tin. Further, in another specific preferred embodiment of the present invention, the lead-free solder alloy system comprises: 20 wt% of indium, 〇. 7 wt% of zinc, and 79.3 wt% of tin. Furthermore, in still another preferred embodiment of the present invention, the lead-free solder alloy system comprises: 20 wt% of indium, 1.0% by weight of zinc', and 79% by weight of tin. [Embodiment] Preparation of lead-free solder alloy 201116356 Next, the lead-free solder alloys of the embodiments and comparative examples of the present invention will be prepared according to the lead-free solder alloy composition of Table 1 below, wherein the ratio of each component of the lead-free solder alloy is in weight percentage (Wt%) indicates it. Table 1 Shipless Solder Alloy Composition (wt%) Tin (Sn) Indium Zinc (Zn) Aluminum (A1) Silver (Ag) Example 1 79.5 20 0.5 --- Example 2 79.3 20 0.7 — --- Example 3 79.0 20 1.0 — * - Example 4 83.5 15 1.0 0.5 — • Example 5 72 25 1.5 0.5 1.0 Comparative Example 80 20 -- -- -- Mixing the various metal elements in the above ratios 'by heating all After the metal element is melted and melted, the metal mixture is rapidly cooled, and the non-supplemented alloy of each embodiment and the comparative example of the present invention can be obtained. Detecting the properties of the lead-free solder alloy, respectively, taking 7 mg of the lead-free solder alloys of Examples 1 to 3 and the comparative examples, and heating to 3 〇〇〇c at a rate of 5 ° C/min by a differential scanning calorimeter (DSC). After 5 minutes of temperature, the temperature was lowered to room temperature at a rate of 5 ° C/min. The liquid phase temperature, solidus temperature and curing initiation temperature measured in the series are shown in Table 2 below. The degree of supercooling is the difference between the liquidus temperature and the curing onset temperature. Table 2 Solidus temperature (0C) Liquidus temperature (0C) Curing onset temperature (°c) Degree of undercooling (°C) 201116356
比較例 155 196 178 18 實施例1 136 193 191 2 實施例2 132 194 193 1 貫施例3 142 193 192 1 由於過冷現象會景> 響到銲料合金固化過程中之生成 相,而影響到製程及產品可靠度。由表2實驗結果得知,相 較於未加有微量鋅之錫-銦基無鉛銲料合金(比較例),本發 ,之含鋅之錫·銦基無鉛銲料合金(實施例卜乃,過冷現象確 實有顯著降低,進而可改善製程及提升產品可靠度。 檢測介金屬相生成Comparative Example 155 196 178 18 Example 1 136 193 191 2 Example 2 132 194 193 1 Example 3 142 193 192 1 Due to the phenomenon of supercooling> The formation phase in the curing process of the solder alloy is affected Process and product reliability. From the experimental results in Table 2, compared with the tin-indium-based lead-free solder alloy without adding a trace of zinc (comparative example), the present invention, the zinc-containing tin-indium-based lead-free solder alloy (embodiment The cold phenomenon is indeed significantly reduced, which in turn improves the process and improves product reliability.
分別取2 g之實施例卜3及比較例之無鉛銲料合金,放 置㈣鎳(Ni)基板上’再密封於内外徑分別為6咖χ 8議 之石英管巾。而後’將放置有無料料合金之鎳基板置於 230〇C爐中2小時後淬冷’再利用掃描式電子顯微鏡(s_ 觀察反應界面。圖1至圖3係分別為實施例⑴之盔鉍銲料 合金於鎖基板上之㈣圖;而圖4係為比較例之無鱗料合 金於鎖基板上之SEM圖。其中,放大倍率為500倍。 由圖1至圖4之㈣可觀察到,相較於未加有微量鋅之 錫-日銦基無錯銲料合金(比較例),本發明之含辞之錫细基無 =銲料,金(實施例卜3),介金屬Ni3Sn4相飄散至輝料中的 買明顯變少’表示介金屬相成長明顯變慢。 由f介金屬相成長過厚’以造成銲點機械性質降 低’而&成剝離或斷裂的情形發生。因此,本發明之含鋅 201116356 之錫-姻基!錯銲料合金確實可減緩介金屬相生成,故可提 升銲點機械性質,進而提升產品可靠度。 檢測基材溶解於銲料之溶解量 分別取5 g之實施例1〜3及比較例之無錯銲料合金,放 置於230°C爐中,再把直徑2 mm(半徑為1〇〇〇 μιη)的銀線材 垂直插入溶融銲料中反應1〇、3〇、50與90分鐘,再取出淬 冷。而後,利用掃描式電子顯微鏡(SEM)觀察銀線材截面積 的變化,並使用量測軟體計算溶解後之銀線材半徑,如下 表3及圖5所示。 表32 g of the lead-free solder alloy of Example 3 and Comparative Example were respectively placed, and (4) nickel (Ni) substrate was placed on the substrate to be resealed to a quartz tube having an inner and outer diameter of 6 ca. Then, the nickel substrate with or without the material alloy was placed in a 230 ° C furnace for 2 hours and then quenched. The scanning electron microscope was used (s_ observation reaction interface. Fig. 1 to Fig. 3 are the helmets of the embodiment (1), respectively. (4) of the solder alloy on the lock substrate; and FIG. 4 is an SEM image of the scaleless alloy of the comparative example on the lock substrate, wherein the magnification is 500 times. It can be observed from (4) of FIG. 1 to FIG. Compared with the tin-day indium-based error-free solder alloy to which no trace amount of zinc is added (comparative example), the tin-based fine base of the present invention has no solder, gold (Example 3), and the intermetallic metal Ni3Sn4 phase is dispersed to The fact that the purchase in the bright material is significantly less indicates that the growth of the intermetallic phase is significantly slower. The growth of the f-metal phase is too thick to cause a decrease in the mechanical properties of the solder joints, and the occurrence of peeling or fracture occurs. Therefore, the present invention The zinc-containing 201116356 tin- marriage base! The wrong solder alloy can really slow down the formation of the intermetallic phase, so the mechanical properties of the solder joint can be improved, and the reliability of the product can be improved. The detection of the dissolution amount of the substrate dissolved in the solder is 5 g respectively. The error-free solder alloys of Examples 1 to 3 and Comparative Examples, Placed in a furnace at 230 ° C, and then insert a silver wire with a diameter of 2 mm (with a radius of 1 〇〇〇 μηη) vertically into the molten solder for 1 〇, 3 〇, 50 and 90 minutes, and then take out the quenching. Then, use Scanning electron microscopy (SEM) was used to observe the change in the cross-sectional area of the silver wire, and the radius of the dissolved silver wire was calculated using the measurement software, as shown in Table 3 below and Figure 5. Table 3
___________ υυ / 由表3及圖5之結果顯示,相較於未加有微量鋅之錫_ 銦基無錯銲料合金(比較例)’銀線材於本發明之含辞之錫· 姻^無料料合金(實施例1〜3)中之溶解量確實減少。由於 銀*用於做為鋼基村表面之保護層當使用本發明之含辞 料合錢接時,可減緩銅基材表面之銀保 能性。、旱,相減少銲料合金與銅基材直接接觸之可 201116356 綜上所述,本發明之含鋅之錫-銦基無鉛銲料合金,確 貫可達到有效降低銲料熔湯過冷現象、減緩基材於銲料合 金中之溶解速率、以及減媛介金屬相生成速率等目的。因 此,當使用本發明之含鋅之錫_銦基無鉛銲料合金做為軟銲 材料’可提升電子產品組裝製程中之銲點性質,進而提升 電子產品之產品可靠度。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖1係本發明實施例1無鉛銲料合金於鎳基板上之SEM圖。 圖2係本發明實施例2無鉛銲料合金於鎳基板上之sEm圖。 圖3係本發明實施例3無鉛銲料合金於鎳基板上之SEM圖。 圖4係本發明比較例之無鉛銲料合金於鎳基板上之SEM圖。 圖5係本發明實施例1至3及比較例之無鉛銲料合金溶解基 材量統計圖。 【主要元件符號說明】 益〇 * ·«、___________ υυ / The results shown in Table 3 and Figure 5 show that compared with tin-indium-based solder-free solder alloy (Comparative Example) where silver is not added, the silver wire is used in the present invention. The amount of dissolution in the alloys (Examples 1 to 3) did decrease. Since silver* is used as a protective layer on the surface of a steel base, when the use of the vocabulary of the present invention is used, the silver heat-insulating property of the surface of the copper substrate can be alleviated. And drought, reducing the direct contact between the solder alloy and the copper substrate. 201116356 In summary, the zinc-containing tin-indium-based lead-free solder alloy of the present invention can effectively reduce the phenomenon of solder melting and cooling, and slow down the base. The dissolution rate of the material in the solder alloy, and the reduction rate of the metal phase of the metal. Therefore, when the zinc-containing tin-indium-based lead-free solder alloy of the present invention is used as a solder material, the solder joint properties in the electronic product assembly process can be improved, thereby improving the reliability of the electronic product. The above-described embodiments are merely examples for the convenience of the description, and the scope of the claims is intended to be limited by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an SEM image of a lead-free solder alloy of Example 1 of the present invention on a nickel substrate. 2 is a sEm diagram of a lead-free solder alloy of Example 2 of the present invention on a nickel substrate. 3 is an SEM image of a lead-free solder alloy of Example 3 of the present invention on a nickel substrate. 4 is an SEM image of a lead-free solder alloy of a comparative example of the present invention on a nickel substrate. Fig. 5 is a graph showing the amount of dissolved base material of the lead-free solder alloys of Examples 1 to 3 and Comparative Examples of the present invention. [Explanation of main component symbols] 益〇 * ·«,