[go: up one dir, main page]

TW201115107A - Microscope measurement system using phase mask and method thereof - Google Patents

Microscope measurement system using phase mask and method thereof Download PDF

Info

Publication number
TW201115107A
TW201115107A TW98136761A TW98136761A TW201115107A TW 201115107 A TW201115107 A TW 201115107A TW 98136761 A TW98136761 A TW 98136761A TW 98136761 A TW98136761 A TW 98136761A TW 201115107 A TW201115107 A TW 201115107A
Authority
TW
Taiwan
Prior art keywords
image
phase mask
phase
stripe
tested
Prior art date
Application number
TW98136761A
Other languages
Chinese (zh)
Other versions
TWI402478B (en
Inventor
Wei-Hung Su
Chun-Hsiang Hsu
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW98136761A priority Critical patent/TWI402478B/en
Publication of TW201115107A publication Critical patent/TW201115107A/en
Application granted granted Critical
Publication of TWI402478B publication Critical patent/TWI402478B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

A microscope measurement system using a phase mask and a method thereof are provided. The microscope measurement system has an incoherent light source, a grating unit, a lens assembly, a photo mask, an image capturing unit and an image processing unit. The incoherent light source and the grating unit are used to provide light and dark stripe images which will be projected onto a surface of a tested object. The lens assembly and the photo mask are used to adjust and delay wave-front of the stripe images reflected from the tested object. When the image capturing unit captures the stripe images, the depth of field of the image capturing unit capturing the stripe images can be increased in accordance with the de-convolution algorithm. Thus, the image processing unit can convert the stripe images into an image of 3-dimensional surface profile of the tested object according to the twisted degree of the stripe images. As a result, the microscope magnification, the measurement range of the surface depth, and the 3-dimensional measurement precision can be enhanced.

Description

201115107 ' 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯微量測系統及方法,特別是關 於一種藉由相位光罩延長景深之顯微量測系統及方法。 【先前技術】 隨著科技的進步與發展,各式各樣的光學形貌量測 技術也應運而生,其應用範圍包括.品管、航太、生醫、 • 材料、光電等領域,其大多用來進行物品的光學檢測, 因此與產品的品質及安全性息息相關。 形貌量測技術大致可分為「接觸式」與「非接觸式」 兩種。「接觸式」的量測通常是以探針(probe)對待測物 體表面進行形貌的資料收集。惟,此接觸式量測的資料 收集時間過於冗長,而且探針有破壞待測物體表面的疑 慮。再者,「非接觸式」又可分為光學式及非光學式, φ 光學式上的量測技術可細分為「點量測式」、「全域量 測」,其中「點量測式」包含三角測距及光點聚焦,「全 域量測」包括光學的結構式圖案投影法(stmcture llght)、疊紋干涉法(Moire interferometry)、條紋投影法 (fringe pr〇jecti〇n)等方法。「點量測式」為逐點或逐 線的掃描’因此量測整個外貌時,必須花費較多的時 門且必須擁有咼精度的掃描系統。相較之下,「全域 量測」—可同時對待測物體做全面性的探測,由於量測時 間縮短’受環境影響的程度較小’因此成為近年來形貌 201115107 量測研究發展的主要方向。 在各種「非接觸—全域量測」的形貌檢測系統中, 條紋投影輪廓儀(projected fringe profllometry,簡稱 PFP)具有高精確度、不會破壞待測物體表面、可快速 收集所需要的資料、不易受環境變化的影響等優點,因 此非常適合當作三維形貌量測的檢測系統。 然而,由於微奈米技術曰趨成熟,產品體積不斷縮 小,對於條紋投影輪廓儀的在微小尺寸上的要求也越來 越嚴苛。微米、奈米或毫米大小的待測物,往往需要以 高倍率的光學系統(例如顯微鏡)來進行精密檢測。然 而,放大倍率過高的光學系統,其成像景深(depth 〇f field)往往過短,此處的「景深」是指待測物能産生較 爲 &gt;月晰衫像的最近點至最退點的距離,即縱深景物的% 像清晰範圍。當成像景深過短時,將限制對於待測物之 深度方向的量測範圍,造成失焦影像模糊之情況,使得 影像品質未能達到全對焦清晰程度。雖然一般光學量測 可經由更換長景深鏡頭減少景深不足之問題。但是在顯 微量測中,物鏡因放大倍率高,景深常為微米級,故即 使換上長景深目鏡,對於景深的增加仍然有限,因此景 深不足一直是顯微量測系統最主要的問題。 只、 故,有必要提供一種使用相位光罩之顯微量 及方法’贿料知技賴存在關題。 織 【發明内容】 201115107 本發明之主要目的在於提供一種使用相位光罩之顯 微量測系統及方法,其中藉由使用非同調(inc〇herent) 光源及光柵單元提供亮暗相間之條紋影像投影至待測 物表面上,並利用透鏡組及相位光罩(phase mask)來調 變反射後條紋影像之波前,當一影像擷取單元擷取條紋 影像時,由一影像處理單元再利用反卷積演算法 (de-conv〇iuti〇n algorithm)延長影像擷取單元擷取條紋 影像之景深,並根據條紋影像之扭曲程度來轉換成待測 物之表面深度(曲度)變化,進而將影像處理還原成待測 物之3D立體表面形貌影像,因此有利於提高顯微放大 倍率、擴大深度量測範圍及提升三維量測精度。 為達上述之目的,本發明提供一種使用相位光罩之 顯微量測系統,其包含··-非同調光源,用以提供一非 同調光;一光栅單元,具有數個光栅開口,使通過該光 柵開口後之非同調光形成亮暗相間之條紋影像,並投影 至-待測物之表面上而產生扭曲條紋影像;—透鏡組, 用以調整由該待測物之表面反射而來且通過該透鏡組 之挺曲條紋影像的大小;—相位鮮,用以調變通過該 =鏡組後之扭曲條紋影像之波前,以造成相位調變二 =像榻取單元’用以擷取通過該相位光罩後之扭曲條紋 2 ;以及…影像處理單元,利用反卷積演算法延長 =衫像#貞取單㈣取條紋f彡像之景深,並帛以將該影像 :取單元擷取之扭曲條紋影像轉換處理成該待測物之 立體表面形貌影像。 201115107 在本發明之一實施例中,該非同調光源及光樹單元 排列在一直線上並組成一條紋影像投影組;該透鏡組、 相位光罩、影像擷取單元及影像處理單元排列在另一直 線上並組成一條紋影像擷取處理組,該條紋影像投影組 與該條紋影像擷取處理組之間夾設有一夾角,使該條紋 影像投影組產生之條紋影像由該待測物之表面反射至 該條紋影像擷取處理組。 在本發明之一實施例中,該非同調光源係一白光點 光源;該白光點光源選自齒素燈。 在本發明之一實施例中,該光柵單元之光柵開口係 正弦函數光柵開口。 在本發明之一實施例中,該相位光罩係包含一液晶 空間光調制器(spatial light modulator,SLM) 〇 在本發明之一實施例中,該液晶空間光調制器之— 光導入側具有一偏振片;該液晶空間光調制器之一光導 出側具有一檢振片。 在本發明之一實施例中,該影像擷取單元選自電荷 耦合元件(CCD)型或互補金屬氧化物半導體(CMOS)型 之數位照相機。 ,另一方面,本發明提供一種使用相位光罩之顯微量 測方法’其包含:藉由一非同調光源提供一非同調光; ^該非同調光通過—光柵單元之數個光_ 口,以形成 X相間之條紋影像,並投影至—待測物之表面上而產 扭曲條紋影像;使由該待測物之表面反射而來之扭曲 201115107 條紋影像通過-透鏡組,以調整該扭曲條紋影像的大 小;利用-相位光罩調變通過該透鏡組後之扭曲條紋影 像之波前,以造射目_變;_—影像躲單元擷取 通過該相位光罩後之扭曲條紋影像;以及,經由一影像 處理單元利用反卷積演算法(de_eGnvGlutiGn alg〇rhhm) 延長該影像娜單元齡肢影像之景深,並將該影像 擁取單元擷取之扭曲條紋影像轉換處理成該待測物之 立體表面形貌影像。 在本發明之一實施例中,藉由一外部灰階控制訊號 來數位控制該相位光罩產生適當的灰階圖像 ,以調變通 過該相位光罩之扭祕紋影像之波前,歧成相位調 變。 在本發明之一實施例中,該影像處理單元利用反卷 ,法延長影像之景深及傅立葉轉換法處理該扭曲條紋 影像,以轉換獲得該扭曲條紋影像之纏繞相位及展開相 位0 在本發明之一實施例中,該影像處理單元利用一參 考平面資料與該待測物之纏繞相位及展開相位來進行 光學三角量測法,以執行影像比對處理,進而將該纏繞 相位及展開相位還原成該待測物之立體表面形貌影像。 在本發明之一實施例中,在未設置該相位光罩下, 預先以平板做為該待測物,並將該影像擷取單元擷取 得到的影像利用該影像處理單元處理後做為該參考平 面資料。 201115107 【實施方式】 為了讓本發明之上述及其他目的、特徵、優點能更 明顯易懂’下文將特舉本發明較佳實施例,並配合所附 圖式,作詳細說明如下。 本發明較佳實施例之使用相位光罩之顯微量测系統 及方法屬於一種全域一非掃瞄式的三維形貌顯微量測 系統及方法’其可藉由相位光罩的使用及反卷積演算法 (de-convolution algorithm)來延長影像擷取單元擷取條 紋影像之景深,以便將影像處理還原成待測物之精確 3D立體表面形貌。 请參照第1及2圖所示,本發明較佳實施例之使用 相位光罩之顯微量測系統主要包含一非同調光源i、一 光柵單元2、一透鏡組3、一相位光罩4、一影像擷取 單元5及一影像處理單元6,該顯微量測系統用以量測 一待測物7之3D立體表面形貌,也就是該非同調光源 1及光柵單元2排列在同一直線並組成一條紋影像投影 組,其提供條紋影像之光線予該待測物7之表面,同時 該透鏡組3、相位光罩4、影像擷取單元5及影像處理 單元6排列在同一直線並組成一條紋影像榻取處理 組,其用以對由該待測物7之表面反射而來之扭曲條紋 影像進行相位調變、影像_取及影像處理等程序,以將 扭曲條紋影像還原成該待測物7之3D立體表面形貌的 影像。在本發明中,該條紋影像投影組與該條紋影像擷 201115107 ^理料常設置該待_ 7之前方左右二側,且該條 有:像投影組與該條紋影像擷取處理組之間較佳夾設 ^適當Μ,錢該條紋影像投影喊生之條紋影像 利由料測物7之表面反射至娜㈣彡像操取處 、'且。該夾角之範圍較佳介於15至9〇度之間,但並 限於此。201115107 ' VI. INSTRUCTION DESCRIPTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a microscopic measurement system and method, and more particularly to a microscopic measurement system and method for extending depth of field by a phase mask. [Prior Art] With the advancement and development of science and technology, a variety of optical topography measurement technologies have emerged. Its application range includes: quality control, aerospace, biomedical, materials, optoelectronics, etc. Mostly used for optical inspection of articles, so it is closely related to the quality and safety of the products. Topography measurement technology can be roughly divided into two types: "contact type" and "contactless type". The “contact” measurement is usually based on the data collected by the probe on the surface of the object to be measured. However, the data collected by this contact measurement is too long and the probe has doubts that the surface of the object to be tested is destroyed. Furthermore, "non-contact" can be divided into optical and non-optical, and φ optical measurement technology can be subdivided into "point measurement" and "global measurement", among which "point measurement" Including triangulation and spot focusing, "global measurement" includes optical structural pattern projection (stmcture llght), moiré interferometry, and fringe pr〇jecti〇n. "Spot measurement" is a point-by-point or line-by-line scan. Therefore, when measuring the entire appearance, it is necessary to spend more time and must have a scanning system with a high precision. In contrast, "global measurement" - comprehensive detection of objects to be measured at the same time, because the measurement time is shortened 'the degree of environmental impact is small' has become the main direction of the development of the measurement 201115107 in recent years. . In various "non-contact-global measurement" topography detection systems, the projected fringe profllometry (PFP) has high precision, does not damage the surface of the object to be tested, and can quickly collect the required data. It is not susceptible to environmental changes, so it is very suitable as a detection system for 3D topography measurement. However, as micro-nano technology matures and product volumes continue to shrink, the requirements for small size of fringe projection profilometers are becoming more stringent. Micrometer, nanometer or millimeter-sized analytes often require high-magnification optical systems (such as microscopes) for precision detection. However, in an optical system with too high magnification, the depth 〇f field is often too short. The "depth of field" here means that the object to be tested can produce a relatively recent to last month. The distance of the point, that is, the % of the depth scene is like a clear range. When the imaging depth of field is too short, the measurement range for the depth direction of the object to be tested is limited, resulting in blurring of the out-of-focus image, so that the image quality fails to achieve full focus sharpness. Although general optical measurements can reduce the lack of depth of field by replacing long depth of field lenses. However, in the micro-measurement, the objective lens has a high magnification and the depth of field is often on the order of micrometers. Therefore, even if the long depth of field eyepiece is replaced, the increase in depth of field is still limited, so the lack of depth of field has always been the main problem of the microscopic measurement system. Only, therefore, it is necessary to provide a microscopic amount and method of using a phase mask.织 [Summary] 201115107 The main object of the present invention is to provide a microscopic measurement system and method using a phase mask, wherein a light and dark fringe image projection is provided by using a non-coherent light source and a grating unit. To the surface of the object to be tested, and using a lens group and a phase mask to modulate the wavefront of the reflected fringe image, when an image capturing unit captures the fringe image, the image processing unit reuses the image The de-conv〇iuti〇n algorithm extends the image capturing unit to capture the depth of field of the fringe image, and converts the surface depth (curvature) of the object to be tested according to the degree of distortion of the stripe image, and then The image processing is reduced to the 3D surface topography image of the object to be tested, which is beneficial to increase the microscopic magnification, expand the depth measurement range and improve the three-dimensional measurement accuracy. To achieve the above object, the present invention provides a microscopic measurement system using a phase mask comprising a non-coherent light source for providing a non-coherent light source; a grating unit having a plurality of grating openings for passing The non-coherent light after the opening of the grating forms a light and dark fringe image, and is projected onto the surface of the object to be tested to generate a distortion stripe image; a lens group for adjusting the surface reflection of the object to be tested The size of the image of the stripe stripe passing through the lens group; the phase is fresh, and is used to modulate the wavefront of the image of the twisted stripe passing through the mirror group to cause phase modulation 2 = like the couch unit Through the twisted stripe 2 and the image processing unit behind the phase mask, the deconvolution algorithm is used to extend the depth of the image of the stripe image by using the deconvolution algorithm, and the image is taken from the image. The twisted stripe image is converted into a stereoscopic surface topography image of the object to be tested. In an embodiment of the present invention, the non-coherent light source and the light tree unit are arranged in a straight line and form a stripe image projection group; the lens group, the phase mask, the image capturing unit and the image processing unit are arranged on another straight line and Forming a stripe image capture processing group, the stripe image projection group and the stripe image capture processing group are disposed with an angle therebetween, so that the stripe image generated by the stripe image projection group is reflected from the surface of the object to be tested to the stripe Image capture processing group. In an embodiment of the invention, the non-coherent light source is a white light point source; the white point source is selected from the group consisting of a guillotine lamp. In one embodiment of the invention, the grating opening of the grating unit is a sinusoidal grating opening. In an embodiment of the invention, the phase mask comprises a liquid crystal spatial light modulator (SLM). In an embodiment of the invention, the liquid crystal spatial light modulator has a light introduction side. a polarizing plate; one of the liquid crystal spatial light modulators has a vibration detecting sheet on the light guiding side. In one embodiment of the invention, the image capture unit is selected from the group consisting of a charge coupled device (CCD) type or a complementary metal oxide semiconductor (CMOS) type digital camera. In another aspect, the present invention provides a microscopic measurement method using a phase mask, which comprises: providing a non-coherent light by a non-coherent light source; ^ the non-coherent light passes through a plurality of light_ports of the grating unit, To form a stripe image between the X phases and project onto the surface of the object to be tested to produce a distortion stripe image; the distortion of the 201115107 stripe image reflected by the surface of the object to be tested is passed through the lens group to adjust the twist stripe The size of the image; the phase front mask is used to modulate the wavefront of the twisted stripe image after passing through the lens group to illuminate the image; the image hiding unit captures the distortion stripe image after passing through the phase mask; Extending the depth of field of the image of the image of the body image by using a deconvolution algorithm (de_eGnvGlutiGn alg〇rhhm) by an image processing unit, and converting the image of the distortion stripe captured by the image capturing unit into the object to be tested Stereoscopic surface topography image. In an embodiment of the invention, the phase reticle is digitally controlled by an external gray scale control signal to generate an appropriate gray scale image to modulate the wavefront of the twisted image through the phase mask. Phase modulation. In an embodiment of the present invention, the image processing unit uses a reverse roll method to extend the depth of field of the image and the Fourier transform method to process the twisted stripe image to obtain the wrap phase and the unwrapped phase of the twisted stripe image. In one embodiment, the image processing unit performs an optical triangulation method using a reference plane data and a winding phase and an unwrapped phase of the object to be tested to perform image comparison processing, thereby reducing the winding phase and the unfolding phase into The stereoscopic surface topography image of the object to be tested. In an embodiment of the present invention, the image is taken as the object to be tested in advance, and the image obtained by the image capturing unit is processed by the image processing unit as the image. Reference plane data. The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The microscopic measurement system and method using the phase mask of the preferred embodiment of the present invention belong to a global non-scanning three-dimensional topography microscopic measurement system and method, which can be used and reversed by the phase mask A de-convolution algorithm is used to extend the image capturing unit to capture the depth of field of the fringe image to restore the image processing to the precise 3D surface topography of the object to be tested. Referring to Figures 1 and 2, the microscopic measurement system using the phase mask of the preferred embodiment of the present invention mainly comprises a non-coherent light source i, a grating unit 2, a lens group 3, and a phase mask 4. An image capturing unit 5 and an image processing unit 6 for measuring a 3D surface topography of a test object 7, that is, the non-coherent light source 1 and the grating unit 2 are arranged in the same line And forming a stripe image projection group, which provides light of the stripe image to the surface of the object to be tested 7, and the lens group 3, the phase mask 4, the image capturing unit 5, and the image processing unit 6 are arranged in the same line and are composed. a stripe image-receiving processing group for performing phase modulation, image-taking and image processing on the distortion stripe image reflected from the surface of the object to be tested 7 to restore the distortion stripe image to the An image of the 3D surface topography of the object 7. In the present invention, the stripe image projection group and the stripe image 撷201115107 ^ often set the left and right sides of the _ 7 before, and the strip has: between the projection group and the stripe image capture processing group Good folder set ^ appropriate Μ, the money of the stripe image projection shouting the streak image from the surface of the material measuring object 7 reflected to Na (four) 彡 image manipulation, 'and. The angle is preferably in the range of 15 to 9 degrees, but is not limited thereto.

=、眚參照第1及2圖所示,本發明較佳實施例之非同 =光源1較佳為一白光點光源,特別是該白光點光源可 選自鹵素燈,其中白光點光源在理論上具有景深無限長 的優點,故可增加顯微量測系統在光源投影系統的焦 深。該非同調光源1用以提供一除雷射以外之非同調 光,例如白光。該光栅單元2係一不透光或半透光之薄 片’例如底片’其具有數個光栅開口 21。該光栅開口 21之寬度及長度係依該待測物7之尺寸來設定,並不 加以限定《該光柵開口 21能使通過其間之非同調光形 成亮暗相間之條紋影像,並投影至該待測物7之表面上 而產生扭曲狀之投影條紋影像(projected fringe image),其中條紋影像發生扭曲的原因是因該待測物7 之立體表面形貌所導致。當扭曲條紋影像進一步由該待 測物7之表面反射,並通過該透鏡組3及相位光罩4而 由該影像擷取單元5擷取後,該影像處理單元即可將擷 取之扭曲條欲影像經由反卷積法(de-convolution)、傅立 葉轉換法(Fourier transform method)及光學三角量測法 (triangulation)來轉換處理成該待測物7之立體表面形 201115107 貌影像’上述各計算法將於下文另予詳細說明。 請參照第1及2圖所示’本發明較佳實施例之透鏡 組3至少包含一聚焦透鏡’例如使用直徑5公分及焦距 5公分之聚焦透鏡。該透鏡組3用以接收由該待測物7 之表面反射而來之扭曲條紋影像,並調整該扭曲條紋影 像的大小’使扭曲條紋影像以適當大小投影到該相位光 罩4上。在本發明中,該非同調光源ι(白光點光源)及 該透鏡組3(聚焦透鏡)係用以減少該透鏡組3焦深太短 的問題’而該相位光罩4係用以減少景深太短的問題。 該相位光罩4用以調變通過該透鏡組3之扭曲條紋影像 之波刖,以造成相位調變。在本實施例中,該相位光罩 4係選用一液晶空間光調制器(spatial iight m〇dulat〇r, SLM),其使用扭轉型線狀(twisted-nematic)液晶,也就 是由許多具非等向性(anisotropic)的液晶分子所組成, 可將其視為N層具雙折射(bi-refringent)特性的單光轴 (uni-axial)晶體,其光軸方向即為液晶分子的長軸方 向。經過配向處理後,液晶分子光軸在液晶單元胞㈣⑴ 内呈螺旋狀的扭轉’使液晶分子光軸產生一個夾角,此 夾角稱為扭轉角(twist angle)。該液晶空間光調制器能以 外部灰階控制訊號來數位控制液晶顯示面板中所施加 的電壓大小,而不同之電壓會使得液晶分子扭轉不同的 扭轉角,由於每個液晶分子都像是個雙折射晶體,因此 會造成折射率的改變,產生不同的灰階圖像,而使通過 光之相位能受到調制,上述液晶原理係屬已知技術,故 201115107 於此不再予詳細說明。 雖然該液晶空間光調制器的調制形式並非是純相位 (phase-only)的,且對振幅也會產生調制,但是當輸出光 場改變時,只需改變控制液晶面板的外部數位控制信鱿 =可,因此該相位光罩4較佳仍是選用液晶空間光調制 器,以便提供較高之可調控性及使用便利性。此外,在 另一實施例中,該相位光罩4亦可能利用半導體製程在 • 玻璃基板(未纟會示)之表面上進行#刻,以形成數個四 槽,做為相位光罩構造。若使光線通過該玻璃基板時, 射出的光波的振幅穿透率不會改變,且基於光程差不同 將有0至2;r的相位調制效果,而相位可變成介於〇至 2π之間的任思值,因此具有接近純相位的光調制特性, 但其缺點是當光場分佈形式改變時,該玻璃基板也必需 重新製作,故其設計成本相對偏高。 請再參照第1及2圖所示,當本發明較佳實施例之 Φ 相位光罩4選用液晶空間光調制器時,該相位光罩4(液 晶空間光調制器)之一光導入側具有一偏振片 (polarizer)41 ’用以控制入射之條紋影像的偏振角度; 同時’該相位光罩4(液晶空間光調制器)之—光導出側 具有一檢振片(analyzer)42,用以觀察射出之條紋影像在 各偏振角度的光強度。如此,本發明可藉由改變該偏振 片41與檢偏片42的角度’以造成該相位光罩4產生不 同的相位調制特性。由於不同的偏振片41與檢偏片42 的角度將產生不同的相位調制特性。因此透過不同的偏 12 201115107 振片41與檢偏片42的角度組合,該相位光罩4相位調 制的範圍(0至27Γ)將隨著輪入灰階訊號圖像的灰階值 (0至255)而改變。 請再參照第1及2圖所示,本發明較佳實施例之影 像操取早元5係可選自電荷麵合元件(charge coupled device,CCD)型或互補金屬氧化物半導體 (complementary metal-oxide- semiconductor,CMOS)型 之數位照相機’該影像擷取單元5可用以擷取通過該相 位光罩4之扭曲條紋影像,其中在擷取影像前,該相位 光罩4已延長了該影像擷取單元5擷取該扭曲條紋影像 時之景深。該影像摘取單元5擷取之扭曲條紋影像將進 一步以有線或無線的方式傳送至該影像處理單元6,該 影像處理單元6係一電腦,其用以將該扭曲條紋影像經 由光學三角量測法來轉換處理成該待測物7之立體表 面形貌影像。 請參照第2圖所示,當使用本發明較佳實施例之使 用相位光罩之顯微量測系統來量測一微小尺寸之待測 物7時,首先由該非同調光源1(如白光點光源)提供一 非同調光(如白光)’並使該非同調光通過該光桃單元2 之光柵開口 21(如正弦函數光柵開口),而形成亮暗相間 之條紋影像,如此可提供條紋影像投影至該待測物7之 表面上’並因該待測物7表面高度的變化而產生扭曲, 因此產生扭曲條紋影像。接著,扭曲條紋影像將由該待 測物7之表面反射並通過該透鏡組3,如此該透鏡組3 13 201115107 調整扭曲條紋影像的大小,使扭曲條紋影像適合通過該 相位光罩4。隨後,藉由一外部灰階控制訊號來數位控 制該相位光罩4(如液晶空間光調制器)產生適當的灰階 圖像,以調變通過該相位光罩4之扭曲條紋影像之波 前,以造成相位調變。接著,利用該影像擷取單元5擷 取通過該相位光罩4後之扭曲條紋影像,其中該相位光 罩4可延長該影像擷取單元5擷取該扭曲條紋影像時之 景深。最後’利用該影像處理單元6將該影像擷取單元 5擷取之扭曲條紋影像經由反卷積法(de-convolution)、 傅立葉轉換法(Fourier transform method)及光學三角量 測法來轉換處理成該待測物7之立體表面形貌影像。因 此’不論該扭曲條紋影像之成像位置是否失焦,皆可利 用該相位光罩4來彌補景深,並藉由影像處理來還原成 立體表面形貌影像。 值得注意的是,請參照第3A、3B、3C、3D及3E 圖所示’在本發明正式量測微小尺寸之待測物7之前, 本發明較佳預先以一平板做為該待測物7,進行參考平 面的資料取得。請參照第3A圖所示,當以一平板(如銅 板)做為該待測物7且未設置該相位光罩4時,由於條 紋影像投影組是以一傾斜角度(相對於平板表面之法線) 投影至平板上,以及該透鏡組3本身像差的因素,造成 在該影像擷取單元5擷取影像的成像面上只有中間數 道條紋疋清晰’而左右兩側的條紋為模糊,如第3B圖 所不,當設置該相位光罩4後,該影像擷取單元5擷取, 201115107 的影像仍不清晰。但是,如第3C圖所示,當對該影像 — 擷取單7L 5擷取的影像進行反卷積處理後,即可轉換得 到中央及左右兩侧皆為清晰的條紋影像。接著,如第 3D圖所示’本發明將上述平板透過該相位光罩4增加 景深後的扭曲條紋影像進一步利用傅立葉轉換法轉 換’以獲得相位值介於±;r之間的纏繞相位。最後,如 第3Ε圖所示,再使用相位展開技術使其纏繞相位展開 為連續狀之展開相位,此纏繞相位及展開相位即為該平 板(待測物7)之參考平面資料。 _ 請參照第4八、48、4(:、40、4£、4?及40圖所示, 在取得參考平面資料之後,本發明即可正式量測微小尺 寸之待測物7,並利用該參考平面資料進行光學三角量 測法’以執行影像比對處理來獲得該待測物7之立體表 面形貌影像。請參照第4Α圖所示,當以一表面不平整 的鋼板做為該待測物7且未設置該相位光罩4時,該影 像操取單元5擷取影像的成像面上只有中間數道條紋 鲁 疋清晰’而左右兩侧的條紋為模糊,如第4Β圖所示, 當设置該相位光罩4後,該影像擷取單元5擷取的影像 仍不清晰。但是,如第4C圖所示,當對該影像擷取單 凡5擷取的影像進行反卷積處理後,即可轉換得到中央 及左右兩侧皆為清晰的條紋影像。接著,如第4D圖所 示本發明將上述不平整鋼板透過該相位光罩4增加景 深後的扭曲條紋影像進一步利用傅立葉轉換法轉換,以 獲得相位值介於士冗之間的纏繞相位。如第4E圖所示, 15 201115107 再使用相位展開技術使其纏繞相位展開為連續狀之展 開相位。最後,如第4F及4G圖所示,再利用該參考 平面之資料與該待測物7之相位資料(纏繞相位及展開 相位)來進行光學三角量測法,以執行影像比對處理, 進而將相位資料(纏繞相位及展開相位)還原成該待測 物7之立體表面形貌影像,其中第4G圖揭示該待測物 7在第613列的橫切平關,其測得該待測物7表面之Referring to Figures 1 and 2, the non-same light source 1 of the preferred embodiment of the present invention is preferably a white light point source, and particularly the white point source may be selected from a halogen lamp, wherein the white point source is theoretical. With the advantage of infinite depth of field, it can increase the depth of focus of the microscopic measurement system in the light source projection system. The non-coherent light source 1 is used to provide a non-coherent light other than laser, such as white light. The barrier unit 2 is an opaque or semi-transmissive sheet&apos; such as a backsheet&apos; having a plurality of grating openings 21. The width and length of the grating opening 21 are set according to the size of the object to be tested 7, and are not limited to "the grating opening 21 can form a light and dark streak image through the non-coherent dimming between the two, and project to the waiting A projected fringe image is produced on the surface of the object 7, wherein the distortion of the fringe image is caused by the three-dimensional surface topography of the object to be tested 7. When the twisted image is further reflected by the surface of the object to be tested 7 and is captured by the image capturing unit 5 through the lens group 3 and the phase mask 4, the image processing unit can take the twisted strip The image is converted into a three-dimensional surface shape of the object to be tested 7 by a de-convolution method, a Fourier transform method, and an optical triangulation method. The law will be described in detail below. Referring to Figures 1 and 2, the lens unit 3 of the preferred embodiment of the present invention includes at least a focusing lens, e.g., a focusing lens having a diameter of 5 cm and a focal length of 5 cm. The lens group 3 is for receiving a distortion fringe image reflected from the surface of the object 7 to be measured, and adjusting the size of the twisted stripe image to cause the twisted stripe image to be projected onto the phase mask 4 in an appropriate size. In the present invention, the non-coherent light source ι (white light point source) and the lens group 3 (focus lens) are used to reduce the problem that the focal length of the lens group 3 is too short, and the phase mask 4 is used to reduce the depth of field. Short question. The phase mask 4 is used to modulate the ripple of the distortion fringe image passing through the lens group 3 to cause phase modulation. In this embodiment, the phase mask 4 is a liquid crystal spatial light modulator (SLM) which uses a twisted-nematic liquid crystal, that is, a plurality of It consists of anisotropic liquid crystal molecules, which can be regarded as N-layer uni-axial crystals with bi-refringent characteristics, and the optical axis direction is the long axis of liquid crystal molecules. direction. After the alignment treatment, the optical axis of the liquid crystal molecules is helically twisted in the liquid crystal cell (4) (1) to cause an angle of the liquid crystal molecular optical axis, and this angle is called a twist angle. The liquid crystal spatial light modulator can digitally control the voltage applied in the liquid crystal display panel by an external gray scale control signal, and different voltages cause the liquid crystal molecules to twist different twist angles, since each liquid crystal molecule is like a birefringence The crystal, thus causing a change in the refractive index, produces a different grayscale image, and the phase of the passing light can be modulated. The above liquid crystal principle is a known technique, so 201115107 will not be described in detail herein. Although the modulation mode of the liquid crystal spatial light modulator is not phase-only, and the amplitude is also modulated, when the output light field changes, it is only necessary to change the external digital control signal of the control liquid crystal panel. Therefore, the phase mask 4 is preferably still a liquid crystal spatial light modulator to provide high controllability and ease of use. In addition, in another embodiment, the phase mask 4 may also be patterned by a semiconductor process on the surface of a glass substrate (not shown) to form a plurality of four slots as a phase mask structure. If the light passes through the glass substrate, the amplitude transmittance of the emitted light wave does not change, and depending on the optical path difference, there will be a phase modulation effect of 0 to 2; r, and the phase may become between 〇 and 2π. The value of the value is therefore close to the pure phase of the light modulation characteristics, but the disadvantage is that when the light field distribution form changes, the glass substrate must also be reworked, so the design cost is relatively high. Referring to FIGS. 1 and 2, when the Φ phase mask 4 of the preferred embodiment of the present invention selects a liquid crystal spatial light modulator, one of the phase masks 4 (liquid crystal spatial light modulators) has a light introduction side. A polarizer 41' is used to control the polarization angle of the incident fringe image; and the light-emitting side of the phase mask 4 (liquid crystal spatial light modulator) has an anamorph 42 for Observe the light intensity of the emitted fringe image at each polarization angle. Thus, the present invention can cause the phase mask 4 to produce different phase modulation characteristics by changing the angle ' of the polarizer 41 and the analyzer 42'. Since the angles of the different polarizing plates 41 and the analyzer 42 will produce different phase modulation characteristics. Therefore, by combining the angles of the different biases 12 201115107 diaphragm 41 and the analyzer 42 , the phase modulation range (0 to 27 Γ) of the phase mask 4 will follow the gray scale value of the gray-scale signal image (0 to 255) and change. Referring to FIGS. 1 and 2 again, the image manipulation early 5 of the preferred embodiment of the present invention may be selected from a charge coupled device (CCD) type or a complementary metal oxide semiconductor (complementary metal-semiconductor). Oxide-semiconductor (CMOS) type digital camera 'The image capturing unit 5 can be used to capture a twisted strip image passing through the phase mask 4, wherein the phase mask 4 has extended the image before capturing the image. The unit 5 takes the depth of field when the twisted stripe image is captured. The image of the twisted stripe captured by the image picking unit 5 is further transmitted to the image processing unit 6 in a wired or wireless manner. The image processing unit 6 is a computer for optically triangulating the twisted stripe image. The method is converted into a stereoscopic surface topography image of the object to be tested 7. Referring to FIG. 2, when a microscopic measuring system using a phase mask is used to measure a small size of the object 7 to be tested, the non-coherent light source 1 (such as a white spot) is first used. The light source provides a non-coherent light (such as white light) and passes the non-coherent light through the grating opening 21 of the light peach unit 2 (such as a sinusoidal grating opening) to form a light-dark interlaced image, thereby providing a fringe image projection The surface of the object to be tested 7 is 'distorted due to the change in the surface height of the object 7 to be tested, thereby producing a twisted stripe image. Next, the twisted strip image will be reflected by the surface of the object 7 and passed through the lens group 3, such that the lens group 3 13 201115107 adjusts the size of the warped strip image to fit the twisted strip image through the phase mask 4. Subsequently, the phase mask 4 (such as a liquid crystal spatial light modulator) is digitally controlled by an external gray scale control signal to generate an appropriate gray scale image to modulate the wavefront of the twisted fringe image passing through the phase mask 4. To cause phase modulation. Then, the image capturing unit 5 captures the distortion stripe image after passing through the phase mask 4, wherein the phase mask 4 can extend the depth of field when the image capturing unit 5 captures the twisted stripe image. Finally, the image processing unit 6 converts the distortion stripe image captured by the image capturing unit 5 into a de-convolution method, a Fourier transform method, and an optical triangulation method. The stereoscopic surface topography image of the object to be tested 7. Therefore, regardless of whether or not the imaged position of the twisted stripe image is out of focus, the phase mask 4 can be used to compensate for the depth of field and restored to a stereoscopic surface topography image by image processing. It should be noted that, as shown in FIGS. 3A, 3B, 3C, 3D, and 3E, the present invention preferably uses a flat plate as the object to be tested before the present invention actually measures the small size of the object 7 to be tested. 7, the reference plane data acquisition. Referring to FIG. 3A, when a flat plate (such as a copper plate) is used as the object to be tested 7 and the phase mask 4 is not provided, since the stripe image projection group is at an oblique angle (relative to the surface of the flat plate) The projection onto the flat plate and the aberration of the lens group 3 itself cause only a few stripes in the image plane on the image capturing surface of the image capturing unit 5 to be clear, and the stripes on the left and right sides are blurred. As shown in FIG. 3B, after the phase mask 4 is set, the image capturing unit 5 captures, and the image of 201115107 is still unclear. However, as shown in Fig. 3C, when the image captured by the image 7L 5 is deconvolved, the image can be converted to a clear fringe image on the center and on both sides. Next, as shown in Fig. 3D, the present invention converts the distortion fringe image after the above-mentioned flat plate is passed through the phase mask 4 to increase the depth of field, and further converts by the Fourier transform method to obtain a winding phase having a phase value between ±; Finally, as shown in Figure 3, the phase unwrapping technique is used to expand the winding phase into a continuous unwrapped phase. The winding phase and the unwrapped phase are the reference plane data of the plate (subject 7). _ Please refer to pages 4, 48, 4 (:, 40, 4, 4, and 40). After obtaining the reference plane data, the present invention can formally measure the small-sized object to be tested 7 and utilize it. The reference plane data is subjected to an optical triangulation method to perform image comparison processing to obtain a stereoscopic surface topography image of the object to be tested 7. Referring to FIG. 4, when a steel sheet having an uneven surface is used as the When the object to be tested 7 is not provided with the phase mask 4, only the middle of the image on the image plane of the image capturing unit 5 is sharp and clear, and the stripes on the left and right sides are blurred, as shown in FIG. It is shown that, after the phase mask 4 is set, the image captured by the image capturing unit 5 is still unclear. However, as shown in FIG. 4C, when the image is captured, the image captured by the image is rewinded. After the product processing, the image of the stripe which is clear in the center and the left and right sides can be converted. Then, as shown in FIG. 4D, the present invention further utilizes the distortion stripe image after the unevenness of the above-mentioned uneven mask through the phase mask 4 to increase the depth of field. Fourier transform method to obtain phase value The winding phase between the stellar redundancy. As shown in Fig. 4E, 15 201115107 uses the phase unwrapping technique to expand the winding phase into a continuous unwrapped phase. Finally, as shown in Figures 4F and 4G, the reference plane is reused. The data and the phase data (winding phase and unfolding phase) of the object 7 to be subjected to optical triangulation to perform image comparison processing, thereby reducing phase data (winding phase and unfolding phase) into the object to be tested a stereoscopic surface topography image of 7, wherein the 4G map reveals a cross-cutting of the object to be tested 7 at the 613th column, and the surface of the object 7 to be tested is measured

最大南度(39微来)及最小高度(u微米)之高度差約為 28微米。 本發明另利用SE-3300型表面粗糙度量測儀,對相 同待測物7作表面粗輪度分析,其測得該待測物7表面 之最大及最小高度之高度差約為3152微求。由表面粗 ,度量測儀與本發明顯微量測系統所還原三維形貌之 高度差比較’可得知本發明之精確值約為±3微米左右, 由此可證明經過該她料4確實可增加景深,而還原 的三維立體表面形貌影像,其精確值在合理的誤差範圍 内0 經實驗證明,即使該待測物7分別往後移動或 働=㈣的距離來代表失焦的情況,依 測方法來取得該待測物7 菫 法還原成該待測物7之利用三角量測 鑕表面形貌影像,本發明仍可 核、的情況下退原得到清晰的影像。由此可知 明利用該非同調光源丨(白光 發 影組具有社的影像投 在該條紋影像擷取處理組中加 201115107 入該相位光罩4及搭配該影像處理單元ό之影像還原技 、J月匕使該條紋影像榻取處理組得到較大的景深,即 使在失焦為5〇〇微米時亦能得到清晰的立體表面形貌 影像。 上述顯微量測系統使用的反卷積法(de-convolution) 可利用下列公式(1·υ代表: /。=ρ-ι 辟 I ^ J / 、 ...............................................(1.1)The maximum difference between the maximum south (39 micro-in) and the minimum height (u-micron) is about 28 microns. The invention further utilizes the surface roughness measuring instrument of the SE-3300 type to perform rough surface roundness analysis on the same object to be tested 7, and the height difference between the maximum and minimum heights of the surface of the object to be tested 7 is about 3152 micro-seeking. . By comparing the height difference between the surface roughness and the measured three-dimensional topography of the microscopic measurement system of the present invention, it can be known that the exact value of the present invention is about ±3 μm, which proves that the material 4 is It is indeed possible to increase the depth of field, and the restored three-dimensional surface topography image has an accurate value within a reasonable error range. It has been experimentally proved that even if the object to be tested 7 moves backwards or 働 = (4), the distance represents defocus. In the case, according to the measurement method, the object to be tested is reduced to the surface of the object to be tested 7 by using a triangulation to measure the surface topography image, and the invention can still be reverted to obtain a clear image. Therefore, it can be known that the non-coherent light source 丨 is used (the white light photographic group has the image of the social image cast in the stripe image capture processing group, and the image restoration unit is added to the phase mask 4 and the image processing unit 、, J month匕The stripe image-receiving treatment group obtains a large depth of field, and a clear stereoscopic surface topography image can be obtained even when the out-of-focus is 5 〇〇 micrometer. The deconvolution method used in the above microscopic measurement system (de -convolution) The following formula can be used (1·υ stands for: /.=ρ-ι I ^ J / , ......................... ......................(1.1)

其中1為該影像擷取單元5所擷取到的影像;I。為反 卷積還原的影像;及好'為非相干(inc〇herent)成像系統的 光學傳遞函數,其可利用下列公式(1.2)代表: 00 \[Ρ{τ + ul2)eAT+^ll^][p\T-uJ2)e-J(T-un^YT \ 2 ) 其中;尸為光瞳函數;“*,,為共軛;U為空間 頻率;及^為失焦參數,其可利用下列公式(1.3)代表: _ πϋ ( 1 1 j λ1 is the image captured by the image capturing unit 5; An image that is reduced for deconvolution; and an optical transfer function that is an incoherent imaging system that can be represented by the following formula (1.2): 00 \[Ρ{τ + ul2)eAT+^ll^] [p\T-uJ2)eJ(T-un^YT \ 2 ) where; the corpse is a pupil function; "*, is a conjugate; U is a spatial frequency; and ^ is a defocus parameter, which can use the following formula (1.3) Representation: _ πϋ ( 1 1 j λ

4义、/ d。.........................................( 1·3 ) 其中Ζ為透鏡直徑為光的波長;/為焦距;ί/。為物距; 及式為像距。 再者,上述顯微量測系統使用的傅立葉轉換法 (Fourier transform method)來取得條紋影像的相位值, 其優點在於只需拍一張條紋影像,即可偵測條紋影像的 相位值,故能大幅縮短量測時間,其中傅立葉轉換法及 其反轉換可分別利用下列公式(2.1)、(2.2)代表: 17 201115107 (2.1) (2.2) F{u) - -5{/(x)} = /(j:)exp(- jljtx) · dx /W - ^ Ww)} = F(u)exp(j2ma) · dx 其中/W為任意空間訊號;外〇為其傅立葉轉換;y = VIT; 沏為任意-點可積分且外)存在,而/W即為實際的空間光強 度匀佈,因此經常為實數函數,而f(m)為複數函數。 本發明利用傅立葉轉換將條紋影像從空間域轉換至 頻率域,在此領域中將雜訊與直流_除,保留條紋影4 meaning, / d. ...................................(1·3) where Ζ is a lens The diameter is the wavelength of light; / is the focal length; ί/. It is the object distance; Furthermore, the Fourier transform method used in the above microscopic measurement system obtains the phase value of the fringe image, which has the advantage that the phase value of the fringe image can be detected only by taking a stripe image, so The measurement time is greatly shortened, and the Fourier transform method and its inverse conversion can be represented by the following formulas (2.1) and (2.2), respectively: 17 201115107 (2.1) (2.2) F{u) - -5{/(x)} = /(j:)exp(- jljtx) · dx /W - ^ Ww)} = F(u)exp(j2ma) · dx where /W is any spatial signal; external 〇 is its Fourier transform; y = VIT; It exists for any-point integral and outside, and /W is the actual spatial light intensity uniform, so it is often a real function, and f(m) is a complex function. The invention uses Fourier transform to convert the fringe image from the spatial domain to the frequency domain. In this field, the noise and DC_ are removed, and the fringe shadow is preserved.

像之頻率並經由傅立葉反賴將條紋影像之頻率還原 回空間域’取得空間相位。假設於偵測平面光強度分佈 如下列公式(2.3)所示: i^y) = a(Xly)+ b(x,y)c〇s[2m0x + φ(χ&gt;γ)]................... (23, 其中知與D分別為背景光強度與邊緣的調節振幅, 公式(,3)亦了表示為如下列公式㈣所*之複數指數函數: 2A} 其中,如如 A式(2.1)對公式(2.4)作χ項之傅立葉轉換可得 空間條紋的頻譜分佈如下列公式(2.5)所示: /(W,少.......................(2.5) ”中少)為α(χ,少)之傅立葉轉換,為條紋影像之頻譜直流 項抽5 (U)為條紋影像之頻譜高頻雜訊項,透過特定的 ;慮波方式將上述—項移除後,所餘β(υ)即為條紋影像於頻 譜之頻率’且敝鄕之她涵下列公式(2.6)來計算: 201115107The frequency is like the frequency and the frequency of the fringe image is restored back to the spatial domain by Fourier refusal to obtain the spatial phase. Assume that the detected light intensity distribution is as shown in the following formula (2.3): i^y) = a(Xly)+ b(x,y)c〇s[2m0x + φ(χ&gt;γ)].... ............... (23, where know and D are the background light intensity and the adjustment amplitude of the edge, respectively, and the formula (, 3) is also expressed as the plural of the following formula (4)* The exponential function: 2A}, where the spectral distribution of the spatial fringes obtained by the Fourier transform of the formula (2.4) as in equation (2.1) is as shown in the following formula (2.5): / (W, less... ...................(2.5) "Middle" is the Fourier transform of α (χ, 少), which is the spectral DC term of the fringe image, 5 (U) The spectral high-frequency noise term of the fringe image is removed by the specific; wave-wave method, and the remaining β(υ) is the frequency of the fringe image in the spectrum' and she culminates with the following formula (2.6) ) to calculate: 201115107

Im Re u~u〇m .............................(2.6) 由公式(2.6)所得的值稱之為纏繞相位炉,其值褐限在4到 之間ϋ此’需要進—步將此不連續的她制為連續展開 相位此技術稱為相位展開技卿_肋·觸卯㈣,將缠繞 相位展開為連續展開彳目位。也就是,當相鄰的纏繞相位超過τ 時’將纏繞相位加⑻上k的整數倍,使其展·的每一點 相位皆f、絕對相位,連續展開相位可由下列公式(2.6)來計算: ............................................... 其中%為展開相位;p為纏繞相位;為任意整數。 因此胃,經由相位展開後所的連續展開相位,進一步 與三角量測法所得知相位與深度變化的_比對,於是 該待測物7即可還屌其三維立體表面形貌影像。Im Re u~u〇m ............................(2.6) The value obtained by equation (2.6) is called Winding phase furnace, the value of the brown limit is between 4 and ϋ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此Expand to expand the target position continuously. That is, when the adjacent winding phase exceeds τ, 'the winding phase is added (8) to an integral multiple of k, so that each phase of the spread is f, absolute phase, and the continuous unwrapping phase can be calculated by the following formula (2.6): ...............................................% of them are Expand phase; p is the winding phase; is an arbitrary integer. Therefore, the stomach is further compared with the phase-to-depth change obtained by the triangulation method through the continuous unfolding phase after the phase unfolding, so that the object 7 can be subjected to the three-dimensional surface topography image.

上述顯微量測系統使用的光學三角量測法 (mangulahon)主要是根據空間幾何的關係,利用投影的 條紋影像之條紋間距扭曲量轉換成與待測物縱深高度 之間的_。如第5圖所示’其揭示光學三角量測法之 幾何示意圖,根據光束會以直線前進的特性,入射光線 經由該待測物7之表面反射後皆保持在同一平面上,利 用此一特性,便可在空間中建立一参考平面7,,將立體 空間的關係簡化為平面的情形,再根據空間幾何的關 係,進行三角關係的計算,取得條紋與待· 7縱深高 度之間的關係。 如第5圖所示,光栅條紋經由與参考平面7,之法線 19 201115107 0-0’夹Θ。的角度斜相入射,產生週期為y 束落在参特面7,上,會產生—道間 &lt;條紋’當光 像_取單元所記錄。其中—道光束直線經。紋由影 之Μ點,由M點反射後記錄於M,,而二考平面7, 過参考平面7,之Μ點並落在待測物7表^光束直線經 Q點反射後經過参考平面7,之Ν點,^ Q點’由 為参考平面7’距離Q點最近之點,點’Ρ點 0-0,所夹的角。由空間幾何可;物?’線與法線 •,,下式公式αι)、(32)二:深度值與 ^Q = MPc〇te0=m〇〇ten...........關係: MN = (3.1) 其中因此由式子(3.1)、(3·2)整理可二···...(3·2) 深度^^關儀如下式公式(3.3)所示. …纹間距與The optical triangulation method (mangulahon) used in the above microscopic measurement system mainly converts the stripe pitch distortion amount of the projected stripe image into a _ between the depth of the object to be tested and the depth of the object to be tested. As shown in Fig. 5, which reveals the geometrical diagram of the optical triangulation method, according to the characteristic that the beam will advance in a straight line, the incident light is kept on the same plane after being reflected by the surface of the object to be tested 7, and this characteristic is utilized. Then, a reference plane 7 can be established in the space, and the relationship of the three-dimensional space is simplified into a plane. Then, according to the relationship of the spatial geometry, the calculation of the triangular relationship is performed, and the relationship between the stripe and the depth of the depth of 7 is obtained. As shown in Fig. 5, the grating strips are sandwiched by a normal to the reference plane 7, 19 201115107 0-0'. The angle is obliquely incident, and the generation period is y. The beam falls on the reference surface 7, and the inter-channel &lt;stripes are generated as recorded by the optical image_taking unit. Among them, the beam of light passes straight through. The shadow is reflected by the point of M, recorded by M point and recorded in M, and the plane of the second test is 7, passing through the reference plane 7, and then falling on the object to be tested 7 the beam of the beam is reflected by the Q point and passes through the reference plane. 7, the point, ^ Q point 'by the reference plane 7' closest to the point Q, point 'Ρ point 0-0, the angle of the clip. From space geometry can be; 'Line and normal•,, formula αι), (32) 2: depth value and ^Q = MPc〇te0=m〇〇ten........... Relationship: MN = (3.1 Therefore, the formula (3.1), (3·2) can be arbitrarily... (3·2) Depth ^^关仪 is shown in the following formula (3.3).

MV —= tan^0 + tan^............ .........................................(3.3) •係如再下m點Γ_。,其與投影光術之間距項 d = rf0cos^0 當以相位值表示各點M、N之相位 ..♦(3·4) 式公式(3.5)表示: _則撕可利用下MV —= tan^0 + tan^............ ............................. ............(3.3) • If you click m again Γ _. The distance between it and the projection optics is d = rf0cos^0 When the phase of each point M, N is represented by the phase value.. ♦ (3·4) Formula (3.5) means: _ then tear can be used

MN = 妒&quot;X 2π .........................................(3.5) 由於落在参考平面上Μ點與待測物體上 束,故兩者的相位值φ相同,可利用下式公式表=. 20 201115107 201115107 φΜ =φΰ 將公式(3.5)、(3.6)代入八..........................°.6) 與待測物平面之縱深變:式(3.3)式便可得參考平面 θη趨近於零,可利用下〇 ‘ =變化的關係式,且當 如。A表示: .................................(3.7) 差(二求Si二像與待測— 率高而造成景’:不 服等問題,第!及2圖換上長景深目鏡來克 1及光柵單元2提供―相由使㈣非同調光源 物7之表^,_日_=、=投影至該待測 mask'll 6 3 及相位光罩(phase 單元Hi 影像之波前,及當一影像擷取 、、寅算法延1料,㈣影像處理單元6利用反卷積 取單元5擷取條紋影像之景深,並 =條曲紋=之扭曲程度來轉換成該待測物7之表面 衣度曲度)變化’進而將影像處理還原成該待測物7之 D立體表面形貌影像’因此確實有利於提高顯微放大 倍率、擴大職量_岐提升三維量測精度。 雖然本發明已以較佳實施例揭露,然其並非用以限 制本發明,任何熟料項技藝之人士,在不脫離本發明 之精神和範_ ’當可作各種更動與修飾,因此本發明 21 201115107 之保護範圍當視後附之中請專利範圍所界定者為準。 【圖式簡單說明】 ^ 1圖:本發明較佳實施例之使用相位光罩之顯微量測 糸統之架構示意圖。 第2圖:本發明縣實施例之制相位料之顯微量測 系統之使用示意圖。 第3A、3B、3C、3D及3E圖:本發明較佳實施例之使 用相位光罩之顯微量測系統量測參考平面時之影像圖。 第4A、4B、4C、4D、4E、4F及4G圖:本發明較佳實 施例之使用相位光罩之顯微量測系統量測實際待測物 時之影像圖。 第5圖:本發明較佳實施例之使用相位光罩之顯微量測 系統計算光學三角量測法之示意圖。 【主要元件符號說明】 1 #同調光源 2 光栅單元 21 光柵開口 3 透鏡組 4 相位光罩 41 偏振片 42 檢振片 5 影像掏取單元 6 影像處理單元 7 待測物 7’ 参考平面 22MN = 妒&quot;X 2π .........................................(3.5 ) Because the falling point on the reference plane and the object to be measured are on the beam, the phase values φ of the two are the same, and the following formula can be used = 20 201115107 201115107 φΜ =φΰ Substituting the formulas (3.5) and (3.6) into the eight ..........................°.6) Depth to the plane of the object to be tested: Equation (3.3) gives the reference plane θη Approaching zero, you can use the relationship of 〇' = change, and if so. A means: .................................(3.7) Poor (two seeking Si two images and to be tested - The rate is high and causes the scene': dissatisfaction and other issues, the first and second pictures are replaced with a long depth of field eyepiece to the gram 1 and the grating unit 2 provides the ― phase by (4) non-coherent light source object 7 table ^, _ day _=, = projection To the mask'll 6 3 and the phase mask to be tested (the wavefront of the phase unit Hi image, and when an image capture, the 寅 algorithm is extended, (4) the image processing unit 6 uses the deconvolution unit 5 The depth of field of the fringe image, and the degree of distortion of the stripe pattern = converted to the surface curvature of the object to be tested 7) and then the image processing is restored to the D-dimensional surface topography image of the object to be tested 7 Therefore, it is indeed advantageous to increase the microscopic magnification, expand the workload, and increase the accuracy of the three-dimensional measurement. Although the invention has been disclosed in the preferred embodiments, it is not intended to limit the invention, and anyone skilled in the clinker art is The scope of protection of the present invention 21 201115107 is subject to the definition of patent scope as defined in the accompanying claims, without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a microscopic measuring system using a phase mask according to a preferred embodiment of the present invention. Fig. 2 is a view showing the use of a microscopic measuring system for a phase material of the embodiment of the present invention. Fig. 3A, 3B, 3C, 3D and 3E are diagrams showing the image of the reference plane when the microscopy system of the phase mask is used in the preferred embodiment of the invention. 4A, 4B, 4C, 4D, 4E 4F and 4G diagrams: an image diagram of a microscopic measurement system using a phase mask for measuring an actual object to be tested according to a preferred embodiment of the present invention. FIG. 5 is a view of a preferred embodiment of the present invention using a phase mask. Schematic diagram of optical triangulation measurement method for microscopic measurement system [Description of main component symbols] 1 #同调光源源2 Raster unit 21 Grating opening 3 Lens group 4 Phase mask 41 Polarizing plate 42 Vibration detecting plate 5 Image capturing unit 6 Image processing unit 7 object to be tested 7' reference plane 22

Claims (1)

201115107 七、申請專利範圍: 1. 一種使用相位光罩之顯微量測系統,其包含: 一非同調光源,用以提供一非同調光 一光柵單元,具有數個光柵開Q,使通過該光栅開口 後之非同調光形成亮暗相間之條紋影像,並投影至一 待測物之表面上而產生扭曲條紋影像; 一透鏡組,用以調整由該待測物之表面反射而來且通 過該透鏡組之扭曲條紋影像的大小; 一相位光罩,用以調變通過該透鏡組後之扭曲條紋影 像之波前’以造成相位調變; 一影像擷取單元,用以擷取通過該相位光罩後之扭曲 條紋影像;及 :影像處理單元,利狀卷顏算法延長該影像掏取 單元擷取條紋影像之景深,並用以將該影像擷取單元 擷取之扭曲條紋影像轉換處理成該待剛物之立體表 面形貌影像。 2.=申請專利範圍第1項所述之使用相位光罩之顯微 量測系統’其中該非同調光源及光柵單元排列在一直 線上並組成—條紋影像投影組;該透鏡組、相位光 罩、影像擷取單元及影像處理單元排列在另一直線上 並組成一條紋影像擷取處理組,該條紋影像投影組與 該條紋影像_取處理組之間夾設有一夾角,使該條紋 影像投影組產生之條紋影像由該待測物之表面反射 至該條紋影像綠取處理組。 、 23 201115107 3. 如申請專利範圍第1項所述之使用相位光罩之顯微 量測系統,其中該非同調光源係一白光點光源。 4. 如申請專利範圍第1項所述之使用相位光罩之顯微 量測系統,其中該光柵單元之光柵開口係正弦函數光 柵開口。 5. 如申請專利範圍第1項所述之使用相位光罩之顯微 量測系統,其中該相位光罩係包含一液晶空間光調制 器。 6. 如申請專利範圍第5項所述之使用相位光罩之顯微 量測系統,其中該液晶空間光調制器之一光導入側具 有一偏振片。 7. 如申請專利範圍第5項所述之使用相位光罩之顯微 量測系統,其中該液晶空間光調制器之一光導出側具 有一檢振片。 8. 如申請專利範圍第1項所述之使用相位光罩之顯微 量測系統,其中該影像擷取單元選自電荷耦合元件型 或互補金屬氧化物半導體型之數位照相機。 9. 一種使用相位光罩之顯微量測方法,其包含: 藉由一非同調光源提供一非同調光; 使該非同調光通過一光栅單元之數個光栅開口,以形 成亮暗相間之條紋影像,並投影至一待測物之表面上 而產生扭曲條紋影像; 使由該待測物之表面反射而來之扭曲條紋影像通過 一透鏡組,以調整該扭曲條紋影像的大小; ^ 24 201115107 利用一相位光罩調變通過該透鏡組後之扭曲條紋影 像之波前,以造成相位調變; 利用一景&gt;像擷取單元擷取通過該相位光罩後之扭曲 條紋影像;及 經由一影像處理單元利用反卷積演算法延長該影像 操取單元擷取條紋影像之景深,並將該影像擷取單元 搁取之扭曲條紋影像轉換處理成該待測物之立體表 面形貌影像。 10·如申請專利範圍第9項所述之使用相位光罩之顯微 量測方法’其中該非同調光源及光柵單元排列在一直 線上並組成一條紋影像投影組;該透鏡組、相位光 罩、影像擷取單元及影像處理單元排列在另一直線上 並組成一條紋影像擷取處理組,該條紋影像投影組與 該條紋影像擷取處理組之間夾設有一夾角,使該條紋 影像投影組產生之條紋影像由該待測物之表面反射 至該條紋影像梅取處理組。 11·如申請專利範圍第9項所述之使用相位光罩之顯微 量測方法’其中該非同調光源係一白光點光源。 12. 如申請專利範圍第9項所述之使用相位光罩之顯微 量測方法’其中該光柵單元之光栅開口係正弦函數光 柵開口。 13. 如申請專利範圍第9項所述之使用相位光罩之顯微 量測方法,其中該相位光罩係包含一液晶空間光調制 器。 25 201115107 14. 如申請專利範圍第13項所述之使用相位光罩之顯微 量測方法,其中該液晶空間光調制器之一光導入側具 有一偏振片。 15. 如申請專利範圍第13項所述之使用相位光罩之顯微 里测方法,其中該液晶空間光調制器之一光導出側具 有—檢振片。 16. 如申請專利範圍第13項所述之使用相位光罩之顯微 量測方法,其中藉由一外部灰階控制訊號來數位控制 該相位光罩產生適當的灰階圖像,以調變通過該相位 光罩之扭曲條紋影像之波前’以造成相位調變。 17·如申請專利範圍第9項所述之使用相位光罩之顯微 量測方法,其中該影像擷取單元選自電荷耦合元件型 或互補金屬氧化物半導體蜜之數位照相機。 18·如申請專利範圍第9項所述之使用相位光罩之顯微 量測方法,其中該影像處理單元利用反卷積法及傅立 葉轉換法處理該扭曲條紋影像’以轉換獲得該扭曲條 紋影像之纏繞相位及展開相位。 19. 如申請專利範圍第18項所述之使用相位光罩之顯微 量測方法,其中該影像處理單元利用一參考平面資料 與該待測物之纏繞相位及展開相位來進行光學三角 量測法,以執行影像比對處理,進而將該纏繞相位及 展開相位還原成該待測物之立體表面形貌影像。 20. 如申請專利範圍第19項所述之使用相位光罩之顯微 量測方法,其中在未設置該相位光罩下’預先以一干 26 201115107 板做為該待測物,並將該影像擷取單元擷取得到的影 像利用該影像處理單元處理後做為該參考平面資料。201115107 VII. Patent application scope: 1. A microscopic measurement system using a phase mask, comprising: a non-coherent light source for providing a different dimming-grating unit, having a plurality of gratings to open Q, and passing the grating The non-coherent light after the opening forms a light and dark fringe image and is projected onto the surface of the object to be tested to generate a twisted strip image; a lens group for adjusting the reflection from the surface of the object to be tested and passing through the The size of the twisted image of the lens group; a phase mask for modulating the wavefront of the twisted image after passing through the lens group to cause phase modulation; an image capturing unit for capturing the phase a distortion stripe image after the mask; and: an image processing unit, the image curling algorithm extends the image capturing unit to capture the depth of field of the stripe image, and converts the image of the twisted stripe captured by the image capturing unit into the image The image of the three-dimensional surface topography of the rigid object. 2. = The microscopic measurement system using the phase mask described in claim 1 wherein the non-coherent light source and the grating unit are arranged in a straight line and constitute a stripe image projection set; the lens group, the phase mask, The image capturing unit and the image processing unit are arranged on another line to form a stripe image capturing processing group, and an image is formed between the stripe image projection group and the stripe image processing group, so that the stripe image projection group is generated. The stripe image is reflected from the surface of the object to be tested to the strip image green processing group. The invention relates to a microscopic measuring system using a phase mask according to claim 1, wherein the non-coherent light source is a white light point source. 4. The microscopic measurement system using a phase mask according to claim 1, wherein the grating opening of the grating unit is a sinusoidal function grating opening. 5. The microscopic measurement system using a phase mask according to claim 1, wherein the phase mask comprises a liquid crystal spatial light modulator. 6. The microscopic measurement system using a phase mask according to claim 5, wherein one of the light-introducing sides of the liquid crystal spatial light modulator has a polarizing plate. 7. The microscopic measurement system using a phase mask according to claim 5, wherein one of the light-emitting sides of the liquid crystal spatial light modulator has a vibration detecting sheet. 8. The microscopic measurement system using a phase mask according to claim 1, wherein the image capturing unit is selected from the group consisting of a charge coupled device type or a complementary metal oxide semiconductor type digital camera. 9. A microscopic measurement method using a phase mask, comprising: providing a non-coherent light by a non-coherent light source; passing the non-coherent light through a plurality of grating openings of a grating unit to form a light and dark streak The image is projected onto the surface of the object to be tested to generate a distortion stripe image; the image of the twisted stripe reflected from the surface of the object to be tested is passed through a lens group to adjust the size of the image of the twisted stripe; ^ 24 201115107 Using a phase mask to modulate the wavefront of the twisted fringe image after passing through the lens group to cause phase modulation; using a scene&gt; image capturing unit to capture the distortion stripe image after passing through the phase mask; An image processing unit uses a deconvolution algorithm to extend the depth of field of the image of the stripe image by the image capturing unit, and converts the image of the twisted stripe captured by the image capturing unit into a stereoscopic surface topography image of the object to be tested. 10. The method of microscopic measurement using a phase mask as described in claim 9 wherein the non-coherent light source and the grating unit are arranged in a line and form a stripe image projection set; the lens group, the phase mask, The image capturing unit and the image processing unit are arranged on another line and form a stripe image capturing processing group. An image is formed between the stripe image projection group and the stripe image capturing processing group, so that the stripe image projection group is generated. The stripe image is reflected by the surface of the object to be tested to the stripe image plumbing treatment group. 11. The microscopic measurement method using a phase mask as described in claim 9 wherein the non-coherent light source is a white light point source. 12. The microscopic measurement method using a phase mask as described in claim 9 wherein the grating opening of the grating unit is a sinusoidal function grating opening. 13. The microscopic measurement method using a phase mask according to claim 9, wherein the phase mask comprises a liquid crystal spatial light modulator. The method of microscopic measurement using a phase mask according to claim 13, wherein one of the light-introducing sides of the liquid crystal spatial light modulator has a polarizing plate. 15. The microscopic measurement method using a phase mask according to claim 13, wherein one of the liquid crystal spatial light modulators has a vibration detecting sheet. 16. The microscopic measurement method using a phase mask according to claim 13, wherein the phase reticle is digitally controlled by an external gray scale control signal to generate an appropriate gray scale image to be modulated. Passing the wavefront of the twisted fringe image of the phase mask to cause phase modulation. 17. The microscopic measurement method using a phase mask according to claim 9, wherein the image capturing unit is selected from a digitally coupled camera of a charge coupled device type or a complementary metal oxide semiconductor honey. 18. The microscopic measurement method using a phase mask according to claim 9, wherein the image processing unit processes the twisted stripe image by a deconvolution method and a Fourier transform method to obtain the twisted stripe image. Winding phase and unwinding phase. 19. The microscopic measurement method using a phase mask according to claim 18, wherein the image processing unit performs optical triangulation using a reference plane data and a winding phase and an unwrapped phase of the object to be tested. The method performs image matching processing to restore the winding phase and the unfolding phase to a stereoscopic surface topography image of the object to be tested. 20. The method of microscopic measurement using a phase mask according to claim 19, wherein a pre-measured object is used as a test object under a phase mask without a pre-set photomask, and the image is The image obtained by the capture unit is processed by the image processing unit as the reference plane data. 2727
TW98136761A 2009-10-29 2009-10-29 Microscope measurement system using phase mask and method thereof TWI402478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98136761A TWI402478B (en) 2009-10-29 2009-10-29 Microscope measurement system using phase mask and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98136761A TWI402478B (en) 2009-10-29 2009-10-29 Microscope measurement system using phase mask and method thereof

Publications (2)

Publication Number Publication Date
TW201115107A true TW201115107A (en) 2011-05-01
TWI402478B TWI402478B (en) 2013-07-21

Family

ID=44934311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98136761A TWI402478B (en) 2009-10-29 2009-10-29 Microscope measurement system using phase mask and method thereof

Country Status (1)

Country Link
TW (1) TWI402478B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753129B (en) * 2017-03-13 2022-01-21 新加坡商海特根微光學公司 Optoelectronic devices for collecting three-dimensional data
CN117168321A (en) * 2023-11-02 2023-12-05 深圳市玻尔智造科技有限公司 Axial automatic measuring system for full-width optical film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336430B2 (en) * 2004-09-03 2008-02-26 Micron Technology, Inc. Extended depth of field using a multi-focal length lens with a controlled range of spherical aberration and a centrally obscured aperture
TWI287079B (en) * 2006-06-09 2007-09-21 Univ Nat Sun Yat Sen System and method for measuring three dimensional morphological of object surface by using white light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753129B (en) * 2017-03-13 2022-01-21 新加坡商海特根微光學公司 Optoelectronic devices for collecting three-dimensional data
CN117168321A (en) * 2023-11-02 2023-12-05 深圳市玻尔智造科技有限公司 Axial automatic measuring system for full-width optical film
CN117168321B (en) * 2023-11-02 2024-02-09 深圳市玻尔智造科技有限公司 Axial automatic measuring system for full-width optical film

Also Published As

Publication number Publication date
TWI402478B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
US8649024B2 (en) Non-contact surface characterization using modulated illumination
CN103328921B (en) Single-shot full-field reflection phase microscopy
Safrani et al. Real-time phase shift interference microscopy
CN109141224B (en) An Interferometric Reflection Optical Thin Film Microscopic Measurement Method Based on Structured Light
CN106097269B (en) High-resolution micro-vision system based on computational ghost imaging and method for acquiring images
Ghim et al. 3D surface mapping of freeform optics using wavelength scanning lateral shearing interferometry
CN112739979B (en) Surface shape measuring device and surface shape measuring method
Xie Transfer characteristics of white light interferometers and confocal microscopes
TWI436029B (en) Three dimensional surface profilometer and microscopy, and the method using the same
CN108895986B (en) Microscopic three-dimensional topography measurement device based on fringe imaging projection
JP2010271312A (en) Inspection system and method with multi-image phase shift analysis
JP2015505039A (en) Non-contact surface shape evaluation using modulated light
CN107702661A (en) A kind of white light self-interference Surface testing instrument
CN109579747B (en) Diffuse reflection type surface morphology measuring method based on two-dimensional optical dot matrix
Yuan et al. Accurate reconstruction for the measurement of tilt surfaces with digital holography
CN112630232A (en) Method and device for detecting defects of inner surface and outer surface of differential confocal fixed-surface interference target pill
CN105371757A (en) Differential parallel optical chromatographic microscopic measuring device and method
Pahl et al. Electromagnetic modeling of interference, confocal, and focus variation microscopy
TW201115107A (en) Microscope measurement system using phase mask and method thereof
CN207071084U (en) A kind of high-resolution Diode laser OCT image system based on path encoding
CN112683918B (en) Differential confocal fixed surface interference target shot inner surface defect detection method and device
CN112666172B (en) Differential confocal fixed surface interference target shot outer surface defect detection method and device
Tan et al. Non-scanning, non-interferometric, three-dimensional optical prof ilometer with nanometer resolution
Han et al. A novel coaxial focus position detection technique based on differential modulation evaluation for laser direct photolithography
Artigas Imaging confocal microscopy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees