201113558 OV /UWlTW 31750twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種透鏡陣列與顯示器,且特別是有 關於一種變焦透鏡陣列(Zoom lens array)與可切換式平 面立體顯示器(Switchable two and three dimensional display)。 【先前技術】 隨著顯示技術的發展,顯示器已經從顯示平面影像 (Two dimensional image)進步到顯示立體影像(Three dimensional image)。圖1為習知的立體影像顯示器的圓 柱透鏡陣列(Lenticular lens array )的示意圖。請參照圖!, 此圓柱透鏡陣列1〇〇是由多個圓柱透鏡所組成。入 射到母一個圓柱透鏡100A的入射光L1會被圓柱透鏡 100A所聚焦,並繼續出射到圓柱透鏡^⑻入之外而成為往 左右兩側行進的出射光L2。也就是說,圓柱透鏡陣列 可將影像光線分別投向左右眼,以達到立體顯示效果。 然而,上述圓柱透鏡1〇〇A的製作加工相當不易,要 達到預定的光學精密度需㈣相當高的成本。再者,圓柱 透鏡1GGA較距在製作完成後即固定,無法再變更。使 用者僅能在-定的距離範_,才能觀察到立體影像,這 造成立體影像顯示器的限制。 圖2為&知的液晶變焦透鏡的示意圖。請參照圖2, 此液晶變焦透鏡200包括:下玻璃基板210、下電極220、 201113558 097090ITW 31750twf.doc/n 間隙物230、液晶層240、上玻璃基板25〇與上電極26〇。 請繼續參照圖2 ’各個元件的位置關係為,下電極22〇設 置在下玻璃基板上210。間隙物230設置於下電極220上。上 玻璃基板250設置於間隙物23〇上。液晶層24〇位於下電極 220與上玻璃基板250之間。上電極26〇設置於上玻璃基板25〇 上、且位於左右兩端。 值得;主思的疋,上電極260為條狀電極,下電極220為平 面電極。藉由這樣的電極設置方式,可在液晶層24〇中產生不 均勻電場分布E。此不均勻電場分布e使得液晶層24〇中不同 位置的液晶分子(未緣示)的偏轉程度(即相位延遲程度)不 相同。因此,光線(未繪示)通過液晶變焦透鏡2⑻的中間部 刀的速度f更、且通過周圍部分的速度快,進而使液晶變焦透鏡 200達到聚焦的效果。 ..... 為了使液晶變焦透鏡200產生良好的聚焦效果,必須 在上電極260與液晶層240之間設置一定厚度的上玻璃基 板250。更詳細而言,因為設置有一定厚度的上玻璃基板 250 ’兩側的上電極260與下電極220之間才有足夠的距離 令電場漸變,而產生如圖2中所示的不均勻電場分布E。 若是沒有設置上玻璃基板250,則下電極22〇與兩側的上 電極260之間的距離會太接近,此時,電場會集中於液晶 變焦透鏡200的兩側,無法形成不均勻電場分布e。但是, 也就是因為必須設置上玻璃基板250,反而使得液晶變焦透 鏡200的厚度增加、結構複雜、製程繁瑣且成本較高。 201113558 097Uy〇lTW 31750twf.doc/n 【發明内容】 有鑑於此’本發明提供一種變焦透鏡陣列, 的電極設置方式、較_整體厚度與鮮的結構 殊 本發明运提供-種可切換式平面立體顯示器,且有上 述的^透鏡_ ’能良好地顯示平面影像或立體影像。 曰恩ΐ上述’本發明提出一種變焦透鏡陣列,包括:液 ί—條狀電極與第二條狀電極。液晶層具有多個變 極設置於液晶層的上方侧,且位於多: 二條狀電極設置於液晶層的下方側, 停區的交界處’其中,第-條狀電極與第二 條狀甩極為彼此上下交錯設置。 狀雷ίίϊ㈣—實施财,上述#未絲麵到第—停 電極ίΐ發施例中,上述當施加電壓到第一條狀 電場時’於每—懸、區中的紅層内形成 布使母一變焦區中的液晶層形成為一變焦透 調控ίΐ發實施例中,上述變焦透鏡具有一電壓可 i本發‘焦距是由電壓的大小來控制。 妁貫鈀例中,上述液晶層為正型液晶層。 於^本發明的-實施例中,上述液晶層的折射率大於等 狀電極貫施例中’上述第-條狀電極與第二條 电極的材質包括銦錫氧化物。 201113558 097090ITW 31750twf.doc/n 料㈣的-貫施财s上述·透鏡_ -透包圍液晶層、第—條狀電極與第二條狀電極: 在本發_-實蘭t,上述第—紐電極 狀電極内埋於透明殼體中。 /、弟一條 捷曲^;=-實施财,上料赌體㈣料包括可 =發_—實施例中’上述變焦透鏡陣列更包括: 第-臭:二一弟二基板與一間隙物;其中,第-基板盥 層、第一條咖與第二條狀電極;且 勿位於弟-基板與第二基板之間、 極與第二條狀電極而設置。 *條狀電 器,述===一種可切換式平面立體顯示 置在變焦透鏡陣列與顯示面板。顯示面板設 狀電極與第二^中丄上述當未施加電壓到第一條 顯示面板的-平,母—變焦區中的液晶層使來自 . 仃九線通過,而顯示一平面影像。 電極與第中:上述當施加電壓到第-條狀 電場分布,以係/時’於每一變焦區中的液晶層内形成 此變焦透鏡使=變焦區中的液晶層形成為—變焦透鏡, 示一立體影i 面板的一平行絲進行聚焦,而顯 調控2發】::實施例中,上述變焦透鏡具有1壓可 '、、 壓可調控焦距是由電壓的大小來控制。 201113558 〇y7(jy〇iTW31750twf.doc/n 在本發明的一實施例中,上述液晶層為正型液晶層。 在本發明的一實施例中,上述液晶層的折射率大於等 於 2.2。 在本發明的一實施例中,上述第一條狀電極與第二條 狀電極的材質包括銦錫氧化物。 ~ ~ 在本發明的一實施例中,上述可切換式平面立體顯示 器更包括:一透明殼體,包圍液晶層、第一條狀電極與第 二條狀電極。 ^ 在本發明的一實施例中’上述第-條狀電極與第二條 狀電極内埋於該透明殼體中。 '、 ^ 在本發明的一實施例中,上述透明殼體的材料包括 撓曲透明材質。 在本發明的一實施例中,上述可切換式平面立體顯示 器更包括:一第一基板、一第二基板與一間隙物;其中, 第一基板與第二基板夾持液晶層、第一條狀電極與^二 狀電極;且間隙物位於第一基板與第二基板之間了並^ • 第一條狀電極與第二條狀電極而設置。 〜 在本發明的一實施例中,上述顯示面板包括:液晶 示面板、電漿顯示面板或有機發光二極體顯示面板。阳… 本發明的變焦透鏡陣列具有特殊的電極設置方式,, 即,在液晶層的相對兩側以上下交錯的方式設置第二亦 电極與第—條狀電極。因此,第一條狀電極與第二條^_ 極之間可具有足夠距離,來於液晶層中形成不均勻^場, 布。進而,可在液晶層中形成變焦透鏡以顯示立體 201113558 097090ITW 31750twf.doc/n 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 [變焦透鏡陣列] 圖3為本發明較佳實施例的一種變焦透鏡陣列的俯視 圖。圖4為沿著圖3的A-A’線的剖面示意圖。請同時參照 圖3與圖4,此變焦透鏡陣列3〇〇包括:液晶層31〇、第一 條狀電極320與第二條狀電極330。液晶層31〇具有多個 變焦區31〇a。第一條狀電極32〇設置於液晶層31〇的上方 側,且位於多個變焦區310a的交界處S。第二條狀電極33〇 没置於液晶層310的下方側,且位於多個變焦區31如的交 界處S,其中,第一條狀電極320與第二條狀電極33〇為 彼此上下交錯設置。 " ,—實施例中,第一條狀電極320與第二條狀電極33〇 的材質可以是銦錫氧化物之類的透明導電材質。特別是, 藉由第-條狀電極32〇與第二條狀電極现位在液^層 兩側、且彼此交錯設置的方式,使得第一^ ^ f與第二條狀電極330之間可具有足夠距離來形成 =㈣電場分布。相較於習知圖2的液晶變焦透鏡而 的變焦透鏡陣列300不需額外設置玻璃基板 達到2減Γ羞焦透鏡毕列300的厚度、重量與體積,以 狀電極Ϊ f求。另外,第一條狀_ 32°與第二條 电0的寬度,可由變焦透鏡陣列300的折射率分布 201113558 uy/uyuiTW 31750twf.doc/n 曲線來決定。 在一實施例中’當未施加電壓到第一條狀電極32〇與 第二條狀電極330時,每一變焦區310a中的液晶層3ί〇 使一平行光線L1通過(請參照後續圖9)。另外,:圖4 所示(或參照後續圖10),當施加電壓到第一條狀電極320 與第二條狀電極330時,於每一變焦區3i〇a中的液晶層 310内形成電場分布,以使每一變焦區31〇a中的液晶層31〇 形成為變焦透鏡300A。φ變焦透鏡300A可產生聚^入射 光L1的效果,且使出射光L2往左右兩侧行進。也就是說, 變焦透鏡300A可將影像光線分別投向左右眼,以到立 體顯示效果。 圖5為液晶層中的液晶分子受到不均勾電場分布的影 響,而產生的液晶分子排列情況示意圖。請參照圖5,在 變焦透鏡3GGA巾,由於是_上下交錯設置的上電極 ㈣產生柯自電場分布較液晶層 310中的液晶分子LC偏轉。 液晶層310採用的是正型液晶層。可注 極320與下電極330位置處 ^】在上兒 义缏^ 罝的液3曰刀子LC受到縱向電場 則受到橫__,Μ騎紐^ = 子LC的排列方式,使得變焦透鏡 鏡的光學聚焦效果。另外,液j座生漏於凸透 於22。各折射車勒* * -曰層310的折射率可大於等 aenspoler)越杯^ ’表不變焦透鏡3〇〇A的透鏡能力 (p。而)越好(亦即聚焦能力越好、焦距越短)。 201113558 097C90ITW 31750twf.doc/n ,6(a)與圖6(b)為不同電壓 同電麗可調控焦距的示意圖。參 有不 3〇〇A具有電壓可調控焦距f :焦透鏡 電壓的大小來控制。更詳細而言,如圖6(^;、=可由 ί壓為vi時’得到雙可調控焦距η。如圖6〇^施加 當施加電壓為V2時’得到電壓可調控焦距仏()^’ 任意調整變紐鏡戰的焦距。如此,觀賞者3 ’可 調整觀賞轉,可提紅體顯㈣的朗自妓。自由地 另t由於電㈣大於電_,所以電壓 距Ω比笔壓可調控焦距fl還短。更詳細而言,卷二…、 電壓V2較大時,如圖6⑻所示的變焦透鏡·a ^ 力較強(亦即聚焦能力越好、焦距越短)。換言之,二此 圖6(b)的電壓條件,可將入射光L1進行更佳二聚焦 使出射光L2往左右兩側的更大角度行進。如此,滿足 更大的可視範圍。再者,當透鏡能力越強時,在相同的焦 點距離的前提下,液晶層310的間距(cell gap)可以越薄、 請繼續參照圖4,變焦透鏡陣列300可更包括透明殼 體340。此透明殼體340包圍液晶層31〇、第—條狀電^ 320與第一條狀電極330。特別是,第一條狀電極32〇與第 二條狀電極330可内埋於透明殼體340中。另外,逯明殼 體340的材料例如是可撓曲透明材質。 圖7為本發明較佳實施例另一種變焦透鏡陣列的示意 圖。在圖7中,與上述圖4相同的構件標示以相同的標號, 在此不予以重述。值得注意的是,變焦透鏡陣列302的封 201113558 uyvoyuiTW 31750twf.doc/n 鏡陣列3〇0的縣結構。請參照圖7, 除了上述的液曰曰層310、第—條狀電極 極330以外,此變焦透鏡陣列观更包括··第 第二基板360與間隙物37〇,盆中 ^ ^ 基板夾持液晶層、第一條狀電極32〇 :^ 電極33〇;且間隙物370位於第一基板35〇與第1基 =0 之間,對應第-條狀電㈣〇與第二條狀電極33〇而設置。 承上述,變焦透鏡陣列300、302 _特殊的電極設置 方式,亦即,第-條狀電極32〇與第二條狀電極在液 晶層310的兩側為上下交錯設置,可有效地產生不均勾電 場分布以使液晶層31〇的液晶分子Lc偏轉。結果是,變 焦透鏡3GGA可形成類似凸透鏡的聚焦效果。由於不需額 外加入玻璃基板,所以可減少變焦透鏡陣列3〇〇的厚度。、 [可切換式平面立體顯示器] 圖8為本發明較佳實施例的一種可切換式平面立體顯 示器的示意圖。圖9為圖8的可切換式平面立體顯示器於 顯示平面影像狀態的示意圖。圖1〇為圖8的可切換式平面 立體顯示器於顯示立體影像狀態的示意圖。 請先參照圖8,此可切換式平面立體顯示器4〇〇包括 變焦透鏡陣列410與顯示面板420。顯示面板420設置在 變焦透鏡陣列410的一側。值得注意的是,此變焦透鏡陣 列410可以是上述提及的變焦透鏡陣列3〇〇、3〇2。而顯示 面板420可以是液晶顯示面板、電漿顯示面板、有機發光 11 201113558 097090ITW 3l750tw£doc/n 二極體顯示面板、或任何適當的顯示面板。 請參照圖9,當未施加電壓到第一條狀電極32〇與第 二條狀電極330時,每一變焦區310a中的液晶層31〇使來 自顯示面板420的一平行光線(即入射光L1)通過,而顯 示為一平面影像(即平行出射的出射光L2)。由圖9可清 楚得知,由顯示面板420出射的入射光L1,在通過液晶居 310時,入射光L1的行進路線並未改變,因此出射光匕2 也疋平行光線。所以’顯示面板420呈現的平面影像,並 不受到變焦透鏡陣列410的影響,而仍然顯示出平面影像。 請再參照圖10’當施加電壓到第一條狀電極32〇與第 一條狀電極330時,於每一變焦區310a中的液晶層31〇 内形成電場分布,以使每一變焦區310a中的液晶層31〇 形成為一變焦透鏡300A。此變焦透鏡300A使來自顯示面 板420的一平行光線(即入射光li)進行聚焦,而顯示一 立體影像.(即往左右兩侧行進的出射光L2)。由圖1〇可 清楚得知,由顯示面板420出射的入射光L1,在通過液晶 層310時’入射光li的行進路線會被改變而聚焦,因此 往左右行進的出射光L2可顯示出立體影像。 藉由不施加電壓或施加電壓,可對於平面影像與立體 影像的顯示進行切換。至於變焦透鏡陣列400的詳細實施 方式,已經於圖3〜圖7中說明,在此即不予以重述。 综上所述,本發明的變焦透鏡陣列與可切換式平面立 體顯示器至少具有以下優點: 在變焦透鏡陣列中,於液晶層的相對兩側以上下交錯 12 201113558 097090ITW 31750twf.doc/n 的方式設置第-條狀電極與第二條狀電極, 置玻璃基板,故能減少變⑽鏡_的厚度 二 焦透鏡陣列具有電壓可調控焦距,觀# /、 二 哈拓施-丄 祝貝考可自由地調整觀 貝距離。獻,料不施加電壓輪 影像與立體影像的顯示進行切換。 坚1對於十面 样rttn實制揭露如上’然其並非用以限定 本發明,任何所屬技術領域中具有诵營 本發明之精神和範圍内,t可作4b ’在不脫離 U之保錄圍之巾請專利_所界定者為準。 【圖式簡單說明】 圖 圖1為習知的立體影像顯示器的圓板透鏡陣列的示意 圖2為習知的液晶變焦透鏡的示咅圖。 圖。圖3為本發明較佳實施例的1變焦透鏡陣列的俯視 圖4為沿著圖3的A_A,線的剖面示音圖。 響,=,t的液晶Γ受到不心電場分布的影 而產生的液晶分子排列情況示意圖。 同電==電壓情形下,變焦透鏡具有不 圖。圖7為本發崎佳實施㈣—_焦透鏡_的示意 圖8為本發明較佳實施例的一種可切換式平面立體顯 13 201113558 097090ITW 31750twf.doc/n 示器的示意圖。 圖9為圖8的可切換式平面立體顯示器於顯示平面影 像狀態的示意圖。 圖10為圖8的可切換式平面立體顯示器於顯示立體影 像狀態的示意圖。 【主要元件符號說明】 100 :圓柱透鏡陣列 100A:圓柱透鏡 ® 200 :液晶變焦透鏡 210 :下玻璃基板 220 :下電極 230 :間隙物 240、310 :液晶層 250 :上玻璃基板 260 :上電極 300、302、410 :變焦透鏡陣列 鲁 300A :變焦透鏡 310a :變焦區 320 :第一條狀電極 330 :第二條狀電極 340 :透明殼體 400 :可切換平面立體顯示器 420 :顯示面板 14 201113558 097090ITW 31750twf.doc/n A-A’ :剖面線 E:不均勻電場分布 L1 :入射光 L2 :出射光 LC :液晶分子201113558 OV /UWlTW 31750twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a lens array and a display, and more particularly to a zoom lens array and a switchable type Switchable two and three dimensional display. [Prior Art] With the development of display technology, displays have progressed from displaying two dimensional images to three dimensional images. 1 is a schematic view of a Lenticular lens array of a conventional stereoscopic image display. Please refer to the picture! The cylindrical lens array 1 is composed of a plurality of cylindrical lenses. The incident light L1 incident on the mother cylindrical lens 100A is focused by the cylindrical lens 100A, and continues to be emitted outside the cylindrical lens ^8 to become the outgoing light L2 traveling to the left and right sides. That is to say, the cylindrical lens array can respectively project the image light to the left and right eyes to achieve the stereoscopic display effect. However, the fabrication of the cylindrical lens 1A described above is relatively difficult, and a relatively high cost is required to achieve a predetermined optical precision. Furthermore, the cylindrical lens 1GGA is fixed after the completion of the production, and cannot be changed. The stereo image can only be observed by the user in the range of the distance, which results in a limitation of the stereoscopic image display. 2 is a schematic view of a known liquid crystal zoom lens. Referring to FIG. 2, the liquid crystal zoom lens 200 includes a lower glass substrate 210, a lower electrode 220, a 201113558 097090ITW 31750 twf.doc/n spacer 230, a liquid crystal layer 240, an upper glass substrate 25A and an upper electrode 26A. Referring to Figure 2, the positional relationship of the respective elements is such that the lower electrode 22 is disposed on the lower glass substrate 210. The spacer 230 is disposed on the lower electrode 220. The upper glass substrate 250 is disposed on the spacer 23A. The liquid crystal layer 24 is located between the lower electrode 220 and the upper glass substrate 250. The upper electrode 26 is disposed on the upper glass substrate 25A and at the left and right ends. It is worthwhile; the main electrode is 260, the upper electrode 260 is a strip electrode, and the lower electrode 220 is a flat electrode. With such an electrode arrangement, an uneven electric field distribution E can be generated in the liquid crystal layer 24?. This uneven electric field distribution e causes the degree of deflection (i.e., the degree of phase retardation) of liquid crystal molecules (not shown) at different positions in the liquid crystal layer 24 to be different. Therefore, the light (not shown) passes through the intermediate portion of the liquid crystal zoom lens 2 (8), and the speed f through the peripheral portion is faster, thereby causing the liquid crystal zoom lens 200 to achieve the focusing effect. In order for the liquid crystal zoom lens 200 to produce a good focusing effect, it is necessary to provide a certain thickness of the upper glass substrate 250 between the upper electrode 260 and the liquid crystal layer 240. In more detail, since there is a sufficient distance between the upper electrode 260 and the lower electrode 220 on both sides of the upper glass substrate 250' provided with a certain thickness, the electric field is gradually changed, resulting in uneven electric field distribution as shown in FIG. E. If the upper glass substrate 250 is not disposed, the distance between the lower electrode 22 and the upper electrodes 260 on both sides may be too close. At this time, the electric field may concentrate on both sides of the liquid crystal zoom lens 200, and an uneven electric field distribution may not be formed. . However, because the upper glass substrate 250 must be provided, the thickness of the liquid crystal zoom lens 200 is increased, the structure is complicated, the process is cumbersome, and the cost is high. 201113558 097Uy〇lTW 31750twf.doc/n [Summary of the Invention] In view of the above, the present invention provides a zoom lens array, the electrode arrangement mode, the overall thickness and the fresh structure are provided by the present invention. The display, and the above-mentioned lens_' can display a flat image or a stereoscopic image well. The present invention provides a zoom lens array comprising: a liquid strip electrode and a second strip electrode. The liquid crystal layer has a plurality of poles disposed on the upper side of the liquid crystal layer, and is located at a plurality of: the strip electrodes are disposed on the lower side of the liquid crystal layer, and the junction of the parking areas is where the first strip electrode and the second strip electrode are extremely Staggered up and down each other. Thunder ίίϊ (4)—Implementation of the money, the above #不丝面到第—停电极 ΐ In the application example, when the voltage is applied to the first strip electric field, the cloth is formed in the red layer in each suspension. The liquid crystal layer in a zoom zone is formed as a zoom lens. In the embodiment, the zoom lens has a voltage that can be controlled by the magnitude of the voltage. In the example of the palladium, the liquid crystal layer is a positive liquid crystal layer. In the embodiment of the invention, the refractive index of the liquid crystal layer is larger than that of the above-mentioned first strip electrode and the second electrode in the embodiment of the equal electrode, including indium tin oxide. 201113558 097090ITW 31750twf.doc/n material (four) - the pervasive s above · lens _ - through the liquid crystal layer, the first strip electrode and the second strip electrode: in the hair _ - real blue t, the above - The electrode electrode is buried in the transparent casing. /, brother a piece of music ^; = - implementation of wealth, loading gambling body (four) material including = can be issued _ - in the embodiment of the above zoom lens array further includes: first - odor: two brothers two substrates and a spacer; Wherein, the first substrate layer, the first stripe and the second strip electrode; and not disposed between the disc-substrate and the second substrate, and the pole and the second strip electrode are disposed. * Striped electric motor, said === A switchable planar stereo display is placed on the zoom lens array and display panel. The display panel design electrodes and the second liquid crystal layer in the - flat, mother-zoom region when no voltage is applied to the first display panel pass through the line to display a planar image. Electrode and the middle: when the voltage is applied to the strip-shaped electric field distribution, the zoom lens is formed in the liquid crystal layer in each zoom zone to form a liquid crystal layer in the zoom region as a zoom lens, A parallel wire of a stereoscopic i panel is focused, and the display is controlled by two:]: In the embodiment, the zoom lens has a pressure of '1', and the pressure controllable focal length is controlled by the magnitude of the voltage. In an embodiment of the invention, the liquid crystal layer is a positive liquid crystal layer. In an embodiment of the invention, the refractive index of the liquid crystal layer is greater than or equal to 2.2. In an embodiment of the invention, the material of the first strip electrode and the second strip electrode comprises indium tin oxide. In an embodiment of the invention, the switchable planar stereo display further comprises: a transparent The housing surrounds the liquid crystal layer, the first strip electrode and the second strip electrode. ^ In an embodiment of the invention, the first strip electrode and the second strip electrode are buried in the transparent shell. In an embodiment of the invention, the material of the transparent casing comprises a flexible transparent material. In an embodiment of the invention, the switchable planar stereoscopic display further comprises: a first substrate, a first a second substrate and a spacer; wherein, the first substrate and the second substrate sandwich the liquid crystal layer, the first strip electrode and the second electrode; and the spacer is located between the first substrate and the second substrate and Strip electrode and second strip In an embodiment of the invention, the display panel comprises: a liquid crystal display panel, a plasma display panel or an organic light emitting diode display panel. The zoom lens array of the present invention has a special electrode arrangement. The second electrode and the strip electrode are disposed in a manner of being staggered on opposite sides of the liquid crystal layer. Therefore, the distance between the first strip electrode and the second strip electrode may be sufficient. Forming a non-uniform field in the liquid crystal layer, and fabric. Further, a zoom lens can be formed in the liquid crystal layer to display the stereoscopic 201113558 097090ITW 31750twf.doc/n in order to make the above features and advantages of the present invention more apparent, The embodiment will be described in detail with reference to the accompanying drawings. [Embodiment] [Zoom lens array] Fig. 3 is a plan view of a zoom lens array according to a preferred embodiment of the present invention. FIG. 3 and FIG. 4, the zoom lens array 3 includes a liquid crystal layer 31, a first strip electrode 320 and a second strip electrode 330. The liquid crystal layer 31〇 There is a plurality of zoom regions 31A. The first strip electrodes 32 are disposed on the upper side of the liquid crystal layer 31A and are located at the boundary S of the plurality of zoom regions 310a. The second strip electrodes 33 are not placed in the liquid crystal layer. The lower side of the 310 is located at the junction S of the plurality of zoom zones 31, wherein the first strip electrodes 320 and the second strip electrodes 33 are arranged alternately above and below each other. ", in the embodiment, the first The material of the strip electrode 320 and the second strip electrode 33A may be a transparent conductive material such as indium tin oxide. In particular, the first strip electrode 32 and the second strip electrode are in the liquid ^ The layers are disposed on both sides and are staggered with each other such that the first ^ f f and the second strip electrodes 330 may have a sufficient distance to form a = (four) electric field distribution. The zoom lens array 300 of the conventional liquid crystal zoom lens of Fig. 2 does not need to additionally provide a glass substrate to achieve the thickness, weight and volume of the reduced-shadow lens array 300, and is determined by the electrode electrode. In addition, the width of the first strip _ 32° and the second strip 0 may be determined by the refractive index distribution of the zoom lens array 300 by the 201113558 uy/uyuiTW 31750twf.doc/n curve. In an embodiment, when no voltage is applied to the first strip electrode 32 and the second strip electrode 330, the liquid crystal layer 3 in each zoom region 310a passes a parallel light L1 (refer to FIG. 9 later). ). In addition, as shown in FIG. 4 (or referring to FIG. 10), when a voltage is applied to the first strip electrode 320 and the second strip electrode 330, an electric field is formed in the liquid crystal layer 310 in each of the zoom regions 3i〇a. The distribution is such that the liquid crystal layer 31A in each of the zoom regions 31a is formed as the zoom lens 300A. The φ zoom lens 300A can produce an effect of collecting the incident light L1, and causes the outgoing light L2 to travel to the left and right sides. That is to say, the zoom lens 300A can project the image light to the left and right eyes, respectively, to the stereoscopic display effect. Fig. 5 is a view showing the arrangement of liquid crystal molecules generated by the liquid crystal molecules in the liquid crystal layer being affected by the uneven electric field distribution. Referring to Fig. 5, in the zoom lens 3GGA, the upper electrode (4) which is alternately arranged in the upper and lower directions generates a deflection of the liquid crystal molecules LC in the liquid crystal layer 310. The liquid crystal layer 310 is a positive liquid crystal layer. The position of the injection pole 320 and the lower electrode 330 is at the position of the liquid 曰 缏 罝 曰 受到 受到 受到 LC 受到 受到 LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC LC Optical focusing effect. In addition, the liquid j seat is leaking through the convexity. The refractive index of each refracting car**-曰 layer 310 can be greater than that of the aenspoler. The better the lens capability (p.) of the zoom lens 3〇〇A (ie, the better the focusing ability, the more the focal length short). 201113558 097C90ITW 31750twf.doc/n, 6(a) and Fig. 6(b) are diagrams of different voltages. Participate in the control of the voltage of the focal length f: the focal lens voltage. In more detail, as shown in Fig. 6 (^;, = when ί can be vi, the double adjustable focal length η is obtained. As shown in Fig. 6 〇, when the applied voltage is V2, the voltage can be adjusted to adjust the focal length )()^' Arbitrarily adjust the focal length of the change mirror movement. In this way, the viewer 3 'can adjust the viewing turn, can raise the red body display (four) of the self-sufficiency. Freely another t because the electricity (four) is greater than the electricity _, so the voltage distance Ω than the pen pressure can be The control focal length fl is also short. In more detail, when the voltage V2 is large, the zoom lens·a ^ force shown in Fig. 6 (8) is strong (that is, the better the focusing ability and the shorter the focal length). In other words, 2. The voltage condition of Figure 6(b) allows the incident light L1 to be better focused to make the outgoing light L2 travel at a greater angle to the left and right sides. Thus, a larger viewing range is satisfied. Furthermore, when the lens is capable The stronger the distance, the thinner the cell gap of the liquid crystal layer 310 can be, the further the lens lens array 300 can further include the transparent casing 340. The transparent casing 340 is surrounded by the transparent casing 340. The liquid crystal layer 31, the first strip electrode 320 and the first strip electrode 330. In particular, the first The electrode 32A and the second strip electrode 330 may be embedded in the transparent casing 340. In addition, the material of the casing 340 is, for example, a flexible material. Figure 7 is another zoom of the preferred embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS In Fig. 7, the same components as those in Fig. 4 are denoted by the same reference numerals and will not be described again. It is noted that the zoom lens array 302 is sealed by 201113558 uyvoyuiTW 31750twf.doc/n mirror array The structure of the county of 3〇0. Referring to FIG. 7, in addition to the liquid helium layer 310 and the strip electrode 330 described above, the zoom lens array includes a second substrate 360 and a spacer 37〇. In the basin, the substrate sandwiches the liquid crystal layer, the first strip electrode 32〇:^ the electrode 33〇; and the spacer 370 is located between the first substrate 35〇 and the first base=0, corresponding to the first strip-shaped electric (four)〇 And the second strip electrode 33 is disposed. In the above, the zoom lens array 300, 302 _ special electrode arrangement manner, that is, the first strip electrode 32 〇 and the second strip electrode on both sides of the liquid crystal layer 310 For staggered up and down, it can effectively generate uneven electric field distribution to make liquid The liquid crystal molecules Lc of the crystal layer 31〇 are deflected. As a result, the zoom lens 3GGA can form a focusing effect similar to a convex lens. Since the glass substrate is not additionally added, the thickness of the zoom lens array 3〇〇 can be reduced. [Switchable plane FIG. 8 is a schematic diagram of a switchable planar stereoscopic display according to a preferred embodiment of the present invention. FIG. 9 is a schematic diagram of the switchable planar stereoscopic display of FIG. 8 in a state of displaying a planar image. FIG. A schematic diagram of a switchable planar stereoscopic display for displaying a stereoscopic image state. Referring first to FIG. 8, the switchable planar stereoscopic display 4A includes a zoom lens array 410 and a display panel 420. The display panel 420 is disposed on one side of the zoom lens array 410. It is to be noted that this zoom lens array 410 may be the above-mentioned zoom lens arrays 3〇〇, 3〇2. The display panel 420 can be a liquid crystal display panel, a plasma display panel, an organic light emitting panel, or any suitable display panel. Referring to FIG. 9, when no voltage is applied to the first strip electrode 32 and the second strip electrode 330, the liquid crystal layer 31 in each zoom region 310a causes a parallel light from the display panel 420 (ie, incident light). L1) passes, and is displayed as a plane image (ie, the exiting light L2 that is emitted in parallel). As is clear from Fig. 9, when the incident light L1 emitted from the display panel 420 passes through the liquid crystal 310, the traveling path of the incident light L1 does not change, and therefore the exit pupil 2 is also parallel to the light. Therefore, the planar image presented by the display panel 420 is not affected by the zoom lens array 410, but still displays a planar image. Referring again to FIG. 10', when a voltage is applied to the first strip electrode 32 and the first strip electrode 330, an electric field distribution is formed in the liquid crystal layer 31A in each of the zoom regions 310a, so that each zoom region 310a The liquid crystal layer 31 is formed as a zoom lens 300A. The zoom lens 300A focuses a parallel ray (i.e., incident light li) from the display panel 420 to display a stereoscopic image (i.e., the outgoing light L2 traveling toward the left and right sides). As is clear from FIG. 1A, the incident light L1 emitted from the display panel 420 passes through the liquid crystal layer 310, and the traveling path of the incident light li is changed to be focused, so that the outgoing light L2 traveling to the left and right can display the three-dimensional shape. image. The display of the planar image and the stereoscopic image can be switched by not applying a voltage or applying a voltage. As for the detailed implementation of the zoom lens array 400, it has been described in Figs. 3 to 7, and will not be repeated here. In summary, the zoom lens array and the switchable planar stereo display of the present invention have at least the following advantages: In the zoom lens array, the opposite sides of the liquid crystal layer are staggered 12 201113558 097090ITW 31750twf.doc/n The first strip electrode and the second strip electrode are placed on the glass substrate, so that the thickness of the (10) mirror can be reduced. The bifocal lens array has a voltage-controllable focal length, and ##,,,,,,,,,,,,,, Adjust the viewing distance. Don't use the voltage wheel to switch between the image and the stereo image.坚1 is disclosed in the above-mentioned ten-faced rttn. However, it is not intended to limit the present invention. Any one of the technical fields of the present invention has the spirit and scope of the present invention, and t can be used as 4b' without leaving the U. The towel is subject to the patent _ as defined. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a circular lens array of a conventional stereoscopic image display. FIG. 2 is a schematic view of a conventional liquid crystal zoom lens. Figure. 3 is a plan view of a zoom lens array according to a preferred embodiment of the present invention. FIG. 4 is a cross-sectional view taken along line AA of FIG. A schematic diagram of the arrangement of liquid crystal molecules generated by the liquid crystal 响 of the ring, =, t being affected by the distribution of the unbalanced electric field. In the case of the same voltage == voltage, the zoom lens has a picture. Figure 7 is a schematic diagram of the implementation of the (four)-_focus lens of the present invention. Figure 8 is a schematic diagram of a switchable planar stereo display 13 201113558 097090ITW 31750twf.doc/n. Figure 9 is a schematic illustration of the switchable planar stereoscopic display of Figure 8 in a state in which a planar image is displayed. Figure 10 is a schematic illustration of the switchable planar stereoscopic display of Figure 8 in a state of displaying a stereoscopic image. [Main component symbol description] 100: Cylindrical lens array 100A: Cylindrical lens® 200: Liquid crystal zoom lens 210: Lower glass substrate 220: Lower electrode 230: Interstitial 240, 310: Liquid crystal layer 250: Upper glass substrate 260: Upper electrode 300 , 302, 410 : zoom lens array Lu 300A : zoom lens 310a : zoom area 320 : first strip electrode 330 : second strip electrode 340 : transparent housing 400 : switchable planar stereo display 420 : display panel 14 201113558 097090ITW 31750twf.doc/n A-A' : section line E: uneven electric field distribution L1: incident light L2: outgoing light LC: liquid crystal molecule