[go: up one dir, main page]

TW201113531A - Apparatus and method for output current sense at primary side in a flyback converter - Google Patents

Apparatus and method for output current sense at primary side in a flyback converter Download PDF

Info

Publication number
TW201113531A
TW201113531A TW98134274A TW98134274A TW201113531A TW 201113531 A TW201113531 A TW 201113531A TW 98134274 A TW98134274 A TW 98134274A TW 98134274 A TW98134274 A TW 98134274A TW 201113531 A TW201113531 A TW 201113531A
Authority
TW
Taiwan
Prior art keywords
signal
generate
output current
side coil
value
Prior art date
Application number
TW98134274A
Other languages
Chinese (zh)
Other versions
TWI437238B (en
Inventor
Tzu-Chen Lin
Original Assignee
Richpower Microelectronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richpower Microelectronics filed Critical Richpower Microelectronics
Priority to TW98134274A priority Critical patent/TWI437238B/en
Publication of TW201113531A publication Critical patent/TW201113531A/en
Application granted granted Critical
Publication of TWI437238B publication Critical patent/TWI437238B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A method for output current sense at primary side in a flyback converter detects the current on a primary winding and the resetting duration of the inductor current on a secondary winding, and then determines a sensing signal related to the output current of the flyback converter according thereto. The detection is not made at secondary side in the flyback converter, and thus requires lower cost.

Description

201113531 六、發明說明: 【發明所屬之技術領域】 本發明係有關-祕職返式轉鋪的輸㈣流的裳置 及方法,特別是關於一種應用於驰返式轉換器一次側的輸出 電流感測裝置及方法。 【先前技術】 在習知的離線切換式電壓轉換器中,為了調節輸_ 及輸出電流,因此在其二次侧需要輸出電壓及電流感測器來 獲得與輸出電壓及電流相關的回授信號,例如穩壓器(shunt regulator)、電流感測電阻及光耦合器。圖1係習知的馳返式 切換式電壓轉換器’其中變壓器T1具有一次側線圈Lp連接 在電壓輸入端Vin及功率開關S1之間、二次側線圈Ls經二 極體Do連接到電壓輸出端Vo、以及輔助線圈Laux連接到 一極體 Daux ’ 脈寬調變(Pulse Width Modulation; PWM)控制 器10提供控制信號Vgs切換開關S1以將輸入電壓vin轉換 為輸出電壓Vo供應負載RL,以及電流感測電阻Rcs、光輕 合器12及穩壓器14的組合感測輸出電壓v〇及輸出電流1〇 而提供回授信號Vfb給PWM控制器1〇以供調節輸出電壓 ν〇及輸出電流1〇。此輸出電流感測需要在二次侧增加額外的 電流感測電阻Res及電路,而且還需要光耦合器12在一次側 及一次側之間傳遞輸出電流感測信號’因此需要較高的成本。 【發明内容】 201113531 種低成本的輸出電流感 本發明的目的之一,在於提出一 測裝置。 器 本發明的目的之- ’在於提出一種應用於馳返式轉換 一次側的輪出電流感測裝置及方法。 、201113531 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to the placement and method of the transmission (four) flow of the secret-return type, and in particular to an output current applied to the primary side of the flyback converter Sensing device and method. [Prior Art] In the conventional off-line switching voltage converter, in order to adjust the output and output current, an output voltage and current sensor are required on the secondary side thereof to obtain a feedback signal related to the output voltage and current. For example, a shunt regulator, a current sense resistor, and an optocoupler. 1 is a conventional fly-back type switching voltage converter in which a transformer T1 has a primary side coil Lp connected between a voltage input terminal Vin and a power switch S1, and a secondary side coil Ls connected to a voltage output via a diode Do. The terminal Vo and the auxiliary coil Laux are connected to a pole body Daux' Pulse Width Modulation (PWM) controller 10 provides a control signal Vgs switching switch S1 to convert the input voltage vin into an output voltage Vo supply load RL, and The combination of the current sensing resistor Rcs, the optical combiner 12 and the voltage regulator 14 senses the output voltage v〇 and the output current 1〇 to provide a feedback signal Vfb to the PWM controller 1 for regulating the output voltage ν〇 and the output. The current is 1 〇. This output current sensing requires the addition of an additional current sense resistor Res and circuitry on the secondary side, and requires the optocoupler 12 to deliver an output current sense signal between the primary side and the primary side, thus requiring higher cost. SUMMARY OF THE INVENTION 201113531 Low-cost output current sense One of the objects of the present invention is to provide a measuring device. The object of the present invention is to provide a wheel current sensing device and method for the primary side of the flyback conversion. ,

根據本發明…種制_返式轉換器—次側的輸出電 '飢感測裝置,該馳返式轉換器包括—次側軸、二次侧線圈 以及連接該-次侧線圈的功率開關因應控制信號切換以使該 二次側線生感應電流,該輸出電流感測裝置包括:取樣 及維持電路取樣與該-次側線_電流相關的第—信號的峰 值產生第二信號;偵測關測該感應電流的重置持續時間產 生第二信號’該第三錢的週鱗於該控偷號的週期,且 工作時間雜誠應電流的重置觸時間;緩触連接該取 樣及維持電路以及偵·,根據該第二職及第^信號產<生 第四信號,該第四信號的週期及工作時間與該第三信號相 同’且峰值由該第二信號決定;以及低通驗器連接該緩衝 器,滤波該第四信號產生與該馳返式轉換器之輸出電流相關 的感測信號。 根據本發明,一種應用於馳返式轉換器一次側的輸出電 流感測方法,該驰返式轉換器包括一次侧線圈、二次側線圈 以及連接該一次侧線圈的功率開關因應控制信號切換以使該 二次側線圈產生感應電流,該輸出電流感測方法包括:感測 該一次侧線圈的電流產生第一信號;取樣該第一信號之峰值 產生第二信號,偵測该感應電流的重置持續時間產生第二传 號,該第三信號的週期等於該控制信號的週期,且工作時間 201113531 等於該感應電流的重置持續時間;根據該第二信號及第三信 號產生第四信號,該第四信號的週期及工作時間與該第三信 號相同且峰值由該第二信號決定;以及遽波該第四信號產 生與該馳返式轉換器之輪出電流相關的感測信號。 根據本發明’―種應用於跳返式轉換器-次側的輸出電 流感測裝置,該驰返式轉換器包括一次側線圈以及連接該一 次側線_功__應觸信號切換,該輸出電流感測裝 置包括·第-取樣及轉電路取樣與該—摘線圈的電流相 關的第-彳§號之軸:第二取樣及轉電路取樣該第一信號 之谷值,力Π法器連接該第—及第二取樣及轉電路,結合該 峰值及谷值產生第二信號;緩衝器連接該加法^,根據該第 二信號及控制信號產生第三信號,該第三信號的週期與該控 制#號相同’ 與該控制信號的非卫作時_同,且 峰值由該第二錢決定;以及低通濾波器連接該緩衝器,遽 波該第三信號產生與該馳返式轉換器之輸出電流相關的感測 信號。 、根據本發明,-種制於馳返式轉換器—次侧的輸出電 /瓜感/則方} 4馳返式轉換器包括—次側線圈以及連接該一 人侧線圈的功率開_應控制信號切換,該輸出電流感測方 法包括:感測該一次側線圈的電流產生第一信號;取樣該第 一信號之峰值及谷值;將該峰值與該谷值相加產生第二信 號;根據該第二信號及控制信號產生第三信號,該第三信號 的週』控制彳5號相同,卫作時間與該控制信號的非工作 時間相同且峰值由該第二信號決定;以及遽波該第三信號 r 201113531 產生與該馳返式轉換器之輸出電流相關的感測信號。 根據本發明’ 一種應用於馳返式轉換器一次側的輸出電 流感測裝置,該馳返式轉換器包括一次側線圈、二次側線圈 以及連接該一次側線圈的功率開關因應控制信號切換以使該 二次側線圈產生感應電流,該輸出電流感測裝置包括:第一 取樣及維持電路取樣與該一次侧線圈的電流相關的第一信號 之峰值;第二取樣及維持電路秘該第一信號之谷值;加法 器連接3亥第-及第二取樣及維持電路,結合該峰值及谷值產 生第一彳§唬,偵測器偵測該感應電流的重置持續時間產生第 二仏號,該第三信號的週期等於該控制信號的週期,且工作 時間等於該感應電流的重置持續時間;緩衝器連接該加法器 以及侧器,根據該第二信號及第三信號產生細信號,該 第四信號的職及卫作__第三健_,且峰值由該 第二信號蚊;以及低輯波料接紐觸,濾波該第四 信號產生與該馳返式轉換器之輸出f流相__信號。 、相據本發卩種應用於馳返式轉換器一次侧的輸出電 流感測方法’該馳返式轉換H包括—次侧線圈、二次侧線圈 以及連接該-次侧線圈的功率開關因應控制信號切換以使該 --人側線®產生感應電流,該輸出電流感測方法包括:感測 該-次侧線圈的電流產生第一信號;取樣該第一信號之峰值 及谷值;將該峰值與該谷值相加產生第二信號;_該感應 電的重置持續時間產生第三信號,該第三信號的週期等於 該控制信號的週期,U作時間等於該感應電流的重置持續 時間;根_第二信歧第三錄產生細錢,該第四信 Γ 201113531 號的,期及工作時間與該第三信號相同,姆值由該第二信 號決定;以及渡波該第四信號產生與該%返式轉換器之 電流相關的感測信號。 出 由於本發明無需在二次侧使用電流感測電路來感測輪出 電流,因此可以節省成本。 【實施方式】 如圖2所示’在馳返式轉換器中’變壓器τι具有__欠 側線圈Lp連接在電壓輸入端vin及功率開關S1之間、二次 侧線圈Ls經二極體Do連接到電壓輸出端v〇、以及輔助線 圈Laux連接到二極體Daux ’ 一次側線圈Lp、二次側線圈 Ls及辅助線圈Laux的匝數比為Np : Ns : Naux,PWM控制 器20具有控制端Gate提供控制信號Vgs切換功率開關si、 偵測端Vdet偵測輔助線圈Laux上的電壓Vaux、以及感測端 CS感測電阻R1上的電壓Vcs來感測功率開關si的電流 Ids。圖3係圖2的馳返式轉換器操作在不連續電流模式 (Discontinuous Current Mode; DCM)的波形圖,其中波形 22 為功率開關S1上的電壓Vds,波形24為控制信號Vgs,波 形26為輔助線圈Laux上的電壓Vaux,波形28為功率開關 S1的電流Ids,波形30為通過二極體d〇的感應電流i__Do, 波形32為前緣遮蔽信號LEB。在時間tl時,如波形24及 28所示,控制信號Vgs轉為高準位而打開on)功率開關 S1,故電流Ids上升。在功率開關si剛打開時,電流Ids可 能出現突波,因此使用前緣遮蔽信號LEB遮蔽可能的突波, 201113531 以避免因突波而產生誤動作。在時間t2時,控制信號Vgs 轉為低準位而關閉(turn off)功率開關si,此時電流Ids降為 0,而二次側線圈Ls產生感應電流l_D〇通過二極體Do,感 應電流I_Do由峰值I_Do_pk開始下降。當感應電流l_Do降 至0時,如時間t4所示,電壓Vds將因激磁電感Lm及離 散電谷Ceq而產生弦波振盈,如波形22所示。在DCM 模式下’驰返式轉換器的輸出電流According to the invention, the _back converter - the output power of the secondary side is a hunger sensing device, and the flyback converter includes a secondary side shaft, a secondary side coil, and a power switch connected to the secondary side coil. Controlling the signal switching to cause the secondary side line to generate an induced current, the output current sensing device comprising: sampling and maintaining circuit sampling to generate a second signal with a peak of the first signal related to the current line line current; detecting the off signal The resetting duration of the induced current generates a second signal 'the third scale of the weekly scale in the period of the control stealing number, and the working time is the resetting touch time of the current; the touch connection connects the sampling and sustaining circuit and the detect According to the second job and the fourth signal, the fourth signal has the same cycle and working time as the third signal and the peak value is determined by the second signal; and the low passer connection The buffer, filtering the fourth signal, produces a sensed signal associated with an output current of the flyback converter. According to the present invention, an output current sensing method applied to a primary side of a flyback converter includes a primary side coil, a secondary side coil, and a power switch connected to the primary side coil in response to a control signal switching And causing the secondary side coil to generate an induced current, the output current sensing method includes: sensing a current of the primary side coil to generate a first signal; sampling a peak of the first signal to generate a second signal, detecting a weight of the induced current The duration of the second signal is generated, the period of the third signal is equal to the period of the control signal, and the working time 201113531 is equal to the reset duration of the induced current; and the fourth signal is generated according to the second signal and the third signal, The period and operating time of the fourth signal are the same as the third signal and the peak value is determined by the second signal; and chopping the fourth signal produces a sensing signal associated with the wheel current of the flyback converter. According to the present invention, an output current sensing device is applied to a jumpback converter-subsequent side, the flyback converter includes a primary side coil and a connection to the primary side line _ work __ should be touched, the output current The sensing device includes: a first sampling and a rotating circuit sampling the axis of the first - § § associated with the current of the extracted coil: the second sampling and the rotating circuit sampling the valley value of the first signal, and the force Π method is connected to the The first and second sampling and switching circuits combine to generate the second signal according to the peak and the bottom value; the buffer is connected to the adding method, and the third signal is generated according to the second signal and the control signal, the period of the third signal and the control #号同' is the same as the non-weize time of the control signal, and the peak value is determined by the second money; and a low-pass filter is connected to the buffer, and the third signal is generated and the return-to-return converter Output current related sensing signals. According to the present invention, the output of the flyback converter - the secondary side of the output power / melon sense / square] 4 of the flyback converter includes - the secondary side coil and the power of the one side of the side of the open switch _ should be controlled Signal switching, the output current sensing method includes: sensing a current of the primary side coil to generate a first signal; sampling a peak and a bottom value of the first signal; adding the peak value to the valley value to generate a second signal; The second signal and the control signal generate a third signal, the third signal is controlled by the same 彳5, the guard time is the same as the non-operation time of the control signal, and the peak value is determined by the second signal; The third signal r 201113531 produces a sensed signal associated with the output current of the flyback converter. According to the present invention, an output current sensing device applied to a primary side of a flyback converter includes a primary side coil, a secondary side coil, and a power switch connected to the primary side coil in response to a control signal switching Having the secondary side coil generate an induced current, the output current sensing device comprising: a first sampling and maintaining circuit sampling a peak of a first signal related to a current of the primary side coil; and a second sampling and maintaining circuit The valley value of the signal; the adder connects the 3H-and the second sampling and sustaining circuit, and combines the peak and the valley to generate a first parameter, and the detector detects the reset duration of the induced current to generate a second No. The period of the third signal is equal to the period of the control signal, and the working time is equal to the reset duration of the induced current; the buffer is connected to the adder and the side device, and the fine signal is generated according to the second signal and the third signal. , the fourth signal of the occupation and the guard __ third health _, and the peak is caused by the second signal mosquito; and the low-order wave contact, filtering the fourth signal to generate the same F stream output of the phase converter __ signal. According to the present invention, the output current sensing method applied to the primary side of the flyback converter 'the flyback type conversion H includes a secondary side coil, a secondary side coil, and a power switch connected to the secondary side coil Controlling signal switching to cause the human-side line to generate an induced current, the output current sensing method comprising: sensing a current of the secondary-side coil to generate a first signal; sampling a peak and a valley of the first signal; Adding a peak value to the valley value to generate a second signal; _ the resetting duration of the inductive power generating a third signal, the period of the third signal being equal to the period of the control signal, U being equal to the reset duration of the induced current Time; root _ second letter of the third record produces fine money, the fourth letter 201113531, the period and working time is the same as the third signal, the m value is determined by the second signal; and the fourth signal is crossed A sense signal associated with the current of the % return converter is generated. Since the present invention does not require the use of a current sensing circuit on the secondary side to sense the wheel current, cost can be saved. [Embodiment] As shown in Fig. 2, 'in a flyback converter', a transformer τι has a __ under-side coil Lp connected between a voltage input terminal vin and a power switch S1, and a secondary-side coil Ls via a diode Do Connected to the voltage output terminal v〇, and the auxiliary coil Laux is connected to the diode Daux' primary side coil Lp, secondary side coil Ls and auxiliary coil Laux, the turns ratio is Np: Ns : Naux, and the PWM controller 20 has control The terminal Gate provides a control signal Vgs switching power switch si, a detecting terminal Vdet detecting voltage Vaux on the auxiliary coil Laux, and a voltage Vcs on the sensing terminal CS sensing resistor R1 to sense the current Ids of the power switch si. 3 is a waveform diagram of the flyback converter of FIG. 2 operating in a discontinuous current mode (DCM), wherein waveform 22 is voltage Vds on power switch S1, waveform 24 is control signal Vgs, and waveform 26 is The voltage Vaux on the auxiliary coil Laux, the waveform 28 is the current Ids of the power switch S1, the waveform 30 is the induced current i__Do through the diode d〇, and the waveform 32 is the leading edge masking signal LEB. At time t1, as indicated by waveforms 24 and 28, control signal Vgs turns to a high level and on) power switch S1 is turned on, so current Ids rises. When the power switch si is just turned on, the current Ids may appear as a glitch, so the leading edge occlusion signal LEB is used to shield the possible glitch, 201113531 to avoid malfunction due to the glitch. At time t2, the control signal Vgs turns to a low level and turns off the power switch si, at which time the current Ids falls to zero, and the secondary side coil Ls generates an induced current l_D〇 through the diode Do, inducing current I_Do starts to drop from the peak I_Do_pk. When the induced current l_Do falls to zero, as indicated by time t4, the voltage Vds will produce a sine wave oscillation due to the magnetizing inductance Lm and the discrete electric valley Ceq, as shown by the waveform 22. Output current of the flyback converter in DCM mode

Io=Ids_j)kxNp/Nsx〇.5xT〇ff/Ts . 公式 1 其中Ids一pk為電流ids的峰值,Ts為控制信號Vgs 的週期,Toff為感應電流i_D〇的重置持續時間 (resetting duration)。由於Np及Ns為定值,因此公式 1可改寫為Io=Ids_j)kxNp/Nsx〇.5xT〇ff/Ts . Equation 1 where Ids-pk is the peak value of the current ids, Ts is the period of the control signal Vgs, and Toff is the resetting duration of the induced current i_D〇 . Since Np and Ns are fixed values, Equation 1 can be rewritten as

Io=KlxIds_pkxT〇fJ/Ts, 公式2 其中 Kl=Np/Nsx〇.5。 圖4係本發明的輪出電流感測裝置的第一實施例,Io=KlxIds_pkxT〇fJ/Ts, where Equation 2 where Kl=Np/Nsx〇.5. Figure 4 is a first embodiment of the wheel current sensing device of the present invention,

其應用在DCM馳返式轉換器^此輸出電流感測裝置 包括取樣及維持電路4〇取樣感測端cs電壓Vcs的峰 值產生信號Vcs一pk,重置持續時間偵測器46偵測重 置持續時間Toff產生信號Sc3及Sc4,緩衝器42根 據化號Vcs_pk、Sc3及Sc4產生信號Sc5,以及低通[S 8 201113531 濾波器44濾' 波信號Sc5產生與輸出電流ι〇相關的感 測信號Io_signa卜在取樣及維持電路40中,開關S2 連接在感測端CS及電容Cshl之間,控制信號VgS 控制開關S2的切換以取樣電壓Vcs的峰值。為了避 免因功率開關S1剛打開時的突波對取樣結果造成影響,開 關S3與電容Cshl並聯,並以前緣遮蔽信號LEB切 換開關S3。偵測在DCM操作的感應電流i__d〇的重置持 鲁 續時間Toff的方式有很多,較常見的方法是藉由偵測 輔助線圈Laux上的電壓Vaux的膝值來取得,如圖3 的波形26所示。重置持續時間偵測器46包括膝值電 路52偵測電壓Vaux的膝值產生膝值信號SK,正反器54 根據控制信號Vgs的反相信號Vgs_B及膝值信號SK決定信 號Scl ’比較器56比較電壓Vaux及預設值Vrefl產生信號 Sc2 ’及閘58根據信號Scl及Sc2產生信號Sc3,反相器60 根據信號Sc3產生信號Sc4。 • 圖5係圖4的電路的波形圖,其中波形62為信號The output current sensing device includes a sampling and maintaining circuit 4 〇 sampling sensing terminal cs voltage Vcs peak generating signal Vcs pk, reset duration detector 46 detecting reset The duration Toff generates signals Sc3 and Sc4, the buffer 42 generates a signal Sc5 according to the numbers Vcs_pk, Sc3, and Sc4, and the low pass [S 8 201113531 filter 44 filters the wave signal Sc5 to generate a sensing signal related to the output current ι〇 Io_signa In the sample and hold circuit 40, the switch S2 is connected between the sensing terminal CS and the capacitor Cshl, and the control signal VgS controls the switching of the switch S2 to sample the peak value of the voltage Vcs. In order to avoid the influence of the glitch when the power switch S1 is just turned on, the switch S3 is connected in parallel with the capacitor Cshl, and the leading edge occlusion signal LEB switches the switch S3. There are many ways to detect the reset current of the induced current i__d〇 in the DCM operation. The more common method is to detect the knee value of the voltage Vaux on the auxiliary coil Laux, as shown in the waveform of Figure 3. 26 is shown. The reset duration detector 46 includes the knee value detecting voltage Vaux of the knee value circuit 52 to generate the knee value signal SK, and the flip-flop 54 determines the signal Scl 'comparator according to the inverted signal Vgs_B of the control signal Vgs and the knee value signal SK. The comparison voltage Vaux and the preset value Vref1 generate the signal Sc2' and the gate 58 generates the signal Sc3 based on the signals Sc1 and Sc2, and the inverter 60 generates the signal Sc4 based on the signal Sc3. • Figure 5 is a waveform diagram of the circuit of Figure 4, where waveform 62 is a signal

Vgs_B ’波形64為膝值信號SK,波形66為信號Scl,波形 68為信號Sc2,波形70為信號Sc3,波形72為信號Sc5。參 照圖4及圖5’在時間t5時,如波形62及66所示,信號Vgs_B 轉為尚準位,故正反器52輸出端q的信號scl也轉為高準 位。在時間t7時,如波形64及66所示,膝值電路50偵測 到電壓Vaux的膝值,因而產生膝值信號sk給正反器52的 重置端C而重置信號Scl。一般來說,感應電流的重 置持續時間Toff是從峰值jjQO-pk降至〇的時間。然 201113531 而,如圖3的時間t2至t3所示,在控制信號Vgs轉為低準 位後,還需要一段時間感應電流I_Do才由峰值I_Do_pk 開始下降。因此,為了得到較正確的重置持續時間 Toff,重置持續時間偵測器46利用比較器54比較電 壓Vaux及預設值Vrefl。在此實施例中,預設值Vrefl 為0,當電壓Vaux大於0時,如圖5的時間t6所示, 信號Sc2轉為高準位,在時間t8時,電壓Vaux小於 0,因此《s號Sc2轉為低準位,如波形68所示。最後 鲁 再利用及閘58根據信號Sc 1及Sc2產生信號Sc3,如 波形70所示,信號Sc3的週期為Ts,信號Sc3的工 作時間幾乎等於重置持續時間T〇ff。事實上時間t2至 t3疋相當短的’幾可忽略不計,因此也可以省略重置 持續時間偵測器46中的比較器54跟及閘56。 參照圖4及圖5,在緩衝器42中,放大器48將來 自取樣及維持電路40的信號Vcsjk放大K2倍,開 • 關S4連接在放大器牝及緩衝器42的輸出端50之 間’開關S5連接在緩衝器42的輪出端5〇及地端qnd 之間,來自重置持續時間偵測器46的信號Sc3及Sc4 分別切換開關S 4及S 5,因而在緩衝器4 2的輸出端5 〇 產生彳s號Se5,如波形72所示。信號Sc5的峰值為 K2xVcs一pk,週期為Ts,工作時間為T〇ff。低通濾波 器44濾波信號Sc5產生感測信號 公式3 I〇_signal=K^xVcs—pkxToff/Ts。 201113531 從圖2可看出,信號Vcs_pk=Ids_pkxRl,故公式3可改寫 為The Vgs_B' waveform 64 is the knee value signal SK, the waveform 66 is the signal Sc1, the waveform 68 is the signal Sc2, the waveform 70 is the signal Sc3, and the waveform 72 is the signal Sc5. Referring to Figures 4 and 5' at time t5, as shown by waveforms 62 and 66, signal Vgs_B is switched to a level, so that signal scl at output q of flip-flop 52 also transitions to a high level. At time t7, as indicated by waveforms 64 and 66, knee circuit 50 detects the knee value of voltage Vaux, thereby generating knee signal sk to reset terminal C of flip flop 52 and reset signal Scl. In general, the reset current duration Toff of the induced current is the time from the peak jjQO-pk to 〇. However, as shown in time t2 to t3 of Fig. 3, after the control signal Vgs is turned to the low level, it takes a period of time for the induced current I_Do to start falling from the peak I_Do_pk. Therefore, in order to obtain a more accurate reset duration Toff, the reset duration detector 46 compares the voltage Vaux with the preset value Vref1 using the comparator 54. In this embodiment, the preset value Vref1 is 0. When the voltage Vaux is greater than 0, as shown by time t6 of FIG. 5, the signal Sc2 is turned to a high level, and at time t8, the voltage Vaux is less than 0, so "s The number Sc2 changes to a low level as shown by waveform 68. Finally, the re-use and gate 58 generate a signal Sc3 based on the signals Sc 1 and Sc2. As shown by the waveform 70, the period of the signal Sc3 is Ts, and the operation time of the signal Sc3 is almost equal to the reset duration T〇ff. In fact, the time t2 to t3 疋 is relatively short, and can be ignored, so that the comparator 54 in the reset duration detector 46 can be omitted. Referring to Figures 4 and 5, in the buffer 42, the amplifier 48 amplifies the signal Vcsjk from the sample and hold circuit 40 by K2, and the switch S4 is connected between the amplifier 牝 and the output 50 of the buffer 42 'switch S5 Connected between the round end 5〇 and the ground end qnd of the buffer 42, the signals Sc3 and Sc4 from the reset duration detector 46 switch the switches S4 and S5, respectively, and thus at the output of the buffer 42. 5 〇 produces 彳s number Se5 as shown by waveform 72. The peak value of the signal Sc5 is K2xVcs_pk, the period is Ts, and the working time is T〇ff. The low pass filter 44 filters the signal Sc5 to generate a sensing signal. Equation 3 I〇_signal=K^xVcs_pkxToff/Ts. 201113531 As can be seen from Figure 2, the signal Vcs_pk = Ids_pkxRl, so Equation 3 can be rewritten as

Io_signal=K3><Ids_pkxToff/Ts » 公式 4 其中K3=K2xRl。從公式2及公式4可知,感測信號 Io_signal與輸出電流1〇具有比例關係,因此可以藉 • 由感測信號Io_signal得知輸出電流1〇的變化。 圖6係圖2的驰返式轉換器操作在連續電流模式 (Continuous Current Mode; CCM)的波形圖,其中波形80為控 制信號Vgs,波形81為電壓Vaux,波形82為通過二極體 Do的感應電流I_Do,波形84為前緣遮蔽信號LEB,波形 86為信號LEB_D,波形88為緩衝器輸出端50的信號Sc5, 波形90為感測信號Io_signal。由波形82可知,操作在CCM φ 的馳返式轉換器的輸出電流Io_signal=K3><Ids_pkxToff/Ts » Equation 4 where K3=K2xRl. It can be seen from Equation 2 and Equation 4 that the sense signal Io_signal has a proportional relationship with the output current 1〇, so that the change of the output current 1〇 can be known by the sense signal Io_signal. 6 is a waveform diagram of the continuous current mode (CCM) of the flyback converter of FIG. 2, wherein the waveform 80 is the control signal Vgs, the waveform 81 is the voltage Vaux, and the waveform 82 is the diode Do. The induced current I_Do, the waveform 84 is the leading edge masking signal LEB, the waveform 86 is the signal LEB_D, the waveform 88 is the signal Sc5 of the buffer output 50, and the waveform 90 is the sensing signal Io_signal. As can be seen from waveform 82, the output current of the flyback converter operating at CCM φ

Io=0.5x(Ids_pk+Ids_valley)xNp/Ns><Toff/Ts » 公式 5 其中Ids_valley為電流Ids的谷值。由於Np及Ns為定值, 因此公式5可改寫為Io = 0.5x (Ids_pk + Ids_valley) x Np / Ns > Toff / Ts » Equation 5 where Ids_valley is the valley of the current Ids. Since Np and Ns are fixed values, Equation 5 can be rewritten as

Io=Klx(Ids_pk+Ids_valley)xTofE/Ts。 公式 6 11 201113531 如波形80及82所示’當驰返式轉換器操作在ccm時,感 應電流I』。的重置持續咖TGff幾料於控舰號¥的 非工作時間’因此可以直接用控制信號Vgs取得時間Toff。 圖7係本發明的輸出電流感測裝置的第二實施例,其應 用在CCM馳返式轉換器。圖7的輸出錢感測裝置與圖4 的電路同樣包括取樣及維持電路40以及緩衝器42,此外其 還包括延遲器92、取樣及維持電路94、加法器96及二階低 通濾波器98。在取樣及維持電路94中,開關S6的一端經開 關S2連接到感測端CS,而另一端則連接到電容Csh2,信號 LEB一D控制開關S6切換以取樣電壓vcs的谷值產生信號Io=Klx(Ids_pk+Ids_valley)xTofE/Ts. Equation 6 11 201113531 as shown in waveforms 80 and 82 'When the flyback converter operates at ccm, the current I is sensed. The reset continuation of the coffee TGff is determined by the non-working time of the control ship number ** so that the time Toff can be obtained directly with the control signal Vgs. Figure 7 is a second embodiment of the output current sensing device of the present invention applied to a CCM flyback converter. The output money sensing device of FIG. 7 includes the sample and hold circuit 40 and the buffer 42 as well as the circuit of FIG. 4, and further includes a delay 92, a sample and hold circuit 94, an adder 96, and a second-order low pass filter 98. In the sampling and sustaining circuit 94, one end of the switch S6 is connected to the sensing terminal CS via the switch S2, and the other end is connected to the capacitor Csh2, and the signal LEB_D is controlled by the switch S6 to generate a signal by the valley of the sampling voltage vcs.

Vcs_valley。如前所述,在功率開關si剛打開時,電壓vcs 可能產生突波’為了避免取樣及維持電路94因突波而出現不 正確的取樣結果’利用延遲器92延遲前緣遮蔽信號LEB產 生信號LEB_D ’使取樣及維持電路94在前緣遮蔽信號LEB 結束後才對電壓Vcs取樣’如圖6的波形84及86所示。加 法器96結合信號Vcs_pk及Vcs_valley產生信號Vadd。在緩 衝器42中,放大器48將信號Vadd放大K2倍,開關 S4及S5分別因應控制信號Vgs及其反相信號Vgs_B 而切換,因而在緩衝器42的輸出端50產生信號Sc5, 如波形 88 所示。信號 Sc5 的峰值為 K2x(Vcs_pk+Vcs_valley),週期為 Ts,工作時間為 Toff。二階低通濾波器98濾波信號Sc5產生感測信號Vcs_valley. As mentioned before, when the power switch si is just turned on, the voltage vcs may generate a surge 'to avoid sampling and maintaining the circuit 94 from incorrect sampling due to the glitch'. The delay is used to delay the leading edge occlusion signal LEB to generate a signal. LEB_D' causes sample and hold circuit 94 to sample voltage Vcs after the leading edge masking signal LEB has ended, as shown by waveforms 84 and 86 of FIG. Adder 96 combines signals Vcs_pk and Vcs_valley to generate signal Vadd. In the buffer 42, the amplifier 48 amplifies the signal Vadd by K2, and the switches S4 and S5 are switched in response to the control signal Vgs and its inverted signal Vgs_B, respectively, thereby generating a signal Sc5 at the output 50 of the buffer 42, as in the waveform 88. Show. The peak value of the signal Sc5 is K2x (Vcs_pk+Vcs_valley), the period is Ts, and the working time is Toff. The second-order low-pass filter 98 filters the signal Sc5 to generate a sensing signal

Io_signal=K2x(Vcs_pk+Vcs_valley)xToff/Ts。公式' 12 201113531 由於"is 说 Vcs pk=Ids pkxRl , 而传號 \^3一乂&116丫=1如一乂&14>^111,故公式7可改寫為Io_signal=K2x(Vcs_pk+Vcs_valley)xToff/Ts. The formula ' 12 201113531 Since 'is said Vcs pk=Ids pkxRl , and the number \^3 乂 &116丫=1 as a 乂&14>^111, the formula 7 can be rewritten as

Io—signal=K3x(Ids_pk+Ids_valley)xToff/Ts。 公式 8 從公式6及公式8可知,感測信號i〇—signai與輸出電 流Ιο具有比例關係,因此可以藉由感測信號I〇_signal 得知輸出電流Ιο的變化。 圖8係本發明的輸出電流感測裝置的第三實施例,其 應用在可以操作在DCM及CCM的馳返式轉換器。圖8的輸 出電流感測裝置除了包括圖4的取樣儿維持電路4〇、緩衝器 42及重置持續時間侧器46外,還包括圖7的延遲器%、 取樣及維持電路94、加法器96及二階低通濾波器98。參照 圖3及圖8 ’當馳返式轉換器操作在DCM時,由於電流工如 的谷值為〇’如波形28所示,因此電壓Vcs的谷值亦為〇, =以加法H 96的輸出Vadd=Ves』k,同時重置持續時間 态46藉由偵測辅助線圈Laux上的電廢Vaux取得週期為、^ 且工作時間等於重置持續時間Toff的信號Sc3及其S 相L號Sc4。緩衝器42根據信號Vadd、Sc3及Sc4 產生信號Sc5。信號Sc5如圖5的波形72所示,其具 有週期Ts、工作時間Toff以及♦值K2xVcs—pk。最 後一階低通濾波器98濾波信Sc5產生與輸出電流工 相關的感測信號lG—signa卜如公式4所示。^ 13 201113531 >圖6及圖8 ’當馳返式轉換器操作在cCM時,取樣 及維持電路4G及94分別取樣電壓Ves的峰值及谷值,所以 力法器96的輪出Vadd=Vcs』k+Vcs_valley。如波形81所 不由於電壓Vaux沒有谷值,因此重置持續時間该測 器46中正反器54的輸出Scl將維持在高準位信號 S c 3將由信號s c 2決定。假設比較器5 6反相輸入的預 6又值Vrefl為〇,從波形81及82可知信號以2的週 期為Ts且工作時間幾乎等於感應電流^Do的重置持 續時間Toff,因此信號Sc3的週期為Ts且工作時間 為Toff。緩衝器42根據信號Vadd、Sc3及Sc4產生 仏號Sc5,如圖6的波形88所示,其具有週期ts、 工作時間Toff以及峰值K2x(Vcs_pk+Vcs_valley)。最 後二階低通濾波器98濾波信Sc5產生與輸出電流ι0 相關的感測信號I〇_signal,如公式8所示。 本發明的輸出電流感測裝置可以更精確的感測負載狀 態’其決定的感測信號1〇一signal可以用來實現許多應用,例 如,過載保護、定電流控制、頻率調節控制、前端轉換器的 電壓調節以及負載狀態指示器等。圖9係利用本發明的輸出 電流感測裝置實現過載保護的實施例,其包括比較器1〇〇比 較感測信號I〇_signal及預設值Vref2,以及延遲器102連接 比較器100。當感測信號Io_signal持續大於預設值Vref2超 過一段預期時間,延遲器102送出故障信號Fault去關閉馳返 式轉換器。圖10係利用本發明的輸出電流感測裝置實現定電 流控制的實施例,其與圖2的電路同樣包含PWM控制器2〇、 201113531 變壓器T1及功率開關SI,此外還包括定電壓迴路106偵測 輸出電壓Vo產生回授信號給PWM控制器20的回授端Vfb, 以及定電流迴路104根據感測信號I〇_signal調整回授端Vfb 的迴授信號以達成定電流控制。在此實施例中,定電流迴路 104包括電阻Reel及Rcc2分壓感測信號i〇_signai產生分壓 電壓控制通過電晶體Qcc的電流,進而調整回授端vfb的迴 授信號。當感測信號Io_signal上升時,通過電晶體qcc的電 流增加’因此回授端Vfb的迴授信號下降以使輸出電流1〇下 降;相反的,當感測信號Io_signal下降時,回授端vfb的迴 授信號上升以使輸出電流Ιο上升。由於感測信號I〇_signal 與輸出電流Ιο相關,因此其與負載狀態亦相關,所以利用感 測信號1〇一signal調節功率開關S1的切換頻率,可以在重載 時提鬲切換頻率以提高驰返式轉換器的效能,並在輕載時減 少切換頻率以減少切換損失’如圖11中切換頻率與感測信號 1〇一 signal的關係曲線所示。圖12係利用本發明的輸出電流感 測裝置實現前端轉換器電壓調節的實施例,其與圖2的電路 同樣包括PWM控制器20、變壓器T1及功率開關S1。在此 馳返式轉換器中是利用前端轉換器108將交流電壓vin_AC 轉換為直流電壓Vin_Dc供給變壓器τι的一次側線圈^, 電阻R2與由電阻R3、R4及電晶體^組成的等效電阻11〇 分壓電壓Vin_DC產㈣授錢Vpfe—&給麵賴器ι〇8 以調節電壓Vin_DO感測信號I〇〜signal控制電晶體以的切 換以改變等效電阻110的阻值,進而調節電壓Vin—Dc。參照 圖12,在PWM控繼20中包含負載狀態指示器用以關閉 15 201113531 前端轉換器108。負載狀態指示器如圖13所示,其包括比較 器112比較感測信號1〇一Signal及預設值Vref3,並將比較結 果送至延遲器114。當感測信號I〇-Signal持續大於預設值 Vref3超過-段預期時間,延遲器114送出負載狀態信號Io-signal=K3x(Ids_pk+Ids_valley)xToff/Ts. Equation 8 From Equations 6 and 8, it can be seen that the sense signal i〇-signai has a proportional relationship with the output current Ιο, so that the change of the output current Ιο can be known by the sense signal I〇_signal. Figure 8 is a third embodiment of the output current sensing device of the present invention for use in a flyback converter that can operate in DCM and CCM. The output current sensing device of FIG. 8 includes the delay device %, the sample and hold circuit 94, and the adder of FIG. 7 in addition to the sample hold circuit 4A of FIG. 4, the buffer 42 and the reset duration side 46. 96 and second order low pass filter 98. Referring to Figures 3 and 8 'When the flyback converter operates in DCM, since the valley value of the current operation is 〇' as shown by waveform 28, the valley of the voltage Vcs is also 〇, = by addition H 96 Output Vadd=Ves』k, while resetting the duration state 46 by detecting the electrical waste Vaux on the auxiliary coil Laux, obtaining the signal Sc3 whose period is equal to the reset duration Toff and its S phase L number Sc4 . The buffer 42 generates a signal Sc5 based on the signals Vadd, Sc3, and Sc4. Signal Sc5 is shown as waveform 72 of Fig. 5 and has a period Ts, an operating time Toff, and a value ♦ K2xVcs_pk. The last-order low-pass filter 98 filter signal Sc5 produces a sensed signal associated with the output current, lG-signa, as shown in Equation 4. ^ 13 201113531 > Fig. 6 and Fig. 8 'When the flyback converter operates at cCM, the sampling and sustaining circuits 4G and 94 respectively sample the peaks and valleys of the voltage Ves, so the round of the force processor 96 is Vadd=Vcs 』k+Vcs_valley. As the waveform 81 does not have a valley value due to the voltage Vaux, the reset duration of the output Scl of the flip-flop 54 in the detector 46 will remain at the high level signal S c 3 which will be determined by the signal s c 2 . Assuming that the pre-6 value Vrefl of the inverting input of the comparator 56 is 〇, it can be seen from the waveforms 81 and 82 that the period of the signal is Ts and the operating time is almost equal to the reset duration Toff of the induced current ^Do, so the signal Sc3 The period is Ts and the working time is Toff. The buffer 42 generates an apostrophe Sc5 based on the signals Vadd, Sc3, and Sc4, as shown by the waveform 88 of Fig. 6, having a period ts, an operating time Toff, and a peak K2x (Vcs_pk + Vcs_valley). The last second-order low-pass filter 98 filter signal Sc5 produces a sense signal I〇_signal associated with the output current ι0, as shown in Equation 8. The output current sensing device of the present invention can more accurately sense the load state. The determined sensing signal can be used to implement many applications, for example, overload protection, constant current control, frequency adjustment control, front-end converter. Voltage regulation and load status indicators, etc. 9 is an embodiment of an overload protection using the output current sensing device of the present invention, which includes a comparator 1 〇〇 compare sense signal I 〇 — signal and a preset value V ref 2 , and a delay device 102 connected to the comparator 100 . When the sense signal Io_signal continues to be greater than the preset value Vref2 for more than a predetermined period of time, the delayer 102 sends a fault signal Fault to turn off the flyback converter. 10 is an embodiment of a constant current control using the output current sensing device of the present invention. The circuit of FIG. 2 includes a PWM controller 2, a 201113531 transformer T1 and a power switch SI, and a constant voltage loop 106. The measured output voltage Vo generates a feedback signal to the feedback terminal Vfb of the PWM controller 20, and the constant current loop 104 adjusts the feedback signal of the feedback terminal Vfb according to the sensing signal I〇_signal to achieve constant current control. In this embodiment, the constant current loop 104 includes resistor Reel and Rcc2 voltage-divided sensing signals i〇_signai to generate a divided voltage to control the current through the transistor Qcc, thereby adjusting the feedback signal of the feedback terminal vfb. When the sense signal Io_signal rises, the current through the transistor qcc increases 'so the feedback signal of the feedback terminal Vfb drops to decrease the output current 1〇; conversely, when the sense signal Io_signal falls, the feedback terminal vfb The feedback signal rises to cause the output current to rise. Since the sensing signal I〇_signal is related to the output current Ιο, it is also related to the load state. Therefore, by using the sensing signal 1〇 signal to adjust the switching frequency of the power switch S1, the switching frequency can be improved during heavy loading to improve The performance of the flyback converter, and reduce the switching frequency at light load to reduce the switching loss' as shown in the relationship between the switching frequency and the sensing signal in Figure 11. Figure 12 is an embodiment of a front-end converter voltage regulation using the output current sensing device of the present invention, which, in addition to the circuit of Figure 2, includes a PWM controller 20, a transformer T1, and a power switch S1. In this flyback converter, the front end converter 108 converts the alternating current voltage vin_AC into a direct current voltage Vin_Dc to the primary side coil of the transformer τι, the resistor R2 and an equivalent resistor 11 composed of the resistors R3, R4 and the transistor ^ 〇Divided voltage Vin_DC production (4) Grant Vpfe-& to the surface device ι〇8 to adjust the voltage Vin_DO sensing signal I〇~signal control the switching of the transistor to change the resistance of the equivalent resistance 110, and then adjust the voltage Vin—Dc. Referring to Figure 12, a load status indicator is included in the PWM control 20 to turn off the 15 201113531 front end converter 108. The load status indicator is shown in Figure 13, which includes the comparator 112 comparing the sense signal 1 - Signal and the preset value Vref3 and sending the comparison result to the delay 114. When the sensing signal I 〇 -Signal continues to be greater than the preset value Vref3 exceeds the expected time of the segment, the delay device 114 sends a load status signal

Status以_前端轉換器,進而達成良好的綠色電源效 能。 以上對於本發明之較佳實施綱作的敘述係為闡明之目 ❸’而無祕定本發鴨確地為所揭露的形式,基於以上的 教導或從本發_實施例學習而作修改或變化是可能的,實 施例係為解說本發明的顧以及_ f該項技術者以各種實 施例利用本發明在實際翻上而選擇及敘述,本發明的技術 思想企圖㈣下的申請專利範圍及其均等來決定。 【圖式簡單說明】 圖1係習知的馳返式切換式電壓轉換器; 鲁 圖2係驰返式轉換器; 圖3係圖2的驰返式轉換器操作在DCM的波形圖; 圖4係本發明的第-實施例; 圖5係圖4的電路的波形圖; 圖係圖2的驰返式轉換器操作在CCM的波形圖; 圖係本發明的輪出電流感測裝置的第二實施例; 圖9係本發明的輪出電流感測裝置的第三實施例; • ^圖,.係利用本發明的輪出電流感測裝置實現過載保護的 201113531 圖ίο係利用本發明的輸出電流感測裝置實現定電流控 制的實施例; 圖11係切換頻率與感測信號I〇_signal的關係曲線; 圖12係利用本發明的輸出電流感測裝置實現前端轉換 器電壓調節的實施例;以及 圖13係利用本發明的輸出電流感測裝置實現負載狀態 指示器的實施例。 【主要元件符號說明】 10 PWM控制器 12 光輛合器 14 穩壓器 20 PWM控制器 22 電壓Vds的波形 24 控制信號Vgs的波形 26 電壓Vaux的波形 28 電流Ids的波形 30 感應電流I_Do的波形 32 前緣遮蔽信號LEB的波形 40 取樣及維持電路 42 缓衝器 44 低通濾波器 46 重置持續時間偵測器 48 放大器 17 201113531Status is _ front-end converter, which achieves good green power efficiency. The above description of the preferred embodiments of the present invention is intended to be illustrative of the invention and is not intended to be in the form of the disclosure, and is modified or changed based on the above teachings or learning from the present invention. It is possible that the embodiments are for explaining the invention and that the skilled person selects and narrates in actual use of the present invention in various embodiments, and the technical scope of the present invention seeks (4) Equal to decide. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conventional flyback switching voltage converter; Lutu 2 is a flyback converter; FIG. 3 is a waveform diagram of the flyback converter operating in DCM of FIG. 2; 4 is a waveform diagram of the circuit of FIG. 4; FIG. 2 is a waveform diagram of the flyback converter of FIG. 2 operating at CCM; FIG. 2 is a diagram of the wheel current sensing device of the present invention Second Embodiment; FIG. 9 is a third embodiment of the wheel current sensing device of the present invention; FIG. 9 is a diagram showing the use of the wheel current sensing device of the present invention to achieve overload protection. The output current sensing device implements a constant current control embodiment; FIG. 11 is a relationship between the switching frequency and the sensing signal I〇_signal; FIG. 12 is a front-end converter voltage adjustment using the output current sensing device of the present invention. Embodiments; and Figure 13 is an embodiment of implementing a load status indicator using the output current sensing device of the present invention. [Main component symbol description] 10 PWM controller 12 Optical clutch 14 Voltage regulator 20 PWM controller 22 Voltage Vds waveform 24 Control signal Vgs waveform 26 Voltage Vaux waveform 28 Current Ids waveform 30 Induced current I_Do waveform 32 Waveform of leading edge masking signal LEB 40 Sample and hold circuit 42 Buffer 44 Low pass filter 46 Reset duration detector 48 Amplifier 17 201113531

50 緩衝器的輸出端 52 膝值電路 54 正反器 56 比較器 58 及閘 60 反相器 62 信號Vgs_B的波形 64 膝值信號SK的波形 66 信號Scl的波形 68 信號Sc2的波形 70 信號Sc3的波形 72 信號Sc5的波形 80 控制信號Vgs的波形 81 電壓Vaux的波形 82 感應電流I_Do的波形 84 前緣遮蔽信號LEB的波形 86 信號LEB_D的波形 88 信號Sc5的波形 90 感測信號I〇_signal的波形 92 延遲器 94 取樣及維持電路 96 加法器 98 二階低通濾波器 100 比較器 18 201113531 102 廷遲器 104 定電流迴路 106 定電壓迴路 108 前端轉換器 110 等效電阻 112 比較器 114 延遲器50 Buffer output 52 Knee circuit 54 Rectifier 56 Comparator 58 and Gate 60 Inverter 62 Signal Vgs_B waveform 64 Knee signal SK waveform 66 Signal Scl waveform 68 Signal Sc2 waveform 70 Signal Sc3 Waveform 72 Signal Sc5 waveform 80 Control signal Vgs waveform 81 Voltage Vaux waveform 82 Induced current I_Do waveform 84 Front edge masking signal LEB waveform 86 Signal LEB_D waveform 88 Signal Sc5 waveform 90 Sensing signal I〇_signal Waveform 92 Delay 94 Sample and Hold Circuit 96 Adder 98 Second-Order Low-Pass Filter 100 Comparator 18 201113531 102 Tin-Chip 104 Constant Current Loop 106 Constant Voltage Loop 108 Front-End Converter 110 Equivalent Resistor 112 Comparator 114 Delayer

Claims (1)

201113531 七、申請專利範圍: 1. 一種應用於馳返式轉換器一次侧的輸出電流感測裝置,該 驰返式轉換器包括一次側線圈、二次側線圈以及連接該一 次側線圈的功率開關因應控制信號切換以使該二次側線圈 產生感應電流,該輸出電流感測裝置包括: 取樣及維持電路’取樣與該一次侧線圈的電流相關的第 一“號的夺值產生第二信號; 偵測器’偵測該感應電流的重置持續時間產生第三信 號’該第三信號的週期等於該控制信號的週期,且 工作時間等於該感應電流的重置持續時間; 缓衝器連接該取樣及維持電路以及偵測器,根據該第二 仏5虎及第三信號產生第四信號,該第四信號的週期 及工作時間與該第三信號相同,且峰值由該第二信 號決定;以及 低通濾波器連接該緩衝器,濾波該第四信號產生與該驰 返式轉換器之輸出電流相關的感測信號。 2. 如請求項1之輸出電流感測裝置,其中該取樣及維持電路 包括: 輸入端,接收該第一信號; 電容; 開關連接在雜人端及電容之fa1,義該㈣信號使該 第一信號對該電容充電而產生該第二信號。 3. 如請求項1之輸出電流測裝置,更包括一輔助線_接該 一次側線圈產生—電壓供該偵測器決定該第三信號。 20 201113531 4.如請求項3之輸出電流感測裝置,其中該偵測器包括. 膝值電路連接該輔助線圈,偵測該輔助線圈上的電壓膝 值產生膝值信號; 正反器連接該膝值電路,根據與該控制信號反相的第五 信號以及該膝值信號決定第六信號; 比較器連接該辅助線圈,比較該輔助線圈上的電壓及預 設值產生第七信號;以及201113531 VII. Patent application scope: 1. An output current sensing device applied to the primary side of a flyback converter, the flyback converter including a primary side coil, a secondary side coil, and a power switch connected to the primary side coil In response to the control signal switching to cause the secondary side coil to generate an induced current, the output current sensing device includes: the sampling and sustaining circuit 'sampling the first "number of values associated with the current of the primary side coil to generate a second signal; The detector 'detects the reset duration of the induced current to generate a third signal'. The period of the third signal is equal to the period of the control signal, and the working time is equal to the reset duration of the induced current; The sampling and maintaining circuit and the detector generate a fourth signal according to the second and third signals, wherein the period and the working time of the fourth signal are the same as the third signal, and the peak value is determined by the second signal; And a low pass filter is coupled to the buffer, and filtering the fourth signal to generate a sense signal associated with an output current of the flyback converter. The output current sensing device of claim 1, wherein the sampling and maintaining circuit comprises: an input terminal, receiving the first signal; a capacitor; a switch connected to the fa1 of the hybrid terminal and the capacitor, wherein the (four) signal makes the first signal The second signal is generated by charging the capacitor. 3. The output current measuring device of claim 1 further includes an auxiliary line _ connected to the primary side coil to generate a voltage for the detector to determine the third signal. 20 201113531 4. The output current sensing device of claim 3, wherein the detector comprises: a knee value circuit connected to the auxiliary coil, detecting a voltage knee value on the auxiliary coil to generate a knee value signal; the flip-flop connecting the knee value a circuit, determining a sixth signal according to a fifth signal inverted from the control signal and the knee value signal; a comparator connecting the auxiliary coil, comparing a voltage on the auxiliary coil with a preset value to generate a seventh signal; 及閘連接該正反器及比較器,根據該第六及第七信號產 生該第三信號。 5·如請求項3之輸出電流感測袭置,其中該偵測器包括: 膝值電路連接該輔助線圈’债測該辅助線圈上的電壓膝 值產生膝值信號;以及 正反器連接該膝值電路,根據與該控制信號反相的第五 信號以及該膝值信號決定該第三信號。 如明求項1之輸出電流感測裳置,其中該緩衝器包括: 放大器連接該取樣及維持電路,放大該第二信號產生第 五信號; 第開關連接在該放大器及該緩衝器的輸出端之間;以 及 第-開關連接在錢衝器的輪出端及地端之間; 、中’对—及第二開咖應該第三信號切換以在該緩 衝器的輸出端產生該第四信號。 二次側線圈以及連接該一 ==於雛!| —力⑽輸㈣减測方法,該 馳返式轉換器包括一次側線圈 21 201113531 次侧線圈的功率開關因應控制信號切換以使該二次側線圈 產生感應電流’該輪出電流感測方法包括下列步驟: (A) 感測該一次側線圈的電流產生第一信號; (B) 取樣該第一信號之峰值產生第二信號; (C) 偵測該感應電流的重置持續時間產生第三信號,該第 二信號的週期等於該控制信號的週期,且工作時間 等於該感應電流的重置持續時間; (D) 根據該第二信號及第三信號產生第四信號,該第四信 號的週期及工作時間與該第三信號相同,且峰值由 該第二信號決定;以及 (E) 濾波該第四信號產生與該馳返式轉換器之輪出電流 相關的感測信號。 8·如請求項7之輸出電流感測方法,其中該步驟B包括藉由 該控制彳§號控制該第一信號對電容的充電以得到該第二俨 號。 ° 9, 如請求項7之輸出電流感測方法,其中該步驟c包括根據 該控制信號及一與該一次側線圈耦接的輔助線圈上的電壓 決定該第三信號。 10. 如請求項9之輸出電流感測方法,其中該步驟c包括: 偵測該辅助線圈上的電壓膝值產生膝值信號; 根據與該控制信號反相的第五信號以及該膝值信號決定 第六信號; 比較該輔助線圈上的電壓及預設值產生第七信號;以及 根據該第六及第七信號產生該第三信號。 22 201113531 11.如請求項9之輸出電流感測方法,其中該步驟c包括: 偵測該辅助線圈上的電壓膝值產生膝值信號; 根據與該控制信號反相的第五信號以及該膝值信號決定 該第三信號。 12. 如請求項7之輸出電流感測方法,其中該步驟D包括:And a gate connected to the flip-flop and the comparator, and generating the third signal according to the sixth and seventh signals. 5. The output current sensing device of claim 3, wherein the detector comprises: a knee value circuit connecting the auxiliary coil 'debt measuring a voltage knee value on the auxiliary coil to generate a knee value signal; and a flip-flop connection The knee value circuit determines the third signal based on the fifth signal inverted from the control signal and the knee value signal. The output current sensing device of claim 1, wherein the buffer comprises: an amplifier connected to the sampling and maintaining circuit, the second signal is amplified to generate a fifth signal; and the switch is connected to the amplifier and the output end of the buffer And the first switch is connected between the round and the ground of the money punch; the middle 'pair' and the second open coffee should switch the third signal to generate the fourth signal at the output of the buffer . The secondary side coil and the connection of the one ==Yu!|-force (10) input (four) subtraction method, the flyback converter includes the primary side coil 21, the power switch of the 201113531 secondary side coil is switched according to the control signal to make the second The side coil generates an induced current'. The round current sensing method comprises the following steps: (A) sensing a current of the primary side coil to generate a first signal; (B) sampling a peak of the first signal to generate a second signal; (C) Detecting a reset duration of the induced current to generate a third signal, the period of the second signal being equal to a period of the control signal, and the working time being equal to a reset duration of the induced current; (D) according to the second signal And the third signal generates a fourth signal, the period and working time of the fourth signal are the same as the third signal, and the peak value is determined by the second signal; and (E) filtering the fourth signal to generate the reciprocal conversion The sense signal associated with the current of the wheel. 8. The output current sensing method of claim 7, wherein the step B comprises controlling the charging of the capacitor by the first signal by the control 彳§ to obtain the second apostrophe. The output current sensing method of claim 7, wherein the step c comprises determining the third signal according to the control signal and a voltage on the auxiliary coil coupled to the primary side coil. 10. The output current sensing method of claim 9, wherein the step c comprises: detecting a voltage knee value on the auxiliary coil to generate a knee value signal; and a fifth signal inverted from the control signal and the knee value signal Determining a sixth signal; comparing the voltage on the auxiliary coil with a preset value to generate a seventh signal; and generating the third signal according to the sixth and seventh signals. 22 201113531 11. The output current sensing method of claim 9, wherein the step c comprises: detecting a voltage knee value on the auxiliary coil to generate a knee value signal; according to a fifth signal inverted from the control signal and the knee The value signal determines the third signal. 12. The output current sensing method of claim 7, wherein the step D comprises: 放大5亥第一信號產生第五信號;以及 根據該第三信號切換一端接收該第五信號的開關,以在 該開關的另一端產生該第四信號。 13. —種應用於馳返式轉換器一次側的輸出電流感測裝置,該 驰返式轉換器包括-次侧線圈以及連接該一次側線圈的功 率開關因應控制信號切換,該輸出電流感測裝置包括: 第-取樣及維持電路,取樣與該—次鱗騎電流相關 的第一信號之峰值; 第二取樣及維持電路,取樣該第一信號之谷值; 加法器連接該第-及第二取樣及轉電路,結合該峰值 及谷值產生第二信號; 緩衝器連接該加法器,根據該第二信號及控制信號產生 第三信號,該第三信號的週期肖該控制信號相同, 工作時間與該控制信號的非工作時間相同,且峰值 由該第二信號決定;以及 低通濾波錢接該緩衝器,舰該第三信生與該_ 返式轉換器之輸出電流相關的感測信號。 t S 13之輪出電流感測裝置’其中該第—取樣及維$ 23 201113531 輪入端,接收該第一信號; 電容;以及 開關連接在該輸入端及電容之間,因應該控制信號使該 第一彳§號對該第一電谷充電而取得該第一信號之峰 值。 15·如μ求項13之輸出電流感測裝置,其中該第二取樣及維持 電路包括: ' ' 輸入端,接收該第一信號; 電容;以及 開關連接在該輸入端及電容之間,因應第四信號使該第 一信號對該電容充電而取得該第一信號之谷值。 16. 如請求項13之輸㈣祕職置,其巾賴衝器包括: 放大器連接該加法器,放大該第二信號產生第四信號; 第開關連接在該放大器及緩衝器的輸出端之間;以及 第二開關連接在緩衝器的輸出端及地端之間; 其中,δ亥第一及第二開關因應該控制信號切換以在該緩 衝器的輸出端產生該第三信號。 17. -種制㈣喊讎II—摘的輸丨電流感測方法,該 驰返式轉換器包括一次側線圈以及連接該一次侧線圈的功 率開關因應控制信號切換,該輸出電流感測方法包括下列 步驟: (Α)感測該一次側線圈的電流產生第一信號; (Β)取樣該第一信號之峰值及谷值; (C)將該峰值與該谷值相加產生第二信號; 24 201113531 CD)根_第二錢及㈣錢產生第三錢,該第三信 唬的週期與該控制信號相同,工作時間與該控制信 號的非工作時間相同,且峰值由該第 ° 以及 (E)滤波該第三錄產生與該馳返式轉㈣之輸出電流 相關的感測信號。 二求項17之輸出電流感測方法’其中該步驟b包括:Amplifying the 5th first signal generates a fifth signal; and switching a switch that receives the fifth signal from one end according to the third signal to generate the fourth signal at the other end of the switch. 13. An output current sensing device applied to a primary side of a flyback converter, the flyback converter comprising a secondary side coil and a power switch connected to the primary side coil in response to a control signal switching, the output current sensing The device comprises: a first sampling and maintaining circuit for sampling a peak of a first signal related to the current of the secondary scale; a second sampling and maintaining circuit for sampling a valley of the first signal; an adder connecting the first and the third a second sampling and switching circuit, combined with the peak and the bottom to generate a second signal; a buffer connected to the adder, generating a third signal according to the second signal and the control signal, the third signal has the same period, the control signal is the same, working The time is the same as the non-working time of the control signal, and the peak value is determined by the second signal; and the low-pass filter is connected to the buffer, and the third signal is sensed by the third signal generator and the output current of the _ return converter signal. t S 13 wheel current sensing device 'where the first sampling and dimension $ 23 201113531 wheeled end, receiving the first signal; capacitance; and the switch is connected between the input terminal and the capacitor, due to the control signal The first 彳§ number charges the first electric valley to obtain a peak of the first signal. The output current sensing device of μ, wherein the second sampling and maintaining circuit comprises: ' ' input terminal, receiving the first signal; a capacitor; and a switch connected between the input terminal and the capacitor, corresponding to The fourth signal causes the first signal to charge the capacitor to obtain a valley of the first signal. 16. The input device of claim 13 wherein: the amplifier is coupled to the adder, the second signal is amplified to generate a fourth signal; and the switch is coupled between the amplifier and the output of the buffer. And a second switch connected between the output end of the buffer and the ground; wherein the first switch and the second switch are controlled to switch to generate the third signal at the output of the buffer. 17. - Seed system (4) shouting — II - pick-up current sensing method, the fly-back converter includes a primary side coil and a power switch connected to the primary side coil in response to a control signal switching, the output current sensing method includes The following steps: (Α) sensing the current of the primary side coil to generate a first signal; (Β) sampling the peak and valley of the first signal; (C) adding the peak value to the valley value to generate a second signal; 24 201113531 CD) Root_Second money and (4) Money generates a third money, the period of the third signal is the same as the control signal, the working time is the same as the non-working time of the control signal, and the peak value is the same as the E) Filtering the third recording produces a sensed signal associated with the output current of the flyback (four). The output current sensing method of the second item 17 wherein the step b includes: 藉由該控制錢控_第—信號對第—電容的充電以得 到該第一信號的峰值; 延遲前緣遮蔽信號產生一第四信號;以及 藉由該第四錢控_第—錢對第二電容的充電以得 到該第一信號的谷值。 19. 如請求項17之輪出電流感測方法,其中該步驟D包括: 放大該第二信號產生第四信號;以及Controlling the charge of the first capacitor by the control signal_first signal to obtain the peak of the first signal; delaying the leading edge masking signal to generate a fourth signal; and by using the fourth money control_first-money pair Charging the two capacitors to obtain the valley of the first signal. 19. The method as claimed in claim 17, wherein the step D comprises: amplifying the second signal to generate a fourth signal; 信號決定 根據該控制信號切換一端接收該第四信號的開關,以在 吕亥開關的另一端產生該第三信號。 20. —種應用於馳返式轉換器一次侧的輸出電流感測裝置,該 馳返式轉換器包括一次侧線圈、二次側線圈以及連接該一 •人側線圈的功率開關因應控制信號切換以使該二次侧線圈 產生感應電流,該輸出電流感測裝置包括: 第一取樣及維持電路,取樣與該一次側線圈的電流相關 的第一信號之峰值; 第二取樣及維持電路,取樣該第一信號之谷值; 加法器連接該第一及第二取樣及維持電路’結合該峰值 25 201113531 及谷值產生第二信號; 偵測器,偵測該感應電流的重置持續時間產生第三信 號’該第三信號的週期等於該控制信號的週期,且 工作時間等於該感應電流的重置持續時間; 緩衝器連接該加法器以及偵測器,根據該第二信號及第 二k號產生第四信號,該第四信號的週期及工作時 間與該第三信號相同,且峰值由該第二信號決定; 以及 低通濾波器連接該緩衝器,濾波該第四信號產生與該馳 返式轉換器之輸出電流相關的感測信號。 21. 如請求項20之輸出電流感測裝置,其中該第一取樣及維持 電路包括: 輸入端,接收該第一信號; 電容;以及 開關連接在該輸人端及電容之間’因應該控制信號使該 第一彳§號對該第一電容充電而取得該第一信號之峰 值。 22. 如請求項2〇之輸出電流感測裝置,其中該第二取樣及維持 電路包括: 輸入端,接收該第一信號; 電容;以及 開關連,在該輪人端及電容之間,因應第五信號使該第 號對°亥電谷充電而取得該第一信號之谷值。 23. 如請求項20之輸出電流測裝置,更包括一輔助線_接該 Γ 26 201113531 -次側線圈纽-賴供該_糾找第三信號。 24·如請求項23之輸出電流感測農置,其中該債測器包括: 膝值電路連接助線圈,_棚助線圈上的電壓膝 值產生膝值信號; 、 正反裔’根據與該控制信號反細第五信號以及該膝值 信號決定第六信號; 比較器連接該辅助線圈,比較該辅助線圈上的電壓及預 ^ 設值產生第七信號;以及 及閘連接該正反器及比較器,根據該第六及第七信號產 生該第三信號。 25·如明求項20之輸出電流感測裝置,其中該緩衝器包括: 放大器連接該取樣及維持電路,放大該第二信號產生第 五信號; 第開關,連接在該放大器及緩衝器的輸出端之間;以 及 • 第二開關,連接在緩衝器的輸出端及地端之間; 其中’該第一及第二開關因應該第三信號切換以在該緩 衝器的輸出端產生該第四信號。 26. -種應用於馳返式轉換器—次觸輸㈣越測方法,該 驰返式轉換器包括一次侧線圈、二次侧線圈以及連接該一 次側線圈的功率開關因應控制信號切換以使該二次側線圈 產生感應電流’該輸出電流感測方法包括下列步驟: (A) 感測該一次側線圈的電流產生第一信號; (B) 取樣該第一信號之峰值及谷值; 201113531 (c)將該峰值與該谷值相加產生第二信號; (D) 偵測該感應電流的重置持續時間產生第三传號,▲ ★ 三信號的週_於該控制信號的週期,且工作3 等於該感應電流的重置持續時間; 、曰 (E) 根據該第二信號及第三信號產生第四信號,該第四声 號的週期及I作時間與該第三信號相同, : 該第二信號決定;以及 由The signal determines to switch a switch that receives the fourth signal at one end according to the control signal to generate the third signal at the other end of the Luhai switch. 20. An output current sensing device applied to a primary side of a flyback converter, the flyback converter comprising a primary side coil, a secondary side coil, and a power switch connected to the one side coil to switch according to a control signal In order to cause the secondary side coil to generate an induced current, the output current sensing device includes: a first sampling and maintaining circuit that samples a peak of a first signal related to a current of the primary side coil; a second sampling and sustaining circuit, sampling a valley value of the first signal; an adder connecting the first and second sampling and sustaining circuits 'in combination with the peak 25 201113531 and a valley value to generate a second signal; and a detector for detecting a reset duration of the induced current The third signal 'the period of the third signal is equal to the period of the control signal, and the working time is equal to the reset duration of the induced current; the buffer is connected to the adder and the detector, according to the second signal and the second k No. generating a fourth signal, the period and working time of the fourth signal being the same as the third signal, and the peak value is determined by the second signal; A buffer connected to the filter, filtering the fourth signal to generate an output current to the Chi of the back converter associated sensing signal. 21. The output current sensing device of claim 20, wherein the first sampling and maintaining circuit comprises: an input terminal, receiving the first signal; a capacitor; and a switch connection between the input terminal and the capacitor 'corresponding to control The signal causes the first 彳 § to charge the first capacitor to obtain a peak of the first signal. 22. The output current sensing device of claim 2, wherein the second sampling and maintaining circuit comprises: an input terminal, receiving the first signal; a capacitor; and a switch connection between the human terminal and the capacitor The fifth signal causes the number to charge the valley to obtain the valley of the first signal. 23. The output current measuring device of claim 20, further comprising an auxiliary line _ connected to the Γ 26 201113531 - the secondary side coil button - for the _ rectifying the third signal. 24. The output current sensing device of claim 23, wherein the debt detector comprises: a knee value circuit connecting the help coil, the voltage knee value on the shed assist coil generating a knee value signal; The fifth signal of the control signal and the signal of the knee determine the sixth signal; the comparator is connected to the auxiliary coil, the voltage on the auxiliary coil is compared with the preset value to generate a seventh signal; and the gate is connected to the flip-flop and The comparator generates the third signal according to the sixth and seventh signals. The output current sensing device of claim 20, wherein the buffer comprises: an amplifier connected to the sampling and maintaining circuit, the second signal is amplified to generate a fifth signal; and the switch is connected to the output of the amplifier and the buffer Between the ends; and a second switch connected between the output of the buffer and the ground; wherein 'the first and second switches are switched by the third signal to generate the fourth at the output of the buffer signal. 26. A method for applying a flyback converter-sub-contact (four) over-the-counter, the primary-side coil, the secondary-side coil, and a power switch connected to the primary-side coil are switched in response to a control signal to enable The secondary side coil generates an induced current. The output current sensing method comprises the following steps: (A) sensing a current of the primary side coil to generate a first signal; (B) sampling a peak and a bottom value of the first signal; 201113531 (c) adding the peak value to the valley value to generate a second signal; (D) detecting a reset duration of the induced current to generate a third mark, ▲ ★ a period of the three signals - a period of the control signal, And the operation 3 is equal to the reset duration of the induced current; 曰(E) generates a fourth signal according to the second signal and the third signal, and the period of the fourth sound signal and the time I is the same as the third signal, : the second signal is determined; (F) 滤波該第四錢產生與該馳返式轉換器之輪 相關的感測信號。 机 27.如請求項26之輸出電流感測方法,其中該步驟B包括: 藉由該控制錢控繼第—錢對第_電容的充電以得 到該第—信號的峰值; 于 延遲前緣遮蔽信號產生一第五信號;以及 藉由該第驗繼第—信麟第二電容的充電以得 到該第一信號的谷值。 28.如請求項26之輸出電流感測方法,其中該步驟d包括根 據該控制信號及—與該一次側線圈搞接的輔助線圈上的 壓決定該第三信號。 29.如請求項28之輸出電流感測方法,其中該步驟d包括: _該辅助線圈上的電壓膝值產生膝值信號; 根據與該控制雜反摘第五錢以及該膝值信號決定 第六信號; 比較該辅助軸上的職及預設值產生第七信號,·以及 根據该第六及第七信號產生該第三信號。 28 201113531 30.如請求項26之輸出電流感測方法,其中該步驟E包括: 放大該第二信號產生第五信號;以及 根據該第三信號切換一端接收該第五信號的開關,以在 該開關的另一端產生該第四信號。(F) Filtering the fourth money produces a sensed signal associated with the wheel of the flyback converter. The output current sensing method of claim 26, wherein the step B comprises: controlling the charging of the _ capacitor by the money control by the control to obtain the peak of the first signal; masking the leading edge The signal generates a fifth signal; and charging by the second pass of the second pass to obtain the valley of the first signal. 28. The output current sensing method of claim 26, wherein the step d comprises determining the third signal based on the control signal and a voltage on the auxiliary coil that is coupled to the primary side coil. 29. The output current sensing method of claim 28, wherein the step d comprises: _ the voltage knee value on the auxiliary coil generates a knee value signal; and the fifth money and the knee value signal are determined according to the control Six signals; comparing the position and the preset value on the auxiliary axis to generate a seventh signal, and generating the third signal according to the sixth and seventh signals. 28 201113531 30. The output current sensing method of claim 26, wherein the step E comprises: amplifying the second signal to generate a fifth signal; and switching a switch that receives the fifth signal at one end according to the third signal, The other end of the switch produces the fourth signal. 2929
TW98134274A 2009-10-09 2009-10-09 Apparatus and method for output current sense at primary side in a flyback converter TWI437238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134274A TWI437238B (en) 2009-10-09 2009-10-09 Apparatus and method for output current sense at primary side in a flyback converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134274A TWI437238B (en) 2009-10-09 2009-10-09 Apparatus and method for output current sense at primary side in a flyback converter

Publications (2)

Publication Number Publication Date
TW201113531A true TW201113531A (en) 2011-04-16
TWI437238B TWI437238B (en) 2014-05-11

Family

ID=44909655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134274A TWI437238B (en) 2009-10-09 2009-10-09 Apparatus and method for output current sense at primary side in a flyback converter

Country Status (1)

Country Link
TW (1) TWI437238B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481181B (en) * 2012-12-28 2015-04-11 Ind Tech Res Inst Dc to ac power conversion apparatus and method thereof
TWI489757B (en) * 2012-03-07 2015-06-21 Dialog Semiconductor Inc Switching power converter and method for controlling the same
US9444364B2 (en) 2013-03-15 2016-09-13 Dialog Semiconductor Inc. Adaptive peak power control
TWI616660B (en) * 2017-07-03 2018-03-01 國立中山大學 Valley detector of flyback convertor
TWI657250B (en) * 2018-05-24 2019-04-21 產晶積體電路股份有限公司 Current detection method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104515892A (en) * 2013-09-30 2015-04-15 立德电子股份有限公司 Method of measuring the output current of a flyback power converter operating in discontinuous mode
CN105720807B (en) 2014-12-03 2018-05-29 万国半导体(开曼)股份有限公司 It is detained the method and device of voltage for detecting input voltage and releasing
CN105652074B (en) 2014-12-03 2018-08-10 万国半导体(开曼)股份有限公司 Voltage detecting circuit and the method for detecting voltage change
CN105763061B (en) 2014-12-17 2018-05-29 万国半导体(开曼)股份有限公司 Flyback converter output current counting circuit and computational methods
CN105763030B (en) 2014-12-17 2018-07-13 万国半导体(开曼)股份有限公司 In the circuit and method that electric pressure converter startup stage inhibits electric current excessive
CN105759135B (en) 2014-12-17 2018-11-13 万国半导体(开曼)股份有限公司 The circuit and method of load condition are judged in flyback converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489757B (en) * 2012-03-07 2015-06-21 Dialog Semiconductor Inc Switching power converter and method for controlling the same
US9419527B2 (en) 2012-03-07 2016-08-16 Dialog Semiconductor Inc. Regulation for power supply mode transition to low-load operation
TWI481181B (en) * 2012-12-28 2015-04-11 Ind Tech Res Inst Dc to ac power conversion apparatus and method thereof
US9184672B2 (en) 2012-12-28 2015-11-10 Industrial Technology Research Institute DC to AC power conversion with resonance valley detection
US9444364B2 (en) 2013-03-15 2016-09-13 Dialog Semiconductor Inc. Adaptive peak power control
TWI616660B (en) * 2017-07-03 2018-03-01 國立中山大學 Valley detector of flyback convertor
TWI657250B (en) * 2018-05-24 2019-04-21 產晶積體電路股份有限公司 Current detection method

Also Published As

Publication number Publication date
TWI437238B (en) 2014-05-11

Similar Documents

Publication Publication Date Title
TW201113531A (en) Apparatus and method for output current sense at primary side in a flyback converter
US7894223B2 (en) Switching power supply circuit
US7551460B2 (en) Switch mode power supply controllers
US7447049B2 (en) Single ended flyback power supply controllers with integrator to integrate the difference between feedback signal a reference signal
US9935556B1 (en) Primary-side control of resonant converters
US8670255B2 (en) Utilization of a multifunctional pin combining voltage sensing and zero current detection to control a switched-mode power converter
US7852647B2 (en) Switching power supply digital control circuit protecting from magnetic saturation effects
US20210111620A1 (en) Controller and control method used in resonant converters
KR101167807B1 (en) Resonant converter
US8335092B2 (en) Isolated switching power supply apparatus
US9812978B2 (en) Circuit and method for driving synchronous rectifiers for high-frequency flyback converters
US9136769B2 (en) Load change detection for switched mode power supply with low no load power
JP2008005567A (en) Switching power supply
US20110194316A1 (en) Switching power supply device
GB2451088A (en) Regulating the output of a forward power converter
US20150180357A1 (en) Synchronous rectifier and a method for controlling it
US11183937B2 (en) Digitally compensated current sensing protection
JP5757454B2 (en) Switching power supply
US10622904B1 (en) Isolated feedback techniques for a flyback voltage converter
CN111293886B (en) Flyback Converter with Output Current Calibration
CN101826798A (en) power conversion device
US20230369957A1 (en) System and method for determining mains voltage of a power supply
CN102053194B (en) Output current sensing device and method used in primary side of flyback converter
CN212992204U (en) Current control circuit
WO2007135454A1 (en) Switch mode power supply controllers