[go: up one dir, main page]

TW201112580A - Circuits and methods for balancing battery cells - Google Patents

Circuits and methods for balancing battery cells Download PDF

Info

Publication number
TW201112580A
TW201112580A TW98132843A TW98132843A TW201112580A TW 201112580 A TW201112580 A TW 201112580A TW 98132843 A TW98132843 A TW 98132843A TW 98132843 A TW98132843 A TW 98132843A TW 201112580 A TW201112580 A TW 201112580A
Authority
TW
Taiwan
Prior art keywords
battery
value
unit
switch
parameter
Prior art date
Application number
TW98132843A
Other languages
Chinese (zh)
Other versions
TWI390822B (en
Inventor
chu-tao Zhang
song-tao Chen
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O2Micro Inc filed Critical O2Micro Inc
Priority to TW98132843A priority Critical patent/TWI390822B/en
Publication of TW201112580A publication Critical patent/TW201112580A/en
Application granted granted Critical
Publication of TWI390822B publication Critical patent/TWI390822B/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A battery cell balancing circuit and method is provided. The balancing circuit includes a first cell with a first value of a parameter, a second cell which coupled to the first cell and has a second value which is less than the first value, and a transformer includes a primary side electrically connected to two sides of the first cell and a secondary side electrically connected to two sides of the second cell, and the transformer capable of transferring the energy within the first cell to the second cell.

Description

201112580 六"發明說明: 【發明所屬之技術領域】 本發明係關於一種電池管理系統,特別是一種平衡多 個電池單元之電池單元平衡電路及方法。 【先前技術】 具有多個電池單元的電池組(例如,鐘離子電池組) 被廣泛地應用於電動工具中,以對電動工具供電。電動工 具包括:電動車和油電複合(Hybrid)車,但不以此為限。 然而,電池組中每一電池單元會因老化程度不一或電池溫 度不同而產生差異,隨著充/放電次數的增加會導致電池 單元之間的電壓或容量的差異,進而造成電池單元不平 衡。 所謂電池單元的不平衡,係指在某些電池單元未被完 全充電的情況下,其他電池單元卻已出現過度充電的現 象,或者是在某些電池單元尚未被完全放電時,其他電池 早元卻已出現過度放電之現象,這些不平衡之狀況皆會影 響正個電池組的谷量或使用哥命。雖然可利用硬體或軟體 保δ蒦來避免電池單元的過度充電或過度放電,但額外之軟 硬體會影響電池組的使用效率。因此’當電池組中之電池 早元出現不平衡狀況時,需對電池組進行平衡處理。 電池單元平衡分為被動平衡和主動平衡兩種。被動平 衡係將具有較高能量之電池單元中多餘能量透過並聯耦 接之旁路電阻發熱而消耗掉,然而,被動平衡過程中所產 生之熱此會影響電池組的使用壽命。反之,主動平衡係將 0659-TW-CH Spec+Claim(filed-20090929).doc 4 201112580 -或多個電池單元的能量轉移到其他電池單元中。 厂圖斤ΐ是為傳統電池單元平衡電路⑽結構圖。電 池早兀平衡電路100包含—雷 _电 l〇2_lM02 2 .l〇2 3·.··.·^池組,其包括多個電池單元 级绩圃—卜一變壓器,其包括一初 l〇6_l^ 106.2^ 每二電池。…二以及一與初級線圈104輕接之開關108。 —卜1。2、2,-3·..··.⑽―η 與-次級 處於門人肤轉6一2、1〇6一3·...·.觸』耦接。當開關⑽201112580 Six "Invention: TECHNICAL FIELD The present invention relates to a battery management system, and more particularly to a battery cell balancing circuit and method for balancing a plurality of battery cells. [Prior Art] A battery pack having a plurality of battery cells (for example, a clock ion battery pack) is widely used in a power tool to supply power to a power tool. Electric tools include: electric vehicles and Hybrid vehicles, but not limited to them. However, each battery cell in the battery pack may be different due to different degrees of aging or different battery temperatures. As the number of charging/discharging times increases, the voltage or capacity difference between the battery cells may be caused, thereby causing the battery cells to be unbalanced. . The so-called unbalance of the battery unit means that when some battery cells are not fully charged, other battery cells have been overcharged, or when some battery cells have not been completely discharged, other batteries are early. However, the phenomenon of over-discharge has occurred. These imbalances will affect the amount of grain in the battery pack or use the life. Although hardware or software can be used to protect the cell from overcharging or overdischarging, additional soft hardware can affect the efficiency of the battery pack. Therefore, when the battery in the battery pack is unbalanced in the early morning, the battery pack needs to be balanced. Battery cell balance is divided into passive balance and active balance. Passive balancing consumes excess energy from a battery with higher energy through the parallel-coupled shunt resistor. However, the heat generated during passive balancing can affect the life of the battery pack. Conversely, active balancing transfers the energy of 0659-TW-CH Spec+Claim(filed-20090929).doc 4 201112580 - or multiple battery cells to other battery cells. The factory diagram is a structural diagram of the traditional battery cell balancing circuit (10). The battery early balancing circuit 100 includes a lightning-electrical battery, a battery module, and a plurality of battery-level transformers, including a first transformer. 6_l^ 106.2^ Every two batteries. ...two and a switch 108 that is lightly coupled to the primary coil 104. —Bu 1. 2, 2, -3·..··.(10)―η and -Second In the doorman's skin turn 61-2, 1〇61-3...·. When the switch (10)

電池組的放電電流流經购的初級線 二開關108斷開之後’每一次級線圈106」、 ' ~3······1〇6』上分別則產生感應電流I,、12、 其中’具有最小電抗的次級線圈上所產生的感 綠1L最大。可理解的,每-電池單元102J、1〇2_2、 1〇2~3······1Q2-n所接收之充電電流與其所制之電壓成 反比。由於在平衡過程中,每一電池單元1〇2」、1〇2 2、 10^3 ·ΐ〇2一η皆會獲得從電池組轉移出來的能量,因此 平,效率低。此外’這種_僅能透過轉移整個電池組的 能量以達到平衡電池單元之目的。因此,這種電池單元平 衡架構僅賴於電池組的放電過程,而在電池組的充電過 程中效果較差。 圖2所示為另一種傳統電池單元平衡電路2〇〇結構 圖。在相鄰的電池單元2〇2_1、202_2、202_3......202__η 之間使用一對Ν型金屬氧化物半導體場效電晶體(M〇SFET) 和P型MOSFET以及一電感,以構成一能量轉移電路。除 了電感本身之寄生阻抗和本體二極體的導通阻抗消耗掉 0659-TW-CH Spec+Claim(filed-20090929).doc 5 201112580 之極月匕里’其他能量儲存在電感中。為簡明起見,圖2 中,示出3個電池單元202—1、202—2、202—3。當一具有 特定頻率和貝任週期的之一控制信號p2控制m〇sfet 204—4處靖開絲時,儲存錢感中的能量達到最大 值2圖2所示’當最頂端之電池單元皿」需將能量轉 移至最底部之電池單元2Q2—丨時,控制信號p2控制The discharge current of the battery pack flows through the purchased primary line two switches 108, and then each of the secondary coils 106, '~3······1〇6′′ generates an induced current I, 12, wherein 'The green 1L produced on the secondary coil with the smallest reactance is the largest. It can be understood that the charging current received by each of the battery cells 102J, 1〇2_2, 1〇2~3·····1Q2-n is inversely proportional to the voltage thereof. Since in the balancing process, each battery cell 1 〇 2", 1 〇 2 2, 10 ^ 3 · ΐ〇 2 η η will obtain the energy transferred from the battery pack, so the efficiency is low. In addition, this kind of _ can only balance the battery unit by transferring the energy of the entire battery pack. Therefore, this battery cell balancing architecture relies only on the discharge process of the battery pack, and is less effective in the charging process of the battery pack. Fig. 2 is a block diagram showing another conventional battery cell balancing circuit. A pair of germanium-type metal oxide semiconductor field effect transistors (M〇SFETs) and a P-type MOSFET and an inductor are used between adjacent battery cells 2〇2_1, 202_2, 202_3, ..., 202__η to form An energy transfer circuit. Except for the parasitic impedance of the inductor itself and the on-resistance of the body diode are consumed. 0659-TW-CH Spec+Claim(filed-20090929).doc 5 201112580 The other energy is stored in the inductor. For the sake of simplicity, in Figure 2, three battery cells 202-1, 202-2, 202-3 are shown. When a control signal p2 having a specific frequency and a Bayesian period controls m〇sfet 204-4, the energy stored in the money sense reaches a maximum value. 2 When the topmost battery cell is shown in FIG. When the energy needs to be transferred to the bottommost battery unit 2Q2-丨, the control signal p2 is controlled.

MOSFET 204—4處於閉合狀態’將能量從電池單元2〇2—3轉移至電 感L2。由於電感L2中的電流會持續流動,透過閉合的 或其正向紅㈣本體二極體,進而將電感 L2中所儲存的能量轉移給電池單元2G2」,其中,響訂 204_3的閉合和斷開係由一控制信制之控制。 接著,以類似的方式,利用控制信號則和ρι控制 ^ M〇SFET 2〇° ^ 兀撤―2中的能量轉移至電池單元2〇2卜 :默3中多餘的能量可轉移到電池單- =:方式僅能在相鄰的電池單元之間進行= 括2個以上串聯連接的電池單 田匕 例如電池單元和、搬2和2=„要被平衡時, 將-電池單元的能量轉移到另'長的時間 如’從電池單元202_3轉移到電池單元2^池早70,例 如上所述,欲將一電池單元f ~ 的能量轉移到另-不相鄰的電池J電池單70 202-3) 202_1)需要先將能量從電池單^*例如’電池單元 2〇2_2,再從電池單元202_2轉 時外’假様組包含n個串聯連接的電tvr:1則= 0659-TW-CH Spec+CIaim(fiIed-20090929).doc 6 201112580 用WN_1)個騰FET將能量從最頂部的電池單元202 η轉 移到最底料総料2G2j或雜最底㈣電池單元 202一 1轉移到最頂部的電池單元2〇2一n,其中n為大於等 於2的正整數因此,產生控制廳順綱」〜猶』之 ,制信號的控制電路十分複雜。而且,由於能量需經過過 多的移轉’因此部分能量會在移轉過程中轉變為熱量而消 耗。因此,這種平衡方式的效率低、耗時長且電路結構複The MOSFET 204-4 is in a closed state' to transfer energy from the battery unit 2〇2—3 to the inductance L2. Since the current in the inductor L2 continues to flow, the energy stored in the inductor L2 is transferred to the battery unit 2G2" through the closed or forward red (four) body diode, wherein the closing and disconnecting of the ring 204_3 It is controlled by a control signal system. Then, in a similar manner, the control signal is used to control the energy transfer from the FETM〇SFET 2〇° ^ 兀 ―2 to the battery unit 2〇2: the excess energy in the silent 3 can be transferred to the battery sheet - =: The mode can only be performed between adjacent battery cells = 2 or more cells connected in series, such as battery cells, and 2 and 2 = „To be balanced, transfer the energy of the battery cells to Another 'long time, such as' is transferred from the battery unit 202_3 to the battery unit 2, as described above, for example, to transfer the energy of one battery unit f~ to another-non-adjacent battery J battery unit 70 202- 3) 202_1) The energy needs to be first from the battery unit**, for example, 'battery unit 2〇2_2, and then from battery unit 202_2 to the outside'. The false-twist group contains n series-connected electric tvrs: 1 then = 0659-TW-CH Spec+CIaim(fiIed-20090929).doc 6 201112580 Transfer energy from the topmost battery cell 202 η to the bottommost material 2G2j or the bottommost (four) battery cell 202-1 with WN_1) tem FETs to the top The battery unit 2〇2-n, where n is a positive integer greater than or equal to 2, therefore, the control hall is produced. "The control signal circuit system is very complex. Moreover, since the energy needs to be transferred too much, so part of the energy is converted into heat during the transfer process and consumed. Therefore, this balancing method is inefficient, time consuming, and complex in circuit structure.

【發明内容】 ——種電池單元平 衡電路及方法,可以_於電池的充電财、放電過程和 閒置狀,4 ’並且可以提高平衡效梓降低f路的複雜度。 為解決上述技術問題,本發明提供了-種電池單元平 m括-第一電池單元’具有一參數,且該參數之 =ΐτ第—數值;—第二電池單元,串_接至該第-電池早兀’該第二電池單元之該參數之值具有—第二數 值’其中’該第-數值大於該第二數值;以及—變壓器, 其包括-與該第-電池單元兩端電性連接之—初級線 圈’以及-與該第二電池單元兩端電性連接之—次級線 I也=騎該第—電池單元中之部分能量轉移至該第二 本發明還提供了-種電池單元平衡電路,包括一電池 ,包括串聯連接❹個電池單元,該多個電池單元中之 第-電池單元具有-參數且該參數之值具有一第一數 0659-TW-CH Spec+Claim(fiIed-20090929).doc 201112580 值,該多個電池單元令 -小於該第-數值之—苐一數電池單兀之該參數之值為 本發明還提供了—種 一電池早兀。 接的-第-電池模組和一第電路’包括串聯連 和該第二電池模組分別包括多個電=元該^電 組之-參數之值具有1—數值 該第一電池拉 數之值為一小於咳第Μ 一電池模組之該參 器,包括與該第一電池模值,以及一變壓 該第-雷魏連接贿線圈以及與 "第一電池模組電性連接之一次 電池模組中之部分能量轉移至該第二電池=為將該第一 t發明還提供了—種電池單元平衡 ΓΠ:的一參數,該第一電池單元的具 電池測與該第一電池單元串聯連接的-第二 二電池單搞該參數之值具卜 第-電、、也單:φ’ 該第二數值;以及將該 二7°中之精能量透過-變壓ϋ轉移至該第二 冤池單7L。 本發明還提供了-種電池單元平衡方法,包括檢測串 聯連接的多個電池單元中之每一電池單元的一參數;從檢 測到的多個參數中選擇具有-第—數值的—電池單元和 具有-第二數值的-電池單元’該第—數值大於該第二數 值;以及將具有該第-數值的該第一電池單元中之部分能 4 ( 0659-TW-CH Spec+Claim(filed-20090929).doc g 201112580 過變璧器轉移至具有該第二數值的該第二電池單 元。 【實施方式】 '乂下將對本發明的實施例給出詳細的說明。雖然本發 明將結合實施例進行闡述,但應理解這並非意指將本發明 限疋於這些實施例。相反地,本發明意在涵蓋由後附申請 專利fe圍所界定的本發明精神和範圍内所定義的各種變 藝化、修改和均等物。 此外,在以下對本發明的詳細描述中,為了提供針對 本發明的完全的理解,提供了大量的具體細節 。然而,於 μ技術湏域中具有通常知識者將理解,沒有這些具體細 $本發明同樣可以實施。在另外的一些實例中,對於大 豕熟知的方法、程序、元件和電路未作詳細描述,以便於 凸顯本發明之主旨。 圖3所示為根據本發明一實施例電池單元平衡電路 • 綱結構圖。電池單元平衡電路300包括-電池組302、 -變壓器3G3 ’其係透過開關細-卜獨』分別與電池組 302中之各個電池單元逝―卜服』輕接、以及_與電池 組302以及開關306J-306—6電性連接之檢測和控制單元 308。爲簡明起見’圖3僅示出六個電池單元3〇2—13〇2_6, 可理解的是,電池組302可包括任意數量的電池單元,並 不以圖3中所示之電池單元數量為限。 變壓器303包括6個線圈304—1-3〇4_6及一鐵芯305。 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 每-線圈別4J-304—6透過-相對應的開_識―p 與-電池單元302J-302—6並聯連接,例如,線圈3、 透過開關3G6—1與電池單元咖」並聯連接。在、 中’ 6個線圈3G4H6職數相等。在—實施例二例 變壓器303係為一反馳式變壓器(flyb transformer) ’換言之,6個線圈3〇4一卜3〇4—6不會= 有電流流過。請參考圖3,電池單元3Q2j、3()2—3和、 的正極分職_ 3〇4」、謝_3和綱5的正 』 端)連接,電池單元3〇2—2、搬—4和咖』的負極= 與線圈304_2、304—4和304_6❺(打點端)連接。^ 所示之電池單元與對應線圈的連接方式只是本發明〜 體實施例’亦可轉用其他連接方式以達到電池平衡具 如’電池單元302—1和302—2的負極分別與線圈3〇4 j 3〇4一2的打點端連接,電池單元302—3-302一6的正極八^ 與線圈304_3-304一6的打點端連接。 乃' 請參照圖3,檢測和控制單元3〇8係用以檢測電池矣 302中每-電池單a 3Q2—卜咖』的參數,並從檢的 參數帽擇參數值為—第―數值的f池單元和參數值為 -第二數值的電池單元’其中,第—數值大於第二數值。 檢測和控制單元308控制參數值為第一數值之電池單元, 使此電池單凡之部分能量透過變壓器3〇3轉移至參數值為 ,一數值的電池單元。在一實施例中,參數可為電壓、電 態或容量之任-,但*以料限。雜在以下所有的 =轭例中,皆以電壓為平衡目標參數舉例說明本發明電池 單元平衡電路如何實現電池單元平衡,然而,本領域技術 0659-TW-CH Spec+Claim(filed-20090929).doc 10 201112580 二員=態電池,衡電路採用其他參數(例 採用電壓為平衡目庐:目私參數來平衡電池單元的原理與 心‘·、衡目軚參數的原理是相同的。 具有® 3 3(32中’電池單元302 i 單元3= °因此’需在充電過程中平衡電池 提前終止充電ti t電池單元3°2」的電壓上升過快而 移至其f將電池單元3〇2」中多餘的能量轉 二=控:單 〇 4μ^ο 3〇6-! ^ 心線; 增大,最錢流值㈣關合的間線性 3〇2—,出來的能量被儲存在變壓器3::: 中。在本發明一實施财,開關306—1的閉合時間τ〇开 電池單元302—i的電池單元電壓ν、線;:二電 平衡柳決定^ 其中’/為第一預定頻率。 另外,假設在電池組302中,電池單元3〇24 低電池單元電麼。最纽的電池單元平衡方法是直接 池單元逝—i中多餘的能量轉移給電池單元3〇24。檢 和控制單元謂產生具有第1定_和責料期等= 小於(1-D1)的控制信號來控制開關寫4的閉 開。當開關306—1斷開後,開關306一4則閉合,線圈口3〇“ 上出現感應電流14 ’最後’將變壓器3〇3的鐵芯3〇所 0659-TW-CHSpec+Claim(filed-20090929).doc 201112580 ==:亦即從電池單元3〇2」中轉移出來的能量, 元-4 f。值得注意的是,與,_」 地閉^斷6」和與線圈綱-4連接的開關4交替 3。J處於二當處於閉合狀態時’開關 開關· 2 當開關3〇6J處於斷開狀態時, 態。此外「若檢Γί合狀態或先處於狀態再處於斷開狀 =處於,魏料元·」的能量—^移6 到電池單元302_2和3G2j中。 在上述例子中’線圈304—1和線圈304一4分別操作為 初級線圈和次級義。相反地,假設電池單元观」具有 最高電池單元電壓’電池單元302—i具有最低電池單元電 壓’那麼在將電池單元3G2—4中多餘的能量轉移到電池單 元302—1的過程中,線圈3〇4一4即作為初級線圈而線圈 304一1則作為次級線圈。亦即,6個線圈3〇4—j 一3〇4_6根 據實際應用,可以分別充當初級線圈和次級線圈。 以上這種電池平衡方式可將具有最高電池單元電壓 的電池單元中《部分能量直接轉移到具有最低電池單元 電壓的電池單元中。因此,可在很短的時間内有效地完成 電池平衡。由於,本發明係將具有最高電池單元電壓的電 池單元中之部分能量直接轉移到具有最低電池單元電壓 的電池單元中,因此,本發明一實施例之電池單元平衡電 路亦同樣適用於電池的放電過程及閒置狀態。 下面以圖3為例,進一步說明本發明電池單元平衡電 0659-TW-CHSpec+Claim(filed-20090929).doc 12 201112580 路的其他频應用。請蘭參照® 3,假财電池組302 的充,過程中,電池組302中之電池單元302J具有最高 】池單元f壓,而電池單元观―3具有最低電池單元電 时一,、、<、而在電池單元302-2、3〇2_4和302__6中,電池 單元3〇2-4具有最高電池單元電壓,電池單元302_6具有 2電池單元電壓。顯而易見的,電池單元3G2J—多餘的 旎直不能直接轉移到電池單元3〇2—3中。但是,可透過控 制開關3G6_1和3G6_6交替地閉合和斷開,將電池單元 302J中多餘的能量轉移到電池單元3〇2一6中這樣可避 免電池單元3G2」過度充電。另外’可透過控制開關306—4 和306—3交替地閉合和斷開,將電池單元3〇2-4中多餘的 能量轉移到電池單元3G2—3中,這樣可避免電池單元3〇2 3 充電速度過慢。 雖然在電池組302充電過程中,將電池單元3〇2_4中 多餘的能量轉移到電池單元3Q2-3,並非必須的步驟,但 在電池組302之放電過程中則非常重要,因為這樣可延長 電池組302的放電時間,提高電池組3〇2的使用效率。事 實上,在充電過程中,同時將電池單元3〇2一4中多餘的能 量轉移到電池m〇2_3,可以加速完成電池單元的平 衡。由此可見,本發明之電池單元平衡電路可適用於電池 組302的充電過程、放電過程和閒置狀態。 圖4所不為根據本發明一實施例電池單元平衡電路 400結構圖。圖4係將圖3中所示之6個電池單元擴展到 η個電池單το,其中η為正整數。下面以圖4為例說明不 論電池單元處於充電過程、放電過程或者閒置狀態,電池 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 單元平衡電路400如何實現電池單元的平衡。電池單元平 衡電路400包括一具有n個電池單元4〇2-卜4〇2—n之電池 組402、一變壓器403、以及一檢測和控制單元4〇8。變壓 益403包括一鐵芯405以及耦接至鐵芯4〇5的η個線圈 404-1-404-η。電池單元平衡電路4〇〇還包括η個開關 406一1-406』,每-_ 404」一4〇4—η透過一對應的開關 406—1-406一η連接至一電池單元4〇2j_4〇2_n的兩端,例 如,線圈404一 1透過開關406_1連接到電池單元402」的 兩端。 請參照圖4,線圈404J、404_3 ..... 404一η-1的打 點端分別與電池單元402J、402-3、…、402—η:ΐ的正極 連接;而線圈404—2、404一4.....404_n的打點端分別與 電池單元402—2、402_4、…、402_n的負極連接。可理^ 的’圖4中所揭露之電池單元4〇2J_4〇2—n與對應線圈 404_l-404_n的連接方式只是本發明的一個具體實^'。總 的來說,可將N個線圈404_l-404_n分為一第一組線圈% 一第二組線圈,其中,第一組線圈的打點端與相對應之σ 池單元的正極連接,而第二組線圈的打點端與相對應之電 池單元的負極連接。以圖4為例,線圈4〇4j、4〇4 3、電 404_n-l可稱為第一組線圈,而線圈4〇4_2、4〇4j、·、 4〇4—η可稱為第二組線圈。與第一組線圈連接的、 406J、406—3、…、406—η-1稱為第一組開關,而與第關 組線圈連接的開關406—2、406_4、…、406__η則稱為第一 組開關。檢測和控制單元4〇8控制開關406J-406 η、一 合和斷開,其中,第一組開關(即,開關4〇6j、4〇6〜3、.閉 0659-TW-CH Spec+Claim(fiIed-20090929).d〇( 14 201112580 槪―11—1)與第二組開關(即,開關406一2、406—4、···、 406_n)不會同時閉合。 檢測和控制單元408與電池組4〇2以及 406_l-4G6_n電性連接,用於檢測電池組巾每一電 t ί0!—卜搬』的電池單4壓,並從與第—組線圈連 接第一組電池單元(即,電池單元402—卜402—3、··.、 4〇2一n DJ7—選擇具有最高電池單元電壓之電池單元(例 如電池單το 402—1 )和具有最低電池單元電壓之電池 ==電,搬—3);從與第二組線圈連接的第二 池單元電壓之電池單元(例如,電7二 恭…一η)和八有最低電池單元電麗之電池單元(例如, 電池單元402一2)。檢測和控制單元棚產生星有 =率和責任週期為D2的控制信號控制開關 = =斷=’並產生具有第二預定頻率和貴任週期等於= ^ — D2)的控制信號控制開關的姻—2的閉合和斷開, 备開關406—1閉合時’電池單元搬」令多餘的 1到變壓器403的鐵怎痛中;在開關概」斷開後,門 :麵_2閉合’線圈4〇4_2上出現 心 =彻中所儲存的能量(即,從電池單元二: 出來的能量)轉移到電池單元·_2中。檢測和控制^ 生具有-第三預定頻率和責任週期為_控制 閉合和斷開,並產生具有第三預定頻率^ 或ί於(卜剛的控制信號控制開關406 3 的閉合和斷開。當開關娜』閉合時,電池單元4〇2—η中 0659-TW-CH sPec+C]aim(fiJed-20090929).doc 201112580 多餘的能量被轉移到變壓器403的鐵芯405中。在開關 406一η斷開後,開關406一3閉合,線圈4〇4_3上出現感應 電流,最後,將變壓器403中所儲存的能量(即,從電池 單元402-11轉移出來的能量)轉移到電池單元4〇2_3中。 在一實施例中,第三預定頻率與第二預定頻率相等。 基於電池單元402_1-402_η與線圈404J-404 η之打 點端的連接關係,可將電池組402之η個電池單元分為第 一組電池單元和第二組電池單元,例如,第一組電池單元 的正極與線圈之打點端連接,第二組電池單元的負極與線 圈之打點端連接。檢測和控制單元408從第一組電池單元 中選擇具有最高電池單元電壓和最低電池單元電壓的電 池單元,從第二組電池單元中選擇具有最高電池單元電壓 和最低電池單元電壓的電池單元。檢測和控制單元4〇8控 制對應開關之閉合和斷開’將第一組電池單元中具有最高 電池單元電壓的電池單元中多餘之能量轉移到第 '二組^ 池單元中具有最低電池單元電壓的電池單元中,將;二組 電池單元中具有最高電池單元電壓的電池單元中多餘之 能量轉移到第一組電池單元中具有最低電池單元^壓的 電池單元中。 圖5所示為根據本發明一實施例電池單元平衡電路 500結構圖。圖5中與圖3元件符號相同的元件具有相同 的功能’為簡明城’在此不再贅述。在1施例中,電 池單元平衡電路500的開關506J-506—6採用金屬氧化物 半導體場效電晶體(MOSFET)。每一 MOSFET皆~人本體 二極體。假設電池單元302」具有最高電池g壓本, 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 電池單元302-4具有最低電池單元電壓,當開關5〇6j閉 合時,電池單元302_1中多餘的能量被轉移到變壓器的鐵 芯305中,在開關506_1斷開後,開關5〇6一4閉合,線圈 304_4上出現感應電流。由於本體二極體的影響,在開關 506一1斷開後,線圈304—2和304一6中也出現微小的感應 電流。感應電流與線圈304一2和304—6兩端等效的負載電 抗成反比,因此,與閉合之開關506—4所連接的電池單元 302一4獲得從鐵芯305中轉移出來的大部分能量。 圖6所示為根據本發明一實施例電池單元平衡電路 600結構圖。電池單元平衡電路6〇〇包括串聯連接的n個 電池模組602一1-602_η以及變壓器603。變壓器603包括 多個線圈,每一線圈透過一開關(圖中未示)與相對應之 電池极組602_1-602_η並聯連接。檢測和控制單元6Q8與 多個電池模組602—l-602—n電性連接,以檢測每一電池模 組602一1-602_η的電壓並選擇具有第一電壓的電池模組和 具有第二電壓的電池模組,其中第一電壓大於第二電壓。 在本發明一實施例中,第一電壓和第二電壓分別是η個電 池模組602—1-602_η中的最高電壓和最低電壓。變壓器603 將具有第一電壓的電池模組中之部分能量轉移至具有第 二電壓的電池模組。可理解的是,可將每一電池模組 602一1-602_η視為一電池單元,圖6中所示的電池單元平 衡電路與圖3和圖4所示之電池單元平衡電路的工作原理 相同。在本發明一實施例中,每一電池模組6〇2_丨_6〇2 η 包括串聯連接的多個電池單元,每一電·池模組 602—l-602—n内的電池單元之間的平衡原理與圖3和圖4 * . 0659-TW-CH Spec+Claim(filed-20090929).doc 17 I ' 201112580 電池單元平衡電路的原理相同,為簡明㈣,在此 +丹賢述。 7训U所*為簡本發明—實施㈣池單元平衡電路 -變if圖°電池單元平衡電路包括—電池組7〇2、 一态703、一第一開關陣列7〇6、一第二開關陣列7〇7 個電、、也,和^單元7〇8。電池組702包括串聯連接的η 笛早το 702」-702』。變壓器7〇3包括一第一線圈7〇4 704 '線圏7G5 °第—開關陣列__接於第一線圈 = == = =一二SUMMARY OF THE INVENTION A battery cell balancing circuit and method can be used to charge the battery, discharge process, and idle state, and can improve the balance efficiency and reduce the complexity of the f path. In order to solve the above technical problem, the present invention provides a battery unit flat-first battery unit having a parameter, and the parameter = 第 τ - value; - the second battery unit, string _ connected to the first - The battery has a value of the parameter of the second battery unit having a second value 'where the first value is greater than the second value; and - the transformer includes - electrically connected to both ends of the first battery unit - the primary coil 'and - electrically connected to both ends of the second battery unit - secondary line I also = riding part of the first battery - energy transfer to the second invention also provides a battery unit The balancing circuit comprises a battery comprising a battery unit connected in series, the first battery unit of the plurality of battery units has a parameter and the value of the parameter has a first number 0659-TW-CH Spec+Claim(fiIed- 20090929).doc 201112580 value, the value of the parameter of the plurality of battery cells - less than the first value - the battery cell is also provided by the present invention. The connected - the first battery module and the first circuit 'including the series connection and the second battery module respectively comprise a plurality of electrical = yuan - the electrical parameter - the value of the parameter has a value - the first battery pull number The value of the parameter is less than the coughing battery module, including the first battery module value, and a transformer-connected first-leiwei brid coil and the first battery module electrically connected Transferring part of the energy in the primary battery module to the second battery = a parameter for the battery cell balance of the first invention, the first battery unit having the battery and the first battery The second-cell battery connected in series has the value of the parameter: the first value: φ' the second value; and the fine energy in the two 7° is transferred to the transformer The second battery is 7L. The present invention also provides a battery cell balancing method comprising: detecting a parameter of each of a plurality of battery cells connected in series; selecting a battery cell having a -first value from among a plurality of detected parameters a battery cell having a second value - the first value is greater than the second value; and a portion of the first battery cell having the first value can be 4 (0659-TW-CH Spec+Claim(filed- 20090929).doc g 201112580 The transmutation device is transferred to the second battery unit having the second value. [Embodiment] A detailed description will be given of an embodiment of the present invention, although the present invention will be combined with the embodiment. It is to be understood that the invention is not limited to the embodiments. The invention is intended to cover various modifications as defined by the spirit and scope of the invention as defined by the appended claims. In addition, in the following detailed description of the present invention, in order to provide a complete understanding of the invention, numerous specific details are provided. It will be understood by those of ordinary skill in the art that the present invention may be practiced without departing from the scope of the present invention. In other instances, well-known methods, procedures, components and circuits are not described in detail. 3 is a structural diagram of a battery cell balancing circuit according to an embodiment of the present invention. The battery cell balancing circuit 300 includes a battery pack 302, a transformer 3G3, which is respectively connected to the battery pack 302 by a switch. Each of the battery cells is lightly connected, and the detection and control unit 308 is electrically connected to the battery pack 302 and the switches 306J-306-6. For the sake of simplicity, only six battery cells 3 are shown in FIG. 〇2-13〇2_6, it can be understood that the battery pack 302 can include any number of battery cells, and is not limited to the number of battery cells shown in Fig. 3. The transformer 303 includes six coils 304-1-3. 4_6 and a core 305. 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 per-coil 4J-304-6 through-corresponding open_recognition-p and -battery unit 302J-302- 6 parallel connection, for example, coil 3, through The 3G6-1 is connected in parallel with the battery unit. In the middle, the '6 coils 3G4H6 are equal in number. In the second example, the transformer 303 is a flyb transformer. In other words, 6 coils 3 〇4一卜3〇4-6 will not = there is current flowing. Please refer to Figure 3, battery unit 3Q2j, 3 () 2 - 3 and, positive division _ 3 〇 4", Xie _3 and 5 The positive side of the connection, the negative of the battery unit 3〇2-2, the mobile-4 and the coffee shop are connected to the coils 304_2, 304-4 and 304_6❺ (the dot end). ^ The battery unit and the corresponding coil are connected in a manner similar to the present invention. The other embodiments can also be used to achieve battery balancing devices such as the negative electrodes of the battery cells 302-1 and 302-2 and the coils 3, respectively. 4 j 3 〇 4 1-2 the dot end connection, the positive pole 8 of the battery unit 302-3-302-6 is connected to the dot end of the coil 304_3-304-6. Referring to FIG. 3, the detecting and controlling unit 3〇8 is configured to detect the parameter of each battery cell a 3Q2—the coffee bar in the battery port 302, and the parameter value of the parameter selected from the test is “the first value”. The f-cell unit and the parameter value are - the second value of the battery unit 'where the first value is greater than the second value. The detecting and controlling unit 308 controls the battery unit whose parameter value is the first value, so that part of the energy of the battery is transferred to the battery unit whose parameter value is a value through the transformer 3〇3. In one embodiment, the parameter can be any of voltage, state or capacity - but * is limited. In all of the following = yoke examples, the voltage balancing target parameter is used to illustrate how the cell balancing circuit of the present invention achieves cell balancing, however, the art 0659-TW-CH Spec+Claim (filed-20090929). Doc 10 201112580 Two members = state battery, the balance circuit adopts other parameters (for example, the voltage is used for balance: the principle of private parameters to balance the principle and heart of the battery unit), and the principle of the balance parameter is the same. 3 (32 ''battery unit 302 i unit 3 = ° therefore 'need to balance the battery during the charging process to pre-charge the battery ti t battery unit 3 ° 2" the voltage rises too fast and moves to its f to the battery unit 3 〇 2" The excess energy in the two turns = control: single 〇 4μ^ο 3〇6-! ^ heart line; increase, the most money flow value (four) closed between the linear 3 〇 2 -, the energy is stored in the transformer 3: In the implementation of the present invention, the closing time τ of the switch 306-1 opens the battery cell voltage ν, the line of the battery unit 302-i; the second electric balance determines ^ where '/ is the first predetermined frequency. In addition, it is assumed that in the battery pack 302, the battery unit 3〇24 is low-powered. The unit cell power balance method is the direct cell unit balance method - the excess energy in i is transferred to the battery unit 3〇24. The check and control unit is said to have the first fixed _ and the blame period, etc. = less than (1 -D1) control signal to control the closing of the switch write 4. When the switch 306-1 is turned off, the switch 306-4 is closed, and the coil port 3〇 "appears the induced current 14' last" to the transformer 3〇3 Core 3〇0659-TW-CHSpec+Claim(filed-20090929).doc 201112580 ==: That is, the energy transferred from the battery unit 3〇2”, the element-4 f. It is worth noting that, _" Ground Closed 6" and Switch 4 connected to Coil Class-4 alternate 3. J is in the closed state when the switch is turned "2" when the switch 3〇6J is in the off state. Checking the splicing state or first being in the state and then being in the disconnected state = at the same time, the energy of the weiyuan element is shifted to the battery cells 302_2 and 3G2j. In the above example, the coil 304-1 and the coil 304-4 respectively The operation is primary coil and secondary sense. Conversely, assume that the battery unit has the highest battery cell voltage. The battery unit 302-i has the lowest battery cell voltage', then in the process of transferring the excess energy in the battery unit 3G2-4 to the battery unit 302-1, the coil 3〇4-4 is used as the primary coil and the coil 304-1 is used. As the secondary coil, that is, the six coils 3〇4—j_3〇4_6 can be used as the primary coil and the secondary coil respectively according to the practical application. The above battery balancing method can be the battery unit having the highest battery cell voltage. Part of the energy is transferred directly to the battery unit with the lowest battery cell voltage. Therefore, battery balance can be effectively completed in a short period of time. Since the present invention directly transfers part of the energy of the battery cell having the highest battery cell voltage to the battery cell having the lowest battery cell voltage, the battery cell balancing circuit of one embodiment of the present invention is also applicable to the discharge of the battery. Process and idle status. The other frequency application of the battery cell balancing power of 0659-TW-CHSpec+Claim(filed-20090929).doc 12 201112580 is further illustrated by taking FIG. 3 as an example. Please refer to ® 3, the charge of the counterfeit battery pack 302, during which the battery unit 302J in the battery pack 302 has the highest battery unit f pressure, and the battery unit view 3 has the lowest battery unit power, one, < In the battery units 302-2, 3〇2_4, and 302__6, the battery unit 3〇2-4 has the highest battery unit voltage, and the battery unit 302_6 has the 2 battery unit voltage. Obviously, the battery unit 3G2J - excess straight can not be directly transferred to the battery unit 3 〇 2 - 3. However, the excess energy in the battery unit 302J can be transferred to the battery unit 3〇2-6 by the control switches 3G6_1 and 3G6_6 being alternately closed and opened, thereby avoiding overcharging of the battery unit 3G2". In addition, the excess energy in the battery cells 3 2-4 can be transferred to the battery cells 3G 2 - 3 through the control switches 302-4 and 302-3 alternately closed and disconnected, so that the battery cells 3 〇 2 3 can be avoided. The charging speed is too slow. Although it is not a necessary step to transfer excess energy in the battery unit 3〇2_4 to the battery unit 3Q2-3 during charging of the battery pack 302, it is very important in the discharge process of the battery pack 302 because it can extend the battery. The discharge time of the group 302 improves the use efficiency of the battery pack 3〇2. In fact, during the charging process, the excess energy in the battery cells 3〇2 to 4 is simultaneously transferred to the battery m〇2_3, which can accelerate the balance of the battery cells. Thus, the battery cell balancing circuit of the present invention can be applied to the charging process, the discharging process, and the idle state of the battery pack 302. 4 is a block diagram of a battery cell balancing circuit 400 in accordance with an embodiment of the present invention. Figure 4 is an extension of the six battery cells shown in Figure 3 to n battery cells το, where η is a positive integer. 4 is used as an example to illustrate how the battery balancing unit 400 achieves the balance of the battery unit regardless of whether the battery unit is in the charging process, the discharging process, or the idle state. The battery cell balancing circuit 400 includes a battery pack 402 having n battery cells 4〇2-Bu 4〇2-n, a transformer 403, and a detection and control unit 4〇8. The transformer 403 includes a core 405 and n coils 404-1-404-n coupled to the core 4〇5. The battery cell balancing circuit 4A further includes n switches 406 - 1-406 』, each - _ 404 ′ ′ 4 〇 4 η η is connected to a battery unit 4 〇 2j_4 through a corresponding switch 406 - 1-406 - η Both ends of 〇2_n, for example, coil 404-1 are connected to both ends of battery unit 402" through switch 406_1. Referring to FIG. 4, the dot ends of the coils 404J, 404_3 ..... 404 - η-1 are respectively connected to the positive electrodes of the battery cells 402J, 402-3, ..., 402-n: ;; and the coils 404-2, 404 The dot ends of a 4.....404_n are respectively connected to the negative electrodes of the battery cells 402-2, 402_4, ..., 402_n. The connection of the battery cells 4〇2J_4〇2-n and the corresponding coils 404_l-404_n disclosed in Fig. 4 is only one specific embodiment of the present invention. In general, the N coils 404_l-404_n can be divided into a first group of coils and a second group of coils, wherein the striking ends of the first group of coils are connected to the positive poles of the corresponding sigma pool unit, and the second The dot end of the group coil is connected to the negative pole of the corresponding battery unit. Taking FIG. 4 as an example, the coils 4〇4j, 4〇4 3, and electricity 404_n-1 may be referred to as a first group of coils, and the coils 4〇4_2, 4〇4j, . . . , 4〇4—η may be referred to as a second. Group coils. 406J, 406-3, ..., 406-η-1 connected to the first group of coils are referred to as a first group of switches, and switches 406-2, 406_4, ..., 406__η connected to the first group of coils are referred to as A set of switches. The detection and control unit 4〇8 controls the switches 406J-406 η, one-in-one and off, wherein the first group of switches (ie, switches 4〇6j, 4〇6~3, .0659-TW-CH Spec+Claim) (fiIed-20090929).d〇( 14 201112580 槪11-1) and the second set of switches (ie, switches 406-2, 406-4, . . . , 406_n) are not closed at the same time. Detection and control unit 408 Electrically connected to the battery pack 4〇2 and 406_l-4G6_n for detecting the battery pack 4 voltage of each battery pack of the battery pack, and connecting the first group of battery cells from the coil of the first group ( That is, the battery unit 402-402-3, .., 4〇2-n DJ7—selects the battery unit having the highest battery cell voltage (for example, battery sheet το 402-1) and the battery with the lowest battery unit voltage== Electricity, moving - 3); battery cells from the second cell voltage connected to the second set of coils (for example, electricity), and battery cells having the lowest battery cells (for example, battery cells) 402-2). The detection and control unit shed produces a star with a = rate and a duty cycle for the D2 control signal control switch = = off = 'and produces The control signal of the two predetermined frequencies and the noble period equal to = ^ - D2) controls the closing and opening of the marriage of the switch 2, and the "battery unit shift" when the standby switch 406-1 is closed causes the excess 1 to the iron of the transformer 403 to hurt. After the switch is "opened", the door: face_2 is closed. The coil stored on the coil 4〇4_2 has the energy stored in the heart (ie, the energy from the battery unit 2:) is transferred to the battery unit _2. . The detection and control has a third predetermined frequency and a duty cycle of _ control to close and open, and to generate a third predetermined frequency ^ or ί (the control signal of the switch control switch 406 3 is closed and opened. When the switch N is closed, the battery unit 4〇2-η is 0659-TW-CH sPec+C]aim(fiJed-20090929).doc 201112580 The excess energy is transferred to the core 405 of the transformer 403. At the switch 406 After η is turned off, the switches 406-3 are closed, an induced current appears on the coil 4〇4_3, and finally, the energy stored in the transformer 403 (i.e., the energy transferred from the battery unit 402-11) is transferred to the battery unit 4〇. In an embodiment, the third predetermined frequency is equal to the second predetermined frequency. Based on the connection relationship between the battery cells 402_1-402_n and the dot ends of the coils 404J-404n, the n battery cells of the battery pack 402 can be divided into The first group of battery cells and the second group of battery cells, for example, the anode of the first group of battery cells is connected to the dot end of the coil, and the cathode of the second group of cells is connected to the dot end of the coil. The detection and control unit 408 is from the first Group battery Selecting the battery unit having the highest battery cell voltage and the lowest battery cell voltage, selecting the battery cell having the highest battery cell voltage and the lowest battery cell voltage from the second group of battery cells. The detecting and controlling unit 4〇8 controls the corresponding switch Closing and disconnecting 'transferring the excess energy in the battery cell having the highest cell voltage among the first group of battery cells to the battery cell having the lowest cell voltage in the second set of cell units; The excess energy in the battery cell having the highest battery cell voltage is transferred to the battery cell having the lowest battery cell voltage among the first battery cells. Figure 5 is a block diagram of a battery cell balancing circuit 500 according to an embodiment of the present invention. The components in FIG. 5 having the same elements as those in FIG. 3 have the same function 'for the sake of simplicity' and will not be described herein. In the embodiment, the switch 506J-506-6 of the cell balancing circuit 500 uses a metal oxide semiconductor. Field effect transistor (MOSFET). Each MOSFET is ~ human body diode. Assume that battery cell 302" has the highest Pool g press, 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 Battery unit 302-4 has the lowest battery cell voltage, when the switch 5〇6j is closed, the excess energy in the battery unit 302_1 is transferred to In the iron core 305 of the transformer, after the switch 506_1 is turned off, the switch 5〇6-4 is closed, and an induced current appears on the coil 304_4. Due to the influence of the body diode, after the switch 506-1 is disconnected, the coil 304-2 Tiny induced currents also appear in 304 and 6. The induced current is inversely proportional to the equivalent load reactance at both ends of the coils 304-2 and 304-6, so that the battery cells 302-4 connected to the closed switch 506-4 obtain most of the energy transferred from the core 305. . Figure 6 is a block diagram showing a battery cell balancing circuit 600 in accordance with an embodiment of the present invention. The battery cell balancing circuit 6A includes n battery modules 602-1-602_n and a transformer 603 connected in series. The transformer 603 includes a plurality of coils, each of which is connected in parallel with a corresponding battery pole group 602_1-602_n through a switch (not shown). The detecting and controlling unit 6Q8 is electrically connected to the plurality of battery modules 602-1-602-n to detect the voltage of each battery module 602 by 1-602_η and select the battery module having the first voltage and has the second A battery module of voltage, wherein the first voltage is greater than the second voltage. In an embodiment of the invention, the first voltage and the second voltage are respectively the highest voltage and the lowest voltage of the n battery modules 602-1 - 602_η. The transformer 603 transfers a portion of the energy in the battery module having the first voltage to the battery module having the second voltage. It can be understood that each battery module 602 1-602_η can be regarded as a battery unit, and the battery unit balancing circuit shown in FIG. 6 works in the same manner as the battery unit balancing circuit shown in FIG. 3 and FIG. . In an embodiment of the invention, each battery module 6〇2_丨_6〇2 η includes a plurality of battery cells connected in series, and the battery cells in each of the battery modules 602-1-602-n The principle of balance between Figure 3 and Figure 4 * . 0659-TW-CH Spec + Claim (filed-20090929).doc 17 I ' 201112580 battery cell balancing circuit has the same principle, for concise (four), here + Dan Xian . 7 training U is * for the invention - implementation (four) pool unit balancing circuit - variable if diagram ° battery cell balancing circuit includes - battery pack 7 〇 2, one state 703, a first switch array 7 〇 6, a second switch The array 7 〇 7 electric, and also, ^ unit 7 〇 8. The battery pack 702 includes n flutes το 702"-702" connected in series. The transformer 7〇3 includes a first coil 7〇4 704 '圏 7G5 ° - the switch array __ is connected to the first coil = == = = one two

SdL:07。第三組開關S(U —SC—n和一第四組開關 -』。檢測和控制單元7〇8與電池組702、第一開關 ,、以及第二開關陣謂電性連接二^ 的每一電池單元7°2」,2』的電池單元電壓。 饭设在電池組702中,雷油罝;7ΛΟ, 雷嚴2」具有最高電池單元 電漫,而電池早π 702—η具有最低電池單元電壓 的電池單元平衡方式是將電池單元观」中多餘的 接轉移到電池單元7G2—η中。_和 '、 一開關陣列706中的開關SA aSB :7^08控制第 的 4:_== 電池早π 702—1流向第-線圈m。從電池單元观 轉移出來的能量被儲存在變壓器7〇3的鐵 和 制單元7〇8控制第一開關陣列 斷開’第二開關陣列707中的開關sc』和仙』閉合,第 18 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 二線圈705上出現感應電流,最後,將變壓器7〇3的鐵芯 中所儲存的能量(即,從電池單元702J中轉移出來的能 里)轉移到電池單元702—η中。此外,若檢測和控制單元 708控制第二開關陣列中的其他開關始終處於斷開狀態, 則電池單元702_1的能量不會被轉移到電池單元7〇2_2_ 702一η-1中。在此實例中,第一線圈7〇4和第二線圈7〇5 分別操作為初級線圈和次級線圈。 顯然’亦可採用其他方式將電池單元702_1中多餘的 月b量直接轉移到電池單元7〇2_η中,例如,檢測和控制單 元708控制第二開關陣列7〇7中的開關sc_i和SD_i閉 合,其他開關斷開,並控制第一開關陣列706中的所有開 關,開,電流由電池單元702-丨流向第二線圈7〇5。從電 池單元702—1中轉移出來的能量被儲存在變壓器7〇3的鐵 芯中。接著,檢測和控制單元7〇8控制第二開關陣列7〇7 中的開關SC一 1和SD_1斷開,第一開關陣列7〇6中的開關 SA—η和SB一η閉合,第一線圈7〇4上出現感應電流,最後, 將變壓器703的鐵芯中所儲存的能量(即,從電池單元 702一1中轉移出來的能量)轉移到電池單元7〇2—η中。此 外,右檢測和控制單元7〇8控制第一開關陣列7〇6中的其 他開關始終處於斷態,則電池單元7G2—1的能量不會 被轉移到電池單元7〇2_2- 702一η-1中。 y_圖8所不為根據本發明一實施例檢測和控制單元所執 订的控制流程800。圖8將結合圖4進行描述。在步驟8〇2 中’監控多個電池單元中的每—電池單元的電池單元電 壓。在步驟8G4中,基於電池單元和線圈打點端的連接關 0659-TW-CH Spec+Claim(filed-20090929).doc 19 201112580 組電池單元和一第二組電池單 係’將電池單元分為—第 元。請同時參照圖4,笛A =圈打:連接的正 .Π 〇 負極與線圈打點端連二單元係,單元之 402—4、…、402 電池早疋’如電池早元搬―2、 在步驟806中,從室. Φ两WD 攸第一組電池單元中選擇具有最高電 '~GAH)的電池單元B—GAH和最低電池單元 IV B—GAL)的電池單元B—GAL’且從第二組電池單元中 選擇具有最高電池單元電壓敗_的電池單元b _ 和最低電池單元· V(B舰)的電料元B_GBL。 在步驟808中’判斷第一組電池單元中的最高電池單 το電壓V(B_GAH)和最低電池單元電壓V(B—GAL)的差值或 第二組電池單元中的最高電池單元電壓V(B_GBH)和最低 電池單元電壓V(B_GBL)的差值是否大於一第一臨界值電 壓Vlim。第一臨界值電壓Vlim的大小可根據實際應用選 擇,在本發明一實施例中’第一臨界值電壓Vlim為0.5 伏。若第一組電池單元中的最高電池單元電壓V(B_GAH) 和最低電池單元電壓V(B_GAL)的差值或第二組電池單元 中的最高電池單元電壓V(B_GBH)和最低電池單元電壓 V(B_GBL)的差值大於第一臨界值電壓Vlim,則進入步驟 810,檢查電池是否損壞,否則進入步驟812。 在步驟812中,判斷第一組電池單元中的最高電池單 元電壓V(B_GAH)和第二組電池單元_的最低電池單元電 壓V(B_GBL)的差值是否小於一第二臨界值電壓Vbal、判 0659-TW-CH Spec+Claim(filed-20090929).doc 20 201112580 斷第二組電池單元中的最咼電池單元電壓V(B-Gbjj)和第 一組電池單元中的最低電池單元電壓V(B_GAL)的差值是 否小於第二臨界值電壓Vbal、判斷第一組電池單元中的最 高電池單元電壓V(B-GAH)和最低電池單元電壓v(b_gal) 的差值是否小於第二臨界值電壓Vbal、以及判斷第二組電 池單元中的最高電池單元電壓V(B一GBH)和最低電池單元 電壓V(B一GBL)的差值是否小於第二臨界值電壓礼以。在 -實施例中’第二臨界值電壓Vbal小於第-臨界值電壓 VIim,例如,50毫伏。若在步驟812中所判斷得之差值皆 小於第二臨界值電壓Vbal,則在步驟814終止對電池單二 的平衡,否則進入步驟816。 壓Vthb。在一實施例中,第 臨界值電壓Vbal且小於第— 在步驟816中,判斷第-組電池單元中的最高電池單 元電歷V(B_GAH)和最低電池單元電壓V(B—GAL)的差值或 第二組電池單元中的最高電池單元電壓V(B _和最低 電池單元電壓V(B_GBL)的差值是否大於一第三臨界值電 第二臨界值電壓Vthb大於第二SdL: 07. The third group of switches S (U - SC - n and a fourth group of switches - ". The detection and control unit 7 8 is electrically connected to the battery pack 702, the first switch, and the second switch array. The battery cell voltage of a battery unit 7° 2”, 2′′. The rice is set in the battery pack 702, the thunder oil 罝; 7ΛΟ, Lei Yan 2” has the highest battery unit electric diffuser, and the battery has the lowest battery π 702 η η The battery cell balancing mode of the cell voltage is to transfer the redundant connection in the battery cell view to the battery cells 7G2-n. _ and ', the switch SA aSB in a switch array 706: 7^08 controls the 4th: _= = The battery flows π 702 -1 to the first coil m. The energy transferred from the battery unit is stored in the transformer 7 〇 3 of the iron and the unit 7 〇 8 controls the first switch array to open 'the second switch array 707 The switch sc 』 and 仙 』 closed, the 18th 0659-TW-CH Spec+Claim(filed-20090929).doc 201112580 The induced current appears on the second coil 705, and finally, the energy stored in the core of the transformer 7〇3 (ie, the energy transferred from the battery unit 702J) is transferred to the battery unit 702-η In addition, if the detection and control unit 708 controls the other switches in the second switch array to be always in the off state, the energy of the battery unit 702_1 is not transferred to the battery unit 7〇2_2_ 702−η-1. The first coil 7〇4 and the second coil 7〇5 operate as a primary coil and a secondary coil, respectively. Obviously, the excess monthly b amount in the battery unit 702_1 can be directly transferred to the battery unit 7〇2_η. For example, the detection and control unit 708 controls the switches sc_i and SD_i in the second switch array 7〇7 to be closed, the other switches are turned off, and controls all switches in the first switch array 706, and the current is supplied by the battery unit 702- The turbulent flow to the second coil 7 〇 5. The energy transferred from the battery unit 702-1 is stored in the core of the transformer 7 〇 3. Next, the detection and control unit 7 〇 8 controls the second switch array 7 〇 7 The switches SC-1 and SD_1 are disconnected, the switches SA-η and SB-η in the first switch array 7〇6 are closed, the induced current appears on the first coil 7〇4, and finally, the core of the transformer 703 is placed Stored energy (ie, from The energy transferred from the cell unit 702-1 is transferred to the battery cells 7〇2-n. Furthermore, the right detection and control unit 7〇8 controls the other switches in the first switch array 7〇6 to be always off. The energy of the battery unit 7G2-1 is not transferred to the battery unit 7〇2_2-702-η-1. y_ Figure 8 is not a control flow 800 imposed by the detection and control unit in accordance with an embodiment of the present invention. Fig. 8 will be described in conjunction with Fig. 4. In step 8〇2, 'the battery cell voltage of each of the plurality of battery cells is monitored. In step 8G4, based on the connection between the battery unit and the coil striking end, the 0659-TW-CH Spec+Claim (filed-20090929).doc 19 201112580 battery unit and the second battery unit are divided into two parts. yuan. Please refer to Figure 4 at the same time, flute A = circle hit: connected positive. Π 〇 negative pole and coil hit end connected to two units, unit 402-4, ..., 402 battery early 如 'If the battery is moved early ― 2 In step 806, the battery unit B-GAL' of the battery unit B-GAH and the lowest battery unit IV B-GAL having the highest electric power '~GAH' is selected from the room Φ WD 攸 攸 攸 攸 且 且 且Among the two battery units, the battery unit b _ having the highest battery unit voltage _ and the battery unit B_GBL having the lowest battery unit V (B ship) are selected. In step 808, 'determine the difference between the highest battery cell το voltage V(B_GAH) and the lowest battery cell voltage V(B_GAL) in the first group of battery cells or the highest cell voltage V in the second group of battery cells ( Whether the difference between B_GBH) and the lowest battery cell voltage V (B_GBL) is greater than a first threshold voltage Vlim. The magnitude of the first threshold voltage Vlim can be selected according to practical applications. In an embodiment of the invention, the first threshold voltage Vlim is 0.5 volts. If the difference between the highest battery cell voltage V(B_GAH) and the lowest battery cell voltage V(B_GAL) in the first group of battery cells or the highest cell voltage V (B_GBH) and the lowest cell voltage V in the second group of battery cells If the difference of (B_GBL) is greater than the first threshold voltage Vlim, proceed to step 810 to check if the battery is damaged, otherwise proceed to step 812. In step 812, it is determined whether the difference between the highest battery cell voltage V(B_GAH) of the first group of battery cells and the lowest battery cell voltage V(B_GBL) of the second group of battery cells is less than a second threshold voltage Vbal, Judgment 0659-TW-CH Spec+Claim(filed-20090929).doc 20 201112580 Breaking the last cell voltage V(B-Gbjj) in the second group of cells and the lowest cell voltage V in the first group of cells Whether the difference of (B_GAL) is less than the second threshold voltage Vbal, determining whether the difference between the highest cell voltage V(B-GAH) and the lowest cell voltage v(b_gal) in the first group of cells is less than the second threshold The value voltage Vbal, and determining whether the difference between the highest battery cell voltage V (B - GBH) and the lowest battery cell voltage V (B - GBL) in the second group of battery cells is less than the second threshold voltage. In the embodiment, the second threshold voltage Vbal is smaller than the first threshold voltage VIim, for example, 50 millivolts. If the difference determined in step 812 is less than the second threshold voltage Vbal, then the balancing of the battery cell 2 is terminated in step 814, otherwise step 816 is entered. Press Vthb. In an embodiment, the threshold voltage Vbal is less than the first - in step 816, determining the difference between the highest battery cell voltage V (B_GAH) and the lowest cell voltage V (B - GAL) in the first group of battery cells Whether the value or the difference between the highest battery cell voltage V (B _ and the lowest battery cell voltage V (B_GBL) in the second group of battery cells is greater than a third threshold value, and the second threshold voltage Vthb is greater than the second value

中之部分能量轉移到第二組 0659-TW-CHSpec+Claim(filed-20090929).doc 21 201112580 V(B—GBH)的電池單元Β二凡具有最尚電池單元電壓 電池單元巾具有最低電壓電,部=量轉移到第-組 BGAL。 愛電池早疋默㈤的電池單元 在步驟820中,判斷 元電壓V(B—GAH)和第二二的最高電池單 壓V(B_GBL)的差值或第二組電池單元電 電壓V(B—GBH)和第一《且電也:儿、取尚電池單元 _)的差值是否大”三臨:=== 元電™)和第二 二的最低電池早70電壓V(B—GBL)的差值或第二粗電 池早凡中的最=池單元電壓V(B—_和第—組電池單 兀中的最低電池單元電壓敗GAL)的差值大於第三臨界 值電壓Vthb ’則進入步驟824的快速平衡模式否則進入 步驟818的正常平衡模式。 控制抓程800在快速平衡模式之後進入步驟826。在 步驟826中,判斷第-組電池單元中的最高電池單元電壓 V(B一GAH)和第二組電池單元中的最低電池單元電壓 V(B_GBL)的差值是否大於第二組電池單元中的最高電池 單元電壓V(B—GBH)和第一組電池單元中的最低電池單元 電壓V(B一GAL)的差值。若第一組電池單元中的最高電池單 元電壓V(B_GAH)和第二組電池單元中的最低電池單元電 壓V(B_GBL)的差值大於第二組電池單元中的最高電池單 元電壓V(B_GBH)和弟一組電池單元中的最低電池單元電 0659-TW-CH Spec+Claim(filed-20090929).doc 22 201112580 壓V(B—GAL)的差值,則進入步驟828,否則進 在步驟828中,將第—組電池單 /一驟830 ° 元電請的電池單元B-GAH中之部 第二組電池單元t具有最低電池單元電墨 池單元B_GBL。 JBL)的電 在步驟830中,將第二組電池單元中且 元電壓V(B_GBH)的電池單元B_GBH的部分能: -組電池單元巾具有最低電池單 轉移到第 單元B_GAL。 U V(B-Μ)的電池 圖8中所示之控制流程可每隔一段時間 秒,對每-電池單元的電池單元電壓進行檢 00毫 =2 ΓΓ控到的電池單元電壓每隔100毫秒進:二: 更新。圖8所揭露之具體的控制流程僅作為示例。Z = 說,本發明亦適用其他合理的控制流程 = 的步驟。 口 〇琨仃改進 圖9所示為根據本發明一實施例平 _。在步驟902中,檢測串聯連接的多個電=之2 池單7L電壓。在步驟9〇4中,從檢測 几的電 壓中選擇具有最高電池單元電壓的電池“ 電 電池單元㈣的電池單元。在步驟_中 低 池單元電壓的電池單元中之部分能量轉移至具 池單元電壓的電池單元。 一有最低電 上文具體實施方式和附圖僅為本發明之 例。H在残賴㈣請專魏_界㈣本發^ 神和保祕_前提下可以有各種增補、修改和替換 0659-TW-CH Spec+Claim(fi!ed-20090929) doc 23 201112580 技術領域中具有通常知識者應該理解,本發明在實際應用 中可根據具體的環境和工作要求在不背離發明準則的前 提下在形式、結構、佈局、比例、材料、元素、元件及其 匕方面有所變化。因此,在此坡露之實施例僅用於說明而 非限,,本發明之範圍由後附申請專利範圍及其合法均等 物界定,而不限於此前之描述。 【圖式簡單說明】 —广以下結合附圖和具體實施例對本發明的技術方法進 行詳細的描述,以使本發明的特徵和優點更為明顯。其中: 圖1所示是為傳統電池單元平衡電路結構圖。 圖2所示為另一種傳統電池單元平衡電路結構圖。 構圖圖3所示為根據本發明—實施例電池料平衡電路結 構圖圖4所示為根據本發明—實施例電池單元平衡電路結 翻圖5所㈣喊本發明—實_電池單元平衡電路結 構圖圖6所㈣㈣本發明—實施㈣池單元平衡電路結 構圖圖為㈣本伽—實關電轉元平衡電路結 行的為根據本發明—實施例檢測和控制單元所執 元之方法 圖9所示為根據本發明一實施例平衡電池單 0659-TW-CH Spec+CIaim(filed-20090929).d〇i 24 201112580 流程。 【主要元件符號說明】 100 :電池單元平衡電路 102_1〜102_n :電池單元 104 :初級線圈 106_1〜106_n :次級線圈 108 :開關 ® 200:電池單元平衡電路 202_1〜202_n :電池單元 204_1〜204_n:金屬氧化物半導體場效電晶體 300 :電池單元平衡電路 302 :電池組 302_1-302_6 :電池單元 303 :變壓器 304_1-304_6 :線圈 • 305 :鐵芯 306_1-306_6 :開關 308 :檢測和控制單元 400 :電池單元平衡電路 402 :電池組 402_l-402_n :電池單元 403 :變壓器 404_l-404_n :線圈 405 :鐵芯 0659-TW-CH Spec+Claim(filed-20090929).doc 25 201112580 406_1·406_η :開關 408 :檢測和控制單元 500 :電池單元平衡電路 506_l-506_n :開關 600 :電池單元平衡電路 602_l-602_n :電池模組 603 :變壓器 608 :檢測和控制單元 700 :電池單元平衡電路 702 :電池組 702_l-702_n :電池單元 703 :變壓器 704 :第一線圈 705 :第二線圈 706 :第一開關陣列 707 :第二開關陣列 708 :檢測和控制單元 800 :流程 802-830 :步驟 900 :流程 902、904、906 :步驟 0659-TW-CH Spec+Claim(filed-20090929).doc 26Part of the energy transfer to the second group 0659-TW-CHSpec+Claim(filed-20090929).doc 21 201112580 V (B-GBH) battery unit Β 二凡 has the most battery cell voltage battery unit has the lowest voltage , Department = amount transferred to the first group BGAL. The battery unit of the battery early silent (5) determines the difference between the element voltage V (B-GAH) and the highest battery single voltage V (B_GBL) of the second two or the second group of battery unit voltage V (B) in step 820. - GBH) and the first "and electricity is also: children, take the battery unit _) the difference is big "three Pro: === Yuandian TM) and the second two of the lowest battery early 70 voltage V (B-GBL The difference between the difference or the most = second cell cell voltage V (B__ and the lowest cell voltage in the first battery cell 败 GAL) of the second coarse battery is greater than the third threshold voltage Vthb ' Then, the fast balance mode of step 824 is entered, otherwise the normal balance mode of step 818 is entered. The control grab 800 proceeds to step 826 after the fast balance mode. In step 826, the highest battery cell voltage V (B) of the first group of battery cells is determined. Whether the difference between the lowest cell voltage V(B_GBL) of a GAH) and the second group of battery cells is greater than the highest cell voltage V(B-GBH) of the second group of cells and the lowest of the first group of cells The difference between the cell voltage V (B-GAL). If the highest cell voltage in the first battery cell The difference between V (B_GAH) and the lowest battery cell voltage V (B_GBL) in the second group of battery cells is greater than the highest battery cell voltage V (B_GBH) in the second group of battery cells and the lowest battery cell in the group of battery cells Electric 0659-TW-CH Spec+Claim(filed-20090929).doc 22 201112580 Pressure V (B-GAL) difference, then proceeds to step 828, otherwise proceeds to step 828, the first battery unit / a step The second group of battery cells t of the battery unit B-GAH of the 830 ° electric power unit has the lowest battery unit electric ink pool unit B_GBL. The electric power of JBL) in step 830, the voltage of the second group of battery cells is V The part of the battery unit B_GBH of (B_GBH) can be: - the battery unit towel has the lowest battery order transferred to the first unit B_GAL. The battery of UV (B-Μ) is shown in the control flow of Fig. 8 every second, right The cell voltage of each cell is checked 00 mA = 2 The cell voltage of the cell is controlled every 100 milliseconds: two: update. The specific control flow disclosed in Fig. 8 is only an example. Z = said, the present invention Other reasonable control procedures = steps are also applicable. 9 shows a flat according to an embodiment of the present invention. In step 902, a plurality of battery cells 7L voltages connected in series are detected. In step 9〇4, the highest battery is selected from among the detected voltages. Cell voltage of the battery "Electrical battery unit (four) battery unit. A portion of the energy in the battery cells in the step _ medium cell voltage is transferred to the battery cells having the cell voltage. The minimum power is present. The above detailed description and drawings are merely examples of the invention. H is in the remnant (four) please specialize in Wei _ _ (4) this hair ^ God and Bao Mi _ under the premise of various additions, modifications and replacements 0659-TW-CH Spec+Claim(fi!ed-20090929) doc 23 201112580 It should be understood by those having ordinary knowledge that the present invention may vary in form, structure, layout, ratio, material, element, component, and aspect thereof, depending on the specific environment and work requirements, without departing from the scope of the invention. . The scope of the present invention is defined by the scope of the appended claims and their legal equivalents, and is not limited by the foregoing description. BRIEF DESCRIPTION OF THE DRAWINGS The technical methods of the present invention are described in detail below with reference to the accompanying drawings and specific embodiments. Among them: Figure 1 shows the structure of the balance circuit of the traditional battery unit. FIG. 2 is a structural diagram of another conventional battery cell balancing circuit. FIG. 3 is a structural diagram of a battery material balancing circuit according to the present invention. FIG. 4 is a diagram showing a battery cell balancing circuit according to the present invention. FIG. 5 is a fourth embodiment of the present invention. Figure 4 (4) (4) The present invention - implementation (four) pool unit balance circuit structure diagram (4) The present gamma - real off power transfer element balance circuit is a method according to the present invention - the detection and control unit is implemented according to the method of Figure 9 Shown is a process for balancing a battery cell 0659-TW-CH Spec+CIaim(filed-20090929).d〇i 24 201112580 in accordance with an embodiment of the present invention. [Description of Main Element Symbols] 100: Battery cell balancing circuits 102_1 to 102_n: Battery unit 104: Primary coils 106_1 to 106_n: Secondary coil 108: Switch® 200: Battery cell balancing circuits 202_1 to 202_n: Battery cells 204_1 to 204_n: Metal Oxide semiconductor field effect transistor 300: cell balancing circuit 302: battery pack 302_1-302_6: battery unit 303: transformer 304_1-304_6: coil • 305: core 306_1-306_6: switch 308: detection and control unit 400: battery Unit balancing circuit 402: battery pack 402_l-402_n: battery unit 403: transformer 404_l-404_n: coil 405: iron core 0659-TW-CH Spec+Claim(filed-20090929).doc 25 201112580 406_1·406_η: switch 408: detection And control unit 500: battery cell balancing circuit 506_l-506_n: switch 600: battery cell balancing circuit 602_1-602_n: battery module 603: transformer 608: detection and control unit 700: battery cell balancing circuit 702: battery pack 702_l-702_n: Battery unit 703: transformer 704: first coil 705: second coil 706: first switch array 707: second switch array 708: detection and control unit 800 : Flow 802-830: Step 900: Flow 902, 904, 906: Step 0659-TW-CH Spec+Claim(filed-20090929).doc 26

Claims (1)

201112580 七、申請專利範圍: L 一種電池單元平衡電路,包括: 一第一電池單元,具有一參數,且該參數之值具有一 第一數值; 一第二電池單元,串聯耦接至該第一電池單元,該第 二電池單元之該參數之值具有一第二數值,其中,該 第一數值大於該第二數值;以及 一變壓器,包括與該第-電池單元兩端電性連接之一201112580 VII. Patent application scope: L A battery cell balancing circuit, comprising: a first battery unit having a parameter, and the value of the parameter has a first value; a second battery unit coupled in series to the first a battery unit, the value of the parameter of the second battery unit has a second value, wherein the first value is greater than the second value; and a transformer includes one of electrically connected to both ends of the first battery unit 初級線圈’以及與該第三電池料兩端電性連接之一 次級線圈,將該第-電池單元中之部分能量轉移至該 第二電池單元。 2. 如申請專職圍第丨項的電池單元平衡電路,盆中 該參數係為一電壓。 八 3. 如申請專職圍第丨電池單元平衡電路, 該參數係為一電荷狀態。 、 4. 如申請專利範圍第丨項的電池單_衡電路, 該參數係為一容量。 、 5. 圍第1項的電池單元平衡電路,其中! 該第一電池单元的-正極與該初級線圈的一打 電性連接,該第二電池單元的一 *' -打點端電性連接。60負極與該次級線圈的 6. 如申請專鄉㈣丨項的電池單元 =電:單元平衡電路還包括一第一開關和一’第、一中門 圈之間,該第二開嶋接於該 27 0659-TW-CH Spec+Claim(filed-20090929) doc 201112580 級線圈之間。 7.如申請專利範圍第6項的電池單元平衡電路,其中, ,電池單元平衡電路還包括—檢測和控制單元Γ電性 =接該第—電池單元m池單元、該第一開 、以及該第二開關,並檢測該第一電池單元知該第 和該第二電池單元之該第二數值,並根據所檢 ㈣該第—數值和該第二數值’控制該第一開關和 第一開關交替地閉合和斷開。 8· —種電池單元平衡電路,包括: 二池組’包括串聯連接的多個電池單元,該多個電 池單元中之二第—電池單元具有-參數且該參數之 ,具有-第-數值,該多個電池單元中之—第二電池 單70之該參數之值為一小於該第一數值之一第二數 值;以及 憂壓器,包括一第一線圈和一第二線圈,且與該電 池組電性連接,將該第—電池單元巾之部分能量轉移 至該第二電池單元。 9. 如申吻專利範圍第$項的電池單元平衡電路,其中, 該電池單元平衡電路還包括一第一開關陣列和一第 二開關陣列,該第-開關陣列係輕接於該電池組和該 第線圈之間,該第二開關陣列係耦接於該電池組和 該第二線圈之間。 10. 如申請專利範圍第9項的電池單元平衡電路,其中, 該電池單元平衡電路還包括一檢測和控制單元Υ與該 電池組、該第一開關陣列、以及該第二開關陣列電性 0659-TW-CH Spec+Claim(filed-20090929).doc 28 201112580 $接’並檢_第-數值和該第二 剛到之該第-數值和㈣,錄據所檢 列和該第-η關瞌^^一數 該第一開關陣 列中每一開關的閉合和斷開’以使 =。’也單70巾之部分能量轉移至該第二電池單 圍第9項的電池單科衡電路,其中, 第%關和—第二開關’該 開關係耗接於該電池組和該第-線 開關曰輕開關陣列還包括一第三開關和一第四 該第二㈣第㈣關餘接於該電池組和 12.ί申H利範圍第11項的電池單元平衡電路,其 電池單元平衡電路還包括—檢測和控制單元', 開關陣列、該第二開關陣列、及該電池組電 並檢測該第一數值和該第二數 測到的該第一數值和該第二數值,控制^第=檢 開狀熊。 '"第一開關、及該第四開關之閉合和斷 13·如申請專利範圍第 該參數係為-電壓,早%平衡電路,其中, 、:二電池單元電壓’該第二數值係為該多個電 池早兀中之-最低電池單元電壓。電 14. 一種電池單元平衡電路包括: 第電,組和二第二電池模組,該第 、,和"第一電池模址分別包括多個電池單 0659-TW-CH Spec+Claim(filed.2〇〇9〇929).doc 29 201112580 元,該第一電池模組之一參數之值具有一第一數值5 該第二電池模組之該參數之值為一小於該第一數值 之一第二數值;以及 一變壓器,包括與該第一電池模組電性連接之一初級 線圈以及與該第二電池模組電性連接之一次級線 圈,將該第一電池模組中之部分能量轉移至該第二電 池模組。 15. 如申請專利範圍第14項的電池單元平衡電路,該第 一電池模組的一正極與該初級線圈的一打點端連 接,該第二電池模組的一負極與該次級線圈的一打點 端連接。 16. 如申請專利範圍第14項的電池單元平衡電路,其 中,該參數係為一電壓。 17. 如申請專利範圍第14項的電池單元平衡電路,其 中,該參數係為一電荷狀態。 18. 如申請專利範圍第14項的電池單元平衡電路,其 中,該參數係為一容量。 19. 一種電池單元平衡方法,包括: 檢測一第一電池單元的一參數,該第一電池單元的該 參數之值具有一第一數值; 檢測與該第一電池單元串聯連接的一第二電池單元 之該參數,該第二電池單元的該參數之值具有一第二 數值,其中,該第一數值大於該第二數值;以及 將該第一電池單元中之部分能量透過一變壓器轉移 至該第二電池單元。 0659-TW-CH Spec+Claim(filed-20090929).doc 30 201112580 電池單元平衡方法’其 電::單元中之部分能量储存在峨器的 21 内的能*轉移至該第二電池單元。 申味專利範園第20項的電池單元平衡方法,甘 中’該儲存步驟包含. 其 弟開關處於閉合狀態;以及 控制麵接於該第二電池單元和該變壓一 圈之間的一第二開關處於斷開狀離。 - 人級線 22.t申請專利範圍第21項的電池單元平衡方法甘 =該鐵芯内的能量轉移至該第二電池單元之ί 控制該第一開關處於斷開狀態;以及 控制該第二開關處於閉合狀態。 23· —種電池單元平衡方法包^ : 元的 聯連接的多個電池單元中之每一電池單 從檢測到的多個參數中選擇具有 池單元和具有一第二數值的一電池單元,電 大於該第一數值;以及 數值 將具有該第-數值的該電池單 24 一變壓器轉移至具有轉二數值_電池單Γ。透過 .如申_删第23項的電料元平衡方法,其 0659-TW-CH Spec+Claim(filed-20090929).doc 31 201112580 中5該參數係為一電壓,該第一數值係為該多個電池 單元中之最高電池單元電壓 >該第二數值係為該多個 電池單元中之最低電池單元電壓。 0659-TW-CH Spec+Claim(filed-20090929).doc 32The primary coil 'and one of the secondary coils electrically connected to both ends of the third battery material transfer part of the energy in the first battery unit to the second battery unit. 2. If you apply for the battery cell balancing circuit of the full-time sub-item, the parameter in the basin is a voltage. VIII 3. If applying for a full-time 丨 battery cell balancing circuit, this parameter is a state of charge. 4. If the battery bill is the same as the battery of the patent scope, the parameter is a capacity. 5. The battery cell balancing circuit of item 1, wherein: the positive electrode of the first battery unit is electrically connected to the primary coil, and the one of the second battery unit is electrically connected. 60 negative electrode and the secondary coil 6. If the application unit (4) item battery unit = electricity: the unit balancing circuit further includes a first switch and a 'first and a middle door ring, the second opening and closing Between the 27 0659-TW-CH Spec+Claim(filed-20090929) doc 201112580 class coil. 7. The battery cell balancing circuit of claim 6, wherein the battery cell balancing circuit further comprises: detecting and controlling unit electrical conductivity = connecting the first battery cell m pool unit, the first opening, and the a second switch, and detecting the second value of the first battery unit and the second battery unit, and controlling the first switch and the first switch according to the (four) the first value and the second value Close and close alternately. 8. A battery cell balancing circuit, comprising: a two-cell group' comprising a plurality of battery cells connected in series, two of the plurality of battery cells having a - parameter and having - a - value of the parameter The value of the parameter of the second battery cell 70 of the plurality of battery cells is a second value less than one of the first values; and the pressure suppressor includes a first coil and a second coil, and The battery pack is electrically connected to transfer part of the energy of the first battery unit to the second battery unit. 9. The battery cell balancing circuit of claim 100, wherein the battery cell balancing circuit further comprises a first switch array and a second switch array, the first switch array being lightly connected to the battery pack and The second switch array is coupled between the battery and the second coil. 10. The cell balancing circuit of claim 9, wherein the cell balancing circuit further comprises a detection and control unit and the battery, the first switch array, and the second switch array electrically 0659 -TW-CH Spec+Claim(filed-20090929).doc 28 201112580 $ 接' and check _ the first value and the second just arrived at the first - value and (four), the record is listed and the first - η off瞌^^ The closing and opening of each switch in the first switch array is such that =. 'The energy of the single 70 towel is transferred to the battery single-core circuit of the second battery enclosure item 9, wherein the first % off and the second switch 'the open relationship are consumed by the battery pack and the first - The line switch 曰 light switch array further includes a third switch and a fourth (second) fourth (four) switch remaining in the battery pack and the battery balancing circuit of the eleventh item of the 12. The circuit further includes a detection and control unit, the switch array, the second switch array, and the battery pack electrically and detecting the first value and the second value of the first value and the second value, and controlling ^ The first = check open the bear. '"The first switch, and the closing and breaking of the fourth switch 13 · As in the patent application scope, the parameter is - voltage, early % balance circuit, wherein: , two battery unit voltage 'the second value is The plurality of batteries are among the lowest - the lowest cell voltage. 14. A battery cell balancing circuit comprising: a first battery, a second battery module, and a second battery module, the first battery module respectively comprising a plurality of battery cells 0659-TW-CH Spec+Claim (filed .2〇〇9〇929).doc 29 201112580, the value of one of the parameters of the first battery module has a first value of 5; the value of the parameter of the second battery module is less than the first value a second value; and a transformer comprising a primary coil electrically connected to the first battery module and a secondary coil electrically connected to the second battery module, the part of the first battery module Energy is transferred to the second battery module. 15. The battery cell balancing circuit of claim 14, wherein a positive pole of the first battery module is coupled to a dot end of the primary coil, and a negative pole of the second battery module and one of the secondary coils Dot connection. 16. The battery cell balancing circuit of claim 14, wherein the parameter is a voltage. 17. The battery cell balancing circuit of claim 14, wherein the parameter is a state of charge. 18. The battery cell balancing circuit of claim 14, wherein the parameter is a capacity. 19. A battery cell balancing method, comprising: detecting a parameter of a first battery unit, the value of the parameter of the first battery unit having a first value; detecting a second battery connected in series with the first battery unit The parameter of the unit, the value of the parameter of the second battery unit has a second value, wherein the first value is greater than the second value; and transferring part of the energy of the first battery unit to the Second battery unit. 0659-TW-CH Spec+Claim(filed-20090929).doc 30 201112580 Battery cell balancing method 'Electrical:: The energy stored in the cell 21 is transferred to the second cell. The battery cell balancing method of the 20th patent patent garden, the storage step includes: the younger switch is in a closed state; and the control surface is connected between the second battery unit and the variable pressure one The second switch is in a disconnected state. - a cell balancing method of claim 21, wherein the energy in the core is transferred to the second battery unit, the first switch is in an off state; and the second is controlled The switch is in the closed state. 23. A battery cell balancing method package: each of the plurality of battery cells connected by the element is selected from the plurality of parameters detected, having a cell unit and a battery cell having a second value, The value is greater than the first value; and the value transfers the battery unit 24 having the first value to the battery having a value of _ battery. According to the electric material element balancing method of claim 23, the parameter is 0559-TW-CH Spec+Claim(filed-20090929).doc 31 201112580. The parameter is a voltage, and the first value is The highest cell voltage among the plurality of battery cells > the second value is the lowest cell voltage of the plurality of battery cells. 0659-TW-CH Spec+Claim(filed-20090929).doc 32
TW98132843A 2009-09-29 2009-09-29 Circuits and methods for balancing battery cells TWI390822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98132843A TWI390822B (en) 2009-09-29 2009-09-29 Circuits and methods for balancing battery cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98132843A TWI390822B (en) 2009-09-29 2009-09-29 Circuits and methods for balancing battery cells

Publications (2)

Publication Number Publication Date
TW201112580A true TW201112580A (en) 2011-04-01
TWI390822B TWI390822B (en) 2013-03-21

Family

ID=44909309

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132843A TWI390822B (en) 2009-09-29 2009-09-29 Circuits and methods for balancing battery cells

Country Status (1)

Country Link
TW (1) TWI390822B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451657B (en) * 2012-10-29 2014-09-01 Univ Nat Formosa Equivalent status detecting and charging device for secondary battery package
TWI452797B (en) * 2012-03-13 2014-09-11 Univ Nat Formosa Equivalent status detecting and charging device for secondary battery package
TWI511413B (en) * 2012-07-13 2015-12-01 Fu Sheng Tsai Method and apparatus for performing active balancing control with aid of voltage information sharing
TWI571030B (en) * 2012-03-19 2017-02-11 Evtd股份有限公司 Balance correcting device and electricity accumulation system
TWI666851B (en) * 2018-05-04 2019-07-21 大陸商東莞市高效電控有限公司 Optimized battery balance system and operation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242395A (en) * 2014-09-23 2014-12-24 重庆星联云科科技发展有限公司 Active equalization circuit and equalization method of series batteries of single transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452797B (en) * 2012-03-13 2014-09-11 Univ Nat Formosa Equivalent status detecting and charging device for secondary battery package
TWI571030B (en) * 2012-03-19 2017-02-11 Evtd股份有限公司 Balance correcting device and electricity accumulation system
TWI511413B (en) * 2012-07-13 2015-12-01 Fu Sheng Tsai Method and apparatus for performing active balancing control with aid of voltage information sharing
TWI451657B (en) * 2012-10-29 2014-09-01 Univ Nat Formosa Equivalent status detecting and charging device for secondary battery package
TWI666851B (en) * 2018-05-04 2019-07-21 大陸商東莞市高效電控有限公司 Optimized battery balance system and operation method thereof

Also Published As

Publication number Publication date
TWI390822B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US9013148B2 (en) Lithium-ion battery pack and method of charge/discharge equalizing
CN101467326B (en) Charge equalization apparatus with parallel connection of primary coils of multiple transformers
CN103548234B (en) Accumulator plant
CN105122578B (en) Balanced compensating device and electrical storage device
CN101714786B (en) Voltage equalization circuit for series super capacitor bank and control method thereof
TW201112580A (en) Circuits and methods for balancing battery cells
CN101800436A (en) Circuit and method for cell balancing, and cell management system
CN102638063A (en) Battery pack potential balancing circuit
CN101976876A (en) Device and method for equalizing batteries in charging process
CN103094944A (en) Multi-section type battery module charging method and device
CN109347173B (en) A battery pack equalization control circuit and method based on switched capacitors
CN106602648B (en) Improved circuit for bidirectional lossless equalization of series battery pack based on inductive energy storage
CN110341548A (en) An active balancing system and control method for a power battery pack based on an external power supply
CN110729795A (en) An energy storage power station and its battery equalization control method
CN106329640A (en) Battery charging equalization device and battery charging equalization method
CN109193863A (en) Battery voltage balance control method and circuit
TWM414756U (en) Active balancing circuit for battery set having a plurality of battery units
CN117318214A (en) Battery pack high-voltage system and control method thereof
CN106602647A (en) Two-way nondestructive equalization circuit of parallel battery packs based on capacitive energy storage
CA3076579A1 (en) System and method for balancing state of charge of battery
CN113799654A (en) A kind of power battery equalization charging method for electric vehicle
CN107039687A (en) A kind of non-dissipative equalizing circuit for electric automobile power battery
CN208226594U (en) A kind of power battery charging system
Lee et al. Reconfigurable multi-cell battery pack for portable electronic devices with the capability of simultaneous charging and discharging
CN111697667A (en) Lithium battery balancing device based on buck-boost circuit and balancing method thereof