TW201110329A - Bias voltage generation circuit for an SOI radio frequency switch - Google Patents
Bias voltage generation circuit for an SOI radio frequency switch Download PDFInfo
- Publication number
- TW201110329A TW201110329A TW098139763A TW98139763A TW201110329A TW 201110329 A TW201110329 A TW 201110329A TW 098139763 A TW098139763 A TW 098139763A TW 98139763 A TW98139763 A TW 98139763A TW 201110329 A TW201110329 A TW 201110329A
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- semiconductor
- bias
- impedance
- voltage
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/201—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/10—Auxiliary devices for switching or interrupting
- H01P1/15—Auxiliary devices for switching or interrupting by semiconductor devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/693—Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0018—Special modifications or use of the back gate voltage of a FET
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/211—Design considerations for internal polarisation
- H10D89/213—Design considerations for internal polarisation in field-effect devices
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
201110329 六、發明說明: 【發明所屬之技術領域】 本發明係Μ於半導體電路,尤其侧於包含絕緣層上 半導體(soi)基板上射頻開關以及用於該射頻開關的^壓 生成電路之半導體電路,以及操作該電路之方法。 【先前技術】 像是場效電晶體這類半導體裝置絲t成類比盘射 頻(radio frequency,RF)應用當中RF信號的切換裝置/。、絕 緣層上半導體(SOI)基板通常用於這種應用,因為裝置之間 通過基板的寄生耦合會因為嵌埋絕緣層的低介電常數而 減少。例如:矽(包含塊狀矽基板的整個基板)的介電常數, 大約在11.9 GHz範圍内。相較之下,將内含裝置的頂端 半導體層與握把基板絕緣的氧化矽之介電常數大約為 3.9。利用提供嵌埋絕緣層,其介電常數小於塊狀基板内半 導體材料的介電常數,801基板減少獨立半導體裝置與基 板之間的電容耦合,因此減少半導體裝置通過基板之^二 次要電谷輕合。 不過,即使使用SOI基板,半導體裝置之間電氣信號 的ί要,容搞合會因為運用在射頻應用冑中高頻範圍而b 變得顯著,此範圍可為例如從大約9〇〇 MHz到大約i 8 GHz’並且可包含甚至更高的頻率範圍。這是因為電氣組 件之間的電容耦合隨頻率線性增加的緣故。 201110329 針對SOI基板上形成的射頻(RF)開關而言,包含RF 開關以及頂端半導體層内信號處理單元的半導體裝置透 過嵌i里絕緣層電容耦合至底部半導體層。即使頂端半導體 a内的半—體裝置運用從大約至大約9V的電源供應 電壓天線電路内的瞬間信號與信號反應都會將頂端半導 ,層=的實際電壓增加至大約3()^這種電壓情況誘導受 電壓信號的半導體裝置與底部半導體層上半部内 電容耦合’-該感應電荷層隨頂端半導 =内+導難置巾的RIMf號之解改變厚度以及電荷 =1該錢電荷層與頂端半導體層内其他半導體裝置電 導體層内包含RF開關支援來電絕緣的 應電荷層與其他半導體裝 mu果二1 ^合s供次要電容叙合’其為降低RF ί ==合’在此情況下,雖然RF開關已經關 =置敎透過次要電容耦合將砂信號供應至其他半導體 請參閱圖卜先前技術射 體(SOI)基板δ上形忐沾一 ,Λ M 隹名緣層上丰導 成的組串聯場效電晶體。SOI其柘8 包含底部半導體層1G、㈣_ a 巡⑽基板8 30。頂端半導體岸μ ^人邑緣層2〇和頂端半導體層 頂體層30包含頂端半導體 接頂端半導體部份32之門 ’ 32以及乂供# 每-場效電晶體都&含閉溝槽絕緣結構仏 極&板44以及,半導體部份 ] 域(未顯示)。場效電a雕 ㈣成的源極和及極區 电日日肢延過一組接點孔88 201110329 串聯。接點孔88内嵌在線中央(middle-of-line,MOL)介電 層80内,並且金屬線98形成於互連階層介電層90内。 電壓大約在+/- 30V之間擺動的高電壓信號透過電容 耦合感應底端半導體層1〇上半部内的電荷層u,其由半 導體裝置與底端半導體層1〇之間的一組電容22圖解指 示。感應電荷層11在頂端半導體層3〇的半導體裝置内之 電壓具有負電壓時内含正電荷,而在頂端半導體層的 半導體裝置内之電壓具有正電壓時内含負電荷。半導體裝 置内的高頻RF信號在與RF信號頻率相同頻率上,感應 到感應電荷層11内的厚度變化以及感應電荷層内電荷的 極性。 在累積模式内,RC時間常數將驅散感應電荷層u内 電荷所需的時間特徵化,其由一組電容22與基板阻抗的 靜電容量所決定。基板阻抗為感應電荷層11與電接地之 間的阻抗,這通常由半導體晶片邊界上的邊緣密封所提 供。基板阻抗利用感應電荷層11與電接地之間的電阻12 象徵性地表示’因為底端半導體層1〇通常運用具有大約5 Ohms.到最小職流的高喊半導體㈣所以這種基 板阻抗會非常高。進-步,到邊緣接縫的橫向距離最多可 為半導體晶片橫向尺寸的—半,例如大約Um。在反轉模 式中’利料狀半導體内的產生與重新組合率,將產生並 驅散感應電荷所需的時間特徵化。 這種大基板阻彳几12增加感應電荷層1】内電荷驅散的 201110329 二 =二信以 RF開關關閉狀態期間,頂端半導=數 =有條理,即使在 =内半導狀置之㈣電雜合^ 步,從RF信號透過半導體梦w沾“導致仏<耗才貝。進 應電荷層η,將假的RF伸導入容耦合透過感 體裝置。 。就導入與RF開關斷開的半導 絕緣層2。::=;=直接位_ 下,其中底端半導體層1QSS2„積情況 類型為ϋ刑光ί 其是,當底端半導體層10的導電 導體屌10的雪严頂^半導體部份32的電壓相對於底端半 層10 ^Λ + 份32的電壓相對於底端半導體 為正’則主要電荷载子,即是若底端半導體 $、、p |時為電洞或若底端半導體層1〇為η型時為電 Ί、積在底端半導體層1G的上半部内,以形成感應電 何曰11。然後感應電荷層u的厚度和頂端半導體部份32 與底端半導體層10之間的電壓差之平方根成比例。感應 電荷層11之厚度以及感應電荷層内電荷量的改變產生RF 頰率的額外諧波信號,其與頂端半導體部份32内的半導 體裝置耦合,藉此即使當RF開關關閉時也能提供假 (spurious )信號。 進一步’在RF信號每一頻率週期的另一半期間’直 201110329 接位於巍埋絕緣層20之下的底端半 空乏情況下,其中底端半導體層1〇 H 〇之上半部在 與嵌埋絕緣層20的底端表面拼斥。龙,部分電荷載子 體層10的導電類型為P型並且頂導j ’當底端半導 相對於底端半導體層10的電壓為正,卩份32的電壓 】〇的導電類型為n型並且頂端半導體^當底端半導體層 於底端半導體層10的電麼為負 ^ 2的電壓相對201110329 VI. Description of the Invention: [Technical Field] The present invention relates to a semiconductor circuit, and more particularly to a semiconductor circuit including a semiconductor chip on an insulating layer (Soi) substrate and a voltage generating circuit for the RF switch And the method of operating the circuit. [Prior Art] A semiconductor device such as a field effect transistor is analogous to an RF signal switching device in a radio frequency (RF) application. Insulating layer-on-insulator (SOI) substrates are commonly used for this application because parasitic coupling between devices through the substrate is reduced by the low dielectric constant of the buried insulating layer. For example, the dielectric constant of 矽 (the entire substrate including the bulk ruthenium substrate) is approximately in the range of 11.9 GHz. In contrast, the dielectric constant of yttrium oxide which insulates the top semiconductor layer of the device from the handle substrate is about 3.9. By providing an embedded insulating layer having a dielectric constant smaller than a dielectric constant of the semiconductor material in the bulk substrate, the 801 substrate reduces capacitive coupling between the independent semiconductor device and the substrate, thereby reducing the secondary device of the semiconductor device through the substrate Light and light. However, even if an SOI substrate is used, the electrical signal between the semiconductor devices will become significant because b is used in the high frequency range of the RF application, and the range can be, for example, from about 9 〇〇 MHz to about i. 8 GHz' and can contain even higher frequency ranges. This is because the capacitive coupling between the electrical components increases linearly with frequency. 201110329 For a radio frequency (RF) switch formed on an SOI substrate, a semiconductor device including an RF switch and a signal processing unit in the top semiconductor layer is capacitively coupled to the bottom semiconductor layer via an insulating layer. Even if the half-body device in the top semiconductor a uses a power supply voltage from about to about 9V, the transient signal and signal reaction in the antenna circuit will increase the top half of the semi-conducting, layer = actual voltage to about 3 () ^ this voltage The condition induces capacitive coupling between the semiconductor device subjected to the voltage signal and the upper half of the bottom semiconductor layer '- the induced charge layer changes thickness with the RIMf number of the top semiconducting = inner + guiding refractory towel and the charge = 1 The other semiconductor device in the top semiconductor layer contains an RF switch in the electrical conductor layer of the semiconductor layer to support the incoming charge of the charge and the other semiconductor package. The secondary capacitor is combined for the secondary capacitor 'it is reduced RF ί == combination' here In the case, although the RF switch has been turned off, the sand signal is supplied to other semiconductors through the secondary capacitive coupling. Please refer to Figure OB. The prior art emitter (SOI) substrate has a shape of δ, and the ΛM 隹A group of series field effect transistors that are guided. The SOI 柘8 includes a bottom semiconductor layer 1G, and a (4) _ a patrol (10) substrate 8 30. The top semiconductor sidewall and the top semiconductor layer top layer 30 comprise a top semiconductor junction top semiconductor portion 32 gate '32 and a 乂 每 every field effect transistor both & a closed trench isolation structure The drain & plate 44 and the semiconductor portion] field (not shown). Field effect electric a sculpture (four) into the source and the polar region Electric Japanese limbs extended through a set of contact holes 88 201110329 series. The contact holes 88 are embedded in the middle-of-line (MOL) dielectric layer 80, and the metal lines 98 are formed in the interconnect level dielectric layer 90. A high voltage signal having a voltage swinging between approximately +/- 30V transmits a charge layer u in the upper half of the bottom semiconductor layer 1 through capacitive coupling, which is a set of capacitors 22 between the semiconductor device and the bottom semiconductor layer 1? Graphical instructions. The induced charge layer 11 contains a positive charge when the voltage in the semiconductor device of the top semiconductor layer 3 has a negative voltage, and contains a negative charge when the voltage in the semiconductor device of the top semiconductor layer has a positive voltage. The high frequency RF signal in the semiconductor device senses the thickness variation in the induced charge layer 11 and the polarity of the charge in the induced charge layer at the same frequency as the RF signal frequency. In the accumulation mode, the RC time constant characterizes the time required to dissipate the charge in the induced charge layer u, which is determined by the capacitance of a set of capacitors 22 and substrate impedance. The substrate impedance is the impedance between the inductive charge layer 11 and the electrical ground, which is typically provided by an edge seal on the boundary of the semiconductor wafer. The substrate impedance is symbolically represented by the resistance 12 between the inductive charge layer 11 and the electrical ground. 'Because the bottom semiconductor layer 1 〇 usually uses a shouting semiconductor (4) having a minimum occupational flow of about 5 Ohms. high. Further, the lateral distance to the edge seam may be at most - half of the lateral dimension of the semiconductor wafer, for example about Um. In the inversion mode, the rate of generation and recombination within the semiconductor is characterized by the time required to generate and dissipate the induced charge. This large substrate blocker 12 increases the charge charge layer 1] 201110329 2 = 2 letter to the RF switch off state, the top semi-conduct = number = organized, even in the = semi-conducting (four) Hybrid step, from the RF signal through the semiconductor dream, "causes the 仏 耗 耗 。 。 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进 进The semiconductive insulating layer 2:::=;=direct bit_lower, wherein the bottom semiconductor layer 1QSS2 is a type of sputum light, which is when the conductive conductor 屌10 of the bottom semiconductor layer 10 is snowy ^ The voltage of the semiconductor portion 32 is positive with respect to the voltage of the bottom half layer 10 ^ Λ + 32 with respect to the bottom semiconductor, that is, if the bottom semiconductor $, p | is a hole or When the bottom semiconductor layer 1 is n-type, it is electrically formed and accumulated in the upper half of the bottom semiconductor layer 1G to form an inductive electrode 11 . The thickness of the induced charge layer u is then proportional to the square root of the voltage difference between the top semiconductor portion 32 and the bottom semiconductor layer 10. The thickness of the inductive charge layer 11 and the change in the amount of charge in the inductive charge layer produce an additional harmonic signal of the RF bub rate that is coupled to the semiconductor device within the top semiconductor portion 32, thereby providing a dummy even when the RF switch is turned off. (spurious) signal. Further 'in the other half of each frequency cycle of the RF signal' straight 201110329 is connected to the bottom half of the underlying insulating layer 20, wherein the bottom semiconductor layer 1 〇H 〇 upper half is embedded The bottom end surface of the insulating layer 20 is sprinkled. The conductive type of the partial charge sub-layer 10 is P-type and the top-conductance j' is positive when the bottom-side semi-conducting voltage is opposite to the bottom-end semiconductor layer 10, and the electric conductivity type of the 3232 is n-type and The top semiconductor is opposite to the voltage of the bottom semiconductor layer 10 at the bottom semiconductor layer 10
若底端半導體層H)為p型時為電洞或子,即是 為η型時為電子,與底端半導體層上層10 形成感應電荷層⑴其消耗主要電荷。進=iX 時,則在•雷/層之間電壓差的幅度足夠大 端半導ίίϋ ,形成包含主要電荷,即是若底 型時為雷二,^ Ρ型時為電子或若底端半導體層10為η 內/5鐘^的反轉區。空乏區的厚度以及感應電荷層11 體声ίο何的數量取決於頂端半導體部份32與底端半導 ^電ϋ的電壓差之幅度。感應電荷層η之厚度以及 =電何層内電荷量的改變在此RF信號頻率週期之相位 m μ ^ RF頻率的額外諧波信號,其與頂端半導體部份3 2 供假信Ϊ體裝置耗合’藉此即使當RF開關關閉時也能提 其j: f上述田中,存在需要一種針對絕緣層上半導體(S01) ::沾ft員開關來強化信號隔離並且減少渦電流與諧波 產生的半導體Μ及其操作方法。 【發明内容】 201110329 為了解決上述需求,本發明提供一種包含絕緣層上半 導體(SOI)基板上射頻(RF)開關的半導體電路,其中該開關 在-底k半導體層内具有至少—電偏壓區以及從該RF開 關内該射頻信號生成-偏壓之—偏壓生成電路,以及操作 該電路之方法。 在本發明中 _把緣層上半導體(SOI)基板上的一射頻 (RF)開關包含-底端半導體層内之至少—電偏壓區。該 RF開關接收來自一功率放大器的一 RF信號,並將該rf 信號傳輸至一天線。該電偏壓區可偏壓來消除或減少積累 區、穩定一空乏區及/或避免在該底端半導體層内形成一反 轉區,藉此減少由於該RF信號產生的寄生耦合盥諧波。 一電壓分壓電路將該RF信號分支(taps),並提供一些該 RF信號作為至一整流器電路的一輸入信號。該整流 路產生至少-偏壓’其幅度隨該RIMf號的幅度而變°。將 該至少一偏壓供應給該至少一電偏壓區來維持該本 導體層的適當偏壓,以將寄生耦合、信號耗損以 成降至最少。 、夂咱波生 根據本發明,提供操作一半導體電路的方 包含: 以方法 提供一半導體電路,該電路包含: 一射頻(RF)開關,包含位於一絕緣層上半 基板上的至少一場效電晶體; — ) 一射頻(RF)信號線,用於傳輸一射頻(RF)信號,i 吞亥RF "is 5虎線連接至έ亥rf開關;以及 、 S] 12 201110329 一電路,從該RF信號生成至少一偏壓;以及 將該至少一偏壓供應給該SOI基板的一底端半導體 層。 在一個具體實施例内,該半導體電路更包含: 一電壓分壓器’連接在該RF信號線與電接地之間; 以及 一整流電路’連接至該電壓分壓器並從該RF信號產 生該至少一偏壓。 ^在其他具體實施例内,該半導體電路更包含至少一偏 壓饋線’將該至少一偏壓供應給該SOI基板的該底端半導 體層。 甚至在其他具體實施例内,該半導體結構更包含至少 一導電孔阻抗連接至該底端半導體層,並且其中透過該至 少一導電孔將該至少一偏壓提供給該底端半導體層。 在又一其他具體實施例内,該至少一偏壓包含一正偏 壓’該正偏壓具有一幅度大於該RF信號週期内該RF信 號的一最大正擺動幅度,並且其中該至少一偏壓包含一負 偏壓’ 5亥負偏壓具有一幅度大於該RF信號週期内該RF 信號的一最大負擺動幅度。 在又一其他具體實施例内,該半導體電路更包含一功 率放大器’連接並提供該RF信號至該RF信號線。 13 201110329 在又一其他具體實施例内,上述之半導體電路,更包 含用於傳輸該RF信號的一天線以及連接至該RF開關與 該天線的其他RF信號線。 在又一具體實施例内,該電壓分壓器包含一串聯的一 第一組具有一第一阻抗的至少一阻抗元件和一第二組具 有一第二阻抗的至少一阻抗元件,其中該第一組至少一阻 抗元件的一端直接連接至該RF信號線,並且其中該第二 組至少一阻抗元件的一端直接連接至電接地。 在又一具體實施例内,該半導體電路更包含: 至少一第一摻雜半導體區,内嵌在該底端半導體層内 並且具有一 p型摻雜;以及 至少一第二摻雜半導體區,内嵌在該底端半導體層内 並且具有一 η型摻雜。 在又一具體實施例内,該方法更包含: 將該整流電路從該RF信號所產生的一負偏壓供應至 該至少一第一摻雜半導體區;以及 將該整流電路從該RF信號所產生的一正偏壓供應至 該至少一第二摻雜半導體區。 在又一具體實施例内,該方法更包含: 使用該負偏壓與該正偏壓其中之一抑制一積累區的 形成,其中該積累區内多數電荷載子累積在該底端半導體 14 201110329 層内;以及 使用該負偏壓與該正偏壓其中另一抑制一反轉區的 形成’其中該反轉區内少數電荷載子累積在該底端 層内。 在又一具體實施例内,該方法更包含透過阻抗連接至 該底端半導體層的至少一導電孔排放該底端半導體層内 少數電荷載子。 依照本發明的其他態樣,提供一種半導體電路,其包 含: ' 射頻(RF)開關,包括位於一絕緣層上半導體(s〇i) 基板上的至少一場效電晶體; ^ 一射頻(RF)信號線,用於傳輸一射頻(RF)信號,其中 _ RF信號線連接至該RF開關; 一電壓分壓器,連接在該RF信號線與電接地之間; 整流電路,連接至該電壓分壓器並從該RF信號產 生至少一偏壓,其中該至少一偏壓隨著大於該RF信號週 期的一時間常數而變;以及 至少一偏壓饋線’將該至少一偏壓供應給該SOI基板 的一底端半導體層。 ^ 在—個具體實施例内,該半導體電路更包含至少一導 電孔阻抗連接至該底端半導體層,其中透過該至少一導電 孔將該至少一偏壓提供給該底端半導體層。 15 201110329 在其他具體實施例内,該至少一偏壓包含一正偏壓, 該正偏壓具有一幅度大於該基板内所感應該RF信號週期 内該RF信號的一最大正擺動幅度,並且其中該至少一偏 壓包括一負偏壓’該負偏壓具有一幅度大於該基板内所感 應該RF信號週期内該RF信號的一最大負擺動幅度。 在又一其他具體實施例内,該半導體電路更包含一功 率放大器’連接並提供該RF信號至該RF信號線。 在又一其他具體實施例内,該半導體電路更包含: 一天線’用於傳輸該RF信號;以及 其他RP信號線,連接至該RF開關與該天線。 在又一具體實施例内,該電壓分壓器包含一串聯的一 第一組具有一第一阻抗的至少一阻抗元件和一第二組具 有一第二阻抗的至少一阻抗元件,其中該第一組至少一阻 抗元件的一端直接連接至該RF信號線,並且其中該第二 組至少一阻抗元件的一端直接連接至電接地,並且其中該 第一組與該第二組之間一共用節點直接連接至該整流電 路的一輸入節點。 在又—具體實施例内,該整流電路包含直接連接至電 接地的至少一電阻、直接連接至電接地的至少一電容、直 接連接至電接地的至少一二極體以及直接連接至該整流 電路的該輸入節點之至少另 一二極體。 201110329 在又一具體實施例内’該半導體電路更包含: 至少一第一摻雜半導體區,内嵌在該底端半導體層並 具有一 P型摻雜,其中將該整流電路從該RF信號產生的 一負偏壓供應到該至少一第一摻雜半導體區;以及 至少一第二摻雜半導體區,内嵌在該底端半導體層並 具有一 η型摻雜,其中將該整流電路從該RF信號產生的 一正偏壓供應到該至少一第二摻雜半導體區。 根據本發明的其他態樣,提供一種在一機器可讀取媒 體内具體實施的設計結構,來設計、製造或測試一半導體 結構的一設計。該設計結構包含: 一第一資料,代表一射頻(RF)開關,該開關包含位於 一絕緣層上半導體(SOI)基板上的至少一場效電晶體; 一第二資料,代表一射頻(RF)信號線,該信號線用於 傳輸一射頻(RF)信號,其中該RF信號線連接至該RF開 關; ° -第三資料’代表—電壓分壓器,該分壓器連接在該 RF信號線與電接地之間; 一第四貧料,代表一整流電路,該電路連接至該電壓 分壓器並從該RF信號產生至少一偏塵,其中該偏壓隨著 大於#亥RF仏號週期的一時間常數而變;以及 一第五資料,代表至少一偏壓饋線,該饋線將該至少 一偏壓供應給該SOI基板的一底端半導體層。 在一個具體實施例内,該設計結構更包含一其他資 料’代表至少-導電孔阻抗連接至該底端半導體層,其中 )7 201110329 ^該至少—導電孔將該至少―偏®提供給該底端半導 斜,t他具體實施例内’該設計結構更包含一其他資 功率放大器,該功率放大器連接並提供該RF k唬至該RF信號線。 在,一其他具體實施例内,該設計結構更包含: 號;2六資料’代表一天線,該天線用於傳輸該处信 第七貝料,代表其#RP信號線,該信號線連接至 該尺17開關與該天線。 在又一其他具體實施例内,該第三資料包含一第八資 f料以及-第十資料,該第八資二: 二么第一阻抗的至少一阻抗元件,該第九資料代表一 具有一第二阻抗的至少一阻抗元件,該第十資料代 —組至少—阻抗元件與該第二組至少-阻抗元件 二的-串聯’其中該第—組至少一阻抗元件的一端直接 接^該RF信號線,並且其中該第二組至少—阻抗元件 =直接連接至電接地,並且其中該第—組與該第二組 曰、—共用節點直接連接至該整流電路的一輸入節點。 資料Si:其他具體實施例内,每一該第八資料與該第九 憎代表至少-電阻、-電容和-電感其中之一。 18 201110329 在又一具體實施例内,該第四資料包含一第十一資 料、-第十二資料…第十三#料以及一第十四資料,該 第十-代表直接連接至電接地的至少—電阻,該第十二資 料代表直接連接至電接地的至少一電容,該第十三資料代 表直接連接至電接地的至少—二極體,該帛十四資料代表 直接連接至該整流電路的該輸入節點之至少另一二極體。 在又一具體實施例内,該設計結構更包含: 一第一其他資料,代表至少一第一摻雜半導體區,該 區内嵌在該底端半導體層内並且具有一p型摻雜; 一第二其他資料,代表一第一電配線結構,該結構用 於將該整流電路從該RF信號所產生的一負偏壓供應至該 至少一第一摻雜半導體區; Λ 一第二其他資料,代表至少一第二摻雜半導體區,該 區内嵌在該底端半導體層内並且具有一摻雜;以及 一第四其他資料,代表一第二電配線結構,該結構用 於將該整流電路從該RF信號所產生的一正偏壓供庳至兮 至少一第二摻雜半導體區。 Λ 【實施方式】 如上述,本發明係關於包含絕緣層上半導體(8〇1)基板 上射頻開關的半導體結構及其設計結構,此後將用附圖說 明。圖式未依照比例繪製。 如此處所使用,射頻(RF)就是範圍為3Hz至3〇〇 GHz 的電磁波頻率。射頻對應至用於生產與偵測無線電波的電 19 201110329 磁波頻率。射頻包括非常高頻(very high frequency,VHF)、 超高頻(ultra high frequency ’ UHF)、超級高頻(super high frequency ’ SHF)以及極南頻(extremely high frequency, EHF) ° 如此處所使用’非常高頻(VHF)為範圍從3〇 MHz至 300 MHz的頻率’ VHF尤其用於調頻(加叫邱吖 modulation ’ FM)廣播。超高頻(UHF)為範圍從3〇〇 MHz 至3 GHz的頻率’ UHF尤其用於行動電話、無線網路以 二及微波爐。超級高頻⑺:^^為範圍從3 GHz至3〇gHz的頻 率,SHF尤其歸無_路、#達以及衛魏路。極高頻 (EHF)為範圍從30 GHz至3〇〇 GHz的頻率,服產生波 長從1mm到l〇mm的毫米波,並尤其用於資料連結斑遙 檟系區 部份電荷载子的摻= 雜半導體區内大多數電荷载子,因為外部;電二 如此p型摻雜半導體i且右區位於積累模式内, π型摻雜半導體區内大二、雪#電何。若過多電子,就是 積在η型摻雜半:載子’因為外部正電壓累 式内,如此η型摻雜半導體區具有區位於積累模 偏壓而排斥大多數 如此從推雜的半導 工乏區」一詞代表由於外部 荷載子並且不累積大多數電荷^£ 20 201110329 體區消耗大多數電荷載子與少數 體區。若電洞,就是P型摻雜半導體=子之摻雜的半導 子,由弱外部正電壓在P型換雜==數電荷載 摻雜半導體區位於空乏模式内,如耗而讓P型 荷由若電子’就是"型摻雜半導二=2 =雜導二= 體區具有淨正電荷。 、"如此η型摻雜半導 遙种「反轉f」一魏表其中累積少數電荷載子的捽雜丰 成=區通:電上靠近強外部== 恭工山 電子,就疋卩型摻雜半導體區内的少數雷荇 載子,由強外部正電壓累積在 。 ^雜半導购崎轉_,如此讓p 負電荷》若電洞,就是n型摻雜半導體 ^摻雜負電覆累積在"型播雜半導體區内而讓 區具有淨正電荷£位於反轉模式内’如此η型摻雜半導體 清參々,圖2 ’顯示操作期間示範半導體結構的垂直剖 眘二二乾半導體結構可作為本發明—部份半導體電路的 -貝轭。不範半導體結構包含一個射頻(RF)開關,其包 ,丨直接位於、絕緣層上半導體基板8頂端半導體層川的至 “個頂,半導體部份32上之至少一個場效電晶體。該 二二個%效電晶體之間的電氣配線由第三上導電孔⑽ D弟二互連階層金屬線98所提供。每一該至少一個場效 201110329 電晶體都包括間極介電體4〇、閉極 44。每-至少1端半導體部份3 42 晶體的源極區(未顯示)和汲極區(未:都f現:一场電 2〇、淺溝槽絕緣結構33和線中央埋絕緣層 讓該至少-個場效電晶體電絕緣,該電二曰8二的組合 關内,與其他半導體裳置和底端羊^;日體包括在RF開 操作期間,在底端半導❹導體層1G電絕緣。在 層B。感應電荷層13為“半導^^内形成感應電荷 干等體層!〇的充電部份。 母一底端半導體層1〇和至少— 都包含-個像切的半導體㈣1化^導體部份^ =鍺:金區,合金區、•炭合金;ί:: 化銦、神化銦鎵、磷化銦、硫化妈、 j ㈣以及Μ1族半導體材料。底端半導體層= :個頂端半導體部份32的半導體材料可相同或不同。通 吊丄每-底端半導體層1G與至少—_端半導體部份% W早晶半V體材料。例如,單晶半導體材料可為矽。 底端半導體層ίο通常具有大於50〇hms_cm的電阻係 數,其包括例如具有原子濃度低於大約2 〇 x 1〇u/cm3的p 型,雜物之P型摻雜單晶矽,或原子濃度低於大約1〇 χ l〇14/cm3的η型摻雜物之η型摻雜單晶矽。較佳是,底端 半導體層10通常具有大於50Ohlns_Cm的電阻係數,其包 括例如具有原子濃度低於大約2.0 X l〇14/cm3的p型摻雜 物之p型摻雜單晶矽,或原子濃度低於大約L0 X l〇M/cnr5 t S] 22 201110329 的η型摻雜之„型摻雜單晶#。更佳是, =通常具有大於lk0hms_em的修係數,其包括 2好濃度低於大約LO X MW的物之⑽ ^雜早晶梦’或原子濃度低於大約5.0 x 1()12w的 ,物之η型摻雜單晶…底端半導體層1G的導 在此稱為快速導電類型,可為p型或n型。 1 瓜挪干等遐層10的高電阻係數降低渦電流, 少使用底端半導體層10在頂端半導體層3〇内曰俏 3=號之寄生叙合。雖然此處使神說明底端= 母界電阻係數值所需之摻雜物位準,不過 母-種半導體材料都已經在摻雜物濃度 料的電阻係數之間建立良好關係,所以可迅速 他半導體材料的目標摻雜物濃度。 ' 底端半導體層10的厚度通常從大約4〇 1,〇〇〇微米,在此步驟内通常從大約5⑻微米t 〇約 微米。若底端半導體層1G後來變薄了 =j^00 1〇的厚度可從大約5〇微米到大約_微米丨“ +導體層 嵌埋絕緣層20包含像是氧化矽、 或〇這些組合的介電材料。嵌埋絕緣層 产 5〇細到大約誦⑽,通常從大約U)〇nm;It 5〇l 不過在此也考量較小與較大厚度。 、'' 矽、氮化矽、氮氧 淺溝槽絕緣結構33包含像是氧化If the bottom semiconductor layer H) is a hole or a sub-portion, that is, an electron in the n-type, an inductive charge layer (1) is formed on the upper layer 10 of the bottom semiconductor layer, which consumes a main charge. When entering =iX, the voltage difference between the lightning/layer is large enough to be semi-conducting, and the main charge is formed, that is, if the bottom type is Ray II, the ^ type is electron or the bottom semiconductor Layer 10 is an inversion zone within η/5/5. The thickness of the depletion region and the amount of the inductive charge layer 11 are determined by the magnitude of the voltage difference between the top semiconductor portion 32 and the bottom semiconductor. The thickness of the induced charge layer η and the change in the amount of charge in the layer of the electric signal are in the phase of the RF signal frequency period m μ ^ RF frequency of the additional harmonic signal, which is consumed by the top semiconductor portion 3 2 for the dummy signal In order to improve the signal isolation and reduce the eddy current and harmonic generation, there is a need for a semiconductor-on-insulator (S01):----------- Semiconductor germanium and its method of operation. SUMMARY OF THE INVENTION In order to address the above needs, the present invention provides a semiconductor circuit including a radio frequency (RF) switch on a semiconductor-on-insulator (SOI) substrate, wherein the switch has at least an electrical bias region in the bottom-k semiconductor layer. And a bias generating circuit for generating a bias voltage from the RF signal in the RF switch, and a method of operating the circuit. In the present invention, a radio frequency (RF) switch on a semiconductor-on-edge (SOI) substrate includes at least an electrically biased region within the bottom semiconductor layer. The RF switch receives an RF signal from a power amplifier and transmits the rf signal to an antenna. The electrical biasing region can be biased to eliminate or reduce the accumulation region, stabilize a depletion region, and/or avoid forming an inversion region in the bottom semiconductor layer, thereby reducing parasitic coupling 盥 harmonics due to the RF signal . A voltage divider circuit branches (taps) the RF signal and provides some of the RF signal as an input signal to a rectifier circuit. The rectifier produces at least a bias voltage whose amplitude varies with the magnitude of the RIMf number. The at least one bias voltage is supplied to the at least one electrically biased region to maintain an appropriate bias of the native conductor layer to minimize parasitic coupling and signal loss. According to the present invention, a method of operating a semiconductor circuit includes: providing a semiconductor circuit in a method, the circuit comprising: a radio frequency (RF) switch comprising at least one active power on an upper half of an insulating layer Crystal; —) a radio frequency (RF) signal line for transmitting a radio frequency (RF) signal, i Swallow RF "is 5 tiger line connected to έ海rf switch; and, S] 12 201110329 a circuit from The RF signal generates at least one bias voltage; and the at least one bias voltage is supplied to a bottom semiconductor layer of the SOI substrate. In a specific embodiment, the semiconductor circuit further includes: a voltage divider 'connected between the RF signal line and the electrical ground; and a rectifier circuit 'connected to the voltage divider and generating the RF signal from the RF signal At least one bias voltage. In other embodiments, the semiconductor circuit further includes at least one biasing feed line ' supplying at least one bias voltage to the bottom semiconductor layer of the SOI substrate. In other embodiments, the semiconductor structure further includes at least one conductive via impedance connected to the bottom semiconductor layer, and wherein the at least one bias voltage is provided to the bottom semiconductor layer through the at least one conductive via. In still other embodiments, the at least one bias voltage includes a positive bias voltage 'the positive bias voltage has a magnitude greater than a maximum positive swing amplitude of the RF signal during the RF signal period, and wherein the at least one bias voltage A negative bias voltage is included. The 5 hp negative bias has an amplitude greater than a maximum negative swing amplitude of the RF signal during the RF signal period. In still other embodiments, the semiconductor circuit further includes a power amplifier' to connect and provide the RF signal to the RF signal line. 13 201110329 In still other embodiments, the semiconductor circuit described above further includes an antenna for transmitting the RF signal and other RF signal lines connected to the RF switch and the antenna. In another embodiment, the voltage divider comprises a first set of at least one impedance element having a first impedance and a second set of at least one impedance element having a second impedance, wherein the One end of a set of at least one impedance element is directly connected to the RF signal line, and wherein one end of the second set of at least one impedance element is directly connected to the electrical ground. In still another embodiment, the semiconductor circuit further includes: at least one first doped semiconductor region embedded in the bottom semiconductor layer and having a p-type doping; and at least a second doped semiconductor region, Embedded in the bottom semiconductor layer and having an n-type doping. In still another embodiment, the method further includes: supplying the rectifier circuit from a negative bias generated by the RF signal to the at least one first doped semiconductor region; and the rectifying circuit from the RF signal A positive bias voltage is generated to be supplied to the at least one second doped semiconductor region. In still another embodiment, the method further includes: suppressing formation of an accumulation region using one of the negative bias and the positive bias, wherein a majority of charge carriers in the accumulation region accumulate at the bottom semiconductor 14 201110329 And using the negative bias and the positive bias to suppress the formation of an inversion region in which a minority of charge carriers are accumulated in the bottom layer. In still another embodiment, the method further includes discharging a minority of charge carriers in the bottom semiconductor layer through at least one conductive via connected to the bottom semiconductor layer via an impedance. In accordance with other aspects of the present invention, a semiconductor circuit is provided comprising: 'a radio frequency (RF) switch comprising at least one field effect transistor on a semiconductor (s〇i) substrate on an insulating layer; ^ a radio frequency (RF) a signal line for transmitting a radio frequency (RF) signal, wherein the _RF signal line is connected to the RF switch; a voltage divider connected between the RF signal line and the electrical ground; and a rectifier circuit connected to the voltage component And generating at least one bias voltage from the RF signal, wherein the at least one bias voltage varies with a time constant greater than the RF signal period; and the at least one bias feed line 'supplied the at least one bias voltage to the SOI a bottom semiconductor layer of the substrate. In a specific embodiment, the semiconductor circuit further includes at least one via hole impedance connected to the bottom semiconductor layer, wherein the at least one bias voltage is supplied to the bottom semiconductor layer through the at least one conductive via. 15201110329 In another embodiment, the at least one bias voltage comprises a positive bias voltage having a magnitude greater than a maximum positive swing amplitude of the RF signal during the period of the RF signal induced in the substrate, and wherein The at least one bias voltage includes a negative bias voltage having a magnitude greater than a maximum negative swing amplitude of the RF signal during the period of the RF signal induced in the substrate. In still other embodiments, the semiconductor circuit further includes a power amplifier' to connect and provide the RF signal to the RF signal line. In still other embodiments, the semiconductor circuit further includes: an antenna ' for transmitting the RF signal; and other RP signal lines connected to the RF switch and the antenna. In another embodiment, the voltage divider comprises a first set of at least one impedance element having a first impedance and a second set of at least one impedance element having a second impedance, wherein the One end of a set of at least one impedance element is directly connected to the RF signal line, and wherein one end of the second set of at least one impedance element is directly connected to the electrical ground, and wherein a common node between the first group and the second group Directly connected to an input node of the rectifier circuit. In a further embodiment, the rectifier circuit includes at least one resistor directly connected to the electrical ground, at least one capacitor directly connected to the electrical ground, at least one diode directly connected to the electrical ground, and directly connected to the rectifier circuit At least another diode of the input node. 201110329 In another embodiment, the semiconductor circuit further includes: at least one first doped semiconductor region embedded in the bottom semiconductor layer and having a P-type doping, wherein the rectifying circuit is generated from the RF signal a negative bias voltage is supplied to the at least one first doped semiconductor region; and at least a second doped semiconductor region is embedded in the bottom semiconductor layer and has an n-type doping, wherein the rectifying circuit is A positive bias generated by the RF signal is supplied to the at least one second doped semiconductor region. In accordance with other aspects of the present invention, a design constructed in a machine readable medium is provided to design, fabricate or test a design of a semiconductor structure. The design structure comprises: a first data representing a radio frequency (RF) switch, the switch comprising at least one effect transistor on a semiconductor-on-insulator (SOI) substrate; and a second data representing a radio frequency (RF) a signal line for transmitting a radio frequency (RF) signal, wherein the RF signal line is connected to the RF switch; ° - a third data 'represents a voltage divider, the voltage divider being connected to the RF signal line And a fourth lean material, representing a rectifier circuit, the circuit is connected to the voltage divider and generates at least one dust from the RF signal, wherein the bias voltage is greater than the #海RF仏 cycle And a fifth data representing at least one bias feed line, the feed line supplying the at least one bias voltage to a bottom semiconductor layer of the SOI substrate. In a specific embodiment, the design structure further includes an additional material 'representing at least - conductive hole impedance connected to the bottom semiconductor layer, wherein" 7 201110329 ^ the at least - the conductive hole provides the at least "bias" to the bottom The terminal semi-steering, t in the specific embodiment, the design structure further includes a further power amplifier that connects and provides the RF k to the RF signal line. In another embodiment, the design structure further includes: a number; 2 data> represents an antenna, and the antenna is used to transmit the seventh material of the letter, representing its #RP signal line, and the signal line is connected to The ruler 17 switches with the antenna. In still another specific embodiment, the third data includes an eighth resource and a tenth data, the eighth resource: two at least one impedance component of the first impedance, and the ninth data represents At least one impedance element of a second impedance, the tenth data generation - at least - the impedance element is in series with the second group of at least - impedance element two - wherein one end of the at least one impedance element of the first group is directly connected An RF signal line, and wherein the second set of at least - impedance elements = directly connected to the electrical ground, and wherein the first set and the second set of -, the shared node are directly connected to an input node of the rectifier circuit. Data Si: In other embodiments, each of the eighth data and the ninth 憎 represents at least one of a resistance, a capacitance, and an inductance. 18 201110329 In yet another embodiment, the fourth material includes an eleventh data, a twelfth data ... a thirteenth material, and a fourteenth data, the tenth - representing a direct connection to the electrical ground. At least—resistance, the twelfth data represents at least one capacitor directly connected to the electrical ground, and the thirteenth data represents at least a diode directly connected to the electrical ground, the data representing the direct connection to the rectifier circuit At least another diode of the input node. In another embodiment, the design structure further includes: a first additional material representing at least one first doped semiconductor region, the region being embedded in the bottom semiconductor layer and having a p-type doping; a second other material representing a first electrical wiring structure for supplying the rectifier circuit from a negative bias generated by the RF signal to the at least one first doped semiconductor region; Λ a second other data Representing at least a second doped semiconductor region embedded in the bottom semiconductor layer and having a doping; and a fourth additional material representing a second electrical wiring structure for rectifying the region The circuit supplies a positive bias voltage generated by the RF signal to at least one of the second doped semiconductor regions. EMBODIMENT As described above, the present invention relates to a semiconductor structure including a radio frequency switch on a semiconductor (8〇1) substrate on an insulating layer, and a design structure thereof, which will be described later. The drawings are not drawn to scale. As used herein, radio frequency (RF) is the frequency of electromagnetic waves in the range of 3 Hz to 3 GHz. The radio frequency corresponds to the electricity used to produce and detect radio waves. 19 201110329 Magnetic wave frequency. Radio frequencies include very high frequency (VHF), ultra high frequency (UHF), super high frequency (SHF) and extreme high frequency (EHF) ° as used here. Very high frequency (VHF) is a frequency ranging from 3〇MHz to 300MHz' VHF is especially used for FM (called Hyundai's modulation 'FM) broadcast. Ultra High Frequency (UHF) is a frequency range from 3 〇〇 MHz to 3 GHz. UHF is especially used in mobile phones, wireless networks, and microwave ovens. Super high frequency (7): ^^ is the frequency ranging from 3 GHz to 3 〇 gHz, and SHF is especially _路, #达和卫魏路. Extremely high frequency (EHF) is a frequency range from 30 GHz to 3 GHz, which produces millimeter waves with wavelengths from 1 mm to l 〇 mm, and is especially used for data-bonding of some charge carriers in the Pleistocene region. = Most of the charge carriers in the semiconductor region, because of the external; the second is p-type doped semiconductor i and the right region is in the accumulation mode, and the π-type doped semiconductor region is the second and the second. If too much electrons are accumulated in the n-type doped half: the carrier 'because of the external positive voltage, the n-type doped semiconductor region has a region located in the accumulated mode bias and repels most of the semiconductors The term “dwelling zone” refers to the majority of charge carriers and minority body regions due to external charge carriers and does not accumulate most of the charge. If the hole is a P-doped semiconductor = sub-doped semiconductor, the weak external positive voltage is in the P-type mixed == number of charge-doped semiconductor regions in the depletion mode, if the P-type The charge is if the electron 'is' type doped semiconducting two = 2 = heteroconducting two = body region has a net positive charge. , "So η-type doped semi-guided telemetry "reverse f"-Wei table in which the accumulation of a few charge carriers is abundant = zone pass: electrically close to strong external == Gonggongshan Electronics, 疋卩A small number of Thunder carriers in a doped semiconductor region are accumulated by a strong external positive voltage. ^ Miscellaneous semi-conductor purchases _, so let p negative charge "if the hole, that is, the n-type doped semiconductor ^ doped negative charge accumulated in the "type-type hybrid semiconductor region and let the region have a net positive charge £ in the opposite Such a n-type doped semiconductor sputum in the transfer mode, FIG. 2' shows a vertical cross-section of the semiconductor structure of the exemplary semiconductor structure during operation, which can be used as the present invention - a partial conjugate of a semiconductor circuit. The semiconductor structure comprises a radio frequency (RF) switch, the package of which is directly located on the top of the semiconductor substrate 8 on the insulating layer, and at least one field effect transistor on the semiconductor portion 32. The electrical wiring between the two % effect transistors is provided by the third upper conductive vias (10) D di interconnected metal lines 98. Each of the at least one field effect 201110329 transistor includes an interpolar dielectric body 4, Closed pole 44. Source region (not shown) and drain region of each at least one semiconductor portion 3 42 crystal (not: all: 2 electric field 2, shallow trench insulating structure 33 and line center buried The insulating layer electrically insulates the at least one field effect transistor, the combination of the electric diodes 202 is off, and the other semiconductors are placed and the bottom end of the body; the body is included in the bottom opening during the RF opening operation The germanium conductor layer 1G is electrically insulated. In the layer B, the inductive charge layer 13 is a "charged portion of the semiconductor layer forming an inductive charge dry layer in the semiconductor package. The mother-bottom semiconductor layer 1 and at least - both contain - Like a sliced semiconductor (4) 1 ^ ^ conductor part ^ = 金: gold area, alloy area, • carbon alloy; ί:: indium , Desalination Indium Gallium, Indium Phosphide, Sulfide Ma, j (4), and Group 1 semiconductor materials. Bottom semiconductor layer =: The semiconductor material of the top semiconductor portion 32 may be the same or different. The pass-through semiconductor layer 1G And the at least --terminal semiconductor portion % W is an early-crystal half-V body material. For example, the single crystal semiconductor material may be germanium. The bottom semiconductor layer usually has a resistivity greater than 50 〇hms_cm, which includes, for example, having an atomic concentration lower than a p-type of approximately 2 〇 x 1 〇 u/cm 3 , a P-type doped single crystal germanium of a hetero object, or an n-type doping of an n-type dopant having an atomic concentration of less than about 1 〇χ l〇 14/cm 3 Preferably, the bottom semiconductor layer 10 typically has a resistivity greater than 50 Ohlns_cm, including, for example, a p-type doped single crystal germanium having a p-type dopant having an atomic concentration of less than about 2.0 X l〇14/cm3. , or an atomic concentration lower than about L0 X l 〇 M / cnr5 t S] 22 201110329 n-type doped type doped single crystal #. More preferably, = usually has a repair factor greater than lk0hms_em, which includes 2 (10) ^ Miscellaneous Crystal Dreams or concentrations below about 5.0 x at concentrations below about LO X MW 1() 12w, the n-type doped single crystal of the object... The conduction of the bottom semiconductor layer 1G is referred to herein as a fast conductivity type, and may be p-type or n-type. 1 High resistivity of the ruthenium layer 10 The eddy current is reduced, and the parasitic rectification of the bottom semiconductor layer 10 in the top semiconductor layer 3 is less used, although the dopant level required for the bottom end = the mother resistivity value is explained here. However, the parent-semiconductor materials have established a good relationship between the resistivity of the dopant concentration material, so that the target dopant concentration of the semiconductor material can be quickly increased. The thickness of the bottom semiconductor layer 10 is typically from about 4 Å to about 1 μm, and is typically about 5 μm from about 5 (8) μm in this step. If the bottom semiconductor layer 1G is later thinned, the thickness of the substrate can be from about 5 〇 micron to about _ micron 丨 " + the conductive layer buried insulating layer 20 contains a combination of such as yttrium oxide, or yttrium. Electrical material. The embedded insulating layer is 5 〇 to about 诵 (10), usually from about U) 〇 nm; It 5 〇 l However, small and large thicknesses are also considered here. , '' 矽, tantalum nitride, nitrogen The oxygen shallow trench insulation structure 33 contains, for example, oxidation
S J 23 201110329 化石夕或這些組合的介電材料。利用形成至少一個溝槽延# 至頂端半導體層30内嵌埋絕緣層20的頂端表面、使用像 是氧化矽、氮化矽及/或氮氧化矽這類介電材料填入該至少 一個溝槽,以及利用例如化學機械平坦化 mechanical planarization,CMP)及/或凹槽蝕刻這類平土日化 處理’去除頂端半導體層30頂端表面上介電材料部份^ 來形成淺溝槽絕緣結構33。在該至少一個溝槽連續的情、兄 下,淺溝槽絕緣結構33可為單一構造,即是一體成开^ 淺溝槽絕緣結構33可橫向鄰接並包圍每一至少_ $二 半導體部份32。 ^ 頂1半導體層30的厚度可從大約2〇 nm到大約雇 Γ丨約4G nm到大約⑽nm ’不過在此也考量 較小與較大厚度。至少一個頂端半導體部份 型或η型的摻雜物。通常至少一個頂端半導 的 摻雜物濃度可從大約1〇 X 1〇15/ 3 1018/rm3 , ,¾ r- 至】大約 1.0 x 10 /cm &對應至%效電晶體本體區的 過在此也考慮較小或較大的濃度。 ”务濃度不 π 1 ^外’不範半導體結構包含至少—個第 區18和至少—個第二摻雜半導體區28。= L雜+導體 區18包含底端半導體層H)的半導體材料=摻雜半導體 導電類型的_。第二導電類型為第if且具有第-例如.若第-導電類型為 、'員型的相反。 反之亦然。第二_半導體區28包^^^型為η型, 半導體材料’並且具有第-導電類型的彳^^體層1〇的 } 24 201110329 至夕、個第—捧雜半導體區18以及至少一個第二摻 雜半導體區28的厚度可從大約10細到大約嶋伽,通 並士常從大約50 nm到大約3〇〇 nm,不過在此也考量較 小與較大厚度。至少—個第—摻雜半導體區18通常為重 以便降低電阻係數。每—至少― ^ 體區18和至少-個第二摻雜半導體區28的摻雜 從大約i.O X 到大約1 〇 的3摻雜物展度可 考慮較小或較大的摻雜物濃度。Cm ’不過在此也 示範半導體結構進一步包含 和至少一個第一互連 個第一導電孔79 一個第-摻雜半導體區提供電偏壓至至少 少一個第二互連階層金屬線99Γ其提供電—導電孔的和至 第二摻雜半導體區28 偏駐至少-個 階層金屬線98。至少一個笼導電孔88和第三互連 個第一互連階層金屬線94、i少 個第一互連階層金屬線99 今至夕 都内嵌在互連階層介電層9Q内。弟―互紅層金屬線98 至少-個第-導電孔79從勘 面延伸至至少_個第—摻雜轉聽 日的頂端表 -至少-個第一導電孔79可為整 的=面’每 -個第-下導電孔47其中之一 至少 77其中之-。至少-個第二導電⑽從:4導電孔 的頂端表面延伸至至少— ”電層80 表面,每-至少一個第_=/:雜+導體區18的頂端 弟〜V電孔89可為整體構造,或可 25 201110329 包含至少一個第二下導電孔37其中之一與至少一個第二 上導電孔87其中之一。 MOL介電層80可包含氧化矽、氮化矽、氮氧化石夕、 有機石夕酸鹽玻璃(organosilicate glass ’ OSG)、l〇w-k化學汽 相沈積(chemical vapor deposition,CVD)氧化物、像是旋 轉塗敷玻璃(spin-on glass,S0G)的自平坦材料及/或像是 SiLK™的旋轉塗敷low-k介電材料。示範氧化石夕包括無摻 雜的石夕酸鹽玻璃(undoped silicate glass ’ USG)、删石夕酸鹽 玻璃(borosilicate glass,BSG)、鱗石夕酸鹽玻璃 (phosphosilicate glass,PSG)、氟矽酸鹽玻璃(fluorosilicate glass ’ FSG)、爛碟石夕酸鹽玻璃(borophosphosilieate glass, BPSG)或這些的組合。MOL介電層80的總厚度,從淺溝 槽絕緣結構33的頂端表面量起,可從大約nm到大約S J 23 201110329 Fossil or these combinations of dielectric materials. Forming at least one trench extension # into the top surface of the top semiconductor layer 30 in which the insulating layer 20 is embedded, filling the at least one trench with a dielectric material such as hafnium oxide, tantalum nitride, and/or hafnium oxynitride And forming a shallow trench isolation structure 33 by removing the dielectric material portion on the top surface of the top surface of the top semiconductor layer 30 by, for example, chemical planarization (CMP) and/or recess etching. In the continuous manner of the at least one trench, the shallow trench isolation structure 33 may be of a single structure, that is, integrated into the shallow trench isolation structure 33, which may laterally adjoin and surround each of the at least two semiconductor portions. 32. ^ The thickness of the top 1 semiconductor layer 30 can range from about 2 Å to about 4 G nm to about (10) nm', although smaller and larger thicknesses are also considered here. At least one top semiconductor partial or n-type dopant. Typically at least one of the top semiconducting dopant concentrations can be from about 1 〇X 1 〇 15/ 3 1018/rm3 , from 3⁄4 r- to about 1.0 x 10 /cm & corresponding to the % effect transistor body region Smaller or larger concentrations are also considered here. The semiconductor structure comprises at least a first region 18 and at least one second doped semiconductor region 28. = L hetero-conductor region 18 comprises a semiconductor material of the bottom semiconductor layer H) = Doping the semiconductor conductivity type _. The second conductivity type is the if and has the first - for example. If the first conductivity type is the opposite of the 'member type. And vice versa. The second _ semiconductor region 28 is ^^^ Η-type, semiconductor material 'and having a first-conductivity type of layer 1 24 24 201110329, the thickness of the first-doped semiconductor region 18 and the at least one second doped semiconductor region 28 may be from about 10 Fine to about Sangha, the commons are often from about 50 nm to about 3 〇〇 nm, but small and large thicknesses are also considered here. At least one of the first doped semiconductor regions 18 is usually heavy to reduce the resistivity. The dopant doping of each of the at least -^ body regions 18 and the at least one second doped semiconductor region 28 from about iO x to about 1 可 may take into account a smaller or larger dopant concentration. Cm 'but here also demonstrates that the semiconductor structure further contains and at least one Interconnecting a first conductive via 79, a first doped semiconductor region provides an electrical bias to at least one second interconnect level metal line 99, which provides a sum of electrical-conductive holes and at least a second doped semiconductor region 28 a hierarchical metal line 98. at least one of the cage conductive holes 88 and the third interconnected first interconnected metal lines 94, i of the first interconnected metal lines 99 are embedded in the interconnect level In the electrical layer 9Q, the at least one first conductive hole 79 may be at least one first conductive hole 79 extending from the survey surface to at least one top-doping day of the first conductive hole 79 The entire = face 'each of the first-lower conductive holes 47 is at least 77 of them. - At least one second conductive (10) extends from the top surface of the 4 conductive holes to at least - "the surface of the electrical layer 80, each - At least one of the first _=/: hetero-conductor regions 18 may have an overall configuration, or may include at least one of the second lower conductive vias 37 and at least one of the second upper conductive vias 87. one of them. The MOL dielectric layer 80 may comprise ruthenium oxide, tantalum nitride, arsenic oxynitride, organosilicate glass 'OSG', l〇wk chemical vapor deposition (CVD) oxide, image It is a self-planar material of spin-on glass (S0G) and/or a spin-coated low-k dielectric material such as SiLKTM. Exemplary oxidized oxides include undoped silicate glass 'USG', borosilicate glass (BSG), phosphosilicate glass (PSG), and fluorene fluorene Fluorosilicate glass 'FSG', borophosphosilieate glass (BPSG) or a combination of these. The total thickness of the MOL dielectric layer 80, measured from the top surface of the shallow trench isolation structure 33, can range from about nm to about
10,000 nm ’ 通常從大約 2〇〇 nm 到大約 5,000 nm。MOL 介電層80的頂端表面可用例如化學機械平坦化整平。 互連階層介電層90的介電材料包含可如上述用於 MOL介電層80的任何介電材料。互連階層介電層9〇的 厚度可從大約75 nm到大約i,〇〇〇 nm,通常從大約15〇 nm 到大約500 nm,不過在此也考量較小與較大厚度。 至少一個第一互連階層金屬線94、至少一個第二互連 階層金屬線99以及第三互連階層金屬線98可包含例如 C:u ' Al ' W、Ta、Ti、WN、TaN、丁㈧或這些的組合。至 26 201110329 少一個第一互連階層金屬線94、至少一個第二互連階層金 屬線99以及第三互連階層金屬線98可包含相同金屬材 料。 至少一個場效電晶體構成頻率從大約3 Hz到大約3〇〇 GHz的信號之射頻開關。尤其是,至少一個場效電晶體構 成可在VHF、UHF、SHF和EHF上操作的射頻開關。 在這種高頻上’至少一個場效電晶體與底端半導 ^顯之間^容衫會因為電餘合隨辭線性增加而變 =一個場效電晶體内的射頻信號導致在底端半 壓=底端半導體層料,直接 在= 形成感應電荷層13,並且感應正電荷或負電荷下面 底端半導二層to應;荷二13 ?的電荷在無電偏壓供應至 號的頻率改變極性:二:了f少一個場效電晶體内射頻信 於底端半導體層1〇ϋ一個場效電晶體内的電摩相對 内。當至少-個場带、%’電子累積在感應電荷層13 =為負時,電㈣累積在的相對於錢半導體層 中’根據底她生谐③應电何層】3内。在先前枯供杏 由底端轉體層io^ig内之多數電荷載子的類型1 有淨電荷為底端半導體定’感應電荷層〗3可在具 模式内,或可在具導電性的相反類型的空乏 电何為底端半導體層丨0之導電性 27 201110329 的相同類型的反轉模式内 而且 ’感應電荷層13的厚度隨至少― 内^信號頻㈣變。換言之,感應電剌13的厚度 頻率為至少一個場效電晶體内信號的射頻。 根據本發明,電偏壓供應到至少一個第二推雜半導體 穩定f少一個場效電晶體操作期間感應電荷層 的屬!·生,該%效電晶體可作為RF開關。至 ΐί:92Γ電路徑來供應電偏制至少—個第二_ 敎感應電荷層13。供應到至少-個第 體區28的電壓偏壓之幅度與極性經過選擇, 層13在u模心,㈣避免在底端半 電荷層u在任何積以式内的區域。換言之,感應 曰 “唬的整個週期當中都不在積累模式内。 都且ί底ί半導體層1G和至少—個第二摻雜半導體區28 半導&參雜的情況下’偏壓供應到至少-個第二摻雜 改變的厭亚且至少—個第—導電孔89為怪定或緩慢 合至底端丰、/較佳是,負電壓的幅度大約等相或大於耦 換言層1〇頂端的RF信號之最大負擺動幅度。 要大。在#i電壓比任何相位内轉合的rf信號的負值還 電。感應下,整個感應電荷層13用固定負電荷充 ·"'…何i 13構成一個空乏區,從此消耗電洞。 28 201110329 在底端半導體層10和至少一個第二摻雜半導體區2容 都具有η型摻雜的情況下’偏壓供應到至少一個第二摻雜 半導體區28,並且至少一個第一導電孔89為恆定或緩慢 改變的正電壓^較佳是,正電壓的幅度大約等相或大於 RF信號正擺動期間耦合進入底端半導體層1〇之頂端表面 的隶大電動勢之幅度。換言之,正電壓比任何相位内層 内來自RF信號的電動勢之正值還要大。在此情況下,整 個感應電荷層13用正電荷充電。感應電荷層13構成一個 空乏區,從此消耗電子。 感應電荷層13的厚度隨至少一個場效電晶體内RF 信號頻率而變。不過’感應電荷層13在RF信號的整個週 期當中都*在積累模式Μ。取而狀’整域應電荷層13 都留在空乏模式内。感應電荷層13内減少的變化係由於 電偏壓,利用減少感應電荷層13㈣線性特性來減少產 生譜波,這不用至少―個第二摻雜半導體區28和至 個導電孔89或者供應電偏壓就可呈現。進—步 增加感應電荷層13乏區的平均厚度。因為 並沒有移動電荷,所以也減少底端半導體層ω : 由則言號所產生並内錄底端半導體層_ π电何不會移動並且不會促成 至少-個場效電晶體操作期間_電流、信號耗損和 產生,但少數電荷載子在反轉區(若先前技術内形力 201110329 動’藉此導致渦電流、信號耗損和諧波產生。根據本發明, 電偏壓供應給至少一個第一摻雜半導體區18,以便一旦熱 產生少數電荷載子就立刻排出’以避免形成反轉區。至少 =個第-導電孔79提供電路徑來供應電偏壓到至少一個 第一摻雜半導體區18。在底端半導體層1G為p摻雜的情 況下,少數電荷載子為電子。在底端半導體層1G為n推 雜的情況下,少數電荷載子為電洞。供應到至少一個第一 摻雜半導體區18的電壓驗之幅度與極性經過選擇,可 立刻在熱產生之後將少數電荷載子排出,如此避免在至少 一個場效電晶體内射頻信號的所有相位内形成反轉區。如 此’本發明的結構消除任何反轉區,使得將因為移動 所產生的渦電流和諧波產生減至最少。 若底端半導體層10為ρ型摻雜,則至少一 ^半導體區18具有η型摻雜並且至少—個第二摻雜= 體區28具有ρ型摻雜。供應給至少—個第—摻雜 區18和至少-個第一導電孔79的第—偏壓為正電壓3 且供應給至少-個第二摻雜半導體區28和至少 :電孔87的第二偏壓為負電壓。在一個情況下,正 =大約相等或大於底端半導體層10内所感應御: 的取大正擺動之幅度。負電壓的幅度大 。歲 半導體層10内所感應RF信號的最大負擺動之5幅度於底端 若底端半導體層丨〇具有η型摻雜, 推雜半導體區具有Ρ型換雜並且至卜㈣ 30 201110329 導體區2k θ + 具有η型摻雜。供應給至少一個第一摻雜半導10,000 nm' is typically from about 2 〇〇 nm to about 5,000 nm. The top surface of the MOL dielectric layer 80 can be planarized by, for example, chemical mechanical planarization. The dielectric material of interconnect level dielectric layer 90 comprises any dielectric material that can be used for MOL dielectric layer 80 as described above. The thickness of the interconnected dielectric layer 9 可 can range from about 75 nm to about i, 〇〇〇 nm, typically from about 15 〇 nm to about 500 nm, although smaller and larger thicknesses are also considered here. The at least one first interconnect level metal line 94, the at least one second interconnect level metal line 99, and the third interconnect level metal line 98 may comprise, for example, C:u 'Al 'W, Ta, Ti, WN, TaN, D (8) or a combination of these. To 26 201110329, one less interconnect level metal line 94, at least one second interconnect level metal line 99, and third interconnect level metal line 98 may comprise the same metal material. At least one field effect transistor forms a radio frequency switch for signals having a frequency from about 3 Hz to about 3 GHz. In particular, at least one field effect transistor constitutes a radio frequency switch operable on VHF, UHF, SHF and EHF. At this high frequency, 'at least one field effect transistor and the bottom half of the semiconductor display will change due to the linear increase of the electric coherence. The radio frequency signal in a field effect transistor is caused at the bottom end. Half-pressure = bottom semiconductor layer material, directly forming = inductive charge layer 13 and inducing a positive or negative charge underneath the bottom half-conductor layer to; the charge of the charge 23 ? is supplied to the frequency at an electric bias Change the polarity: two: f less than one field effect transistor RF signal in the bottom semiconductor layer 1 〇ϋ a field effect transistor inside the motor. When at least one field band, %' electrons accumulate in the induced charge layer 13 = negative, the electric (four) accumulates in the layer relative to the money semiconductor layer. In the previous dry apricots, the type of most charge carriers in the io^ig from the bottom end has a net charge for the bottom semiconductor. The 'inductive charge layer' can be in the mode, or can be opposite in conductivity. What is the type of depletion electricity? The conductivity of the bottom semiconductor layer 丨0 is the same type of inversion mode of 201110329 and the thickness of the induced charge layer 13 varies with at least the internal signal frequency (four). In other words, the thickness of the inductive electrode 13 is the radio frequency of the signal in at least one field effect transistor. According to the present invention, the electrical bias is supplied to at least one of the second semiconductors to stabilize f. One of the fields of the induced charge layer during operation of the field effect transistor can be used as an RF switch. To ΐί: 92Γ electric path to supply electric bias to at least a second _ 敎 induced charge layer 13. The magnitude and polarity of the voltage bias supplied to at least the first body region 28 are selected, layer 13 is in the u mode, and (iv) the region in the bottom half charge layer u is avoided. In other words, the induction 曰 "the entire period of the 唬 is not in the accumulation mode. Both the semiconductor layer 1G and at least a second doped semiconductor region 28 semi-conducting & a second doping changed anamorphism and at least one of the first conductive holes 89 is strange or slowly connected to the bottom end, / preferably, the magnitude of the negative voltage is approximately equal phase or greater than the top of the coupling layer The maximum negative swing amplitude of the RF signal is larger. The negative value of the rf signal that is converted in the #i voltage is lower than that in any phase. Under induction, the entire inductive charge layer 13 is charged with a fixed negative charge. i 13 constitutes a depletion region, from which a hole is consumed. 28 201110329 In the case where the bottom semiconductor layer 10 and the at least one second doped semiconductor region 2 have n-type doping, the bias supply is supplied to at least one second doping. The semiconductor region 28, and the at least one first conductive via 89 is a constant or slowly changing positive voltage. Preferably, the magnitude of the positive voltage is about equal phase or greater than the top of the bottom semiconductor layer 1 during the positive swing of the RF signal. Surface large electromotive force In other words, the positive voltage is greater than the positive value of the electromotive force from the RF signal in any phase inner layer. In this case, the entire inductive charge layer 13 is charged with a positive charge. The induced charge layer 13 constitutes a depletion region, thereby consuming electrons The thickness of the inductive charge layer 13 varies with the frequency of the RF signal in at least one of the field effect transistors. However, the inductive charge layer 13 is in the accumulation mode during the entire period of the RF signal. 13 is left in the depletion mode. The reduced variation in the inductive charge layer 13 is due to the electrical bias, which reduces the linearity of the inductive charge layer 13 (4) to reduce the generation of spectral waves, which does not require at least one second doped semiconductor region 28 and The conductive hole 89 or the supply of the electrical bias can be present. The average thickness of the depletion region of the induced charge layer 13 is increased. Since the charge is not moved, the bottom semiconductor layer ω is also reduced: The bottom semiconductor layer _ π does not move and does not contribute to at least one field effect transistor operation _ current, signal loss and generation, but a few charge carriers are The transition zone (if the prior art internal force 201110329 is moved ' thereby causing eddy currents, signal loss and harmonic generation. According to the invention, an electrical bias is supplied to the at least one first doped semiconductor region 18 so that once heat generates a minority load The sub-discharge immediately 'to avoid forming an inversion region. At least = first-conducting holes 79 provide an electrical path to supply an electrical bias to the at least one first doped semiconductor region 18. The bottom semiconductor layer 1G is p-doped In the case where a small number of charge carriers are electrons, in the case where the bottom semiconductor layer 1G is n-doped, a small number of charge carriers are holes, and the magnitude and polarity of the voltage supplied to the at least one first doped semiconductor region 18 are examined. Alternatively, a small number of charge carriers can be immediately discharged after heat generation, thus avoiding the formation of an inversion region in all phases of the RF signal in at least one of the field effect transistors. Thus, the structure of the present invention eliminates any inversion regions such that eddy currents and harmonic generation due to movement are minimized. If the bottom semiconductor layer 10 is p-type doped, at least one semiconductor region 18 has an n-type doping and at least a second doping = body region 28 has a p-type doping. The first bias voltage supplied to the at least one first doped region 18 and the at least one first conductive via 79 is a positive voltage 3 and is supplied to at least one second doped semiconductor region 28 and at least: an electrical hole 87 The two bias voltages are negative voltages. In one case, positive = approximately equal to or greater than the magnitude of the large positive swing that is sensed within the bottom semiconductor layer 10. The magnitude of the negative voltage is large. The maximum negative swing of the RF signal induced in the aged semiconductor layer 10 is 5 at the bottom end. If the bottom semiconductor layer has an n-type doping, the doped semiconductor region has a Ρ-type impurity and is (b) 30 201110329 conductor region 2k θ + has an n-type doping. Supplying at least one first doped semiconductor
體區 1 8 ·ί „ 7* I 壓,並f至少一個第一導電孔79的第一偏廢為等負電 個第一且供應給至少一個第二摻雜半導體區28和至少一 ^導電孔87的第二偏壓為等正電壓。在一個情況下, RF度大約相等或大於底端半導體層10内所感應 大於的最大正擺動之幅度。負電壓的幅度大約相等或 ;-端半導體層10内所感應RIMt號的最大負擺動之幅 體電:參閱圖3,圖解說明本發明的半導體電路β該半導 射镅包括—個功率放大器、一第一射頻(RP)信號線、一 路',二關=、一第二射頻信號線、一天線以及一偏壓生成電 只從該第一 RF信號線内的射頻信號生成至少一個偏 開關可包含例如上述圖2的示範半導體結構。RF 接:括至少一個場效電晶體與至少一個配線結構,該結 本莫辨ΐ上放置至少一個場效電晶體的S01基板之底端 千等^^層。 成電路包含—電壓分壓11,其連接在該第一 ,逮線與電接地之間並且從該即信號中產生至少一個 戶,以:ΐί | ,偏壓供應給該S〇1基板的底端半導體 二=用^次要電容輕合來提供RF開關的效能即 疋_減>、底端半導體相軸電荷 導體層内形成積累區及/或反難。 免在底知+ m 31 201110329 在運用晶片上系統(System_on_chip,S〇c)半導體晶片 的情況下’在㈣SgC半導體晶片上形成 =、 RF開關、電壓分壓器以及整流電路。選擇性,血 一 RF k號線可整合進入SoC半導體晶片。 — 功率放大器產生-個射頻(RF)信號,其具有從大約3 Hz到大約300 GHz的頻率。尤其是,功率放大薄可在 丽、聊、SHF或卿範圍内產生RF信號。肝信號 的頻率越商’:欠要電_合就越大,並且本發明在減緩次 要電容耦合效果的好處就越大。如此,當R 大約3 GHz到大約300 GHz的頻率時:本發= 益。在此也明確考量本發明延伸至超過3〇〇GHz的頻率。 該第一 RF信號線將來自功率放大器的RF信號傳輸 至RF開關。通常,第一 RF信號線實體實施為互連階層 金屬線,其連接功率放大器的實體結構與RF開關的實體 結構’該開關包括至少一個場效電晶體。 RF開關可設置成讓第一 RF信號線與第:RF信號線 電連接或電中斷。選擇性,RF開關内可提供至少其他輸 入埠,以從第一 RF信號線與至少一個其他輸入埠之間選 擇一個輸入。 將RF開關所選的信號透過第二RF信號線繞送至天 線’在此產生RF信號頻率的電磁波。 32 201110329 另外’天線可用來接收電磁波形式的射頻信號。在此 情況下’電磁信號由天線擷取並透過第二RF信號線傳輪 至RF開關,並且繞送至RF開關内提供的至少其他輪出 蟑,若RF開關包含至少其他埠接收或傳輸來自天線的 信號’則第二RF信號線可與從RF信號線選取的節點和 至少其他埠電連接。 RF信號的幅度可從大約〇lv到大約3〇v。通常, 當將由功率放大器產生的信號透過第一 號線、RF開 關和第二RF信號線傳輸到天線時,RF信號的幅度可例如 從大約3 V到大約12V。在某些情況下,rF信號線、RF 開關和天線内的信號反射可將幅度增加至大約3〇v。這種 高電壓感應SOI基板的嵌埋絕緣層内之移動電荷載子,其 中有構成該RF開關的該至少一個場效電晶體。 為了提供至少一個偏壓到s〇I基板的底端半導體 層,則將電壓分壓器連接至第一 RF信號線。該電壓分壓 器包含具有第一阻抗Z1的第一組至少一個阻抗元件與具 有第二阻抗Z2的第二組至少一個阻抗元件串聯。第一組 至少一個阻抗元件的一端直接連接至第一 RF信號線,並 且第二組至少一個阻抗元件的一端直接連接至電接地。具 有第一阻抗Z1的第一組和具有第二阻抗的第二組間之共 用節點直接連接至整流電路的輸入節點。 因為第一組至少一個阻抗元件與第二組至少一個阻 抗元件串聯在一起,所以總阻抗的幅度(或絕對值),即是 201110329 I zi Z2 I Tk擇大於阻抗Z2 z2的幅度,即是I Z2 I對於第一阻抗 又第一阻机 幅度’即疋ΙΖΗΖ2卜之比例在好信 謹到L0,較佳在RF信號頻率上從大約〇 2〇至,!卜在複 Γ且ζ牽:::象是電容及/或電感這類反應組 件,Ζ對(Ζ1 Ζ2)的比例之絕對值,即是 Ζ2Η,代表分壓器輸出電壓相對於分壓器輸人電壓(的幅 度0 一 3參=4Α、圖4Β和圖4C,分別顯示本發明的第 一、第一和弟二不範電壓分壓 第二,元件都包含電阻、電容和 電容包含電阻、 阻抗=Α4Γ示範電壓分壓器内,第-組至少-個 二ΐ二;抗元件由具有第二阻擋阻抗R2的第 抗R1相同並^匕情況下’第—阻抗Z1與第一阻擋阻 、卓一阻抗Z2與第二阻擋阻抗尺2相同。 阻抗=3二示範電壓分壓器内,第-組至少-個 且第二,且至;;2 一阻擔阻抗幻的第一電阻所構成,並 第二電阻與具有牛包括具有第二阻撞阻抗们的 等於輪射增率盘二电谷置C3的電容並聯,並且阻抗Z3 射^員率電容量乘積的反轉]倍,其中「』·」代表 34 201110329 負值的主平方根。在此情況下,第一阻抗ζι與第一阻擋 阻抗R1相同,並且第二阻抗Z2等同於第二阻擋阻抗R2 反轉和第三電容阻抗Z3反轉總和之反轉。從此可瞭解, 習慣使用複數以代表電壓與電流的幅度與相位,如此使用 複數以代表電阻、電容與電感的阻抗。 在圖4C的第三示範電壓分壓器内,第一組至少一個 阻抗兀件由具有第一電感L1的第一電阻所構成,具有阻 抗ZL等於輻射頻率與電感乘積的j倍,並且第二組至少 一個阻抗元件包括具有第二阻擋阻抗R2的第二電阻與具 有第二靜電容量阻抗ZC的電容並聯,等於輕射頻率與靜 電容量C3乘積的反轉j倍。在此情況下,第一阻抗Z1與 第一感應阻抗ZL相同,並且第二阻抗Z2等同於第二阻 擋阻抗R2反轉和第三電容阻抗Z3反轉總和之反轉。 在此明確考量電壓分壓器的其他變化,其中每一第一 組至少一個阻抗元件與第二組至少一個阻抗元件可任意 組合。 雖然本發明說明其中電壓分壓器直接連接在第一奸 信號線與電接地之間的組態,在此也明確考量電壓分壓器 直接連接在第二RF信號線與電接地之間的具體實^例裔 在電壓分壓器的輸出節點上,就是第—級至少—個阻 抗元件與第二組至少一個元件之間的共用節點,從第一 RF信號線内的RF信號生成其他RF信號。電壓分=哭輪 35 201110329 出/節點上的奸信號具有比第-RF信號線内 RF信號小的 中:,並且具有相同頻率。電壓分壓器輸出節點上的rf 仏號>傳輸至整流電路的輸人節點。整流電路輸人節點上之 RiMs號的1¾度為第—RF信號線上RF信號的幅度與第二 阻抗Z2除以第-阻抗和第二阻抗總和的比例幅度(絕對值) 之乘積。 整流電路產生至少一個偏壓,其隨大於RF信號週期 的時間常數而變’即是RF信號頻率的反轉。通常,時間 常數為至少大於RF信號週期的幅度,並且通常大於RF 信號週期的二或多倍幅度^例如:在像歧動電話的應用 當中’ RF信號可為9〇〇 MHz到超過2 Ghz,而整流電路 的時間常數可為ο·ι ms。對於鮮從大約3 GHz到大約 300 GHz的RF仏號而言,至少一個偏壓的時間常數可為 從大约30微微秒到大約j毫秒,並且通常從大約微 微秒到大約10微秒。因此在好信號週期的時間規模上, 該至y㈤偏壓可考慮作為顯示直流電⑼賴咖代加,DC) 行為的大體上㈣壓。在此方面,此處的該至少-個偏塵 就是至少-個直流電(DC)輪出電壓,其幅度在_倍振幅的 時間常數上經過第- RF信號線内RF信號振幅之調變, 通常為幅度的—些錢倍,大於RF㈣的週期。 在-個具體實施例内,該至少一個偏 電’㈣壓具有小於傳輸至邱開關的RF 信號振幅之幅度。在其他具體實施_,該至少—個偏壓 可包括正直流電(DC)輸出電壓,該電壓具有等於或大於傳 201110329 輸至RF開關的RF信號振幅之幅度。換言之,正偏壓的 幅度大於RF開關内RF信號週期之中RF信號的最大正擺 動之幅度。還是在其他具體實施例内,該至少一個偏壓可 包括負直流電(DC)輸出電壓,該電壓具有小於傳輸至RF 開關的RF信號振幅之幅度。仍舊在其他具體實施例内’ 該至少一個偏壓可包括負直流電(DC)輸出電壓’該電壓具 有等於或大於傳輸至RF開關的RF信號振幅之幅度。換 言之,負偏壓的幅度大於RF開關内RF信號週期之中RF k號的最大負擺動之幅度。 請參閱圖5A、圖5B和圖5C,分別顯示本發明的第 一、第二和第三示範整流電路。每一第一到第三示範整流 電路都包括直接連接至電接地的至少一電阻、直接連接至 電接地的至少一電容、直接連接至電接地的至少一二極體 以及直接連接至該整流電路的該輸入節點之至少另一二 極體。The first region of the at least one first conductive via 79 is first and negatively charged first and supplied to the at least one second doped semiconductor region 28 and the at least one conductive via 87. The second bias voltage is an equal positive voltage. In one case, the RF degrees are approximately equal to or greater than the magnitude of the maximum positive swing induced in the bottom semiconductor layer 10. The magnitude of the negative voltage is approximately equal or; The maximum negative swing of the induced RIMt number in the body: Referring to FIG. 3, the semiconductor circuit β of the present invention is illustrated. The semiconductor semiconductor includes a power amplifier, a first radio frequency (RP) signal line, and a path. Two off=, a second RF signal line, an antenna, and a bias generating power. Generating at least one bias switch from only the RF signal in the first RF signal line may include, for example, the exemplary semiconductor structure of FIG. 2 above. RF connection: The at least one field effect transistor and the at least one wiring structure are disposed on the bottom end of the S01 substrate on which at least one field effect transistor is placed. The circuit comprises a voltage divider 11 connected At the first, catch the line and electricity Between the ground and from the signal, at least one household is generated, by: ΐί |, the bias is supplied to the bottom semiconductor of the S〇1 substrate, and the performance of the RF switch is provided by using the secondary capacitors. Subtracting >, the formation of an accumulation region in the bottom semiconductor phase charge conductor layer and/or the reverse is difficult. In the case of using a wafer-on-system (System_on_chip, S〇c) semiconductor wafer, 'in (4) SgC Formed on the semiconductor wafer =, RF switch, voltage divider and rectifier circuit. Selective, blood-RF k line can be integrated into the SoC semiconductor chip. - Power amplifier produces a radio frequency (RF) signal, which has from about 3 Hz to a frequency of about 300 GHz. In particular, the power amplification thin can generate RF signals in the range of Li, Chat, SHF or Qing. The frequency of the liver signal is more quotient: the greater the power, the larger the The benefit of slowing down the secondary capacitive coupling effect is greater. Thus, when R is at a frequency of about 3 GHz to about 300 GHz: the present invention is also explicitly considered. The invention extends to frequencies extending beyond 3 GHz. The first RF signal line will come from the work The RF signal of the amplifier is transmitted to the RF switch. Typically, the first RF signal line entity is implemented as an interconnected metal line that connects the physical structure of the power amplifier to the physical structure of the RF switch. The switch includes at least one field effect transistor. The switch can be configured to electrically or electrically interrupt the first RF signal line from the :RF signal line. Optionally, at least the other input ports can be provided in the RF switch to be from the first RF signal line to the at least one other input port Select an input. The signal selected by the RF switch is routed through the second RF signal line to the antenna 'where the electromagnetic wave of the RF signal frequency is generated. 32 201110329 In addition, the antenna can be used to receive RF signals in the form of electromagnetic waves. In this case, the 'electromagnetic signal is captured by the antenna and transmitted through the second RF signal line to the RF switch, and is routed to at least the other wheel trips provided in the RF switch, if the RF switch contains at least other ports received or transmitted from The signal of the antenna 'the second RF signal line can be electrically connected to the node selected from the RF signal line and at least the other. The amplitude of the RF signal can range from approximately 〇 lv to approximately 3 〇 v. Generally, when a signal generated by a power amplifier is transmitted to an antenna through a first line, an RF switch, and a second RF signal line, the amplitude of the RF signal can be, for example, from about 3 V to about 12 V. In some cases, the rF signal line, the RF switch, and the signal reflection within the antenna can increase the amplitude to approximately 3 〇v. The high-voltage-sensing mobile charge carriers in the embedded insulating layer of the SOI substrate have the at least one field effect transistor constituting the RF switch. In order to provide at least one biased semiconductor layer to the bottom semiconductor substrate, a voltage divider is coupled to the first RF signal line. The voltage divider includes a first set of at least one impedance element having a first impedance Z1 in series with a second set of at least one impedance element having a second impedance Z2. One end of the first set of at least one impedance element is directly connected to the first RF signal line, and one end of the second set of at least one impedance element is directly connected to the electrical ground. A common node between the first group having the first impedance Z1 and the second group having the second impedance is directly connected to the input node of the rectifier circuit. Since the first set of at least one impedance element is connected in series with the second set of at least one impedance element, the magnitude (or absolute value) of the total impedance, ie, 201110329 I zi Z2 I Tk is greater than the magnitude of the impedance Z2 z2, ie, I The ratio of Z2 I to the first impedance and the first resistance amplitude 'ie 疋ΙΖΗΖ 2 卜 is good to L0, preferably from about 〇2〇 to the RF signal frequency! Bu is re-inducing and :::: Like a reactive component such as a capacitor and / or an inductor, the absolute value of the ratio of Ζ to (Ζ1 Ζ2), that is, Ζ2Η, represents the output voltage of the voltage divider relative to the voltage divider. The human voltage (amplitude 0 - 3 = = 4 Α, Fig. 4 Β and Fig. 4C, respectively, shows the first, first, and second voltage partial voltages of the present invention, respectively, and the components include resistors, capacitors, and capacitors including resistors, Impedance = Α 4 Γ In the exemplary voltage divider, the first group is at least - two ;; the anti-component is the same as the first reactance R1 having the second blocking resistance R2 and the first impedance Z1 and the first blocking resistance, The impedance Z2 is the same as the second barrier impedance ruler 2. Impedance = 3 2 In the exemplary voltage divider, the first group is at least one and the second, and is; And the second resistor is connected in parallel with the capacitor having the second blocking impedance equal to the round-increasing rate disc two electric valleys, and the impedance Z3 is the inverse of the product of the capacitance capacity, wherein " 』·” represents the main square root of the negative value of 2011 201132. In this case, the first impedance ζι and the first blocking impedance R1 Similarly, and the second impedance Z2 is equivalent to the inversion of the second blocking impedance R2 inversion and the third capacitive impedance Z3 inversion sum. It is understood from this that it is customary to use a complex number to represent the magnitude and phase of the voltage and current, thus using a complex number Representing the impedance of the resistor, capacitor and inductor. In the third exemplary voltage divider of Figure 4C, the first set of at least one impedance element is comprised of a first resistor having a first inductance L1 having an impedance ZL equal to the radiation frequency and j times the inductance product, and the second set of at least one impedance element includes a second resistor having a second blocking impedance R2 in parallel with a capacitance having a second electrostatic capacitance impedance ZC, which is equal to an inverse of the product of the light-frequency frequency and the electrostatic capacitance C3. In this case, the first impedance Z1 is the same as the first inductive impedance ZL, and the second impedance Z2 is equivalent to the inversion of the second blocking impedance R2 inversion and the third capacitive impedance Z3 inversion sum. Other variations of the voltage divider, wherein each of the first set of at least one impedance element and the second set of at least one impedance element can be arbitrarily combined. The voltage regulator is directly connected to the configuration between the first signal line and the electrical ground. Here, it is also explicitly considered that the voltage divider is directly connected between the second RF signal line and the electrical ground. The output node of the voltage device is a common node between the at least one impedance element and the second group of at least one element, and generates other RF signals from the RF signal in the first RF signal line. Voltage division = crying wheel 35 The signal on the out/node of 201110329 has a smaller medium than the RF signal in the first-RF signal line and has the same frequency. The rf apostrophe on the output node of the voltage divider is transmitted to the input node of the rectifier circuit. The 13⁄4 degree of the RiMs number on the input node of the rectifier circuit is the product of the amplitude of the RF signal on the first-RF signal line and the magnitude (absolute value) of the second impedance Z2 divided by the sum of the first impedance and the second impedance. The rectifier circuit produces at least one bias that varies with a time constant greater than the period of the RF signal, i.e., an inverse of the RF signal frequency. Typically, the time constant is at least greater than the amplitude of the RF signal period, and is typically greater than two or more amplitudes of the RF signal period. For example, in applications such as ambiguous telephones, the RF signal can range from 9 〇〇 MHz to over 2 Ghz. The time constant of the rectifier circuit can be ο·ι ms. For RF nicknames from about 3 GHz to about 300 GHz, the time constant of at least one bias can be from about 30 picoseconds to about j milliseconds, and typically from about picoseconds to about 10 microseconds. Therefore, on the time scale of the good signal period, the y (five) bias can be considered as the general (four) voltage showing the behavior of the direct current (9). In this aspect, the at least one of the dusts herein is at least one direct current (DC) turn-off voltage whose amplitude is modulated by the amplitude of the RF signal in the first RF signal line over a time constant of the _ times amplitude, usually For the amplitude - some money times, greater than the RF (four) cycle. In a particular embodiment, the at least one bias 'four' voltage has a magnitude that is less than the amplitude of the RF signal transmitted to the Qiu switch. In other implementations, the at least one bias voltage can include a positive direct current (DC) output voltage having a magnitude equal to or greater than the amplitude of the RF signal transmitted to the RF switch. In other words, the magnitude of the positive bias is greater than the magnitude of the maximum positive swing of the RF signal in the RF signal period within the RF switch. In still other embodiments, the at least one bias voltage can include a negative direct current (DC) output voltage having a magnitude that is less than an amplitude of the RF signal transmitted to the RF switch. Still in other embodiments, the at least one bias voltage can include a negative direct current (DC) output voltage' having a magnitude equal to or greater than the amplitude of the RF signal transmitted to the RF switch. In other words, the magnitude of the negative bias is greater than the magnitude of the maximum negative swing of RF k in the RF signal period within the RF switch. Referring to Figures 5A, 5B and 5C, the first, second and third exemplary rectifier circuits of the present invention are shown, respectively. Each of the first to third exemplary rectifier circuits includes at least one resistor directly connected to the electrical ground, at least one capacitor directly connected to the electrical ground, at least one diode directly connected to the electrical ground, and directly connected to the rectifier circuit At least another diode of the input node.
在圖5A的第一示範整流電路内,將R 其上連結兩個二極體的第-示範整流電路之輸^^應; 下列可得出第-示範整流電路的輸人節點上之 輸入電壓Vi(t):In the first exemplary rectifying circuit of FIG. 5A, R is connected to the first exemplary rectifying circuit of the two diodes; the following can be used to obtain the input voltage on the input node of the first exemplary rectifying circuit Vi(t):
Vi(t)= Vm⑴ X Sin(2 7Γ f X t) χ Z2 / (Z1 + Z2), 其中Vm(t)為第- RF信號線内RF信號的時間相依幅 度,並且隨至少大於RF信號軸—倍幅度的時間比例緩 m 37 201110329 慢改變’ f為RF信號的頻率,t為時間,Z1為第一阻抗並 且Z2為第二阻抗。請注意,Z1和Z2可為複數。在此情 況下’第一示範整流電路内輸出節點上的時間相依輸出電 壓VO(t)為正直流電(DC)電壓,經過Vm(t),即是RF信號 的時間相依幅度,的調變,由下列獲得: V〇(t)兰2xV ⑴χ|Ζ2/(Ζ1 + Ζ2)|, 其中I Z2 / (Z1+ Z2)丨為Z2 / (Z1+ Z2)的幅度。時間 相依輸出電壓Vo⑴不包括任何射頻組件。在丨z2 /(Z1+ Z2) |從大約〇·ι到!的情況下,時間相依輸出電壓v〇(t) 可具有等於或大於Vm(t)的幅度,即是第一 RF信號線内 RF ^说的時間相依幅度。 在圖5B的第二示範整流電路内,將RF信號供應給 其上連結兩個二極體的第二示範整流電路之輸人節點。由 :列可得出第二示範整流電路的輪人節點上 輪入電壓Vi<t):Vi(t)= Vm(1) X Sin(2 7Γ f X t) χ Z2 / (Z1 + Z2), where Vm(t) is the time-dependent amplitude of the RF signal in the -RF signal line, and is at least greater than the RF signal axis - Time ratio of the amplitude is slower. m 37 201110329 Slow change 'f is the frequency of the RF signal, t is time, Z1 is the first impedance and Z2 is the second impedance. Please note that Z1 and Z2 can be plural. In this case, the time-dependent output voltage VO(t) on the output node in the first exemplary rectifier circuit is a positive direct current (DC) voltage, which is modulated by Vm(t), which is the time-dependent amplitude of the RF signal. Obtained by: V〇(t)Lan 2xV (1)χ|Ζ2/(Ζ1 + Ζ2)|, where I Z2 / (Z1+ Z2)丨 is the magnitude of Z2 / (Z1+ Z2). The time dependent output voltage Vo(1) does not include any RF components. In 丨z2 / (Z1+ Z2) | From about 〇·ι to! In the case, the time dependent output voltage v 〇 (t) may have an amplitude equal to or greater than Vm(t), that is, a time dependent amplitude of RF ^ in the first RF signal line. In the second exemplary rectifying circuit of Fig. 5B, the RF signal is supplied to the input node of the second exemplary rectifying circuit to which the two diodes are coupled. From the column: the wheeled voltage on the wheel node of the second exemplary rectifier circuit Vi<t):
Vi⑴=Vm(t) X sin(2 7Γ f X t) X Z2 /(Z1+ Z2) ,第-示範整流電m示範整流電路内第一 的第一時間相依正輪出電壓vi〇(t)為正直流 經過vm(t),即*奸信號的時間相依幅度, 的凋變,由下列獲得: v 10 (t) S V".⑴ X |Z2/(Z 1 + Z2)|, 38 201110329 其中I Z2 / (zi+ Z2)丨為Z2 / (Z1+ Z2)的幅度。第一 時間相依輸出電壓Vlo⑴不包括任何射頻組件。第一時間 相依輸出電壓⑴可具有小於Vm⑴的幅度,即是第一 RF信號線内rf信號的時間相依幅度。第二示範整流電路 内第二輸出節點上的第二時間相依正輸出電壓乂2〇(〇為 負直流電(DC)電壓,經過Vm⑴,即是Rjp信號的時間相 依幅度’的調變,由下列獲得: V20(t)s-V (t)x|Z2/(Zl + Z2)|, 其中 I Z2 / (Z1+ Z2) I 為 Z2 / (Z1+ Z2)的幅度。第二 時間相依輸出電壓V2o⑴不包括任何射頻組件。第二時間 相依輸出電壓Vo⑴可具有小於ym(t)的幅度,即是第一 RF信號線内RF信號的時間相依幅度。 在圖5C的第三不範整流電路内,將RF信號供應給 其上連結兩對兩個相連二極體的節點之第三示範整流電 路的輸入節點。由下列可得出第三示範整流電路的輸入節 點上之時間相依輸入電壓Vi⑴:Vi(1)=Vm(t) X sin(2 7Γ f X t) X Z2 /(Z1+ Z2) , the first first time dependent positive wheel voltage vi〇(t) in the first exemplary rectification electric m demonstration rectifier circuit is The positive DC through vm(t), that is, the time dependent amplitude of the treacherous signal, is obtained by the following: v 10 (t) S V".(1) X |Z2/(Z 1 + Z2)|, 38 201110329 where I Z2 / (zi+ Z2) 丨 is the magnitude of Z2 / (Z1 + Z2). The first time dependent output voltage Vlo(1) does not include any RF components. The first time dependent output voltage (1) may have an amplitude less than Vm(1), i.e., a time dependent amplitude of the rf signal in the first RF signal line. The second time-dependent positive output voltage 乂2〇 on the second output node in the second exemplary rectifier circuit (〇 is a negative direct current (DC) voltage, which is modulated by Vm(1), that is, the time-dependent amplitude of the Rjp signal, by the following Obtain: V20(t)sV (t)x|Z2/(Zl + Z2)|, where I Z2 / (Z1+ Z2) I is the magnitude of Z2 / (Z1+ Z2). The second time dependent output voltage V2o(1) does not include any The second time dependent output voltage Vo(1) may have an amplitude less than ym(t), that is, a time dependent amplitude of the RF signal in the first RF signal line. In the third invariant rectifier circuit of FIG. 5C, the RF signal is An input node of a third exemplary rectifier circuit supplied to a node on which two pairs of two connected diodes are connected. The time dependent input voltage Vi(1) on the input node of the third exemplary rectifier circuit can be derived from:
ViW =Vm(t) X sin(2 7Γ f X t) X Z2/ (zi+ Z2) 跟第-示範整流電路-樣。第三示範整流電路内第一 輪出節點上的第-時間相依正輸出電壓νι〇(〇為正直流 電(DQ電壓,經過’即是RF信㈣時間相依幅度, 的調變,由下列獲得:ViW =Vm(t) X sin(2 7Γ f X t) X Z2/ (zi+ Z2) is the same as the first-example rectifier circuit. The first-time dependent positive output voltage νι〇 on the first-out node of the third exemplary rectifier circuit (〇 is a positive direct current (DQ voltage, which is the RF signal (four) time dependent amplitude), obtained by the following:
Vl〇(t^2xV",⑴ χ|Ζ2/(Ζ1 + Ζ2)|, 201110329 其中 I Z2 / (Z1+ Z2) I 為 Z2 / (Z1+ Z2)的幅度。第一 時間相依輸出電壓Vl〇⑴不包括任何射頻組件。在丨η /(Z1+Z2)丨從大約0.5到1的情況下,第一時間相依輸出 電壓Vlo⑴可具有等於或大於Vn^t)的幅度,即是第一 k號線内RF信號的時間相依幅度。第三示範整流電路内 第二輸出節點上的第二時間相依正輸出電壓V2〇(t)為負 直流電(DC)電壓’、經過Vm(t),即是RF信號的時間相依 幅度’的調變,由下列獲得: V20(t) = -2x Vm(t)x|Z2/(Zl + Z2)|, 其中 I Z2 / (Z1+ Z2) I 為 Z2 / (Z1+ Z2)的幅度。第二 時間相依輸出電壓V2o⑴不包括任何射頻組件。在丨z2 /(Z1+Z2) |從大約0.5到i的情況下,第二時間相依輸出 電壓V2o⑴可具有等於或大於νιηω的幅度,即是第一 rf 信號線内RF信號的時間相依幅度。 一二般而言,可運用其他整流電路取代第一、第二或第 二不範整流電路。在此可運用提供直流電輸出電壓的整流 電路二該輸出電壓超過提供給整流電路輸人節點的輸入 RF信號幅度之二倍,其中若丨Z2/(Z1+Z2)丨小於〇5時 特別有用。 、·, 凊回頭參閱圖3 ’該至少一輸出偏壓透過至少一偏壓 饋線供應至RF開關’其提供至少—個偏壓給s〇I基板的 底端半導體層。該至少一個偏壓饋線可包含一第一電配線 201110329 結構,該結構用於將該整流電路從該RIMf號所產生的負 偏壓供應至該底端半導體層内該至少一第一摻雜半導體 區。該至少一個偏壓饋線可進一步包含一第丄電配線结 構,該結構崎將該整流電路㈣RF錢所產生的正偏 壓供應至該至少一第二摻雜半導體區。 該至夕一個第一摻雜半導體區可為例如圖2内至少一 個第-摻雜半導體區18。該至少一個第二推雜半導體區可 為例如圖2内至少一個第二摻雜羊導體區28。第一電配線 =====第-摻雜半導體區 至少一個楚1 圖2所示垂直鄰接 CM H導電孔79的至少一個第一互連階屠金屬線 一電配線結構可包括例如阻抗連接到至少一 摻雜半導體區28的至少-個第二導電孔89,以及如圖1 所不垂直鄰接至少一個第二導電孔89的至少一個第 連階層金屬線99。每-至少一個偏壓都透過至少一個 孔(79、89)提供給底端半導體層1〇。例如:透過至少一個 第-導電孔79將整流電路從RF信號所產生的負偏慶供應 到至少—個第—摻雜半導體區18,並且透過至少一個第 導電孔㈣整妓路從RF信賴赵紅驗 = 二-個山第二捧雜半導體區2δ。至少一第一摻雜半 增内Γ在底端半導體層1G並且具有?型摻雜;以及至少 =低於山至少、一個場效電晶體。至少一個第二摻雜半導體 品 肷在底端半導體層〗〇内並且具有n型摻雜 使用從整流電路生成的正與負·,用上述方式=制= 41 201110329 端半導體層Η)喊生軸電荷。 確考董其中至少一個輸出偏壓供應至RF開關 半導體是位於或在S〇1基板頂端半導體層内頂端 ^ 之上的任何結構,來降低次要電容搞合,否則 改善RF開關效能的具體實施例。 立請參閱圖6,使用RF信號的時間相依幅度Vm(t)之任 思調變’自動調整至少—個偏壓的幅度。換言之,從整流 電路所生成的每-至少一個偏壓之幅度自動調整為奸信 號的t田度。此自賴整功能具備將至少—個偏壓幅度最佳 化的優點’如此避免過多偏壓並且隨時都可將至少一個偏 壓的最佳位準提供給RF開關。 圖7顯示例如在半導體1C邏輯設計、模擬、測試' 佈署以及製造中所使用的示範設計流程9〇〇之方塊圖。設 計流程900包括用於處理設計結構或裝置,來產生上述以 及圖2、圖3、圖4A、圖4B、圖4C、圖5A、圖5B、圖 5C和圖6内所示設計結構及/或裝置的邏輯或其他功能等 同代表之處理與機構。由設計流程9〇〇處理及/或產生的設 計結構可用機器可讀取傳輸或儲存媒體來編碼,以包括當 在資料處理系統上執行或處理時,產生硬體組件、電路、 裝置或系統的邏輯上、結構上、機構上或功能上等同代表 之資料及/或指令。設計流程900可根據所設計的代表類变 而變’例如:建立應用專屬積體電路(applicati〇n spedfic 42 201110329 integrated circuit ’ ASIC)的設計流程與設計標準組件的設 計流程900不同,或與將設計製成可程式編輯陣列,例如 Altera® Inc.或Xilinx® Inc.供應的可程式編輯閘陣列 (programmable gate array,PGA)或場可程式編輯閘陣列 (field programmable gate array,FPGA),的設計流程 900 不同。 圖7說明多種這樣的設計結構,其包括較佳由設計處 理910處理的輸入設計結構920。設計結構920為由設計 處理910所產生並處理的邏輯模擬設計結構,來產生硬體 裝置的邏輯等同功能代表。設計結構92〇也可或另外包含 當由設計處理910處理時,產生硬體裝置實體結構的功能 代表之負料及/或程式指令。不論是代表功能及/或結構設 計特徵,利用像是核心程式設計師所實施的電子電腦輔助 設計(electronic computer-aided design,ECAD)可產生設計 結構920。當設計結構920在機器可讀取資料傳輸、閘陣 列或儲存媒體上編碼後,可由設計處理91〇内之一或多個 硬體及/或軟體模組存取與處理,來模擬或功能代表電子組 件、電路、電子或邏輯模組、設備、裝置或系統,像是圖 2、圖3、圖4A、圖4B、圖4C、圖5A、圖5B、圖5C和 圖6内所示。如此,設計結構920可包含檔案或其他資料 =構^其包括由設計或模擬資料處理系統處理時人及/或機 态可項取原始碼、編譯過的結構及電腦可執行程式碼結 構^功能模擬或代表電路或者其他硬體邏輯設計位準。這 種ί料、,、。構可包括硬體描述語言(hardware_descripti〇n language,HDL)設計實體或符合及/或相容於像是Veril〇g 201110329 職這類低階HDL設計語言以及/或像是c或c++ 知·類咼階設計語言的其他資料結構。 〆Vl〇(t^2xV",(1) χ|Ζ2/(Ζ1 + Ζ2)|, 201110329 where I Z2 / (Z1+ Z2) I is the amplitude of Z2 / (Z1+ Z2). The first time dependent output voltage Vl〇(1) is not Including any RF component. In the case of 丨η /(Z1+Z2)丨 from about 0.5 to 1, the first time dependent output voltage Vlo(1) may have an amplitude equal to or greater than Vn^t), that is, the first k line The time dependent amplitude of the internal RF signal. The second time dependent positive output voltage V2 〇(t) on the second output node in the third exemplary rectifier circuit is a negative direct current (DC) voltage ', after Vm(t), that is, the time dependent amplitude of the RF signal Variable, obtained by: V20(t) = -2x Vm(t)x|Z2/(Zl + Z2)|, where I Z2 / (Z1+ Z2) I is the magnitude of Z2 / (Z1 + Z2). The second time dependent output voltage V2o(1) does not include any RF components. In the case of 丨z2 /(Z1+Z2) | from about 0.5 to i, the second time dependent output voltage V2o(1) may have an amplitude equal to or greater than νιηω, that is, the time dependent amplitude of the RF signal in the first rf signal line. In other words, other rectifying circuits can be used instead of the first, second or second non-parametric rectifying circuit. Here, a rectifying circuit that provides a DC output voltage can be used. The output voltage exceeds twice the amplitude of the input RF signal supplied to the input node of the rectifying circuit, and is particularly useful if 丨Z2/(Z1+Z2) 丨 is less than 〇5. Referring to Figure 3, the at least one output bias is supplied to the RF switch by at least one bias feed line which provides at least one bias to the bottom semiconductor layer of the sI substrate. The at least one bias feed line may include a first electrical wiring 201110329 structure for supplying a negative bias generated by the rectifier circuit from the RIMf number to the at least one first doped semiconductor in the bottom semiconductor layer Area. The at least one bias feed line may further include a second electrical wiring structure that supplies a positive bias voltage generated by the rectifying circuit (IV) RF money to the at least one second doped semiconductor region. The first doped semiconductor region may be, for example, at least one of the first doped semiconductor regions 18 of FIG. The at least one second doped semiconductor region can be exemplified by at least one second doped sheep conductor region 28 in FIG. The first electrical wiring ===== at least one of the first doped semiconductor regions. The at least one first interconnected metal wire-electrical wiring structure of the vertically adjacent CM H conductive vias 79 shown in FIG. 2 may include, for example, an impedance connection. At least one second conductive via 89 to at least one doped semiconductor region 28, and at least one first level metal line 99 that does not vertically abut at least one second conductive via 89 as in FIG. Each of the at least one bias voltage is supplied to the bottom semiconductor layer 1 through at least one of the holes (79, 89). For example, the at least one first conductive hole 79 is used to supply the rectifier circuit from the negative bias generated by the RF signal to at least one of the first doped semiconductor regions 18, and through at least one of the first conductive vias (four) to the entire circuit from the RF trust Zhao Red test = two - mountain second holding hetero semiconductor area 2δ. At least one first doping half is increased in the bottom semiconductor layer 1G and has ? Type doping; and at least = lower than the mountain, at least one field effect transistor. At least one second doped semiconductor product is in the bottom semiconductor layer and has n-type doping using positive and negative · generated from the rectifying circuit, using the above method = system = 41 201110329 end semiconductor layer Η) Charge. It is true that at least one of the output bias voltages supplied to the RF switch semiconductor is located at or above the top end of the semiconductor layer at the top of the S?1 substrate to reduce the secondary capacitance fit, otherwise the implementation of the RF switch performance is improved. example. Referring to Figure 6, the time-dependent amplitude of the RF signal, Vm(t), is used to automatically adjust the amplitude of at least one of the bias voltages. In other words, the amplitude of each of the at least one bias generated from the rectifying circuit is automatically adjusted to the t-level of the treacherous signal. This self-aligning function has the advantage of optimizing at least one bias amplitude so that excessive bias is avoided and the optimum level of at least one bias can be provided to the RF switch at any time. Figure 7 shows a block diagram of an exemplary design flow, such as used in semiconductor 1C logic design, simulation, test 'deployment, and fabrication. Design flow 900 includes processing structures or devices for processing the design structures described above and illustrated in Figures 2, 3, 4A, 4B, 4C, 5A, 5B, 5C, and 6 and/or The logic or other functions of the device are equivalent to the processing and organization. The design structure processed and/or produced by the design flow can be encoded with a machine readable transport or storage medium to include hardware components, circuits, devices or systems when executed or processed on a data processing system. Information and/or instructions that are logically, structurally, institutionally, or functionally equivalent. The design flow 900 may vary depending on the representative class being designed. For example, the design flow for creating an application-specific integrated circuit (ASIC) is different from the design flow 900 for designing a standard component, or Designed into a programmable array, such as a programmable gate array (PGA) or field programmable gate array (FPGA) from Altera® Inc. or Xilinx® Inc. Process 900 is different. FIG. 7 illustrates a variety of such design structures including an input design structure 920 that is preferably processed by design process 910. Design structure 920 is a logical analog design structure generated and processed by design process 910 to produce a logically equivalent functional representation of the hardware device. The design structure 92 can also or additionally include negatives and/or program instructions that, when processed by the design process 910, generate functional representations of the hardware structure of the hardware. Whether representing functional and/or structural design features, a design structure 920 can be created using an electronic computer-aided design (ECAD) implemented by a core programmer. When the design structure 920 is encoded on a machine readable data transfer, gate array or storage medium, it can be accessed or processed by one or more hardware and/or software modules within the design process to simulate or function. Electronic components, circuits, electronics or logic modules, devices, devices or systems are shown in Figures 2, 3, 4A, 4B, 4C, 5A, 5B, 5C and 6. As such, the design structure 920 can include files or other data = constructs including human and/or state-of-the-art source code, compiled structures, and computer executable code structures when processed by a design or analog data processing system. Analog or represent circuit or other hardware logic design level. This kind of material,,,. The structure may include a hardware description language (HDL) design entity or conform to and/or compatible with a low-order HDL design language such as Veril〇g 201110329 and/or a class such as c or c++. Other data structures for the hierarchical design language. 〆
圖較佳運用和合併用於合成、轉譯或處理 和Ώ 6 ^所Λ杜圖4B、圖4C、圖5A、圖5B、圖5C 包人:=1路連線表980。網路連線表_可 1/〇3裝置、;ιΛ配望ί早、分散組件、邏輯閘、控制電路、 ^ 果、、且/、明在積體電路設計中對其他元件與電 使用反覆理貧料結構。網路連線表980可綜合 與來數i;成%,叉連線表980根據裝置的設計規格 型lit 如此處所述的其他料結構類 揮發性儲存媒體,像是磁 W該媒體了為非 為系統或快取記恨體、缓+此外或另夕卜’媒體可 材料,電或光學傳導裂置與 傳輸與中介:純可料梅網μ魏轉合適方式 括網理許多輪入資料結構類型(包 可位於====括這,結構類型 45 [ΤΤ〇 ^ ^ ^ ^ 5_、90nm4)的型式、設計與符號表示。資料 201110329 結構類型可進一步包括設計規格940、特徵資料95〇、 認資料960、設計規則970以及測試資料檔985,該檔可 包括輸入測試樣式、輸出測試結果以及其他測試資訊:設 計處理910可進一步包括例如標準機械設計處理,像是: 力分析、熱分析、機械事件模擬、操作處理模擬,像是^ 造、模造以及沖壓成形等。精通機械設計的人士可瞭解, 設計處理910内所使用的機械設計工具和應用的可能範圍 並不偏離本發明範疇與精神。設計處理91〇也可包括用於 執行標準電路設計處理,像是時機分析、確認、設計規則 檢查、地點與路徑操作等的模組。 設計處理910運用並且合併像是HDL編譯器與模擬 型式建立工具這類邏輯與實體設計工具,以將設計結構 920和某些或全部描述的支援資料結構搭配任何額外機械 設計或資料(若適用)一起處理’以產生第二設計結構 990。設計結構990以用於機械裝置與結構的資料交換之 資料格式(例如儲存在IGES、DXF、Parasolid XT、JT、 DRG或其他適合用來儲存或呈現這種機械設計結構的任 何格式的資訊),位於儲存媒體或可程式編輯閘陣列内。 設計結構990類似於設計結構920,較佳包含一或多個槽 案'資料結構或位於傳輸或資料儲存媒體内的其他電腦編 碼資料或指令,並在由ECAD系統處理過後,產生圖2、 圖3、圖4A、圖4B、圖4C、圖5A、圖5B、圖5C和圖6 内所示一或多個本發明具體實施例之邏輯或功能等同樣 式。在一個具體實施例内,設計結構990可包含功能上模 擬圖2、圖3、圖4A、圖4B、圖4C、圖5A、圖5B、圖 45 201110329 5C和圖6内所示裝置的已編譯、可執RiHDL模擬型式。 設計結構990也可運用用於積體電路設計資料交換的 資料格式及/或符號資料格式(例如儲存在GDSII (GDS2)、GU、OASIS、地圖檔或其他適合用來儲存這種 設計資料結構的任何格式之資訊)。設計結構99〇可包含 一些資訊’像是例如符號資料、地圖檔、測試資料檔、設 計内容檔、製造資料、配置參數、線路、金屬位準、穿孔、 形狀、通過製造線的路徑資料以及製造商或其他程式設計 師生產上述以及圖2、圖3、圖4A、圖犯、圖4〇、圖5A、 圖5B、圖5C和圖6内所示裝置或結構所需之任何盆他資 料。然後設計結構990前往階段995,在此例如設&砝構 謂分支、開始製造、送至外殼工廠、送至其他科二構 送回給客戶等。 ,雖然已經用特定具體實施例說明本發明,不過從上述 當中可證實,精通此技術的人士可瞭解到許多替代、修改 及變化。因此’本發明在於涵蓋位於本發明範賴精^以 及下列中料利範_之所有這種替代、修改以及改變。 【圖式簡單說明】 圖1為先前技術射頻開關結構的垂直剖面圖。 圖2為作為本發明一部份半導體電路之實 體實施的示範半導體結構之垂直剖面圖。、&來八 圖3為本發明的示範半導體電路。 圖4A、4B和4(:分別為本發明電壓分壓器的第一、 S ] 46 201110329 第二和第三具體實施例。 圖5A、5B和5C分別為本發明整流電路的第一、第 二和第三具體實施例。 圖6為顯示射頻(RF)信號、供應至射頻(RF)開關的正 偏壓以及供應至RF開關的負偏壓之時間關係圖。 圖7為用於根據本發明的半導體結構之半導體設計與 製造的設計處理流程圖。 【主要元件符號說明】 8 絕緣層上半導體(SOI)基板 10 底端半導體層 11 電荷層 12 電阻 13 感應電荷層 18 第一摻雜半導體區 20 嵌埋絕緣層 22 電容 28 第二摻雜半導體區 30 頂端半導體層 32 頂端半導體部份 33 淺溝槽絕緣結構 37 第二下導電孔 40 閘極介電體 42 閘極電極 44 閘極隔板 47 第一下導電孔 201110329 77 第一上導電孔 79 第一導電孔 80 線中央(MOL)介電層 87 第二上導電孔 88 接點孔 89 第二導電孔 90 互連階層介電層 94 第一互連階層金屬線 98 第三互連階層金屬線 99 第二互連階層金屬線 900 設計流程 910 設計處理 920 輸入設計結構 930 程式庫元件 940 設計規格 950 特徵資料 960 確認貢料 970 設計規則 980 網路連線表 985 測試資料檔 990 第二設計結構 995 階段 Z1 第一阻抗 Z2 第二阻抗 48The figure is preferably used and combined for synthesis, translation or processing. 4B, Figure 4C, Figure 5A, Figure 5B, Figure 5C package: =1 connection table 980. Network connection table _ can be 1 / 〇 3 devices; ιΛ配望 ί early, distributed components, logic gates, control circuits, ^,, and /, Ming in the integrated circuit design for other components and electricity use Lean structure. The network connection table 980 can be integrated with the number i; %, the cross-connection table 980 according to the design specifications of the device, such as the other material structure type volatile storage medium as described herein, such as magnetic W, the medium is Not for the system or cache, hate body, slow + in addition or another 'media media material, electrical or optical conduction cracking and transmission and mediation: purely available Mei Mei μ Wei turn suitable way to include many rounds of data structure Type (package can be located at ==== including this, structure type 45 [ΤΤ〇^ ^ ^ ^ 5_, 90nm4) type, design and symbolic representation. The data 201110329 structure type may further include design specifications 940, feature data 95, identification data 960, design rules 970, and test data files 985, which may include input test patterns, output test results, and other test information: design process 910 may further These include, for example, standard mechanical design processes such as force analysis, thermal analysis, mechanical event simulation, and operational processing simulations such as fabrication, molding, and stamping. Those skilled in the art will appreciate that the scope of the mechanical design tools and applications used in designing process 910 does not depart from the scope and spirit of the invention. Design processing 91〇 may also include modules for performing standard circuit design processing such as timing analysis, validation, design rule checking, location and path operations, and the like. The design process 910 utilizes and incorporates logic and physical design tools such as HDL compilers and analog style building tools to match the design structure 920 with some or all of the described supporting data structures with any additional mechanical design or material (if applicable). Processed together to produce a second design structure 990. Design structure 990 is used in a data format for the exchange of information between mechanical devices and structures (eg, stored in IGES, DXF, Parasolid XT, JT, DRG, or any other format suitable for storing or presenting such mechanical design structures), Located in the storage medium or in the programmable editing gate array. The design structure 990 is similar to the design structure 920 and preferably includes one or more trough 'data structures or other computer-encoded data or instructions located in the transport or data storage medium, and after being processed by the ECAD system, produces Figure 2, Figure 3. A logical or functional equivalent of one or more of the specific embodiments of the invention illustrated in Figures 4A, 4B, 4C, 5A, 5B, 5C and 6. In a specific embodiment, the design structure 990 can include compiled features that functionally simulate the devices shown in FIG. 2, FIG. 3, FIG. 4A, FIG. 4B, FIG. 4C, FIG. 5A, FIG. 5B, FIG. 45, 201110329 5C, and FIG. The RiHDL analog version can be implemented. The design structure 990 may also utilize data formats and/or symbolic data formats for integrated circuit design data exchange (eg, stored in GDSII (GDS2), GU, OASIS, map files, or other suitable storage structure for such design data. Information in any format). The design structure 99〇 may contain information such as, for example, symbol data, map files, test data files, design content files, manufacturing materials, configuration parameters, wiring, metal levels, perforations, shapes, path data through manufacturing lines, and manufacturing. The quotient or other programmer produces any of the data required for the apparatus or structure described above and illustrated in Figures 2, 3, 4A, 4, 5A, 5B, 5C, and 6. The design structure 990 then proceeds to stage 995 where it is, for example, set up to branch, start manufacturing, send to the shell factory, send it to other departments, and send it back to the customer. While the invention has been described in terms of specific embodiments, it will be understood that many modifications, modifications and Therefore, the present invention is intended to cover all such alternatives, modifications, and variations of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a vertical cross-sectional view of a prior art RF switch structure. 2 is a vertical cross-sectional view of an exemplary semiconductor structure implemented as an embodiment of a semiconductor circuit of the present invention. And <8> Figure 3 is an exemplary semiconductor circuit of the present invention. 4A, 4B and 4(: respectively, the first and second embodiments of the voltage divider of the present invention, S] 46 201110329. Figures 5A, 5B and 5C are the first and the first of the rectifier circuit of the present invention, respectively. Second and third embodiments. Figure 6 is a time diagram showing the radio frequency (RF) signal, the positive bias supplied to the radio frequency (RF) switch, and the negative bias voltage supplied to the RF switch. Flow chart of design and fabrication of semiconductor design and fabrication of semiconductor structure of the invention. [Description of main component symbols] 8 On-insulator semiconductor (SOI) substrate 10 Bottom semiconductor layer 11 Charge layer 12 Resistor 13 Inductive charge layer 18 First doped semiconductor Area 20 buried insulating layer 22 capacitor 28 second doped semiconductor region 30 top semiconductor layer 32 top semiconductor portion 33 shallow trench insulating structure 37 second lower conductive hole 40 gate dielectric 42 gate electrode 44 gate spacer Plate 47 First lower conductive hole 201110329 77 First upper conductive hole 79 First conductive hole 80 Line center (MOL) dielectric layer 87 Second upper conductive hole 88 Contact hole 89 Second conductive hole 90 Interconnected dielectric layer 94 An interconnected metal line 98 A third interconnected metal line 99 A second interconnected metal line 900 Design flow 910 Design processing 920 Input design structure 930 Library component 940 Design specification 950 Characteristic data 960 Confirmation tribute 970 Design rule 980 Network Connection Table 985 Test Data File 990 Second Design Structure 995 Stage Z1 First Impedance Z2 Second Impedance 48
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/342,335 US8131225B2 (en) | 2008-12-23 | 2008-12-23 | BIAS voltage generation circuit for an SOI radio frequency switch |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201110329A true TW201110329A (en) | 2011-03-16 |
TWI527200B TWI527200B (en) | 2016-03-21 |
Family
ID=42265109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098139763A TWI527200B (en) | 2008-12-23 | 2009-11-23 | Bias generating circuit for semiconductor RF switch on insulating layer |
Country Status (5)
Country | Link |
---|---|
US (1) | US8131225B2 (en) |
EP (1) | EP2380199B1 (en) |
CN (1) | CN102265402B (en) |
TW (1) | TWI527200B (en) |
WO (1) | WO2010075051A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI737600B (en) * | 2015-03-31 | 2021-09-01 | 美商西凱渥資訊處理科技公司 | Substrate bias for field-effect transistor devices |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6804502B2 (en) | 2001-10-10 | 2004-10-12 | Peregrine Semiconductor Corporation | Switch circuit and method of switching radio frequency signals |
JP4659826B2 (en) | 2004-06-23 | 2011-03-30 | ペレグリン セミコンダクター コーポレーション | RF front-end integrated circuit |
USRE48965E1 (en) | 2005-07-11 | 2022-03-08 | Psemi Corporation | Method and apparatus improving gate oxide reliability by controlling accumulated charge |
US7910993B2 (en) | 2005-07-11 | 2011-03-22 | Peregrine Semiconductor Corporation | Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink |
US20080076371A1 (en) | 2005-07-11 | 2008-03-27 | Alexander Dribinsky | Circuit and method for controlling charge injection in radio frequency switches |
US9653601B2 (en) | 2005-07-11 | 2017-05-16 | Peregrine Semiconductor Corporation | Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction |
JP4618064B2 (en) * | 2005-09-12 | 2011-01-26 | ソニー株式会社 | Semiconductor device and manufacturing method thereof |
JP5417346B2 (en) | 2008-02-28 | 2014-02-12 | ペレグリン セミコンダクター コーポレーション | Method and apparatus for use in digitally tuning a capacitor in an integrated circuit element |
US8487706B2 (en) * | 2010-01-25 | 2013-07-16 | Peregrine Semiconductor Corporation | Stacked linear power amplifier with capacitor feedback and resistor isolation |
US9484973B1 (en) * | 2010-08-09 | 2016-11-01 | Qorvo Us, Inc. | Voltage equalization for stacked FETs in RF switches |
US8828746B2 (en) | 2012-11-14 | 2014-09-09 | International Business Machines Corporation | Compensation for a charge in a silicon substrate |
US8847672B2 (en) * | 2013-01-15 | 2014-09-30 | Triquint Semiconductor, Inc. | Switching device with resistive divider |
US20150236748A1 (en) | 2013-03-14 | 2015-08-20 | Peregrine Semiconductor Corporation | Devices and Methods for Duplexer Loss Reduction |
US9128502B2 (en) * | 2013-08-07 | 2015-09-08 | Qualcomm Incorporated | Analog switch for RF front end |
US10243248B2 (en) | 2013-12-31 | 2019-03-26 | Skyworks Solutions, Inc. | Devices and methods related to high power diode switches |
KR101616608B1 (en) | 2014-01-28 | 2016-04-28 | 삼성전기주식회사 | Radio frequency switch circuit and electronic device |
US9882600B2 (en) * | 2014-02-05 | 2018-01-30 | Infineon Technologies Ag | Switching device, a communication device, and a method for processing a carrier |
US20150228714A1 (en) * | 2014-02-13 | 2015-08-13 | Rfaxis, Inc. | Isolation methods for leakage, loss and non-linearity mitigation in radio-frequency integrated circuits on high-resistivity silicon-on-insulator substrates |
US9577626B2 (en) | 2014-08-07 | 2017-02-21 | Skyworks Solutions, Inc. | Apparatus and methods for controlling radio frequency switches |
US9620617B2 (en) * | 2014-09-04 | 2017-04-11 | Newport Fab, Llc | Structure and method for reducing substrate parasitics in semiconductor on insulator technology |
US9467124B2 (en) | 2014-09-30 | 2016-10-11 | Skyworks Solutions, Inc. | Voltage generator with charge pump and related methods and apparatus |
US9935677B2 (en) * | 2015-06-30 | 2018-04-03 | Skyworks Solutions, Inc. | Devices and methods related to high power diode switches with low DC power consumption |
US9673376B1 (en) * | 2016-02-03 | 2017-06-06 | Globalfoundries Inc. | Methods to utilize piezoelectric materials as gate dielectric in high frequency RBTs in an IC device |
KR20180121791A (en) * | 2016-03-30 | 2018-11-08 | 스카이워크스 솔루션즈, 인코포레이티드 | Adjustable active silicon for improved coupler linearity and reconfiguration |
US9923527B2 (en) * | 2016-05-06 | 2018-03-20 | Globalfoundries Inc. | Method, apparatus and system for back gate biasing for FD-SOI devices |
CN106656127B (en) * | 2016-10-12 | 2020-09-15 | 上海华虹宏力半导体制造有限公司 | Radio frequency switch circuit |
US9960737B1 (en) | 2017-03-06 | 2018-05-01 | Psemi Corporation | Stacked PA power control |
TWI654510B (en) | 2017-03-24 | 2019-03-21 | 立積電子股份有限公司 | Bias circuit |
US10374092B2 (en) * | 2017-04-17 | 2019-08-06 | Globalfoundries Inc. | Power amplifier ramping and power control with forward and reverse back-gate bias |
FR3066858B1 (en) * | 2017-05-23 | 2019-06-21 | Soitec | METHOD FOR MINIMIZING DISTORTION OF A SIGNAL IN A RADIO FREQUENCY CIRCUIT |
US10333510B2 (en) | 2017-07-07 | 2019-06-25 | Infineon Tehcnologies Ag | System and method for biasing an RF switch |
US10658390B2 (en) | 2018-07-10 | 2020-05-19 | Globalfoundries Inc. | Virtual drain for decreased harmonic generation in fully depleted SOI (FDSOI) RF switches |
US10790307B2 (en) | 2018-11-27 | 2020-09-29 | Qorvo Us, Inc. | Switch branch structure |
US10707866B1 (en) * | 2018-12-21 | 2020-07-07 | Qualcomm Incorporated | Capacitance balance in dual sided contact switch |
CN110007208B (en) * | 2019-04-19 | 2021-02-12 | 上海华虹宏力半导体制造有限公司 | Radio frequency power capacity value measuring method |
CN113381520B (en) * | 2021-05-31 | 2022-11-08 | 电子科技大学 | 2.4G microwave wireless single-phase AC-AC conversion circuit |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5818099A (en) * | 1996-10-03 | 1998-10-06 | International Business Machines Corporation | MOS high frequency switch circuit using a variable well bias |
US6108527A (en) | 1997-07-31 | 2000-08-22 | Lucent Technologies, Inc. | Wide range multiple band RF power detector |
US6562666B1 (en) | 2000-10-31 | 2003-05-13 | International Business Machines Corporation | Integrated circuits with reduced substrate capacitance |
US6804502B2 (en) * | 2001-10-10 | 2004-10-12 | Peregrine Semiconductor Corporation | Switch circuit and method of switching radio frequency signals |
JP4009553B2 (en) * | 2002-05-17 | 2007-11-14 | 日本電気株式会社 | High frequency switch circuit |
CN1792034A (en) * | 2003-05-16 | 2006-06-21 | 特里奎恩特半导体公司 | Boost circuit for high frequency switch |
US7263337B2 (en) * | 2003-05-16 | 2007-08-28 | Triquint Semiconductor, Inc. | Circuit for boosting DC voltage |
TWI227052B (en) * | 2003-12-23 | 2005-01-21 | Macronix Int Co Ltd | ESD protection circuit for dual-polarity input pad |
JP2005228779A (en) | 2004-02-10 | 2005-08-25 | Oki Electric Ind Co Ltd | Manufacturing method of semiconductor device |
US7304354B2 (en) * | 2004-02-17 | 2007-12-04 | Silicon Space Technology Corp. | Buried guard ring and radiation hardened isolation structures and fabrication methods |
US7910993B2 (en) * | 2005-07-11 | 2011-03-22 | Peregrine Semiconductor Corporation | Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink |
US7479418B2 (en) * | 2006-01-11 | 2009-01-20 | International Business Machines Corporation | Methods of applying substrate bias to SOI CMOS circuits |
US20080001247A1 (en) * | 2006-06-30 | 2008-01-03 | Abadeer Wagdi W | Mesa Optical Sensors and Methods of Manufacturing the Same |
US7718503B2 (en) * | 2006-07-21 | 2010-05-18 | Globalfoundries Inc. | SOI device and method for its fabrication |
US7772648B1 (en) * | 2006-09-13 | 2010-08-10 | Rf Micro Devices, Inc. | Performance enhanced silicon-on-insulator technology |
-
2008
- 2008-12-23 US US12/342,335 patent/US8131225B2/en active Active
-
2009
- 2009-11-23 TW TW098139763A patent/TWI527200B/en not_active IP Right Cessation
- 2009-12-15 EP EP09835568.8A patent/EP2380199B1/en active Active
- 2009-12-15 WO PCT/US2009/067968 patent/WO2010075051A1/en active Application Filing
- 2009-12-15 CN CN200980152324.4A patent/CN102265402B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI737600B (en) * | 2015-03-31 | 2021-09-01 | 美商西凱渥資訊處理科技公司 | Substrate bias for field-effect transistor devices |
Also Published As
Publication number | Publication date |
---|---|
US8131225B2 (en) | 2012-03-06 |
CN102265402B (en) | 2015-04-22 |
EP2380199A4 (en) | 2012-02-29 |
WO2010075051A1 (en) | 2010-07-01 |
CN102265402A (en) | 2011-11-30 |
EP2380199A1 (en) | 2011-10-26 |
EP2380199B1 (en) | 2015-01-21 |
US20100156511A1 (en) | 2010-06-24 |
TWI527200B (en) | 2016-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201110329A (en) | Bias voltage generation circuit for an SOI radio frequency switch | |
US7842580B2 (en) | Structure and method for buried inductors for ultra-high resistivity wafers for SOI/RF SiGe applications | |
TWI462222B (en) | Insulator-on-semiconductor RF switch with enhanced signal fidelity and electrical isolation | |
JP5466467B2 (en) | Semiconductor structure, semiconductor structure forming method, semiconductor device operating method (SOIRF switch for reducing high-frequency harmonics) | |
US7843005B2 (en) | SOI radio frequency switch with reduced signal distortion | |
Svelto et al. | A bond-wire inductor-MOS varactor VCO tunable from 1.8 to 2.4 GHz | |
Fong et al. | A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology | |
US20170148784A1 (en) | Integration of active power device with passive components | |
US8809155B2 (en) | Back-end-of-line metal-oxide-semiconductor varactors | |
Litwin | Overlooked interfacial silicide-polysilicon gate resistance in MOS transistors | |
US20060273395A1 (en) | Semiconductor device comprising an integrated circuit | |
US9653455B1 (en) | FET—bipolar transistor combination | |
Yang et al. | A 65-nm high-frequency low-noise CMOS-based RF SoC technology | |
CN115274850A (en) | Patterned oxide sandwich layout SOI wafer structure for RF monolithic integration | |
Rheinfelder et al. | 26 GHz coplanar SiGe MMICs | |
US20020140049A1 (en) | High frequency integrated devices | |
Moulin | Modelling, fabrication and characterization of localizable carrier depletion and trapping techniques in high-resistivity silicon substrates for advanced radiofrequency technologies | |
Gill et al. | New materials for active and passive integrated devices for wireless applications | |
CN106486473A (en) | ESD-protection structure and forming method thereof | |
Tang et al. | Foundry technology for 130nm and beyond SoC | |
JP2005044956A (en) | Semiconductor device | |
CN1971911A (en) | Semiconductor structure | |
Trivedi et al. | Hyperabrupt-junction varactor for mmWave SiGe: C BiCMOS, enabling 77GHz VCO/TX with 13-15GHz tuning range | |
Freeman et al. | Integrated SiGe and Si device capabilities and trends for multi-gigahertz applications | |
Niknejad et al. | Problem Description |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |