[go: up one dir, main page]

TW201107452A - Phosphor material and luminescent device - Google Patents

Phosphor material and luminescent device Download PDF

Info

Publication number
TW201107452A
TW201107452A TW099118300A TW99118300A TW201107452A TW 201107452 A TW201107452 A TW 201107452A TW 099118300 A TW099118300 A TW 099118300A TW 99118300 A TW99118300 A TW 99118300A TW 201107452 A TW201107452 A TW 201107452A
Authority
TW
Taiwan
Prior art keywords
phosphor
oxide
coating layer
light
aluminum
Prior art date
Application number
TW099118300A
Other languages
Chinese (zh)
Other versions
TWI544058B (en
Inventor
Yoshifumi Tsutai
Keisuke Sato
Yutaka Sato
Mabito Iguchi
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Publication of TW201107452A publication Critical patent/TW201107452A/en
Application granted granted Critical
Publication of TWI544058B publication Critical patent/TWI544058B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided are phosphor and luminescent device which are capable of achieving long-life by enhancing water resistance, UV resistance and so on. The phosphor material has phosphor particle 11 and covering layer 12 covering on the overall surface of the phosphor particle 11, in which the covering layer 12 contains at least one metallic oxide selected from the group consisted of rare-earth oxide, aluminum oxide and complex oxide of yttrium and aluminum. By which, water resistance, UV resistance and so on can be improved, and long- life may be achieved.

Description

201107452 六、發明說明: 【發明所屬之技術領域】 本發明係關於在螢光體粒子的表面具有被覆層的螢光 體材料及使用其之發光裝置》 【先前技術】 LED燈係被使用在攜帶式機器、PC周邊機器、OA機 器、各種開關或背光用光源等各種顯示裝置。如上所示之 LED燈係爲了發出各種顏色的光而使用螢光體,而開發出 各種螢光體(例如參照專利文獻1 )。 (先前技術文獻) (專利文獻) (專利文獻1)日本特開2002-105449號公報 【發明内容】 (發明所欲解決之課題) 但是,該等螢光體係由於吸附水分而進行加水分解’ 因此表面會劣化,或藉由紫外光而使表面分解而劣化。因 此,會有亮度等特性降低、無法獲得充分壽命的問題。 本發明係基於如上所示之問題所硏創者’目的在提供 一種藉由使耐水性或抗紫外光等提升,可達成長壽命化的 螢光體材料及發光裝置。 (解決課題之手段) 本發明之螢光體材料係具有:螢光體粒子、及被覆該 螢光體粒子之表面全體的被覆層’被覆層係含有由稀土類 氧化物、氧化銘、配與銘的複合氧化物、氧化鎂及鋁與鎂 201107452 的複合氧化物所成群組之中之至少1種金屬氧化物。 本發明之發光裝置係包含本發明之螢光體材料者》 (發明之效果) 藉由本發明之螢光體材料,在螢光體粒子的表面全體 形成由稀土類氧化物、氧化鋁、釔與鋁的複合氧化物、氧 化鎂及鋁與鎂的複合氧化物所成群組之中之至少1種金屬 氧化物所構成的被覆層,因此可使耐水性或抗紫外光等特 性提升。因此,藉由使用本發明之螢光體材料的發光裝置, 可達成長壽命化。 尤其,若藉由含有由釔(Y ) 、I ( Gd )及鏡(Yb ) 所成群組之中之至少1種元素的稀土類氧化物來形成被覆 層,可得更高特性,而且可抑制成本。 此外,若將被覆層的厚度設爲5 nm以上、Ιμπι以下, 可得優異耐水性,並且可得高透過性。 【實施方式】 以下,針對本發明之實施形態,參照圖式詳加說明。 第1圖係以模式表示本發明之一實施形態之螢光體材 料10者。該螢光體材料10具有:螢光體粒子11、及被覆 層1 2。 以螢光體粒子1 1而言,可列舉例如:BaMgAl1G017 : Eu 或 CaMgSi206:Eu 等藍色系螢光體、Zn2Si04:Mn,(Y, Gd) B〇3: Tb 或(Ba,Sr,Mg) 0· aAl2〇3: Μη 等綠色系 螢光體、(γ,Gd) Β〇3: Eu或YPV04: Eu等紅色系螢光 201107452 被覆層1 2係以由稀土類氧化物、氧化鋁、釔/ 榴石等釔與鋁的複合氧化物、氧化鎂、及MgAl204 鎂的複合氧化物所成群組之中之至少1種爲主成 成。藉此,可抑制對紫外光之經時劣化,並且可使 提升之故。其中亦以稀土類氧化物爲佳,以含有由 及鏡所成群組之中之至少1種元素的稀土類氧化 佳,尤其以Y203爲佳。其係因爲可得更高效果,而 制成本之故。被覆層12可爲該等的單層,亦可爲重 層而成者。 其中,在被覆層12雖在製造過程中亦會有混入 分的情形,但是此時,以將其他成分的比例設爲0. 1 以下爲佳。此係基於可更加抑制對紫外光之經時劣 且可更加提升耐水性之故。此外,其他成分較佳爲 被覆層12的特性造成不良影響者,具體而言有矽< 鈉(Na)、鐵(Fe) '鋅(Zn)、鉻(Cr)、鎳( 銅(Cu)、鈣(Ca)、锰(Μη)、鈦(Ti)或鉀(: 其中,綠色系螢光體雖然由於紫外光所造成的 大,但是若藉由Y2〇3來形成被覆層12,則可極爲 化,故較爲理想。 被覆層12係被覆螢光體粒子11的表面全體。 可抑制因與螢光體粒子11的水分接觸而造成的 解,而可使耐水性提升之故。此外,在螢光體粒子 過被覆層12而照射紫外光,因此可使防止劣化的效 之故。第2圖係以模式顯示以被覆層112被覆螢光 鋁/石 等鋁與 分所形 耐水性 釔、釓 物爲更 且可抑 疊複數 其他成 質量% 化,並 不會對 :Si)、 Ni )、 K)等。 劣化較 抑制劣 藉此, 加水分 11係通 :果提升 :體粒子 201107452 111之表面之一部分的螢光體材料110者,但是由於螢 體粒子111由被覆層112之間露出,因此無法獲得充分 效果。其中,在本發明中,被覆層12被覆螢光體粒子 之表面全體意指:並非爲即使存在有空孔等缺陷的情形 亦予以排除者,而是實質上接近100 %的被覆率。 被覆層12的厚度較佳爲5 nm以上、Ιμιη以下。若厚 較薄,會難以形成,並且耐水性提升效果變少,若厚度 厚,則透過性會降低,並且成本會變高之故》 該螢光體材料ίο係可在例如螢光體粒子11的表面 用溶膠凝膠法來形成被覆層12。具體而言,較佳爲例如 將金屬鹽溶解在溶媒的溶液浸漬螢光體粒子11之後,取 溶液所附著的螢光體粒子11,藉由乾燥等予以凝膠化而 行燒成,藉此形成被覆層12。在將金屬鹽溶解在溶媒的 液浸漬螢光體粒子11而使溶液附著在螢光體粒子11的 面,藉此可在螢光體粒子11的表面全體形成被覆層12 故。溶媒可使用有機溶媒或水等,以金屬鹽而言,可使 碳酸鹽、硝酸鹽、烷氧化合物等。燒成溫度係以3 0 0 °C以J 1000 °C以下_爲佳。若未達300 °C,會難以形成被覆層12, 超過100(TC,則會依螢光體粒子11的材料,有發生熱劣 的情形之故。 第3圖係表示使用該螢光體材料10之發光裝置20 一構成例者。該發光裝置20係在基板21之上搭載有發 元件22’發光元件22係藉由形成在基板21之上的配線 與導線2 4作電性連接。此外,在發光元件2 2的周圍係 光 的 11 下 度 較 使 在 出 進 溶 表 之 用 - 、 若 化 之 光 23 形 201107452 成有例如反射器框體2 5,在發光元件2 2之上則以覆蓋發 光兀件22的方式形成有密封層26。密封層26係藉由例如 使螢光體材料1 0分散的樹脂所構成。 在發光元件22係使用例如發出紫外光、藍色光、或綠 色光作爲激發光者。以螢光體材料10而言,例如以1種或 視需要而混合使用將由發光元件22所發出的激發光吸收 而發出紅色光者、發出藍色光者、發出黃色光者等。其中 亦當在發光元件22使用發出紫外光者時,以使用本發明之 螢光體材料10爲佳。本發明之螢光體材料10係具有優異 抗紫外光特性之故。 如上所示藉由本實施形態,在螢光體粒子11的表面全 體形成由稀土類氧化物、氧化鋁、釔與鋁的複合氧化物、 氧化鎂及鋁與鎂的複合氧化物所成群組之中之至少1種金 屬氧化物所構成的被覆層1 2,因此可使耐水性或抗紫外光 等特性提升。因此,藉由使用該螢光體材料10的發光裝置 2 〇,可達成長壽命化。 尤其,若藉由含有由釔、釓及鏡所成群組之中之至少 1種元素的稀土類氧化物來形成被覆層〗2,可得更高特 性,而且可抑制成本。 此外,若將被覆層12的厚度形成爲5nm以上、Ιμιη以 下,可得優異耐水性,並且可得高透過性。 實施例 (實施例1 ) 以螢光體粒子11而言,分別備妥藍色系者、綠色系 201107452 者、紅色系者,且浸漬在將釔鹽溶解在溶媒的溶液。接著, 取出使溶液附著的螢光體粒子η,且在使其乾燥而凝膠化 之後,以500°C燒成2小時。 第4圖係表示所得螢光體材料10之表面附近之TEM (Transmission Electron Microscope :透過型電子顯微鏡) 照片之一例,第5圖係將第4圖的TEM照片的一部分加以 放大者。在第4圖及第5圖中,11所示部分爲螢光體粒子, 12所示部分爲被覆層。其中,被覆層12之上的白色部分 係在分析時所使用的碳膜。 如第4圖及第5圖所示,可知該螢光體材料10係在螢 光體粒子11的表面全體形成有被覆層12。 接著,使用所得之螢光體材料1 〇,製作出如第3圖所 示之發光裝置20。在發光元件22係使用發出紫外光者, 在螢光體材料10則混合使用發出藍色者、發出綠色者、及 發出紅色者,藉此調整爲獲得白色的發光。此外,在螢光 體材料10僅使用發出綠色者,藉此亦製作出綠色的發光裝 置2 0。 (比較例1 ) 除了在螢光體粒子未形成被覆層而直接作爲螢光體材 料使用之外,其他與實施例1相同地製作出發光裝置。 (比較例2) 除了使將釔鹽溶解在溶媒的溶液作噴霧且附著在螢光 體粒子111的表面,藉此形成被覆層112以外,其他與實 施例1相同地製作出螢光體材料110,而製作出發光裝置。 201107452 第6圖係表示所得之螢光體材料之表面附近之TEM照片之 —例。在第6圖中’ 111所示部分爲螢光體粒子,112所示 部分爲被覆層。其中’螢光體粒子11及被覆層112之上的 白色部分係分析時所使用的碳膜。如第6圖所示,可知該 螢光體材料110係在螢光體粒子111的表面的一部分’局 部性地附著有被覆層112的粒子。 (劣化試驗) 針對實施例1及比較例1、2之各發光裝置20,進行 發光試驗,以調査亮度維持率的經時變化。將實施例1與 比較例1的結果作比較且顯示於第7圖中。如第7圖所示’ 藉由形成有被覆層12的實施例1’與未形成有被覆層的比 較例1相比,可大幅抑制亮度維持率降低。此外,在比較 例2中,與比較例1相比,雖然稍微抑制亮度維持率的降 低,但是未如實施例1般大幅改善。亦即,可知若以被覆 層12被覆螢光體粒子11的表面全體,可大幅改善劣化。 (實施例2 ) 除了使將溶解有釔鹽溶液中的螢光體粒子11的濃度 改變,而使被覆層12的厚度在5.nm〜1 μπι的範圍內改變之 外,其他與實施例1相同地製作出螢光體材料1 0及發光裝 置20。此時,在螢光體粒子11係使用綠色系者。 接著,與實施例1同樣地進行劣化試驗。結果,被覆 層12的厚度在5nm以上、Ιμιη以下的範圍內獲得良好的亮 度維持率。亦即,可知被覆層12的厚度係以5nm以上、 以下的範圍內爲佳》 201107452 以上列舉實施形態來說明本發明,惟本發明並非限定 於上述實施形態,可爲各種變形。例如,在上述實施形態 中,被覆層1 2係針對以由稀土類氧化物、氧化鋁、釔與鋁 的複合氧化物、氧化鎂、及鋁與鎂的複合氧化物所成群組 之中的至少1種作爲主成分所形成的單層、或重疊複數層 所成者加以說明,但是除了該等以外,亦可形成含有不會 對螢光體粒子造成不良影響之其他物質的層。 (產業上利用可能性) 可用在LED等發光裝置。 【圊式簡單說明】 第1圖係表示本發明之一實施形態之螢光體材料之構 成的模式圖。 第2圖係表示本發明之一實施形態以外之螢光體材料 之構成的模式圖。 第3圖係表示使用第1圖之螢光體材料的發光裝置之 構成圖。 第4圖係實施例1之螢光體材料的TEM照片》 第5圖係第4圖之螢光體材料的放大照片。 第6圖係比較例2之螢光體材料的TEM照片。 第7圖係顯示實施例1之發光裝置之亮度維持率的特 性圖。 【主要元件符號說明】 10 螢光體材料 11 螢光體粒子 -10 - 201107452 12 被覆層 20 發光裝置 2 1 基板 22 發光元件 23 配線 24 導線 25 反射器框體 26 密封層 110 螢光體材料 111 螢光體粒子 1 12 被覆層 -n-[Technical Field] The present invention relates to a phosphor material having a coating layer on the surface of a phosphor particle and a light-emitting device using the same. [Prior Art] LED lamp system is used in carrying Various types of display devices such as a type of machine, a PC peripheral device, an OA device, various switches, or a backlight source. The LED lamp shown above uses a phosphor to emit light of various colors, and various phosphors have been developed (see, for example, Patent Document 1). (Prior Art Document) (Patent Document 1) Japanese Laid-Open Patent Publication No. 2002-105449 (Description of the Invention) However, these fluorescent systems are hydrolyzed by adsorption of moisture. The surface may be deteriorated, or the surface may be decomposed and deteriorated by ultraviolet light. Therefore, there is a problem that characteristics such as brightness are lowered and a sufficient life cannot be obtained. The present invention has been made in view of the above-mentioned problems, and aims to provide a phosphor material and a light-emitting device which can be made to have a long life by improving water resistance or ultraviolet light resistance. (Means for Solving the Problem) The phosphor material of the present invention includes: the phosphor particles and the coating layer covering the entire surface of the phosphor particles, the coating layer containing the rare earth oxide, the oxide, and the At least one metal oxide among the composite oxides of the composite oxide, magnesium oxide, and aluminum and magnesium 201107452. The light-emitting device of the present invention includes the phosphor material of the present invention (effect of the invention). The phosphor material of the present invention forms a rare earth oxide, aluminum oxide, tantalum and the like on the entire surface of the phosphor particles. A coating layer composed of at least one metal oxide of a composite oxide of aluminum, magnesium oxide, and a composite oxide of aluminum and magnesium improves the properties such as water resistance and ultraviolet light resistance. Therefore, by using the light-emitting device of the phosphor material of the present invention, the growth life can be achieved. In particular, if the coating layer is formed by a rare earth oxide containing at least one element selected from the group consisting of yttrium (Y), I (Gd), and mirror (Yb), higher characteristics can be obtained. Suppress costs. In addition, when the thickness of the coating layer is 5 nm or more and Ιμπι or less, excellent water resistance can be obtained, and high permeability can be obtained. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Fig. 1 is a view showing a phosphor material 10 according to an embodiment of the present invention in a mode. The phosphor material 10 has phosphor particles 11 and a coating layer 12. Examples of the phosphor particles 1 1 include blue phosphors such as BaMgAl1G017: Eu or CaMgSi206:Eu, Zn2Si04:Mn, (Y, Gd) B〇3: Tb or (Ba, Sr, Mg). 0· aAl2〇3: green phosphor such as Μη, (γ, Gd) Β〇3: Eu or YPV04: Eu and other red fluorescent products 201107452 The coating layer 1 2 is composed of rare earth oxides, alumina, At least one of the group consisting of ruthenium and ruthenium and a composite oxide of aluminum, a composite oxide of magnesium, and a composite oxide of MgAl204 magnesium is mainly composed. Thereby, the deterioration of the ultraviolet light over time can be suppressed, and the improvement can be caused. Among them, rare earth oxides are preferred, and rare earths containing at least one element selected from the group consisting of mirrors are preferred, and Y203 is particularly preferred. This is because of the higher efficiency and cost. The cover layer 12 may be such a single layer or may be a heavy layer. In the case where the coating layer 12 is mixed in the manufacturing process, it is preferable to set the ratio of the other components to 0.1 or less. This is based on the fact that it can further suppress the deterioration of the ultraviolet light and improve the water resistance. Further, other components are preferably adversely affected by the characteristics of the coating layer 12, specifically, 矽 < sodium (Na), iron (Fe) 'zinc (Zn), chromium (Cr), and nickel (copper (Cu) Calcium (Ca), manganese (Mn), titanium (Ti) or potassium (wherein, although the green fluorescent material is large due to ultraviolet light, if the coating layer 12 is formed by Y2〇3, The coating layer 12 covers the entire surface of the phosphor particles 11. The solution due to contact with the moisture of the phosphor particles 11 can be suppressed, and the water resistance can be improved. Since the phosphor particles pass through the coating layer 12 and are irradiated with ultraviolet light, the effect of preventing deterioration can be prevented. Fig. 2 is a view showing that the coating layer 112 is covered with aluminum and a water-like shape such as fluorescent aluminum/stone. The sputum is more and can suppress the other plural masses, and it will not be: Si), Ni), K), etc. When the deterioration is less than the suppression, the addition of the moisture 11 is performed: the phosphor material 110 of one of the surfaces of the bulk particles 201107452 111 is lifted, but since the phosphor particles 111 are exposed between the coating layers 112, sufficient effect. In the present invention, the entire surface of the coating layer 12 coated with the phosphor particles means that it is not excluded even if there are defects such as voids, but is substantially close to 100% coverage. The thickness of the coating layer 12 is preferably 5 nm or more and Ιμηη or less. If the thickness is thin, it will be difficult to form, and the water resistance improvement effect will be small. If the thickness is thick, the permeability will be lowered, and the cost will become high. The phosphor material ίο can be, for example, the phosphor particles 11 The surface is formed into a coating layer 12 by a sol-gel method. Specifically, for example, it is preferred that the phosphor particles 11 adhered to the solution after the metal salt is dissolved in the solvent of the solvent, and the phosphor particles 11 adhered to the solution are gelled by drying or the like. The coating layer 12 is formed. The solution in which the metal salt is dissolved in the solvent soaks the phosphor particles 11 and the solution adheres to the surface of the phosphor particles 11, whereby the coating layer 12 can be formed on the entire surface of the phosphor particles 11. As the solvent, an organic solvent, water or the like can be used, and in the case of a metal salt, a carbonate, a nitrate, an alkoxide or the like can be used. The firing temperature is preferably 300 ° C or less at 300 ° C. If it is less than 300 °C, it will be difficult to form the coating layer 12, and if it exceeds 100 (TC, depending on the material of the phosphor particles 11, there is a case where heat is inferior. Fig. 3 shows the use of the phosphor material. A light-emitting device 20 is a configuration in which a light-emitting device 20 is mounted on a substrate 21 with a light-emitting element 22'. The light-emitting element 22 is electrically connected to the wire 24 by wiring formed on the substrate 21. In the case where the light-emitting element 22 is surrounded by the light-emitting element 22, for example, the reflector frame body 25 is formed on the light-emitting element 2, and the light-emitting element 22 is used. The sealing layer 26 is formed to cover the light-emitting element 22. The sealing layer 26 is made of, for example, a resin that disperses the phosphor material 10. The light-emitting element 22 is used, for example, to emit ultraviolet light, blue light, or green light. In the case of the phosphor material 10, for example, one type or, if necessary, a mixture of the excitation light emitted from the light-emitting element 22 and the red light, the blue light, and the yellow light are used. Etc., also in the light-emitting element 22 When the ultraviolet light is emitted, it is preferred to use the phosphor material 10 of the present invention. The phosphor material 10 of the present invention has excellent ultraviolet light resistance. As described above, in the present embodiment, the phosphor is used. The entire surface of the particles 11 is formed of a coating composed of a rare earth oxide, aluminum oxide, a composite oxide of cerium and aluminum, magnesium oxide, and a composite oxide of aluminum and magnesium. Since the layer 12 is improved in water resistance or ultraviolet light resistance, the life of the light-emitting device 2 can be increased by using the light-emitting device 2 of the phosphor material 10. In particular, by containing yttrium and ytterbium And the rare earth oxide of at least one element in the group of the mirrors forms the coating layer 2, which can obtain higher characteristics and can suppress cost. Further, when the thickness of the coating layer 12 is 5 nm or more, Ιμηη以下, the water resistance is excellent, and high permeability is obtained. EXAMPLES (Example 1) In the case of the phosphor particles 11, the blue color, the green color 201107452, and the red color are prepared, respectively. Immersion in dissolving strontium salt After the solution of the solvent, the phosphor particles η adhering to the solution were taken out, dried, and gelled, and then fired at 500 ° C for 2 hours. Fig. 4 shows the obtained phosphor material 10 A part of the TEM (Transmission Electron Microscope) photograph near the surface, and the fifth figure is a part of the TEM photograph of Fig. 4. In Fig. 4 and Fig. 5, the portion shown in Fig. 11 is The phosphor particles, the portion indicated by 12 is a coating layer, wherein the white portion on the coating layer 12 is a carbon film used in the analysis. As shown in Figs. 4 and 5, the phosphor material is known. In the tenth aspect, the coating layer 12 is formed on the entire surface of the phosphor particles 11. Next, using the obtained phosphor material 1 〇, a light-emitting device 20 as shown in Fig. 3 was produced. In the case where the light-emitting element 22 is used to emit ultraviolet light, the phosphor material 10 is mixed and used to emit blue, green, and red, thereby adjusting to obtain white light. Further, only the green light is used in the phosphor material 10, whereby the green light-emitting device 20 is also produced. (Comparative Example 1) A light-emitting device was produced in the same manner as in Example 1 except that the phosphor particles were used as the phosphor material without forming a coating layer. (Comparative Example 2) A phosphor material 110 was produced in the same manner as in Example 1 except that the solution in which the onium salt was dissolved in the solvent was sprayed and adhered to the surface of the phosphor particles 111 to form the coating layer 112. And make a light-emitting device. 201107452 Fig. 6 shows an example of a TEM photograph near the surface of the obtained phosphor material. In Fig. 6, the portion indicated by '111 is a phosphor particle, and the portion indicated at 112 is a coating layer. The white portions on the phosphor particles 11 and the coating layer 112 are carbon films used for analysis. As shown in Fig. 6, it is understood that the phosphor material 110 is a particle in which a portion of the surface of the phosphor particle 111 is locally adhered to the coating layer 112. (Deterioration Test) For each of the light-emitting devices 20 of Example 1 and Comparative Examples 1 and 2, a luminescence test was performed to investigate the temporal change in the luminance maintenance ratio. The results of Example 1 and Comparative Example 1 were compared and shown in Figure 7. As shown in Fig. 7, the embodiment 1' in which the coating layer 12 is formed can significantly suppress the decrease in the luminance maintenance ratio as compared with the comparative example 1 in which the coating layer is not formed. Further, in Comparative Example 2, the decrease in the luminance maintenance ratio was slightly suppressed as compared with Comparative Example 1, but it was not significantly improved as in the first embodiment. In other words, it is understood that deterioration of the entire surface of the phosphor particles 11 is covered by the coating layer 12. (Example 2) Other than Example 1, except that the concentration of the phosphor particles 11 in the cerium salt solution to be dissolved was changed, and the thickness of the coating layer 12 was changed within the range of 5. nm to 1 μm. The phosphor material 10 and the light-emitting device 20 were produced in the same manner. At this time, a green color is used for the phosphor particles 11 . Next, a deterioration test was performed in the same manner as in Example 1. As a result, a good luminance maintenance ratio is obtained in the range of 5 nm or more and Ιμηη or less in the thickness of the coating layer 12. In other words, the thickness of the coating layer 12 is preferably in the range of 5 nm or more, and the present invention is described in the above-described embodiments. However, the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the coating layer 12 is formed of a composite oxide of a rare earth oxide, aluminum oxide, a composite oxide of cerium and aluminum, magnesium oxide, and aluminum and magnesium. At least one of the single layer formed as a main component or a plurality of layers may be described. However, in addition to these, a layer containing another substance which does not adversely affect the phosphor particles may be formed. (Industrial use possibility) It can be used in a light-emitting device such as an LED. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the constitution of a phosphor material according to an embodiment of the present invention. Fig. 2 is a schematic view showing the configuration of a phosphor material other than the embodiment of the present invention. Fig. 3 is a view showing the configuration of a light-emitting device using the phosphor material of Fig. 1. Fig. 4 is a TEM photograph of the phosphor material of Example 1. Fig. 5 is an enlarged photograph of the phosphor material of Fig. 4. Fig. 6 is a TEM photograph of the phosphor material of Comparative Example 2. Fig. 7 is a characteristic diagram showing the luminance maintenance ratio of the light-emitting device of Example 1. [Description of main component symbols] 10 Phosphor material 11 Phosphor particles-10 - 201107452 12 Coating layer 20 Light-emitting device 2 1 Substrate 22 Light-emitting element 23 Wiring 24 Conductor 25 Reflector frame 26 Sealing layer 110 Phosphor material 111 Phosphor particles 1 12 coating layer -n-

SS

Claims (1)

.201107452 * 七、申請專利範圍: 1·—種螢光體材料,其特徵爲具有: 螢光體粒子、及被覆該螢光體粒子之表面全體的被 覆層, 前述被覆層係含有由稀土類氧化物、氧化鋁、釔與 鋁的複合氧化物、氧化鎂及鋁與鎂的複合氧化物所成群 組之中之至少1種金屬氧化物》 2. 如申請專利範圍第1項之螢光體材料,其中該稀土類氧 化物係含有由釔(Y )、釓(Gd )及鏡(Yb )所成群組之 中之至少1種元素。 3. 如申請專利範圍第1項之螢光體材料,其中該被覆層的 厚度爲5nm以上、Ιμιη以下。 4. 如申請專利範圍第1項之螢光體材料,其將該螢光體粒 子浸漬在將金屬鹽溶解於溶媒的溶液之後,取出該溶液 所附著的該螢光體粒子,且進行凝膠化而燒成,藉此形 成該被覆層。 5. —種發光裝置,其係含有螢光體材料的發光裝匱,其特 徵爲: 前述螢光體材料係具有螢光體粒子、及被覆該螢光 體粒子之表面全體的被覆層, 前述被覆層係含有由稀土類氧化物、氧化鋁、釔與 鋁的複合氧化物、氧化鎂及鋁與鎂的複合氧化物所成群 組之中之至少1種金屬氧化物。 S -12-.201107452 * VII. Patent application scope: 1. A phosphor material comprising: a phosphor particle and a coating layer covering the entire surface of the phosphor particle, wherein the coating layer contains rare earth elements At least one metal oxide in the group consisting of oxide, aluminum oxide, composite oxide of cerium and aluminum, magnesium oxide, and composite oxide of aluminum and magnesium" 2. Fluorescence of the first item of the patent application The bulk material, wherein the rare earth oxide contains at least one element selected from the group consisting of yttrium (Y), yttrium (Gd), and mirror (Yb). 3. The phosphor material according to claim 1, wherein the coating layer has a thickness of 5 nm or more and Ιμηη or less. 4. The phosphor material according to claim 1, wherein the phosphor particles are immersed in a solution in which a metal salt is dissolved in a solvent, and the phosphor particles adhered to the solution are taken out and gelled. The coating is formed by firing. 5. A light-emitting device comprising a phosphor material, wherein the phosphor material has phosphor particles and a coating layer covering the entire surface of the phosphor particles, The coating layer contains at least one metal oxide selected from the group consisting of a rare earth oxide, aluminum oxide, a composite oxide of cerium and aluminum, magnesium oxide, and a composite oxide of aluminum and magnesium. S -12-
TW099118300A 2009-06-08 2010-06-07 Illuminating device TWI544058B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137727A JP2010280877A (en) 2009-06-08 2009-06-08 Phosphor material and light emitting device

Publications (2)

Publication Number Publication Date
TW201107452A true TW201107452A (en) 2011-03-01
TWI544058B TWI544058B (en) 2016-08-01

Family

ID=43308873

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118300A TWI544058B (en) 2009-06-08 2010-06-07 Illuminating device

Country Status (4)

Country Link
JP (1) JP2010280877A (en)
KR (1) KR20110093950A (en)
TW (1) TWI544058B (en)
WO (1) WO2010143618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594461B (en) * 2011-08-04 2017-08-01 國家中山科學研究院 Fluorescent powder coating structure and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840540B2 (en) 2012-03-15 2016-01-06 株式会社東芝 White lighting equipment
FR3004459B1 (en) * 2013-04-16 2015-12-25 Commissariat Energie Atomique HEART INORGANIC PARTICLE / LUMINESCENT SHELL, METHOD OF PREPARATION AND USE
JP7479006B2 (en) 2020-03-26 2024-05-08 パナソニックIpマネジメント株式会社 Ceramic Composites

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737234B1 (en) * 1994-08-08 2002-04-17 Koninklijke Philips Electronics N.V. Method of coating a luminescent material
JP4044946B2 (en) * 2005-01-28 2008-02-06 松下電器産業株式会社 Fluorescent lamp, backlight device, and method of manufacturing fluorescent lamp
JP5272332B2 (en) * 2006-06-28 2013-08-28 東レ株式会社 Phosphor paste and display manufacturing method
DE102007053770A1 (en) * 2007-11-12 2009-05-14 Merck Patent Gmbh Coated phosphor particles with refractive index matching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594461B (en) * 2011-08-04 2017-08-01 國家中山科學研究院 Fluorescent powder coating structure and manufacturing method thereof

Also Published As

Publication number Publication date
WO2010143618A1 (en) 2010-12-16
KR20120002303U (en) 2012-04-02
JP2010280877A (en) 2010-12-16
KR20110093950A (en) 2011-08-18
TWI544058B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
JP6625582B2 (en) Red line emitting phosphor for use in light emitting diode applications
TWI351426B (en) Phosphor, method for production thereof, and light
TWI512081B (en) Fabricating method of alkaline earth metal silicate phosphor particle with coating film
CN103328607B (en) Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
KR101771446B1 (en) Phosphor material and light-emitting device
TW201107452A (en) Phosphor material and luminescent device
US20190067530A1 (en) Blue light-emitting phosphor and light emitting device using same
TWI503399B (en) Preparation of Mn - Activated Zinc - Aluminum Spinel Fluorescent Films
JP2004161808A (en) Nitride fluorescent sheet, light-emitting device and method for producing nitride fluorescent film
JP2010013608A (en) Phosphor and emitter
KR200475471Y1 (en) Fluorescent material and luminescent device
TWI599638B (en) Method for producing phosphor material, phosphor material, and light emitting device
TWI464235B (en) Phosphor composition and light emitting diode device using the same
JP4886221B2 (en) Method for manufacturing light emitting device
JP2006351357A (en) Red el element
JP2005281380A (en) Method for producing electroluminescence phosphor
TW201200580A (en) Fluorescent substance material and light-emitting device
TW201309780A (en) Photoluminescent fluorescent material and white light emitting device