201103762 六、發明說明: 【發明所屬之技術領域】 本發明係有關於印表機,特別是有關於噴墨印表機。 本發明主要是要提供改良的列印頭積體電路的安裝以便於 列印頭的爲維修。 【先前技術】 本案申請人之前已證明過頁寬噴墨列印頭可使用多個 列印頭積體電路(‘晶片’)來形成,這些積體電路沿著一 頁的寬度以頭端相連的方式被緊靠排列。雖然此列印頭積 體電路的配置具有許多優點(如,將一列印區域在紙張進 給方向上的寬度最下化),但每一列印頭積體電路仍然必 需連接至其它列印頭電路,這些列印頭電路提供電路及資 料給每一列印頭積體電路。 本案申請人到目前爲止已描述一列印頭積體電路可如 何將每一列印頭積體電路上的結合墊藉由引線接合( wirebonding)至軟式PCB ( flex PCB)而被連接至一外部 的電力/資料供應(參見美國專利第7,441,865號)。然而 ,引線接合從該列印頭的噴墨面突伸出,因此對列印維修 及列印品質兩者都具有不利的影響。 提供一種列印頭組件其中的列印頭積體電路可在沒有 這些會影響到列印維修及/或列印品質的連接下被連接至 一外部的電路/資料供應市所想要的。 201103762 【發明內容】 因此’在一第一態樣中,一種噴墨列印頭組件包含: 一墨水供應歧管; 一或多個列印頭積體電路,每一列印頭積體電路都具 有一前側其包含該驅動電路及多個噴墨噴嘴組件,一背側 其附裝至該墨水供應歧管,及至少一墨水供應管道用來提 供該背側與該等噴墨噴嘴組件之間的流體聯通;及 至少一連接器膜用來供應電力至該驅動電路,其中該 連接器膜的一連接端被夾設在該墨水供應歧管的至少一部 分與該一或多個列印頭積體電路之間。 依據發明的噴墨列印頭組件有利地提供一種方便的機 構用來將列印頭積體電路附裝至一墨水供應歧管,同時提 供與列印頭的電連接。再者,該列印頭的前側在其整個範 圍內都是完全平的。 非必要地(optionally ),該連接器膜包含一撓性聚 合物膜其具有多個導電跡線。 非必要地,該連接器膜爲一捲帶式自動接合(TAB ) 膜。 , 非必要地,該背側具有一下凹部分用來容納該連接器 膜。 非必要地,該下凹部分係沿著每一列印頭積體電路的 縱長邊緣區域被界定。 非必要地,多個軟貫通(through silicon)連接器提 供介於該驅動電路與該連接器膜的該連接端之間的電連接 -6 - 201103762 非必要地,每一矽貫通連接器都從該前側直線地朝向 背側延伸。 非必要地,每一矽貫通連接器都朝向背側逐漸變小。 非必要地,每一矽貫通連接器都由銅構成。 非必要地,每一列印頭積體電路都包含: —矽基材; 至少一 CMOS層其包含該驅動電路;及 一 ME MS層其包含該等噴墨噴嘴組件,其中該CMOS 層被設置在該矽基材與該MEMS層之間。 非必要地,每一矽貫通連接器都從該MEMS層中的一 接觸墊直線地延伸穿過該C0MS層並朝向該背側,該接觸 墊被電連接至該CMOS層。 非必要地,該列印頭組件包含一或多個導體柱其直線 地延伸於該接觸墊與該CMOS層之間。 非必要地,每一矽貫通連接器都與該CMOS層電隔絕 〇 非必要地,每一矽貫通連接器都具有外側壁其包含一 絕緣膜。 非必要地,該等外側壁包含一擴散阻障層於該絕緣膜 與該矽貫通連接器的一導電核心之間。 非必要地,每一矽貫通連接器都用焊料連接至該膜的 連接端。 非必要地,該膜與該等多個列印頭積體電路一起被結 201103762 合至該墨水供應歧管。 非必要地,該等多個列印頭積體電路係以端對端鄰接 的方式被設置,用以提供一頁寬列印頭組件。 非必要地,該列印頭的一前側表面是平的且沒有引線 接合連接。 非必要地,該前側表面被塗上一厭水聚合物層(如’ PDMS)。 在一第二態樣中,一種列印頭積體電路被提供,其具 有: 一前側其包含該驅動電路及多個噴墨噴嘴組件; 一背側其附裝至該墨水供應歧管;及 至少一墨水供應管道用來提供該背側與該等噴墨噴嘴 組件之間的流體聯通,其中該背側具有一下凹的部分用來 容納一連接器膜的至少一部分,該連接器膜供應電至該驅 動電路。 非必要地,該連接器膜的一連接端在該背側被附裝至 該墨水供應歧管時被夾設在該墨水供應歧管的至少一部分 與該列印頭積體電路之間。 非必要地,該下凹部分係沿著每一列印頭積體電路的 縱長邊緣區域被界定。 非必要地,該下凹部分包含多個積體電路接點,每一 個積體電路都被連接至該驅動電路。 非必要地,該連接器膜爲一捲帶式自動接合(TAB ) 膜,及其中該等積體電路接點被設置來連接至該TAB膜 201103762 的對應接點。 非必要地,多個矽貫通(through silicon)連接器從 該前側直線地朝向背側延伸,每一矽貫通連接器都提供一 介於該驅動電路與一對應的積體電路接點之間的電連接。 非必要地,每一積體電路接點都是由一個別的矽貫通 連接器的一端來界定。 非必要地,該背側具有多個墨水供應管道其縱長地沿 著該列印頭積體電路延伸,每一墨水供應管道都界定一或 多個墨水入口用以接受來自該墨水供應歧管的墨水。非必 要地,每一墨水供應管道都供應墨水至多個前側入口。非 必要地,每一前側入口都供應墨水至一或多個噴墨噴嘴組 件。 非必要地,每一墨水供應管道都具有一深度其相當於 該下凹部分的深度。 在第三態樣中,一種列印頭積體電路被提供,其包含 一矽基材其界定一前側與一背側; 多個噴墨噴嘴組件,它們被設置在該前側; 驅動電路,用來供應電力至該等噴墨噴嘴組件;及 一或多個矽貫通連接器,其由該前側延伸至該背側, 該等矽貫通連接器提供介於該驅動電路與一或多個對應的 積體電路接點之間的電連接,其中該等積體電路接點被設 置來連接至一安裝在背側的連接器膜,以供應電力至該驅 動電路。 -9 - 201103762 非必要地,每一積體電路接點都由一個別的矽 接器的一端來界定。 在第四態樣中,一種製造一具有背側電連接之 印頭組件的方法被提供,該方法包含的步驟爲: 提供一或多個列印頭積體電路,每一列印頭積 都具有一前側其包含驅動電路及多個噴墨噴嘴組件 側其具有一或多個墨水入口及一下凹的邊緣部分, 多個連接器其延伸穿過該積體電路,每一連接器都 連接至該驅動電路的頭及一在該下凹的編緣部分中 » 將一連接器膜的一連接端放置在該等列印頭積 的至少一者的該下凹的邊緣部分中,每一導電跡線 各自的膜接點於該連接端處; 將每一膜連接至一對應的連接器的基部;及 將每一列印頭積體電路的背側與該連接器膜一 至一墨水供應歧管,以提供具有背側電連接之噴墨 組件。 非必要地,該附裝步驟將該連接器膜的連接端 該墨水供應歧管的一部分與該一或多個列印頭積體 間。 非必要地,該連接器膜爲一捲帶式自動接合( 膜。 非必要地,該連接步驟包含將每一膜接點焊接 應的連接器的基部。 貫通連 噴墨列 體電路 ,一背 及一或 具有一 的基部 體電路 具有一 起附裝 列印頭 夾設在 電路之 TAB ) 至其對 -10- 201103762 非必要地,該附裝步驟係使用一黏合膜來實施。 非必要地,該黏合膜具有多個墨水供應孔被界定於其 中〇 非必要地,該附裝步驟包含將每一列印頭積體電路與 該黏合膜對準使得每一墨水供應孔與一墨水入口對準,將 該等列印頭積體電路結合至該黏合膜的一側,及將該黏合 膜的一相反側結合至該墨水供應歧管。 非必要地,在該連接步驟中,每一列印頭積體電路都 被連接至一個別的連接器膜。 非必要地,在該連接步驟中,多個列印頭積體電路被 連接至同一連接器膜。 非必要地,該等多個列印頭積體電路以一種端對端( end-on-end )鄰接的方式被附裝至該墨水供應歧管,用以 提供一頁寬列印頭組件。 在第五態樣中,一種製造一用於背側電連接之列印頭 積體電路的方法被提供,該方法包含的步驟爲: 提供一晶圓,其包含多個在該晶圓的前側上之被部分 地製造的噴嘴組件及一或多個矽貫通連接器其由該晶圓的 前側朝向背側延伸; 沉積一導電層於該晶圓的前側上並蝕刻該導電層用以 同時地形成一用於每一噴嘴組件的致動器及一前側接觸墊 於每一矽貫通連接器的頭上,該前側接觸墊將該矽貫通連 接器連接至該晶圓中的驅動電路; 實施進一步的MEMS處理步驟用以完成該噴嘴組件, -11 - 201103762 及用於該等噴嘴組件及矽貫通連接器之墨水供應管道的形 成;及 將跟晶圓分爲多個獨立的列印頭積體電路,每一個列 印頭積體電路都被建構來透過該矽貫通連接器及該接觸墊 背側連接至該驅動電路。 非必要地,該導電物質係選自於由:氮化鈦,氮化鈦 鋁,鈦,鋁,及釩鋁合金所構成的組群中。 非必要地,該致動器係選自於由:熱氣泡形成致動器 及熱彎折致動器所構成的組群中。 非必要地,該等進一步的mem S處理步驟包含沉積一 物質於該接觸墊上用以密封或包覆該接觸墊。 非必要地,該等進一步的MEMS處理步驟包含蝕刻該 晶圓的背側用以界定該墨水供應滾道及一用於每一列印頭 積體電路的背側下凹部分。 非必要地,該等墨水供應管道及該背側下凹部分具有 相同的深度。 非必要地,該背側蝕刻露出每一矽貫通連接器在該背 側下凹部分中的一隻腳,每一支腳都包含一積體電路接點 〇 非必要地,該等矽貫通連接器係沿著每一列印頭積體 電路的一縱長邊緣區域被設置,且該背側下凹部分沿著該 縱長邊緣區域延伸。 非必要地,該等積體電路接點被設置來連接至一TAB 膜的對應接點 -12- 201103762 非必要地,一CMOS層包含該驅動電路,且該等噴嘴 組件被設置在一形成於該CMOS層上的MEMS層中。 非必要地,一或多個導體柱直線地延伸在該接觸墊與 該CMOS層之間及/或該致動器與該CMOS層之間。 非必要地,該等導體柱是在沉積該導電層之前被形成 的。 非必要地,該等導體柱係與該等矽貫通連接器同時被 形成的。 非必要地,該等導體柱與該等矽貫通連接器係藉由沉 積一導電物質於預先界定的貫孔(via)中形成的。 非必要地,該導電物質係藉由無電電鍍處理而加以沉 積的。 非必要地,每一預先界定的貫孔都具有一與一深度成 比例的直徑,使得所有的貫孔都被沉積物均勻地塡入。 非必要地,該導電物質爲銅。 非必要地,該等進一步的MEM S處理步驟包含用一厭 水聚合物層來塗覆一前側表面。 非必要地,該厭水聚合物層是由PDMS組成。 非必要地,該等進一步的MEM S處理步驟包含氧化地 去除掉犧牲物質。 【實施方式】 迄今,本案申請人已描述列印頭積體電路(或“晶片” )1〇〇其係以一種端對端(end-on-end)緊靠的方式來界 -13- 201103762 定一頁寬列印頭。圖1以立體圖顯示一列印頭IC 1 00的一 部分的前側表面,而圖2則顯示一對緊靠在一起的列印頭 1C。 每一列印頭I C 1 0 0都包含數千個安排成列的噴嘴。如 圖1及2所示,該列印頭I c 1 0 0被建構來接受及列印五種 不同顏色的墨水(如,CMYK及IR (紅外線);CCMMY :或CMYKK)。該列印頭IC100的每一種顏色管道 104 都被垂直地對準於紙張給送方向上,用以用高解析度(如 ,1 600dpi )來實施同點(dot-on-dot )列印。在單一列中 的兩個相鄰噴嘴102之間的水平距離(‘節距’)約32微米 ,而介於兩噴嘴之間的垂直距離係根據噴嘴的發射順序; 然而這些列典型地被分離一確實的點線數(如,1 0點線) 。關於噴嘴列配置及噴嘴發射的更詳細描述可參見美國專 利第7,4 3 8,3 7 1號,該專利內容藉此參照而被倂於本文中 〇 一單獨的列印頭IC100的長度典型地約20至22公釐 。因此,爲了列印一A4/US信紙尺寸的紙,需要將1 1或 12個列印頭IC100連續地連結在一起。列印頭IC100的數 量可被改變用以適用於其它寬度的紙張。例如,一台4英 吋的相片列印機典型地使用5個連結在一起的列印頭ic。 該列印頭IC100可用各種方式連結在一起。一種用來 連接列印頭1C 100的特殊方法被示於圖2中。在此配置中 ,1C 100的端部被塑形用以連結在一起且形成一1C的水平 線,相鄰的1C之間垂直的偏位。一具有45度角的傾斜接 14 - 201103762 頭106被設置在列印頭1C之間。該接合緣具有鋸齒狀的 輪廓以便於鄰接之列印頭1C的定位。 從圖1及2中很明確的是,每一列的最左邊的墨水供 應噴嘴102被下降10條線的節距且被設置成三角形的配 置。此配置亦可確保更多的矽被提供在每一列印頭IC100 的邊緣處,以確保在緊鄰的1C之間有足夠的連結。包含 在每一被下降的列中之噴嘴必需在不同的時間被發射,用 以確保在同一列中的噴嘴發射至一紙張上的同一行上。雖 然噴嘴的操作的控制是由一列印頭控制器(“SoPEC”)裝 置來實施,但用於被下降的噴嘴列的補償可由該列印頭中 的CMOS電路來實施,或可由該列印頭與該SoPEC裝置 兩者來分擔。該被下降的噴嘴配置及其控制的完整描述可 參見美國專利第7,275,805號,該專利內容藉此參照而被 併於本文中。 現參考圖3,該列印頭積體電路1 00的一相反的背側 表面被示出。墨水供應管道11〇被界定在該列印頭IC100 的背側中,其沿著該列印頭1C的長度縱長地延伸。這些 縱成向的墨水供應管道110與噴嘴入口 112相遇,其與位 在前側上的噴嘴102流體地聯通。圖4顯示一列印頭1C 的一部分,其中該噴嘴入口 112將墨水直接送入到墨水室 中。圖5顯示另一列印頭1C的一部分分,其中該等噴嘴 入口 112送入到墨水導管114中,這些導管縱長地延著每 —列噴嘴室延伸。在此替代的配置中,該等噴嘴室透過一 側壁入口接受來自其鄰近的墨水導管的墨水。 -15- 201103762 翻回到圖3,該等縱長地延伸的墨水供應管道110被 矽橋或壁116分隔成管道區段。這些壁116提供列印頭 1C 100在相對於該等縱長的管道11〇的橫貫方向上額外的 機械強度。 墨水經由兩部分LCP模具(molding)形式的墨水供 應歧管而被供應至每一列印頭1C的背側。參考圖6至9, 一種包含列印頭1C 1 00的列印頭組件1 3 0被示出,該等列 印頭1C透過一黏合膜而附裝至該墨水供應歧管。 該墨水供應歧管包含一主要的LCP模具122及一 LCP 管道模具1 24其底側被密封。該等列印頭ic 1 〇〇藉由該黏 合1C附裝膜120而被結合至該管道模具124的底側。該 LCP管道模具124包含LCP主要管道126,其與該主要 LPC模具122中的墨水入口 127及墨水出口 128連接。該 等墨水入口 I27及墨水出口 128與墨水容器及一墨水供應 系統(未示出)流體地聯通,該系統以一預定的流體靜壓 力供應墨水至該列印頭。 該主要LPC模具122具有多個氣穴129,其與被界定 在該LPC管道模具124中的LCP主要管道126聯通。該 等氣穴129係用來減輕在該墨水供應系統中的壓力脈衝。 在每一 LCP主要管道126的基部有一系列的墨水供應 通路132通到該等列印頭1C 100。該男合膜120具有一系 列的雷射鑽出的供應孔1 34,使得每一列印頭IC 1 00的背 側都與該墨水供應通路1 3 2流體聯通。 現參考圖10,該等墨水供應通路132被設置成5列。 -16 - 201103762 中間一列的墨水供應通路1 3 2經由了射鑽出的供應孔1 3 4 將墨水直接送至該列印頭1C 1 00的背側,而外側的墨水供 應通路1 3 2列透過微型模製的通路1 3 5將墨水供應至列印 頭1C,每一微型模製的通路在該等雷射鑽出的孔134中的 —個孔終止。 圖11更詳細地顯示墨水是如何被饋送至列印頭IC100 的背側墨水供應管道110。每一雷射鑽出的孔134 (其被 界定在該黏合膜120中)與一相應的墨水供應管道1 10對 準。大體上,該雷射鑽出的孔134與該管道110中的一個 橫貫壁1 1 6對準,使得墨水被供應至該壁1 1 6的兩側上的 一管道區段。此配置可減少該墨水供應歧管與該列印頭 1C 100之間所需之流體連接的數量。 爲了要在該等1C 100的正確定位上有所幫助,基準點 103A被提供在IC100的表面上(參見圖1及11)。該等 基準點103A係標記形式,其可被適當的定位設備輕易地 辨識,用以標示該1C 100相關原一鄰近1C的真實位置。 該黏合膜120具有互補的基準點103B,其有助於每一列 印頭1C 1 00在該等列印頭1C結合至該墨水供應歧管期間 相關於該黏合膜的對準。基準點103A及103B被策略性地 設置在1C 100的邊緣及沿著該黏合1C附著膜12〇的長度 資料及電力共應至列印頭積體電路 現回到圖1,該列印頭1C 100具有多個結合墊105其 -17- 201103762 延著列頭1C的縱長邊緣延伸。該等結合墊105提供一用 來接受來自該列印頭控制器(“SoPEC”)裝置的資料及/或 電路的機構,用以控制該等噴墨噴嘴102的操作》 該等結合墊105被連接至該列印頭IC1 00的一上 CMOS層。如圖4及5中所示,每一M EMS噴嘴組件都被 形成在一 CMOS層113上,其包含發射每一噴嘴所需的邏 輯及驅動電路。 參考圖6至9,一軟式PCB 140被引線接合至該列印 頭IC100的結合墊105。該等引線接合係用一引線接合密 封劑142加以密封及保護(參見圖7),該密封劑典型地 爲一聚合樹脂。該LCP模具122包含一彎曲的支撐翼123 ,該軟式PCB140被安折及固定於該支撐翼周圍。該支撐 翼123具有數個開口 125用來容納該軟式PCB的各式電子 構件144。以此方式,該軟式PCB 140可彎折於該列印頭 組件130的外表面周圍。一紙張引導件148被安裝在該 LPC模具122相對於該軟式PCB140的相反側上,並完成 該列印頭組件1 3 0。 該列印頭組件1 3 0被設計爲一使用者可更換式列印頭 卡匣的一部分,該列印頭卡匣可從該噴墨印表機160(參 見圖12)中被取出且被更換。因此,該軟式PCB140具有 多個接點,讓電力及資料能夠連接至該印表機本體內的電 子元件,包括該SoPEC裝置。 因爲該軟式 PCB140係被引線接合至每一列印頭 1C 100上的結合墊1〇5,所以該列印頭無可避免地具有一 -18- 201103762 發平面的縱向緣區域於該等墊的附近區域。這被清 示在圖13中,該圖顯示出一由一列印頭IC100的 墊105延伸出的引線接合點(wirebond) 150,該 1C包含多個噴墨噴嘴組件101。在圖13所示的結 該結合墊105被形成爲一ME MS層且透過連接器柱 接至底下的CM0S113。或者,該結合墊105可 CM0S113的一外露的上層,沒有任何其它連接線 該MEMS層。無論在何種結構中,引線接合點從該 的一墨水射出表面154延伸出並與該軟式PCB 140聋 引線接合(wirebonding)至該列印頭IC100的 105具有數個缺點,主要是因爲該列印頭1C的一主 長區域具有引線接合點150 (及引線接密封劑142 水射出表面1 5 4突伸出。該墨水射出表面1 5 4的非 會造成效果較差的列印頭維護。例如,一刮片無法 墨水射出表面154的整個寬度,因爲該引線接合 142擋在該刮片以該刮掃方向而言在該等噴嘴的上 游處之刮掃路徑上。 引線接合點突出部的另一項缺點爲,整個列印 被塗上一厭水性塗層,譬如 PDMS。本案申請/ PDMS塗層可顯著地改善列印品質及列印頭維護( 參見美國專利申請案第US 2008/0225076號,該案 由此參照而被倂於本文中)且一完全平的墨水噴射 可進一步改善此塗層的效果。 楚地顯 一結合 列印頭 構中, 152連 以是該 連接至 列印頭 !接。 結合墊 要的縱 )從墨 平面性 掃過該 密封劑 游或下 頭無法 、發現 例如, 內容藉 表面將 -19- 201103762 用於背側電連接之列印頭積體電路 有鑑於以引線接合連接至該列印頭IC100存在著上述 的一些缺點,本案申請人已開發出一種列印頭IC2,其使 用背側電連接,因此具有一完全平的墨水射出表面。 參考圖14,該列印頭IC2係使用黏合膜120而被安裝 至該墨水供應歧管的LCP管道模具124。該列印頭IC2具 有至少一縱長的墨水供應管道110,其透過噴嘴入口 112 及墨水導管1 1 4提供該墨水供應歧管與該等噴嘴組件之間 的流體聯通。因此,該列印頭組件6 0 (其包括列印頭IC 2 )具有與上文中參考圖1至1 1所描述之列印頭組件1 3 0 ( 其包括列印頭1C 1 00 )相同的流體結構。 然而,列印頭IC2與列印頭1C 100實質上的不同處在 於與其CMOS電路層113相連的電連接。很顯著地,該列 印頭IC2在其縱長邊緣區域4上沒有任何的前側引線接合 點。相反地,該列印頭IC2在其縱長邊緣處具有一背側凹 部6,其容納一TAB (捲帶式自動接合)膜8。該TAB膜 8典型地爲一撓性聚物膜(如,Mylar®膜)其包含多個導 電跡線,該等跡線終止於該TAB膜的一連接器端的對應 膜接點10處。該TAB膜8被設置成與該列印頭IC2的背 側表面12齊平,使得該TAB膜與該列印頭IC2可一起被 結合至該LCP管道模具124。該TAB膜8可被連接至該 軟式PCB140;該TAB膜可與該軟式PCB140整合在一起 。或者,該TAB膜8可使用熟習此技藝者所習之的其它 連線配置而被連接至該印表機電子元件。 -20- 201103762 列印頭IC2具有多個矽貫通貫孔其由該列印頭1C的 前側表面延伸至該縱長的下凹的邊緣部分6(其容納該 TAB膜8)。每一矽貫通貫孔都塡入一導體(如,銅)用 以界定一矽貫通連接器14,其提供電連接至該TAB膜8 。每一膜接點10可藉由使用適當的連接(如,焊料球16 )而被連接至該矽貫通連接器14的足部或基部15。 該矽貫通連接器14延伸穿過該列印頭IC2的一矽基 材20並穿過該等CMOS電路層113。該矽貫通連接器14 藉由絕緣側壁2 1與該矽基材20隔絕開。該等絕緣側壁2 1 可用任何與MEMS製程相容的絕緣物質來形成,譬如像是 非晶形矽,多晶矽,或二氧化矽。該等絕緣側壁21可以 是單層式或多層式側壁。例如,該等絕緣側壁2 1可包含 —外Si或Si〇2層及一內钽層。該內钽層亦可作爲該砂貫 通連接器14製造期間用於銅的電子沉積的種子層。 如圖14所示,該矽貫通連接器14的頭部22與一界 定在該列印頭IC2的一 MEMS層26中的接觸墊24接觸。 該MEMS層26被設置在該列印頭IC2的CMOS電路層 113上並包含所有由MEMS處理步驟所形成的噴墨噴嘴組 件。 在本案申請人的熱彎曲致動式列印頭的例子中(例如 ,描述於美國專利申請案第US 2008/0129793號的熱彎曲 致動式列印頭,該案的內容藉由此參照被倂於本文中), 一導電的熱彈性致動器25可界定每一噴嘴室101的室頂 。因此,該接觸墊24可在MEMS製造期間與該熱彈性致 -21 - 201103762 動器25同時被形成,且可用與其相同的材料來形成。 如,該接觸墊24可用熱彈性材料來形成,譬如像是釩 合金,氮化鈦,氮化鈦鋁等等。 然而,將可被瞭解的是,接觸墊24的形成可被結 到MEMS製造的任一步驟中,且可以包含任何適合的導 材料,如銅,鈦,鋁,氮化鈦,氮化鈦鋁等等。 該接觸墊24透過銅導體柱30而被連接至該CMOS 113的上層,該銅導體柱從該接觸墊朝向CMOS電路延 。因此,導體柱30提供介於該TAB膜8與CMOS電路 間的電連接。 雖然在圖14中的接觸墊24與導體柱30的結構與 案申請人之用於形成熱彎曲致動式噴墨噴嘴的MEM S製 (如,描述於美國專利申請案第US 1 2/323,47 1號中者 該案內容藉由此參照而被倂於本文中)相容,但本發明 包含其它可提供類似的背側電連接從背側ΤΑΜ膜8至 CMOS層1 1 3的結構。 例如,現參靠圖15,該矽貫通連接器14可在 CMOS層113上方的被動層27處終止。藉由沉積一適 的導電物質於該矽貫通連接器的頭部及一透過一被動層 而外露的上CMOS層上,一嵌入式接觸墊23將該矽貫 連接器14連接至該上CMOS層。在MEMS噴嘴製造期 ,在沉積光阻3 1及一頂層3 7 (如,氮化矽,氧化矽等 )之後,該MEM S噴嘴製造提供一用於列印頭之完全平 噴嘴板及墨水射出面。再者,該等嵌入射接觸墊23被 例 鋁 合 電 層 伸 之 本 程 , 仍 該 該 當 27 通 間 等 的 該 -22- 201103762 光阻31完全密封及包覆在該頂層37底下。此接觸墊的構 造可與本案申請人之用來製造熱氣泡形成式噴墨噴嘴組件 的MEMS製程相容,如描述於美國專利第6,755,509號及 7,3 03,93 0號中的製程,該等專利案的內容藉由此參照被 併於本文中。示於圖15中的噴嘴組件爲一熱氣泡形成式 噴墨噴嘴組件其包含一被懸吊的加熱器元件28及噴嘴開 口 102,如美國專利第6,755,509號中所描述的。熟習此 技藝者可以很容易瞭解到的是,該嵌入式接觸墊23及該 被懸吊的加熱器元件28可在該M EMS製造期間藉由加熱 器元件材料的沉積及後續的蝕刻而被共同形成。因此,該 嵌入式接觸墊23可用與該加熱器元件相同的物質製成, 如氮化鈦,氮化鈦鋁等等。 現翻回到圖14,應注意到的是,該列印頭IC2的墨水 射出表面是完全平的且塗上了一層厭水性PDMS48。PDMS 塗層及其優點被詳細地描述在美國專利公開案第 2008/0225082號中,該案的內容藉由此參照被倂於本文中 。如上文中提到的,該墨水射出表面的平面度(包括該表 面在該列印頭積體電路2的縱長邊緣區4內的部分)在列 印頭維護及表面溢流方面提供顯著的好處。 雖然在圖14及15中,該接觸墊被示意地顯示出與噴 嘴1 02相鄰,但應被理解的是,在列印頭IC2中的接觸墊 24典型地佔據與列印頭1C 100 (圖1 )的結合墊105類似 的位置,有一相應數量的矽貫通連接器14延伸至該矽基 材20中。然而,本發明的一個優點爲,接觸墊24無需跟 -23- 201103762 結合墊105 —樣與噴墨噴嘴i〇2相隔一距離,結合墊需要 有足夠的包圍空間來容納引線接合及引線接合包覆。因此 ’背側TAB膜連接可以更有效率地使用砂及減小每一ic 的整體寬度,或可以在相同的1C寬度上形成有更多數量 的噴嘴1 0 2。例如,在列印頭I C 1 0 0中有6 0 - 7 0 %的IC寬 度是獻給噴墨噴嘴102用,但本發明可以讓超過8 0%的1C 寬度給噴墨噴嘴用。因爲矽是頁寬墨印表機中最昂貴的構 件,所以上述特徵是一項很顯著的優點。 用於具有背側電連接之列印頭1C的MEMS製程 一種用於圖14所示的列印頭IC2之MEMS製程現將 加以詳細描述。此MEM S製程包括數項對於美國專利申請 案第1 2/3 2 3,471號中所描述的製程的修改,用以將背側連 接所需要的特徵結合至該TAB膜8上。雖然該MEMS製 程爲了示範的目的而在本文中被加以詳細地描述,但熟習 此技藝者將可理解的是,任何噴墨噴嘴製程的類似修改將 可提供一用於背側電連接之列印頭積體電路。本案申請人 已暗示地間接提到一種用來製造示於圖15中的熱致動式 列印頭1C的MEMS製程。因此,本發明並不是要被限制 在下文中所描述的特定噴嘴組件101上。 圖16至25顯示用來形成圖14所示之列印頭IC2的 MEMS製造步驟的順序。完成的列印頭1C 2包含多個噴嘴 組件1 〇 1以及可以背側達接至該C Μ 0 S電路1 1 3的特徵結 構。 -24- 201103762 MEM S製造的啓始點爲一標準的CMOS晶圓其包含該 矽基材20及形成在該晶圓的前側上的CMOS電路113。 在MEMS製程的終了,該晶圓藉由沿著分切街道蝕刻而被 分切成單獨的列印頭積體電路(1C),該等分切街道界定 出由該晶圓製造出來的每一列印頭1C的尺寸。 雖然本文中的描述係有關於實施在該CMOS層113上 的MEMS製程,但將可被理解的是,該CMOS層113可包 含多層CMOS層(如,3或4層CMOS層)且通常是被鈍 化的。該CMOS層113可用一層氧化砂,或更常用的是一 標準的‘ΟΝΟ’堆疊來加以鈍化,該‘ΟΝΟ’堆疊包含一層氮 化砂夾設在兩層氧化砂之間。因此,本文中所指的CMOS 層113隱含地包括了 一鈍化的CMOS層,其典型地包含多 層 C Μ Ο S 〇 下面的描述聚焦在一個噴嘴組件101及一個矽貫通連 接器14的製造步驟上。然而,很明顯的是,相應的步驟 可針對所有的噴嘴組件及所有的矽貫通連接器同時地實施 〇 在圖16所示的該等步驟的第一程序中,一前側入口 孔32被蝕刻穿透該CMOS層113並進入到該CMOS晶圓 的矽基材20中。在此同時,一前側分切街道孔33被蝕刻 穿透該CMOS層1 13並進入到該矽基材中。光阻劑31然 後被旋施在該晶圓的前側上用以將前側入口孔32及分切 街道孔33塞住。該晶圓然後用化學機械硏磨(CMP)加 以拋光’以提供圖1 6所示的晶圓其具有一平的前側表面 -25- 201103762 準備好以進行後續的MEMS步驟。 參考圖17,在下一個步驟程序中,一 8微米厚的低應 力氧化矽層藉由電將強化的化學氣相沉積(PECVD)而被 沉積到該CMOS層113上。此氧化矽層35的深度界定該 等噴膜噴嘴組件的每一噴嘴室的深度。在沉積該Si02層 35之後,後續之蝕刻穿透該Si02層界定出用於噴嘴室的 壁36及該前側分切街道孔33的一部分。一矽蝕刻化學物 然後被用來延伸該前側分切街道孔33並將該墨水入口孔 32蝕刻至該矽基材20中。所得到的孔32及33接下來藉 由將光阻劑31旋施於其上而被塞住並使用CMO硏磨將其 平坦化。該光阻劑3 1係一犧牲物質其作用如用於後續的 頂壁(roof)物質沉積的施工架般。很明顯的是,其它適 合的犧牲物質(如,聚醯亞胺)亦可被使用。 該等壁物質(如,氧化矽,氮化矽,或它們的組合) 被沉積在該經過平坦化的Si02層3 5上用以界定該前側頂 壁層37。該等壁層37將界定一硬的平面噴嘴板於該完成 的列印頭IC2中。圖17顯示在此常序的MEMS處理步驟 完成後的晶圓9 在下一個階段中,參靠圖18,多個導體柱貫孔38被 向下蝕刻穿透該頂壁層37及該Si02層35到達該CMOS 層113。該等被蝕刻穿透壁36的導體柱貫孔38A可將噴 嘴致動器連接至底下的CMOS層113。同時’該導體柱貫 孔38B可提供電連接於接觸店4與底下的CMOS層113之 間。 -26- 201103762 在用導電物質塡塞貫孔38之前,且在該美國專利申 請案第12/323,471號中所描述的製程的一個修改中,一矽 貫通貫孔39係藉由蝕刻穿透該頂壁層37,該Si02層35 ,該CMOS層113並進入到該矽基材20中(參見圖19) 而在下一個步驟中被界定。該等矽貫通貫孔39被設置成 沿著每一列印頭IC2的一縱長邊緣區域被間隔開來。(該 前側分切街道孔33有效地界定每一列印頭IC2的一縱長 邊緣區域。)每一貫孔39都朝向該矽基材20的背側被逐 漸縮小。該等貫孔3 9的確實定位係由膜接點1 〇在該TAB 膜8中的定位來決定,其在該列印頭1C被組裝且連接至 該TAB膜時與每一孔的基部接觸。 該矽貫通貫孔蝕刻係藉由將一光阻罩幕層形成圖案並 蝕刻穿透不同的層來實施的。當然,蝕刻穿透不同的層需 要不同的餓刻化學物,但同一光阻罩幕可用在每一蝕刻上 〇 每一矽貫通貫孔39典型地具有一深度到該矽基材20 中的深度,其相當於該被塞住的前側墨水入口 32的深度 (典型地約20微米)。然而,每一貫孔39都可根據該 TAB膜8的厚度而被形成爲比該前側墨水入口 32還深。 在下一個步驟程序中,且參考圖2〇及21,該矽貫通 貫孔39被設置有絕緣壁21,其將該貫孔與該矽基材20隔 絕。該等絕緣壁21包含一絕緣膜42及一擴散阻障物43。 該擴散阻障物43在每一貫孔39用銅塡滿時將銅進入到該 矽基材20中擴散減至最少。該絕緣膜42及該擴散阻障物 -27- 201103762 43是由連續的沉積步驟來形成的,其非必要地使用到罩幕 層40用以選擇性地將每一層沉積到貫孔39內。 該絕緣膜42可用任何適合的絕緣物質製程,譬如像 是非晶型系,多晶矽,氧化矽等等。該擴散阻障物43典 型地爲鉅膜。 接下來參考圖22,該等導體柱貫孔38及矽貫通貫孔 39同時用高導電性金屬(譬如像是銅)以無電電鍍來塡充 。該銅沉積步驟同時形成噴嘴導體柱44,接觸墊導體柱 30及矽貫通連接器14。貫孔38及39的直徑會需要適當 的大小,用以確保在此步驟期間同步的銅電鍍。在銅電鍍 步驟之後,該被沉積的銅接受CMP,在該頂壁層37停止 ,用以提供一平的結構。可看出來的是,在無電銅電鍍期 間形成的該等導體柱3G與44與該CMOS層113接觸,以 提供從該CMOS層上達該頂壁層37之直線導電路徑。 在下一個步驟程序中,參考圖23,一熱彈性物質被沉 積在該頂壁層37上,然後被蝕刻用以界定出用於每一噴 嘴組件101的熱彈性樑構件25以及該接觸墊24覆蓋該矽 貫通連接器14的頭部上。 由於被熔接至熱彈性樑構件25上,所以該Si02頂壁 層37的一部分係如一機械式熱彎曲致動器的下惰性樑構 件46 —般地作用。因此每一噴嘴組件101都包含一熱彎 曲致動器,其包含一連接至該CMOS層1 13的熱彈性樑 25,及一下鈍態樑46。這些種類的熱彎曲致動器種類被更 詳細地描述於美國專利公開第2008/309729號中,該專利 -28- 201103762 案的內容藉由此參照而被倂於本文中。 該熱彈性樑構件25可由任何適當的熱彈性物質組 ,譬如像是氮化鈦,氮化鈦鋁及鋁合金。如本案申請人 其美國專利公開案第2008/1 29793號中所說明的(該案 內容藉由此參照而被倂入本文中),釩鋁合金是一較佳 材料,因爲它們結合了高熱膨脹,低密度及高楊氏模數 的有利特徵。 如上文中提到的,該熱彈性材料亦被用來界定該接 墊24。該接觸墊24延伸在該等導體柱30的頭部與該矽 通連接器14的頭部22之間。因此,該接觸墊24將該 貫通連接器14電連接至每一導體柱30及底下的CMOS 1 1 3 〇 仍然參考圖23,在沉積該熱彈性物質與蝕刻以界定 熱彎曲致動器及接觸墊24之後,最後的前側MEMS製 步驟包含同時蝕刻該等噴嘴開口 1 02及一前側街道開口 並沉積一 P DM S塗層48於整個頂壁層37上用以讓該前 表面厭水及提供用於每一熱彎曲致動器的彈性機械式密 。PDMS塗層的使用被詳細地描述於本案申請人在美國 利申請案第1 1 /685,084號及第1 1 /740,925號中,該等 請案的內容藉由此參照被併於本文中。 現參考圖24,該晶圓的整個前側被塗上一相當厚的 阻劑49,其可保護該前側MEMS結構且讓該晶圓能夠 附裝至一用於背側MEMS處理的處理晶圓50上。背側 刻界定該墨水供應管道110及該下凹的部分6,該矽貫 成 在 的 的 的 Μα 觸 貫 矽 層 該 造 47 側 封 專 甲 光 被 蝕 通 -29- 201103762 連接器14的足部延伸至該下凹部分中。絕緣膜42的一部 分在該矽貫通連接器Π的足部15被背側蝕刻露出來時被 去除掉。背側蝕刻亦藉由向下蝕刻至該被塞住的前側分切 街道孔33而將列印頭1C單個化(singulation )成單獨的 列印頭1C。 該保護性光阻劑49之最後的氧化物去除(‘灰化 (ashing)’)可產生單個的獨立列印頭IC2及形成流體連接 於該背側與噴嘴組件1〇 1之間。示於圖25中之所產生的 列印頭IC2現已準備好經由矽貫通連接器14透過焊料球 1 6連接至TAB膜8。所產生之列印頭ic/ΤΑΒ膜組件之後 續結合至該墨水供應歧管可提供示無圖1 4中的列印頭組 件60。 本發明已參考一較佳的實施例及數個特定的變化實施 例加以說明。然而,熟習此技藝者將可體認的是,數個不 同於被特定地描述的細節之其它的實施例都將會落入到本 發明的精神與範圍內。因此,應被瞭解的是,本發明不打 算被侷限在本說明書中所描述的特定實施例(包括藉由參 照而被倂於本文中的文獻在內)。本發明的範圍只受以下 的申請專利範圍限制。 【圖式簡單說明】 本發明的實施例現將參考下面的附圖加以詳細的說明 ,其中: 圖1爲一列印頭積體電路的一前視立體圖; -30- 201103762 圖2爲一對鄰接的列印頭積體電路的前視立體圖; 圖3爲示於圖1中之列印頭積體電路的一後視立體圖201103762 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a printer, and more particularly to an inkjet printer. SUMMARY OF THE INVENTION The present invention is primarily directed to providing an improved printhead integrated circuit for ease of servicing of the printhead. [Prior Art] The applicant of the present application has previously demonstrated that a page wide inkjet print head can be formed using a plurality of print head integrated circuits ('wafers') which are connected at the head end along the width of one page. The way is arranged close. Although the configuration of the print head integrated circuit has many advantages (eg, minimizing the width of a print area in the paper feed direction), each print head integrated circuit must still be connected to other print head circuits. These print head circuits provide circuits and data to each of the print head integrated circuits. The applicant of the present application has so far described how a stack of integrated circuit circuits can connect the bond pads on each of the print head integrated circuits to an external power by wire bonding to a flex PCB. /Information supply (see U.S. Patent No. 7,441,865). However, wire bonding protrudes from the ink ejection face of the print head, thus having an adverse effect on both print maintenance and print quality. A printhead assembly is provided in which the printhead integrated circuit can be connected to an external circuit/data supply market without these connections that would affect print repair and/or print quality. 201103762 SUMMARY OF THE INVENTION [In a first aspect, an ink jet print head assembly comprises: an ink supply manifold; one or more print head integrated circuits, each of the print head integrated circuits having a front side comprising the drive circuit and a plurality of ink jet nozzle assemblies, a back side attached to the ink supply manifold, and at least one ink supply conduit for providing between the back side and the ink jet nozzle assemblies Fluid communication; and at least one connector film for supplying power to the driving circuit, wherein a connector end of the connector film is sandwiched between at least a portion of the ink supply manifold and the one or more print heads Between circuits. The ink jet printhead assembly according to the invention advantageously provides a convenient mechanism for attaching the printhead integrated circuit to an ink supply manifold while providing electrical connection to the printhead. Moreover, the front side of the print head is completely flat throughout its entire range. Optionally, the connector film comprises a flexible polymer film having a plurality of conductive traces. Optionally, the connector film is a tape automated bonding (TAB) film. Optionally, the back side has a recessed portion for receiving the connector film. Optionally, the recessed portion is defined along the longitudinal edge region of each of the print head integrated circuits. Optionally, a plurality of through silicon connectors provide an electrical connection between the drive circuit and the connection end of the connector film -6 - 201103762, optionally, each through connector is The front side extends linearly toward the back side. Optionally, each of the through connectors is tapered toward the back side. Optionally, each through connector is constructed of copper. Optionally, each of the print head integrated circuits comprises: - a germanium substrate; at least one CMOS layer comprising the driver circuit; and an ME MS layer comprising the ink jet nozzle assemblies, wherein the CMOS layer is disposed The germanium substrate is between the MEMS layer. Optionally, each of the through connectors extends linearly from a contact pad in the MEMS layer through the COMS layer toward the back side, the contact pads being electrically connected to the CMOS layer. Optionally, the printhead assembly includes one or more conductor posts that extend linearly between the contact pad and the CMOS layer. Optionally, each of the through connectors is electrically isolated from the CMOS layer. Optionally, each through connector has an outer sidewall that includes an insulating film. Optionally, the outer sidewalls include a diffusion barrier between the insulating film and a conductive core of the through connector. Optionally, each through connector is soldered to the connection end of the film. Optionally, the film is bonded to the ink supply manifolds together with the plurality of print head integrated circuits. Optionally, the plurality of printhead integrated circuits are disposed in end-to-end abutment to provide a one-page wide printhead assembly. Optionally, a front side surface of the printhead is flat and has no wire bond connections. Optionally, the front side surface is coated with a layer of hydrophobic polymer (e.g., 'PDMS). In a second aspect, a printhead integrated circuit is provided having: a front side including the drive circuit and a plurality of ink jet nozzle assemblies; a back side attached to the ink supply manifold; At least one ink supply conduit for providing fluid communication between the back side and the inkjet nozzle assemblies, wherein the back side has a concave portion for receiving at least a portion of a connector film, the connector film supplying electricity To the drive circuit. Optionally, a connector end of the connector film is interposed between at least a portion of the ink supply manifold and the print head integrated circuit when the back side is attached to the ink supply manifold. Optionally, the recessed portion is defined along the longitudinal edge region of each of the print head integrated circuits. Optionally, the recessed portion includes a plurality of integrated circuit contacts, each integrated circuit being coupled to the drive circuit. Optionally, the connector film is a tape automated bonding (TAB) film, and wherein the integrated circuit contacts are disposed to connect to corresponding contacts of the TAB film 201103762. Optionally, a plurality of through silicon connectors extend linearly from the front side toward the back side, and each of the through connectors provides a connection between the driving circuit and a corresponding integrated circuit contact. connection. Optionally, each integrated circuit contact is defined by one end of another through connector. Optionally, the back side has a plurality of ink supply conduits extending longitudinally along the printhead integrated circuit, each ink supply conduit defining one or more ink inlets for receiving from the ink supply manifold Ink. Optionally, each ink supply conduit supplies ink to a plurality of front side inlets. Optionally, each front side inlet supplies ink to one or more ink jet nozzle assemblies. Optionally, each ink supply conduit has a depth that corresponds to the depth of the depressed portion. In a third aspect, a printhead integrated circuit is provided comprising a substrate defining a front side and a back side; a plurality of ink jet nozzle assemblies disposed on the front side; Supplying power to the inkjet nozzle assemblies; and one or more through-connectors extending from the front side to the back side, the peer-through connectors providing one or more corresponding to the drive circuit Electrical connections between the integrated circuit contacts, wherein the integrated circuit contacts are configured to connect to a connector film mounted on the back side to supply power to the drive circuit. -9 - 201103762 Optionally, each integrated circuit contact is defined by one end of a different splicer. In a fourth aspect, a method of making a printhead assembly having a backside electrical connection is provided, the method comprising the steps of: providing one or more printhead integrated circuits, each printhead product having a front side comprising a drive circuit and a plurality of ink jet nozzle assembly sides having one or more ink inlets and a concave edge portion, the plurality of connectors extending through the integrated circuit, each connector being connected to the a head of the drive circuit and a recessed edge portion » a connection end of a connector film is placed in the recessed edge portion of at least one of the print heads, each of the conductive traces The respective film contacts of the wires are at the connection end; each film is connected to the base of a corresponding connector; and the back side of each of the print head integrated circuits and the connector film are one to one ink supply manifold, To provide an inkjet assembly having a backside electrical connection. Optionally, the attaching step connects the connector end of the connector film to a portion of the ink supply manifold and the one or more print head assemblies. Optionally, the connector film is a tape-type automatic bonding (film. Optionally, the connecting step includes soldering the base of each connector to the connector of the connector. Through the ink-jet array circuit, a back And one or both of the base body circuits having the attached print head attached to the circuit TAB) to its pair --10-201103762, optionally, the attachment step is carried out using an adhesive film. Optionally, the adhesive film has a plurality of ink supply holes defined therein, and the attaching step includes aligning each of the column head integrated circuits with the adhesive film such that each ink supply hole and an ink The inlet is aligned, the print head integrated circuit is bonded to one side of the adhesive film, and an opposite side of the adhesive film is bonded to the ink supply manifold. Optionally, in this joining step, each of the print head integrated circuits is connected to a separate connector film. Optionally, in the connecting step, a plurality of print head integrated circuits are connected to the same connector film. Optionally, the plurality of printhead integrated circuits are attached to the ink supply manifold in an end-on-end abutment for providing a one-page wide printhead assembly. In a fifth aspect, a method of fabricating a printhead integrated circuit for backside electrical connection is provided, the method comprising the steps of: providing a wafer comprising a plurality of front sides of the wafer a partially fabricated nozzle assembly and one or more through-connectors extending from a front side of the wafer toward a back side; depositing a conductive layer on the front side of the wafer and etching the conductive layer for simultaneous use Forming an actuator for each nozzle assembly and a front side contact pad on the head of each of the through connectors, the front side contact pad connecting the turns through connector to a drive circuit in the wafer; implementing further The MEMS processing step is used to complete the nozzle assembly, -11 - 201103762, and the formation of an ink supply conduit for the nozzle assembly and the through connector; and dividing the wafer into a plurality of independent print head integrated circuits Each of the print head integrated circuits is constructed to be coupled to the drive circuit through the through connector and the back side of the contact pad. Optionally, the electrically conductive material is selected from the group consisting of titanium nitride, titanium aluminum nitride, titanium, aluminum, and vanadium aluminum alloy. Optionally, the actuator is selected from the group consisting of: a thermal bubble forming actuator and a thermal bending actuator. Optionally, the further mem S processing steps include depositing a substance on the contact pad to seal or wrap the contact pad. Optionally, the further MEMS processing steps include etching the back side of the wafer to define the ink supply track and a backside recess for each of the print head circuits. Optionally, the ink supply conduits and the backside recessed portions have the same depth. Optionally, the backside etch exposes one leg of each of the through connectors in the recessed portion of the back side, each leg including an integrated circuit contact, optionally, a through connection The device is disposed along a longitudinal edge region of each of the print head integrated circuits, and the back side concave portion extends along the longitudinal edge region. Optionally, the integrated circuit contacts are arranged to be connected to corresponding contacts of a TAB film -12-201103762. Optionally, a CMOS layer includes the drive circuit, and the nozzle assemblies are disposed in a In the MEMS layer on the CMOS layer. Optionally, one or more conductor posts extend linearly between the contact pad and the CMOS layer and/or between the actuator and the CMOS layer. Optionally, the conductor posts are formed prior to depositing the conductive layer. Optionally, the conductor posts are formed simultaneously with the weir through connectors. Optionally, the conductor posts and the meandering through connectors are formed by depositing a conductive material in a predefined via. Optionally, the conductive material is deposited by electroless plating. Optionally, each of the pre-defined through holes has a diameter proportional to a depth such that all of the through holes are evenly penetrated by the deposit. Optionally, the conductive material is copper. Optionally, the further MEM S processing steps comprise coating a front side surface with a layer of hydrophobic polymer. Optionally, the hydrophobic polymer layer is composed of PDMS. Optionally, the further MEM S processing steps comprise oxidatively removing the sacrificial material. [Embodiment] So far, the applicant of the present application has described a print head integrated circuit (or "wafer") which is bounded in an end-on-end manner - 13-201103762 Make a page wide print head. Fig. 1 shows a front side surface of a portion of a row of print head IC 1 00 in a perspective view, and Fig. 2 shows a pair of print heads 1C which are close together. Each of the print heads I C 1 0 0 contains thousands of nozzles arranged in a row. As shown in Figures 1 and 2, the print head I c 1 0 0 is constructed to accept and print five different colored inks (e.g., CMYK and IR (infrared); CCMMY: or CMYKK). Each of the color tubes 104 of the print head IC 100 is vertically aligned in the sheet feeding direction for performing dot-on-dot printing with high resolution (e.g., 1 600 dpi). The horizontal distance ('pitch') between two adjacent nozzles 102 in a single column is about 32 microns, and the vertical distance between the two nozzles is based on the firing order of the nozzles; however, these columns are typically separated A true number of dotted lines (eg, 10 o'clock line). A more detailed description of the nozzle array configuration and the nozzle emission can be found in U.S. Patent No. 7, 4, 8, 311, the disclosure of which is incorporated herein by reference in its entirety in The ground is about 20 to 22 mm. Therefore, in order to print an A4/US letter size paper, it is necessary to continuously join 11 or 12 print head ICs 100 together. The number of print head ICs 100 can be varied to accommodate paper of other widths. For example, a 4 inch photo printer typically uses 5 print heads ic joined together. The printhead IC 100 can be joined together in a variety of ways. A special method for connecting the print head 1C 100 is shown in FIG. In this configuration, the ends of the 1C 100 are shaped to join together and form a 1C horizontal line with a vertical offset between adjacent 1C. A tilting joint having a 45 degree angle 14 - 201103762 The head 106 is disposed between the printing heads 1C. The engaging edge has a serrated profile to facilitate positioning of the adjacent printhead 1C. As is clear from Figures 1 and 2, the leftmost ink supply nozzle 102 of each column is lowered by a pitch of 10 lines and arranged in a triangular configuration. This configuration also ensures that more turns are provided at the edge of each of the print head ICs 100 to ensure sufficient connections between the immediately adjacent 1C. The nozzles contained in each of the descending columns must be fired at different times to ensure that the nozzles in the same column are fired onto the same line on a sheet of paper. Although the control of the operation of the nozzle is performed by a row of print head controller ("SoPEC") devices, the compensation for the descending nozzle train can be performed by a CMOS circuit in the print head, or can be performed by the print head Shared with both SoPEC devices. A complete description of the lowered nozzle configuration and its control can be found in U.S. Patent No. 7,275,805, the disclosure of which is incorporated herein by reference. Referring now to Figure 3, an opposite backside surface of the printhead integrated circuit 100 is shown. An ink supply conduit 11 is defined in the back side of the printhead IC 100, which extends lengthwise along the length of the printhead 1C. These longitudinally directed ink supply conduits 110 meet the nozzle inlet 112 and are in fluid communication with the nozzles 102 located on the front side. Figure 4 shows a portion of a row of print heads 1C that feed ink directly into the ink chamber. Figure 5 shows a portion of another print head 1C that is fed into ink conduits 114 that extend longitudinally through each of the array of nozzle chambers. In this alternative configuration, the nozzle chambers receive ink from adjacent ink conduits through a sidewall inlet. -15- 201103762 Turning back to Figure 3, the longitudinally extending ink supply conduits 110 are separated into conduit sections by a bridge or wall 116. These walls 116 provide additional mechanical strength of the printhead 1C 100 in the transverse direction relative to the lengthwise conduits 11〇. The ink is supplied to the back side of each of the print heads 1C via an ink supply manifold in the form of a two-part LCP mold. Referring to Figures 6 through 9, a printhead assembly 130 including a printhead 1C1 00 is shown, which is attached to the ink supply manifold through an adhesive film. The ink supply manifold includes a primary LCP mold 122 and an LCP tube mold 1 24 whose bottom side is sealed. The print heads ic 1 结合 are bonded to the bottom side of the pipe mold 124 by the adhesive 1C attachment film 120. The LCP pipe mold 124 includes an LCP main pipe 126 that is coupled to an ink inlet 127 and an ink outlet 128 in the main LPC mold 122. The ink inlets I27 and ink outlets 128 are in fluid communication with an ink reservoir and an ink supply system (not shown) that supplies ink to the printhead at a predetermined hydrostatic pressure. The primary LPC mold 122 has a plurality of air pockets 129 that communicate with the LCP main conduit 126 defined in the LPC conduit mold 124. The air pockets 129 are used to relieve pressure pulses in the ink supply system. At the base of each LCP main conduit 126, a series of ink supply passages 132 are passed to the printheads 1C 100. The male film 120 has a series of laser drilled supply holes 134 such that the back side of each of the print head ICs 00 is in fluid communication with the ink supply path 132. Referring now to Figure 10, the ink supply passages 132 are arranged in five columns. -16 - 201103762 The ink supply path 1 3 2 in the middle column is sent directly to the back side of the print head 1C 1 00 via the supply hole 1 3 4 which is drilled, and the outer ink supply path 1 3 2 column The ink is supplied to the print head 1C through the micro-molded passages 1 3 5 , and each micro-molded passage terminates in a hole in the holes 134 of the laser drilled holes. Figure 11 shows in more detail how the ink is fed to the backside ink supply conduit 110 of the printhead IC 100. Each of the laser drilled holes 134 (which are defined in the adhesive film 120) is aligned with a corresponding ink supply conduit 1 10 . In general, the laser drilled aperture 134 is aligned with one of the conduits 110 across the wall 161 such that ink is supplied to a conduit section on either side of the wall 146. This configuration reduces the amount of fluid connection required between the ink supply manifold and the printhead 1C 100. In order to be helpful in correct positioning of the 1C 100, a reference point 103A is provided on the surface of the IC 100 (see Figs. 1 and 11). The reference points 103A are in the form of indicia that can be easily identified by an appropriate positioning device to indicate the true position of the 1C 100 associated with the original 1C. The adhesive film 120 has complementary reference points 103B that facilitate the alignment of each of the print heads 1C 100 in relation to the adhesive film during the bonding of the print heads 1C to the ink supply manifold. The reference points 103A and 103B are strategically disposed at the edge of the 1C 100 and along the length of the bonded 1C adhesion film 12 and the power is supplied to the print head integrated circuit. Returning to FIG. 1, the print head 1C 100 has a plurality of bond pads 105, 17-201103762 extending along the longitudinal edges of the column head 1C. The bond pads 105 provide a mechanism for receiving data and/or circuitry from the printhead controller ("SoPEC") device for controlling the operation of the ink jet nozzles 102. Connected to an upper CMOS layer of the print head IC1 00. As shown in Figures 4 and 5, each M EMS nozzle assembly is formed on a CMOS layer 113 that contains the logic and drive circuitry required to transmit each nozzle. Referring to Figures 6 through 9, a flexible PCB 140 is wire bonded to the bond pads 105 of the printhead IC 100. The wire bonds are sealed and protected by a wire bond sealant 142 (see Figure 7), which is typically a polymeric resin. The LCP mold 122 includes a curved support wing 123 that is folded and secured around the support wing. The support wing 123 has a plurality of openings 125 for receiving various electronic components 144 of the flexible PCB. In this manner, the flexible PCB 140 can be bent around the outer surface of the printhead assembly 130. A paper guide 148 is mounted on the opposite side of the LPC mold 122 relative to the flexible PCB 140 and completes the print head assembly 130. The printhead assembly 130 is designed as part of a user replaceable printhead cartridge that can be removed from the inkjet printer 160 (see Figure 12) and replace. Thus, the flexible PCB 140 has a plurality of contacts that allow power and data to be coupled to electronic components within the printer body, including the SoPEC device. Since the flexible PCB 140 is wire-bonded to the bonding pads 1〇5 on each of the printing heads 1C 100, the printing head inevitably has a longitudinal edge region of a -18-201103762 hair plane near the pads. region. This is illustrated in Figure 13, which shows a wirebond 150 extending from the pad 105 of a row of printhead ICs 100, which 1C includes a plurality of inkjet nozzle assemblies 101. The bond pad 105 shown in Fig. 13 is formed as an ME MS layer and is connected through a connector to the underlying CMOS 113. Alternatively, the bond pad 105 can have an exposed upper layer of the CFOS 113 without any other connection lines to the MEMS layer. Regardless of the configuration, the wire bond point extends from the ink exit surface 154 and wirebonding to the flexible PCB 140 to 105 of the printhead IC 100 has several disadvantages, primarily because of the column A main length region of the print head 1C has a wire bond point 150 (and the wire contact sealant 142 water exit surface 145 protrudes. This ink exit surface 154 does not result in poorly performing print head maintenance. For example A wiper blade is unable to eject the entire width of the surface 154 because the wire bond 142 is in the sweep path of the wiper in the sweep direction upstream of the nozzles. One disadvantage is that the entire print is coated with a water repellent coating, such as PDMS. The application/PDMS coating can significantly improve print quality and printhead maintenance (see US Patent Application No. US 2008/0225076) This case is hereby incorporated by reference, and a completely flat ink jet can further improve the effect of this coating. In the case of a print head structure, 152 is connected to the print head! Pick up. The longitudinal direction of the bonding pad is swept from the ink flatness through the encapsulant or the lower end cannot be found, for example, the content borrowing surface -19-201103762 is used for the back side electrical connection of the print head integrated circuit in view of wire bonding The connection to the printhead IC 100 has some of the above-mentioned drawbacks, and the applicant has developed a printhead IC2 that uses a backside electrical connection and thus has a completely flat ink exit surface. Referring to Fig. 14, the print head IC2 is attached to the LCP pipe mold 124 of the ink supply manifold using an adhesive film 120. The printhead IC2 has at least one elongated ink supply conduit 110 that provides fluid communication between the ink supply manifold and the nozzle assemblies through the nozzle inlet 112 and the ink conduit 112. Thus, the printhead assembly 60 (which includes the printhead IC 2) has the same dimensions as the printhead assembly 130 (which includes the printhead 1C1 00) described above with reference to Figures 1 through 11. Fluid structure. However, the print head IC2 is substantially different from the print head 1C 100 in electrical connection to its CMOS circuit layer 113. Significantly, the print head IC2 does not have any front side wire bonds on its longitudinal edge region 4. Conversely, the print head IC2 has a back side recess 6 at its longitudinal edge which accommodates a TAB (Tape Automated Bonding) film 8. The TAB film 8 is typically a flexible polymer film (e.g., Mylar® film) that includes a plurality of conductive traces that terminate at corresponding film contacts 10 at a connector end of the TAB film. The TAB film 8 is disposed flush with the back side surface 12 of the print head IC2 such that the TAB film and the print head IC2 can be bonded together to the LCP pipe mold 124. The TAB film 8 can be connected to the flexible PCB 140; the TAB film can be integrated with the flexible PCB 140. Alternatively, the TAB film 8 can be attached to the printer electronics using other wiring configurations familiar to those skilled in the art. -20- 201103762 The print head IC2 has a plurality of through-holes extending from the front side surface of the print head 1C to the elongated concave edge portion 6 (which accommodates the TAB film 8). Each of the through-holes is shunted into a conductor (e.g., copper) to define a through-connector 14 that provides electrical connection to the TAB film 8. Each film joint 10 can be attached to the foot or base 15 of the through connector 14 by the use of a suitable connection (e.g., solder ball 16). The through connector 14 extends through a substrate 20 of the printhead IC2 and through the CMOS circuit layer 113. The through connector 14 is isolated from the crucible substrate 20 by an insulating sidewall 21. The insulating sidewalls 21 can be formed of any insulating material compatible with the MEMS process, such as amorphous germanium, polysilicon, or hafnium oxide. The insulating sidewalls 21 can be single or multi-layered sidewalls. For example, the insulating sidewalls 21 may comprise an outer Si or Si2 layer and an inner layer. The inner layer can also serve as a seed layer for electron deposition of copper during manufacture of the sand through connector 14. As shown in Figure 14, the head 22 of the through connector 14 is in contact with a contact pad 24 defined in a MEMS layer 26 of the printhead IC2. The MEMS layer 26 is disposed on the CMOS circuit layer 113 of the printhead IC2 and contains all of the ink jet nozzle assemblies formed by the MEMS processing steps. In the example of the hot-bending actuated print head of the Applicant of the present application (for example, the hot-bend actuated print head described in US Patent Application No. US 2008/0129793, the contents of which are hereby incorporated by reference As described herein, an electrically conductive thermoelastic actuator 25 can define the roof of each nozzle chamber 101. Thus, the contact pad 24 can be formed simultaneously with the thermoelasticity during the MEMS fabrication and can be formed from the same material as it. For example, the contact pad 24 can be formed of a thermoelastic material such as a vanadium alloy, titanium nitride, titanium aluminum nitride, or the like. However, it will be appreciated that the formation of contact pads 24 can be incorporated into any step of MEMS fabrication and can include any suitable conductive material such as copper, titanium, aluminum, titanium nitride, titanium aluminum nitride. and many more. The contact pad 24 is connected to the upper layer of the CMOS 113 through the copper conductor post 30, the copper conductor post extending from the contact pad toward the CMOS circuit. Thus, conductor post 30 provides an electrical connection between the TAB film 8 and the CMOS circuitry. Although the structure of the contact pad 24 and the conductor post 30 in FIG. 14 is the same as that used by the applicant to form a thermal bending actuated ink jet nozzle (as described in US Patent Application No. US 1 2/323) The content of this application is hereby incorporated by reference in its entirety, but the present disclosure includes other structures that provide a similar backside electrical connection from the backside film 8 to the CMOS layer 112. . For example, referring now to Figure 15, the through connector 14 can terminate at the passive layer 27 above the CMOS layer 113. An embedded contact pad 23 connects the via connector 14 to the upper CMOS layer by depositing a suitable conductive material on the head of the through connector and an upper CMOS layer exposed through a passive layer. . During the fabrication of the MEMS nozzle, after deposition of the photoresist 31 and a top layer 3 (eg, tantalum nitride, tantalum oxide, etc.), the MEMS nozzle is fabricated to provide a completely flat nozzle plate for the print head and ink ejection. surface. Moreover, the embedded radiation contact pads 23 are extended by the aluminum-electric layer, and the -22-201103762 photoresist 31, which should be 27-pass or the like, is completely sealed and covered under the top layer 37. The construction of the contact pad is compatible with the MEMS process used by the Applicant's applicant to make a thermal bubble forming inkjet nozzle assembly, as described in U.S. Patent Nos. 6,755,509 and 7, 03,93, which are incorporated herein by reference. The contents of the patents are hereby incorporated by reference. The nozzle assembly shown in Figure 15 is a thermal bubble forming ink jet nozzle assembly that includes a suspended heater element 28 and a nozzle opening 102 as described in U.S. Patent No. 6,755,509. It will be readily apparent to those skilled in the art that the embedded contact pad 23 and the suspended heater element 28 can be collectively fabricated during deposition of the heater element material and subsequent etching during fabrication of the M EMS. form. Therefore, the embedded contact pad 23 can be made of the same material as the heater element, such as titanium nitride, titanium aluminum nitride or the like. Turning now to Figure 14, it should be noted that the ink ejection surface of the printhead IC2 is completely flat and coated with a layer of hydrophobic PDMS 48. The PDMS coatings and their advantages are described in detail in U.S. Patent Publication No. 2008/0225082, the disclosure of which is incorporated herein by reference. As mentioned above, the flatness of the ink exit surface, including the portion of the surface within the longitudinal edge region 4 of the printhead integrated circuit 2, provides significant benefits in printhead maintenance and surface flooding. . Although in FIG. 14 and 15, the contact pad is shown schematically adjacent to the nozzle 102, it should be understood that the contact pad 24 in the print head IC2 typically occupies the print head 1C 100 ( In a similar position to the bond pad 105 of FIG. 1), a corresponding number of through-connectors 14 extend into the base substrate 20. However, an advantage of the present invention is that the contact pads 24 need not be spaced apart from the inkjet nozzles i〇2 as in the -23-201103762 bond pad 105, and the bond pads need to have sufficient enveloping space to accommodate the wire bonds and wire bond packages. cover. Thus, the backside TAB film connection can use sand more efficiently and reduce the overall width of each ic, or a greater number of nozzles 102 can be formed over the same 1C width. For example, an IC width of 60-70% in the print head I C 1 0 0 is dedicated to the ink jet nozzle 102, but the present invention allows more than 80% of the 1C width to be used for the ink jet nozzle. Since 矽 is the most expensive component of a page wide ink printer, the above features are a significant advantage. MEMS Process for Printhead 1C with Back Side Electrical Connections A MEMS process for printhead IC2 shown in Figure 14 will now be described in detail. The MEM S process includes a number of modifications to the process described in U.S. Patent Application Serial No. 1 2/3,233,471, which is incorporated herein by reference. Although the MEMS process is described in detail herein for exemplary purposes, it will be understood by those skilled in the art that any modification of any ink jet nozzle process will provide a print for backside electrical connections. Head integrated circuit. The applicant of the present application has implicitly referred to a MEMS process for fabricating the thermally actuated printhead 1C shown in FIG. Accordingly, the invention is not intended to be limited to the particular nozzle assembly 101 described below. 16 to 25 show the sequence of MEMS fabrication steps for forming the print head IC 2 shown in Fig. 14. The completed print head 1C 2 includes a plurality of nozzle assemblies 1 〇 1 and a feature structure that can be connected to the C Μ 0 S circuit 1 1 3 on the back side. -24- 201103762 The starting point for MEM S fabrication is a standard CMOS wafer comprising the germanium substrate 20 and a CMOS circuit 113 formed on the front side of the wafer. At the end of the MEMS process, the wafer is slit into individual print head integrated circuits (1C) by dicing along the slitting streets, each of which defines each column fabricated from the wafer. The size of the print head 1C. Although the description herein is directed to a MEMS process implemented on the CMOS layer 113, it will be appreciated that the CMOS layer 113 can comprise multiple CMOS layers (eg, 3 or 4 CMOS layers) and is typically Passivated. The CMOS layer 113 may be passivated with a layer of oxidized sand, or more commonly a standard 'ΟΝΟ' stack comprising a layer of nitriding sand sandwiched between two layers of oxidized sand. Thus, the CMOS layer 113 referred to herein implicitly includes a passivated CMOS layer that typically includes multiple layers C Μ Ο S 〇 The following description focuses on the fabrication steps of a nozzle assembly 101 and a through-connector 14 on. However, it will be apparent that the corresponding steps can be performed simultaneously for all of the nozzle assemblies and all of the through-connectors. In the first procedure of the steps shown in Figure 16, a front side inlet aperture 32 is etched through. The CMOS layer 113 is passed through and into the germanium substrate 20 of the CMOS wafer. At the same time, a front side slit street hole 33 is etched through the CMOS layer 1 13 and into the germanium substrate. The photoresist 31 is then applied to the front side of the wafer to plug the front side inlet opening 32 and the slitting street opening 33. The wafer is then polished by chemical mechanical honing (CMP) to provide the wafer shown in Figure 16. It has a flat front side surface -25-201103762 ready for subsequent MEMS steps. Referring to Fig. 17, in the next step, an 8 μm thick low stress yttrium oxide layer is deposited onto the CMOS layer 113 by electrically enhanced chemical vapor deposition (PECVD). The depth of this yttria layer 35 defines the depth of each nozzle chamber of the spray nozzle assembly. After depositing the SiO 2 layer 35, subsequent etching through the SiO 2 layer defines a wall 36 for the nozzle chamber and a portion of the front side slit street hole 33. An etching chemistry is then used to extend the front side slitting street opening 33 and etch the ink inlet opening 32 into the crucible substrate 20. The resulting holes 32 and 33 are then plugged by applying a photoresist 31 thereto and planarized using CMO honing. The photoresist 31 is a sacrificial material which functions as a construction frame for subsequent deposition of roof material. It is obvious that other suitable sacrificial substances (e.g., polyimine) can also be used. The wall material (e.g., yttria, tantalum nitride, or a combination thereof) is deposited on the planarized SiO 2 layer 35 to define the front side top layer 37. The wall layers 37 will define a rigid planar nozzle plate in the finished printhead IC2. Figure 17 shows the wafer 9 after the completion of the MEMS processing step of this sequence. In the next stage, referring to Figure 18, a plurality of conductor vias 38 are etched down through the top wall layer 37 and the SiO2 layer 35. The CMOS layer 113 is reached. The conductor post holes 38A that are etched through the wall 36 connect the nozzle actuator to the underlying CMOS layer 113. At the same time, the conductor post hole 38B can be electrically connected between the contact shop 4 and the underlying CMOS layer 113. -26-201103762 In a modification of the process described in U.S. Patent Application Serial No. 12/323,471, the disclosure of the entire entire entire entire entire entire entire entire entire entire A top wall layer 37, the SiO 2 layer 35, and the CMOS layer 113 enters the crucible substrate 20 (see Figure 19) and is defined in the next step. The through-holes 39 are arranged to be spaced apart along a longitudinal edge region of each of the print heads IC2. (The front side slit street hole 33 effectively defines a longitudinal edge region of each of the print head IC2.) Each of the regular holes 39 is gradually tapered toward the back side of the base substrate 20. The exact positioning of the through holes 39 is determined by the positioning of the film contacts 1 in the TAB film 8, which is in contact with the base of each hole when the printing head 1C is assembled and connected to the TAB film. . The through-hole via etching is performed by patterning a photoresist mask layer and etching through different layers. Of course, etching through different layers requires different hungry chemicals, but the same photoresist mask can be used on each etch. Each through-hole 39 typically has a depth to the depth of the substrate 20. It corresponds to the depth of the plugged front side ink inlet 32 (typically about 20 microns). However, each of the constant holes 39 may be formed deeper than the front side ink inlet 32 in accordance with the thickness of the TAB film 8. In the next step procedure, and with reference to Figures 2A and 21, the through-hole 39 is provided with an insulating wall 21 which is spaced from the tantalum substrate 20. The insulating walls 21 include an insulating film 42 and a diffusion barrier 43. The diffusion barrier 43 minimizes diffusion of copper into the germanium substrate 20 as each of the wells 39 is filled with copper. The insulating film 42 and the diffusion barrier -27-201103762 43 are formed by a continuous deposition step, which is optionally used to the mask layer 40 for selectively depositing each layer into the through holes 39. The insulating film 42 can be formed by any suitable insulating material such as an amorphous type, a polycrystalline germanium, a cerium oxide or the like. The diffusion barrier 43 is typically a giant membrane. Referring next to Fig. 22, the conductor post through holes 38 and the through holes 39 are simultaneously filled with a highly conductive metal such as copper to be electrolessly plated. The copper deposition step simultaneously forms nozzle conductor posts 44, contact pad conductor posts 30 and turns through connector 14. The diameters of the through holes 38 and 39 will need to be sized to ensure simultaneous copper plating during this step. After the copper plating step, the deposited copper is subjected to CMP and is stopped at the top wall layer 37 to provide a flat structure. It can be seen that the conductor posts 3G and 44 formed during electroless copper plating are in contact with the CMOS layer 113 to provide a linear conductive path from the CMOS layer to the top wall layer 37. In the next step procedure, referring to Figure 23, a thermoelastic material is deposited on the top wall layer 37 and then etched to define the thermoelastic beam member 25 for each nozzle assembly 101 and the contact pad 24 is covered. This turns through the head of the connector 14. Due to being welded to the thermoelastic beam member 25, a portion of the SiO 2 top wall layer 37 functions generally as a lower inert beam member 46 of a mechanical thermal bending actuator. Thus each nozzle assembly 101 includes a thermal bending actuator that includes a thermoelastic beam 25 coupled to the CMOS layer 136 and a lower passive beam 46. The types of these types of thermal bending actuators are described in more detail in U.S. Patent Publication No. 2008/309,729, the disclosure of which is incorporated herein by reference. The thermoelastic beam member 25 can be of any suitable group of thermoelastic materials such as titanium nitride, titanium aluminum nitride and aluminum alloys. Vanadium-aluminum alloys are a preferred material because they incorporate high thermal expansion, as described in the applicant's U.S. Patent Publication No. 2008/1,290,793, the disclosure of which is incorporated herein by reference. Advantages of low density and high Young's modulus. As mentioned above, the thermoelastic material is also used to define the pad 24. The contact pads 24 extend between the heads of the conductor posts 30 and the head 22 of the through connector 14. Thus, the contact pad 24 electrically connects the through connector 14 to each of the conductor posts 30 and the underlying CMOS 1 1 3 . Still referring to FIG. 23, the thermoelastic material is deposited and etched to define a thermal bending actuator and contact. After the pad 24, the final front side MEMS manufacturing step includes simultaneously etching the nozzle openings 102 and a front side street opening and depositing a PDM S coating 48 over the entire top wall layer 37 for the front surface to be water-repellent and provided Elastic mechanical seal for each thermal bending actuator. The use of the PDMS coating is described in detail in the Applicant's U.S. Patent Application Serial No. 1 1/685,084, the entire disclosure of which is incorporated herein by reference. Referring now to Figure 24, the entire front side of the wafer is coated with a relatively thick resist 49 that protects the front side MEMS structure and allows the wafer to be attached to a processing wafer 50 for backside MEMS processing. on. The back side engraves the ink supply pipe 110 and the recessed portion 6, and the Μα contact layer of the Μα is formed. The side cover is eclipsed by the -29-201103762 connector 14 The portion extends into the concave portion. A portion of the insulating film 42 is removed when the foot portion 15 of the 矽 through connector 蚀刻 is etched away by the back side. The back side etching also singulates the print head 1C into a separate print head 1C by etching down to the plugged front side slit street hole 33. The final oxide removal ('ashing') of the protective photoresist 49 produces a single individual printhead IC2 and is fluidly coupled between the backside and the nozzle assembly 1〇1. The print head IC2 produced as shown in Fig. 25 is now ready to be connected to the TAB film 8 through the solder ball 16 via the through connector 14. The resulting printhead ic/film assembly is subsequently bonded to the ink supply manifold to provide the printhead assembly 60 of Figure 14. The invention has been described with reference to a preferred embodiment and several specific modified embodiments. It will be apparent to those skilled in the art, however, that the invention may be Therefore, it is to be understood that the invention is not intended to be limited to the specific embodiments described in the present disclosure (including the references herein). The scope of the invention is limited only by the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the present invention will now be described in detail with reference to the accompanying drawings in which: FIG. 1 is a front perspective view of a row of head integrated circuits; -30-201103762 Fig. 2 is a pair of abutments 3D front perspective view of the print head integrated circuit; FIG. 3 is a rear perspective view of the print head integrated circuit shown in FIG.
I 圖4爲具有一底層噴嘴入口之噴墨噴組組件的切開立 體圖; 圖5爲具有一側壁噴嘴入口之噴墨噴組組件的切開立 體圖, 圖6爲一列印頭組件的側視立體圖; 圖7爲示於圖6中之列印頭組件的底視立體圖; 圖8爲示於圖6中之列印頭組件的一上視分解立體圖 圖9爲示於圖6中之列印頭組件的底視分解立體圖; 圖10爲附裝至一墨水供應歧管的一列印頭積體電路 的疊置平面圖; 圖11爲圖10的一放大圖式; 圖12爲一噴墨印表機的立體圖; 圖1 3爲示於圖6中之列印頭組件的示意剖面圖; 圖1 4爲依據本發明的列印頭組件的示意剖面圖: 圖1 5爲依據本發明的另一列印頭組件的示意剖面圖 « 圖16至24爲一晶圓在依據本發明之製造一列印頭積 體電路的不同階段之後的示意剖面圖;及 圖25爲依據本發明的一列印頭積體電路的示意剖面 圖。 -31 - 201103762 【主要元件符號說明】Figure 4 is a cutaway perspective view of an inkjet jet assembly having a bottom nozzle inlet; Figure 5 is a cutaway perspective view of an inkjet jet assembly having a sidewall nozzle inlet, and Figure 6 is a side perspective view of a row of printhead assemblies; 7 is a bottom perspective view of the print head assembly shown in FIG. 6. FIG. 8 is a top exploded perspective view of the print head assembly shown in FIG. 6. FIG. 9 is a print head assembly shown in FIG. Figure 10 is a plan view of a stack of head integrated circuits attached to an ink supply manifold; Figure 11 is an enlarged view of Figure 10; Figure 12 is a perspective view of an ink jet printer Figure 13 is a schematic cross-sectional view of the printhead assembly shown in Figure 6; Figure 14 is a schematic cross-sectional view of a printhead assembly in accordance with the present invention: Figure 15 is another printhead assembly in accordance with the present invention Schematic cross-sectional view of FIGS. 16 to 24 is a schematic cross-sectional view of a wafer after performing different stages of manufacturing a stack of integrated circuit circuits according to the present invention; and FIG. 25 is a schematic view of a printed circuit head integrated circuit according to the present invention. Sectional view. -31 - 201103762 [Description of main component symbols]
1 0 0 :列印頭IC 1 02 :噴嘴 104 :顏色管道 1 06 :接頭 1 0 7 :三角形外形 1 1 0 :墨水供應管道 1 1 2 :噴嘴入口 1 1 4 :墨水導管 1 1 6 :壁 120 :黏合膜 1 3 0 :列印頭組件 1 2 2 : P C L 模具 124 : PCL管道模具 126 : PCL主要管道 1 2 7 :墨水入口 1 2 8 :墨水出口 1 2 9 :氣穴 1 3 2 :墨水供應通道 1 3 4 :雷射鑽出的供應孔 1 35 :管道 1 0 3 A :基準點 1 0 3 B :基準點 1 2 5 :開口 -32 2011037621 0 0 : print head IC 1 02 : nozzle 104 : color pipe 1 06 : joint 1 0 7 : triangular shape 1 1 0 : ink supply pipe 1 1 2 : nozzle inlet 1 1 4 : ink conduit 1 1 6 : wall 120: adhesive film 1 3 0 : print head assembly 1 2 2 : PCL mold 124 : PCL pipe mold 126 : PCL main pipe 1 2 7 : ink inlet 1 2 8 : ink outlet 1 2 9 : air pocket 1 3 2 : Ink supply channel 1 3 4 : Laser drilled supply hole 1 35 : Pipe 1 0 3 A : Reference point 1 0 3 B : Reference point 1 2 5 : Opening -32 201103762
140:軟式 PCB 142 :引線接合密封劑 144 :電子構件 148 :紙張引導件 160 :噴墨印表機 146 :接點 150:引線接合點 152 :連接器柱 1 5 4 :墨水噴射面 2 :列印頭1C 60 :列印頭組件 6 :背側下凹部 4 :縱長邊緣區域 8 : TAB 膜 1 〇 :膜接點 1 2 :背側表面 15 :足部 20 :矽基材 21 :絕緣側壁 14 :矽貫通連接器 22 :頭部 24 :接觸墊 26 : MEMS 層 1 1 3 : CMOS電路層 -33 201103762 1 0 1 :噴墨噴嘴組件 2 5 :熱彈性致動器 3 0 :導體柱 23 :嵌入式接觸墊 27 :鈍化層 3 1 :光阻劑 3 7 :頂壁層 2 8 :懸吊的加熱器元件 3 2 :前側入口孔 3 3 :前側分切街道孔 3 5 :氧化砂層 36 :壁 38Α :導體柱貫孔 3 8Β :導體柱貫孔 3 9 :矽貫通貫孔 40 :光阻劑 42 :絕緣膜 43 :擴散阻障物 44 :噴嘴導體柱 46 :下鈍化樑 47 :前側街道開口 48 : PDMS 塗層 49 :光阻劑 5 0 :處理晶圓 -34-140: Flexible PCB 142: Wire Bonding Sealant 144: Electronic Member 148: Paper Guide 160: Inkjet Printer 146: Contact 150: Wire Bonding Point 152: Connector Post 1 5 4: Ink Jet Surface 2: Column Print head 1C 60: Print head assembly 6: Back side lower recess 4: Longitudinal edge area 8: TAB film 1 〇: Film joint 1 2: Back side surface 15: Foot 20: 矽 Substrate 21: Insulated side wall 14 : 矽 through connector 22 : head 24 : contact pad 26 : MEMS layer 1 1 3 : CMOS circuit layer - 33 201103762 1 0 1 : inkjet nozzle assembly 2 5 : thermoelastic actuator 3 0 : conductor post 23 : embedded contact pad 27 : passivation layer 3 1 : photoresist 3 7 : top wall layer 2 8 : suspended heater element 3 2 : front side inlet hole 3 3 : front side slit street hole 3 5 : oxidized sand layer 36 : wall 38 Α : conductor post through hole 3 8 Β : conductor post through hole 3 9 : 矽 through through hole 40 : photoresist 42 : insulating film 43 : diffusion barrier 44 : nozzle conductor post 46 : lower passivation beam 47 : front side Street opening 48: PDMS coating 49: photoresist 5 0 : processing wafer - 34-