[go: up one dir, main page]

TW201101690A - Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof - Google Patents

Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof Download PDF

Info

Publication number
TW201101690A
TW201101690A TW98120843A TW98120843A TW201101690A TW 201101690 A TW201101690 A TW 201101690A TW 98120843 A TW98120843 A TW 98120843A TW 98120843 A TW98120843 A TW 98120843A TW 201101690 A TW201101690 A TW 201101690A
Authority
TW
Taiwan
Prior art keywords
voltage
current
ramp
input
source
Prior art date
Application number
TW98120843A
Other languages
Chinese (zh)
Other versions
TWI399037B (en
Inventor
Hung-Teng Yeh
Original Assignee
Leadtrend Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leadtrend Tech Corp filed Critical Leadtrend Tech Corp
Priority to TW98120843A priority Critical patent/TWI399037B/en
Publication of TW201101690A publication Critical patent/TW201101690A/en
Application granted granted Critical
Publication of TWI399037B publication Critical patent/TWI399037B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A ramp generator capable of stabilizing modulator gain for generating a ramp signal is disclosed. The ramp generator includes a ramp capacitor, a current charging module, and a discharging module. The ramp capacitor outputs the ramp signal. The current charging module generates a charging current for charging the ramp capacitor according to an input voltage. The discharging module compares the ramp signal and a threshold voltage and discharges the ramp capacitor according to the comparing result. The threshold voltage varies according to the charging current. In this way, the ratio of the input voltage and the peak-to-peak voltage of the ramp signal can be approximately fixed, which stabilizes the modulator gain.

Description

201101690 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種斜波產生器(ramp generat〇r),更明確地說, 係有關一種穩定可調變增益之斜波產生器。 Q 【先前技術】 請參考第1圖。第1圖係為說明一先前技術之降壓式(buck)電 源轉換器100之示意圖。降壓式電源轉換器1〇〇係用來將一輸入電 壓源Vnsj之電壓降低以產生一輸出電壓ν〇υτ。降壓式電源轉換器1〇〇 包含一功率開關Q!、一電感L、一二極體D!、一電容COUT、兩電 阻Ri及R2,以及一工作週期調整器11〇。工作週期調整器包含一比 較器CMP!、一誤差放大器in,以及一斜波產生器112。於第j圖 〇 中’各元件之連接關係已明顯揭露,於此不再贅述。其中Vss為一 電壓源,如地端。在第1圖中’電阻^及心根據輸出電壓ν〇υτ, 產生回授電壓VFB並傳送至誤差放大器ill之負輸入端。誤差放大 器111再根據回授電壓VFB及參考電壓Vref,產生責任電壓VDUTY, 並傳送至比較器輸入端。比較器cmp!比較一來自於斜波 產生器112之斜波訊號(ramp signal)VRAMP以及責任電壓VDUTY,據 以產生開關控制訊號Ssw。開關控制訊號Ssw為一脈寬調變訊號 (Pulse Width Modulation,PWM)。當開關控制訊號Ssw為低電壓準 201101690 位時’功率開關Ql導通;當開關控制訊號ssw為高電壓準位時,功 率開關Ql關閉。因此,工作週期調整器110便可根據回授電壓Vfb, 開關控制訊號Ssw’以決定功率關Qi是料通,而使輸出電壓8 V〇ut之電壓準位維持在一預設電壓準位。 3 >考第2 ® 4 2圖係為§兒明在第1圖中之開關控制訊號 與輸出電壓vOUT關係之示意圖。其中開關控制訊號Ssw之工作週期 〇 D、輸出電壓ν〇υτ與輸入電壓之間的關係可由下列公式表示: D - T0N/TS = Vduty/VramP PTP …(1); V〇UT/Vin = D = 乂瞻〜讀,…(2); ' 其中T〇N表示功率開關Qi導通的時間,ts表示開關控制訊號Ssw -一個職㈣間、D絲X作職、V_p pTp表示斜波訊號v_ 的峰對峰電壓(peak-to-peak voltage)。又降壓式電源轉換器1〇〇之可 調變增益(Modulator Gain) GModuiator 與迴路增益(Loop Gain) Gloop 可 由下列公式表示:201101690 VI. Description of the Invention: [Technical Field] The present invention relates to a ramp generator, and more particularly to a ramp generator that stabilizes a variable gain. Q [Prior Art] Please refer to Figure 1. Figure 1 is a schematic diagram illustrating a prior art buck power converter 100. The buck power converter 1 is used to reduce the voltage of an input voltage source Vnsj to generate an output voltage ν 〇υ τ. The buck power converter 1A includes a power switch Q!, an inductor L, a diode D!, a capacitor COUT, two resistors Ri and R2, and a duty cycle adjuster 11A. The duty cycle adjuster includes a comparator CMP!, an error amplifier in, and a ramp generator 112. The connection relationship of the components in the figure j is clearly disclosed, and will not be described here. Where Vss is a voltage source, such as the ground. In Fig. 1, the resistance and the heart generate a feedback voltage VFB according to the output voltage ν 〇υ τ and are transmitted to the negative input terminal of the error amplifier ill. The error amplifier 111 generates a duty voltage VDUTY based on the feedback voltage VFB and the reference voltage Vref, and transmits it to the comparator input. The comparator cmp! compares a ramp signal VRAMP from the ramp generator 112 with a duty voltage VDUTY to generate a switch control signal Ssw. The switch control signal Ssw is a Pulse Width Modulation (PWM). When the switch control signal Ssw is low voltage reference 201101690 bit, the power switch Q1 is turned on; when the switch control signal ssw is at the high voltage level, the power switch Q1 is turned off. Therefore, the duty cycle adjuster 110 can switch the control signal Ssw' according to the feedback voltage Vfb to determine that the power off Qi is the material pass, and maintain the voltage level of the output voltage 8 V〇ut at a predetermined voltage level. 3 > Test 2 2 4 2 is a schematic diagram of the relationship between the switch control signal and the output voltage vOUT in Figure 1. The relationship between the duty cycle 〇D of the switch control signal Ssw, the output voltage ν〇υτ and the input voltage can be expressed by the following formula: D - T0N/TS = Vduty/VramP PTP ... (1); V〇UT/Vin = D = 乂瞻~Read,...(2); ' where T〇N indicates the time when the power switch Qi is turned on, ts indicates the switch control signal Ssw - one (4), D wire X, V_p pTp indicates the ramp signal v_ Peak-to-peak voltage. The buck power converter can also be used to adjust the gain (Modulator Gain) GModuiator and loop gain (Loop Gain) Gloop can be expressed by the following formula:

U GModulator Δνουτ/ΔνουΤΥ—△[V'lN X CVdUTy/Vramp—ptp^JMVduty = ^WVramp—PTP …⑶;U GModulator Δνουτ/ΔνουΤΥ—△[V'lN X CVdUTy/Vramp-ptp^JMVduty = ^WVramp-PTP ...(3);

Gl〇〇p = (Vin/VRamp_ptp) x (Vref/V0Ut) = GModulator x (Vref/Vout)…(4); 如第2圖所示,當輸入電壓VlN下降時,輸出電壓ν〇υτ會隨之下降, 而使回授電壓VFB下降,因此責任電壓vDUTY上升。此時比較器CMP! 比較斜波訊號VramP及上升的責任電壓VDUTY之後,會產生一具有 較長之責任週期D之開關控制訊號ssw(如第2圖中時段Tx所示), 而使輸出電壓V0UT回升至預設電壓準位,然而在輸入電壓Vjn不穩 201101690 定時(無論突升或突降),由公式⑺與(4)可知,其將影 轉換器100之可調變增益工、h上 至式電源 不穩定。 雙曰盈咖和迴路增益’而使輪出電壓 ,當輸入電壓不穩定時,會 電壓變得不穩定,造成使用 因此,在先則技術之電源轉換器中 影響電源轉換器的可調變增益而使輸出 者極大的不便。 Ο 【發明内容】 本發明之-實關係提供—鱗波產生_,可依據輸入訊號之 變動而產生並調整舰訊號’藉以穩定可調變增益。該斜波產生器 包含一斜波電谷、一充電電流模組,以及一放電模組。該斜波電容 用來輸出該斜波訊號。該充電電流模組用來根據一輸入電壓源之電 壓與一輸入參考電壓,產生一對應大小之充電電流,以對該斜波產 生電容進行充電。該放電模組用以比較該斜波訊號以及一臨界電 壓,以使該斜波產生電容放電,其中該臨界電壓係依據該充電電流 而變化。 本發明之一實施例提供一種穩定一電源轉換系統之可調變增益 之方法。該方法包含根據一輸入電壓源之電壓,調整一充電電流、 以該充電電流對一斜波產生電容充電,產生一斜波訊號、根據該輸 入電壓源之電壓,調整一臨界電壓,以及當該斜波訊號大約高於或 201101690 等;▲界電壓時,對該斜波產生電容進行放電,以使該可調變增 益大約為一定值。 【實施方式】Gl〇〇p = (Vin/VRamp_ptp) x (Vref/V0Ut) = GModulator x (Vref/Vout)...(4); As shown in Figure 2, when the input voltage VlN drops, the output voltage ν〇υτ will follow The drop is made, and the feedback voltage VFB is lowered, so the duty voltage vDUTY rises. At this time, the comparator CMP! compares the ramp signal VramP with the rising duty voltage VDUTY, and generates a switch control signal ssw having a longer duty cycle D (as indicated by the period Tx in FIG. 2), thereby making the output voltage V0UT rises back to the preset voltage level, but when the input voltage Vjn is unstable 201101690 timing (regardless of sudden rise or sudden drop), it can be known from equations (7) and (4) that it can adjust the gain of the shadow converter 100, h The up to power supply is unstable. The voltage is turned on and the voltage is turned on. When the input voltage is unstable, the voltage becomes unstable, causing the use. Therefore, the power converter of the prior art affects the adjustable gain of the power converter. And the output is greatly inconvenient. Ο [Summary] The real-world relationship of the present invention provides a scale generation _, which can generate and adjust the ship signal according to the change of the input signal to stabilize the adjustable gain. The ramp generator includes a ramp wave valley, a charging current module, and a discharge module. The ramp capacitor is used to output the ramp signal. The charging current module is configured to generate a corresponding charging current according to a voltage of an input voltage source and an input reference voltage to charge the ramp generating capacitor. The discharge module is configured to compare the ramp signal with a threshold voltage to cause the ramp to generate a capacitor discharge, wherein the threshold voltage varies according to the charge current. One embodiment of the present invention provides a method of stabilizing a variable gain of a power conversion system. The method includes: adjusting a charging current according to a voltage of an input voltage source, charging a ramp generating capacitor with the charging current, generating a ramp signal, adjusting a threshold voltage according to a voltage of the input voltage source, and when The ramp signal is approximately higher than or 201101690; when the voltage is ▲, the capacitor of the ramp is discharged, so that the adjustable gain is about a certain value. [Embodiment]

〇月參考第3圖。第3圖係為本發明較佳實施例之斜波產生器3⑻ 2方塊圖。如第3圖所示,斜波產生器3〇〇包含一斜波電容c_、 〇 充電電流模組310以及一放電模組320。藉由偵測輸入電壓VrN 之變化斜波產生器3〇〇可產生並調整斜波訊號之峰對峰值 Vrampj>tp,因而使得可調變增益約略維持一定值。 當斜波訊號VraMP降低至低臨界電壓Vl(定值)時,充電電流模 組310便會開始對斜波電容0_充電,以提升斜波訊號乂_的 電壓,當斜波訊號Vramp上升至高臨界電壓Vh之電壓準位時(大約 )等於或高於),放電模組320對斜波電容c_進行放電,以降低斜 波Λ號Vramp。因此,斜波訊號的高峰值便為高臨界電壓Vh; 斜波訊號v_的低峰值便為低臨界電壓Vl。換句話說,斜波訊號 VramP的峰對峰值ν_ρ ρτρ便為(Vh_Vl)。斜波產生器3〇〇遂藉由充 電電流模組310與放電模組320的反覆充放電過程而形成週期性的 斜波訊號VraMP。 充電電流模組310之一電路實施方式係如第4圖所示,充電電 流模組310包含一定電流源511以及一補充電流源512。定電流源 201101690 511用來產生輸入參考電流111£1;、補充電流源512用來產生補充電流 △I,而輸入參考電流與補充電流ΔΙ的和即為充電電流k。 定電流源511包含一電晶體q4、一運算放大器〇p3以及一輸入 參考電阻Rref。運算放大器〇p3之一輸入端接收輸入參考電壓 Vin_ref ;藉由運算放大器〇p3控制電晶體q4,得定電流源5U便可 產生大小為(VrN REF/RREF)的電流,並將其設為輸入參考電流Iin ref。 〇 補充電流源512包含兩電晶體q2及q3、兩運算放大器0Pl及 01>2以及一調整電阻RX1。運算放大器〇Ρι之一輸入端接收輸入參考 電壓ViN REF、運算放大器OP2之一輸入端接收輸入電壓ViN ;藉由 運算放大器0Ρ#0Ρ2分別控制電晶體Q2與Q3,補充電流源512 便可產生大小為[(Vnsj—V^ ref)/^]的電流,並將其設為補充電流 △I。 充電電流Ic可對斜波電容Cramp充電,其可以下式表示:See Figure 3 for the next month. Figure 3 is a block diagram of a ramp generator 3 (8) 2 in accordance with a preferred embodiment of the present invention. As shown in FIG. 3, the ramp generator 3A includes a ramp capacitor c_, a charge current module 310, and a discharge module 320. The peak-to-peak value Vrampj>tp of the ramp signal can be generated and adjusted by detecting the change of the input voltage VrN, so that the adjustable gain is maintained at a certain value. When the ramp signal VraMP is lowered to the low threshold voltage V1 (set value), the charging current module 310 starts to charge the ramp capacitor 0_ to increase the voltage of the ramp signal 乂_, when the ramp signal Vramp rises to a high level. When the voltage level of the threshold voltage Vh is (approximately) equal to or higher than), the discharge module 320 discharges the ramp capacitor c_ to reduce the ramp frequency Vramp. Therefore, the high peak value of the ramp signal is the high threshold voltage Vh; the low peak value of the ramp signal v_ is the low threshold voltage V1. In other words, the peak-to-peak value ν_ρ ρτρ of the ramp signal VramP is (Vh_Vl). The ramp generator 3 generates a periodic ramp signal VraMP by the charging and discharging process of the charging current module 310 and the discharging module 320. One circuit embodiment of the charging current module 310 is as shown in FIG. 4, and the charging current module 310 includes a constant current source 511 and a supplementary current source 512. The constant current source 201101690 511 is used to generate the input reference current 111£1; the supplementary current source 512 is used to generate the supplemental current ΔI, and the sum of the input reference current and the supplemental current ΔΙ is the charging current k. The constant current source 511 includes a transistor q4, an operational amplifier 〇p3, and an input reference resistor Rref. The input terminal of the operational amplifier 〇p3 receives the input reference voltage Vin_ref; the operational amplifier 5b is controlled by the operational amplifier 〇p3, and the current of the current source 5U is generated to generate a current of (VrN REF/RREF) and set it as an input. Reference current Iin ref.补 Supplementary current source 512 includes two transistors q2 and q3, two operational amplifiers OP1 and 01>2, and an adjustment resistor RX1. The input terminal of the operational amplifier 〇Ρι receives the input reference voltage ViN REF, and the input terminal of the operational amplifier OP2 receives the input voltage ViN; the operational amplifiers 0Ρ#0Ρ2 respectively control the transistors Q2 and Q3, and the current source 512 is supplemented to generate the size. The current of [(Vnsj - V^ ref) / ^] is set to the supplementary current ΔI. The charging current Ic can charge the ramp capacitor Cramp, which can be expressed by:

Ic = Iref + ΔΙ = IREF + Δ Vn^ / Rx = Vin_ref / Rref + (V^-V^ref) / Rx …(5); 因此由上式可看出充電電流Ic會隨著輸入電壓ViN改變而改變。 第5圖為本發明較佳實施例之斜波產生器之充電電流模組31〇 之另一電路實施方式示意圖。如第5圖所示,充電電流模組31〇包 含一疋電流源611以及一補充電流源612。定電流源611運作原理 201101690 與之前所述之定電流源511相同,於此不再贅述。 補充電流源612包含一次補充電流源6121以及一乘法器 6122。次補充電流源6121運作原理與第4圖中之補充電流源512 相同’因此,電阻RX2上會橫跨電壓差(ViN — Vi^REF)使得電晶體Q6 汲取的電流大小為[(ViN — ViN R^/RxJ,並將其設定為差異電流Im。 乘法器6122包含一比較器CMP2、一低通濾波器LPF、一開關S% 〇 以及一電阻RM。乘法器6122係用來將次補充電流源6121所產生的 差異電流Im,乘以IlN_REF倍,以產生補充電流ΔΙ。換句話說,第5 圖中之調整電阻RX2的阻值應為第4圖中之調整電阻RX1的阻值的 IiN_REF倍,如此補充電流源612與512所產生的補充電流大小便 為相同。 於乘法器6122中,比較器CMP2接收一外部斜波訊號Vramp Εχτ ^ 以及輸入參考電壓Vin ref ;比較器CMP2比較外部斜波訊號Ic = Iref + ΔΙ = IREF + Δ Vn^ / Rx = Vin_ref / Rref + (V^-V^ref) / Rx (5); Therefore, it can be seen from the above equation that the charging current Ic changes with the input voltage ViN And change. Figure 5 is a schematic diagram of another circuit embodiment of the charging current module 31A of the ramp generator of the preferred embodiment of the present invention. As shown in FIG. 5, the charging current module 31 includes a current source 611 and a supplemental current source 612. The operating principle of the constant current source 611 201101690 is the same as the constant current source 511 described above, and will not be described here. Supplemental current source 612 includes a primary supplemental current source 6121 and a multiplier 6122. The secondary supplemental current source 6121 operates in the same manner as the supplemental current source 512 in Figure 4. Therefore, the voltage across the voltage difference (ViN - Vi^REF) across the resistor RX2 causes the current drawn by the transistor Q6 to be [(ViN - ViN). R^/RxJ is set to the difference current Im. The multiplier 6122 includes a comparator CMP2, a low pass filter LPF, a switch S% 〇, and a resistor RM. The multiplier 6122 is used to supplement the current. The difference current Im generated by the source 6121 is multiplied by 11N_REF times to generate a supplemental current ΔΙ. In other words, the resistance of the adjustment resistor RX2 in FIG. 5 should be the IiN_REF of the resistance of the adjustment resistor RX1 in FIG. In addition, the complementary current generated by the current sources 612 and 512 is the same. In the multiplier 6122, the comparator CMP2 receives an external ramp signal Vramp Εχτ ^ and the input reference voltage Vin ref; the comparator CMP2 compares the external slope Wave signal

VraMP_EXT與輸入參考電壓Vn^REF,以產生一開關控制訊號Sm,來 控制開關SW開啟或_。當開關SWl開啟(其控制端i雛至控 制端2)時,差異電流IM會直接流通到電壓源Vcc而不會流進低通遽 波器LPF ·,反之,當開關SWl關閉(其控制端i輕接至控制端〇時二 差異電流ιΜ會直紐祕贿妓LPF,低通敵器lpf係將法 進低通濾波器LPF的差異電流lM平均,如此以完成乘上一咖倍: 201101690 ·. 此外,放電模組320之一電路實施方式係如第6圖所示,放電 模組320包含一比較器cMp” 一開關SW2、一臨界電壓電路321 以及一放電電源322。臨界電壓電路321根據來自充電電流模組31〇 之充電電流Ic,以產生高臨界電壓VH,並輸入至比較器CMPi之負 輸入端。於第6圖中’臨界電壓電路321可以一臨界電阻^^來實現。 比較器CMP3用來接收斜波訊號Vramp與高臨界電壓Vh,並比較斜 波訊號VraMP與高臨界電壓Vh以產生放電觸發訊號心。當斜波訊 〇 號¥^碰上升至高臨界電壓Vh之電壓準位時(大約等於或高於),比 較器CMP3輸出代表「導通」的放電觸發訊號心至開關SW2之控制 端C,以使開關SW2之控制端1耦接開關SW2之控制端2❶因此, • 放電電源322透過開關SW2耦接至斜波電容C_P,而從斜波電容 Cramp汲取放電電流ID,以對斜波電容Cramp進行放電,來降低斜 波訊號Vramp。此外,放電電源322可以一電壓源Vd來實現。 Q 本實鈀例中放電模組320的高臨界電麗VH會動態地改變。更 明媒地說,放電模組32〇係根據充電電流^的大小,決定高臨界電 壓VH的大小。高臨界電壓γΗ可以下式表示: VH = Vh_reF +ΔνΗ = VH一REF + δι X Rh…⑹; 其中νΗ,絲高臨界參考賴(粒)、AVh赫臨界電壓、 RH表示臨界電阻;AVh等於ΔΙ χ & (_人賴^改變而改變), 因此由上式可看出高臨界電壓%會隨著充電電流^改變而改變。 而由於斜波訊號v_的峰對峰值v_—pt4(Vh-Vl),且低臨界 電壓vL為定值’因此斜波訊號乂_的峰對峰鮮隱―便會隨 201101690 著高臨界電壓vH而改變。更進一步地說,由於輸入電壓、會影響 充電電流ic的大小,且充電電流Ic亦會影響高臨界電壓^^的大小, 因此可推知斜波訊號Vramp的峰對峰值Vrampptp會隨著輸入電壓VraMP_EXT and the input reference voltage Vn^REF are used to generate a switch control signal Sm to control the switch SW to be turned on or _. When the switch SW1 is turned on (its control terminal i is to the control terminal 2), the differential current IM flows directly to the voltage source Vcc without flowing into the low-pass chopper LPF. On the contrary, when the switch SW1 is turned off (its control terminal) When the light is connected to the control terminal, the difference current ιΜ will be the secret bribe 妓 LPF, the low-pass enemy lpf will be the low-pass filter LPF differential current lM average, so to complete the multiplier: 201101690 In addition, one circuit embodiment of the discharge module 320 is as shown in FIG. 6. The discharge module 320 includes a comparator cMp", a switch SW2, a threshold voltage circuit 321, and a discharge power source 322. The threshold voltage circuit 321 According to the charging current Ic from the charging current module 31, a high threshold voltage VH is generated and input to the negative input terminal of the comparator CMPi. In FIG. 6, the threshold voltage circuit 321 can be realized by a critical resistance. The comparator CMP3 is configured to receive the ramp signal Vramp and the high threshold voltage Vh, and compare the ramp signal VraMP with the high threshold voltage Vh to generate a discharge trigger signal center. When the ramp signal is raised to a voltage of a high threshold voltage Vh Level (about equal to or high) The comparator CMP3 outputs a discharge trigger signal signal representing "on" to the control terminal C of the switch SW2, so that the control terminal 1 of the switch SW2 is coupled to the control terminal 2 of the switch SW2. Therefore, the discharge power source 322 is coupled through the switch SW2. Connected to the ramp capacitor C_P, and the discharge current ID is extracted from the ramp capacitor Cramp to discharge the ramp capacitor Cramp to reduce the ramp signal Vramp. In addition, the discharge source 322 can be implemented by a voltage source Vd. In the palladium case, the high-critical current VH of the discharge module 320 is dynamically changed. More specifically, the discharge module 32 determines the size of the high threshold voltage VH according to the magnitude of the charging current ^. The high threshold voltage γΗ can The following equation is expressed as: VH = Vh_reF + ΔνΗ = VH - REF + δι X Rh... (6); where ν Η, the wire high critical reference lag (grain), the AVh Hz threshold voltage, RH represents the critical resistance; AVh is equal to ΔΙ χ & (_ The person changes depending on the change), so it can be seen from the above equation that the high threshold voltage % will change as the charging current changes. And because the peak-to-peak value of the ramp signal v_ is v_-pt4 (Vh-Vl), and Low threshold voltage vL is fixed value 'so oblique The peak-to-peak difference of the signal 乂_ will change with the high threshold voltage vH of 201101690. Further, since the input voltage will affect the magnitude of the charging current ic, and the charging current Ic will also affect the high threshold voltage^ The size of ^, so it can be inferred that the peak-to-peak value of the ramp signal Vramp Vrampptp will follow the input voltage

Vjn的大小而改變。也就是說,當輸入電壓ViN改變時,斜波訊號The size of Vjn changes. That is, when the input voltage ViN changes, the ramp signal

Vramp的峰對峰值Vramp—ptp會隨之改變’因而能夠使得可調變增益 約略穩定於一定值。 〇 第7圖係本發明較佳實施例之斜波產生器中相關訊號之示意 圖從第7圖可看出,本發明之精神係在於當輸入電壓改變時, 充電電流Ic的大小與高臨界電壓¥}{的大小隨之改變,而使斜波訊 號Vramp之峰對峰值ρΤρ也跟著改變,如此一來可調變增益將 約略穩疋於-定值。如第7圖所示,當輸人雜I上升(增加△&) 時,充電電流Ic上升(增加△!)、高臨界電壓%亦上升(增加△%), 而斜波訊號Vmmp的峰對峰值Vramp—ptp亦隨之改變,如此以讓可調 變增益維持為定值。The peak-to-peak value of Vramp Vramp-ptp will change accordingly' thus enabling the adjustable gain to be approximately stable to a certain value. FIG. 7 is a schematic diagram of related signals in a ramp generator according to a preferred embodiment of the present invention. As can be seen from FIG. 7, the spirit of the present invention is the magnitude of the charging current Ic and the high threshold voltage when the input voltage is changed. The size of ¥}{ changes, and the peak of the ramp signal Vramp changes with the peak value ρΤρ, so that the adjustable gain will be approximately steady-set. As shown in Fig. 7, when the input impurity I rises (increases △ &), the charging current Ic rises (increases Δ!), the high threshold voltage % also rises (increases Δ%), and the peak of the ramp signal Vmmp The peak value of Vramp_ptp also changes, so that the adjustable gain is maintained at a constant value.

)J 、第8圖係本發明較佳實施例之斜波產生器3〇〇之電路示意圖。 於2 8圖中’充電電流模組31()係以第$圖之電路實施方式為例以 使二者充分了解;然亦可以第4圖之實施方式或其他方式來實現。 於第8圖中’額外增加了電晶體Q7、Q8與Q9。電晶體(^與仏形 成電机鏡以複製充電電流Ic,來對斜波電充電。電晶體 Q7與成n錄,以複製充電電奸,以使臨界電阻知上 產生臨界轉Vh。充電電流模組之X作原理與與結構如同第5 11 201101690 圖所不。充電電流模組31 〇根據輸入參考電壓ViNjtEF以及輸入電壓 - 源VlN之電壓(設為輸入電壓Vin),產生一充電電流ic。第8圖之電 路運作原理與前述相同,於此不再贅述。 此外’雖然於本發明之實施例中,僅舉輸入電壓Vin升高為例, 然而輸入電壓Vm下降的情況,亦包含於本發明中。更明確地說, 當輸入電麼Vtn下降時,充電電流Ic與高臨界電壓%亦會隨之下 〇降,以調降斜波訊號v_>的峰對峰值V_>_PTP,來使得可調變增 益仍能約略穩定於一定值。 請參考第9圖。第9圖係為應用本發明之斜波產生器之降壓式 電源轉換器900之示意圖。除了斜波產生器3〇〇之外,降壓式電源 轉換器900之結構及工作原理與第i圖中降壓式電轉換器_類 似,故不再贅述。由於降壓式電源轉換器9⑽使用了本發明之斜波 〇產生器300,因此其可調變增益不會隨著輸入電壓、改變而改變, 而是維持在-定值。如此降壓式電源轉換器_便可提供穩定的輸 此外’雖然於本發明中僅舉應用本發明之斜波產生器之降 電源轉換㈣例、《他類型之電源轉難,如升壓式電源轉‘ 升/降壓式電源轉換H,皆可_本發明之斜波產^,簡_ 知,故不在本文中贅述 輸入電壓改_可峨增益。其他_之電轉換料業界所習心 12 201101690 &上所述’本發明之斜波產生器可根據輸入電壓以調整斜波訊 號。因此,利用本發明之斜波產生器,當電源轉換器之輸入電壓不 穩定時,電源轉換器之可調變增益仍可維持不變,進而產生更穩定 的輪出電壓’提供給使用者更大的便利性。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 〇所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖係為說明一先前技術之降壓式電源轉換器之示意圖。 第2圖係為說明在第!圖中之開關控制訊號與輸出電壓關係之示意 圖。 帛3圖係為本發明之可維持可調變增益不變之斜波產生器之方塊 w 圖。 第4圖係為本發明之斜波產生ϋ之充電電流模組之第-實施例之示 意圖。 第5圖係為本發明之斜波產生器之充電電麵組之第二實施例之示 意圖。 第6圖係為本發明之放電模組之實施例之示意圖。 =7圖係為,本發明之斜波產生賊產生之斜波訊號根據輸入電 壓改變而維持可調變增益不變之示意圖。 13 201101690 第8圖係為本發明之斜波產生器之電路示意圖。 第9圖係為應用本發明之斜波產生器之降壓式電源轉換器之示意 圖。 【主要元件符號說明】 100、900 降壓式電源轉換器 Ο 110 工作週期調整器 111 誤差放大器 112、300 斜波產生器 310 充電電流模組 320 放電模組 321 臨界電壓電路 322 放電電源 511 > 611 定電流源 〇 512 、 612 補充電流源 6121 次補充電流源 6122 乘法器 CMPi ' CMP2 ' CMP3 比較器 Di 二極體 Ic 充電電流 Id 放電電流 Im 差異電流 201101690J and FIG. 8 are circuit diagrams of a ramp generator 3〇〇 according to a preferred embodiment of the present invention. In the figure of Fig. 8, the charging current module 31() is exemplified by the circuit embodiment of Fig. $ to make the two fully understood; however, it can also be implemented by the embodiment of Fig. 4 or other means. In Figure 8, the transistors Q7, Q8 and Q9 are additionally added. The transistor (^ and 仏 form a motor mirror to reproduce the charging current Ic to charge the ramp wave. The transistor Q7 is recorded with n to reproduce the charge, so that the critical resistance is known to produce a critical turn Vh. The principle and structure of the module X is the same as that of the 5th 11 201101690. The charging current module 31 产生 generates a charging current ic according to the input reference voltage ViNjtEF and the input voltage - the voltage of the source VlN (set to the input voltage Vin). The operation principle of the circuit of Fig. 8 is the same as the above, and will not be described here. Further, although in the embodiment of the present invention, only the input voltage Vin is increased as an example, the case where the input voltage Vm is decreased is also included in In the present invention, more specifically, when the input voltage Vtn drops, the charging current Ic and the high threshold voltage % also drop down to lower the peak-to-peak value of the ramp signal v_>___TPP. Therefore, the adjustable gain can still be stabilized at a certain value. Please refer to Fig. 9. Fig. 9 is a schematic diagram of a buck power converter 900 to which the ramp generator of the present invention is applied, except for the ramp generator 3〇. In addition to 〇, buck-type electricity The structure and working principle of the converter 900 are similar to those of the buck converter in FIG. i, and therefore will not be described again. Since the buck power converter 9(10) uses the ramp generator 300 of the present invention, it can The modulation gain does not change with the input voltage and change, but is maintained at a constant value. Thus, the buck power converter can provide a stable input, although in the present invention, only the oblique application of the present invention is applied. Wave generator generation power conversion (four), "other types of power transfer difficulties, such as boost power supply turn" / buck power conversion H, can be _ the invention of the oblique wave production ^, simple _ know, so I will not repeat the input voltage change _ 峨 gain. Other _ electric conversion materials industry habits 12 201101690 & described above 'the ramp generator of the present invention can adjust the ramp signal according to the input voltage. Therefore, the use In the ramp generator of the present invention, when the input voltage of the power converter is unstable, the adjustable gain of the power converter can be maintained, thereby generating a more stable turn-off voltage, which provides greater convenience to the user. Sex. The above is only for this. The preferred embodiments of the present invention, all of which vary within the scope of the present invention, are intended to be within the scope of the present invention. [FIG. 1 is a description of a prior art buck. Schematic diagram of the power converter. Fig. 2 is a schematic diagram showing the relationship between the switching control signal and the output voltage in the Fig. 帛3 diagram is the ramp generator capable of maintaining the variable gain constant in the present invention. Figure 4 is a schematic view of the first embodiment of the charging current module of the ramp wave generating device of the present invention. Fig. 5 is the second embodiment of the charging electric panel of the ramp generator of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 6 is a schematic view showing an embodiment of a discharge module of the present invention. The =7 picture is a schematic diagram of the ramp wave generated by the ramp wave of the present invention which maintains the adjustable gain according to the input voltage change. 13 201101690 Figure 8 is a schematic diagram of the circuit of the ramp generator of the present invention. Figure 9 is a schematic diagram of a buck power converter to which the ramp generator of the present invention is applied. [Main component symbol description] 100, 900 buck power converter Ο 110 duty cycle regulator 111 error amplifier 112, 300 ramp generator 310 charging current module 320 discharge module 321 critical voltage circuit 322 discharge power supply 511 > 611 constant current source 〇 512, 612 supplementary current source 6121 times secondary current source 6122 multiplier CMPi ' CMP2 ' CMP3 comparator Di diode Ic charging current Id discharge current Im differential current 201101690

Iref 輸入參考電流 L 電感 LPF 低通遽波器 OP! ' OP2 ' OP3 ' 〇P4 ' OP5 運算放大器 Qi Q2、Q3、Q4、Q5、Q6、Q7、 Q8、Q9 功率開關 電晶體 Ri、R2、Rm 電阻 Rh 臨界電阻 Rx 調整電阻 sc 放電觸發訊號 Ssw、Sm 開關控制訊號 sw!、SW2 開關 T〇N ' Τχ 導通時間 Ts 週期 Vduty 責任電壓 Vfb 回授電壓 Vh 臨界電壓 VhreF 臨界參考電壓 ViN 輸入電壓 ViNREF 輸入參考電壓 V〇UT 輸出電壓 15 201101690Iref input reference current L inductor LPF low pass chopper OP! ' OP2 ' OP3 ' 〇 P4 ' OP5 operational amplifier Qi Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9 power switch transistor Ri, R2, Rm Resistor Rh Critical resistance Rx Adjustment resistance sc Discharge trigger signal Ssw, Sm Switch control signal sw!, SW2 Switch T〇N ' Τχ On time Ts Period Vduty Responsible voltage Vfb Feedback voltage Vh Threshold voltage VhreF Critical reference voltage ViN Input voltage ViNREF Input Reference voltage V〇UT Output voltage 15 201101690

VramP 斜波訊號 VraMP—EXT 外部斜波訊號 Vref 參考電壓 Vcc、Vss、Vd 電壓源 ΔΙ 補充電流 △vH 臨界電壓差 ΔΥιν 輸入電壓差 16VramP ramp signal VraMP—EXT external ramp signal Vref reference voltage Vcc, Vss, Vd voltage source ΔΙ supplementary current △vH threshold voltage difference ΔΥιν input voltage difference 16

Claims (1)

201101690 •1 七、申請專利範圍: 1. 一種穩定可調變增益之斜波產生器(rampgenerator),用來產生一 斜波訊號(ramp signal),該斜波產生器包含: 一斜波電容,用來輸出該斜波訊號; 一充電電流模組,用來根據一輸入電壓源之電壓與一輸入參考 電壓,產生一對應大小之充電電流,以對該斜波電容進行充 〇 電;以及 一放電模組’用以比較該斜波訊號以及一臨界電壓,以使該斜 波電容放電,其中該臨界電壓係依據該充電電流而變化。 2. 如請求項1所述之斜波產生器,其中該放電模組包含: 一臨界電壓電路,用來根據該充電電流,產生該臨界電壓; 一比較器’用來根據該臨界電壓與該斜波訊號,輸出一放電觸 q 發訊號;以及 一放電電路,用來根據該放電觸發訊號,對該斜波電容放電。 3. 如請求項2所述之斜波產生器,其中該臨界電壓電路包含·· 一臨界電阻,用來將該充電電流,轉換成該臨界電壓。 4. 如請求項2所述之斜波產生器,其中該放電電路包含: 一放電電源;以及 一開關’用來根據該放電觸發訊號,將該斜波電容耦接至該放 17 .201101690 *; 電電壓源以進行放電。 5. 如請求項1所述之斜波產生器,其中該充電電流模組包含: 一定電流源,用來根據該輸入參考電壓,產生對應大小之輸入 參考電流;以及 一補充電流源,用來根據該輸入電壓源之電壓與該輸入參考電 壓之差異,產生一補充電流; ❹ 其中該輸入參考電流與該補充電流之總和即為該充電電流。 6. 如請求項1所述之斜波產生器,其中該充電電流模組包含: 一定電流源,用來根據該輸入參考電壓,產生對應大小之輸入 參考電流;以及 一補充電流源’用來根據該輸入電壓源之電壓與該輸入參考電 壓之差異,產生一補充電流,該補充電流源包含: 一次補充電流源,用來根據該輸入電壓源之電壓與該輸入參 D μ 考電壓之差異,產生一差異電流;以及 一乘法器,包含: 一比較器,用來根據該輸入參考電壓與一外部斜波訊 號,產生一開關控制訊號; 一低通濾波器,用來輸出該補充電流;以及 一開關,耦接於該次補充電流源與一定電壓源之間’用 來根據該開關控制訊號,將該差異電流導通至該定 電壓源或該低通濾波器; 18 .201101690 其中該輸入參考電流與該補充電流之總和即為該充電電流。 7. —種具穩定可調變增益之電源轉換系統,包含: 一功率開關(powerswitch),耦接至一輸入電源; 一工作週期調整器,用來產生一具有可調整工作週期責任比的 開關控制訊號’以控制該功率開關,該工作週期調整器包含: 如請求項1所述之斜波產生器;以及 ❹ -比較11 ’用來比較一責任電壓及該斜波產生器所產生之斜 波訊號,以產生該開關控制訊號。 8. —種穩定一電源轉換系統之可調變增益之方法,包含: 根據一輸入電壓源之電壓,調整一充電電流; 以該充電電流對-斜波電容充電,產生一斜波訊號; 根據該輸入電壓源之電壓,調整一臨界電壓;以及 〇 t該斜波喊大約S於或等於触界賴時,雜斜波電容進 行放電,以使該可調變增益大約為一定值。 9·如《•月求項8所述之方法’其中根據該輸入電歷源之電壓,調整 該充電電流包含: 提供一輸入參考電壓; 根據該輸人賴源之電额輯人參考賴之轉,產生一補 充電流;以及 合併該輸入參考電壓對應之—於 , T您I輸入參考電流與該補充電流,作 19 201101690 為該充電電流。 10.如請求項9所述之方法,其中根據該輸入電壓源之電壓,調整 該臨界電壓包含: 根據該充電電流,產生該臨界電壓。 八、圖式:201101690 •1 VII. Patent application scope: 1. A ramp generator with stable adjustable gain, which is used to generate a ramp signal, the ramp generator includes: a ramp capacitor, The charging current module is configured to generate a corresponding charging current according to a voltage of an input voltage source and an input reference voltage to charge the ramp capacitor; and The discharge module ' is configured to compare the ramp signal and a threshold voltage to discharge the ramp capacitor, wherein the threshold voltage varies according to the charging current. 2. The ramp generator of claim 1, wherein the discharge module comprises: a threshold voltage circuit for generating the threshold voltage according to the charging current; a comparator 'for using the threshold voltage according to the threshold voltage The ramp signal outputs a discharge touch signal, and a discharge circuit for discharging the ramp capacitor according to the discharge trigger signal. 3. The ramp generator of claim 2, wherein the threshold voltage circuit comprises a threshold resistor for converting the charging current to the threshold voltage. 4. The ramp generator of claim 2, wherein the discharge circuit comprises: a discharge power source; and a switch 'for coupling the ramp capacitor to the discharge according to the discharge trigger signal. 17.201101690 * ; An electric voltage source to discharge. 5. The ramp generator of claim 1, wherein the charging current module comprises: a constant current source for generating an input reference current of a corresponding magnitude according to the input reference voltage; and a supplemental current source for And generating a supplemental current according to the difference between the voltage of the input voltage source and the input reference voltage; wherein the sum of the input reference current and the supplemental current is the charging current. 6. The ramp generator of claim 1, wherein the charging current module comprises: a constant current source for generating an input reference current of a corresponding magnitude according to the input reference voltage; and a supplemental current source 'used Generating a supplemental current according to the difference between the voltage of the input voltage source and the input reference voltage, the supplemental current source comprising: a supplemental current source for determining a difference between the voltage of the input voltage source and the input parameter D μ test voltage And generating a difference current; and a multiplier comprising: a comparator for generating a switch control signal according to the input reference voltage and an external ramp signal; and a low pass filter for outputting the supplemental current; And a switch coupled between the supplemental current source and a certain voltage source to be used to conduct the differential current to the constant voltage source or the low pass filter according to the switch control signal; 18 .201101690 wherein the input The sum of the reference current and the supplemental current is the charging current. 7. A power conversion system with stable adjustable gain, comprising: a power switch coupled to an input power source; a duty cycle adjuster for generating a switch having an adjustable duty cycle duty ratio Controlling the signal ' to control the power switch, the duty cycle adjuster comprising: the ramp generator as described in claim 1; and ❹ - comparing 11 ' for comparing a responsible voltage with the ramp produced by the ramp generator Wave signal to generate the switch control signal. 8. A method for stabilizing a variable gain of a power conversion system, comprising: adjusting a charging current according to a voltage of an input voltage source; charging the ramp capacitor with the charging current to generate a ramp signal; The voltage of the input voltage source is adjusted by a threshold voltage; and when the ramp wave is about S or equal to the threshold, the hash capacitor is discharged so that the adjustable gain is about a certain value. 9. The method of claim 8 wherein the charging current is adjusted according to the voltage of the input electrical source includes: providing an input reference voltage; according to the power source of the input source Turning, generating a supplemental current; and merging the input reference voltage corresponding to -, T, the I input reference current and the supplemental current, making 19 201101690 as the charging current. 10. The method of claim 9, wherein adjusting the threshold voltage according to a voltage of the input voltage source comprises: generating the threshold voltage according to the charging current. Eight, the pattern: 2020
TW98120843A 2009-06-22 2009-06-22 Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof TWI399037B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98120843A TWI399037B (en) 2009-06-22 2009-06-22 Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98120843A TWI399037B (en) 2009-06-22 2009-06-22 Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof

Publications (2)

Publication Number Publication Date
TW201101690A true TW201101690A (en) 2011-01-01
TWI399037B TWI399037B (en) 2013-06-11

Family

ID=44837093

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98120843A TWI399037B (en) 2009-06-22 2009-06-22 Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof

Country Status (1)

Country Link
TW (1) TWI399037B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470908B (en) * 2012-08-21 2015-01-21 Upi Semiconductor Corp Control circuit, time calculating unit, and operating method for control circuit
CN104377959A (en) * 2013-08-16 2015-02-25 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
TWI655819B (en) * 2017-11-24 2019-04-01 致茂電子股份有限公司 Control method for a switching power supply apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449175B1 (en) * 2000-08-11 2002-09-10 Astec International Limited Switched magamp post regulator
US6452425B1 (en) * 2001-02-13 2002-09-17 Exar Corporation Automatic frequency rate switch
TWI312223B (en) * 2003-11-14 2009-07-11 Beyond Innovation Tech Co Ltd A pulse width modulation control circuit and the loading system of its application
US7498793B2 (en) * 2007-03-09 2009-03-03 O2Micro International Ltd. Current-mode DC-to-DC-converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470908B (en) * 2012-08-21 2015-01-21 Upi Semiconductor Corp Control circuit, time calculating unit, and operating method for control circuit
CN104377959A (en) * 2013-08-16 2015-02-25 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
CN104377959B (en) * 2013-08-16 2017-04-26 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
TWI655819B (en) * 2017-11-24 2019-04-01 致茂電子股份有限公司 Control method for a switching power supply apparatus

Also Published As

Publication number Publication date
TWI399037B (en) 2013-06-11

Similar Documents

Publication Publication Date Title
TWI324445B (en) Compensation offset adjustment scheme for fast reference voltage transitioning
TWI732815B (en) Voltage regulator, electronic device, and method of converting input voltage to output voltage
KR100967474B1 (en) Switching regulators and electronics with them
CN111869072B (en) Control circuit of voltage conversion circuit
TW201034363A (en) Buck-boost power converter and its control method
TW201021388A (en) Analog variable-frequency controller and DC-DC switching converter with thereof
JP2012510247A (en) Switch mode voltage regulator
TW201206032A (en) System and method for detection and compensation of aggressive output filters for switched mode power supplies
TWI456882B (en) Voltage regulator and control circuit and method therefor
TW200838109A (en) Soft shutdown circuit of voltage regulator and corresponding method thereof
TW201346479A (en) Method and apparatus for all duty current sensing in current mode converter
US20130063105A1 (en) Dc-dc converter control circuit and dc-dc converter including same
TWI363946B (en) Power supplies, power supply controllers, and power supply controlling methods
TWI479780B (en) Synchronous buck converter
TW201025812A (en) DC-DC converter providing soft-start function
TW201218601A (en) Current mode switching regulator and control circuit and control method thereof
TW201212711A (en) LED drivers with adaptive hysteretic control circuits and associated methods of operation
CN113533840A (en) Analog current generating circuit of power conversion circuit and method thereof
JP5642349B2 (en) Pulse width modulation circuit, pulse width modulation method and regulator
TW201101690A (en) Ramp generator capable of stabilizing modulator gain, power converting system, and method thereof
TWI779997B (en) Constant time buck-boost switching converter and modulation control circuit and control method thereof
TWI418129B (en) Charge pump apparatus and regulation method thereof
CN113726159B (en) Buck converter and electronic device
JP2010226820A (en) Input current limiting circuit and power unit using the same
JP2010226821A (en) Output current limiting circuit and power unit using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees