201101529 六、發明說明: 【發明所屬之技術領域】 本發明係關於藉由雷射製程之邊緣膜移除之方法與設 備,尤其係關於藉由雷射製程之邊緣膜移除以製造光伏 裝置之方法與設備。 【先前技術】201101529 VI. Description of the Invention: [Technical Field] The present invention relates to a method and apparatus for edge film removal by a laser process, and more particularly to the manufacture of a photovoltaic device by edge film removal by a laser process Methods and equipment. [Prior Art]
光伏(pv)裴置或太陽能電池是將日光轉換成直流電流 (DC)電力的裝置。典型地,pv或太陽能電池具有一或多 個p-i-ri接合區。各接合區包含兩個在半導體材料内之不 同的區域,其中一側稱為p_型區域且另一側稱為n型區 域。當PV電池之p-i_n接合區暴露於日光(其由來自光子 之能量構成)時,日光經由PV效應直接地被轉換成電 力。PV太陽能電池產生特定量的電力,並且該些電池係 被为成尺寸可輸送期望量之系統功率的模組。PV模组是 藉由連接數個PV太陽能電池來建立,並且接著和特定 框架及連接器結合成面板。 典型地’PV太陽能電池包括複數個導電與介電材料, 其位在基材上以形成太陽能電池裝置。可在不同的沉積 設備中形成該複數個導電與介電材料,其中沿著基材邊 緣形成的各層的輪廓及尺寸是不同的β因此,不同之用 來沉積膜堆疊於基材表面上的沉積製程會時常在基材邊 緣處導致不匹配的膜輪廓與膜厚度。通常移除形成在基 201101529 2邊的膜㈣,以致基材準備進行㈣的封裝或黏接 程’其中該些封裝或黏接製程係容許太陽能電 被支撐且被框架。形成在基材邊緣上之不匹配的邊 輪靡及膜厚度時常使膜移除製程變得困難且不完全因 而導致不希望的殘餘材料,該殘餘材料會造成後續的封 裝與(或)黏接製程問題。 Ο 所以’亟需一種用以從用於形成光伏裝置之基材之邊 緣來移除材料之改良法與設備。 【發明内容】 本發明係提供一種用以沿著基材邊緣來移除膜之方法 與設備°此方法對於製造光伏裝置是特別有利的。在一 實施例中’一種用以製造太陽能電池裝置於一基材上之 方法包含:提供一基材至一邊緣材料移除設備,其中該 基材具有複數個材料設置在該基材之一背側上,該些複 〇 數個材料包括至少一第一摻雜矽材料與一介電質材料; 以及藉由設置在該設備中之一光纖雷射輻射來移除形成 在該基材之周邊區域上之數個層中之至少一層。 在另一實施例中,一種邊緣材料移除設備包含:一階 台;一平移機構,其用以控制該階台之移動;以及一光 纖雷射模組’其設置在鄰近該階台處,其中該光纖雷射 模組更包含:一雷射輻射源;以及一聚焦光學模組,具 有一光纖設置在其中,其中該光纖係設以接收從該雷射 201101529 輻射源傳送之雷射輻射,並接著放大且放射該經接收之 雷射輻射朝向該階台之一邊緣。 在又另一實施例中’一種用以移除一基材之一周邊區 域上之數個層之方法包含:提供一基材至一邊緣材料移 除設備内,該基材具有一膜堆疊設置在該基材之一背侧 上,其中該膜堆疊包括至少一圖案化膜堆疊,該至少一 圖案化膜堆疊具有一導電層填塞在該些圖案化膜堆疊之 間;提供一光纖雷射輻射朝向該基材之周邊區域;以及 藉由在大於1000 mm/s掃瞄速率下之該光纖雷射輻射從 該基材之周邊區域移除該膜堆疊。 【實施方式】 本發明之實施例係提供用以藉由使用一邊緣材料移除 設備來移除位在基材之周邊區域上之膜堆疊之一部分的 方法與設備。邊緣材料移除設備可利用一電磁能量源, ο 該電磁能量源係用以從基材之周邊區域去除膜堆疊之一 部分。在一實施例中,邊緣材料移除設備提供一源束, 源束具有期望的波長及能量的量以有效率地從基材之周 邊區域移除膜堆疊。在一實施例中,邊緣材料移除設備 可利用一光纖雷射源來從基材之周邊區域去除膜堆疊之 部分。在其他實施例中,邊緣材料移除設備可利用其 他類型的聚焦能量源(諸如電子束、離子束、或其他類似 的源)來從基材之周邊區域去除膜堆疊之一部分。 201101529 第1圖繪示一邊緣材料移除設備〗〇〇,其可用以從基 材之周邊區域移除一或多個臈》在一實施例中,邊緣= 料移除設備100包含一光纖雷射模組1〇6、一階台1〇3(其 設以接收基材1G2設置在其上)、及__平移機構;116(其設 以控制階台1〇3之移動)。光纖雷射模組1〇6包含一雷射 輻射源⑽與一聚焦光學模組126,聚焦光學模組126 位在雷射輻射源108與階台103之間。Photovoltaic (pv) devices or solar cells are devices that convert daylight into direct current (DC) power. Typically, a pv or solar cell has one or more p-i-ri junctions. Each lands contain two different regions within the semiconductor material, one side being referred to as a p-type region and the other side being referred to as an n-type region. When the p-i_n junction of the PV cell is exposed to daylight (which is composed of energy from photons), daylight is directly converted to electricity via the PV effect. PV solar cells produce a specific amount of power, and the cells are sized to deliver a desired amount of system power to the module. The PV module is built by connecting several PV solar cells and then combined into a panel with a specific frame and connector. Typically, a 'PV solar cell' includes a plurality of electrically conductive and dielectric materials positioned on a substrate to form a solar cell device. The plurality of conductive and dielectric materials can be formed in different deposition apparatus, wherein the layers formed along the edge of the substrate have different profiles and sizes. Therefore, the deposition of the deposited film on the surface of the substrate is different. Processes often result in mismatched film profiles and film thicknesses at the edges of the substrate. The film (4) formed on the side of the base 201101529 is usually removed, so that the substrate is ready for the packaging or bonding process of (4), wherein the packaging or bonding processes allow the solar power to be supported and framed. Mismatched side rims and film thicknesses formed on the edge of the substrate often make the film removal process difficult and incomplete, resulting in undesirable residual materials that can cause subsequent encapsulation and/or bonding. Process problems. Ο So there is a need for an improved method and apparatus for removing material from the edges of the substrate used to form the photovoltaic device. SUMMARY OF THE INVENTION The present invention provides a method and apparatus for removing a film along the edge of a substrate. This method is particularly advantageous for fabricating photovoltaic devices. In one embodiment, a method for fabricating a solar cell device on a substrate includes: providing a substrate to an edge material removal device, wherein the substrate has a plurality of materials disposed on one of the substrates On the side, the plurality of retanning materials include at least one first doped erbium material and a dielectric material; and are removed by the fiber laser radiation disposed in the device to form a periphery of the substrate At least one of several layers on the area. In another embodiment, an edge material removing apparatus includes: a first stage; a translation mechanism for controlling movement of the stage; and a fiber laser module disposed adjacent to the stage, The fiber laser module further includes: a laser radiation source; and a focusing optical module having an optical fiber disposed therein, wherein the optical fiber is configured to receive the laser radiation transmitted from the laser 201101529 radiation source, And then amplifying and radiating the received laser radiation towards one of the edges of the stage. In yet another embodiment, a method for removing a plurality of layers on a peripheral region of a substrate includes: providing a substrate to an edge material removal device having a film stacking arrangement On the back side of one of the substrates, wherein the film stack includes at least one patterned film stack having a conductive layer packed between the patterned film stacks; providing a fiber laser radiation Facing the peripheral region of the substrate; and removing the film stack from the peripheral region of the substrate by the fiber laser radiation at a scan rate greater than 1000 mm/s. [Embodiment] Embodiments of the present invention provide methods and apparatus for removing a portion of a film stack positioned on a peripheral region of a substrate by using an edge material removal device. The edge material removal device can utilize an electromagnetic energy source, ο which is used to remove a portion of the film stack from the peripheral region of the substrate. In one embodiment, the edge material removal device provides a source beam having a desired wavelength and amount of energy to efficiently remove the film stack from the peripheral region of the substrate. In one embodiment, the edge material removal device can utilize a fiber laser source to remove portions of the film stack from the peripheral regions of the substrate. In other embodiments, the edge material removal device may utilize other types of focused energy sources (such as electron beams, ion beams, or other similar sources) to remove a portion of the film stack from the peripheral region of the substrate. 201101529 Figure 1 illustrates an edge material removal device that can be used to remove one or more defects from the peripheral region of the substrate. In one embodiment, the edge = material removal device 100 includes a fiber ray. The firing module 1〇6, the first-stage stage 1〇3 (which is disposed on the receiving substrate 1G2), and the __translation mechanism; 116 (which is provided to control the movement of the stage 1〇3). The fiber laser module 1 〇 6 includes a laser radiation source (10) and a focusing optical module 126, and the focusing optical module 126 is located between the laser radiation source 108 and the stage 103.
〇 第2A圖繪示光纖雷射模組1〇"之雷射輻射源⑽ 與聚焦光學模.组W的-組態。雷㈣射源⑽包括一 泵送雷射源108A,其放射光束到聚焦光學模組126中之 光纖122。光纖122_為用來從果送雷射源i〇8a接收一 脈衝能量之一增益媒質,其中該脈衝能量具有一第一脈 衝波長與—第—脈衝能量°當被光纖122接收時,來自 :送雷射源1〇8Α之脈衝能量接著被放大且被放射朝向 一目標物(例如設置在階自1G3上之基材之邊緣)。增益 媒質之適當實例可以是摻雜以-或多個稀土金屬(例如 荆系金屬元素、_金屬元素),諸如斜、鈥、鏡、録、 镨鈥鏑、釤、或諸如此類者,之光纖。光放射原子(例 如稀土金屬)係被摻雜到光纖122的核心,其中該核心會 限制原子所放射之光…對鏡子m 12此可設置在光 纖122之各她,.、,_ 乂限制泵送輻射在光纖增益媒質内且容 許所放射之輻射從其離開。 在' 一實施例中,毛、¥ J τ策送雷射源108A可提供波長約90〇nm 至約 1000 nm , (1丨如約975 nm)之能量。隨著能量被輸送 7 201101529 通過光纖⑵’因被摻雜到光纖122内之元素的存在, 可獲得約950 nm至約刪nm (例如約刪nm)之操作 波長。在一實施例中,泵送雷射源1〇8八所輸送之功率是 在約10 W至約500 w之範園中(例如約⑽w)。雷射輕 射源刚所輸送之脈衝能量之操作頻率係被控制在約 kHz 至約 100 kHz。 在一實施例中’光纖122可包括一核心21〇、一内層 0 j12及一外層214,如第2B圖之剖視圖所示。核心21〇 可由具有稀土金屬摻雜在其中之陶瓷材料形成。適當之 含陶=材料可包括適當之介電材料,例如矽土含石夕材 料、碳化矽、氧化矽、及諸如此類者。在一實施例中, 經選擇來摻雜到核心21〇内的稀土金屬是餌或镱。内層 212可由具有第一折射率之材料製成,並且外層214可 由具有和第一折射率不同之第二折射率之材料製成。吾 等咸信,内層212與外層214間之大折射率對比可提升 〇當傳送通過光纖122時之光反射,藉此放大雷射放射效 率。在一實施例中,内層212與外層214可具有大於〇 3 的折射率差異’並且内層212與外層214可由適當之陶 瓷材料(例如矽土玻璃、碳化矽或諸如此類者)製成。 回第1圖’聚焦光學模组126也可包括—或多個準 直牛X將來自泵送雷射源108 A之輻射準直化成一實質 平行束然後,此經準直化之輻射束被至少—透鏡124 聚焦成—導向基材102之周邊區域110的輻射線112,如 第1圖所不。輻射112係被控制以使其沿著基材1〇2之 8 201101529 邊緣處的周邊區域112掃瞄,以移除形成在其上之膜堆 疊150之一部分。在一實施例中,輻射112可依需要繞 著基材102之邊緣掃瞄數次,直到膜堆疊15〇已經完全 地被移除。 透鏡124可以是能將輻射聚焦成一線或點之任何適當 之透鏡或系列透鏡。在一實施例中,透鏡丨24是—圓柱 透鏡。或者,透鏡124可以是一或多種凹透鏡、凸透鏡、 ^ 平面鏡子、凹鏡子、凸鏡子、折射透鏡、繞射透鏡、菲 涅爾透鏡(Fresnel lenses)、梯度折射率透鏡(gradient index lenses)、或諸如此類者。 邊緣材料移除設備100可包括平移機構116,平移機 構116係設以相對彼此地平移階台1〇3與輻射線112。在 一實施例中,平移機構116耦接到階台103,因此其適 於相對於雷射輻射源108與(或)聚焦光學模組126移動 階台103。在另一實施例中,平移機構丨丨6搞接到雷射 〇 輻射源iOS與(或)聚焦光學模組126,以移動雷射輻射源 108、聚焦光學模組126、與(或)一致動鏡子(未示出), 而使能量束相對於設置在階台103上之基材1〇2移動。 在又另一實施例中,平移機構116均移動雷射輻射源1〇8 與(或焦光學模組126以及階台1〇3。可以使用任何適 當之平移機構’例如運送系統、齒條齒輪系統、χ/y致動 器、機械手臂、或其他適當之機械或電動機械機構。或 者’階台103可以是設置成靜止的,而可以設置複數個 電流測定頭(galvanometric head,未示出)在基材邊緣周 201101529 圍’以依需求將來自雷射輻射源108之輻射導向基材邊 緣。 平移機構116可搞接到一控制器114,以控制階台1 〇 3 與輻射線112相對彼此移動之掃瞄速率。大致上,階台 103與輻射線112係相對彼此移動以致經輸送之能量僅 /〇著基材102之周邊區域110平移,從而不損壞基材1〇2 之其他區域。在一實施例中,平移機構116移動於一恆 0 定速率。在另一實施例中,階台103之平移與輻射線112 之移動係依循不同之由控制器i丨4所控制的路徑。 攝像機152可以被定位在邊緣材料移除設備1〇〇 中,以監視形成在基材102上之形成在膜堆疊15〇中之 圖案與(或)特徵。由於各基材1〇2可具有不同的圖案化 特徵形成於其上,攝像機152與控制器114可設以監視 且偵測形成在基材102之前側或背側之圖案與(或)特徵 的配置。接著,攝像機152與控制器j 14可以用於比較 〇 基材1 02之目前圖像與儲存在資料庫中之圖像,以判定 必須在後續步驟中從基材1〇2之邊緣移除之周邊區域 110之適當尺寸。 第3圓繪示用以製造太陽能電池元件於基材(例如第重 圖所不之基材102)上之一方法3〇〇。此方法開始於步驟 3〇2,其係提供基材1〇2到邊緣材料移除設備(例如第1 圖所示之邊緣材料移除設備1〇〇)内。基材1〇2可以是具 有複數個膜層沉積在其上之透明基材。在一實施例中, 基材1〇2可具有一第一透明導電層414、一膜堆疊416 201101529〇 Figure 2A shows the configuration of the laser radiation module (10) and the focusing optical mode group W of the fiber laser module. The Ray (four) source (10) includes a pumped laser source 108A that emits light into the fiber 122 in the focusing optics module 126. The optical fiber 122_ is a gain medium for receiving a pulse energy from the laser source i 〇 8a, wherein the pulse energy has a first pulse wavelength and a - first pulse energy ° when received by the optical fiber 122, from: The pulse energy of the laser source is then amplified and directed toward a target (e.g., at the edge of the substrate disposed on the 1G3). A suitable example of the gain medium may be an optical fiber doped with - or a plurality of rare earth metals (e.g., metal elements, metal elements) such as oblique, iridium, mirror, ruthenium, iridium, or the like. A light emitting atom (e.g., a rare earth metal) is doped to the core of the optical fiber 122, wherein the core limits the light emitted by the atom... the mirror m 12 can be disposed on each of the optical fibers 122, .,, _ 乂 limit pump The radiation is delivered within the fiber gain medium and allows the emitted radiation to exit therefrom. In an embodiment, the hair, the source of the laser source 108A can provide an energy having a wavelength of from about 90 〇 nm to about 1000 nm, (about 1, 975 nm). As the energy is delivered 7 201101529, the operating wavelength of about 950 nm to about nm (e.g., about nm) can be obtained by the presence of an element of the fiber (2)' that is doped into the fiber 122. In one embodiment, the power delivered by the pumped laser source 1 8 is in the range of about 10 W to about 500 w (e.g., about (10) w). The operating frequency of the pulse energy delivered by the laser source is controlled from about kHz to about 100 kHz. In one embodiment, the optical fiber 122 can include a core 21 〇, an inner layer 0 j12, and an outer layer 214, as shown in the cross-sectional view of FIG. 2B. The core 21A may be formed of a ceramic material having a rare earth metal doped therein. Suitable pots = materials may include suitable dielectric materials such as alumina-containing materials, tantalum carbide, tantalum oxide, and the like. In one embodiment, the rare earth metal selected to be doped into the core 21 is a bait or a crucible. The inner layer 212 may be made of a material having a first refractive index, and the outer layer 214 may be made of a material having a second refractive index different from the first refractive index. I believe that the large refractive index contrast between the inner layer 212 and the outer layer 214 enhances the light reflection when passing through the optical fiber 122, thereby amplifying the laser radiation efficiency. In an embodiment, inner layer 212 and outer layer 214 may have a refractive index difference greater than 〇 3 and inner layer 212 and outer layer 214 may be made of a suitable ceramic material such as alumina glass, tantalum carbide or the like. Referring back to FIG. 1 'the focusing optics module 126 may also include - or a plurality of collimating cows X collimating the radiation from the pumping laser source 108 A into a substantially parallel beam, and then the collimated beam of radiation is At least - the lens 124 is focused into a radiation 112 that is directed to the peripheral region 110 of the substrate 102, as shown in FIG. The radiation 112 is controlled to scan along a peripheral region 112 at the edge of the substrate 1 〇 2 8 201101529 to remove a portion of the film stack 150 formed thereon. In one embodiment, the radiation 112 can be scanned several times around the edge of the substrate 102 as needed until the film stack 15 has been completely removed. Lens 124 can be any suitable lens or series of lenses that can focus the radiation into a line or point. In one embodiment, the lens 丨 24 is a cylindrical lens. Alternatively, lens 124 may be one or more concave lenses, convex lenses, ^planar mirrors, concave mirrors, convex mirrors, refractive lenses, diffractive lenses, Fresnel lenses, gradient index lenses, or Such as. The edge material removal device 100 can include a translation mechanism 116 that is configured to translate the stage 1〇3 and the radiation 112 relative to each other. In one embodiment, the translation mechanism 116 is coupled to the stage 103 so that it is adapted to move the stage 103 relative to the laser source 108 and/or the focusing optics module 126. In another embodiment, the translation mechanism 搞6 is coupled to the laser radiation source iOS and/or the focusing optical module 126 to move the laser radiation source 108, the focusing optical module 126, and/or A mirror (not shown) is moved to move the energy beam relative to the substrate 1〇2 disposed on the stage 103. In yet another embodiment, the translation mechanism 116 moves the laser radiation source 1 〇 8 and (or the focal optical module 126 and the stage 1 〇 3. Any suitable translation mechanism can be used, such as a transport system, rack and pinion System, χ/y actuator, robotic arm, or other suitable mechanical or electromechanical mechanism. Or 'stage 103 can be set to standstill, and a plurality of galvanometric heads (not shown) can be provided. At the edge of the substrate edge 201101529, the radiation from the laser source 108 is directed to the edge of the substrate as desired. The translation mechanism 116 can be coupled to a controller 114 to control the stage 1 〇 3 and the radiation 112 relative to each other. Scanning rate of movement. In general, the stage 103 and the radiation 112 are moved relative to one another such that the delivered energy translates only/within the peripheral region 110 of the substrate 102 so as not to damage other areas of the substrate 1〇2. In one embodiment, the translation mechanism 116 is moved at a constant rate. In another embodiment, the translation of the stage 103 and the movement of the radiation 112 follow different paths controlled by the controller i丨4.The camera 152 can be positioned in the edge material removal device 1 to monitor the pattern and/or features formed on the substrate 102 formed in the film stack 15〇. Since each substrate 1〇2 can have Different patterned features are formed thereon, and camera 152 and controller 114 can be configured to monitor and detect the configuration of patterns and/or features formed on the front or back side of substrate 102. Next, camera 152 and controller j 14 can be used to compare the current image of the tantalum substrate 102 with the image stored in the database to determine the appropriate size of the peripheral region 110 that must be removed from the edge of the substrate 1〇2 in a subsequent step. The third circle shows a method for manufacturing a solar cell element on a substrate (for example, the substrate 102 of the first figure). The method begins in step 3, which provides a substrate. 2 to an edge material removal device (such as the edge material removal device 1 shown in Fig. 1). The substrate 1〇2 may be a transparent substrate having a plurality of film layers deposited thereon. In an example, the substrate 1〇2 may have a first transparent conductive layer 414 and a film stack. 416 201101529
及一第二導電層418設置在其上,如第4B圖所示。第一 導電層414可以作為設置在基材1〇2上之一第一電極。 第二透明導電層418可由類似於第一透明導電層414之 材料製成’而作為設置在基材1〇2上之一背電極。複數 個刻劃線420A、420B、420C或圖案可以被形成在基材 402上’以在基材1 〇2上形成期望之特徵。在一實施例 中,如第4B圖所示,大致上需要用來形成高效率太陽能 電池裝置之内連接線(例如刻劃線420A、420B、420C(諸 如隔離溝槽))可以藉由適當之内連接形成製程而被形成 在基材102上之第一導電層414、膜堆疊416、及第二導 電層418中。内連接形成製程是藉由雷射去除製程、蝕 刻製程或其他適當之圖案化製程被執行在基材上,以電 氣地彼此隔離基材表面之各區域。在一實施例中,第一 與第二透明導電層414、418為含鋅材料、含鋁材料、含 錫材料、含ITO材料、其合金、及任何其他適當之導電 材料。 在一實施例中,膜堆疊416包括一膜堆疊,其典型地 包括-卜型含矽層、一心型含矽層、及一夹置在p型與 n 3L含梦層間之本f型⑴型)切層。該些_層可以是微 晶矽系材料、非晶矽系材料、或多晶矽系材料。應瞭解, 可形成超過三個層在含矽膜堆疊416中以為了不同的製 程目的。舉例而言 矽系層’以提供一 光轉換效率。在一 ,可以在含矽膜堆疊416中使用多個 或多個(例如數個)接合區,藉此改善 示範性實施例中,含矽膜堆疊416包 201101529 括一單個太陽能電池接合區,其具有一 P-型非晶矽層、 一 i-型非晶矽層及一 η-型非晶矽層。在又另一示範性實 施例中,含矽膜堆疊416包括一具有一頂部電池和一底 部電池之串接接合區,其中該頂部電池包括一 ρ_型非晶 矽層、一 i_型非晶矽層及一 η-型微晶矽層,該底部電池 包括一 Ρ_型微晶梦層、一 i-型微晶梦層及一 η-型非晶妙 層。含矽膜堆疊之一適當實例係詳細地被揭露在西元 2007年1月18日由Choi等人申請且且標題為 〇 “Multi-Junctions Solar Cells and Methods and Apparatus for Forming the Same”之美國專利申請案號 11/624,677 中(代理人卷號APPM/11709),西元2008年9月11日由 Sheng 等人申請且且標題為 “Microcrystalline Silicon Alloys for Thin Film and Wafer Based Solar Applications” 之美國專利申請案號12/208,478中(代理人卷號 APPM/1355 1)’其在此以引置方式併入本文以作為參考。 〇 第4A圖繪示被定位在邊緣材料移除設備1〇〇内之基材 102之一實施例的俯視圖。如前所討論,在基材1 〇2之 周邊區域110處所後續地沉積之材料層之膜堆疊厚度與 所形成太陽能電池裝置之主動區域412中膜堆疊之厚度 係不同。在一實施例中,周邊區域11 〇之寬度408為約 10 mm至約20 mm。在一實施例中,當基材之尺寸為約 2.2 m X 2.6m時,周邊區域no之寬度408為約5 mm 至約20 mm。 第一透明導電層414、膜堆疊416、及第二透明導電層 12 201101529 418可以各由不同的沉積技術來形成而在基材〗之 周邊區域110巾具有不同的膜性質、不肖的膜邊緣排除 區及膜厚度。是以’基材1G2係被定位在邊緣材料移除 設備100中以沿著基材之周邊區域11〇移除膜堆疊之一 部分,藉此降低在後續製程步驟期間發生損壞(例如破碎 或微粒產生)的可能性。從周邊區域11〇移除膜堆疊係容 許周邊區域110可作為一框架固持區域,以促進基材1〇2 黏接或密封到另一基材之背侧,而形成一完整的太陽能 ο 電池模組組件。 在步驟304,基材102接著被傳送到邊緣材料移除設 備1〇〇内,以致可以執行邊緣移除製程來從基材1〇2之 周邊區域110移除膜堆疊之一部分。在一實施例中,邊 緣材料移除設備100係在約200 mm/s至約1500 mm/s的 速率下(例如大於1000 mm/s)掃瞄基材1〇2 ^雷射輻射可 以是脈衝寬度為飛秒(〜1〇-15秒)至80秒之脈衝能量的形 式在實例中經輸送之波長係在約800 nm至約15〇〇 nm範圍中。脈衝重複速率可被控制在約2〇 kH2;至約1〇〇 kHz。束品質因子(m2)可被控制在約1.6。每一脈衝之能 量功率係被控制在約10 W至500 W,例如約1〇〇 w。藉 由使用光纖雷射輻射源1〇6’可獲得諸如約1〇〇 w或更 大之每一脈衝之高能量功率。是以,可以使用沿著周邊 區域100經輸送之能量的高相對掃瞄速率,例如大於 1000 mm/s ’藉此改善產能和製造生產性。 在步驟306,在已經移除了基材1〇2之周邊區域11〇 13 201101529 處的膜堆疊後’可以將基材102從邊緣材料移除設備i 〇〇 卸載,以執行線製程的末端。線製程的末端可包括最終 導線接附、黏接、封裝、及背側基材黏接製程^可瞭解, 涉及太陽能電池裝置製造之其他製程步驟也可使用本發 明所述之邊緣材料移除設備1 〇〇。 先參照第6圖,第6圖綠示基材1〇2在執行邊緣移除 製程後的剖視圖。在執行雷射邊緣移除製程後,已經移 除了先前位在基材102之周邊區域11〇處的膜。可選地, 也可移除基材102之一部分以確保周邊區域11〇内之材 料的完全移除。在一實施例中,也從基材表面移除了深 度502為約10 μηι至約75 μηι之基材ι〇2之一部分。 第5圖繪不可被定位在邊緣材料移除設備丨〇〇内以執 行材料移除製程之一結晶矽類型太陽能電池基材或基材 510的剖視圖。第5圖概要地繪示被製造在具有一紋路 化表面512之太陽能電池基材51〇上之矽太陽能電池5〇〇 〇 的一實施例。基材510包括一 Ρ-型基底區域521、一 η_ 型放射器區域522、及一設置在其間之ρ_η接合區區域 523。一 η-型區域或η-型半導體係藉由以特定類型之元 素(例如磷(Ρ)、砷(As)、銻(Sb))來摻雜經沉積之半導體層 而形成’以為了增加負電荷載子(即電子)的數量。在一 組態中,η-型放射器區域522是藉由使用包含一含摻質 氣體之非晶形微晶石夕、奈米晶矽、或多晶石夕CVD沉積製 程來形成。在一實施例中,一薄本質型層可以被形成在 p-型基底區域521與η-型放射器區域522之間,以形成 201101529 一異質接合類型太陽能電池。在一形成之太陽能電池5〇〇 中,當光撞擊前表面520時所產生之電流會流動通過太 陽能電池500之金屬前接觸件5〇8與金屬背側接觸件 525。前接觸件508係大致上被建構成寬間隔之薄金屬線 或指部,其供應電流到相對於指部為橫向定向之更大的 匯流排條。背接觸件506大致上沒有被限制成形成為多 個薄金屬線中,這是因為其不是避免入射光撞擊太陽能 ❹ 電池500。在一實施例中,前接觸件508與(或)背接觸件 506是選自從以下所構成之群組:鋁(Ai)、銀(Ag)、錫 (Sn)、鈷(Co)、鎳(Ni) ' 鋅(Zn)、鉛(Pb)、鎢(W)、飲(Ti)、 與(或)组(Ta)、或其他類似的材料。在一實施例中,背接 觸件506包含鋁(A1)材料與鎳釩(Niv)材料。在一實施例 中,使用網印工具(其可由Applied Materials之子公司 Baccini S.p.A獲得)中執行之網印製程將前接觸件5〇8與 背接觸件506之部分配置在基材51〇之表面。在一實施 〇 財 ’在烘爐中加熱前接觸件5 08與背接觸件506,以 使沉積的材料緻密化且形成和基材表面接觸之期望電氣 接觸。太陽能電池500能夠以一作為抗反射塗覆層511 或ARC層511之薄介電材料層(例如氮化矽(si3N4)或氮 化矽氫化物(SixNy:H))來覆蓋,該ARC層511可將從太 陽能電池500之頂表面反射的光減到最少β第5圖繪示 之太陽能電池裝置組態係不被意圖作為本發明範疇之限 制’這是因為在不脫離本發明之基本範_下,可以使用 在此描述之方法與設備將其他基材與太陽能電池裝置區 15 201101529 域組態予以金屬化。可理解,方法300期間所執行之製 程可用來促進許多不同類型之太陽能電池裝置(例如異 質接合類型電池、點接觸類型電池、通道接合太陽能電 池、或其他類似的裝置)的形成。可受益自在此描述之製 程之所形成太陽能電池裝置之一實例係進一步被描述在 共同受讓之西το 2008年7月16日申請之美國臨時專利 申請案號61/048,001(代理人卷號13438L)、西元2〇〇8年 12月19曰申請之美國臨時專利申請案號61/139 423(代 理人卷號13437L03)、及西元2008年4月9日申請之美 國臨時專利申請案號61/043,664(代理人卷號13306L), 其整體地以引置方式併入本文以作為參考。 如前所討論’在基材510上執行了不同之膜堆疊與製 程後’可以於線製程之末端(例如導線接附、黏接、及封 裝製程)前將基材510傳送到邊緣材料移除設備1〇〇内以 執行邊緣膜移除製程(如第3圖所示之製程300)。 Q 在一實施例中’基材510之周邊區域550在基材510 之前側上具有約50μπι至約60μπι之第一寬度518,以及 在基材5 10之背側上具有約50μιη至約60μιη之第二寬度 520。基材邊緣與形成在基材上之第一金屬前接觸件508 間的距離為約150μιη至約200μιη。 第7Α圖為立體圖且第7Β圖為俯視圖,其繪示網印系 統或系統700之一實施例,其可和本發明實施例併用, 以使用邊緣材料移除設備100從太陽能電池基材750之 表面移除材料。在一實施例中,系統700包含一送入輸 16 201101529 运窃’ll、一旋轉致動器組件730、一網印腔室702、一 送出輸送器712、及一邊緣材料移除設備1〇〇,其中邊緣 材料移除設備1〇〇耦接至送出輸送器712。送入輸送器 711可没以接收來自輸入裝置(例如輸入輸送器713)之基 材750,即第7B圖之路徑“A”,並且將基材75〇傳送到 一印刷巢73 1,其中印刷巢73丨耦接到旋轉致動器組件 730。送出輸送器712可設以從耦接至旋轉致動器組件 0 730之印刷巢731接收經處理之基材75〇,並且將基材 750傳送到執行方法3〇〇所在之處的邊緣材料移除設 備。基材750可以從邊緣材料移除設備丨〇〇被傳送到一 基材移除裝置(例如輸出輸送器714),即第7B圖之路徑 “E”。輸入輸送器713與輸出輸送器714可以是自動化基 材操縱裝置,其為一更大之生產線的部分。舉例而言, 輸入輸送器713與輸出輸送器714可以是s〇ftUneTM工具 之部分,其中系統700可是一模組。 〇 旋轉致動器組件730可藉由一旋轉致動器(未示出)與 一系統控制器701繞著“F”軸被旋轉且角度地被定位,以 致印刷巢731可選擇性角度地被定位在系統7〇〇内(例如 第7B圖之路徑“D1,,與“D2,’)e旋轉致動器組件73〇也可 具有一或多個支撐部件,以促進印刷巢或用以在系統7 〇 〇 中執行基材處理順序之其他自動化裝置之控制。 在一實施例中,旋轉致動器組件73()包括四個印刷巢 731或基材支撐件,其各適於在網印腔室7〇2内執行之 網印製程期間支撐基材750 第7B圖繪示旋轉致動器組 17 201101529 件730之位置’其中一印刷巢731位在位置“丨,,以接收來 自送入輸送器711之基材750,另一印刷巢731位在網 印腔室702内之位置“2”以致另一基材750可在其表面上 接收一網印圖案’另一印刷巢73丨位在位置“3”以將經處 理之基材750傳送到送出輸送器712,及另一印刷巢731 位在位置“4”,其中位置“4”是位置“丨’,與位置“3”間的中間 階段。 〇 如第7C圖所示,印刷巢731大致上由一輸送器組件 739構成,輸送器組件739具有一饋送捲轴735、一接取 捲轴736、滾筒740、及一或多個致動器748,其係耦接 到饋送捲軸735與(或)接取捲軸736,其中饋送捲轴735 與接取捲軸736係適於將定位橫跨平台738之支撐材料 737予以饋送且保持。平台738大致上具有一基材支撐 表面’基材750與支撐材料737在網印腔室702執行之 網印製程期間被定位在基材支撐表面上。在一實施例 Ο 中,支撐材料737是一多孔性材料,而容許藉由從傳統 真空產生裝置(例如真空泵、真空推射器)施加到支撐材 料737之相對側之真空將基材75〇(其設置在支撐材料 737之一侧上)保持在平台738上。在一實施例中真空 被施加到形成在平台738之基材支撐表面738a中的真空 埠(未示出),以致基材可被“夾持(chuck),,到平台之基材 支撐表面73 8A。在一實施例中,支撐材料737是一可發 散材料(transpirable material),其係例如由用於香菸之可 發散紙的類型或其他類似材料(例如執行相同功能的塑 18 201101529 膠或布料)來構成。在一實例中,支撐材料是不含有苯系 列的香於紙。 在一組態中,致動器748耦接到饋送捲轴735與接取 捲轴736或適於與其配合,以致支撐材料737上之基材 750之移動可以精確地被控制在印刷巢73丨内。在一實 施例中,饋送捲軸735與接取捲轴736係各適於接收支 撐材料737之長度的相對端。該些致動器748可各包含 0 一或多個驅動輪747,驅動輪747耦接到或接觸於饋送 捲軸735與(或)接取捲軸736上之支撐材料73 7之表面, 以控制支撐材料737橫跨平台738的運動和位置。 返回第7A圖,系統700包括一檢視組件72〇,檢視組 件720適於檢視位在位置“〗,,之印刷巢731上之基材 750。檢視組件72〇可包括一或多個攝像機721,該些攝 像機721係被定位用來檢視在位置“丨,,之印刷巢1上之 送入或經處理之基材750,如第7B圖所示。在此組態中, 〇 檢視組件720包括至少一攝像機721 (例如CCD攝像機) 與其他電子部件,其可檢視且傳送檢視結果到系統控制 器701以分析基材75〇在印刷巢731上的方位和位置。 網印腔室702係適於在網印製程期間以一期望圖案將 材料沉積到在位置“2”之印刷巢731上之基材75〇之表面 上。在一實施例中,網印腔室7〇2包括複數個致動器, 例如致動器702A(諸如步進馬達或伺服馬達),該些致動 器係連通於系統控制器7〇1且用以調整網印腔室7〇2内 網P罩幕702B(第7B圖)相對於欲印刷基材75〇之位 201101529 置與(或)角度方位。在一實施例中,網印罩幕702B是一 具有複數個特徵702C(例如孔洞、狹縫、或形成穿過其 中之其他穿孔)之金屬片或板(第7B圖),該些特徵702C 係用以定義網印材料(油墨或漿)在基材75〇之表面上的 圖案和配置。大致上,待沉積在基材75〇之表面上的網 印圖案係以自動化方式和基材750對準,其中該自動化 方式是藉由使用致動器702A以及系統控制器701從檢視 〇 組件720接收之資訊將網印罩幕702B定向在基材表面上 方之一期望位置。網印腔室702係適於沉積一含金屬或 含介電質材料到寬度為約125 mm至1 56 mm且長度為約 70 mm至約1S6 mm之基材75〇上。在一實施例中網 印腔至702係適於沉積一含金屬漿到基材75〇之表面 上,以在基材表面上形成金屬接觸結構。因此,邊緣材 料移除設備100設置在網印腔室7〇2下游,以移除基材 750之邊緣上的網印材料。在一實施例巾,一供爐(未示 〇 出)設置在網印腔室702與邊緣材料移除設備1〇〇之間, 以在網印製程期間緻密化且退火基材75〇之表面上之含 金屬或含介電質材料。 系既徑制器可促進整體系統7〇〇的控制和自動 化,並且可包括中央處理簞矛- 、匙埋早TO (CPU)(未不出)、記憶體(夫 、記憶體(未And a second conductive layer 418 is disposed thereon as shown in FIG. 4B. The first conductive layer 414 can serve as one of the first electrodes disposed on the substrate 1〇2. The second transparent conductive layer 418 may be made of a material similar to the first transparent conductive layer 414 as one of the back electrodes disposed on the substrate 1〇2. A plurality of score lines 420A, 420B, 420C or patterns may be formed on the substrate 402 to form the desired features on the substrate 1 . In one embodiment, as shown in FIG. 4B, the inner connecting lines (eg, scribe lines 420A, 420B, 420C (such as isolation trenches)) that are generally required to form a high efficiency solar cell device may be suitably employed. The inner connection is formed into a process to be formed in the first conductive layer 414, the film stack 416, and the second conductive layer 418 on the substrate 102. The interconnect formation process is performed on the substrate by a laser removal process, an etching process, or other suitable patterning process to electrically isolate regions of the substrate surface from each other. In one embodiment, the first and second transparent conductive layers 414, 418 are zinc-containing materials, aluminum-containing materials, tin-containing materials, ITO-containing materials, alloys thereof, and any other suitable conductive materials. In one embodiment, the film stack 416 includes a film stack that typically includes a --type germanium-containing layer, a core-type germanium-containing layer, and a f-type (1) sandwiched between p-type and n 3L-containing dream layers. ) Cut layer. The _ layer may be a microcrystalline lanthanide material, an amorphous lanthanide material, or a polycrystalline lanthanide material. It will be appreciated that more than three layers may be formed in the ruthenium containing film stack 416 for different process purposes. For example, the tether layer ' provides a light conversion efficiency. In one, a plurality of (eg, several) lands may be used in the ruthenium containing film stack 416, thereby improving the exemplary embodiment, the ruthenium containing film stack 416 package 201101529 includes a single solar cell junction region, There is a P-type amorphous germanium layer, an i-type amorphous germanium layer and an n-type amorphous germanium layer. In yet another exemplary embodiment, the ruthenium-containing film stack 416 includes a tandem junction region having a top cell and a bottom cell, wherein the top cell includes a p-type amorphous germanium layer, an i-type non- The crystalline germanium layer and an n-type microcrystalline germanium layer comprise a germanium-type microcrystalline dream layer, an i-type microcrystalline dream layer and an n-type amorphous layer. A suitable example of a ruthenium-containing film stack is disclosed in detail in U.S. Patent Application, filed on Jan. 18, 2007 by Choi et al. and entitled "Multi-Junctions Solar Cells and Methods and Apparatus for Forming the Same" U.S. Patent Application Serial No. 11/624,677 (Attorney Docket No. APPM/11709), filed on September 11, 2008, by S. et al., entitled "Microcrystalline Silicon Alloys for Thin Film and Wafer Based Solar Applications" No. 12/208,478 (Attorney Docket No. APPM/1355 1), which is incorporated herein by reference. 4A is a top plan view of one embodiment of a substrate 102 positioned within the edge material removal device 1A. As previously discussed, the thickness of the film stack deposited subsequently at the peripheral region 110 of the substrate 1 〇2 is different from the thickness of the film stack in the active region 412 of the formed solar cell device. In one embodiment, the width 408 of the peripheral region 11 为 is from about 10 mm to about 20 mm. In one embodiment, when the size of the substrate is about 2.2 m X 2.6 m, the width 408 of the peripheral region no is from about 5 mm to about 20 mm. The first transparent conductive layer 414, the film stack 416, and the second transparent conductive layer 12 201101529 418 may each be formed by different deposition techniques and have different film properties in the peripheral region 110 of the substrate, and the film edges are excluded. Area and film thickness. The substrate 1G2 is positioned in the edge material removal device 100 to remove a portion of the film stack along the peripheral region 11 of the substrate, thereby reducing damage (eg, breakage or particle generation during subsequent processing steps). The possibility. Removing the film stack from the peripheral region 11〇 allows the peripheral region 110 to act as a frame holding region to facilitate bonding or sealing of the substrate 1〇2 to the back side of the other substrate to form a complete solar cell. Group component. At step 304, the substrate 102 is then transferred into the edge material removal device 1 so that an edge removal process can be performed to remove a portion of the film stack from the peripheral region 110 of the substrate 1〇2. In one embodiment, the edge material removal apparatus 100 scans the substrate at a rate of from about 200 mm/s to about 1500 mm/s (eg, greater than 1000 mm/s). 1) The laser radiation can be a pulse. The form of pulse energy having a width of femtosecond (~1 〇-15 sec) to 80 sec is transmitted in the example in the range of about 800 nm to about 15 〇〇 nm. The pulse repetition rate can be controlled to be about 2 〇 kH2; to about 1 kHz. The bundle quality factor (m2) can be controlled at about 1.6. The energy power of each pulse is controlled at about 10 W to 500 W, for example about 1 〇〇 w. High energy power, such as about 1 〇〇 w or greater, can be obtained by using a fiber laser radiation source 1 〇 6'. Therefore, a high relative scanning rate of energy delivered along the peripheral region 100, for example, greater than 1000 mm/s' can be used thereby improving productivity and manufacturing productivity. At step 306, the substrate 102 can be unloaded from the edge material removal device i , after the film stack at the peripheral region 11 〇 13 201101529 of the substrate 1 已经 2 has been removed to perform the end of the wire process. The end of the wire process may include final wire attachment, bonding, packaging, and backside substrate bonding processes. It is understood that other process steps involving solar cell device fabrication may also use the edge material removal device of the present invention. 1 〇〇. Referring first to Fig. 6, a green cross-sectional view of the substrate 1〇2 after performing the edge removal process is shown. After the laser edge removal process is performed, the film previously positioned at the peripheral region 11 of the substrate 102 has been removed. Alternatively, a portion of the substrate 102 can also be removed to ensure complete removal of material within the perimeter region 11〇. In one embodiment, a portion of the substrate ι 2 having a depth 502 of from about 10 μηι to about 75 μηι is also removed from the surface of the substrate. Figure 5 depicts a cross-sectional view of a solar cell substrate or substrate 510 that may not be positioned within the edge material removal device to perform a material removal process. Fig. 5 schematically shows an embodiment of a tantalum solar cell 5〇〇 fabricated on a solar cell substrate 51 having a textured surface 512. The substrate 510 includes a Ρ-type base region 521, an η-type emitter region 522, and a ρ_η junction region 523 disposed therebetween. An η-type region or an η-type semiconductor is formed by doping a deposited semiconductor layer with a specific type of element such as phosphorus (arsenic), arsenic (As), or antimony (Sb) to increase negative power The number of load carriers (ie electrons). In one configuration, the η-type emitter region 522 is formed by using an amorphous microcrystalline spar, nanocrystalline, or polycrystalline CVD deposition process comprising a dopant-containing gas. In one embodiment, a thin intrinsic layer may be formed between the p-type substrate region 521 and the n-type emitter region 522 to form a 201101529-heterojunction type solar cell. In a formed solar cell 5, current generated when light strikes the front surface 520 flows through the metal front contact 5'8 of the solar cell 500 and the metal back side contact 525. The front contact 508 is constructed substantially as a thin strip of thin metal wires or fingers that supply current to a larger bus bar oriented transversely relative to the fingers. The back contact 506 is substantially unrestricted into a plurality of thin metal wires because it does not prevent incident light from striking the solar cell 500. In an embodiment, the front contact 508 and/or the back contact 506 are selected from the group consisting of aluminum (Ai), silver (Ag), tin (Sn), cobalt (Co), nickel ( Ni) 'Zinc (Zn), lead (Pb), tungsten (W), drink (Ti), and (or) group (Ta), or other similar materials. In one embodiment, the back contact 506 comprises an aluminum (A1) material and a nickel vanadium (Niv) material. In one embodiment, a screen printing process performed in a screen printing tool (obtained by Baccini S.p. A, a subsidiary of Applied Materials) places portions of the front contact 5'8 and the back contact 506 on the surface of the substrate 51'. The front contact member 508 and the back contact member 506 are heated in an oven to effect densification of the deposited material and to form the desired electrical contact with the substrate surface. The solar cell 500 can be covered with a thin dielectric material layer (for example, tantalum nitride (si3N4) or tantalum nitride hydride (SixNy:H)) as the anti-reflective coating layer 511 or the ARC layer 511, the ARC layer 511 The light reflected from the top surface of the solar cell 500 can be minimized. The solar cell device configuration depicted in FIG. 5 is not intended to be a limitation of the scope of the present invention. This is because without departing from the basic scope of the present invention. The other substrate and solar cell device region 15 201101529 domain configuration can be metallized using the methods and apparatus described herein. It will be appreciated that the process performed during method 300 can be used to facilitate the formation of many different types of solar cell devices, such as heterojunction type cells, point contact type cells, channel bonded solar cells, or other similar devices. An example of a solar cell device that can be derived from the process described herein is further described in U.S. Provisional Patent Application No. 61/048,001, filed on Jul. 16, 2008 (Attorney Docket No. 13438L) US Provisional Patent Application No. 61/139 423 (Attorney Docket No. 13437L03), filed on December 19, 1982, and U.S. Provisional Patent Application No. 61/, filed on April 9, 2008 043,664 (Attorney Docket No. 13306L), which is incorporated herein by reference in its entirety herein. Substrate 510 can be transferred to the edge material prior to the end of the wire process (eg, wire attachment, bonding, and packaging processes) as discussed above, after performing different film stacking and processing on substrate 510. The device is 1 以 to perform an edge film removal process (such as process 300 shown in FIG. 3). Q In one embodiment, the peripheral region 550 of the substrate 510 has a first width 518 of from about 50 μm to about 60 μm on the front side of the substrate 510 and from about 50 μm to about 60 μm on the back side of the substrate 5 10 . The second width is 520. The distance between the edge of the substrate and the first metal front contact 508 formed on the substrate is from about 150 μm to about 200 μm. 7 is a perspective view and FIG. 7 is a top view showing an embodiment of a screen printing system or system 700 that can be used in conjunction with embodiments of the present invention to use edge material removal device 100 from solar cell substrate 750 Surface removal material. In one embodiment, system 700 includes a feed 16 201101529, a rotary actuator assembly 730, a screen printing chamber 702, a delivery conveyor 712, and an edge material removal device. That is, the edge material removing device 1 is coupled to the delivery conveyor 712. The feed conveyor 711 may not receive the substrate 750 from the input device (e.g., the input conveyor 713), i.e., the path "A" of Figure 7B, and transport the substrate 75 to a printing nest 73 1, where printing The nest 73 is coupled to the rotary actuator assembly 730. The delivery conveyor 712 can be configured to receive the processed substrate 75 from the printing nest 731 coupled to the rotary actuator assembly 0 730 and transfer the substrate 750 to the edge material where the method 3 is performed In addition to equipment. The substrate 750 can be transferred from the edge material removal device to a substrate removal device (e.g., output conveyor 714), i.e., path "E" of Figure 7B. Input conveyor 713 and output conveyor 714 may be automated substrate handling devices that are part of a larger production line. For example, input conveyor 713 and output conveyor 714 can be part of a s〇ftUneTM tool, where system 700 can be a module. The cymbal rotary actuator assembly 730 can be rotated and angularly positioned about the "F" axis by a rotary actuator (not shown) and a system controller 701 such that the print nest 731 can be selectively angled Positioned within system 7 (eg, path "D1," and "D2, ') e rotary actuator assembly 73 of Figure 7B may also have one or more support members to facilitate printing nests or to System 7 is the control of other automated devices that perform the substrate processing sequence. In one embodiment, the rotary actuator assembly 73() includes four printing nests 731 or substrate supports, each adapted to support a substrate 750 during a screen printing process performed within the screen printing chamber 7〇2 7B shows the position of the rotary actuator group 17 201101529 730 'one of the printing nests 731 at the position 丨, to receive the substrate 750 from the feeding conveyor 711, and another printing nest 731 in the screen printing Position "2" within chamber 702 such that another substrate 750 can receive a screen printing pattern on its surface 'another printing nest 73 is positioned at position "3" to convey processed substrate 750 to delivery transport The 712, and the other printing nest 731 are located at position "4", wherein the position "4" is an intermediate stage between the position "丨" and the position "3". As shown in Figure 7C, the printing nest 731 is generally comprised of a conveyor assembly 739 having a feed spool 735, an take-up spool 736, a drum 740, and one or more actuators. 748, coupled to feed reel 735 and/or take-up reel 736, wherein feed reel 735 and take-up reel 736 are adapted to feed and hold support material 737 positioned across platform 738. The platform 738 generally has a substrate support surface. The substrate 750 and the support material 737 are positioned on the substrate support surface during the screen printing process performed by the screen printing chamber 702. In one embodiment, the support material 737 is a porous material that allows the substrate 75 to be applied by vacuum applied to the opposite side of the support material 737 from a conventional vacuum generating device (e.g., vacuum pump, vacuum ejector). (which is disposed on one side of the support material 737) is held on the platform 738. In one embodiment vacuum is applied to a vacuum crucible (not shown) formed in the substrate support surface 738a of the platform 738 such that the substrate can be "chucked" to the substrate support surface 73 of the platform. 8A. In one embodiment, the support material 737 is a transpirable material, for example of the type of dispersible paper used for cigarettes or other similar materials (eg, plastic 18 201101529 glue or cloth performing the same function) In one example, the support material is a scented paper that does not contain a benzene series. In one configuration, the actuator 748 is coupled to or adapted to the feed reel 735 and the take-up reel 736, The movement of the substrate 750 on the support material 737 can be accurately controlled within the printing nest 73. In one embodiment, the feed reel 735 and the take-up reel 736 are each adapted to receive the relative length of the support material 737. The actuators 748 can each include zero or more drive wheels 747 coupled to or in contact with the surface of the feed reel 735 and/or the support material 73 7 on the take-up reel 736 to Control support material 737 across Movement and Position of Platform 738. Returning to Figure 7A, system 700 includes a viewing component 72, which is adapted to view substrate 750 on printing nest 731 at a location ",". The inspection component 72A can include one or more cameras 721 that are positioned to view the substrate 750 that is fed or processed at the location "," as shown in FIG. 7B. In this configuration, the 〇 view component 720 includes at least one camera 721 (eg, a CCD camera) and other electronic components that can view and transmit the inspection results to the system controller 701 to analyze the substrate 75 on the printing nest 731. The orientation and position of the screen printing chamber 702 is adapted to deposit material in a desired pattern onto the surface of the substrate 75 on the printing nest 731 at position "2" during the screen printing process. In an embodiment The screen printing chamber 7〇2 includes a plurality of actuators, such as an actuator 702A (such as a stepper motor or a servo motor), the actuators being in communication with the system controller 7〇1 and used to adjust the screen printing The chamber 7〇2 inner net P mask 702B (Fig. 7B) is placed and/or angularly oriented with respect to the position of the substrate to be printed 75 2011 201101529. In one embodiment, the screen printing mask 702B has a plurality Feature 702C (eg, a hole, a slit, or other formation through it) a metal sheet or plate of holes) (Fig. 7B), which is used to define the pattern and configuration of the screen printing material (ink or paste) on the surface of the substrate 75. In general, the substrate to be deposited on the substrate The screen printing pattern on the surface of the 75 inch is aligned with the substrate 750 in an automated manner, wherein the automated method is to screen the screen by using the actuator 702A and the system controller 701 to receive information from the inspection cassette assembly 720. 702B is oriented at a desired location above the surface of the substrate. Screen printing chamber 702 is adapted to deposit a metal-containing or dielectric-containing material to a width of between about 125 mm and 1 56 mm and a length of from about 70 mm to about 1 S6 mm. The substrate 75 is on the substrate. In one embodiment, the screen printing chamber to 702 is adapted to deposit a metal-containing slurry onto the surface of the substrate 75 to form a metal contact structure on the surface of the substrate. The apparatus 100 is disposed downstream of the screen printing chamber 7〇2 to remove the screen printing material on the edge of the substrate 750. In an embodiment, a supply furnace (not shown) is disposed in the screen printing chamber 702. Between the edge material removal device and the edge material to be dense during the screen printing process And annealing the metal-containing or dielectric-containing material on the surface of the substrate 75. The caliper can promote the control and automation of the overall system 7〇〇, and can include a central processing 箪 spear-, a spoon burying early TO ( CPU) (not shown), memory (father, memory (not
馬達、流體 系統控制器701 種腔室製程和硬體(例如輸送器、光學檢視組件、 /爪體輸送硬體等)且監視系統和腔室製程(例如 20 201101529 材位置、製程時間、偵測器訊號等)。記憶體連接到CPU, 並且可以是隨機存取記憶體(RAM)、唯讀記憶體(R〇M)、 軟碟、硬碟、或其他形式之數位儲存器中之一或多者, 無淪是當地的或遠端的皆可。軟體指令和資料可以被編 碼且被儲存在記憶體内以指示CPU。支援電路也連接到 CPU以經由傳統方式來支援處理器。支援電路可包括 决取功率供應器、時脈電路、輸入/輸出電路、子系統、 ◎ 其諸如此類者。可由系統控制器701讀取之一程式(或電 腦指令)係決定何種任務可執行於基材上。較佳地,程式 疋可由系統控制器70 1讀取之軟體,其包括一碼以產生 且儲存至少基材位置資訊、各種受控部件之移動的順 序、基材光學檢視系統資訊、及其任何組合。在本發明 之一實施例中,系統控制器7〇1包括軟體以監視且控制 硬體和在邊緣材料移除設備1〇〇與網印腔室7〇2中所執 行的製程。 〇 因此,提供了用以移除基材邊緣處之膜堆疊之一部分 之改良方法與設備。此方法與設備可有利地增加用以移 除基材之周邊區域處膜堆疊之精確性、產能及掃瞄速 率,藉此提供基材之良好的密封表面,以促進黏接和封 裝製程。 儘管别述係導向本發明之實施例,在不脫離本發明之 基本範疇下,可設想出本發明之其他與進一步實施例, 並且本發明之範疇是由隨附之申請專利範圍來決定。 21 201101529 【圖式簡單說明】 可藉由參考圖式中之本發明實施例來獲得且詳細瞭解 本發明之前述特徵與詳細說明,纟簡短地在前面概述過。 第1圖繪不可用以實施本發明之一光纖雷射邊緣材料 移除設備之一實施例的侧視圖。 第2A圖繪示根據本發明之一實施例之光纖雷射組件 的剖視圖。 第2B圖繪示根據本發明之一實施例之設置在第2A圖 光纖雷射設備中之一光纖裝置的剖視圖。 第3圖緣示用以在第丨圖光纖雷射邊緣材料移除設備 中從基材之周邊區域移除膜堆疊之一部分的流程圖。 第4A圖繪示根據本發明之一實施例之具有太陽能電 池裝置形成於其上之基材的俯視圖。 第4B圖繪示根據本發明之一實施例之具有太陽能電 池裝置形成於其上之基材的剖視圖。 第5圖繪示根據本發明之另一實施例之具有太陽能電 池裝置形成於其上之基材的俯視圖。 第6圖繪示根據本發明之一實施例之基材在執行光纖 雷射邊緣材料移除製程後的剖視圖^ 第7A圖為可和本發明之實施例併用之一網印系統的 立體圖。 第7B圖為根據本發明之一實施例之第7A圖中系統的 俯視圖。 22 201101529 第7C圖為根據本發明之一實施例之網印系統之一印 刷巢部分的立體圖。 為促進了解,在可能時使用相同的元件符號來表示該 等圖式共有的相同元件。可理解’ 一實施例的元件與特 徵可有利地併入其他實施例而不需特別詳述。 然而’應瞭解’圖式僅繪示本發明之示範性實施例, 並且因此不被視為本發明範疇之限制,本發明可容許其 他等效實施例。 C) 【主要元件符號說明】 100 邊緣材料移除設備 102 基材 103 階台 106 光纖雷射模組 108 雷射輻射源 108A 泵送雷射源 110 周邊區域 112 輻射線 114 控制器 116 平移機構 120 鏡子 120a 鏡子 120b 鏡子 122 光纖 124 透鏡 126 聚焦光學模組 150 膜堆疊 152 攝像機 210 核心 212 内層 214 外層 300 方法 302-306 步驟 408 寬度 412 主動區域 414 第一透明導電 23 201101529Motor, fluid system controller 701 chamber process and hardware (such as conveyor, optical inspection components, / claw transport hardware, etc.) and monitoring system and chamber process (for example, 20 201101529 material position, process time, detection Signal, etc.). The memory is connected to the CPU and may be one or more of random access memory (RAM), read only memory (R〇M), floppy disk, hard disk, or other form of digital storage, innocent It can be local or remote. Software instructions and materials can be encoded and stored in memory to indicate the CPU. The support circuit is also connected to the CPU to support the processor in a conventional manner. The support circuit may include a power supply, a clock circuit, an input/output circuit, a subsystem, and the like. A program (or computer command) that can be read by system controller 701 determines which tasks can be performed on the substrate. Preferably, the program is a software that can be read by the system controller 70 1 and includes a code to generate and store at least substrate position information, a sequence of movement of various controlled components, substrate optical inspection system information, and any combination. In one embodiment of the invention, system controller 〇1 includes software to monitor and control the hardware and the processes performed in edge material removal device 1 and screen printing chamber 7〇2. 〇 Accordingly, an improved method and apparatus for removing a portion of a film stack at the edge of a substrate is provided. The method and apparatus advantageously increase the accuracy, throughput, and scanning rate of the film stack at the peripheral regions of the substrate to remove, thereby providing a good sealing surface for the substrate to facilitate the bonding and packaging process. Other embodiments and further embodiments of the invention are conceivable, and the scope of the invention is determined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The foregoing features and detailed description of the invention are set forth in the <RTIgt; BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a side elevational view of one embodiment of a fiber laser edge material removal apparatus that may not be used to practice the present invention. 2A is a cross-sectional view of a fiber laser assembly in accordance with an embodiment of the present invention. Figure 2B is a cross-sectional view of one of the fiber optic devices disposed in the fiber optic laser device of Figure 2A, in accordance with an embodiment of the present invention. Figure 3 illustrates a flow diagram for removing a portion of a film stack from a peripheral region of a substrate in a second schematic fiber laser edge material removal apparatus. Figure 4A is a top plan view of a substrate having a solar cell device formed thereon in accordance with an embodiment of the present invention. Figure 4B is a cross-sectional view of a substrate having a solar cell device formed thereon in accordance with an embodiment of the present invention. Fig. 5 is a plan view showing a substrate having a solar battery device formed thereon according to another embodiment of the present invention. Figure 6 is a cross-sectional view of the substrate after performing the fiber laser edge material removal process in accordance with an embodiment of the present invention. Figure 7A is a perspective view of one of the screen printing systems that can be used in conjunction with an embodiment of the present invention. Figure 7B is a top plan view of the system of Figure 7A in accordance with an embodiment of the present invention. 22 201101529 Figure 7C is a perspective view of one of the screen printing systems of one of the screen printing systems in accordance with one embodiment of the present invention. To promote understanding, the same element symbols are used where possible to indicate the same elements that are common to the drawings. It is to be understood that the elements and features of an embodiment may be advantageously incorporated in other embodiments without particular detail. However, the present invention is intended to be limited only by the scope of the invention. C) [Main component symbol description] 100 edge material removal device 102 substrate 103 step 106 optical fiber laser module 108 laser radiation source 108A pumping laser source 110 peripheral region 112 radiation 114 controller 116 translation mechanism 120 Mirror 120a Mirror 120b Mirror 122 Fiber 124 Lens 126 Focusing Optical Module 150 Film Stack 152 Camera 210 Core 212 Inner Layer 214 Outer Layer 300 Method 302-306 Step 408 Width 412 Active Area 414 First Transparent Conductive 23 201101529
416 膜堆疊 418 420Α 刻劃線 420B 420C 刻劃線 500 502 深度 506 508 金屬前接觸件 510 511 抗反射塗覆(ARC)層 512 518 第一寬度 520 521 P-型基底區域 522 523 p-n接合區區域 525 550 周邊區域 700 701 系統控制器 702 702Α 致動器 702B 702C 特徵 711 712 送出輸送器 713 714 輸出輸送器 720 721 攝像機 730 731 印刷巢 735 736 接取捲轴 737 738 平台 738A 739 輸送器組件 740 747 驅動輪 748 750 太陽能電池基材 第二導電層 刻劃線 太陽能電池 金屬背接觸件 基材 紋路化表面 前表面 η-型放射器區域 金屬背側接觸件 網印系統 網印腔室 網印罩幕 送入輸送器 輸入輸送器 檢視組件 旋轉致動器組件 饋送捲轴 支撐材料 基材支撐表面 滾筒 致動器 24416 film stack 418 420 刻 scribe line 420B 420C scribe line 500 502 depth 506 508 metal front contact 510 511 anti-reflective coating (ARC) layer 512 518 first width 520 521 P-type base area 522 523 pn junction area 525 550 Peripheral Area 700 701 System Controller 702 702 致 Actuator 702B 702C Feature 711 712 Delivery Conveyor 713 714 Output Conveyor 720 721 Camera 730 731 Printing Nest 735 736 Access Reel 737 738 Platform 738A 739 Conveyor Assembly 740 747 Drive wheel 748 750 solar cell substrate second conductive layer scribe line solar cell metal back contact substrate grained surface front surface η-type emitter region metal back side contact screen printing system screen printing chamber screen printing mask Feed conveyor input conveyor inspection assembly rotary actuator assembly feed spool support material substrate support surface drum actuator 24