[go: up one dir, main page]

TW201101394A - Method of etching a multi-layer - Google Patents

Method of etching a multi-layer Download PDF

Info

Publication number
TW201101394A
TW201101394A TW98121610A TW98121610A TW201101394A TW 201101394 A TW201101394 A TW 201101394A TW 98121610 A TW98121610 A TW 98121610A TW 98121610 A TW98121610 A TW 98121610A TW 201101394 A TW201101394 A TW 201101394A
Authority
TW
Taiwan
Prior art keywords
gas
layer
etching
chlorine
passivation
Prior art date
Application number
TW98121610A
Other languages
Chinese (zh)
Other versions
TWI462180B (en
Inventor
zhen-yu Zhuo
Shi-Jie Bai
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098121610A priority Critical patent/TWI462180B/en
Publication of TW201101394A publication Critical patent/TW201101394A/en
Application granted granted Critical
Publication of TWI462180B publication Critical patent/TWI462180B/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

A method of etching a multi-layer is provided. The multi-layer comprises an aluminum layer disposed on a semiconductor substrate and an anti-reflection coating layer disposed on the aluminum layer. The method comprises: proceeding a first etching process to etch the anti-reflection coating layer by providing a first etching gas, wherein the first etching gas comprises a chlorine-containing substance; then proceeding a second etching process to etch the aluminum layer by providing a second etching gas, wherein the second etching gas does not comprise a chlorine-containing compound.

Description

201101394 « 六、發明說明: 【發明所屬之技術領域】 本發明揭露了一種蝕刻複合膜的方法,特別是一種能減少側壁 聚合殘留物產生以及避免複合膜中鋁層崩壞的方法。 【先前技術】 〇 在現代的資訊社會中,由積體電路(integrateddrcuit,IQ_成 的微處理器系統早已被普遍運用於生活的各個層面,例如自動控制 之家電用品、行動通訊設備以及個人電腦等,都有積體電路之縱跡。 為了連接半導體基底上的各種主動或被動元件,常使用紹或是 其合金作為導線,再由随化製程而逐步形成-複雜的内連線系 統。-般用以形成_化靖的方法,係先抽層上沈積—光阻層, D並藉由不同圖案的光罩進行一微影暨蝕刻製程 (photo_etChing-process,pep),以將光阻上的圖形轉移至鋁層上。 .· ·' : I ^ 請參考第1圖,第1圖為習知形成一圖案化銘層過程時,其剖 面不意圖。如第1圖所示’在半導體基底(未顯示)上依序設置有一 介電層10、-阻擋層(barrier)12、一紹層14、一抗反射層 (an—coating’ARQw以及一光阻層22。阻撐層12為一選 擇性結構’其可為欽、氮化欽或氮化组等材料,多為習知在形成介 層插拾(vmplug)時,作為介層插择之外圍包覆或增加附著所使用, 201101394 而抗反射層16則可減少曝光時光的反射現象。 由於各複合層間材質的不同,因此須使用不同_氣體的配方 (recipe),以能精確移除抗反射層16或鋁層14。這些配方通常包含 氣氣__娜,阳、三氯化漠(BCl3)、氮氣既)、三氟〒烧(CHF3) 或烴類(hydrocarbon)。其中氯氣以及三氣化演係作為蝕刻氣體,並 藉由触刻室内產生的電製激發為自由基,以對抗反射層16以及銘層 〇 14進行鱗向性侧。而為了維持良好的定向性⑼触⑽卿),會 使用煙類等鈍化(passivation)氣體,以在側壁上產生聚合物並得到良 好的側壁保護。 省知的二乱化演除了具有飾刻功能外,也同時具有鈍化特性, 因此被廣泛運用於非等向性蝕刻。但使用三氣化溴也容易在侧壁上 產生過多疏鬆的聚合殘留物從而容易引起鋁層腐蝕(c〇rr〇si〇n)等缺 D點。如第1圖所示,由於三氯化溴也具有鈍化功能,因此若同時使 用二氣化溴以及其他純化物種,會在側壁上產生過多的聚合殘留物 24且不夠緻密。且由於過多疏鬆的琅合殘留物%生成於側壁上, 許多經由電漿激發產生的氣自由基(C1 piasma)容易被吸附在聚合殘留 物24中,並與側壁内的鋁層14產生反應。請參考第2圖,第2圖 為習知氣自由基引發鋁層腐蝕之反應示意圖。如第2圖所示,鋁層 14内的紹金屬(A1⑻)與氣自由基(apiasma)反應後,會產生氣態與液態 的中間產物A1C1X,而液態的Aicix若接觸到水(h2〇),則會產生氫 氧化紹(Al(OH)x)以及氣態與液態的鹽酸(HC1(g)+(aq))。而液態的鹽酸 201101394 (HCW)隨即再與紹層反應而再4產生Alclx,如此再進入前述的猶 環中’並稍週㈣始下去,使_受到嚴重的触,進而產生銘 層崩壞的縣。軸輯況可藉由魏η2〇的阻隔來雜,但此舉 會額外增加了働m程中所需控管_素,而造絲程的複雜化。 因此’還需要-鮮的乾綱製程,以伽以及抗反射層, 並月b減少聚合殘留物以及紹層崩壞的現象。 【發明内容】 本毛明提供了-魏刻複合膜翁法,制是—種減少姓刻聚 。殘留物產生及增加聚合前物緻密程度從峨免複合膜中崎崩 壞的方法。 根據申請補麵,本發_触—_顺合㈣方法,該 複合膜包含設置在-半導縣底上之_轉以及設置摊層上之一 抗反射層。此方法首先進行一第一_轉,藉由提供一第一侧 氣體以蚀刻抗反射層’其中第一餘刻氣體包含一含氣物質 (Ch1〇rin_ntainings麵nce)。接著進行一第二侧步驟藉由提 供-第二侧氣體⑽_層,料第二飿刻氣财包含一含氣化 合物(chlorme-containing compound) 〇 根據申請糊,本發明另提供了—種非畅性娜呂層的 方法。此方法包含提供-_氣體·^_層,其中_氣體包含 201101394 含氯物質,但不包含含氯化合物。 本發明所提出的餘刻複合膜的方法,排除 刻氣體’不僅使紐職程更鮮,射減少聚 2 /為飼 崩壞的縣’柯以剩更㈣侧效果。’。心及麵 【實施方式】 ❹π參考第3圖’第3圖為本發明中糊—複合朗流程圖。如 第3圖所示,本發明之蝕刻複合臈的方法包含以下步驟: 步驟100 .於一半導體基底上提供一複合膜,此複合膜至少包 含一銘層、設置在該銘層上之一抗反射層。 步驟102 .利用一圖案化遮罩對此複合膜進行一第一蝕刻步 驟,提供一第一蝕刻氣體以及一第一鈍化氣體以蝕 刻該抗反射層,其中該第一蝕刻氣體包含一含氯物 〇 質(chlorine-containing substance) 〇 步驟104 :進行完步驟丨〇2後,接續進行一第二蝕刻步驟,提 供一第二蝕刻氣體以及一第二鈍化氣體以蝕刻該 鋁層,其中該第二蝕刻氣體不包含一含氣化合物 . - ;丄人 ♦ 9· Λ .”, (chlorine-containing compound) ° 步驟106 :蝕刻完該銘層後,再進行一過蝕刻步驟,以蝕刻在 鋁層下方的一阻檔層。 關於各步驟的詳細描述,接著請參考第4圖至第7圖,第4圖 6 201101394 « 至第7圖為本發明之侧複合膜方法各步驟的結構示意圖。如第4 酿步驟100卿,首先在半導體棊底1G8上提供—複合膜,此複 合膜依序包含有一介電層il〇、一阻擂層112、一鋁層U4、一抗反 射層116以及一遮罩層122。其中介電層110可為氧化石夕(si〇2)、 氮化矽、碳化矽、四乙氧基矽烧(TE0S)、非摻雜矽玻璃(USG)、磷 矽玻璃(PSG)、硼磷矽玻璃(BPSG),或其他低介電係數fl〇w_k dielectric)材料或上述者之任意組合,而阻擋層112材質可為鈦金屬 Ο或氮化鈦、氮化鈕或其組合等。鋁層114除了是一般鋁金屬以外, 也可以為銅鋁合金等鋁合金。抗反射層116包含鈦或氮化鈦等,其 可以為單層或雙層結構,例如包含一底抗反射層以及一頂抗反射 層,底抗反射層的材質包含氮仡鈦V而頂抗反射層的材質可以和底 :· i ; 抗反射層相同,或者不同,例如為有機抗反射材質,或者其他無機 抗反射材質如氮氧化矽(silicon 0Xynitride,si〇N)等。遮罩層122具有 圖案化結構,例如為光阻,其圖案在後續敍刻步驟中可轉印至其下 的抗反射層116以及鋁層114。 〇 接著請參考第5圖與步驟102,進行一第一蝕刻步驟,提供一 第一蝕刻氣體126以及一第一鈍化氣體,以蝕刻抗反射層ι16但較 不餘刻紹層114,因此步驟1〇2結束時晶圓大部分區域的抗反射層 116皆被蝕刻完畢甚至於造成下方鋁層114的些微損耗,但可能仍 有部分區域殘留有少量的抗反射層116。第一蝕刻氣體126可為不 包3各種含乳化合物(chlorine-containing compound)之其他所有的含 氣物質(chlorine-containing substance),例如僅使用氯氣但並不使用 201101394 三氣化漠。而在本發明另-實施例中,此種專用以侧抗反射層ιΐ6 但較不勉刻銘層114之第-飯刻氣體126也可以包含所有的含氣物 質_—-_—峋8__),_可同時使用氣氣或各種含氯 化合物_^儀_寧0寧_,例如同時使用氣氣以及三氣 化漠。而第-純化氣體則可包含有烴類_職出罐,於本發明 較佳實施射巾,第-鈍化紐以⑽(C2H4)為佳。 〇 第一侧步驟係在—電漿餘刻反應艙中進行,表1針對了第一 侧氣體126為氣氣時,提供了触的蝴配方錢作環境。如表 1所示’第1刻步驟可依下列所述狀態進行:電漿侧反紐内 之壓力fc圍控制在12至18毫托之間,變壓搞合電漿電力範圍在 1200至1_瓦之間’偏壓電力範圍為25〇至35〇瓦時間範圍為 120至180秒,氣氣之流量範圍為150至21〇每分鐘標準毫升 (standard cubic centimeter per mi她,§ccm) ’ 乙烯之流量細 ❹至180sccm。而第-银刻步驟的時間可依欲触刻之抗反射層ii6的 材質與厚度加_整’並稀於表i巾_之秒數,其可更長或更 短。201101394 « Sixth, invention description: [Technical field of the invention] The present invention discloses a method of etching a composite film, in particular, a method for reducing sidewall polymerization residue generation and avoiding collapse of an aluminum layer in a composite film. [Prior Art] In the modern information society, the integrated circuit (IQ_ into the microprocessor system has long been widely used in all aspects of life, such as automatic control of household appliances, mobile devices and personal computers Etc., there are traces of the integrated circuit. In order to connect various active or passive components on the semiconductor substrate, often used or its alloy as a wire, and then gradually formed by the process of the process - complex interconnect system. The method used to form _ jing is to first deposit a layer of deposition-photoresist layer, D and perform a lithography and etching process (photo_etChing-process, pep) with different patterns of reticle to The pattern is transferred to the aluminum layer. . . . . : I ^ Please refer to Figure 1. Figure 1 is a schematic view of the process of forming a patterned layer, which is not intended. As shown in Figure 1 A dielectric layer 10, a barrier 12, a layer 14, an anti-reflective layer (an-coating 'ARQw and a photoresist layer 22) are sequentially disposed on the substrate (not shown). a selective structure Materials such as Qin or nitriding group are mostly used for the peripheral coating or adding adhesion of the interposer when forming a vmplug, 201101394 and the anti-reflection layer 16 can reduce the exposure time. Reflection phenomenon. Due to the different materials between the composite layers, different _ gas recipes must be used to accurately remove the anti-reflective layer 16 or the aluminum layer 14. These formulations usually contain gas __娜,阳,三Chlorinated desert (BCl3), nitrogen (both), trifluorosulfonate (CHF3) or hydrocarbons. Among them, chlorine gas and three gasification systems act as etching gases, and are excited by the electric system generated by the tentacles. Base, the anti-reflective layer 16 and the in-situ layer 14 are subjected to the scaled side. In order to maintain good orientation (9), a passivation gas such as smoke is used to generate a polymer on the side wall. Get good sidewall protection. In addition to the engraving function, it also has a passivation property, so it is widely used for anisotropic etching. However, the use of triple gasified bromine also tends to produce excessive loose polymer residues on the sidewalls, which tends to cause aluminum layer corrosion (c〇rr〇si〇n) and other defects. As shown in Figure 1, since bromine trichloride also has a passivation function, if two gasified bromine and other purified species are used at the same time, excessive polymerization residue 24 is generated on the side walls and is not dense enough. And since too much loose chelating residue is formed on the side wall, many gas radicals (C1 piasma) generated by plasma excitation are easily adsorbed in the polymerization residue 24 and react with the aluminum layer 14 in the side wall. Please refer to Figure 2, which is a schematic diagram of the reaction of the aluminum layer corrosion induced by conventional gas radicals. As shown in Fig. 2, after the reaction of the metal (A1(8)) in the aluminum layer 14 with the gas radical (apiasma), a gaseous and liquid intermediate product A1C1X is produced, and if the liquid Aicix is in contact with water (h2〇), Hydrogen chloride (Al(OH)x) and gaseous and liquid hydrochloric acid (HC1(g)+(aq)) are produced. The liquid hydrochloric acid 201101394 (HCW) then reacts with the layer to produce Alclx, so that it enters the aforementioned quaternary ring and starts from a little week (four), causing _ to be severely touched, resulting in the collapse of the inscription layer. county. The shaft condition can be mixed by the barrier of Wei η2〇, but this will additionally increase the required control factor in the 働m process, and the wire making process is complicated. Therefore, it is also necessary to use a fresh dry process, a gamma and an anti-reflective layer, and a monthly b to reduce the polymerization residue and the collapse of the layer. SUMMARY OF THE INVENTION Ben Maoming provides a -Wei engraved composite film Weng method, which is a kind of reduction of surname engraving. The method of producing residue and increasing the degree of density of the pre-polymerization from the smear of the composite membrane. According to the application of the supplementary surface, the composite film comprises a method of setting the film on the bottom of the semi-conducting county and setting an anti-reflection layer on the layer. The method first performs a first pass, by providing a first side gas to etch the antireflective layer' wherein the first residual gas contains a gas-containing material (Ch1〇rin_ntainings). Then, a second side step is performed by providing a second side gas (10) layer, and the second entraining gas contains a chlorme-containing compound. According to the application paste, the present invention further provides a non- The method of smoothing the Nalu layer. This method involves providing a layer of -_gas·^_, where the gas contains 201101394 chlorine-containing species but does not contain chlorine-containing compounds. The method for remnant compound film proposed by the present invention excludes the engraved gas 'not only makes the New Zealand career fresher, but also reduces the concentration of the poly 2 / for the county where the subsidy is broken. ’. Heart & Surface [Embodiment] ❹π refers to Fig. 3' Fig. 3 is a flow chart of a paste-composite ridge according to the present invention. As shown in FIG. 3, the method for etching a composite crucible of the present invention comprises the following steps: Step 100: providing a composite film on a semiconductor substrate, the composite film comprising at least one layer and a resistance layer disposed on the layer Reflective layer. Step 102: performing a first etching step on the composite film by using a patterned mask, providing a first etching gas and a first passivation gas to etch the anti-reflective layer, wherein the first etching gas comprises a chlorine-containing substance Chlorine-containing substance 〇Step 104: After performing step 丨〇2, a second etching step is performed to provide a second etching gas and a second passivation gas to etch the aluminum layer, wherein the second layer The etching gas does not contain a gas-containing compound. - chlorine-containing compound. Step 106: After etching the layer, an etching step is performed to etch under the aluminum layer. For a detailed description of each step, please refer to FIG. 4 to FIG. 7 , FIG. 4 FIG. 6 201101394 « to FIG. 7 is a schematic structural view of each step of the side composite film method of the present invention. 4 brewing step 100, first provided on the semiconductor substrate 1G8 - composite film, the composite film sequentially includes a dielectric layer il, a barrier layer 112, an aluminum layer U4, an anti-reflection layer 116 and a cover Cover layer 122. its The dielectric layer 110 may be oxidized stone (si〇2), tantalum nitride, tantalum carbide, tetraethoxythorium (TE0S), undoped bismuth glass (USG), phosphorous bismuth (PSG), borophosphorus A beryllium glass (BPSG), or other low dielectric constant (FLV) dielectric material or any combination of the above, and the barrier layer 112 may be made of titanium metal tantalum or titanium nitride, a nitride button or a combination thereof, etc. In addition to the general aluminum metal, the 114 may be an aluminum alloy such as copper aluminum alloy. The anti-reflection layer 116 may include titanium or titanium nitride, etc., and may be a single layer or a double layer structure, for example, including a bottom anti-reflection layer and a top. The anti-reflection layer and the bottom anti-reflection layer are made of yttrium-titanium-titanium V and the material of the top anti-reflection layer may be the same as the bottom: · i; the anti-reflective layer is the same or different, for example, an organic anti-reflective material, or other inorganic anti-reflective material. For example, silicon oxide (silicon 0Xynitride, si〇N), etc. The mask layer 122 has a patterned structure, such as a photoresist, the pattern of which is transferred to the anti-reflective layer 116 and the aluminum layer underneath the subsequent marking step. 114. Next, please refer to FIG. 5 and step 102 to perform a first etching step. A first etching gas 126 and a first passivation gas are provided to etch the anti-reflection layer ι16 but less than the layer 114, so that the anti-reflection layer 116 in most areas of the wafer is etched at the end of step 1〇2 Even after the slight loss of the underlying aluminum layer 114 is formed, there may still be a small amount of anti-reflective layer 116 remaining in a portion of the area. The first etching gas 126 may be other than all of the various chlorine-containing compounds. Chlorine-containing substance, for example, using only chlorine but not using 201101394. In another embodiment of the present invention, the first-cooking gas 126 dedicated to the side anti-reflection layer ι 6 but less engraved to the layer 114 may also contain all gas-containing substances __-_-峋8__) , _ can use gas or a variety of chlorine-containing compounds _ ^ instrument _ Ning 0 Ning _, such as the use of gas and three gasification desert. The first purification gas may comprise a hydrocarbon-based canister. Preferably, the first embodiment of the present invention is preferably a (10) (C2H4). 〇 The first step is performed in the plasma reverberation reaction chamber. Table 1 provides an environment for the touch of the butterfly when the first side gas 126 is gas. As shown in Table 1, the first step can be carried out according to the following conditions: the pressure fc in the plasma side is controlled between 12 and 18 mTorr, and the pressure is combined with the plasma power range of 1200 to 1. Between the watts, the 'bias power range is 25 〇 to 35 〇, the time range is 120 to 180 seconds, and the gas flow range is 150 to 21 〇 standard milliliters per minute (standard cubic centimeter per mi her, § ccm) The flow of ethylene was fined to 180 sccm. The time of the first-silver engraving step may be longer or shorter depending on the material and thickness of the anti-reflective layer ii6 to be touched and thinner than the number of seconds.

第一蝕刻步驟 Ϊ50 第二蝕刻步驟 過蝕刻 時間(秒) 貞測(最多1 ~ 400) 201101394 變壓耦合電漿電 1400 1500 1200 力(W) 偏壓電力(W) 300 300 1500 壓力(mTorr) 15 1〇 " 8 三氯化漠(seem) 0 T 100 氣氣(seem) 180 Ί50 100 乙烯(seem) 150 150 150 接著請參考第6圖與步驟104 ’在蝕刻完抗反射層ι16的圖案 之後’接著進行一第二餘刻步驟用以触刻I呂層114,其係使用一第 二蝕刻氣體128以及一第二鈍化氣體。而為了避免習知使用三氯化 -V; 、 溴容易造成過多聚合殘留物進而造成鋁侵蝕以及鋁層崩潰的情況, ( 本發明之第二蝕刻氣體128為不包舍含氣化合物之其他含氣物質, 〇 例如僅使用氯氣等含氣物質,但需排除習知慣用的各種含氣化合 物例如二氣化漠。而第一純化氣體貝1j包含有烴類(hydrocarbon)等, 於本發明較佳實施例當中,第二鈍化氣體為乙烯((¾¾)。第二蝕刻 步驟可同樣在電漿蝕刻反應艙中原位(in_situ)進行,請參考表丨,其 第一蝕刻步驟可依下列所述狀態進行:電漿蝕刻反應艙内之壓力範 圍控制在8至12毫托之間,變壓搞合電聚電力範圍為1300至1700 瓦之間’偏壓電力範圍為⑽至350:瓦,氣氣之流量範圍為120至 18〇Sccm ’乙烯之流量範圍為⑽。值得注意的是,第二 姓幻步驟所用之時間係由終點偵酬紋,若欲_之練或其他 201101394 « 金屬的厚度增加或減少,則第二飾刻步驟的時間亦會隨之改變,因 此表1中所列之秒數僅供參考之用而非作為本發明之限制。 虽步驟102與步驟104結束後’遮罩層122上的佈局圖案已經 轉移到鋁層114上而形成了圖案化之鋁層114。接著請參考第7圖, 如步驟106所示’再原位(in-situ)進行一過蝕刻步驟以第三蝕刻氣體 130來银刻阻擋層112及晶圓上部分區域中所殘留的鋁層114,此步 〇驟可能會造成介電層110的厚度損耗以確保應被移除的鋁層114及 阻擋層112被触刻殆盡,其操作參數請參考表丨,在此不多加贅述。 在步驟106結束後’最後再以氬氣等清洗聚合殘留物(p〇lymer residue)、去除遮罩層122後即可完咸此整個圖案化鋁層U4的過程。 如在先前技術中所述’習知多以三氯化溴作為蝕刻氣體以及鈍 化氣體,因此容易在圖案化之鋁層侧壁上容易產生過多的聚合殘留 物,造成紹腐触並導致銘層崩潰的情況。因此本發明所提出之餘刻 D 、 方式,即是避免在餘刻銘層時,以含氯化合物例如三氣化溴作為钱 刻氣體,並搭配鈍化氣體例如烴類(hydrocarbon)來作為蝕刻氣體的 組成。習知的三氣化漠主要藉由對遮罩層的撞擊(bombardment)以產 生側壁聚合物,但這些聚合物通常比較疏鬆’而煙類(hydrocarbon) :,: 具有較長的聚合鏈(P〇lymer chain)以友較密集的結構(如[C-H]x聚合 物),因此可以完全取代三氣化溴的鈍化功能’並不因去除了三氣化 溴而降低其側壁的保護能力,相反的還可以避免過多聚合殘留物的 產生,進而能有效避免此殘留物吸附過多氣自由基而使得紹層產生 201101394 崩:現象:因此,本發明所提出的一_複合膜的方法,除了 排除3氣化^而使得__製程更單純外,還可減少聚合殘留 匆、及域i壞的财,柯以得败好賴刻效果 。以上所述僅 為本U之較佳實補’凡依本發明巾請專繼麟做之均等變化 與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 Ο第1圖為習知形成一圖案化鋁層過程時,其剖面示意圖。 第2圖為習知侧壁上聚合殘留物產生示意圖。 第3圖為本發明中蝕刻一複合層的流程圖。 第4圖至第7圖為本發明之钱刻複合臈方法各步驟的結構示意圖。 【主要元件符號說明】 108 半導體基底 24 聚合殘留物 10,110介電層 100,102 步驟 104,106 12,112阻擋層 126 第一蝕刻氣體 14,114鋁層 128 第二蝕刻氣體 16,116抗反射層 130 第三蝕刻氣體 22,122遮罩層 11First etching step Ϊ50 Second etching step Over etching time (seconds) 贞Measure (up to 1 ~ 400) 201101394 Transformer coupled plasma 1400 1500 1200 Force (W) Bias power (W) 300 300 1500 Pressure (mTorr) 15 1〇" 8 Trichlorinated (seem) 0 T 100 Gas (seem) 180 Ί50 100 Ethylene (seem) 150 150 150 Next, please refer to Figure 6 and Step 104 'A pattern of etching anti-reflective layer ι16 Thereafter, a second remaining step is performed to etch the I-layer 114, which uses a second etching gas 128 and a second passivation gas. In order to avoid the conventional use of trichloro-V; bromine is liable to cause excessive polymerization residue to cause aluminum corrosion and collapse of the aluminum layer, (the second etching gas 128 of the present invention is not included in the gas-containing compound) For the gas substance, for example, only a gas-containing substance such as chlorine gas is used, but various conventional gas-containing compounds such as digas desertification are excluded, and the first purified gas shell 1j contains a hydrocarbon or the like, which is more in the present invention. In a preferred embodiment, the second passivation gas is ethylene ((3⁄4⁄4). The second etching step can also be performed in-situ in the plasma etching reaction chamber. Please refer to the table, the first etching step can be as follows The state is carried out: the pressure range in the plasma etching reaction chamber is controlled between 8 and 12 mTorr, and the voltage range of the transformer is between 1300 and 1700 watts. The bias power range is (10) to 350: watt, gas. The flow rate of gas is 120 to 18 〇 Sccm 'the flow range of ethylene is (10). It is worth noting that the time used for the second illusion step is determined by the end point, if you want to practice or other 201101394 « the thickness of the metal Increase or decrease Then, the time of the second finishing step will also change, so the number of seconds listed in Table 1 is for reference only and not as a limitation of the present invention. Although the steps 102 and 104 are finished, the mask layer 122 The upper layout pattern has been transferred to the aluminum layer 114 to form a patterned aluminum layer 114. Next, refer to FIG. 7, as shown in step 106, 'in-situ an over-etching step to third The gas 130 is etched to etch the barrier layer 112 and the aluminum layer 114 remaining in a portion of the wafer. This step may cause thickness loss of the dielectric layer 110 to ensure the aluminum layer 114 and the barrier layer to be removed. 112 is exhausted, and the operating parameters thereof are referred to the table, and will not be described here. After the end of step 106, the polymer layer (p〇lymer residue) is removed by argon gas or the like, and the mask layer 122 is removed. The entire process of patterning the aluminum layer U4 can be completed. As described in the prior art, it is known that bromine trichloride is used as an etching gas and a passivation gas, so that it is easy to generate excessive amounts on the sidewall of the patterned aluminum layer. Polymeric residue, causing stagnation and causing the layer The situation of the collapse. Therefore, the remainder D of the present invention is to avoid the use of a chlorine-containing compound such as three-gas bromine as a carbon engraving gas in the case of the engraved layer, together with a passivation gas such as a hydrocarbon. As a composition of etching gas, the conventional three gasification desert mainly produces sidewall polymer by bombardment of the mask layer, but these polymers are generally looser and hydrocarbons: Longer polymer chains (P〇lymer chain) have a denser structure (such as [CH]x polymer), so they can completely replace the passivation function of tri-glycolized bromine 'not reduced by removing tri-vaporized bromine. The protective ability of the sidewalls, on the contrary, can also avoid the generation of excessive polymerization residues, thereby effectively preventing the residue from adsorbing excessive gas radicals and causing the layer to generate 201101394 collapse: phenomenon: Therefore, the present invention proposes a composite The membrane method, in addition to the elimination of 3 gasification ^ makes the __ process more simple, but also can reduce the accumulation of residual rush, and the domain i bad wealth, Ke to defeat the effect. The above description is only for the preferred embodiment of the present invention. All of the equivalent variations and modifications of the invention are subject to the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a process of forming a patterned aluminum layer. Figure 2 is a schematic representation of the generation of polymeric residues on conventional sidewalls. Figure 3 is a flow chart of etching a composite layer in the present invention. 4 to 7 are structural diagrams showing the steps of the method for engraving composite crucible of the present invention. [Main component symbol description] 108 semiconductor substrate 24 polymer residue 10, 110 dielectric layer 100, 102 step 104, 106 12, 112 barrier layer 126 first etching gas 14, 114 aluminum layer 128 second etching gas 16, 116 anti-reflection layer 130 third etching Gas 22, 122 mask layer 11

Claims (1)

201101394 蜃 七、申請專利範圍: 1.種細複。膜的方式,該複合觀含設置在—轉體基底上之 -紹層以及設置在該麵上之—抗反騎,該方法包含: 進饤-第-㈣步驟’提供—第—侧氣體錄刻該抗反射層, 其中該第-個_包含—含祕f (伽—㈣ substance);以及 〇 進行一第一姓刻步驟,提供一第二钱刻氣體以飯刻該I呂層,其中 該第一飯刻氣體不包含一含氣化合物(chlorine-containing compound) ° 2·如申請專利範圍第1項之方法,其中該含氣化合物包含三氯化硼 (bci3)。 Q 3·如申請專利範圍第1項之方法’其中該第二蝕刻氣體包含氣氣。 4. 如申請專利範圍第1項之方法,其中該第一蝕刻氣體包含氯氣 (cy與三氣化硼(BCl3)。 5. 如申請專利範圍第1項之方法,其中該第一蝕刻氣體包含氯氣。 6·如申請專利範圍第1項之方法,其中該第一蝕刻步驟還包含提供 一第一鈍化氣體。 12 201101394 一鈍化氣體包含烴類 一鈍化氣體包含乙烯 7.如申請專利範圍第6項之方法,其中該第 (hydrocarbon)。 8.如申請專利範圍第6項之方法,其中該第 (⑽)。 9.如申請專利範圍第1項之方法,其中該筮_ 〇 茨第一蝕刻步驟還包含提供 一第二鈍化氣體。 K).如申請專利範圍第9項之方法,其中該第二純化氣體包含煙類。 η.如申請專利範圍第9項之方法,其中該第二純化氣體包含乙婦。 12.如申叫專利範圍第6項之方法’其中該第—磁彳步驟依下列所述 ❹狀態進行壓力範圍為12至18毫托,—變壓輕合電聚電力範圍 為1200至1600瓦,一偏壓電力範圍為25〇至35〇瓦,時間範圍為 120至180秒,該第一蝕刻氣體之流量範圍為15〇至21〇8沈111,該 第一鈍化氣體之流量範圍為120至180 seem。 13.如申請專利範圍第9項之方法’其中該第二蝕刻步驟依下列所述 狀態進行:一壓力範圍為8至12毫托,一變壓耦合電漿電力範圍為 1300至1700瓦,一偏壓電力範圍為250至350瓦,該第一蚀刻氣 13 201101394 η 體之流量範圍為120至180 seem’該第一鈍化氣體之流量範圍為12〇 至 180 seem。 14.一種非等向性触刻一鋁層的方法,包含: 提供一蝕刻氣體以蝕刻該鋁層,其中該蝕刻氣體包含一含氣物質 (chlorine-containing substance),但不包含一含氣化合物 (chlorine-containing compound) ° 〇 is.如申請專利範圍第μ項之方法,其中該含氯化合物包含三氣化 棚。 1.: 16. 如申請專利範圍第14項之方法,其中該侧氣體包含氣氣。 17. 如申睛專利範圍第14項之方法,還包含提供一純化氣體。 〇 18.如申請專利範圍第17項之方法,其中該純化氣體包含一煙類。 19. 如申請專利範圍第17項之方法,其中該鈍化氣體包含乙稀。 20. 如申請專利範圍第17項之方法,其中雜刻步驛依下列所述狀 態進行:一壓力範圍為8至12毫托,一變壓耦合電聚電力範圍為 簡至1700瓦’一偏壓電力範圍為25〇至35〇瓦該蚀刻氣體之 流量範圍為120至180_,該純化氣體之流量範圍為12〇至18〇 201101394 鬌 seem ° 八、圊式:201101394 蜃 Seven, the scope of application for patents: 1. Kind of complex. In the manner of a film, the composite view comprises a layer disposed on the substrate of the rotating body and an anti-anti-riding device disposed on the surface, the method comprising: the step of feeding - the first step (the fourth step) providing the first side gas recording Engraving the anti-reflective layer, wherein the first _ contains - containing a secret f (gamma - (four) substance); and 〇 performing a first surname step, providing a second money engraving gas to engrave the I ly layer, wherein The first cooking gas does not contain a chlorine-containing compound. The method of claim 1, wherein the gas-containing compound comprises boron trichloride (bci3). Q. The method of claim 1, wherein the second etching gas contains gas. 4. The method of claim 1, wherein the first etching gas comprises chlorine gas (cy and three gasified boron (BCl3). 5. The method of claim 1, wherein the first etching gas comprises 6. The method of claim 1, wherein the first etching step further comprises providing a first passivation gas. 12 201101394 A passivation gas comprising a hydrocarbon-passivation gas comprising ethylene 7. As claimed in claim 6 The method of the item, wherein the hydrocarbon is the method of claim 6, wherein the method (10). 9. The method of claim 1, wherein the 筮 〇 第一 first The etching step further includes providing a second passivation gas. K). The method of claim 9, wherein the second purified gas comprises a smog. η. The method of claim 9, wherein the second purified gas comprises a woman. 12. The method of claim 6, wherein the first magnetic winding step has a pressure range of 12 to 18 mTorr according to the following state, and the variable pressure light combined electric power range is 1200 to 1600 watts. a bias power range of 25 〇 to 35 〇, a time range of 120 to 180 seconds, a flow rate of the first etch gas ranging from 15 〇 to 21 〇 8 sink 111, and the flow rate of the first passivation gas is 120 To 180 seem. 13. The method of claim 9, wherein the second etching step is performed according to the following state: a pressure range of 8 to 12 mTorr, and a transformer-coupled plasma power range of 1300 to 1700 watts, The bias power ranges from 250 to 350 watts, and the flow rate of the first etch gas 13 20110 1394 η ranges from 120 to 180 seem'. The flow rate of the first passivation gas ranges from 12 〇 to 180 seem. 14. A method of anisotropically engraving an aluminum layer, comprising: providing an etching gas to etch the aluminum layer, wherein the etching gas comprises a chlorine-containing substance but does not comprise a gas-containing compound (chlorine-containing compound) ° 〇is. The method of claim 5, wherein the chlorine-containing compound comprises a three gasification shed. 1. The method of claim 14, wherein the side gas comprises gas. 17. The method of claim 14, further comprising providing a purified gas. The method of claim 17, wherein the purified gas comprises a cigarette. 19. The method of claim 17, wherein the passivating gas comprises ethylene. 20. The method of claim 17, wherein the step of the step is performed in the following state: a pressure range of 8 to 12 mTorr, and a transformer-coupled electro-convergence power range from simple to 1700 watts. The pressure range is from 25 〇 to 35 〇. The flow rate of the etching gas ranges from 120 to 180 _, and the flow rate of the purified gas ranges from 12 〇 to 18 〇 201101394 鬌seem ° 八.
TW098121610A 2009-06-26 2009-06-26 Method of etching a multi-layer TWI462180B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098121610A TWI462180B (en) 2009-06-26 2009-06-26 Method of etching a multi-layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098121610A TWI462180B (en) 2009-06-26 2009-06-26 Method of etching a multi-layer

Publications (2)

Publication Number Publication Date
TW201101394A true TW201101394A (en) 2011-01-01
TWI462180B TWI462180B (en) 2014-11-21

Family

ID=44837009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098121610A TWI462180B (en) 2009-06-26 2009-06-26 Method of etching a multi-layer

Country Status (1)

Country Link
TW (1) TWI462180B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608568B (en) * 2015-08-29 2017-12-11 台灣積體電路製造股份有限公司 Semiconductor component and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199174B2 (en) * 2018-07-26 2023-01-05 東京エレクトロン株式会社 Etching method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952244A (en) * 1996-02-15 1999-09-14 Lam Research Corporation Methods for reducing etch rate loading while etching through a titanium nitride anti-reflective layer and an aluminum-based metallization layer
US7270761B2 (en) * 2002-10-18 2007-09-18 Appleid Materials, Inc Fluorine free integrated process for etching aluminum including chamber dry clean

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608568B (en) * 2015-08-29 2017-12-11 台灣積體電路製造股份有限公司 Semiconductor component and manufacturing method thereof
US9941384B2 (en) 2015-08-29 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method for fabricating the same
US10134867B2 (en) 2015-08-29 2018-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for fabricating semiconductor device
US10686054B2 (en) 2015-08-29 2020-06-16 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device
US11374107B2 (en) 2015-08-29 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device
US11901433B2 (en) 2015-08-29 2024-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device
US12027603B2 (en) 2015-08-29 2024-07-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TWI462180B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
TWI332034B (en) Method for depositing an amorphous carbon films in a cvd chamber
US8337950B2 (en) Method for depositing boron-rich films for lithographic mask applications
US8986921B2 (en) Lithographic material stack including a metal-compound hard mask
JP5122106B2 (en) Carbon-containing film etching method and semiconductor device manufacturing method using the same
TW473870B (en) Integrated low K dielectrics and etch stops
US6013582A (en) Method for etching silicon oxynitride and inorganic antireflection coatings
TWI352387B (en) Etch methods to form anisotropic features for high
TWI338332B (en) Method for etching a molybdenum layer suitable for photomask fabrication
TW552317B (en) Method for etching silicon oxynitride and dielectric antireflection coating
CN100477135C (en) Method for reducing line edge roughness in trench etching and semiconductor device thereof
TW201903899A (en) Method of patterning a low-k dielectric film
WO2003007344A2 (en) Etch pattern definition using a cvd organic layer as an anti-reflection coating and hardmask
TWI284370B (en) Use of hypofluorites, fluoroperoxides, and/or fluorotrioxides as oxidizing agent in fluorocarbon etch plasmas
US7067435B2 (en) Method for etch-stop layer etching during damascene dielectric etching with low polymerization
TWI244136B (en) Low oxygen content photoresist stripping process for low dielectric constant materials
TW201101394A (en) Method of etching a multi-layer
JP4651956B2 (en) Interlayer dielectric film dry etching method
JP2006148122A (en) Method for removing residues from a metal structure on a semiconductor substrate
US20080102553A1 (en) Stabilizing an opened carbon hardmask
TW200921788A (en) Method of manufacturing semiconductor device
KR100190498B1 (en) Etching method for polysilicon film
Weidman et al. Applications of plasma-polymerized methylsilane as a resist and silicon dioxide precursor for 193-and 248-nm lithography
JP4301146B2 (en) Insulating film processing method
JP7710783B2 (en) Method for forming ruthenium-containing layer and laminate
TW580756B (en) Dual damascene process