TW201043081A - EL panel, illuminating device with EL panel, backlight for liquid crystal and display device - Google Patents
EL panel, illuminating device with EL panel, backlight for liquid crystal and display device Download PDFInfo
- Publication number
- TW201043081A TW201043081A TW099109591A TW99109591A TW201043081A TW 201043081 A TW201043081 A TW 201043081A TW 099109591 A TW099109591 A TW 099109591A TW 99109591 A TW99109591 A TW 99109591A TW 201043081 A TW201043081 A TW 201043081A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- unit convex
- convex portion
- unit
- panel
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 20
- 230000003287 optical effect Effects 0.000 claims abstract description 104
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 238000005286 illumination Methods 0.000 claims abstract description 17
- 238000009826 distribution Methods 0.000 claims description 81
- 230000001154 acute effect Effects 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 2
- 241000287531 Psittacidae Species 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract description 71
- 239000010410 layer Substances 0.000 description 127
- 239000000463 material Substances 0.000 description 61
- 235000019557 luminance Nutrition 0.000 description 38
- 238000000034 method Methods 0.000 description 29
- 239000010408 film Substances 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- 229920005989 resin Polymers 0.000 description 24
- 239000010936 titanium Substances 0.000 description 12
- 230000000007 visual effect Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 239000005022 packaging material Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000004925 Acrylic resin Substances 0.000 description 8
- 229920002799 BoPET Polymers 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 230000005525 hole transport Effects 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 239000011147 inorganic material Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- -1 poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 6
- 229910052712 strontium Inorganic materials 0.000 description 6
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004049 embossing Methods 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004431 polycarbonate resin Substances 0.000 description 4
- 229920005668 polycarbonate resin Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 241000208340 Araliaceae Species 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 3
- 235000003140 Panax quinquefolius Nutrition 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000004982 aromatic amines Chemical class 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 210000000887 face Anatomy 0.000 description 3
- 235000008434 ginseng Nutrition 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000012327 Ruthenium complex Chemical class 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- JCXLYAWYOTYWKM-UHFFFAOYSA-N (2,3,4-triphenylcyclopenta-1,3-dien-1-yl)benzene Chemical compound C1C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 JCXLYAWYOTYWKM-UHFFFAOYSA-N 0.000 description 1
- YOZGCQXAHZWSRT-UHFFFAOYSA-N 1-buta-1,3-dienylbenzo[a]anthracene Chemical compound C1=CC=CC2=CC3=C4C(C=CC=C)=CC=CC4=CC=C3C=C21 YOZGCQXAHZWSRT-UHFFFAOYSA-N 0.000 description 1
- AICYTCNDHPRLDV-UHFFFAOYSA-N 2-methyl-5-(trifluoromethyl)quinoline-8-carboxylic acid Chemical group Cc1ccc2c(ccc(C(O)=O)c2n1)C(F)(F)F AICYTCNDHPRLDV-UHFFFAOYSA-N 0.000 description 1
- IVNOKZUKBMNYLB-UHFFFAOYSA-N 2-naphthalen-1-ylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C3=CC=CC=C3C=CC=2)=C1 IVNOKZUKBMNYLB-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- ZUCRUHFJSMQFTA-UHFFFAOYSA-N 4-methyl-n-quinolin-8-ylbenzenesulfonamide;zinc Chemical compound [Zn].C1=CC(C)=CC=C1S(=O)(=O)NC1=CC=CC2=CC=CN=C12.C1=CC(C)=CC=C1S(=O)(=O)NC1=CC=CC2=CC=CN=C12 ZUCRUHFJSMQFTA-UHFFFAOYSA-N 0.000 description 1
- ZJOAXIGYYBMTTP-UHFFFAOYSA-N C1=CC([Ru]C2=C3N=CC=CC3=CC=C2)=C2N=CC=CC2=C1 Chemical compound C1=CC([Ru]C2=C3N=CC=CC3=CC=C2)=C2N=CC=CC2=C1 ZJOAXIGYYBMTTP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- QUYZZTTYATWSRY-UHFFFAOYSA-N N1C=CC=C2N=CC=C12 Chemical class N1C=CC=C2N=CC=C12 QUYZZTTYATWSRY-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- ANAJSSMBLXCCSM-UHFFFAOYSA-K aluminum;4-(4-cyanophenyl)phenolate Chemical compound [Al+3].C1=CC([O-])=CC=C1C1=CC=C(C#N)C=C1.C1=CC([O-])=CC=C1C1=CC=C(C#N)C=C1.C1=CC([O-])=CC=C1C1=CC=C(C#N)C=C1 ANAJSSMBLXCCSM-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002635 aromatic organic solvent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- IWVKTOUOPHGZRX-UHFFFAOYSA-M methyl 2-methylprop-2-enoate;2-methylprop-2-enoate Chemical compound CC(=C)C([O-])=O.COC(=O)C(C)=C IWVKTOUOPHGZRX-UHFFFAOYSA-M 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- GHAKYKGFKFZYSJ-UHFFFAOYSA-N sulfonylmethanone Chemical class O=C=S(=O)=O GHAKYKGFKFZYSJ-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0961—Lens arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0972—Prisms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/879—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/221—Static displays, e.g. displaying permanent logos
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
201043081 六、發明說明: 【發明所屬之技術領域】 ' 本發明係有關於在液晶用背光、液晶顯示裝置、照明 • 裝置、電器飾品、符訊用光源等所使用的EL元件(電致發 光元件)、及使用此EL元件之照明裝置、液晶用背光及顯 示裝置。 【先前技術】 一般,EL元件具有在透光性基板上以陽極和陰極夾住 ^ 電洞注入層、電洞輸送層、中間層(interlayer layer)、發光 層、電子輸送層及電子注入層之構造。EL元件對上述之構 造中的陽極和陰極施加直流電壓,對發光層注入電子及電 洞,並使其再結合,藉此,產生激子(exciton),利用此激 子失效時放出的光,以達成發光。 以往,在這些EL元件,自發光層所射出的光線從發光 ' 面側的透光性基板射出時,部分的光線在觀察側之透光性 基板的表面發生全反射,而有外部所取出之光量損失的問 〇 s 〇 在此情況,外部所取出之光量的光取出效率一般被認 爲約20%。因而,有需要愈高亮度之顯示及照明需要愈增 加投入電力的問題。在此情況,因爲大電流向元件流動, 所以元件的負載增大,引起亮度降低及低壽命化,而元件 本身的可靠性降低。 因此,爲了提高從EL元件發出至外部之光量的光取出 效率的目的,提議一種發明,其作成藉由在設置於EL元件 之發光面側之透光性基板的觀察者側表面形成微細的凹 .201043081 凸,而將以往在透光性基板的表面發生全反射而成爲光之 損失的光取出至外部。作爲這種形成於透光性基板之觀察 ' 者側表面之微細的凹凸,例如配置稜鏡狀的透鏡。 - 可是,使用稜鏡狀之透鏡的透光性基板,亮度分布會 依從發光層所射出之光的射出方向而相異,整體無法成爲 均与的照明。 因此,在專利文獻1所記載之透光性基板,例如如第 38圖所示,作成藉由在透光性基板1 00中之光射出側的面 0 設置以平面方式排列複數個微透鏡元件101的微透鏡陣列 102,而使光取出效率變成更均勻,以得到均勻的照明。 [先前技術文獻] [專利文獻] [專利文獻1]特開2002 — 260845號公報 % 【發明內容】 ' [發明所欲解決之課題] 可是,在上述之習知技術的EL面板,來自EL元件之 ^ 光取出效率不夠高。在EL元件之光取出效率,和凹凸形狀201043081 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an EL element (electroluminescence element) used in a liquid crystal backlight, a liquid crystal display device, an illumination device, an electric appliance, a light source, and the like. And an illumination device using the EL element, a backlight for liquid crystal, and a display device. [Prior Art] In general, an EL element has a hole injection layer, a hole transport layer, an interlayer layer, a light-emitting layer, an electron transport layer, and an electron injection layer sandwiched between an anode and a cathode on a light-transmitting substrate. structure. The EL element applies a DC voltage to the anode and the cathode in the above configuration, injects electrons and holes into the light-emitting layer, and recombines them, thereby generating an exciton, and utilizing the light emitted when the exciton fails, To achieve the light. Conventionally, when the light emitted from the light-emitting layer is emitted from the light-transmitting substrate on the light-emitting side surface of the EL element, part of the light is totally reflected on the surface of the light-transmitting substrate on the observation side, and is externally taken out. The problem of light loss is 〇 〇 In this case, the light extraction efficiency of the amount of light taken out externally is generally considered to be about 20%. Therefore, there is a problem that the display of higher brightness and the need to increase the amount of input power are required. In this case, since a large current flows to the element, the load of the element increases, causing a decrease in brightness and a low life, and the reliability of the element itself is lowered. Therefore, in order to improve the light extraction efficiency of the amount of light emitted from the EL element to the outside, an invention has been proposed which is formed by forming a fine concave on the observer-side surface of the light-transmitting substrate provided on the light-emitting surface side of the EL element. .201043081 The light that has been totally reflected on the surface of the light-transmitting substrate and lost as light is taken out to the outside. As such a fine unevenness formed on the side surface of the observation substrate of the light-transmitting substrate, for example, a dome-shaped lens is disposed. - However, in a translucent substrate using a dome-shaped lens, the luminance distribution differs depending on the direction in which the light emitted from the luminescent layer is emitted, and the entire illumination cannot be uniform. Therefore, as shown in FIG. 38, for example, as shown in FIG. 38, the plurality of microlens elements are arranged in a planar manner by the surface 0 on the light-emitting side of the light-transmitting substrate 100. The microlens array 102 of 101 makes the light extraction efficiency more uniform to achieve uniform illumination. [PRIOR ART DOCUMENT] [Patent Document 1] JP-A-2002-260845. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] However, the EL panel of the above-described prior art is derived from an EL element. The light extraction efficiency is not high enough. Light extraction efficiency in EL elements, and concave and convex shapes
U 或其配置密切地相關,爲了提高光取出效率,需要使這些 參數最佳化。 又,在照明用途使用有機EL的情況,除了上述之光取 出效率以外,創意性亦成爲重要的要素。 在對有機EL元件賦予創意性的情況,一般常採用以曰 本紙或具有花樣的壓克力板覆蓋光源而賦予創意性的方 ' 法。可是,在這種方法,因爲以日本紙或具有花樣的壓克 力板覆蓋光源,所以在以日本紙或壓克力板發生光的吸 201043081 收’而發生光的損失,結果光的利用效率降低。 因而,要求不會降低光之利用效率之賦予創意性的方 ' 法。 • 本發明係鑑於上述之情況而開發者,其目的在於提供 光取出效率高,並在觀察方向無激烈之亮度變化而適合作 爲照明光源的EL面板、具備這種EL面板之照明裝置、液 晶用背光及顯示裝置。 進而,其目的在於提供光之外部取出效率提高,及不 0 會降低光之利用效率之賦予創意性的EL元件及使用該EL 元件之照明裝置、顯示裝置及液晶顯示裝置。 〔用於解決課題之手段〕 爲了達成該目的,本發明講求如以下所示的手段。 即,本發明的EL面板,其具備:透光性基板;EL元 件,係具備有設置於透光性基板之其中一面並被陽極和陰 * 極夾住的發光媒體層;及光學片,係對透光性基板設置於 和EL元件反側的面;該EL面板的特徵爲:光學片係在和U or its configuration is closely related, and in order to improve light extraction efficiency, these parameters need to be optimized. Further, in the case where an organic EL is used for lighting purposes, in addition to the above-described light extraction efficiency, creativity is also an important factor. In the case where the organic EL element is imparted with creativity, it is common to use a crepe paper or a embossed sheet having a pattern to cover the light source to impart creativity. However, in this method, since the light source is covered with Japanese paper or an acrylic plate having a pattern, the light is lost when the light is absorbed by the Japanese paper or the acrylic sheet, and the light utilization efficiency is obtained. reduce. Therefore, a method of imparting creativity that does not reduce the efficiency of light utilization is required. The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an EL panel suitable for use as an illumination source and a lighting device having such an EL panel, which has high light extraction efficiency and no sharp change in brightness in the observation direction. Backlight and display device. Further, an object of the present invention is to provide an EL element which is excellent in external extraction efficiency of light, and which is capable of reducing the efficiency of use of light, and an illumination device, a display device and a liquid crystal display device using the same. [Means for Solving the Problem] In order to achieve the object, the present invention has been made as follows. In other words, the EL panel of the present invention includes a light-transmitting substrate, and the EL element includes a light-emitting medium layer provided on one surface of the light-transmitting substrate and sandwiched between the anode and the cathode, and an optical sheet. The light transmissive substrate is disposed on a surface opposite to the EL element; the EL panel is characterized in that the optical sheet is in the
q EL元件反側的面配置複數個折射率η之單位凸部,這些單 位凸部係隨著從該單位凸部的底面往頂部而和單位凸部之 底面平行之截面的截面積變小,將距離底面最遠的截面作 爲頂部,在將在單位凸部之底面的直徑設爲Di、將從底面 至頂部的長度設爲單位凸部的高度Ti,定義單位凸部的寬 高比ARi = Ti/Di,將複數個單位凸部之寬高比ARi的平均値 設爲ARa的情況,滿足0.4SARaS0.6…(1)及1.44SnS ' 1.7…(2)的關係。 若依據本發明,在來自EL元件之光射出方向所設置之 201043081 光學片的射出面配設複數個構成例如微透鏡或稜鏡透鏡的 單位凸部,藉由將在單位凸部之寬高比的平均値ARa設定 ‘ 於第(1)式之範圍,同時將單位凸部的折射率設定於第(2) - 式之範圍,可使光取出量增大同時可提高亮度。尤其,藉 由將在單位凸部之寬高比的平均値ARa設定於第(1)式之範 圍,雖然隨著寬高比ARa從0.1逐漸增加,光取出量逐漸 增加,但是因爲在0.4以上光取出量大致相同,所以寬高 比ARa係0.4以上,可取出充分的光,又,雖然寬高比ARa 0 愈高相對亮度愈高,但是因爲寬高比ARa大於0.6時亮度 不會上昇,所以單位凸部的寬高比ARa設爲0.6以下》 又,藉由將單位凸部的折射率η設定於第(2)式之範 圍,若單位凸部的折射率η位於從1.44至1.7之範圍,光 • 取出量包含最大値同時可得到其95%以內的光取出量。另 一方面,若單位凸部之折射率η是未滿1.44,在光學片之 ' 入射面全反射的光增加,而光取出量降低。又,在折射率 η大於1.7的情況,因爲在光學片之光入射面反射的光增 Q 加,所以光取出量還是降低。 又,本發明之EL面板的特徵爲:在將相鄰之2個單位 凸部之頂部間的距離設爲Β12,將相鄰之2個單位凸部之 底面的直徑各自設爲Di、D(i+1)時,滿足如下的第(3)式,q The surface of the opposite side of the EL element is provided with a plurality of unit convex portions having a refractive index η. These unit convex portions are smaller in cross-sectional area of a cross section parallel to the bottom surface of the unit convex portion from the bottom surface of the unit convex portion toward the top portion. The section farthest from the bottom surface is defined as the top, and the diameter of the bottom surface of the unit convex portion is set to Di, and the length from the bottom surface to the top portion is defined as the height Ti of the unit convex portion, and the aspect ratio of the unit convex portion is defined as ARi = Ti/Di is a case where the average 値 of the plurality of unit convex portions is set to ARa, and satisfies the relationship of 0.4SARaS0.6(1) and 1.44SnS' 1.7 (2). According to the present invention, a plurality of unit convex portions constituting, for example, a microlens or a 稜鏡 lens are disposed on the exit surface of the 201043081 optical sheet provided from the light emitting direction of the EL element, by the aspect ratio of the unit convex portion The average 値ARa is set to the range of the formula (1), and the refractive index of the unit convex portion is set to the range of the (2)-th., so that the amount of light extraction can be increased while the brightness can be increased. In particular, by setting the average 値ARa of the aspect ratio of the unit convex portion to the range of the formula (1), although the aspect ratio ARa gradually increases from 0.1, the amount of light extraction gradually increases, but since 0.4 or more Since the amount of light extraction is substantially the same, the aspect ratio of ARa is 0.4 or more, and sufficient light can be taken out. Further, although the aspect ratio ARa 0 is higher, the relative brightness is higher, but since the aspect ratio ARa is larger than 0.6, the brightness does not rise. Therefore, the aspect ratio ARa of the unit convex portion is set to 0.6 or less. Further, by setting the refractive index η of the unit convex portion to the range of the formula (2), if the refractive index η of the unit convex portion is from 1.44 to 1.7. Range, light • The amount of removal includes the maximum amount of light and the amount of light taken out within 95% of it. On the other hand, if the refractive index η of the unit convex portion is less than 1.44, the light totally reflected on the incident surface of the optical sheet increases, and the amount of light extraction decreases. Further, in the case where the refractive index η is larger than 1.7, since the light reflected on the light incident surface of the optical sheet is increased by Q, the amount of light extraction is lowered. Further, the EL panel of the present invention is characterized in that the distance between the tops of the adjacent two unit convex portions is Β12, and the diameters of the bottom surfaces of the adjacent two unit convex portions are each set to Di, D ( When i+1), the following formula (3) is satisfied,
Di + D(i+l)S B12 …(3) 同時,當將在連接任意之單位凸部的頂部和位於距離 該頂部最近之其他的2個單位凸部的頂部所形成之虛擬銳 角三角形的最短邊設爲E1,將最長邊設爲E2時,滿足如 下之第(4)式的關係, .201043081 1 ^ E2/E1 ^ 2 若依據本發明的EL面板 ' 相鄰的單位凸部彼此不會重疊 - 單位凸部所射出之光的區域, 的降低。 又,藉由配置構成爲在相i 第(3)式,因爲包含在單位凸部 値,同時可將光取出量和亮度 0 制在1 %以內,所以藉由將單位 位於第(3)式和第(4)式之範圍內 和亮度。 又,單位凸部的底面亦可: ^ 藉由將單位凸部的底面作 單位凸部,可使光學片中之單 ' 助於光取出量和亮度的增大》 又,一種EL面板,其特徵 Q 創意片;該光控制創意片係具 互隔著間隔而配置在和該EL另 部,係以埋在該單位凸部彼此 並各自構成高度比該單位凸部 列形成創意圖案,而且該凹凸 則性排列圖案。 以提高光之外部取出效率 '並在單位凸部彼此之間以提高 無間隙地配置,藉此,不會降 …(4)。 ’根據第(3)式,藉由配置成 ’因爲不會產生無法取出從 所以可抑制光取出量及亮度 部之3個單位凸部彼此滿足 之光取出量和亮度的各最大 之與各最大値的變動各自抑 凸部彼此的位置關係設定成 ’可保持充分高的光取出量 是圓形。 成圓形,緊密地配設複數個 位凸部的設置面積變大,有 爲本發明的光學片係光控制 有;複數個單位凸部,係相 ί;件反側的面;及複數個凹凸 之間的方式無間隙地排列, 低的透鏡;該單位凸部的排 部的排列形成大致固定之規 的單位凸部實施創意圖案, 光之外部取出效率的凹凸部 低光的利用效率,並可有助 201043081 於創意性。 又,一種EL·面板’其特徵爲:本發明的光控制創意片’ ' 係在從該發光媒體層所發出的光作爲被該單位凸部控制而 * 射出的第1射出光,從該發光層所發出的光作爲被該凹凸 部控制而射出的第2射出光時,比較該第1射出光和該第2 射出光,該第1射出光和該第2射出光之射出方向、亮度 分布之其中至少一個相異。 藉由以提高光之外部取出效率之單位凸部的射出光之 0 第1射出光、和提高光之外部取出效率之凹凸部的射出光 之第2射出光的射出方向,或亮度分布的差異賦予創意 性,而不會降低光的利用效率,並可賦予創意性。 又,亦可在該單位凸部的斜面和該底面所構成之傾斜 角度,該單位凸部之一方之端部的傾斜角度,和該單位凸 部之另一方之端部的該傾斜角度相異。 ' 藉由使傾斜角度相異,並改變觀察位置,而可賦予不 同的視覺效果,並可使具有創意性。 ^ 又,該凹凸部係截面形成凸狀的透鏡或稜鏡形狀,而 且呈在一方向延伸存在的帶狀,該帶狀之該凸狀的透鏡或 稜鏡形狀在該單位凸部之間彼此平行地排列是較佳的。 又,該凹凸部係截面形成凸狀的透鏡或稜鏡形狀,而 且呈在一方向延伸存在的帶狀,該帶狀之該凸狀的透鏡或 稜鏡形狀在該單位凸部之間彼此交叉地排列是較佳的。 又,該凹凸部較佳爲無間隙地配置底部爲多角形的多 角凸透鏡部、或底部爲多角形的多角凹透鏡部。 又,該創意圖案較佳爲利用以該單位凸部之每單位面 201043081 積的配置數所表示之密度的差來形成。 又,若依據本發明的照明裝置,藉由使用上述的EL面 板,可得到比以往之照明裝置更高的光取出量和亮度。 一樣地,若依據本發明的液晶用背光,藉由具備上述 的EL面板,可得到比以往更高的光取出量和亮度。 又,本發明的液晶顯示裝置係藉由具備上述之液晶用 背光和液晶顯示元件,可得到光取出量高、高亮度的液晶 顯示影像。 又,若依據本發明的顯示裝置,藉由上述之EL面板被 進行像素驅動,可得到光取出量高、高亮度的顯示裝置。 〔發明之效果〕 若依據本發明的EL面板,因爲在來自EL元件之光射 出方向上所設置之光學片的射出面配設複數個單位凸部, 並將在單位凸部之寬高比的平均値ARa設定於第(1)式之範 圍,同時將單位凸部的折射率設定於第(2)式之範圍,所以 可提高光取出效率,使光取出量增大同時提高亮度。 尤其’藉由將在單位凸部之寬高比的平均値ARa設定 於第(1)式之範圍,並藉由將寬高比AR設爲0.4以上,可 得到最大的光取出量,可取出充分的光,而且藉由將寬高 比ARa設爲〇·6以下,將成本和佔有體積抑制成最低限度, 並可得到高亮度。又’藉由將單位凸部的折射率η設定於 以第(2)式所規定之從1.44至1.7的範圍,光取出量包含最 大値同時可得到其9 5 %以內的光取出量。 進而’以提高光之外部取出效率的單位凸部實施創意 圖案’並在單位凸部彼此之間以提高光之外部取出效率的 -10- 201043081 凹凸部無間隙地配置,藉此,不會降低光的利用效率,並 可有助於創意性。 ' 又,藉由提高光之外部取出效率之單位凸部的射出光 • 之第1射出光、和提高光之外部取出效率之凹凸部的射货 光之第2射出光的射出方向,或亮度分布的差異賦予創意 性,而不會降低光的利用效率,並可賦予創意性。 進而,藉由使用本發明之裝入EL元件的照明裝置、顯 示裝置及液晶顯示裝置,可提供高的光取出量、高亮度, 〇 而且光的利用效率不會降低,並具有創意性的照明裝置、 顯示裝置及液晶顯示裝置。 【實施方式】 〔用於實施發明之形態〕 . (第1實施形態) 以下,一面參照圖式一面說明本發明之實施形態的EL 面板。 第1圖係表示本發明之第1實施形態之EL面板10之 Q 構成的縱向剖面圖。 第1圖所示之EL面板10將光學片12經由黏著層13 一體地固定於是EL元件11之光取出方向之面的發光面 1 1 a ° 此EL面板10中之EL元件11將被陰極16及陽極17 ^ 所夾住的發光媒體層18形成於基板15A和透光性基板之透 明基板1 5 B之間。和基板1 5 A相鄰地設置陰極1 6 ’並和透 ' 明基板15B相鄰地設置陽極17。 在此,EL元件11是具有發出光之功能的元件,藉由 -11- 201043081 對陽極17和陰極16施加電壓而從發光媒體層18射出光。 此射出光hi透過陽極17,進而透過透明基板1B及黏著層 13後,射入光學片12的入射面12a。 光學片12由片狀的基材層19和按照既定間隔形成於 其射出面12b之複數個單位凸部20所形成。單位凸部20 例如是構成光學片12之微透鏡者,在平面圖上形成爲大致 圓形且在側視圖上構成大致1 /2之橢圓形的大致半橢圓體 形狀,較佳爲作成半旋轉橢圓體形狀。 因而,從光學片12的入射面12a所射入之射出光hi 的一部分透過基材層19,並由形成於射出面12b之多個單 位凸部20聚光、擴散後,各自作爲光hla射出。在光學片 12之射出面12b之未形成單位凸部20的區域12ba,射出 光hi是直接透過。又,一部分的射出光hi成爲在單位凸 部20上之射出面的最表面20A反射的光hlb。 第2圖所示之發光媒體層18設置於陰極16和陽極17 之間,較佳爲由包含發光層21和電洞輸送層22之構造所 構成。進而’亦可因應於需要而將電子注入層(未圖示)、 電荷阻隔層(未圖示)、作爲電子輸送層發揮功能的層(未圖 示)設置在上述的發光媒體層18。 積層於陽極17和發光層21之間者是電洞注入層(未圖 示)、電子阻隔層(未圖示)及電洞輸送層22,形成於發光層 21和陰極16之間者是電洞阻隔層(未圖示)、電子注入層(未 圖示)及電子輸送層(未圖示)。這些亦可積層複數層,又可 作成一個層具有2種以上之功能。 電子注入層、電子阻隔層及電子輸送層如後述所示, -12- 201043081 雖然可各自配合材料適當地選擇積層方法,但是藉由特別 選擇由無機物所構成之材料,而可得到熱穩定性及耐性優 異之更穩定的EL元件11。 ' 進一步說明使從EL元件11所射出之光hi聚光、擴 散、透過的光學片12。 從EL元件11所發出之光的亮度分布,係視形成光學 片12之最表面20A之單位凸部20的形狀及配置而定。在 第1圖所示的EL面板10,雖然將設置於光學片12的單位 0 凸部20作成大致半橢圓體形狀,但是單位凸部20未限定 爲這種形狀。 其次,說明單位凸部20之適合的形狀。 首先,第3圖(a)所示的光學片12,作爲第一參考例, . 係按照既定間隔將具有和大致半橢圓體形狀之單位凸部20 不同之形狀的單位凸部23排列於基材層1 9的射出面1 2b。 第3圖(a)所示的單位凸部23形成例如正六角形柱狀的多角 形柱狀。從此單位凸部23所射出之射出光具有第3圖(b) Q 所示的亮度分布310。 即,在第3圖(a),即使對EL面板10之單位凸部23 之由正六角形所構成之頂面23a的法線(中心軸線)方向N 之射出光hla的射出角度0係相同,亦如第3圖(b)所示, 根據射出光hla的射出方向而產生亮度高的方向314及亮 . 度低的方向316,根據觀察之方向的角度而亮度激烈地變 化。這是由於即使對單位凸部23的法線N之射出光hla的 角度0係相同,亦因單位凸部23是六角柱形狀,而發生透 過頂面23a的射出光hla和偏離頂面23a的射出光hla。 -13- 201043081 因而,如第4圖(a)的第二參考例所示,單位凸部24 較佳爲其底面24c是圓形。在單位凸部24之底面24c是圓 ' 形的情況’如第4圖(b)所示之射出光hla的亮度分布310 ' 所示’只要是對法線以相同之角度0射出的光,便可得到 均句的亮度。 又’如第4圖(a)所示,在將形成於光學片12的射出面 1 2b之單位凸部24的情況設爲圓柱的情況,可得到第4圖 (b)所示之亮度分布310。在此情況,因爲從單位凸部24的 0 側面24b朝EL面板10的垂直方向射出很多的射出光hla 而較佳。另一方面,從頂部24a所射出的射出光hla朝水 平方向射出,而發生光的損失。 另一方面,如第5圖(a)的第三參考例所示,在作爲單 , 位凸部25的形狀採用在保持底面25c之圓形下逐漸變細之 圓錐形狀的情況,雖然從第5圖(a)所示之單位凸部25的側 面25b射出光hla,但是如第5圖(b)所示,不僅在EL面板 10的垂直方向,而且在水平方向亦射出很多的射出光hi, q 因爲呈現單位凸部25之中心區域的亮度比其外側凹陷之 盆地狀的亮度分布310,所以發生光的損失。 進而,如第6圖(a)的第四參考例所示,在作爲單位凸 部26的形狀採用圓錐台形狀的情況,從在單位凸部26之 頂面26a的周圍所形成之側面26b射出的射出光hla以接 近垂直的角度射出,雖然朝垂直方向射出很多從頂面26a 所射出的光hla,但是不太會在水平方向上射出。因而,從 單位凸部26所射出的射出光hla如第6圖(b)所示,可作成 使朝垂直方向之射出增加的亮度分布310。 -14- 201043081 可是,即使是這種圓錐台形狀的單位凸部26,亦在第 6圖(b)所示的亮度分布310,在周邊部殘留激烈變化的角 ' 度。 - 因此,作爲以第五參考例所示之單位凸部27的形狀, 採用如第7圖(a)所示之由圓滑的曲面所構成之大致半球形 之凸曲面形狀的情況,在單位凸部27射出的射出光hla之 垂直方向的亮度分布如第7圖(b)所示,亮度不會因觀察的 角度而激烈地變化,而可得到整體平緩的亮度分布。這種 0 亮度分布是更佳的。但是,即使是這種單位凸部27的形 狀,亦並非只要是如第7圖(a)所示的凸曲面,則任何的傾 斜曲面皆可。即,在將單位凸部27之底面27c的直徑設爲 Di、將從單位凸部27之底面27c至頂點27a的高度設爲Ti . 時,寬高比ARi可依如下的第(5)式得到。 ARi = Ti/Di …(5) 根據第(5)式之單位凸部27的寬高比ARi例如小於0.4 的情況,可得到如第8圖(a)所示之高度Ti遠小於直徑Di Q 之凸曲面形狀的單位凸部28。在此單位凸部28,射入單位 凸部28之射出光hi中透過的射出光hla比較少,而全反 射的光hlb變多。因而,如第8圖(b)所示,從單位凸部28 所射出的射出光hla之亮度分布的尖峰値變小,而整體的 光取出量減少,發生亮度降低之不良而不佳。Di + D(i+l)S B12 (3) At the same time, when the top of the convex portion connected to any unit and the other two unit convex portions located closest to the top are formed, the virtual acute triangle is formed. When the shortest side is set to E1 and the longest side is set to E2, the relationship of the following formula (4) is satisfied, .201043081 1 ^ E2/E1 ^ 2 If the EL panel according to the present invention's adjacent unit convex portions are not mutually Will overlap - the reduction of the area of light emitted by the unit convex. Further, since the configuration is such that the phase (3) is included in the phase i, since the unit convex portion 包含 is included, the light extraction amount and the luminance 0 can be made within 1%, so that the unit is located in the equation (3). And within the range of (4) and brightness. Further, the bottom surface of the unit convex portion can also be: ^ By using the bottom surface of the unit convex portion as a unit convex portion, the single sheet in the optical sheet can contribute to an increase in the amount of light extraction and brightness. a feature Q creative piece; the light control creative film system is disposed at intervals with the EL portion, and is embedded in the unit convex portion and each has a height ratio to form a creative pattern than the unit convex portion column, and the creative pattern is formed Concave and convex arrangement patterns. In order to improve the external extraction efficiency of light, and to arrange the unit convex portions with no gaps therebetween, it is not lowered (4). According to the formula (3), the maximum amount of the light extraction amount and the brightness which are satisfied by the three unit convex portions of the luminance portion can be suppressed because the light extraction amount and the three unit convex portions of the luminance portion are suppressed from being generated. The positional relationship between the convex portions and the convex portions is set such that the light extraction amount that can be kept sufficiently high is circular. In a circular shape, the installation area of the plurality of convex portions is closely arranged, and the optical sheet of the present invention is controlled by light; a plurality of unit convex portions are attached; the opposite side of the member; and a plurality of The arrangement between the concavities and convexities is arranged without gaps, and the arrangement of the rows of the convex portions of the unit convex portion forms a substantially fixed pattern of the unit convex portion, and the utilization efficiency of the low-light portion of the uneven portion of the external light extraction efficiency is And can help 201043081 to be creative. Further, an EL panel is characterized in that the light control creative sheet of the present invention is characterized in that light emitted from the light-emitting medium layer is emitted as the first light emitted by the unit convex portion* from the light. When the light emitted by the layer is the second emitted light that is emitted by the uneven portion, the first emitted light and the second emitted light are compared, and the emission direction and the luminance distribution of the first emitted light and the second emitted light are compared. At least one of them is different. The first emission light of the light emitted from the unit convex portion for improving the external light extraction efficiency, and the emission direction of the second emission light of the light emitted from the uneven portion for improving the external extraction efficiency of light, or the difference in luminance distribution Give creativity without reducing the efficiency of light utilization and giving creativity. Moreover, the inclination angle formed by the inclined surface of the unit convex portion and the bottom surface may be different from the inclination angle of the end portion of the unit convex portion and the inclination angle of the other end portion of the unit convex portion. . By giving different tilt angles and changing the viewing position, different visual effects can be imparted and can be creative. Further, the uneven portion has a convex lens or a dome shape, and has a strip shape extending in one direction, and the strip-shaped convex lens or dome shape is mutually between the unit convex portions. Arrangement in parallel is preferred. Further, the uneven portion has a convex lens or a 稜鏡 shape, and has a strip shape extending in one direction, and the strip-shaped convex lens or 稜鏡 shape crosses each other between the unit convex portions. The arrangement of the ground is preferred. Further, it is preferable that the uneven portion is provided with a polygonal convex lens portion having a polygonal bottom portion or a polygonal concave lens portion having a polygonal bottom portion without a gap. Further, it is preferable that the creative pattern is formed by using a difference in density indicated by the number of arrangement of the unit convex surface per unit surface 201043081. Further, according to the illuminating device of the present invention, by using the EL panel described above, it is possible to obtain a higher light extraction amount and brightness than the conventional illuminating device. In the same manner, according to the backlight for liquid crystal of the present invention, by providing the EL panel described above, it is possible to obtain a higher light extraction amount and brightness than in the related art. Further, in the liquid crystal display device of the present invention, by providing the liquid crystal backlight and the liquid crystal display element described above, a liquid crystal display image having a high light extraction amount and high luminance can be obtained. Further, according to the display device of the present invention, the EL panel is driven by the above-described EL panel, whereby a display device having a high light extraction amount and high luminance can be obtained. [Effects of the Invention] According to the EL panel of the present invention, a plurality of unit convex portions are disposed on the emitting surface of the optical sheet provided in the light emitting direction from the EL element, and the aspect ratio of the unit convex portion is set. Since the average 値ARa is set in the range of the formula (1) and the refractive index of the unit convex portion is set in the range of the formula (2), the light extraction efficiency can be improved, and the amount of light extraction can be increased while the brightness is improved. In particular, the maximum light extraction amount can be obtained by setting the average 値ARa of the aspect ratio of the unit convex portion to the range of the formula (1), and by setting the aspect ratio AR to 0.4 or more. Sufficient light, and by setting the aspect ratio ARa to 〇·6 or less, the cost and the occupied volume are suppressed to a minimum, and high luminance can be obtained. Further, by setting the refractive index η of the unit convex portion to a range from 1.44 to 1.7 defined by the formula (2), the light extraction amount includes the maximum enthalpy and the light extraction amount within 95% can be obtained. Further, 'the creative pattern is applied to the unit convex portion for improving the external extraction efficiency of the light, and the uneven portion is provided with no gap between the unit convex portions to improve the external extraction efficiency of the light, thereby not reducing the uneven portion. The efficiency of light utilization can contribute to creativity. In addition, the first emission light of the light emitted from the unit convex portion of the external light extraction efficiency, and the emission direction of the second emission light of the emission light of the uneven portion which improves the external extraction efficiency of the light, or the brightness The difference in distribution gives creativity without reducing the efficiency of light utilization and giving creativity. Further, by using the illumination device, the display device, and the liquid crystal display device incorporating the EL element of the present invention, it is possible to provide a high light extraction amount and high luminance, and the light utilization efficiency is not lowered, and the creative illumination is provided. Device, display device and liquid crystal display device. [Embodiment] [Embodiment for Carrying Out the Invention] (First Embodiment) Hereinafter, an EL panel according to an embodiment of the present invention will be described with reference to the drawings. Fig. 1 is a longitudinal cross-sectional view showing a configuration of a Q panel of an EL panel 10 according to a first embodiment of the present invention. The EL panel 10 shown in Fig. 1 integrally fixes the optical sheet 12 to the light-emitting surface of the surface of the EL element 11 in the light extraction direction via the adhesive layer 13, and the EL element 11 in the EL panel 10 is to be the cathode 16. The light-emitting medium layer 18 sandwiched between the anode 17 and the anode 17 is formed between the substrate 15A and the transparent substrate 15B of the light-transmitting substrate. The cathode 16 is disposed adjacent to the substrate 15 A and the anode 17 is disposed adjacent to the transparent substrate 15B. Here, the EL element 11 is an element having a function of emitting light, and a light is applied from the light-emitting medium layer 18 by applying a voltage to the anode 17 and the cathode 16 by -11-201043081. The emitted light hi passes through the anode 17, passes through the transparent substrate 1B and the adhesive layer 13, and then enters the incident surface 12a of the optical sheet 12. The optical sheet 12 is formed of a sheet-like base material layer 19 and a plurality of unit convex portions 20 formed on the emission surface 12b at predetermined intervals. The unit convex portion 20 is, for example, a microlens constituting the optical sheet 12, and is formed in a substantially circular shape in plan view and has a substantially semi-ellipsoidal shape of an elliptical shape of substantially 1 /2 in a side view, preferably a semi-rotation ellipse. Body shape. Therefore, a part of the emitted light hi incident from the incident surface 12a of the optical sheet 12 passes through the base material layer 19, and is condensed and diffused by the plurality of unit convex portions 20 formed on the emitting surface 12b, and then emitted as light hla. . In the region 12ba of the exit surface 12b of the optical sheet 12 where the unit convex portion 20 is not formed, the emitted light hi is directly transmitted. Further, a part of the emitted light hi is the light hlb reflected on the outermost surface 20A of the emitting surface on the unit convex portion 20. The light-emitting medium layer 18 shown in Fig. 2 is disposed between the cathode 16 and the anode 17, and is preferably constituted by a structure including the light-emitting layer 21 and the hole transport layer 22. Further, an electron injecting layer (not shown), a charge blocking layer (not shown), and a layer (not shown) functioning as an electron transporting layer may be provided in the above-described light emitting medium layer 18 as needed. The layer between the anode 17 and the light-emitting layer 21 is a hole injection layer (not shown), an electron blocking layer (not shown), and a hole transport layer 22, and is formed between the light-emitting layer 21 and the cathode 16. A hole barrier layer (not shown), an electron injection layer (not shown), and an electron transport layer (not shown). These may also be laminated in a plurality of layers, and may be formed into one layer having two or more functions. The electron injecting layer, the electron blocking layer, and the electron transporting layer are as described later. -12- 201043081 Although the lamination method can be appropriately selected for each of the materials to be blended, thermal stability can be obtained by specifically selecting a material composed of an inorganic material. A more stable EL element 11 excellent in resistance. The optical sheet 12 that condenses, diffuses, and transmits the light hi emitted from the EL element 11 will be further described. The luminance distribution of the light emitted from the EL element 11 depends on the shape and arrangement of the unit convex portion 20 forming the outermost surface 20A of the optical sheet 12. In the EL panel 10 shown in Fig. 1, the unit 0 convex portion 20 provided in the optical sheet 12 is formed into a substantially semi-ellipsoidal shape, but the unit convex portion 20 is not limited to such a shape. Next, a suitable shape of the unit convex portion 20 will be described. First, the optical sheet 12 shown in Fig. 3(a) is a first reference example. The unit convex portion 23 having a shape different from the unit convex portion 20 having a substantially semi-ellipsoidal shape is arranged at a predetermined interval. The exit surface 1 2b of the material layer 19. The unit convex portion 23 shown in Fig. 3(a) is formed in a polygonal columnar shape of, for example, a regular hexagonal column shape. The emitted light emitted from the unit convex portion 23 has a luminance distribution 310 as shown in Fig. 3(b) and Q. In other words, in the third diagram (a), the emission angles 0 of the emitted light hla in the normal (center axis) direction N of the top surface 23a of the unit convex portion 23 of the EL panel 10 are the same, As shown in Fig. 3(b), the direction 314 in which the brightness is high and the direction 316 in which the brightness is low are generated in accordance with the emission direction of the emitted light hla, and the brightness is drastically changed depending on the angle of the direction of the observation. This is because even if the angle 0 of the light emission hla of the normal line N of the unit convex portion 23 is the same, since the unit convex portion 23 has a hexagonal column shape, the light emitted from the top surface 23a and the light emitted from the top surface 23a are deviated from the top surface 23a. The light hla is emitted. -13- 201043081 Thus, as shown in the second reference example of Fig. 4(a), the unit convex portion 24 is preferably such that its bottom surface 24c is circular. The case where the bottom surface 24c of the unit convex portion 24 is a circular shape is as shown in the luminance distribution 310' of the emitted light hla shown in Fig. 4(b) as long as the light is emitted at the same angle 0 to the normal line. You can get the brightness of the average sentence. Further, as shown in Fig. 4(a), when the unit convex portion 24 formed on the emitting surface 12b of the optical sheet 12 is a cylinder, the luminance distribution shown in Fig. 4(b) can be obtained. 310. In this case, it is preferable that a large amount of the emitted light hla is emitted from the 0 side surface 24b of the unit convex portion 24 toward the vertical direction of the EL panel 10. On the other hand, the emitted light hla emitted from the top portion 24a is emitted in the horizontal direction, and light loss occurs. On the other hand, as shown in the third reference example of Fig. 5(a), the shape of the single convex portion 25 is a conical shape which is tapered under the circular shape of the bottom surface 25c. The side surface 25b of the unit convex portion 25 shown in Fig. (a) emits light hla, but as shown in Fig. 5(b), a large amount of emitted light is emitted not only in the vertical direction of the EL panel 10 but also in the horizontal direction. , q Since the luminance of the central region of the unit convex portion 25 is larger than that of the basin-shaped luminance distribution 310 which is recessed outside, light loss occurs. Further, as shown in the fourth reference example of Fig. 6(a), when the shape of the unit convex portion 26 is a truncated cone shape, the side surface 26b formed around the top surface 26a of the unit convex portion 26 is emitted. The emitted light hla is emitted at a nearly vertical angle, and although a lot of light hla emitted from the top surface 26a is emitted in the vertical direction, it is less likely to be emitted in the horizontal direction. Therefore, as shown in Fig. 6(b), the emitted light hla emitted from the unit convex portion 26 can be made to increase the luminance distribution 310 in the vertical direction. -14- 201043081 However, even in the unit convex portion 26 having such a truncated cone shape, the luminance distribution 310 shown in Fig. 6(b) remains at a sharp angle "degree" in the peripheral portion. Therefore, as the shape of the unit convex portion 27 shown in the fifth reference example, a substantially hemispherical convex curved surface formed by a smooth curved surface as shown in Fig. 7(a) is used, and the unit convex is used. As shown in Fig. 7(b), the luminance distribution in the vertical direction of the emitted light hla emitted from the portion 27 is not drastically changed by the angle of observation, and an overall gentle luminance distribution can be obtained. This 0 brightness distribution is better. However, even if the shape of the unit convex portion 27 is not a convex curved surface as shown in Fig. 7(a), any inclined curved surface may be used. In other words, when the diameter of the bottom surface 27c of the unit convex portion 27 is Di and the height from the bottom surface 27c of the unit convex portion 27 to the apex 27a is Ti, the aspect ratio ARi can be expressed as follows (5). get. ARi = Ti / Di (5) According to the case where the aspect ratio ARi of the unit convex portion 27 of the formula (5) is, for example, less than 0.4, the height Ti as shown in Fig. 8(a) is much smaller than the diameter Di Q. The unit convex portion 28 of the convex curved shape. In the unit convex portion 28, the emitted light hla transmitted through the light emitted from the unit convex portion 28 is relatively small, and the total reflected light hlb is increased. Therefore, as shown in Fig. 8(b), the peak 値 of the luminance distribution of the emitted light hla emitted from the unit convex portion 28 becomes small, and the total amount of light extraction is reduced, which causes a poor luminance reduction.
另一方面’如第9圖(a)所示,單位凸部20構成大致半 橢圓體形狀,以第(5)式所示之寬高比ARi例如構成0.4以 上而充分大’射入單位凸部20之射出光hi中全反射的光 hlb少,而且如第9圖(b)所示,在中央之頂部(中心軸線N -15- 201043081 上)20a亮度充分高而且不會隨著往周邊而亮度激烈地變 化,而呈現緩慢降低的亮度分布。若是這種單位凸部20, ' 因爲可從在EL元件9射出的射出光hi取出充分的光而較 - 佳。 •因此,第9圖所示之光學片12的單位凸部20較佳爲 大致半橢圓體的透鏡形狀。 其次,說明單位凸部20的折射率η。 在設置於光學片12之單位凸部20之折射率η過低的 0 情況,因爲在光學片12的入射面12a全反射的光hi增加, 而到達光學片1 2之光射出面1 2b的光減少,所以光取出量 減少。 另一方面,在折射率η過高的情況,在連接光學片12 和透明基板15Β的境界,因爲在光學片12的入射面12a反 射的光增加,而到達光學片1 2之射出面1 2b的減少,所以 ' 光取出量減少。 其次,根據第10圖說明單位凸部20的折射率η及寬 & 高比ARi與來自單位凸部20之光取出量的關係。此外,在 包含第10圖、第17圖之本專利說明書,光取出量係以未 設匱單位凸部20的平坦光學片12之應設置單位凸部20之 部分的光取出量爲基準、和單位凸部20之光取出量的比來 表示" 在第10圖,從0.1至0.7按照間隔0.1設定單位凸部 20的寬高比ARi,在橫軸取單位凸部20的折射率η,在縱 ’軸取來自光學片12之光取出量(的比),藉此表示單位凸部 20之折射率η和光取出量的關係。若依據第10圖所示的圖 -16- 201043081 形’雖然隨著寬高比ARi從〇.丨逐漸增加,光取出量逐漸 增加’但是在寬高比ARi爲〇.4以上時,光取出量大致相 同’不會增加。因而’可確認只要寬高比ARi是0.4以上, * 便可取出充分的光。 又,第11圖表示單位凸部20之折射率η及寬高比ARi 與單位凸部20之相對亮度的關係。此外,在包含第丨〇圖、 第1 7圖之本專利說明書,相對亮度係以未設置單位凸部20 的光學片12之應設置單位凸部20之部分的亮度爲基準、 0 和單位凸部20之亮度的比來表示。 雖然相對亮度係寬高比ARi愈高而愈大,但是寬高比 ARi大於0.6時亮度不會再昇高。因而,考慮抑制成本和佔 有體積,單位凸部20的寬高比ARi較佳是0.6以下。因而, _ 滿足如下的第(1)式較佳。 0.4 ^ ARa ^0.6 …(1) 又,在第1.0圖,在單位凸部20係折射率η爲1.58時 光取出量變成最大。而且,若單位凸部20的折射率η位於 q 從1.44至1.7之範圍,因爲光取出量成爲最大値的95 %以 上,所以單位凸部20的折射率η較佳爲滿足如下的第(2) 式。 1.44^ η ^ 1.7 …(2) 此外,基材層19較佳爲和單位凸部20相同的材質並 具有相同的折射率η。 其次,說明單位凸部20之較佳的配置構成。 ‘作爲光學片12中之單位凸部20的排列圖案,亦可採 用例如如第12圖(a)所示的格子狀排列。在第12圖(a),在 -17- 201043081 大致四角形片狀的基材層1 9上隔著微細的間隙將複數個 單位凸部20排列成格子狀。 * 又’替代這種單位凸部20的排列構成,亦可採用如第 1 2圖(b)所示的蜂巢狀排列,如第1 2圖(c)所示之週期性的 條狀(列狀)排列,或如第12圖(d)所示之隨機的排列構成。 若在基材層19的平面上之單位凸部20的排列是週期 性’易提高單位凸部20的排列密度,而可提高光取出量。 另一方面,若在基材層19上之單位凸部20的排列形 Q 態不是週期性,不會發生疊紋(moire)。例如,在將像素圖 案設置於EL面板10的情況,因爲可防止因爲單位凸部20 之排列圖案、和EL面板10之像素圖案的干涉而產生的疊 紋而更佳。On the other hand, as shown in Fig. 9(a), the unit convex portion 20 has a substantially semi-ellipsoidal shape, and the aspect ratio ARi shown in the formula (5) is, for example, 0.4 or more and is sufficiently large to be incident on the unit convex. The light hlb totally reflected in the emitted light hi of the portion 20 is small, and as shown in Fig. 9(b), the brightness at the top of the center (center axis N -15-201043081) 20a is sufficiently high and does not follow the periphery. The brightness changes drastically, while exhibiting a slowly decreasing brightness distribution. Such a unit convex portion 20' is preferable because sufficient light can be taken out from the emitted light hi emitted from the EL element 9. Therefore, the unit convex portion 20 of the optical sheet 12 shown in Fig. 9 is preferably a substantially semi-ellipsoid lens shape. Next, the refractive index η of the unit convex portion 20 will be described. In the case where the refractive index η of the unit convex portion 20 provided in the optical sheet 12 is too low, since the light hi totally reflected on the incident surface 12a of the optical sheet 12 increases, it reaches the light exiting surface 12b of the optical sheet 12. The light is reduced, so the amount of light extraction is reduced. On the other hand, in the case where the refractive index η is too high, in the boundary between the optical sheet 12 and the transparent substrate 15 , the light reflected on the incident surface 12 a of the optical sheet 12 increases, and reaches the exit surface 1 2 b of the optical sheet 12 . The reduction, so the amount of light extraction is reduced. Next, the relationship between the refractive index η and the width & height ratio ARi of the unit convex portion 20 and the light extraction amount from the unit convex portion 20 will be described based on Fig. 10 . Further, in the present specification including FIGS. 10 and 17, the light extraction amount is based on the light extraction amount of the portion of the flat optical sheet 12 on which the unit convex portion 20 is not provided, and the unit convex portion 20 is to be provided, and The ratio of the light extraction amount of the unit convex portion 20 is expressed as " in Fig. 10, the aspect ratio ARi of the unit convex portion 20 is set at intervals of 0.1 to 0.7, and the refractive index η of the unit convex portion 20 is taken on the horizontal axis. The ratio of the light extraction amount from the optical sheet 12 is taken in the longitudinal direction, thereby indicating the relationship between the refractive index η of the unit convex portion 20 and the amount of light extraction. According to Fig.-16-201043081 shown in Fig. 10, although the ARY increases gradually from 〇.丨, the amount of light extraction gradually increases, but when the aspect ratio ARi is 〇.4 or more, the light is taken out. The amount is roughly the same 'will not increase. Therefore, it can be confirmed that as long as the aspect ratio ARi is 0.4 or more, * sufficient light can be taken out. Further, Fig. 11 shows the relationship between the refractive index η of the unit convex portion 20 and the aspect ratio ARi and the relative luminance of the unit convex portion 20. Further, in the patent specification including the first diagram and the seventh embodiment, the relative brightness is based on the luminance of a portion of the optical sheet 12 on which the unit convex portion 20 is not provided, and the unit convex portion 20 is to be set, 0 and unit convex. The ratio of the brightness of the portion 20 is expressed. Although the relative brightness ratio is higher and the ARi is larger, the brightness is not increased when the aspect ratio ARi is greater than 0.6. Therefore, in consideration of the suppression cost and the occupied volume, the aspect ratio ARi of the unit convex portion 20 is preferably 0.6 or less. Therefore, it is preferable that _ satisfies the following formula (1). 0.4 ^ ARa ^ 0.6 (1) Further, in Fig. 1.0, when the refractive index η of the unit convex portion 20 is 1.58, the amount of light extraction becomes maximum. Further, when the refractive index η of the unit convex portion 20 is in the range of q from 1.44 to 1.7, since the light extraction amount becomes 95% or more of the maximum 値, the refractive index η of the unit convex portion 20 is preferably satisfied as follows (2) ). 1.44^ η ^ 1.7 (2) Further, the base material layer 19 is preferably made of the same material as the unit convex portion 20 and has the same refractive index η. Next, a preferred arrangement configuration of the unit convex portion 20 will be described. The arrangement pattern of the unit convex portions 20 in the optical sheet 12 may be, for example, a lattice-like arrangement as shown in Fig. 12(a). In Fig. 12(a), a plurality of unit convex portions 20 are arranged in a lattice shape on a substantially square-shaped base material layer 179 of -17-201043081 with a fine gap therebetween. * In addition to the arrangement of such unit convex portions 20, a honeycomb arrangement as shown in Fig. 22 (b), such as a periodic strip as shown in Fig. 22 (c), may be employed. Arranged, or randomly arranged as shown in Fig. 12(d). If the arrangement of the unit convex portions 20 on the plane of the base material layer 19 is periodic, the arrangement density of the unit convex portions 20 can be easily increased, and the amount of light extraction can be increased. On the other hand, if the arrangement Q state of the unit convex portion 20 on the base material layer 19 is not periodic, no moire will occur. For example, in the case where the pixel pattern is provided on the EL panel 10, it is preferable to prevent the pattern generated by the arrangement pattern of the unit convex portion 20 and the interference of the pixel pattern of the EL panel 10.
. 此外,在照明用途使用具備有上述之光學片12之EL 面板10的情況,爲了添加創意性,藉由將光學片12上之 單位凸部20的配置作成疎密,而可形成適當的商標、記號 或花樣等。例如,如第1 3圖(a)或(b)所示,若排列單位凸 Q 部20,便可得到T字形的商標或包含有X的記號等。又, 如第13圖(c)所示,若排列單位凸部20,便可配置成爲適 當的花樣等的形狀。 但,如第14圖所示,在採用在光學片12的基材層19 上,相鄰之單位凸部20、20局部地重疊之配置構成的情況, " 因爲從相鄰之單位凸部20、20彼此的接合側部20s未射出 充分的光,所以結果從單位凸部20所射出之射出光hi a的 "亮度變低。 因而,在將相鄰之單位凸部20、20之各底面20c的直 -18- 201043081 徑設爲Di、D(i + 1),而且將相鄰之2個單位凸部20、20之 頂部20a、20a間的距離設爲B12時,較佳爲採用滿足如下 之第(3)式的配置。藉此,可配置成相鄰之單位凸部20、20 ' 不會重疊(參照第16圖)。Further, in the case of using the EL panel 10 having the above-described optical sheet 12 for illumination purposes, in order to add creativity, an appropriate trademark can be formed by making the arrangement of the unit convex portions 20 on the optical sheet 12 dense. Marks or patterns, etc. For example, as shown in Fig. 13 (a) or (b), when the unit convex portion Q is arranged, a T-shaped trademark or a symbol including X can be obtained. Further, as shown in Fig. 13(c), when the unit convex portions 20 are arranged, they can be arranged in a shape such as a proper pattern. However, as shown in Fig. 14, in the case where the adjacent unit convex portions 20, 20 are partially overlapped on the base material layer 19 of the optical sheet 12, " because the adjacent unit convex portion is formed Since the joint side portions 20s of the 20 and 20 are not emitting sufficient light, the luminance of the emitted light hi a emitted from the unit convex portion 20 is lowered. Therefore, the straight -18-201043081 diameters of the respective bottom surfaces 20c of the adjacent unit convex portions 20, 20 are set to Di, D(i + 1), and the tops of the adjacent two unit convex portions 20, 20 are When the distance between 20a and 20a is B12, it is preferable to adopt a configuration that satisfies the following formula (3). Thereby, it is possible to arrange that the adjacent unit convex portions 20, 20' do not overlap (refer to Fig. 16).
Di/2 + D(i + l)/2 ^ B12 …(3) 但,關於上述之單位凸部20對基材層19的配置,如 第15圖所示,在將複數個單位凸部20各自配設於基材層 1 9之例如對角線上之相對向的角部附近的情況,因爲在單 〇 位凸部20的配置有極端的偏倚,所以在亮度產生偏倚,而 產生無法取出光的區域。在這種單位凸部20之配置構成, 結果整體的亮度及光取出量降低而不佳。 因此,如第16圖所示,爲了調查根據單位凸部20之 - 光取出量和排列之偏倚的關係,而任意選擇彼此相鄰之3 個單位凸部20,並虛擬地形成藉由連接各單位凸部20的頂 點20a(頂部)所形成之銳角三角形S。將連接這些頂點20a 之銳角三角形S的最短邊(間隔)設爲短邊El、最長邊(間隔) 〇 設爲長邊E2時,將E2/E1的値作爲指標,檢討光取出量和 相對亮度之變化。但,EL面板10的亮度分布係採用根據 朗伯(Lambert)光源面的亮度分布。 結果,如第17圖(a)所示,若長邊E2是短邊E1的2 倍以下’則光取出量成爲最大且光取出量之變化在1%以 . 內。 _ 又’如第丨7圖(b)所示,關於亮度,亦得知若長邊E2 與短邊E 1的比是2倍以下,則相對亮度包含有最大相對亮 度同時變動在最大相對亮度的1 %以內。因而,較佳爲長邊 -19- 201043081 E2是短邊El的2倍以下。此外,從邊El、E2的定義’係 E1SE2。因而如下的第(4)式成立。 ' 1 ^ E2/E1 ^ 2 …(4) v 因而,藉由如上述配置單位凸部20,因爲可得到充分 的光取出量和亮度,所以較佳。 可是,在製作光學片1 2的情況,即使在例如四角形薄 膜形狀之基材層1 9的射出面1 2b按照既定間隔排列形成例 如設計成同一形狀且同一尺寸的單位凸部20,亦因爲各單 0 位凸部20包含有成型時的誤差,進而在利用蝕刻形成單位 凸部20之模具的情況,因其蝕刻時間及蝕刻溫度等而單位 凸部20的尺寸或形狀微細地變動。又,雖然單位凸部20 的配置在製作時不太發生變動,但是在使粒子分散而製作 ^ 的情況,可能偏離設計値而變動。 因而,在根據設計所製作的光學片12,關於單位凸部 20的形狀和配置,利用藉雷射顯微鏡之三維形狀量測來測 量。 q 第18圖(a)、(b)是利用藉雷射顯微鏡的量測所得之光 學片1 2中之任意的單位凸部20的三維形狀。自此三維形 狀得到單位凸部20之在底面20c的境界B0。在單位凸部 20之底面20c是大致圓形形狀的情況,可將符合(fitting) 境界B0的圓作爲該單位凸部20的底面20c(步驟1)。 _ 從利用量測所得之底面20c的面積Si,利用如下的第 (6)式求得單位凸部20的直徑Di。Di/2 + D(i + l) / 2 ^ B12 (3) However, as for the arrangement of the unit convex portion 20 described above with respect to the base material layer 19, as shown in Fig. 15, a plurality of unit convex portions 20 are formed. Each of them is disposed in the vicinity of the opposite corners of the base material layer 19, for example, on the diagonal line, because the arrangement of the single-position convex portion 20 is extremely biased, so that the brightness is biased, and the light cannot be taken out. Area. In such an arrangement of the unit convex portions 20, as a result, the overall brightness and the amount of light extraction are lowered. Therefore, as shown in Fig. 16, in order to investigate the relationship between the light extraction amount and the alignment bias of the unit convex portion 20, three unit convex portions 20 adjacent to each other are arbitrarily selected, and virtually formed by connecting each An acute angle triangle S formed by the apex 20a (top) of the unit convex portion 20. When the shortest side (interval) of the acute-angled triangle S connecting these vertices 20a is set to the short side E1 and the longest side (interval) 〇 is set to the long side E2, the 取出 of E2/E1 is used as an index, and the light extraction amount and relative brightness are reviewed. Change. However, the luminance distribution of the EL panel 10 is based on the luminance distribution according to the Lambert source surface. As a result, as shown in Fig. 17 (a), if the long side E2 is twice or less of the short side E1, the amount of light extraction is maximized and the change in the amount of light extraction is within 1%. _ ' As shown in Fig. 7 (b), as for brightness, it is also known that if the ratio of the long side E2 to the short side E 1 is 2 times or less, the relative brightness includes the maximum relative brightness while varying at the maximum relative brightness. Within 1%. Therefore, it is preferable that the long side -19-201043081 E2 is twice or less the short side El. Further, the definition "from the sides El, E2" is E1SE2. Therefore, the following formula (4) holds. ' 1 ^ E2 / E1 ^ 2 (4) v Therefore, by arranging the unit convex portion 20 as described above, since a sufficient light extraction amount and brightness can be obtained, it is preferable. However, in the case of producing the optical sheet 12, even if, for example, the unit surface convex portion 20 of the same shape and the same size is formed by arranging the emission surface 12b of the base material layer 19 of the quadrangular film shape at predetermined intervals, The single-position convex portion 20 includes an error in molding, and in the case where the mold of the unit convex portion 20 is formed by etching, the size or shape of the unit convex portion 20 is minutely changed due to the etching time, the etching temperature, and the like. Further, although the arrangement of the unit convex portions 20 does not fluctuate at the time of production, when the particles are dispersed to form ^, the design may be deviated from the design. Therefore, in the optical sheet 12 manufactured according to the design, the shape and arrangement of the unit convex portion 20 are measured by three-dimensional shape measurement by a laser microscope. (Fig. 18(a) and (b) are three-dimensional shapes of arbitrary unit convex portions 20 of the optical sheet 12 obtained by measurement by a laser microscope. From this three-dimensional shape, the boundary B0 of the unit convex portion 20 at the bottom surface 20c is obtained. In the case where the bottom surface 20c of the unit convex portion 20 has a substantially circular shape, a circle conforming to the boundary B0 can be used as the bottom surface 20c of the unit convex portion 20 (step 1). From the area Si of the bottom surface 20c obtained by the measurement, the diameter Di of the unit convex portion 20 is obtained by the following equation (6).
Di = v^ (4Si/ π ) …(6) 接著,將單位凸部20的頂點20a作爲最遠離底面20c -20- 201043081 的中心點(頂部)’根據從底面20c至頂點20a的距離求得單 位凸部20的高度Ti,並求得寬高比ARi = Ti/Di。 ’ 又,求得相鄰之2個單位凸部20、20之各底面20c的 • 直徑Dl、D2、及這2個頂點2 0a、20aa間的距離B12,並 計算是否滿足第(3)式。進而,在第16圖,自將和上述之2 個單位凸部20、20相鄰之其他的單位凸部20的頂點20a 作爲頂部並連接3個頂點20a之虛擬的銳角三角形,將最 短邊(間隔)設爲E1、最長邊(間隔)設爲E2,並計算是否滿 0 足第(4)式(步驟2)。 然後,在光學片12中之複數個單位凸部20的觀察區 域之間移動,重複從步驟1至步驟2的處理,對在步驟2 所求得之滿足第(3)式及第(4)式之各單位凸部20的直徑 Di、高度Ti、寬高比ARi,求得至所測量之單位凸部20的 合計成爲10個以上、30個以下。接著,從這些資料求得單 ' 位凸部20之寬高比ARi的.平均値ARa(步驟3)。 又,根據JIS K7 142塑膠折射率之求法的B方法求得 q 單位凸部20的折射率n(步驟4)。 利用上述的步驟1至4,對光學片12判斷是否滿足上 述之單位凸部20之形狀和配置的條件之下述的第(1)式~第 (4)式。 0.4 ^ ARa ^ 0.6 …⑴ 1.44 ^ η ^ 1 • 7 …(2) Di/2 + D(i+l)/2 ^ B12 …(3) 1^ E2/E1^ 2 …(4) 若對這些各單位凸部20滿足第(1)式〜第(4)式,則可說 -21- 201043081 該光學片12是可得到上述之高光取出量和高亮度之本發 明之實施形態之具備有單位凸部20的光學片1 2 ° 此外,上述之滿足第(1)式〜第(4)式之單位凸部20的形 狀及配置不必是相同,亦可配置如第19圖所示之尺寸或形 狀相異的單位凸部20 ’那時亦可應用上述的第(1)式〜第(4) 式。尤其,亦可如第19圖將直徑Di尺寸小的單位凸部20 配置於直徑Di尺寸大之單位凸部20的間隙。Di = v^ (4Si / π ) (6) Next, the apex 20a of the unit convex portion 20 is taken as the center point (top) which is farthest from the bottom surface 20c -20- 201043081', and is obtained from the distance from the bottom surface 20c to the apex 20a. The height of the unit convex portion 20 is Ti, and the aspect ratio ARi = Ti/Di is obtained. Further, the diameters D1 and D2 of the bottom surfaces 20c of the adjacent two unit convex portions 20 and 20 and the distance B12 between the two vertices 20a and 20aa are obtained, and whether or not the equation (3) is satisfied is calculated. . Further, in Fig. 16, the apex 20a of the other unit convex portion 20 adjacent to the above-described two unit convex portions 20, 20 is a virtual acute triangle which connects the three vertices 20a as the top, and the shortest side ( The interval is set to E1, and the longest side (interval) is set to E2, and it is calculated whether or not the full value is (4) (step 2). Then, moving between the observation areas of the plurality of unit convex portions 20 in the optical sheet 12, the processing from the step 1 to the step 2 is repeated, and the equations (3) and (4) which are obtained in the step 2 are satisfied. The diameter Di, the height Ti, and the aspect ratio ARi of each unit convex portion 20 of the formula are determined to be 10 or more and 30 or less in total of the measured unit convex portions 20. Next, from these data, the average 値ARa of the aspect ratio ARi of the single convex portion 20 is obtained (step 3). Further, the refractive index n of the q-unit convex portion 20 is obtained by the B method of the method for determining the refractive index of the plastic of JIS K7 142 (step 4). By the above-described steps 1 to 4, it is judged whether or not the optical sheet 12 satisfies the following formulas (1) to (4) of the above-described conditions of the shape and arrangement of the unit convex portion 20. 0.4 ^ ARa ^ 0.6 (1) 1.44 ^ η ^ 1 • 7 ... (2) Di/2 + D(i+l)/2 ^ B12 (3) 1^ E2/E1^ 2 (4) If these are When the unit convex portion 20 satisfies the above formulas (1) to (4), it can be said that the optical sheet 12 is a unit having an embodiment of the present invention in which the above-described high light extraction amount and high luminance are obtained. The optical sheet 1 2 of the convex portion 20 is not necessarily the same in shape and arrangement of the unit convex portion 20 satisfying the above formulas (1) to (4), and may be arranged in a size as shown in Fig. 19 or The unit convex portions 20' having different shapes may also be applied to the above formulas (1) to (4). In particular, as shown in Fig. 19, the unit convex portion 20 having a small diameter Di may be disposed in a gap of the unit convex portion 20 having a large diameter Di.
在此情況,可減少在各單位凸部20的最表面20A反射 而回到EL元件11側的反射光hlb。因而,因爲結果可增 加從最表面20A所射出的射出光hla而更佳。 (第2實施形態) 作爲本發明的第2實施形態,如第20圖所示,亦可將 凹凸部30設置於單位凸部20、20間之未形成單位凸部20 的區域12ba。藉由形成凹凸部30,而和上述之第19圖所 示之將尺寸小的單位凸部20配設於尺寸大之單位凸部20 的間隙之構成一樣,可減少在單位凸部20之最表面20A所 反射的光h 1 b。 結果,因爲可增加從最表面20A所射出的光hla而更 佳。又,凹凸部30係藉由無間隙地配置於單位凸部20以 外的區域12ba,而可減少反射光hlb。藉此,可取出更多 的光。 如第20圖之一例所示,例如在片狀之透光性基材層1 9 的其中一面,即照射方向F的面(將此面稱爲表面)8a,例如 作爲單位凸部20將大致半球形的微透鏡分散於部分的區 域而形成複數個。作爲爲了埋在單位凸部2 0的間隙而例如 -22- 201043081 在一維方向延伸存在之大致柱狀的凸構件,例如複數條截 面三角形柱狀的稜鏡透鏡作爲凹凸部30朝同一方向排列 ' 並形成於表面8a的整個區域,單位凸部20的微透鏡形成 - 爲和凹凸部30之稜鏡透鏡的一部分重疊。 在第20圖,單位凸部20係將和基材層19的表面8a 接觸的直徑設爲PM,將以基材層19的表面8a爲基準的高 度設爲TM。又,凹凸部30係將和表面8a接觸之底部的寬 度設爲PL,將從表面8a至頂部的高度設爲TM,將頂角設 0 爲 0 T。 單位凸部20構成微透鏡形狀,隔著複數個等間隔規則 地排列,或隔著不間隔不規則地排列。作爲此單位凸部20 的形狀,可舉出大致半圓球形狀、大致橢圓球形狀。 . 又,爲了使射入單位凸部20之光B1更有效率地偏向, 並提高EL面板10之光的外部取出效率,高度TM和直徑(寬 度)PM之寬高比TM/PM較佳是40%以上。這是由於藉由將 高度TM和直徑(寬度)PM之寬高比TM/PM作成40%以上, q 爲了使光B1朝照射方向F偏向,第1凹凸部40之斜面的 傾斜角度可成爲充分的大小而較佳。 又,沿著單位凸部20之基材層19的單面之寬度中是 寬度最長的最長直徑PM被設定成20 /z m以上、300 μ m以 內。最長直徑PM未滿20 μιη時,在第1凹凸部40發生繞 射光,因爲射入單位凸部20之光Β1向照射方向F偏向的 效率降低而不佳。在最長直徑ΡΜ超過300 /z m的情況,在 '將單位凸部20的形狀賦型時,因爲要將用以得到使射入單 位凸部20之光B1偏向所需寬高比之足夠的單位凸部20高 -23- 201043081 度TM賦型會變得困難而不佳。 相鄰之單位凸部20之中心彼此的距離較佳爲50从m以 上、5000// m以下。 ' 於是,以埋在如此排列之單位凸部20之間的方式設置 複數個凹凸部30。此外,相對於單位凸部20不是各自相鄰 的單位凸部20彼此相互接觸,凹凸部30係以在單位凸部 20之間相互接觸之狀態排列複數個。 如第20圖(b)所示,較佳爲單位凸部20之一方的傾斜角 0 度0 ra 1和單位凸部20之另一方之傾斜角度0 m2的値相異。 藉由依此方式使傾斜角度相異,並如視點S 1、視點S 2 般改變觀察位置,而可賦予不同的視覺效果,並可使具有 創意性。 . 例如,如第20圖(b)所示,藉由使傾斜角度0 m2大於 傾斜角度Θ ml,而如第20圖(c)所示,產生非對稱的配光分 布,可使在視點S 1和視點S 2的視覺效果相異。在此情況, 因爲傾斜角度Θπι2大於傾斜角度0ml,所以亮度之變化對 Q 視野方向之變化的比例變大。作爲在此情況之視覺效果, 可有助於在改變觀察位置的情況下,單位凸部20之亮度變 化在視點S 1和視點S 2相異的視覺效果。 又’藉由使傾斜角度0 m2或傾斜角度0 m 1,和凹凸部 30的傾斜角度之差相異’而可使在改變視點方向的情況下 . 亮度變化的程度改變。 凹凸部30如第20圖及第21圖(a)所示,形成截面爲凸 狀的透鏡或稜鏡形狀,而且呈在一方向延伸存在的帶狀, 該帶狀之凸形的透鏡或稜鏡形狀較·佳爲排列成在單位凸部 -24- 201043081 20之間彼此平行。 又,凹凸部30亦可例如如第21圖(b)所示,形成截面 ' 爲凸狀的透鏡或稜鏡形狀,而且呈在一方向延伸存在的帶 - 狀,該帶狀之凸狀的透鏡或稜鏡形狀排列成在單位凸部20 之間彼此交叉。 藉由依此方式,可在二維方向調整凹凸部30朝照射方 向F所射出之光的配光分布。因而,藉由將凹凸部30作成 任意的形狀,使凹'凸部30的射出光成對稱的配光分布,或 0 成非對稱的配光分布,而可賦予創意性。 如上述之凹凸部30的形狀如第22圖(a)所示,具有按 照既定的間距所形成之凸狀的第1稜鏡61、及在與該第1 稜鏡61大致正交的方向所形成之凸狀的第2稜鏡62。 ^ 稜鏡在一方向上排列的稜鏡片,可利用稜鏡的斜面, 對射入凹凸部30的光hi在透鏡的排列方向上控制配光分 布。因而,在凹凸部使用在一方向上排列之稜鏡的情況, 可一維地調整配光分布。可是,在照明用途使用EL面板 Q 1 〇的情況,需要至少二維地調整配光分布。作爲其理由, 例如根據照明裝置的設置場所,可能某特定方向不需要照 射,而要求提高正面方向的亮度,而不是寬廣的配光分布。 或者,在射入凹凸部40之光hi成爲非對稱之配光分布的 情況,而且要求從照明裝置所射出之光的配光分布是對稱 之配光分布的情況,因爲藉由僅一維方向的調整,難使從 照明裝置所射出之光的配光分布變成對稱之配光分布,所 以可實現二維方向的調整之本發明的構成是較佳的。 又,如本發明之構成所示,在稜鏡大致正交地排列的 •25- 201043081 十字稜鏡(cross prism),爲了二維地展開光’不必再 鏡片,就可調整成適當的配光分布,亦可實現照明 ’ 輕量化、薄型化及低成本化。 尤其,從第1圖之發光媒體層18所射出的光是 光分布廣之寬廣大的指向性的光。因而,凹凸部30 將上述之廣的配光分布設計成朝照射方向F偏向。 又,第1稜鏡61及第2稜鏡62的斜面較佳是德 因爲藉由是直線形狀,可使射入凹凸部30之光B1 Q 同一方向偏向,所以可在任意的方向上聚光。 又,第1稜鏡61及第2稜鏡62的形狀亦可相 可相異。 或者,如第23圖(a)所示,凹凸部30亦可作成 _ 照既定之間距所形成之凸狀的第1圓柱狀透鏡6 1、 該第1圓柱狀透鏡61大致正交之方向上所形成之凸 — 2圓柱狀透鏡62的形狀。 圓柱狀透鏡(cylinderica lens)在一方向上所排 ^ 凸透鏡片(lenticular lens sheet)可利用透鏡的曲面 凹凸部30的光hi在透鏡的排列方向控制配光分布 在凹凸部30使用雙凸透鏡片的情況,可一維地調整 布。可是,在用於照明用途的情況,需要至少二維 配光分布。作爲其理由,例如根據照明裝置的設置 可能某特定方向不需要照射,而要求提高正面方 度,而不是寬廣的配光分布。或者,在射入凹凸部 ’ hi成爲非對稱之配光分布的情況,而且要求從照明 射出之光的配光分布是對稱之配光分布的情況,因 追加透 裝置的 具有配 較佳爲 [線形。 朝大致 同,亦 具有按 及在和 狀的第 列之雙 對射入 。因而, 配光分 地調整 場所, 向的亮 30之光 裝置所 爲藉由 -26- 201043081 僅一維方向的調整係困難,所以可實現二維方向的調整之 本發明的構成是較佳的。 ' 又,如本發明之構成,在圓柱狀透鏡大致正交地排列 - 的十字雙凸透鏡片,爲了二維地展開光,不必再追加透鏡 片,就可調整成適當的配光分布,亦可實現照明裝置的輕 量化、薄型化及低成本化。 尤其,從發光層所射出的光是具有配光分布廣之寬廣 的指向性的光。因而,較佳地,凹凸部將上述之廣的配光 0 分布設計成朝照射方向F偏向。 第1圓柱狀透鏡61及第2圓柱狀透鏡62的截面形狀 不是完全的半圓形(球面透鏡),而是半橢圓形(橢圓面透 鏡)、抛物線形(抛物面透鏡)等之所謂的非半球形(所謂的二 維非球面形狀)者,進而,較佳爲具有二階以後之項的高階 非球面形狀者等。 ' 藉由使用非球面形狀的透鏡,而可調整在透鏡側面具 有適當之傾斜之區域的面積,可比完全之半圓形透鏡更易 Q 調整射出的光線。 又,第1圓柱狀透鏡61及第2圓柱狀透鏡62的形狀 亦可相同,亦可相異。 又,凹凸部30例如如第24圖~第29圖所示,亦可作 成無間隙地配置於基材層19的單面之底邊爲多角形的多 角錐凸透鏡或多角錐凹透鏡。藉由無間隙地配置,因爲可 大致消除對射入凹凸部30之光hi的偏向無貢獻之凹凸部 ' 30間的平坦部,所以可更提高EL面板1 〇之光的外部取出 效率。又,藉由無間隙地配置,因爲未形成因平坦部所造 -27- 201043081 成之微細構造,所以可防止因光之繞射現象所引起之顏色 不均的發生。 ' 作爲無間隙地配置的方法,藉由將凹凸部30的分割面 - 9作成正六角形(第25圖(a))、正方形(第25圖(b))、正三角In this case, the reflected light hlb reflected on the outermost surface 20A of each unit convex portion 20 and returned to the EL element 11 side can be reduced. Therefore, it is more preferable because the result can increase the emitted light hla emitted from the outermost surface 20A. (Second Embodiment) As a second embodiment of the present invention, as shown in Fig. 20, the uneven portion 30 may be provided in a region 12ba between the unit convex portions 20 and 20 where the unit convex portion 20 is not formed. By forming the uneven portion 30, the same as the configuration in which the unit convex portion 20 having a small size shown in Fig. 19 is disposed in the gap of the unit convex portion 20 having a large size, the maximum of the unit convex portion 20 can be reduced. Light h 1 b reflected by surface 20A. As a result, it is preferable because the light hla emitted from the outermost surface 20A can be increased. Further, the uneven portion 30 is disposed in the region 12ba outside the unit convex portion 20 without a gap, and the reflected light hlb can be reduced. Thereby, more light can be taken out. As shown in an example of Fig. 20, for example, a surface of the sheet-shaped light-transmitting substrate layer 19, that is, a surface in the irradiation direction F (this surface is referred to as a surface) 8a, for example, as a unit convex portion 20 The hemispherical microlenses are dispersed in a portion of the region to form a plurality of. As a substantially columnar convex member that extends in the one-dimensional direction, for example, -22-201043081 is buried in the gap of the unit convex portion 20, for example, a plurality of triangular prism-shaped 稜鏡 lenses are arranged in the same direction as the uneven portion 30. And formed in the entire area of the surface 8a, the microlens of the unit convex portion 20 is formed to overlap with a part of the pupil lens of the uneven portion 30. In Fig. 20, the unit convex portion 20 has a diameter of contact with the surface 8a of the base material layer 19 as PM, and a height based on the surface 8a of the base material layer 19 is referred to as TM. Further, the uneven portion 30 has a width of the bottom portion in contact with the surface 8a as PL, a height from the surface 8a to the top portion is TM, and a vertex angle is set to 0 T. The unit convex portion 20 constitutes a microlens shape, is regularly arranged at a plurality of equal intervals, or is irregularly arranged without being spaced apart. The shape of the unit convex portion 20 is a substantially semicircular spherical shape and a substantially elliptical spherical shape. Further, in order to more efficiently deflect the light B1 incident on the unit convex portion 20 and improve the external extraction efficiency of the light of the EL panel 10, the aspect ratio TM/PM of the height TM and the diameter (width) PM is preferably 40% or more. This is because the aspect ratio TM/PM of the height TM and the diameter (width) PM is 40% or more, q, in order to deflect the light B1 in the irradiation direction F, the inclination angle of the slope of the first uneven portion 40 can be sufficient. The size is better. Further, among the widths of one surface of the base material layer 19 of the unit convex portion 20, the longest diameter PM having the longest width is set to be 20 / z m or more and 300 μm or less. When the longest diameter PM is less than 20 μm, the light is scattered in the first uneven portion 40, and the efficiency in which the pupil 1 incident on the unit convex portion 20 is deflected in the irradiation direction F is not preferable. In the case where the longest diameter ΡΜ exceeds 300 /zm, when the shape of the unit convex portion 20 is shaped, since a sufficient unit for obtaining the light B1 incident on the unit convex portion 20 toward the desired aspect ratio is to be obtained. The convex portion 20 is high -23- 201043081 degrees TM forming will become difficult and not good. The distance between the centers of the adjacent unit convex portions 20 is preferably 50 or more and m is 5,000 or more. Then, a plurality of concave and convex portions 30 are provided so as to be buried between the unit convex portions 20 thus arranged. Further, the unit convex portions 20 which are not adjacent to each other with respect to the unit convex portion 20 are in contact with each other, and the uneven portions 30 are arranged in plural in a state in which the unit convex portions 20 are in contact with each other. As shown in Fig. 20(b), it is preferable that the inclination angle 0 degrees 0 ra 1 of one of the unit convex portions 20 and the inclination angle 0 m2 of the other unit convex portion 20 are different. By making the tilt angles different in this way and changing the viewing position as the viewpoint S 1 and the viewpoint S 2 , different visual effects can be imparted and can be creative. For example, as shown in Fig. 20(b), by making the tilt angle 0 m2 larger than the tilt angle Θ ml, as shown in Fig. 20(c), an asymmetrical light distribution is generated, which can be made at the viewpoint S. 1 and the visual effect of the viewpoint S 2 are different. In this case, since the inclination angle Θπι2 is larger than the inclination angle 0 ml, the ratio of the change in the brightness to the change in the direction of the visual field of Q becomes large. As a visual effect in this case, it is possible to contribute to a visual effect in which the brightness of the unit convex portion 20 is different between the viewpoint S 1 and the viewpoint S 2 in the case where the observation position is changed. Further, by changing the inclination angle 0 m2 or the inclination angle 0 m 1 and the difference between the inclination angles of the uneven portions 30, it is possible to change the degree of the brightness change when the viewpoint direction is changed. As shown in Fig. 20 and Fig. 21(a), the uneven portion 30 is formed into a lens or a 稜鏡 shape having a convex shape in cross section, and has a strip shape extending in one direction, and the strip-shaped convex lens or rib The mirror shapes are preferably arranged to be parallel to each other between the unit convex portions - 24 - 201043081 20 . Further, as shown in FIG. 21(b), the uneven portion 30 may have a lens or a 稜鏡 shape having a convex cross section and a belt-like shape extending in one direction, and the strip-shaped convex shape may be formed. The lenses or cymbal shapes are arranged to cross each other between the unit convex portions 20. By this means, the light distribution of the light emitted from the uneven portion 30 toward the irradiation direction F can be adjusted in the two-dimensional direction. Therefore, by making the uneven portion 30 into an arbitrary shape, the light emitted from the concave 'convex portion 30 can be symmetrically distributed, or 0 can be asymmetrically distributed, and creativity can be imparted. As shown in Fig. 22(a), the uneven portion 30 has a first shape 61 which is convex at a predetermined pitch and a direction substantially orthogonal to the first line 61. The second ridge 62 is formed in a convex shape. ^ The cymbals arranged in one direction can be used to control the light distribution in the direction in which the lenses are arranged by the slanting surface of the cymbal. Therefore, in the case where the concavo-convex portions are arranged in a direction in which they are arranged in one direction, the light distribution can be adjusted one-dimensionally. However, in the case where the EL panel Q 1 〇 is used for lighting purposes, it is necessary to adjust the light distribution at least two-dimensionally. For this reason, for example, depending on the installation location of the illumination device, it is possible to increase the brightness in the front direction instead of the wide distribution of light distribution in a certain direction. Alternatively, when the light hi incident on the uneven portion 40 becomes an asymmetric light distribution, and the light distribution of the light emitted from the illumination device is required to be a symmetric light distribution, since only one dimension is used The adjustment of the present invention makes it difficult to adjust the light distribution of the light emitted from the illumination device into a symmetrical distribution of light distribution, so that the configuration of the present invention in which the adjustment in the two-dimensional direction can be realized is preferable. Further, as shown in the configuration of the present invention, in the cross-section of the ?25-201043081 which is arranged substantially orthogonally, in order to develop the light two-dimensionally, it is possible to adjust the light distribution to an appropriate light distribution. Distribution, lighting can also be achieved 'lightweight, thin and low cost. In particular, the light emitted from the luminescent medium layer 18 of Fig. 1 is a wide directional light having a wide light distribution. Therefore, the uneven portion 30 is designed to be biased toward the irradiation direction F by the above-described wide light distribution. Further, it is preferable that the slopes of the first 稜鏡61 and the second 稜鏡62 are made of a linear shape, and the light B1 Q incident on the uneven portion 30 can be deflected in the same direction, so that the light can be condensed in an arbitrary direction. . Further, the shapes of the first 稜鏡 61 and the second 稜鏡 62 may be different. Alternatively, as shown in Fig. 23(a), the uneven portion 30 may be formed in a direction in which the first cylindrical lens 6 1 having a convex shape formed by a predetermined distance and the first cylindrical lens 61 are substantially orthogonal to each other. The shape of the convex - 2 cylindrical lens 62 is formed. The lens lens is arranged in one direction. The lenticular lens sheet can control the light distribution in the arrangement direction of the lens by the light hi of the curved surface uneven portion 30 of the lens. When the lenticular lens sheet is used in the uneven portion 30, the lenticular lens sheet is used. The cloth can be adjusted in one dimension. However, in the case of lighting applications, at least a two-dimensional light distribution is required. For this reason, for example, depending on the arrangement of the illumination device, it is possible to require no illumination in a specific direction, and it is required to increase the frontal aspect instead of the broad distribution of light distribution. Alternatively, in the case where the incident concave-convex portion 'hi becomes an asymmetric light distribution, and the light distribution of the light emitted from the illumination is a symmetric light distribution, the addition of the additional device is preferably [ Linear. In the same direction, there is also a double pair injection in the column of the sum. Therefore, it is difficult to adjust the one-dimensional direction by the -26-201043081, and the configuration of the present invention which is adjustable in the two-dimensional direction is preferable. . Further, according to the configuration of the present invention, the cross lenticular lens sheet in which the cylindrical lenses are arranged substantially orthogonally can be adjusted to an appropriate light distribution without adding a lens sheet in order to develop the light two-dimensionally. Lightweight, thin, and low-cost lighting devices are realized. In particular, the light emitted from the light-emitting layer is light having a wide directivity with a wide distribution of light distribution. Therefore, it is preferable that the uneven portion is designed such that the above-described distribution of the light distribution 0 is wide toward the irradiation direction F. The cross-sectional shape of the first cylindrical lens 61 and the second cylindrical lens 62 is not a completely semicircular (spherical lens), but a so-called non-hemisphere such as a semi-elliptical (elliptical lens) or a parabolic (parabolic lens). The shape (so-called two-dimensional aspherical shape) is further preferably a high-order aspherical shape having a second-order or later term. By using an aspherical lens, the area of the area where the lens side mask is appropriately tilted can be adjusted, and the emitted light can be adjusted more easily than the full semicircular lens. Further, the shapes of the first cylindrical lens 61 and the second cylindrical lens 62 may be the same or different. Further, as shown in Figs. 24 to 29, the uneven portion 30 may be a polygonal pyramidal lens or a polygonal pyramidal lens having a polygonal shape at the bottom of one side of the base material layer 19 without a gap. By arranging without gaps, the flat portion between the uneven portions '30 which does not contribute to the deflection of the light hi incident on the uneven portion 30 can be substantially eliminated, so that the external extraction efficiency of the light of the EL panel 1 can be further improved. Further, since the arrangement is made without a gap, since the fine structure formed by the flat portion is not formed, it is possible to prevent the occurrence of color unevenness due to the diffraction phenomenon of light. As a method of arranging without gaps, the split surface of the uneven portion 30 is made into a regular hexagon (Fig. 25(a)), a square (Fig. 25(b)), and a positive triangle.
形(第25圖(c)),而可使分割面9的形狀大致相同而配置。 藉由使分割面9的形狀大致相同,因爲可使凹凸部30的尺 寸、形狀大致相同,所以可作成不會發生亮度之面內不均 的EL面板10,因而在要求不會發生亮度之面內不均的EL 0 面板10的情況是較佳的。 尤其在將分割面9作成正六角形的情況,因爲分割面9 彼此之連結部的形狀不是直線狀,而可作成更複雜的鋸齒 (zig-zag)形狀,所以在將像素圖案設置於EL面板10的情 況,可防止因爲分割面9彼此之連結部的形狀和EL面板 10之像素圖案間的干涉而產生的疊紋,而更佳。 ' 又,如第26圖所示,亦可將相異之多角形組合並無間 隙地配置分割面9。 ^ 第27圖~第29圖係表示將凹凸部30作成多角錐凸透 鏡或多角錐凹透鏡之情況的一例的圖。 第27圖係凹凸部30採用分割面9爲四角形之四角錐 凸透鏡形狀並無間隙地配置者。 在要求使從EL面板10所射出之光的配光分布變成對 稱的情況,較佳爲將分割面9作成大致正方形並使四角錐 凸透鏡52之有4個斜面的傾斜角度大致相同。 ’ 在要求使從EL面板10所射出之光的配光分布變成非 對稱的情況,亦可作成分割面9採用具有長邊及短邊之長 -28- 201043081 方形的四角錐凸透鏡。藉由分割面9採用長方形,因爲短 邊方向之四角錐凸透鏡52的傾斜角度、和長邊方向之四角 ' 錐凸透鏡52的傾斜角度相異,所以可使從EL面板1 0所射 • 出之光的配光分布變成在長邊方向和短邊方向非對稱。 在第28圖,凹凸部30是具有所分割之常數之頂點52 的大致四角錐凹透鏡形狀。四角錐凹透鏡作成各自被稜線 51分割,而各個四角錐凹透鏡具有4個頂點52。但,槽之 形成方法未限定如此,可設置在各種方向延伸存在之各種 0 深度、間距(pitch)、張開角度的槽51。 如上述,藉由作成2條槽51和大致四角錐凹透鏡形狀 之頂部正交的構成,而可調整配光分布。尤其,可調整朝 射出角度是60度以上之廣角度射出的光。藉由調整四角錐 . 凹透鏡的形狀(深度、傾斜角度),而可增減朝廣角度射出 的光。這是由於朝廣角度射出之光的大部分是從四角錐凹 透鏡的底部附近所射出的光線。 第29圖係凹凸部30採用分割面爲四角形之四角錐凹 Q 透鏡形狀並無間隙地配置者。此四角錐凹透鏡形狀的凹凸 部30是用以使朝照射方向F射出的方式取出射入凹凸部30 的光hi者。此外,在凹凸部30,因爲四角錐凹透鏡形狀和 第27圖所示之凹凸部30之最高位置的形狀,與點的四角 錐凸透鏡形狀相比,因爲凹凸部30之最高位置的形狀是 線,所以耐磨擦性提高而更佳。 在要求使從EL面板10所射出之光的配光分布變成對 ' 稱的情況,較佳爲將分割面作成大致正方形並使四角錐凹 透鏡之有4個斜面的傾斜角度大致相同。 -29- 201043081 在要求使從EL面板10所射出之光的配光分布變成非 對稱的情況,亦可作成分割面採用具有長邊及短邊之長方 形的四角錐凹透鏡54。藉由分割面採用長方形,因爲短邊 方向之四角錐凹透鏡54的傾斜角度、和長邊方向之四角錐 凹透鏡的傾斜角度相異,所以可使從EL面板10所射出之 光的配光分布變成在長邊方向和短邊方·向非對稱。 ΟThe shape (Fig. 25(c)) can be arranged such that the shape of the dividing surface 9 is substantially the same. By making the shape of the split surface 9 substantially the same, since the size and shape of the uneven portion 30 can be made substantially the same, the EL panel 10 in which the in-plane unevenness of the luminance does not occur can be formed, and therefore the surface where the brightness does not occur is required. The case of the EL 0 panel 10 which is uneven inside is preferable. In particular, when the split surface 9 is formed into a regular hexagonal shape, since the shape of the joint portion between the split surfaces 9 is not linear, a more complicated zig-zag shape can be formed, so that the pixel pattern is provided on the EL panel 10. In the case, it is preferable to prevent the embossing due to the interference between the shape of the joint portion of the split faces 9 and the pixel pattern of the EL panel 10. Further, as shown in Fig. 26, the division faces 9 may be arranged without any gaps in the different polygonal combinations. ^ Fig. 29 to Fig. 29 are views showing an example of a case where the uneven portion 30 is formed into a polygonal pyramidal lens or a polygonal pyramidal lens. Fig. 27 is a plan view in which the uneven portion 30 is formed by a quadrangular pyramid having a square face shape and a convex lens shape. In the case where it is required to change the light distribution of the light emitted from the EL panel 10 to the symmetry, it is preferable that the dividing surface 9 be substantially square and the inclination angles of the four inclined surfaces of the quadrangular pyramid lens 52 be substantially the same. In the case where it is required to make the light distribution of the light emitted from the EL panel 10 asymmetrical, the split surface 9 may be a quadrangular pyramidal lens having a long side and a short side length of -28-201043081 square. Since the dividing surface 9 is rectangular, since the inclination angle of the quadrangular pyramid lens 52 in the short side direction and the inclination angle of the four corners of the long side direction 'cone convex lens 52 are different, it is possible to emit from the EL panel 10 The light distribution of the light becomes asymmetrical in the longitudinal direction and the short side direction. In Fig. 28, the uneven portion 30 is a substantially quadrangular pyramidal lens shape having the apex 52 of the divided constant. The quadrangular pyramid concave lenses are each formed by a ridge line 51, and each of the quadrangular pyramid concave lenses has four vertices 52. However, the method of forming the grooves is not limited to this, and grooves 109 of various depths, pitches, and opening angles extending in various directions may be provided. As described above, the distribution of the light distribution can be adjusted by making the configuration in which the two grooves 51 and the top of the substantially quadrangular pyramid lens shape are orthogonal to each other. In particular, light emitted at a wide angle of 60 degrees or more can be adjusted. By adjusting the shape of the quadrangular pyramid and the shape of the concave lens (depth, inclination angle), the light emitted at a wide angle can be increased or decreased. This is because most of the light that is emitted toward the wide angle is the light that is emitted from the vicinity of the bottom of the quadrangular pyramid lens. Fig. 29 shows a configuration in which the uneven portion 30 is formed by a quadrangular pyramid having a squared quadrangle. The lens shape is arranged without a gap. The uneven portion 30 of the quadrangular pyramid concave lens shape is used to take out the light H that is incident on the uneven portion 30 so as to be emitted toward the irradiation direction F. Further, in the uneven portion 30, since the shape of the quadrangular pyramid concave lens shape and the highest position of the uneven portion 30 shown in Fig. 27 are compared with the square pyramidal lens shape of the dot, since the shape of the highest position of the uneven portion 30 is a line, Therefore, the abrasion resistance is improved and better. In the case where it is required to change the light distribution of the light emitted from the EL panel 10 to the 'symmetry', it is preferable that the divided surface is formed into a substantially square shape and the inclination angles of the four inclined surfaces of the quadrangular pyramid concave lens are substantially the same. -29-201043081 In the case where it is required to make the light distribution of the light emitted from the EL panel 10 asymmetrical, a quadrangular pyramid concave lens 54 having a long side and a short side may be used as the split surface. Since the dividing plane has a rectangular shape, since the inclination angle of the quadrangular pyramid concave lens 54 in the short-side direction is different from the inclination angle of the quadrangular pyramid concave lens in the longitudinal direction, the light distribution of the light emitted from the EL panel 10 can be changed. It is asymmetrical in the longitudinal direction and the short side. Ο
在凹凸部30構成稜鏡透鏡或四角錐形狀的情況,亦可 是切除其前端頂部而作成平坦狀,或賦予圓角而作成曲面 狀者。進而,亦可是使構成稜鏡形狀之2個側面或構成四 角錐形狀的4個斜面彎曲成凸曲面狀或凹曲面狀者。如上 述,藉由使彎曲成凸曲面狀或凹曲面狀,和將斜面作成直 線狀的情況相比,可使射入凹凸部30之光hi以廣範圍之 角度偏向。射入凹凸部30之光hi,在改變對視野方向之角 度的情況,發生色調變化之顏色偏差之課題的情況,藉由 使彎曲成凸曲面狀或凹曲面狀,而使來自發光層2的光以 廣範圍之角度偏向,而可使發光層2之光的色調變化均勻 化成和對視野方向的角度不相依,故而較佳。 又,單位凸部20中之和凹凸部30接觸之外周邊的形 狀亦可配置成至少一部分蛇行,或單位凸部20和凹凸部30 的界面不僅位於凹凸部3 0的谷部,而且位於頂部或側面。 藉由作成如上述之構成,因爲可對來自各單位凸部20之射 出光的配光分布各自賦予變化,所以可賦予創意性。 凹凸部30之沿著基材層19之單面的之寬度PL,即在 稜鏡透鏡的情況係截面三角形之底邊的寬度,在圓柱狀透 鏡的情況係截面半橢圓形狀之直線部的寬度,在四角錐的 -30- 201043081 情況係底面之一邊的寬度被設定成20 M m以上、200 v m以 內,使得在凹凸部3 0難發生繞射光,從照射方向難視認。 ' 進而,爲了使凹凸部30的表面難受損傷,而將凹凸部 30高度TL形成爲比單位凸部20高度TM更低,並將各自 之高度TL、TM設定成使其高度的差成爲5ym以上。 此外,爲了達成所要的特性,可適當地調整單位凸$ 20和凹凸部30的形狀,及單位凸部20和凹凸部30之對基 材層19之比例(面積率)。 0 於是,在本實施形態的光控制創意片7,如上述,雖然 單位凸部20的寬度PM被設定成20" m以上、200 y m以下, 凹凸部30的寬度PL被設定成20 /z m以上、200 # m,但是在 此範圍,將兩者之寬度PM、PL設定成使單位凸部20之寬度 _ PM對凹凸部30之寬度PL的比成爲1.1〜10之範圍。 在該寬度之比未滿1.1的情況,凹凸部30大致覆蓋單 位凸部20,因爲藉凹凸部30的目視難識別單位凸部20, 所以無法識別單位凸部20之創意性圖案,故而不佳。另一 q 方面,在該寬度之比超過10的情況,雖然使單位凸部20 成爲易識認,但是因爲凹凸部30過度地成爲微細構造,所 以在凹凸部30繞射光增加,而光的利用效率降低。關於這 一點,在本實施形態的光學構件30,因爲該寬度的比被設 定於1.1〜1 0之範圍,所以可視認由單位凸部20所產生之 創意性圖案,而且可防止因凹凸部30之繞射所引起之光的 利用效率降低。 光控制創意片7如第12圖~第13圖或第30圖〜第34 圖所示,能以單位凸部20設置創意圖案。 -31- 201043081 作爲單位凸部20.的創意圖案,亦可採用如第12圖(a) 所示的格子狀排列。在第12圖(a),在大致四角形片狀的基 ' 材層1 9上隔著微細的間隙而成格子狀地排列複數個單位 凸部20。 又’亦可替代這種單位凸部20之排列構成,而採用採 用如第1 2圖(b)所示的蜂巢狀排列、如第1 2圖(c)所示的週 期性條狀(列狀)排列、或如第1 2圖(d)所示的隨機排列構成。 若在基材層19之平面上之單位凸部20的排列是週期 0 性,則可易於提高單位凸部20的排列密度,而可提高光取 出量。 另一方面,若在基材層1 9上之單位凸部20的排列態 樣是非週期性,則不會產生疊紋。例如,在將像素圖案設 . 置於EL面板1 0的情況,因爲可防止因單位凸部20之排列 圖案、和EL面板10之像素圖案的干涉而產生的疊紋,故 而更佳。 又,作爲單位凸部20的創意圖案,亦可如第30圖(a) Q 所示,單位凸部20是由大致半球形狀和大致橢圓球形狀所 混合者。在單位凸部20包含有大致橢圓半球形狀的情況, 藉由控制使該橢圓的長軸朝相同之方向配向的比例,而可 得到所要的配光分布。例如,如第30圖(a)所示,大致橢圓 半球形狀的長軸所朝向之方向的配光分布,和大致橢圓半 . 球形狀的短軸所朝向之方向相比,有成爲廣的配光分布的 傾向。這是基於橢圓形狀之傾斜率的差。藉此,可製作射 出之光的配光分布爲非對稱的EL面板10。 進而,亦可如第30圖(b)所示,排列單位凸部20之傾 -32- 201043081 斜角度等的形狀相似而大小相異者。 又,亦可如第31圖〜第34圖,利用單位凸部20而形 ' 成特定的文字、記號、圖案、花樣等之創意圖案。 • 第3 1圖是利用單位凸部20的有無而形成創意圖案的 例子。 在有單位凸部20的區域XI、和無單位凸部20的區域 Y 1形成文字「T」的創意圖案。 在以如上述的方法形成創意圖案的情況,因爲可形成 0 對比大的創意圖案,所以在使創意圖案易顯著的情況是較 佳的。 第32圖是利用單位凸部20的密度差而形成創意圖案 的例子。 在單位凸部20之密度大的區域X2、和單位凸部20之 密度小的區域Y2形成文字「T」的創意圖案。 在以如上述的方法形成創意圖案的情況,可利用任意 的密度差來任意地調整創意圖案的對比。又,因爲可形成 Q 對比小的創意圖案,所以在形成淡的創意圖案的情況是較 佳的。 第33圖是利用單位凸部20的形狀差異而形成創意圖 案的例子。 在以半圓球形狀形成單位凸部20的區域X3、和以半 橢圓球形狀形成單位凸部20的區域Y3形成文字「T」的創 意圖案。 '在以如上述的方法形成創意圖案的情況,可利用由單 位凸部20的形狀差異所引起之從單位凸部20所射出之配 -33- 201043081 光分布的差而形成創意圖案。利用配光分布的差而形成創 意圖案時,尤其在變更對視野方向之角度的情況,因爲可 強調創意圖案,所以在形成因觀察位置而異之創意圖案的 情況是較佳的。 第34圖是利用單位凸部20的尺寸差異而形成創意圖 案的例子。在以相對上小的尺寸形成單位凸部20之區域 X4、和以相對上大的尺寸形成單位凸部20之區域Y4形成 文字「T」的創意圖案。 0 在以如上述的方法形成創意圖案的情況,和藉由單位 凸部20的有無、或單位凸部20的形狀差異而形成創意圖 案的方法相比,可使單位凸部20之傾斜角度大致相同,藉 由作成相似形狀而降低在EL面板10之面內之配光分布的 . 不均,而且可形成創意圖案。進而,因爲在區域X4和區域 Y4之單位凸部20的高度發生差異,所以不僅以視覺,而 且以觸覺亦可確認創意圖案,故而較佳。 又,如第3 5圖所示,亦可利用單位凸部20和凹凸部 Q 30之配光分布的差而賦予EL面板10的創意性。 例如,在第35圖(a)~(c)表示在單位凸部20採用大致 半圓球形狀的微透鏡形狀、在凹凸部30採用稜鏡形狀之情 況的視覺效果。又,在第36圖表示從發光媒體層18所發 出的光被單位凸部20控制而射出的第1射出光、和從發光 媒體層18所發出的光被凹凸部30控制而射出的第2射出 光之配光分布圖。 在從正面方向觀察EL面板10的情況(在配光分布第36 圖的區域S10),因爲第1射出光的亮度比第2射出光小, -34- 201043081 所以單位凸部20的區域X5被視認爲比凹凸部30之區域 Y5更暗,而視認文字「T」(第35圖(a))。 ' 使對視野方向的角度變大,而從斜方向觀察的情況(在 • 配光分布第36圖的區域$11)>第1射出光和第2射出光之 亮度的大小顛倒,因爲第2射出光的亮度變成比第1射出 光小,所以凹凸部30之區域Y5被視認爲比單位凸部20的 區域X5更暗,而視認明暗相反的文字「T」(第35圖(b))。 進而,當將對視野方向的角增大時(在配光分布第36 0 圖的區域S12),第1射出光和第2射出光之亮度的大小再 顛倒,第1射出光的亮度變成比第2射出光小。這是由於 觀察者視認在因凹凸部30的稜鏡形狀而產生之對視野方 向之角度大的情況所產生之光之波峰(peak)、旁波瓣(side lobe)的緣故。因而’單位凸部20的區域X5被視認爲比凹 凸部30之區域Y5更暗,而視認文字「τ」(第35圖(c))。 以第3 5圖、第3 6圖所示的方法賦予創意性時,可視 認因對視野方向之角度而異的創意圖案,故而較佳。 Q 又’作爲凹凸部30之縱向截面形狀,可任意採用如第 37圖(a)所示之頂部爲圓狀者,或如同圖(b)所示之頂部形成 非對稱之段差的二段頂部形狀者,或如同圖(c)所示之形成 頂部截面之一方或雙方的斜面形成凸曲面或凹曲面者等。 即是在第20圖〜第37圖所示的情況,一旦偏離根據上 述之第(1)式〜第(4)式所特定之配置條件,則亦會因爲從單 位凸部20所射出的光和從單位凸部2〇以外之區域12ba所 射出的光之差而產生光取出量的不均,所以較佳爲滿足上 述之配置條件。 -35- 201043081 其次’說明上述之光學片12的形成材料。 可使用PET(聚對本—甲酸乙二酯)、pc(聚碳酸酯)、 PMMA(聚甲基丙烯酸甲酯)、c〇p(環烯烴聚合物)、丙烯腈 . 苯乙烯共聚合物、丙烯腈聚苯乙烯共聚合物、三聚氰胺樹 脂、硫代胺基甲酸酯樹脂、環硫化物樹脂(episumde resin) 等來作爲光學片12的形成材料。 又’作爲設置於光學片12的基材層19,較佳爲使用脆 性低的樹脂。作爲基材層19的材料,可舉出(a— )pET、聚 〇 碳酸酯、(聚)胺基甲酸酯樹脂、環氧樹脂、(聚)乙烯樹脂、 丙烯酸樹脂、丙烯腈(聚)苯乙烯樹脂、ABS樹脂等。 基材層19之厚度雖然亦和基材層丨9所具有的剛性有 關’但是從加工性等之處理面看,較佳爲50~3〇〇gm者。 . 又,單位凸部20及凹凸部30未和基材層19堅固地接 著’或因冷熱、吸脫濕等之外在影響而接著力降低時,亦 可將對兩材料接著性高的底漆層(primer layer)設置於單位 凸部20、或凹凸部30與基材層19之間,亦可對單位凸部 Q 20、或凹凸部30附加底漆層的作用。 或者,亦可施加電暈放電處理等的易接著處理。 作爲單位凸部20,亦可使用紫外線硬化樹脂。能在製 造光學片12時,一面在基材層19以線速度從lm/miη至 3 Om/mi η的速度將紫外線硬化樹脂押附在模具,一面形成單 位凸部20。在此,以比線速度lm/min更低速而將紫外線硬 化樹脂押附在模具時,在押附在模具之前丙烯酸樹脂會和 '空氣中的氧或水分反應而無法順利成型。另一方面,以比 線速度30m/min更高速而將紫外線硬化樹脂押附在模具 -36- 201043081 時,會產生發生氣泡之咬入的不良。 在將紫外線硬化樹脂製的單位凸部20押附在基材層 19並成型後,藉由照射從5 00mJ/m2至3000mJ/m2的紫外線 而硬化,可製造光學片12。作爲用於單位凸部20之成型的 丙烯酸樹脂,藉由適時混合單官能的丙烯酸樹脂和多官能 的丙烯酸樹脂,而可兼顧表面之強化性能和光取出功能之 效果。 又,作爲帶電防止劑,亦可使導電性微粒子之含有銻 0 的氧化鍚(以下稱爲ΑΤΟ)、或含有鍚的氧化銦(ITO)等的超 微粒子分散。藉由分散帶電防止劑,而可提高光學片12的 防污性。 作爲上述之模具的製作方法,首先,以噴霧方式對已 . 施加鍍銅的模具塗布約5gm之已使碳黑分散於樹脂之漆 (lacquer)後,照射波長1060nm的紅外線雷射,使漆昇華。 然後,將模具浸泡於氯化鐵鉻酸溶液,在深度方向和寬度 方向等向狀地使銅腐蝕,而製作對應於單位凸部20的部 Q 分。接著,對此模具使用具有各種透鏡形狀的鑽石刀具, 將截面形狀切削成三角形,而製作對應於凹凸部30的部 分。 可使用這種模具,以擠壓成型或射出成型形、UV成型 法等進行成型。此時,亦可將單位凸部20、凹凸部30及基 材層19作爲不同元件進行成型,亦可作爲一體元件進行成 型。又,在將單位凸部20、凹凸部30及基材層19進行成 ' 型的情況,亦可使塡料(filler)等擴散劑分散於內部並進行 成型。 -37- 201043081 單位凸部20可對樹脂薄膜利用壓花加工製作。此時的 賦形率只要70%以上即可,較佳爲85%以上時,大多是光學 * 特性幾乎未發生差異之水準的情況。此時之壓花的壓力條 件一般是線壓 5~ 5 00kg/cm,較佳爲5〜300kg/cm,更佳爲 10~150kg/cm。在線壓比5kg/cm小的情況,賦形率是未滿 7 0%,無法將微細的單位凸部20充分地賦形。 在線壓比10kg/cm大的情況,因爲可得到85%以上的 賦形率,所以更佳。另一方面,在500kg/cm的線壓,對機 0 械的負載太大而不實用。又,若線壓是300kg/cra以下,即 使薄膜寬超過lro,對機械的負載亦不會太大。若線壓是 150kg/cm,賦形率可得到99%〜100%,無法更提高賦形率。 又,在單位凸部20之寬高比ARi大於0.6的情況,在 從模具剝離光學片12時在單位凸部20產生缺口。因而, 如上述之第(1)式所示,單位凸部20的寬高比較佳爲0.6以 下。 其次,對第1圖所示的EL面板10,分別具體說明光 q 學片12以外之構成元件的材料。 EL元件11的基板15A由玻璃、金屬、樹脂等之板狀 者所構成。 其次,陰極15B被配設於基板15A之發光媒體層18側 的面。陰極15B是具有導電性的層,是對發光媒體層18施 _ 加電壓者。構成陰極15B的材料使用鋁板或對基板15A蒸 鍍鋁者。又,作爲用於陰極15B之具有導電性的材料,未 * 限定爲上述的鋁,亦可使用金、銀、銅等之各種金屬、或 具有導電性的碳等。 -38- 201043081 其次’透明基板15B具有使從發光媒體層18所射出之 光透過的功能。 作爲透明基板15B的材料,除了可使用各種玻璃材料 以外,亦可使用PMMA、聚碳酸酯、聚苯乙烯等的塑膠材 料。在此,特佳爲環烯烴系的聚合物,此聚合物材料係樹 脂的加工性、耐熱性、耐水性、光學透光性等之特性優異 而適合。 又’因爲透明基板1 5 B可使從發.光媒體層1 8所射出的 〇 光儘量透過,所以較佳爲以全光線透過率爲50%以上的材 料形成。 黏著層13係設置於透明基板15B的光射出面側,固定 光學片1 2和透明基板1 5 B。 . 在此,作爲構成黏著層1 3的黏.接著劑,可舉出例如 丙Μ酸系、胺基甲酸酯系、橡膠系、矽酮系的黏.接著劑。 因爲任一種情況都在高温的背光內使用,所以在1 〇〇 t貯藏 彈性係數G,較佳是l.〇E + 04(Pa)以上。又,爲了射出均勻 Q 的光’亦可將例如小珠(beads)之透明的微粒子混入黏著層 13中。進而,作爲黏·接著劑,亦可使用雙面膠帶。 發光媒體層18具有第2圖所示之構成,較佳爲在陰極 16和陽極17之間包含發光層21和電洞輸送層22。 進而,亦可因應於需要而將未圖示之作爲電子注入 層 '電荷阻隔層、電子輸送層發揮功能的層設置於發光媒 體層18。積層於發光層21和陽極17之間的是未圖示之電 洞注入層、電子阻隔層、及電洞輸送層22。形成於發光層 21和陰極16之間的是未圖示之電洞阻隔層、電子注入層、 -39- 201043081 電子輸送層。 而’作爲構成電洞輸送層22的電洞輸送材料,雖然可 舉出聚苯胺衍生物、聚噻吩衍生物、聚乙烯咔唑(PVK)衍生 物、聚(3,4—乙烯二氧噻吩)(1^〇〇1)等,但是在本發明未限 定於此。這些材料係可使溶解或分散於溶媒,並使用旋轉 塗布法、突出塗布法、浸漬塗布法來進行一次性塗布。又, 可藉由使用凸版印刷法,而按照像素間距得到均勻、無成 膜不良的線圖案。 又’在使用無機材料作爲電洞輸送材料的情況,作爲 無機材料’可使用真空蒸鍍法形成鉻(Cr)、鎢(W)、釩(V)、 鈮(Nb)、鉬(Ta)、鉬(Mo)、鈦(Ti)、鉻(Zr)、給(Hf)、銃(Sc)、 釔(Y)、錳(Μη)、鐵(Fe)、釕(Ru)、餓(Os)、鈷(Co)、鎳(Ni)、 銅(Cu)、鋅(Zn)、鎘(Cd)等之氧化物、氮化物、氮氧化物。 此時’可藉由使用任意的蔭遮罩(shadow mask)而可得到一 次性形成或線圖案。可藉由設置由無機物所構成之電洞輸 送層,而得到熱穩定性及耐性優異之更穩定的EL元件1 1。 又,可在陽極17和發光層21之間,在形成電洞輸送 層22後,形成具有電洞注入及電子阻隔(block)功能的中間 層(未圖示)。作爲用於中間層的材料,雖然可舉出聚乙烯 昨唑或其衍生物、在側鏈或主鏈具有芳香族胺的聚伸芳基 衍生物、芳基胺衍生物、三苯基二胺衍生物等之包含有芳 香族胺的聚合物等,但是本發明未限定於此。 上述之中間層的材料係可使溶解或分散於溶媒,並使 用旋轉塗布器之各種塗布方法或凸版印刷法、凹版印刷 法、網版印刷法等的印刷法形成。 -40- 201043081 又,在使用無機材料作爲中間層材料的情況,作爲無 機材料,可使用真空蒸鍍法形成鉻(Cr)、鎢(W)、釩(V)、鈮 ' (Nb)、钽(Ta)、鉬(Mo)、鈦(Ti)、銷(Zr)、鈴(Hf)、銃(Sc)、 釔(Y)、锰(Μη)、鐵(Fe)、釕(Ru)、餓(Os)、鈷(Co)、鎳(Ni)、 銅(Cu)、鋅(Zn)、鎘(Cd)等之氧化物、氮化物、氮氧化物。 此時,可藉由使用任意的蔭遮罩而可得到一次形成或線圖 案。可藉由設置由無機物所構成之中間層,而得到熱穩定 性及耐性優異之更穩定的EL元件1 1。 0 發光層21亦可能採用白色發光層、或藍色、紅色、黃 色、綠色等的單色發光層。 在此,在發光層21採用白色發光層的情況,由陽極π/ 發光媒體層 18/陰極 16所構成之構成可採用例如 。 ITO/CuPc(銅酞青)/將1%紅螢烯摻雜至α — NPD/將1%菲摻 雜至二萘蒽/Alq3/氟化鋰/作爲陰極Α1之構成。 發光層21係在形成中間層後形成。發光層2 1是藉由 使電流流動而發光的層,形成發光層21的有機發光材料, 可列舉例如使香丑素(coumarin)、菲系、峨喃系、葱酮系、 卟啉系、‘(porphyrin)、唾吖酮系、Ν、Ν’ 一二烷基取代唾 吖酮系、萘基醯亞胺系、Ν、Ν ’ -二芳基取代吡咯并吡略 系、銥錯合物系等之發光性色素分散於聚苯乙烯、聚甲基 丙烯酸甲酯異丁烯酸甲酯、聚乙烯咔唑等高分子中者,及 聚伸芳基系、聚伸芳基乙烯系及聚芴系的高分子材料,但 是本發明未限定爲這些材料。 '這些有機發光材料係使溶解或安定地分散於溶媒,而 成爲有機發光墨。作爲將有機發光材料溶解或分散的溶 -41 - 201043081 媒,可舉出甲苯、二甲苯、丙酮、苯甲醚(&1115〇16)、甲基乙 基酮、甲基異丁基酮、環已酮等之單獨或這些的混合溶媒。 其中尤其甲苯、二甲苯、苯甲醚之芳香族有機溶媒在有機 ' 發光材料的溶解性上適合。又,亦可因應於需要,對有機 發光墨添加界面活化劑、防氧化劑、黏度調整劑、紫外線 吸收劑等。 除了上述的高分子材料以外,可使用9,10 -二芳基蒽 衍生物、芘、蔻(coronene)、茈、紅螢烯、1,1,4,4一四苯基 〇 丁二烯、參(8 —喹啉)鋁錯合物、參(4 —甲基—8 —喹啉)鋁 錯合物、雙(8 —喹啉)鋅錯合物、參(4 一甲基一 5—三氟甲基 一 8 —喹啉)鋁錯合物、參(4_甲基—5 —氰一 8_喹啉)鋁錯 合物、雙(2 —甲基—5 —三氟甲基一 8—喹啉酸基)[4 一(4 一 • 氰苯基)酚化物]鋁錯合物、雙((2 —甲基一 5 —氰基一 8_喹 啉酸基)[4_ (4 一氰基苯基)苯化物物])鋁錯合物、雙(8一喹 琳酸基)銃錯合物、雙[8 —(對-甲苯磺醯基)胺基喹啉]鋅錯 合物及鎘錯合物、1,2,3,4 —四苯基環戊二烯、聚—2,5-二 〇 庚基氧基一對伸苯基伸乙烯等之低分子系發光材料。 作爲發光媒體層18的形成法,可因應於材料,使用真 空蒸鍍法、CVD法等之乾塗布法、或噴墨印刷法、凸版印 刷法、凹版印刷法、網版印刷法等之濕塗布法等既有的成 膜法。 • [實施例] (光學片12的製作方法) 其次’關於光學片1 2之製作方法,說明比較例1〜3 及實施例1〜3。 -42- 201043081 (比較例1 ) 在由光學用2軸延伸易接著PET薄膜(膜厚125// m)所 ' 構成的基材層19上,塗布使形成光學片12中之單位凸部 20的圖案之以胺基甲酸酯丙烯酸酯爲主成分的紫外線硬化 型樹脂(日本化藥社製胺基甲酸酯丙烯酸酯樹脂(折射率 n=1.51))。然後,使用以寬高比ARa = 0.3、底部20c的直徑 Di爲100 的微透鏡形成爲單位凸部20的圓柱模具,一 面搬運被塗布紫外線硬化型樹脂的PET薄膜,一面從PET 0 薄膜側以紫外線進行曝光。藉此,紫外線硬化型樹脂硬化。 硬化後’藉由使模具從PET薄膜脫模,而製作具有直徑爲 100/zm之單位凸部20群的光學片12。 可是,對EL面板10的EL元件11貼合此光學片12並 _ 測量時,無法得到充分的光取出量。 (比較例2) 在由光學用2軸延伸易接著PET薄膜(膜厚125 # m)所 構成的基材層19上,塗布使形成光學片12中之單位凸部 Q 20的圖案之以胺基甲酸酯丙烯酸酯爲主成分的紫外線硬化 型樹脂(日本化藥社製胺基甲酸酯丙烯酸酯樹脂(折射率 n=1.51))。然後,使用將寬高比ARa = 0.7、直徑爲lOOgm 的微透鏡形成爲單位凸部20的圓柱模具,一面搬運被塗布 紫外線硬化型樹脂的PET薄膜,一面從PET薄膜側以紫外 線進行曝光。藉此,紫外線硬化型樹脂硬化成單位凸部20。 硬化後,雖然使模具從PET薄膜脫模,但是在構成單 • 位凸部20的稜鏡透鏡產生缺口,而無法脫模。 (比較例3) -43- 201043081 將熱可塑性樹脂的聚碳酸酯樹脂加熱至約300°C,並一 面使沿著輥延伸一面形成厚度〇.3mm的薄膜,作爲基材層 19。在此聚碳酸酯樹脂製的薄膜,在將利用寬高比ARa = 0.6 ' 之以凹型的單位凸部形狀所成型之單位凸部20的頂點 20a、及一樣地成型之相鄰之其他的2個單位凸部20的頂 點20 a所虛擬形成之銳角三角形的最短邊設爲短邊E1、最 長邊設爲長邊E2時,使用以使長邊E2成爲短邊E1之15 倍的配置、利用鈾刻對圓柱予以加工的圓柱模具,一面對 〇 被加熱的薄膜加壓一面冷卻(圓柱模具溫度爲12(TC ),而得 到被形成複數個單位凸部20之薄膜,作爲光學片12。 藉此,雖然可製作具有直徑爲50/zm之單位凸部20的 光學片1 2,但是無法得到充分的光取出量。 . (實施例1) 在由光學用2軸延伸易接著PET薄膜(膜厚125 /z m)所 構成的基材層19上,塗布用於使形成光學片12中之單位 凸部20的圖案之以胺基甲酸酯丙烯酸酯爲主成分的紫外 Q 線硬化型樹脂(日本化藥社製胺基甲酸酯丙烯酸酯樹脂(折 射率n= 1.5 1)),並使用形成由光學片12之形狀的寬高比 ARa = 0.5、直徑Di爲10〇Am的微透鏡所構成之單位凸部 20的圓柱模具,一面搬運被塗布紫外線硬化型樹脂的薄 膜,一面從PET薄膜側以紫外線進行曝光,藉此,使紫外 .線硬化型樹脂硬化成單位凸部20。 硬化後,藉由使模具從PET薄膜脫模,而可製作具有 直徑爲100//m之單位凸部20群的光學片12。 (實施例2) -44- 201043081 將熱可塑性樹脂的聚碳酸酯樹脂加熱至約300°C,在一 面使沿著輥延伸一面形成厚度0.3mm的薄膜而作爲基材層 • 19後,使用已利用蝕刻對圓柱加工寬高比ARa = 〇.6之凹形 • 之單位凸部形狀的圓柱模具,一面將被加熱的薄膜加壓一 面冷卻(圓柱模具溫度是120°C ),而得到形成了單位凸部20 之圖案的薄膜,作爲光學片12。 藉此,可製作具有直徑爲50/zm之單位凸部20的光學 片12。 Q (實施例3 ) 將熱可塑性樹脂的聚碳酸酯樹脂加熱至約300°C,並一 面使沿著輥延伸一面形成厚度〇.3mm的薄膜,作爲基材層 19後,在將利用寬高比ARa = 0.4之以凹型的單位凸部形狀 . 所成型之單位凸部20的頂點U1、及一樣地成型之相鄰之 其他的2個單位凸部20的頂點20a所虛擬形成之銳角三角 形的最短邊設爲短邊E1、最長邊設爲長邊E2時,使用以 長邊E2成爲短邊E1之1.5倍的配置利用蝕刻對圓柱予以 Q 加工的圓柱模具,一面對被加熱的薄膜加壓一面冷卻(圓柱 模具溫度爲1 20°C ),而得到被形成單位凸部20之圖案的薄 膜,作爲光學片12。 藉此,可製作具有直徑Di爲100/zm之單位凸部20的 光學片12,並可得到充分的光取出量。 _ 如以上之說明,若依據本實施形態的EL面板1 〇 ’便 能藉由使用具有滿足第U)式、第(2)式、第(3)式及第(4)式 ' 之區域的光學片12,而謀求提高光取出效率。又’藉由將In the case where the uneven portion 30 constitutes a 稜鏡 lens or a quadrangular pyramid shape, the top end of the tip end may be cut to be flat, or rounded to form a curved surface. Further, it is also possible to bend the two side faces constituting the 稜鏡 shape or the four inclined faces constituting the quadrangular pyramid shape into a convex curved surface or a concave curved surface. As described above, by bending into a convex curved surface or a concave curved surface, the light hi incident on the uneven portion 30 can be deflected at a wide angle as compared with a case where the inclined surface is formed in a straight line shape. When the light hi incident on the uneven portion 30 changes the angle to the visual field direction and the color deviation of the color tone changes, the curved light is curved or concavely curved to make the light from the light-emitting layer 2 The light is deflected at a wide range of angles, and it is preferable that the change in the hue of the light of the light-emitting layer 2 is made uniform and independent of the angle of the direction of the field of view. Further, the shape of the unit convex portion 20 in contact with the uneven portion 30 may be arranged to be at least partially serpentine, or the interface between the unit convex portion 20 and the uneven portion 30 is not only located in the valley portion of the uneven portion 30 but also at the top. Or side. According to the above configuration, since the light distributions of the light emitted from the unit convex portions 20 can be changed, it is possible to impart creativity. The width PL of the concave-convex portion 30 along one side of the base material layer 19, that is, the width of the bottom side of the cross-sectional triangle in the case of the 稜鏡 lens, and the width of the straight portion of the semi-elliptical shape in the case of the cylindrical lens. In the case of -30-201043081 of the quadrangular pyramid, the width of one side of the bottom surface is set to be 20 Mm or more and 200 vm or less, so that it is difficult to generate diffracted light in the uneven portion 30, and it is difficult to recognize from the irradiation direction. Further, in order to prevent the surface of the uneven portion 30 from being damaged, the height TL of the uneven portion 30 is formed to be lower than the height TM of the unit convex portion 20, and the heights TL and TM are set such that the difference in height is 5 μm or more. . Further, in order to achieve the desired characteristics, the shape of the unit convexity $20 and the uneven portion 30 and the ratio (area ratio) of the unit convex portion 20 and the uneven portion 30 to the base material layer 19 can be appropriately adjusted. In the light control creative sheet 7 of the present embodiment, as described above, the width PM of the unit convex portion 20 is set to 20 " m or more, 200 ym or less, and the width PL of the uneven portion 30 is set to 20 / zm or more. In this range, the widths PM and PL of the both are set such that the ratio of the width _ PM of the unit convex portion 20 to the width PL of the uneven portion 30 is in the range of 1.1 to 10. When the ratio of the width is less than 1.1, the uneven portion 30 substantially covers the unit convex portion 20. Since the unit convex portion 20 is difficult to recognize by the visual observation of the concave-convex portion 30, the creative pattern of the unit convex portion 20 cannot be recognized, which is not preferable. . On the other hand, when the ratio of the width exceeds 10, the unit convex portion 20 is easily recognized. However, since the uneven portion 30 excessively has a fine structure, the light is scattered in the uneven portion 30, and the light is utilized. Reduced efficiency. In this regard, in the optical member 30 of the present embodiment, since the ratio of the width is set in the range of 1.1 to 10, the creative pattern generated by the unit convex portion 20 can be recognized, and the uneven portion 30 can be prevented. The utilization efficiency of light caused by diffraction is lowered. The light control creative sheet 7 can be provided with a creative pattern by the unit convex portion 20 as shown in Fig. 12 to Fig. 13 or Fig. 30 to Fig. 34. -31- 201043081 As the creative pattern of the unit convex portion 20., a lattice arrangement as shown in Fig. 12(a) may be employed. In Fig. 12(a), a plurality of unit convex portions 20 are arranged in a lattice shape on a substantially square-shaped base material layer 19 with a fine gap therebetween. Moreover, it is also possible to replace the arrangement of the unit convex portions 20, and to adopt a honeycomb arrangement as shown in Fig. 2(b), and a periodic strip as shown in Fig. 2(c). Arranged or arranged in a random arrangement as shown in Fig. 2(d). If the arrangement of the unit convex portions 20 on the plane of the base material layer 19 is periodic, the arrangement density of the unit convex portions 20 can be easily increased, and the amount of light extraction can be increased. On the other hand, if the arrangement of the unit convex portions 20 on the base material layer 19 is non-periodic, no embossing occurs. For example, in the case where the pixel pattern is placed on the EL panel 10, it is more preferable because the pattern formed by the arrangement pattern of the unit convex portion 20 and the interference of the pixel pattern of the EL panel 10 can be prevented. Further, as the creative pattern of the unit convex portion 20, as shown in Fig. 30 (a) and Q, the unit convex portion 20 may be a mixture of a substantially hemispherical shape and a substantially elliptical spherical shape. In the case where the unit convex portion 20 includes a substantially elliptical hemispherical shape, a desired light distribution can be obtained by controlling a ratio in which the long axes of the ellipse are aligned in the same direction. For example, as shown in Fig. 30(a), the light distribution in the direction in which the major axis of the substantially elliptical hemisphere is oriented is wider than that in the direction in which the short axis of the spherical shape is oriented. The tendency of light distribution. This is based on the difference in the slope ratio of the elliptical shape. Thereby, the EL panel 10 in which the light distribution of the emitted light is asymmetric can be produced. Further, as shown in Fig. 30(b), the arrangement of the unit convex portions 20 may be similar to the shape of the inclined angles -32 to 201043081, and the sizes may be different. Further, as in the 31st to 34th drawings, the unit convex portion 20 can be used to form a creative pattern such as a specific character, symbol, pattern, or pattern. • Fig. 31 is an example of forming a creative pattern by the presence or absence of the unit convex portion 20. A creative pattern of the character "T" is formed in the region XI having the unit convex portion 20 and the region Y 1 having no unit convex portion 20. In the case of forming a creative pattern by the above method, since a creative pattern having a large contrast of 0 can be formed, it is preferable to make the creative pattern easy to be conspicuous. Fig. 32 is an example in which a creative pattern is formed by the difference in density of the unit convex portions 20. A region X2 having a high density of the unit convex portion 20 and a region Y2 having a small density of the unit convex portion 20 form a creative pattern of the character "T". In the case where the creative pattern is formed by the above method, the contrast of the creative pattern can be arbitrarily adjusted using an arbitrary density difference. Further, since a creative pattern having a small Q contrast can be formed, it is preferable to form a light creative pattern. Fig. 33 is an example of forming a creative pattern by utilizing the difference in shape of the unit convex portion 20. A creative pattern of the character "T" is formed in a region X3 in which the unit convex portion 20 is formed in a semispherical shape and a region Y3 in which the unit convex portion 20 is formed in a semispherical spherical shape. In the case where the creative pattern is formed by the above-described method, the difference in the light distribution from the unit convex portion 20 caused by the difference in the shape of the unit convex portion 20 can be used to form the creative pattern. When a creative pattern is formed by the difference in the light distribution distribution, in particular, when the angle to the visual field direction is changed, since the creative pattern can be emphasized, it is preferable to form a creative pattern that differs depending on the observation position. Fig. 34 is an example of forming a creative pattern by using the difference in size of the unit convex portion 20. A region X4 in which the unit convex portion 20 is formed in a relatively small size and a region Y4 in which the unit convex portion 20 is formed in a relatively large size form a creative pattern of the character "T". In the case where the creative pattern is formed by the above method, and the method of forming the creative pattern by the presence or absence of the unit convex portion 20 or the difference in the shape of the unit convex portion 20, the inclination angle of the unit convex portion 20 can be made substantially In the same manner, the unevenness of the light distribution in the plane of the EL panel 10 is reduced by making a similar shape, and a creative pattern can be formed. Further, since the height of the unit convex portion 20 in the region X4 and the region Y4 is different, it is preferable not only to visually but also to recognize the creative pattern by touch. Further, as shown in Fig. 35, the creativity of the EL panel 10 can be imparted by the difference in light distribution between the unit convex portion 20 and the uneven portion Q30. For example, in Figs. 35(a) to (c), the visual effect of the case where the unit convex portion 20 has a substantially semispherical microlens shape and the concave and convex portion 30 has a meander shape is shown. In addition, in FIG. 36, the first emitted light that is emitted from the light-emitting medium layer 18 and controlled by the unit convex portion 20, and the light emitted from the light-emitting medium layer 18 are controlled by the uneven portion 30 to be emitted. The light distribution map of the emitted light. When the EL panel 10 is viewed from the front direction (in the region S10 of the light distribution distribution 36), since the luminance of the first emitted light is smaller than the second emitted light, -34- 201043081, the region X5 of the unit convex portion 20 is It is considered to be darker than the area Y5 of the uneven portion 30, and the character "T" is recognized (Fig. 35 (a)). 'The angle of the direction of the field of view is increased, and the case of observing from the oblique direction (in the area of the light distribution distribution, figure 36, $11)> The brightness of the first and second emitted light is reversed because of the second Since the brightness of the emitted light is smaller than that of the first emitted light, the region Y5 of the uneven portion 30 is considered to be darker than the region X5 of the unit convex portion 20, and the oppositely recognized text "T" (Fig. 35 (b)) . Further, when the angle in the direction of the visual field is increased (in the region S12 of the light distribution distribution No. 36), the magnitudes of the luminances of the first and second emitted lights are reversed, and the brightness of the first emitted light becomes a ratio. The second shot is small. This is because the observer visually recognizes the peak of the light and the side lobe generated by the angle of the viewing direction caused by the meandering shape of the uneven portion 30. Therefore, the region X5 of the unit convex portion 20 is regarded as being darker than the region Y5 of the concave convex portion 30, and the character "τ" is recognized (Fig. 35 (c)). When creativeness is imparted by the method shown in Figs. 35 and 36, it is preferable to recognize a creative pattern which differs depending on the angle of the visual field. Q is also 'as a longitudinal cross-sectional shape of the uneven portion 30, and may be arbitrarily used as the top shown in Fig. 37(a), or as the top of the figure shown in Fig. (b). The shape, or the inclined surface forming one or both of the top cross sections as shown in Fig. (c), forming a convex curved surface or a concave curved surface or the like. In other words, in the case shown in Figs. 20 to 37, the light emitted from the unit convex portion 20 is also caused by the deviation from the arrangement conditions specified by the above formulas (1) to (4). Since the difference in light extraction amount is generated from the difference in light emitted from the region 12ba other than the unit convex portion 2A, it is preferable to satisfy the above-described arrangement conditions. -35- 201043081 Next, the material for forming the optical sheet 12 described above will be described. PET (poly-p-ethyl formate), pc (polycarbonate), PMMA (polymethyl methacrylate), c〇p (cycloolefin polymer), acrylonitrile, styrene copolymer, propylene A nitrile polystyrene copolymer, a melamine resin, a thiourethane resin, an epismude resin, or the like is used as a material for forming the optical sheet 12. Further, as the base material layer 19 provided on the optical sheet 12, a resin having low brittleness is preferably used. Examples of the material of the base material layer 19 include (a—) pET, polyfluorene carbonate, (poly)urethane resin, epoxy resin, (poly)ethylene resin, acrylic resin, and acrylonitrile (poly). Styrene resin, ABS resin, and the like. The thickness of the base material layer 19 is also related to the rigidity of the base material layer 9 but it is preferably 50 to 3 gm from the viewpoint of the processing property such as workability. Further, when the unit convex portion 20 and the uneven portion 30 are not firmly adhered to the base material layer 19, or when the force is lowered by the influence of cold heat, moisture absorption, or the like, the bottom material may be adhered to the bottom of the material. The primer layer is provided between the unit convex portion 20 or the uneven portion 30 and the base material layer 19, and may also function as a primer layer for the unit convex portion Q20 or the uneven portion 30. Alternatively, an easy subsequent treatment such as a corona discharge treatment may be applied. As the unit convex portion 20, an ultraviolet curable resin can also be used. When the optical sheet 12 is produced, the ultraviolet curable resin is attached to the mold at a linear velocity of from lm/miη to 3 Om/mi η at the substrate layer 19, and the unit convex portion 20 is formed. Here, when the ultraviolet curable resin is attached to the mold at a lower speed than the linear velocity lm/min, the acrylic resin reacts with the oxygen or moisture in the air before being attached to the mold, and the molding cannot be smoothly performed. On the other hand, when the ultraviolet curable resin is attached to the mold -36 to 201043081 at a higher speed than the linear velocity of 30 m/min, a problem of occurrence of bubble biting occurs. After the unit convex portion 20 made of the ultraviolet curable resin is attached to the base material layer 19 and molded, it is cured by irradiation with ultraviolet rays of from 500 mJ/m 2 to 3000 mJ/m 2 to produce the optical sheet 12 . As the acrylic resin for molding the unit convex portion 20, the effect of the surface strengthening property and the light extraction function can be achieved by mixing a monofunctional acrylic resin and a polyfunctional acrylic resin in a timely manner. Further, as the charging preventing agent, ultrafine particles such as cerium oxide (hereinafter referred to as cerium) containing 锑 0 or cerium-containing indium oxide (ITO) may be dispersed in the conductive fine particles. The antifouling property of the optical sheet 12 can be improved by dispersing the charge preventing agent. As a method of producing the above-mentioned mold, first, about 5 gm of a mold to which copper plating has been applied is sprayed, and the carbon black is dispersed in a lacquer of a resin, and then irradiated with an infrared laser having a wavelength of 1060 nm to sublimate the paint. . Then, the mold was immersed in a ferric chloride chromic acid solution, and copper was etched in the depth direction and the width direction in the same direction to form a portion Q corresponding to the unit convex portion 20. Next, a diamond cutter having various lens shapes is used for this mold, and the cross-sectional shape is cut into a triangle shape to produce a portion corresponding to the uneven portion 30. Such a mold can be used for molding by extrusion molding, injection molding, UV molding, or the like. At this time, the unit convex portion 20, the uneven portion 30, and the base layer 19 may be molded as different elements, or may be molded as an integral element. Further, when the unit convex portion 20, the uneven portion 30, and the base material layer 19 are formed into a 'type, a diffusing agent such as a filler may be dispersed and molded. -37- 201043081 The unit convex portion 20 can be produced by embossing a resin film. In this case, the shaping rate may be 70% or more, and when it is preferably 85% or more, it is often the case where the optical* characteristic hardly differs. The pressure conditions of the embossing at this time are generally 5 to 500 kg/cm, preferably 5 to 300 kg/cm, more preferably 10 to 150 kg/cm. When the linear pressure is smaller than 5 kg/cm, the forming ratio is less than 70%, and the fine unit convex portion 20 cannot be sufficiently shaped. When the linear pressure is larger than 10 kg/cm, it is more preferable because a forming ratio of 85% or more can be obtained. On the other hand, at a line pressure of 500 kg/cm, the load on the machine is too large to be practical. Further, if the line pressure is 300 kg/cra or less, even if the film width exceeds 1 ro, the mechanical load is not too large. If the line pressure is 150 kg/cm, the forming rate can be 99% to 100%, and the forming rate cannot be further improved. Further, in the case where the aspect ratio ARi of the unit convex portion 20 is larger than 0.6, a notch is formed in the unit convex portion 20 when the optical sheet 12 is peeled off from the mold. Therefore, as shown in the above formula (1), the width and height of the unit convex portion 20 are preferably 0.6 or less. Next, the material of the constituent elements other than the optical recording sheet 12 will be specifically described for the EL panel 10 shown in Fig. 1 . The substrate 15A of the EL element 11 is made of a plate of glass, metal, or resin. Next, the cathode 15B is disposed on the surface of the substrate 15A on the side of the light-emitting medium layer 18. The cathode 15B is a layer having conductivity, and is a voltage applied to the light-emitting medium layer 18. The material constituting the cathode 15B is an aluminum plate or an aluminum plate is deposited on the substrate 15A. Further, the material having conductivity for the cathode 15B is not limited to the above-described aluminum, and various metals such as gold, silver, and copper, or carbon having conductivity may be used. -38- 201043081 Next, the 'transparent substrate 15B' has a function of transmitting light emitted from the light-emitting medium layer 18. As the material of the transparent substrate 15B, in addition to various glass materials, plastic materials such as PMMA, polycarbonate, and polystyrene can be used. Here, a cycloolefin-based polymer is preferable, and the polymer material-based resin is excellent in properties such as processability, heat resistance, water resistance, and optical light transmittance. Further, since the transparent substrate 15 5 can transmit the light emitted from the optical medium layer 18 as much as possible, it is preferably formed of a material having a total light transmittance of 50% or more. The adhesive layer 13 is provided on the light exit surface side of the transparent substrate 15B, and fixes the optical sheet 12 and the transparent substrate 15B. Here, examples of the adhesive for forming the adhesive layer 13 include a propionate-based, urethane-based, rubber-based, and anthrone-based adhesive. Since either case is used in a high-temperature backlight, the elastic modulus G is preferably stored at 1 〇〇 t, preferably l. 〇 E + 04 (Pa) or more. Further, in order to emit light of uniform Q, transparent particles such as beads may be mixed into the adhesive layer 13. Further, as the adhesive/adhesive agent, a double-sided tape can also be used. The light-emitting medium layer 18 has the configuration shown in Fig. 2, and preferably includes a light-emitting layer 21 and a hole transport layer 22 between the cathode 16 and the anode 17. Further, a layer which functions as an electron injection layer 'charge blocking layer and an electron transport layer (not shown) may be provided on the light-emitting medium layer 18 as needed. Laminated between the light-emitting layer 21 and the anode 17 is a hole injection layer, an electron blocking layer, and a hole transport layer 22 (not shown). Formed between the light-emitting layer 21 and the cathode 16 is a hole barrier layer (not shown), an electron injection layer, and an electron transport layer of -39-201043081. Further, as the hole transporting material constituting the hole transporting layer 22, polyaniline derivatives, polythiophene derivatives, polyvinylcarbazole (PVK) derivatives, and poly(3,4-ethylenedioxythiophene) may be mentioned. (1^〇〇1), etc., but the invention is not limited thereto. These materials can be dissolved or dispersed in a solvent, and can be applied once by a spin coating method, a protrusion coating method, or a dip coating method. Further, by using the relief printing method, a line pattern having uniform film formation without film formation can be obtained in accordance with the pixel pitch. Further, in the case where an inorganic material is used as the hole transporting material, as the inorganic material, chromium (Cr), tungsten (W), vanadium (V), niobium (Nb), molybdenum (Ta) may be formed by vacuum deposition. Molybdenum (Mo), titanium (Ti), chromium (Zr), (Hf), strontium (Sc), strontium (Y), manganese (Mn), iron (Fe), strontium (Ru), hungry (Os), Oxides, nitrides, and oxynitrides such as cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd). At this time, a one-time formation or line pattern can be obtained by using an arbitrary shadow mask. A more stable EL element 11 having excellent thermal stability and resistance can be obtained by providing a hole transport layer made of an inorganic material. Further, an intermediate layer (not shown) having a hole injection function and an electron blocking function can be formed between the anode 17 and the light-emitting layer 21 after the hole transport layer 22 is formed. As a material for the intermediate layer, polyethylene azole or a derivative thereof, a polyaryl derivative having an aromatic amine in a side chain or a main chain, an arylamine derivative, and a triphenyldiamine may be mentioned. A polymer or the like containing an aromatic amine such as a derivative, but the present invention is not limited thereto. The material of the intermediate layer described above can be dissolved or dispersed in a solvent, and formed by various coating methods of a spin coater, a printing method such as a relief printing method, a gravure printing method, or a screen printing method. -40- 201043081 In addition, when an inorganic material is used as the intermediate layer material, as the inorganic material, chromium (Cr), tungsten (W), vanadium (V), 铌' (Nb), yttrium can be formed by vacuum deposition. (Ta), molybdenum (Mo), titanium (Ti), pin (Zr), bell (Hf), strontium (Sc), strontium (Y), manganese (Μη), iron (Fe), strontium (Ru), hungry Oxides, nitrides, nitrogen oxides, such as cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd). At this time, a formation or line pattern can be obtained by using an arbitrary shadow mask. By providing an intermediate layer composed of an inorganic material, a more stable EL element 11 having excellent heat stability and resistance can be obtained. The light-emitting layer 21 may also be a white light-emitting layer or a monochromatic light-emitting layer of blue, red, yellow, green or the like. Here, in the case where the light-emitting layer 21 is a white light-emitting layer, the configuration of the anode π/light-emitting medium layer 18/cathode 16 may be, for example. ITO/CuPc (copper indigo) / 1% red fluorene is doped to α - NPD / 1% phenanthrene is doped to naphthoquinone / Alq3 / lithium fluoride / as a cathode Α1. The light-emitting layer 21 is formed after the intermediate layer is formed. The light-emitting layer 21 is an organic light-emitting material that forms a light-emitting layer 21 by a layer that emits light by flowing a current, and examples thereof include a coumarin, a phenanthrene, an anthraquinone, an onionone, and a porphyrin. '(porphyrin), sputum ketone, oxime, Ν'-dialkyl substituted sulfonyl ketone, naphthyl quinone imine, Ν, Ν '-diaryl substituted pyrrolopyridinium, ruthenium complex A luminescent pigment such as a polystyrene, a polymethyl methacrylate methyl methacrylate or a polyvinyl carbazole, and a polycondensation aryl group, a poly aryl vinyl group, and a polyfluorene system. The polymer material, but the invention is not limited to these materials. 'These organic light-emitting materials are dissolved or stably dispersed in a solvent to become an organic light-emitting ink. Examples of the solvent-41-201043081 which dissolves or disperses the organic light-emitting material include toluene, xylene, acetone, anisole (&1115〇16), methyl ethyl ketone, and methyl isobutyl ketone. A mixed solvent of cyclohexanone or the like, alone or in combination. Among them, aromatic organic solvents such as toluene, xylene and anisole are suitable for solubility in organic 'luminescent materials. Further, an interface activator, an antioxidant, a viscosity adjuster, an ultraviolet absorber, or the like may be added to the organic light-emitting ink as needed. In addition to the above polymer materials, a 9,10-diarylfluorene derivative, ruthenium, coronene, anthracene, ruthenium, 1,1,4,4,4-tetraphenylbutadiene, Reference (8-quinoline) aluminum complex, ginseng (4-methyl-8-quinoline) aluminum complex, bis(8-quinoline) zinc complex, ginseng (4-methyl-5-) Trifluoromethyl-8-quinoline) aluminum complex, ginseng (4-methyl-5-cyano-8-quinoline) aluminum complex, bis(2-methyl-5-trifluoromethyl- 8-quinolinic acid group [4-(4-cyanophenyl) phenolate] aluminum complex, bis((2-methyl-5-cyano-8-quinolinyl)[4_ (4 Monocyanophenyl) phenate]) aluminum complex, bis(8-quinolinyl) ruthenium complex, bis[8-(p-toluenesulfonyl)aminoquinoline] zinc And a low molecular weight luminescent material such as a cadmium complex, 1,2,3,4-tetraphenylcyclopentadiene or a poly-2,5-dioxanyloxy group. As a method of forming the light-emitting medium layer 18, a dry coating method such as a vacuum deposition method or a CVD method, or a wet coating method such as an inkjet printing method, a relief printing method, a gravure printing method, or a screen printing method may be used depending on the material. Existing film formation methods such as the law. [Examples] (Method of Producing Optical Sheet 12) Next, Comparative Examples 1 to 3 and Examples 1 to 3 will be described with respect to a method of producing the optical sheet 12. -42-201043081 (Comparative Example 1) The base layer 19 formed in the optical sheet 12 was coated on the base material layer 19 which was formed by optically extending the 2-axis optical film (film thickness: 125/m). An ultraviolet curable resin containing a urethane acrylate as a main component (a urethane acrylate resin (refractive index n = 1.51) manufactured by Nippon Kayaku Co., Ltd.). Then, using a micro-lens having an aspect ratio of ARa = 0.3 and a diameter Di of the bottom portion 20c of 100 as a unitary convex portion 20, a PET film coated with an ultraviolet curable resin is conveyed while being PET 0 film side. UV exposure. Thereby, the ultraviolet curable resin is cured. After the hardening, the optical sheet 12 having a unit convex portion 20 having a diameter of 100/zm was produced by demolding the mold from the PET film. However, when the EL element 11 of the EL panel 10 is bonded to the optical sheet 12 and measured, a sufficient amount of light extraction cannot be obtained. (Comparative Example 2) An amine which is formed by patterning the unit convex portion Q 20 in the optical sheet 12 is applied onto the base material layer 19 which is formed by optically extending the 2-axis optical film (film thickness 125 #m). An ultraviolet curable resin containing a urethane acrylate as a main component (a urethane acrylate resin (refractive index n = 1.51) manufactured by Nippon Kayaku Co., Ltd.). Then, using a cylindrical mold in which the microlens having an aspect ratio ARa = 0.7 and a diameter of 100 gm is formed as the unit convex portion 20, the PET film coated with the ultraviolet curable resin is conveyed while being exposed to ultraviolet rays from the PET film side. Thereby, the ultraviolet curable resin is cured into the unit convex portion 20. After the hardening, although the mold was released from the PET film, the 稜鏡 lens constituting the single-position convex portion 20 was notched, and the mold could not be released. (Comparative Example 3) -43- 201043081 A polycarbonate resin of a thermoplastic resin was heated to about 300 ° C, and a film having a thickness of 〇.3 mm was formed as a base material layer 19 on one side of the roll. In the film made of a polycarbonate resin, the apex 20a of the unit convex portion 20 formed by the concave unit projection shape having the aspect ratio ARa = 0.6', and the other adjacent molding 2 are formed in the same manner. When the shortest side of the acute triangle formed by the apex 20 a of the unit convex portion 20 is the short side E1 and the longest side is the long side E2, the long side E2 is used as the arrangement of the short side E1 15 times. The cylindrical mold which is processed by the uranium engraving cylinder is cooled while being pressed against the heated film (the cylindrical mold temperature is 12 (TC), and a film in which a plurality of unit convex portions 20 are formed is obtained as the optical sheet 12. Thereby, although the optical sheet 12 having the unit convex portion 20 having a diameter of 50/zm can be produced, a sufficient amount of light extraction cannot be obtained. (Example 1) It is easy to follow the PET film by extending from the optical axis. On the base material layer 19 composed of a film thickness of 125 / zm), an ultraviolet ray-curable resin containing urethane acrylate as a main component for forming a pattern of the unit convex portion 20 in the optical sheet 12 is applied. (Nippon Chemical Co., Ltd. made urethane acrylate resin ( The firing rate n = 1.5 1)), and the cylindrical mold of the unit convex portion 20 formed by the microlens having the aspect ratio ARa = 0.5 and the diameter Di of 10 〇 Am formed by the shape of the optical sheet 12 is conveyed and coated. The film of the ultraviolet curable resin is exposed to ultraviolet rays from the PET film side, whereby the ultraviolet curable resin is cured into the unit convex portion 20. After the curing, the mold can be released from the PET film. An optical sheet 12 having a group of unit projections 20 having a diameter of 100/m. (Example 2) -44- 201043081 The polycarbonate resin of the thermoplastic resin is heated to about 300 ° C, and stretched along the roll on one side. A film having a thickness of 0.3 mm is formed on one side as a base material layer 19, and a heated film is used on a cylindrical mold having a concave shape of a unit having an aspect ratio of ARa = 〇.6 by etching. The film was cooled while being pressurized (the temperature of the cylindrical mold was 120 ° C), and a film in which the pattern of the unit convex portion 20 was formed was obtained as the optical sheet 12. Thereby, the optical unit having the unit convex portion 20 having a diameter of 50 / zm was produced. Sheet 12. Q (Example 3) will be thermoplastic The polycarbonate resin of the resin is heated to about 300 ° C, and a film having a thickness of 〇.3 mm is formed along one side of the roll. As the substrate layer 19, a unit of a concave shape having an aspect ratio of ARa = 0.4 is used. The shape of the convex portion. The apex U1 of the formed unit convex portion 20 and the shortest side of the acute-angled triangle formed by the apex 20a of the other two adjacent unit convex portions 20 which are formed in the same manner are set as the short side E1 and the longest When the side is set to the long side E2, a cylindrical mold in which the cylinder is Q-processed by etching with a long side E2 of 1.5 times the short side E1 is used, and the surface is cooled while being pressed against the heated film (the cylinder mold temperature is 1). At 20 ° C), a film in which the pattern of the unit convex portion 20 is formed is obtained as the optical sheet 12. Thereby, the optical sheet 12 having the unit convex portion 20 having a diameter Di of 100 / zm can be produced, and a sufficient amount of light extraction can be obtained. _ As described above, the EL panel 1 〇 ' according to the present embodiment can be used by using an area having the formulas U(2), (2), (3), and (4) The optical sheet 12 is intended to improve light extraction efficiency. Again
本實施形態的EL面板1 〇進行像素驅動,換言之’藉由EL -45- 201043081 面板ίο的發光構造體採用具有像素構造者,可構成顯示裝 置,依此方式所構成之顯示裝置亦包含於本發明之範圍。 ’ 此外,本發明的光學片12未必要滿足全部的第(1)式~ • 第(4)式,只要至少滿足第(1)式和第(2)式,就可得到高的光 取出量和高亮度。 又,因爲本發明的EL面板10具有優異的光取出效率, 所以亦可適合用於顯示裝置以外之其他的各種用途。例 如,本發明的EL面板10亦可適合用作顯示裝置或照明裝 0 置、液晶顯示裝置、進而液晶顯示裝置所需的液晶用背光, 都包含於本發明之範圍。液晶顯示裝置亦可是在液晶用背 光具備有液晶顯示元件之構成。 【圖式簡單說明】 第1圖係表示本發明之第1實施形態之EL面板之構成 的縱向剖面圖。 第2圖係表示第1圖所示之EL元件中之發光媒體層的 構成圖。 q 第3圖係關於第1圖所示之EL面板所使用的光學片, U)係表示設置於光學片之單位凸部之第一參考例的主要部 分立體圖,(b)係表示(a)所示之單位凸部的亮度分布圖。 第4圖(a)係在光學片之第二參考例之單位凸部的主 要部分立體圖,(b)係表示其亮度分布圖。 第5圖(a)係在光學片之第三參考例之單位凸部的主 要部分立體圖,(b)係表示其亮度分布圖。 ' 第6圖(a)係在光學片之第四參考例之單位凸部的主 要部分立體圖,(b)係表示其亮度分布圖。 -46- 201043081 第7圖(a)係在光學片之第五參考例之單位凸部的主 要部分立體圖’(b)係表示其亮度分布圖。 第8圖(a)係在光學片之第六參考例之單位凸部的主 ' 要部分立體圖,(b)係表示其亮度分布圖。 第9圖(a)係本發明之實施形態之光學片中之單位凸 部的立體圖,(b)係表示其亮度分布圖。 第10圖係表示在本發明之實施形態的光學片,改變折 射率時之因應於單位凸部之寬高比之光取出量的比例的 〇 圖。 第11圖係表示在本發明之實施形態的光學片,改變折 射率時之因應於單位凸部之寬高比的相對亮度圖。 第1 2圖(a )、( b )、( c )、( d )係表示本實施形態之光學 . 片中之單位凸部之配置構成的平面圖。 第13圖(a)、(b)、(c)係表示本實施形態之光學片中 之單位凸部之配置構成之一例的圖。 第14圖係表示光學片中之單位凸部之配置構成之比 Q 較例的圖。 第15圖係表示單位凸部之配置構成之比較例的圖。 第16圖係表示在實施形態之光學片之單位凸部的配 置構成例,連接接近之3個單位凸部的頂部間之銳角三角 形之最短邊和最長邊的圖。 . 第17圖(a)係表示改變連接相鄰之3個單位凸部的頂 部之銳角三角形之最短邊和最長邊的比E2/E1時之光取出 量的圖,(b)係表示其相對亮度的圖。 第1 8 ( a )圖係表示本發明之實施形態之光學片之單位 -47- 201043081 凸部的圖,(b)係以雷射顯微鏡觀察測量(a)所示之單位凸部 的圖。 第1 9圖係表示本實施形態之光學片之單位凸部的形 ' 狀及配置之其他的第一例的平面圖。 第20圖係表示本發明之第2實施形態之光學片的一例 的圖。 第21圖係表示本發明之第2實施形態之光學片的其他 例的圖。 〇 第22圖係表示本發明之第2實施形態之光學片的其他 例的圖。 第23圖係表示本發明之第2實施形態之光學片的其他 例的圖。 - 第24圖係表示本發明之第’2實施形態之光學片的其他 例的圖。 第25圖係表示本發明之凹凸部的一例的圖。 第26圖係表示本發明之凹凸部的其他例的圖。 Q 第27圖係表示本發明之光控制創意片之其他的實施 形態的說明圖。 第28圖係表示本發明之光控制創意片之其他的實施 形態的說明圖。 第2 9圖係表示本發明之光控制創意片之其他的實施 _ 形態的說明圖。 第30圖係表示本發明之構成單位凸部之創意圖案之 其他的實施形態的說明圖。 第31圖係表示本發明之構成單位凸部之創意圖案之 -48- 201043081 其他的實施形態的說明圖。 第32圖係表示本發明之構成單位凸部之創意圖案之 ' 其他的實施形態的說明圖。 • 第33圖係表示本發明之構成單位凸部之創意圖案之 其他的實施形態的說明圖。 第34圖係表示本發明之構成單位凸部之創意圖案之 其他的實施形態的說明圖。 第3 5圖係表示本發明之光控制創意片之創意性的說 〇 明圖。 第36圖係表示本發明之光控制創意片之配光分布的 說明圖。 第37圖(a)、(b)、(c)係表示實施形態之光學片之變 ^ 形例的縱向剖面圖。 第38圖係表示以往之光學片中之微透鏡元件的圖。 【主要元件符號說明】 10 EL面板 11 EL元件 12 光學片 15A 基板 15B 透明基板 16 陰極 17 陽極 18 發光媒體層 20 單位凸部 20a 頂點(頂部) -49- 201043081 20c 底面 21 發光層 hi、h1 a 射出光 hlb 反射光The EL panel 1 of the present embodiment is driven by a pixel, in other words, the light-emitting structure of the EL-45-201043081 panel ίο has a pixel structure, and can constitute a display device. The display device configured in this manner is also included in the present invention. The scope of the invention. Further, the optical sheet 12 of the present invention does not necessarily satisfy all of the formulas (1) to (4), and a high light extraction amount can be obtained as long as at least the formulas (1) and (2) are satisfied. And high brightness. Moreover, since the EL panel 10 of the present invention has excellent light extraction efficiency, it can be suitably used for various other applications than display devices. For example, the EL panel 10 of the present invention can also be suitably used as a display device, a lighting device, a liquid crystal display device, and a liquid crystal backlight required for a liquid crystal display device, and is included in the scope of the present invention. The liquid crystal display device may be configured to include a liquid crystal display element in the backlight for liquid crystal. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal cross-sectional view showing a configuration of an EL panel according to a first embodiment of the present invention. Fig. 2 is a view showing the configuration of a light-emitting medium layer in the EL element shown in Fig. 1. q Fig. 3 is an optical sheet used in the EL panel shown in Fig. 1, and U) is a main part perspective view showing a first reference example of a unit convex portion of the optical sheet, and (b) is a diagram showing (a) The brightness profile of the unit convex portion shown. Fig. 4(a) is a perspective view showing a main portion of a unit convex portion in a second reference example of the optical sheet, and Fig. 4(b) is a view showing a luminance distribution thereof. Fig. 5(a) is a perspective view of a main portion of a unit convex portion in a third reference example of the optical sheet, and (b) shows a luminance distribution map thereof. Fig. 6(a) is a perspective view of a main portion of a unit convex portion of a fourth reference example of the optical sheet, and (b) shows a luminance distribution map thereof. -46- 201043081 Fig. 7(a) is a perspective view of a main portion of the unit convex portion of the fifth reference example of the optical sheet, and Fig. 7(b) shows a luminance distribution map thereof. Fig. 8(a) is a perspective view of a main portion of a unit convex portion of a sixth reference example of the optical sheet, and (b) shows a luminance distribution map thereof. Fig. 9(a) is a perspective view of a unit convex portion in an optical sheet according to an embodiment of the present invention, and Fig. 9(b) is a graph showing a luminance distribution thereof. Fig. 10 is a view showing the ratio of the light extraction amount in accordance with the aspect ratio of the unit convex portion when the refractive index is changed in the optical sheet of the embodiment of the present invention. Fig. 11 is a view showing the relative luminance of the optical sheet according to the embodiment of the present invention in response to the aspect ratio of the unit convex portion when the refractive index is changed. Fig. 1 (a), (b), (c), and (d) are plan views showing the arrangement of the unit convex portions in the optical sheet of the embodiment. Fig. 13 (a), (b) and (c) are views showing an example of the arrangement of the unit convex portions in the optical sheet of the embodiment. Fig. 14 is a view showing a comparison example of the arrangement ratio of the unit convex portions in the optical sheet. Fig. 15 is a view showing a comparative example of the arrangement of the unit convex portions. Fig. 16 is a view showing an example of the arrangement of the unit convex portions of the optical sheet of the embodiment, and the shortest side and the longest side of the acute-angled triangle between the tops of the three unit convex portions which are close to each other. Fig. 17(a) is a view showing a change in the amount of light taken out when the ratio of the shortest side and the longest side of the acute triangular triangle connecting the top of the adjacent three unit convex portions is E2/E1, and (b) is the relative A graph of brightness. Fig. 18(a) is a view showing a unit of the optical sheet of the embodiment of the present invention -47-201043081, and (b) is a view showing a unit convex portion shown by (a) by a laser microscope. Fig. 19 is a plan view showing a first example of the shape and arrangement of the unit convex portions of the optical sheet of the embodiment. Figure 20 is a view showing an example of an optical sheet according to a second embodiment of the present invention. Figure 21 is a view showing another example of the optical sheet of the second embodiment of the present invention. Fig. 22 is a view showing another example of the optical sheet of the second embodiment of the present invention. Figure 23 is a view showing another example of the optical sheet of the second embodiment of the present invention. - Fig. 24 is a view showing another example of the optical sheet of the second embodiment of the present invention. Fig. 25 is a view showing an example of the uneven portion of the present invention. Fig. 26 is a view showing another example of the uneven portion of the present invention. Fig. 27 is an explanatory view showing another embodiment of the light control creative sheet of the present invention. Fig. 28 is an explanatory view showing another embodiment of the light control creative sheet of the present invention. Fig. 29 is an explanatory view showing another embodiment of the light control creative sheet of the present invention. Fig. 30 is an explanatory view showing another embodiment of the creative pattern constituting the unit convex portion of the present invention. Fig. 31 is a view showing another embodiment of the creative pattern constituting the unit convex portion of the present invention - 48 - 201043081. Fig. 32 is an explanatory view showing another embodiment of the creative pattern constituting the unit convex portion of the present invention. Fig. 33 is an explanatory view showing another embodiment of the creative pattern constituting the unit convex portion of the present invention. Fig. 34 is an explanatory view showing another embodiment of the creative pattern constituting the unit convex portion of the present invention. Fig. 3 is a diagram showing the creative illustration of the light control creative film of the present invention. Fig. 36 is an explanatory view showing the light distribution of the light control creative sheet of the present invention. Fig. 37 (a), (b), and (c) are longitudinal cross-sectional views showing a modified example of the optical sheet of the embodiment. Fig. 38 is a view showing a microlens element in a conventional optical sheet. [Main component symbol description] 10 EL panel 11 EL component 12 Optical sheet 15A Substrate 15B Transparent substrate 16 Cathode 17 Anode 18 Light-emitting medium layer 20 Unit convex portion 20a Vertex (top) -49- 201043081 20c Bottom surface 21 Light-emitting layer hi, h1 a Emitting light hlb reflected light
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085370 | 2009-03-31 | ||
JP2009226351 | 2009-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201043081A true TW201043081A (en) | 2010-12-01 |
Family
ID=42828030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099109591A TW201043081A (en) | 2009-03-31 | 2010-03-30 | EL panel, illuminating device with EL panel, backlight for liquid crystal and display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2010113737A1 (en) |
TW (1) | TW201043081A (en) |
WO (1) | WO2010113737A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103620811A (en) * | 2011-04-28 | 2014-03-05 | 赤多尼科德累斯顿两合股份有限公司 | Light-emitting element having OLED or QLED |
TWI551183B (en) * | 2010-12-21 | 2016-09-21 | Kimoto Kk | A light-emitting element for a light-emitting element, a light-emitting element using the microstructure, and a lighting device |
CN108029174A (en) * | 2015-09-10 | 2018-05-11 | 王子控股株式会社 | Mould, the manufacture method of Organic Light Emitting Diode and Organic Light Emitting Diode |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101032191B1 (en) * | 2010-12-13 | 2011-05-02 | 이주현 | Multi-lens Multi-lens Lens Sheet |
JP5750955B2 (en) * | 2011-03-17 | 2015-07-22 | 凸版印刷株式会社 | EL element, and illumination device, display device, and liquid crystal display device using the same |
JP6069816B2 (en) * | 2011-05-26 | 2017-02-01 | 凸版印刷株式会社 | Optical sheet and method for manufacturing the same, EL element using optical sheet, and illumination device including the same |
JP5998600B2 (en) * | 2011-06-24 | 2016-09-28 | 三菱レイヨン株式会社 | Optical film and optical apparatus using the same |
JP2013057736A (en) * | 2011-09-07 | 2013-03-28 | Mitsubishi Rayon Co Ltd | Optical film and optical device using the same |
JP2013077412A (en) * | 2011-09-30 | 2013-04-25 | Toppan Printing Co Ltd | El element, illumination apparatus employing the same, display device and liquid crystal display device |
JP2013163360A (en) * | 2012-02-13 | 2013-08-22 | Konica Minolta Inc | Optical member and method for manufacturing the optical member |
KR102099781B1 (en) * | 2013-10-15 | 2020-04-10 | 삼성전자주식회사 | Optical film for reducing color shift and organic light emitting display employing the same |
KR102120808B1 (en) | 2013-10-15 | 2020-06-09 | 삼성전자주식회사 | Optical film for reducing color shift and organic light emitting display employing the same |
US10115930B2 (en) | 2014-07-08 | 2018-10-30 | Universal Display Corporation | Combined internal and external extraction layers for enhanced light outcoupling for organic light emitting device |
US10509145B2 (en) | 2015-10-15 | 2019-12-17 | Electronics And Telecommunications Research Institute | Optical device and methods for manufacturing the same |
CN107039596B (en) * | 2015-10-15 | 2020-04-21 | 韩国电子通信研究院 | Optical device and method of making the same |
WO2019045098A1 (en) * | 2017-09-04 | 2019-03-07 | 富士フイルム株式会社 | Functional film, surface light source device, and liquid crystal display device |
KR102516934B1 (en) | 2018-06-11 | 2023-03-31 | 엘지디스플레이 주식회사 | Display device and head mounted display including the same |
JP7345772B2 (en) * | 2018-11-30 | 2023-09-19 | 美濃商事株式会社 | decorative display |
JP7598907B1 (en) | 2022-09-21 | 2024-12-12 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | Organic electroluminescent device and organic electroluminescent display |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003197364A (en) * | 2001-12-27 | 2003-07-11 | Goyo Paper Working Co Ltd | El light emitting device with high light emission efficiency |
JP2004127560A (en) * | 2002-09-30 | 2004-04-22 | Hitachi Ltd | Organic EL display |
JP2004227940A (en) * | 2003-01-23 | 2004-08-12 | Seiko Epson Corp | Display body, display panel, display device, and manufacturing method |
JP2004241130A (en) * | 2003-02-03 | 2004-08-26 | Seiko Epson Corp | Light emitting display panel and manufacturing method thereof |
JP2005063926A (en) * | 2003-06-27 | 2005-03-10 | Toyota Industries Corp | Light emitting device |
JP2006026973A (en) * | 2004-07-13 | 2006-02-02 | Keiwa Inc | Heat-resistant substrate and optical sheet using it |
JP4945089B2 (en) * | 2005-05-13 | 2012-06-06 | 株式会社日立製作所 | LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF |
JP4930715B2 (en) * | 2007-07-27 | 2012-05-16 | 日本ゼオン株式会社 | Manufacturing method of lighting device |
-
2010
- 2010-03-25 WO PCT/JP2010/055163 patent/WO2010113737A1/en active Application Filing
- 2010-03-25 JP JP2010549748A patent/JPWO2010113737A1/en active Pending
- 2010-03-30 TW TW099109591A patent/TW201043081A/en unknown
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI551183B (en) * | 2010-12-21 | 2016-09-21 | Kimoto Kk | A light-emitting element for a light-emitting element, a light-emitting element using the microstructure, and a lighting device |
CN103620811A (en) * | 2011-04-28 | 2014-03-05 | 赤多尼科德累斯顿两合股份有限公司 | Light-emitting element having OLED or QLED |
CN103620811B (en) * | 2011-04-28 | 2016-11-16 | 赤多尼科两合股份有限公司 | Light emitting elements with OLED or QLED |
CN108029174A (en) * | 2015-09-10 | 2018-05-11 | 王子控股株式会社 | Mould, the manufacture method of Organic Light Emitting Diode and Organic Light Emitting Diode |
CN111438860A (en) * | 2015-09-10 | 2020-07-24 | 王子控股株式会社 | Molds for Organic Light Emitting Diode Manufacturing |
Also Published As
Publication number | Publication date |
---|---|
WO2010113737A1 (en) | 2010-10-07 |
JPWO2010113737A1 (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201043081A (en) | EL panel, illuminating device with EL panel, backlight for liquid crystal and display device | |
JP2010266829A (en) | Optical member and device using the same | |
TW200907440A (en) | LCD displays with light redirection | |
TWI435120B (en) | Composite optical film | |
KR20150136504A (en) | Optical film, optical film manufacturing method and surface light-emitting body | |
JP2008046606A (en) | Optical plate and backlight module using the optical plate | |
KR101080397B1 (en) | Optical sheet | |
TW201423165A (en) | Tandem array lens sheet | |
JP2009272068A (en) | El element, backlight apparatus for liquid crystal display using el element, lighting device using el element, electronic signboard device using el element, and display device using el element | |
JP6409675B2 (en) | Illumination unit for display device and display device | |
JP5703582B2 (en) | EL element, illumination device, display device and liquid crystal display device using the same | |
JP5131166B2 (en) | EL element | |
CN111065962B (en) | Backlight unit and liquid crystal display device | |
JP2011124023A (en) | Led lighting system | |
CN114815489A (en) | a projection screen | |
WO2010113738A1 (en) | El panel, and illuminating device and display device using el panel | |
JP5272508B2 (en) | Optical sheet, backlight unit and display device | |
KR20090050283A (en) | Prism sheet and optical film comprising the same | |
JP5974451B2 (en) | Lighting device | |
KR101449633B1 (en) | High Brightness and Moire Free Mirco Lens Film and Method of Manufacturing the Mirco Lens Film and Backlight Unit Containing the Mirco Lens Film and Mirco lens Array Apparatus | |
JP2010218839A (en) | El element, backlight device for liquid crystal display, lighting system, electronic signboard device, display device, and light extraction film | |
JP2007179036A (en) | Diffusion sheet and backlight unit using the same | |
JP5750955B2 (en) | EL element, and illumination device, display device, and liquid crystal display device using the same | |
JP2011124022A (en) | Led lighting system | |
JP5830887B2 (en) | Illumination device and liquid crystal display device including the same |