TW201042059A - Cu alloy film, and display device - Google Patents
Cu alloy film, and display device Download PDFInfo
- Publication number
- TW201042059A TW201042059A TW099101242A TW99101242A TW201042059A TW 201042059 A TW201042059 A TW 201042059A TW 099101242 A TW099101242 A TW 099101242A TW 99101242 A TW99101242 A TW 99101242A TW 201042059 A TW201042059 A TW 201042059A
- Authority
- TW
- Taiwan
- Prior art keywords
- alloy film
- layer
- copper alloy
- atom
- film
- Prior art date
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 211
- 239000001301 oxygen Substances 0.000 claims abstract description 163
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 163
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 162
- 239000004065 semiconductor Substances 0.000 claims abstract description 79
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims abstract description 22
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 98
- 239000010949 copper Substances 0.000 claims description 95
- 229910052732 germanium Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- QRJOYPHTNNOAOJ-UHFFFAOYSA-N copper gold Chemical compound [Cu].[Au] QRJOYPHTNNOAOJ-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 341
- 238000001039 wet etching Methods 0.000 abstract description 29
- 239000010409 thin film Substances 0.000 abstract description 15
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 364
- 125000004429 atom Chemical group 0.000 description 109
- 239000000203 mixture Substances 0.000 description 61
- 239000007789 gas Substances 0.000 description 37
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 30
- 238000000034 method Methods 0.000 description 30
- 239000011521 glass Substances 0.000 description 28
- 238000005275 alloying Methods 0.000 description 22
- 238000005477 sputtering target Methods 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 8
- 229910052707 ruthenium Inorganic materials 0.000 description 8
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- ROLJWXCAVGNMAK-UHFFFAOYSA-N [Ce]=O Chemical compound [Ce]=O ROLJWXCAVGNMAK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- -1 copper nitride Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001336 glow discharge atomic emission spectroscopy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical group [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53233—Copper alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6739—Conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/441—Interconnections, e.g. scanning lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
201042059 六、發明說明: 【發明所屬之技術領域】 本發明係有關使用於液晶顯示器或有機電激發光顯示 ' 器等之顯示裝置的銅合金膜及具備該銅合金膜之顯示裝置 ,詳細而言係有關對於與玻璃基板等之透明基板之緊密性 等優越之銅合金膜、對於與薄膜電晶體之半導體層之緊密 性等優越之銅合金膜及顯示裝置。 ❹ 【先前技術】 對於由液晶顯不器所代表之顯不裝置的配線,至目前 爲止係使用銘(A1)合金膜。但隨著顯示裝置之大型化及 高畫質化發展,因配線電阻爲大而引起之信號延遲及電力 . 損失之問題有明顯化。因此’作爲配線材料,較A1爲低 電阻的銅(Cu)則被注目。對於A1的電阻率乃2 5χ1〇-6 Ω · cm而言’ Cu的電阻率乃爲低之ι.6χ1〇-6Ω . cm。 但Cu係與玻璃基板之緊密性低,而有剝離的問題。 另外’因與玻璃基板之緊密性低,而C u係有爲了加工成 配線形狀之濕蝕刻困難的問題。因此,提案有爲了使Cu 與玻璃基板之緊密性提昇之各種技術。 另外’ Cu係與薄膜電晶體之半導體層(非晶形矽或 ' 多結晶矽)之緊密性低,而有剝離的問題。例如,當於基 • 板的半導體層上’作爲源極-汲極電極用配線而直接形成 Cu配線膜時,Cxi則擴散於半導體層中,形成半導體層與 Cu之反應層’而有從其反應層部分,cu膜產生剝離的問 -5- 201042059 題。另外’ Cu係有爲了加工成配線形狀之濕蝕刻困難的 問題。因此’提案有爲了使Cu與半導體層之緊密性提昇 之各種技術。 例如’專利文獻1〜3係揭示有於Cu配線和玻璃基板 之間’介入存在鉬(Mo )或鉻(Cr )等高融點金屬層而 謀求緊密性之提昇的技術。但在此等技術中,將高融點金 屬層進行成膜之工程則增加,進而顯示裝置之製造成本也 增大。更且,爲了層積Cu與高融點金屬(Mo等)之異 種金屬,於進行濕蝕刻時,有在Cu與高融點金屬之界面 產生腐蝕之虞。另外,在此等異種金屬中,因對於蝕刻率 產生差之故’有產生無法將配線剖面形成爲期望的形狀( 例如錐度爲45〜60°程度之形狀)的問題。更且,高融點 金屬,例如Cr的電阻率(12.9χ10·6Ω · cm)係較Cu爲 高’而經由配線阻抗之信號延遲或電力損失乃成爲問題。 專利文獻4係揭示有於Cu配線和玻璃基板之間,作 爲緊密層而介入存在鎳或鎳合金與高分子系樹脂膜之技術 。但在此技術中,在顯示器(例如,液晶面板)之製造時 的高溫退火工程,樹脂膜則產生劣化,而有緊密性下降之 虞。 專利文獻5係揭示有於C u配線和玻璃基板之間,作 爲緊密層而介入存在氮化銅之技術。但氮化銅本身並非爲 安定之化合物。因此,在此技術中,在顯示器(例如,液 晶面板)之製造時的高溫退火工程,N原子則作爲N2氣 體而加以釋放’配線膜則產生劣化,有緊密性下降之虞。 -6 - 201042059 專利文獻6及7係經由同一申請人,於略同時期所揭 示者。其中專利文獻6係揭示經由於Cu配線,含有選自 ' Zr、或Zr與Μη、或Zn及Sn所成的群之至少一種之時, ' 提昇Cu配線之緊密性的技術。專利文獻7係揭示經由於[Technical Field] The present invention relates to a copper alloy film for use in a display device such as a liquid crystal display or an organic electroluminescence display device, and a display device including the same, A copper alloy film superior to a transparent substrate such as a glass substrate, and a copper alloy film and a display device which are superior to the semiconductor layer of the thin film transistor. ❹ [Prior Art] For the wiring of the display device represented by the liquid crystal display device, the alloy film of Ming (A1) has been used up to now. However, with the increase in the size and high image quality of display devices, the problem of signal delay and power loss due to large wiring resistance is apparent. Therefore, as a wiring material, copper (Cu) which is lower in resistance than A1 is attracting attention. For the resistivity of A1 is 2 5χ1〇-6 Ω · cm, the resistivity of 'Cu is low ι.6χ1〇-6Ω·cm. However, the adhesion between the Cu system and the glass substrate is low, and there is a problem of peeling. Further, since the adhesion to the glass substrate is low, the Cu is a problem that wet etching for processing into a wiring shape is difficult. Therefore, various techniques for improving the tightness of Cu and a glass substrate have been proposed. Further, the semiconductor layer of the Cu-based film and the thin film transistor (amorphous germanium or 'polycrystalline germanium) has low adhesion and has a problem of peeling. For example, when a Cu wiring film is directly formed as a source-drain electrode wiring on a semiconductor layer of a base plate, Cxi is diffused in the semiconductor layer to form a reaction layer of the semiconductor layer and Cu. In the reaction layer portion, the cu film is peeled off and the problem is -5 - 201042059. Further, the 'Cu type has a problem that wet etching for processing into a wiring shape is difficult. Therefore, various proposals have been made to improve the tightness of Cu and the semiconductor layer. For example, 'Patent Documents 1 to 3 disclose a technique in which a high-melting-point metal layer such as molybdenum (Mo) or chromium (Cr) is interposed between the Cu wiring and the glass substrate to improve the tightness. However, in these technologies, the film forming process of the high melting point metal layer is increased, and the manufacturing cost of the display device is also increased. Further, in order to laminate a dissimilar metal of Cu and a high melting point metal (Mo or the like), there is a possibility of corrosion at the interface between Cu and a high melting point metal during wet etching. Further, in such a dissimilar metal, there is a problem that the wiring cross section cannot be formed into a desired shape (for example, a shape having a taper of about 45 to 60°) because of a difference in etching rate. Further, a high melting point metal such as Cr has a resistivity (12.9 χ 10·6 Ω · cm) which is higher than Cu, and signal delay or power loss via wiring impedance is a problem. Patent Document 4 discloses a technique in which a nickel or a nickel alloy and a polymer resin film are interposed as a dense layer between a Cu wiring and a glass substrate. However, in this technique, in the high-temperature annealing process at the time of manufacture of a display (e.g., a liquid crystal panel), the resin film is deteriorated, and the tightness is lowered. Patent Document 5 discloses a technique in which copper nitride is interposed as a dense layer between a Cu wiring and a glass substrate. However, copper nitride itself is not a stable compound. Therefore, in this technique, in the high-temperature annealing process at the time of manufacture of a display (for example, a liquid crystal panel), N atoms are released as N2 gas, and the wiring film is deteriorated, and the tightness is lowered. -6 - 201042059 Patent Documents 6 and 7 are disclosed by the same applicant at the same time. Patent Document 6 discloses a technique of improving the tightness of the Cu wiring when the Cu wiring includes at least one selected from the group consisting of 'Zr, Zr and Zr, or Zn and Sn. Patent Document 7 discloses that
Cu配線,將選自Hf、Ta、Nb及Ti所成的群之至少一種 之第一添加金屬,和選自Mn、Zn及Sn所成的群之第二 添加金屬,各含有〇·5原子%以上之時,提昇Cu配線之 〇 緊密性的技術。對於此等專利文獻,係記載有因應必要而 於以濺鍍法將c u配線進行成膜時,亦可供給反應氣體之 氧氣情況,並揭示有顯示由此,可降低C u電阻(電阻率 )的圖。但並未指點有任何氧氣與Cu配線之緊密性的關 - 係。 . 對於專利文獻8 ’係揭示有作爲源極-汲極電極用配 線材料,氧化處理半導體層之上部所得到之氧含有層,和 使用純Cu或銅合金膜所成之材料,構成上述氧含有層的 Ο 氧之至少一部分乃與半導體層的Si結合,前述純CU或銅 合金膜係藉由前述氧含有層而與半導體層連接之薄膜電晶 體基板’由此,驗證即使省略阻障金屬層,亦可得到優越 之TFT特性者。 ' [先行技術文獻] - [專利文獻] 專利文獻1 :日本特開平7_66423號公報 專利文獻2 :日本特開平8-8498號公報 201042059 專利文獻3 :日本特開平8-丨3 846 1號公報 專利文獻4 :日本特開平1 〇 _丨8 6 3 8 9號公報 專利文獻5 :日本特開平1〇— 1 3 3 5 97號公報 專利文獻6:日本特開2008-112989號公報 專利文獻7:日本特開2008-124450號公報 專利文獻8:日本特開2009-4518號公報 【發明內容】 [發明欲解決之課題] 本發明係著眼於上述情事而作爲之構成,其目的乃提 供具有與透明基板高的緊密性,低電阻率,及優越之濕鈾 刻性,更且銅合金膜的膜厚之不均爲少,對於膜厚控制性 優越之銅合金膜。 另外’其他的目的係提供屬於與薄膜電晶體之半導體 層直接接觸之顯不裝置用銅合金膜,其中,具有與該半導 體層之闻緊密性’低電阻率,及優越之濕蝕刻性的銅合金 膜。 [爲解決課題之手段] 本發明之重點示於以下。 [1] 一種銅合金膜’屬於顯示裝置用銅合金膜,其特 徵乃 則述銅合金膜乃滿足下述(丨)及(2)之要件的氧含 有合金膜之顯示裝置用的銅合金膜。 -8- 201042059 (1 )前述銅合金膜係將選自Ni、A1、Zn、Μη ' Fe、 Ge、Hf、Nb、Mo、W、及Ca所成的群之至少一種元素, 合計含有0.10原子%以上10原子%以下。 ' (2)前述銅合金膜係具有氧含有量不同之基底層與 上層, 前述基底層係與前述透明基板或半導體層接觸,前述 基底層的氧含有量乃較前述上層之氧含有量爲多。 〇 [2]如第Π]項記載之銅合金膜,其中,前述基底層係 與透明基板直接接觸。 [3] 如第[1]項記載之銅合金膜,其中,前述基底層係 與半導體層直接接觸。 [4] 如第[2]項記載之銅合金膜,其中,在前述(2)中 • ’前述基底層之氧含有量係0.5原子%以上3 0原子%以下 ’前述上層之氧含有量係未達0.5原子% (含0原子% ) 〇 Ο [5]如第[2]項記載之銅合金膜,其中,在前述(1)中 ’含有於前述銅合金膜之元素係合計爲0.1 0原子%以上 0.5原子%以下。 [6] 如第[3]項記載之銅合金膜,其中,在前述(2)中 ,前述基底層之氧含有量係〇. 1原子%以上3 0原子%以下 ’前述上層之氧含有量係未達〇· 1原子% (含0原子% ) • 〇 [7] 如第[3]項記載之銅合金膜,其中,在前述(1)中 ’含有於前述銅合金膜之元素係選自Ni、A1、Ζη、Μη、 -9- 201042059The Cu wiring includes a first additive metal selected from at least one of the group consisting of Hf, Ta, Nb, and Ti, and a second additive metal selected from the group consisting of Mn, Zn, and Sn, each containing 〇·5 atoms. A technique for improving the tightness of Cu wiring when it is more than %. In the case of the above-mentioned patent documents, it is described that when the cu wiring is formed by sputtering, the oxygen of the reaction gas can be supplied, and the display shows that the Cu resistance (resistivity) can be lowered. Figure. However, there is no indication of any close relationship between oxygen and Cu wiring. Patent Document 8' discloses an oxygen-containing layer obtained as a source-drain electrode wiring material, an oxygen-containing layer obtained by oxidizing the upper portion of the semiconductor layer, and a material formed using a pure Cu or copper alloy film to constitute the oxygen-containing material. At least a part of the argon oxygen of the layer is bonded to Si of the semiconductor layer, and the pure CU or copper alloy film is a thin film transistor substrate which is connected to the semiconductor layer by the oxygen-containing layer. Thus, it is verified that even if the barrier metal layer is omitted , can also get superior TFT characteristics. [PRIOR ART DOCUMENT] [Patent Document] Patent Document 1: Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. Document 4: Japanese Patent Laid-Open Publication No. JP-A No. 2008-112989 Patent Document No. 5: Japanese Patent Application Laid-Open No. Hei No. Hei. [Problem to be Solved by the Invention] The present invention has been made in view of the above circumstances, and its object is to provide transparency and transparency. The high-density of the substrate, the low resistivity, and the superior wet uranium engraving property, and the copper alloy film have a small film thickness, and the copper alloy film is excellent in film thickness controllability. In addition, the other purpose is to provide a copper alloy film for a display device which is in direct contact with a semiconductor layer of a thin film transistor, and has a low resistivity to the semiconductor layer and a superior wet etching property. Alloy film. [Means for Solving the Problem] The gist of the present invention is shown below. [1] A copper alloy film is a copper alloy film for a display device, and the copper alloy film is a copper alloy film for a display device of an oxygen-containing alloy film which satisfies the requirements of (2) and (2) below. . -8- 201042059 (1) The copper alloy film is at least one element selected from the group consisting of Ni, A1, Zn, Μη 'Fe, Ge, Hf, Nb, Mo, W, and Ca, and contains 0.10 atom in total. % or more and 10 atom% or less. (2) The copper alloy film has a base layer and an upper layer having different oxygen contents, and the base layer is in contact with the transparent substrate or the semiconductor layer, and the oxygen content of the underlayer is larger than the oxygen content of the upper layer. . [2] The copper alloy film according to Item [2], wherein the base layer is in direct contact with the transparent substrate. [3] The copper alloy film according to [1], wherein the underlayer is in direct contact with the semiconductor layer. [4] The copper alloy film according to the above [2], wherein, in the above (2), the oxygen content of the underlayer is 0.5 atom% or more and 30 atom% or less, and the oxygen content of the upper layer is The copper alloy film according to the item [2], wherein the elemental system contained in the copper alloy film is 0.10 in the above (1). Atomic % or more and 0.5 atomic % or less. [6] The copper alloy film according to the above [3], wherein, in the above (2), the oxygen content of the underlayer is 1. 1 atom% or more and 30 atom% or less 'the oxygen content of the upper layer. (2) The copper alloy film according to the item [3], wherein the element selected from the copper alloy film is selected in the above (1). From Ni, A1, Ζη, Μη, -9- 201042059
Fe、Ge、Hf、Nb、M〇、及w所成的群之至少一種元素, 合計含有0.10原子%以上5.0原子%以下。 [8] 如第[1]項〜第[3]任一記載之銅合金膜,其中’在 前述(2)中’前述銅合金膜係具有從前述基底層朝前述 上層’氧減少之深度方向濃度曲線。 [9] 如第[1]項〜第[3]項任一記載之銅合金膜,其中’ 在前述(1)中,前述銅合金膜係具有元素的種類及元素 的量之中至少一個不同之第1層與第2層,前述第1層係 與前述透明基板或半導體層接觸,在含於前述第1層之前 述(1)所規定的元素含有量係較在含於前述第1層上的 層之前述第2層之前述(!)所規定的元素含有量(含〇 原子% )爲多。 [10] 如第[1]項〜第[3]項任一記載之銅合金膜,其中, 前述上層乃純Cu。 [1 1]一種顯示裝置,其特徵乃具備第[1]項〜第[3]項任 一記載之銅合金膜。 [發明之效果] 在本發明中’作爲與透明基板直接接觸之顯示裝置用 銅合金膜’採用如含有適當之合金元素,且與透明基板直 接接觸之基底層的興墓係較上層的氧量爲多(理想爲基底 層係含有適量的氧’基底層上之上層係實質上未含有氧) 之層積構造之故,除得到與透明基板之高緊密性,低電阻 率,及優越之濕蝕刻性之外’亦可縮小抑制膜厚分布之不 -10- 201042059 均者。如採用如此之銅合金膜於顯示裝置,可降低製造工 程之工程數及成本。本發明之氧含有銅合金膜係使用於與 透明基板直接接觸之配線或電極,而代表性而言係使用於 • 閘極配線或閘極電極用。 另外,在本發明中,作爲與薄膜電晶體之半導體層直 接接觸之顯示裝置用銅合金膜,採用如含有適當之合金元 素,且與半導體層直接接觸之基底層係含有適當的氧,基 0 底層上之上層係實質上未含有氧之層積構造之故,得到與 半導體層之高緊密性,低電阻率,及優越之濕蝕刻性。如 將如此之銅合金膜,根據顯示裝置,可降低製造之工程數 及成本。本發明之氧含有銅合金膜係使用於與薄膜電晶體 • 之半導體層(非晶形矽或多結晶矽)直接接觸之配線或電 _ 極,而代表性而言係使用於源極-汲極配線或源極-汲極電 極用。 〇 【實施方式】 本發明者們,係爲了提供具有與透明基板或薄膜電晶 體之半導體層的高緊密性,低電阻率’及優越的濕蝕刻性 ,更佳爲亦將銅合金膜之膜厚的不均爲小之顯示裝置用銅 合金膜,做重複檢討。其結果’屬於含有Ni等之合金元 ' 素的氧含有銅合金膜,上述銅合金膜係由氧量不同之基底 . 層與上層加以構成,如採用(i)對於與基板或半導體層 直接接觸之基底層係含有特定量之氧量’且(u)基底層 上之上層係實質上未含有氧’即使最多也未達含於基底層 -11 - 201042059 之氧量的層積構成’發現可得到兼備上述所有特性之銅合 金膜,完成本發明。如根據本發明,於透明基板或半導體 層與銅合金膜接觸之界面(以下,有單稱爲界面之情況) ,形成有含有至少特定氧量的層(基底層),或上述界面 係呈含有適量特定元素地加以構成。其結果,結合經由基 底層形成之緊密性提昇效果’和經由特定元素添加之緊密 性提昇效果’於透明基板或半導體層與基底層之界面,形 成有堅固的化學性結合之故,而認爲應可得到優越之緊密 性。 在以下中,在說明之方便上,有將使用於本發明之 Ni等之合金元素’彙整稱作緊密性提昇元素之情況。 首先’對於構成本發明之銅合金膜之基底層與上層加 以說明。 如上述,在本發明中,對於氧量,具有基底層 > 上層 之關係,採用氧量不同之層積構造,由此,謀求與透明基 板之緊密性提昇,和電阻率之降低雙方。 在本說明書中,「基底層」係指與透明基板或半導體 層直接接觸的層,而「上層」係指位於基底層正上方的層 。基底層與上層係經由氧量的不同而加以區別。上述基底 層乃與透明基板接觸之情況,理想爲氧量乃將約0.5原子 %作爲交界而加以區別,上述基底層乃與半導體接觸之情 況,理想爲氧量乃將約0· 1原子%作爲交界而加以區別。 基底層係與透明基板接觸之情況,以0.5原子%以上 30原子%以下之範圍含有氧者爲佳,與半導體層接觸之情 -12 - 201042059 況,以〇. 1原子%以上3 0原子%以下之範圍含有氧者爲佳 。如後述之實施例所示,對於基底層係與透明基板接觸之 ' 情況,經由設置含有0.5原子%以上的氧之基底層之時, • 銅合金膜與透明基板的緊密性則提升。同樣地如後述之實 施例所示,對於基底層係與半導體層接觸之情況,經由設 置含有〇.1原子%以上的氧之基底層之時,銅合金膜與半 導體層的緊密性則提升。其構造係詳細而言雖爲不明,但 Q 經由於基板或半導體層之界面,介入存在有含有特定量氧 之基底層之時,於基板或半導體層之間,形成有堅固的結 合(化學性結合),認爲應可提昇緊密性。 爲了充分地發揮上述作用,基底層乃與透明基板接觸 - 之情況,基底層之氧含有量係作爲〇·5原子%以上者爲佳 ,更理想爲作爲1原子%以上,更理想爲作爲2原子%以 上,最爲理想係作爲4原子%以上。基底層乃與半導體層 接觸之情況,基底層之氧含有量係作爲〇. 1原子%以上者 Q 爲佳,更理想爲作爲0.5原子%以上,更理想爲作爲1.0 原子%以上。另一方面,氧含有量成爲過剩,緊密性過於 提昇時,進行濕蝕刻後將殘留有殘渣,濕蝕刻性則降低。 另外,基底層之氧含有量成爲過剩時,銅合金膜全體之電 阻則提昇。更且,氧含有量成爲過剩時,均一地控制銅合 ' 金膜的膜厚則變爲困難(參照後述之實施例)。考慮此等 - 觀點,基底層之氧含有量係在基底層乃與透明基板接觸之 情況及與半導體層接觸之情況雙方,作爲3 0原子%以下 爲佳,更理想爲作爲20原子%以下,更理想爲作爲1 5原 -13- 201042059 子%以下,又更理想爲作爲13.5原子%以下’特別理想爲 作爲10原子%以下。 另一方面,基底層乃與透明基板接觸之情況’上層之 氧含有量係未達0.5原子%者爲佳。含於上層的氧係從電 阻降低之觀點,盡可能爲少則佳,即使最多也不超過基底 層之氧量的下限(0·5原子%)者。上層之最佳氧含有量 係0 · 3原子%以下’更理想爲〇. 2原子%以下’最理想爲〇 原子%。 另外,基底層乃與半導體層接觸之情況’上層之氧含 有量係未達〇.1原子%。含於上層的氧係從電阻降低之觀 點,盡可能爲少則佳’即使最多也不超過基底層之氧量的 下限(0. 1原子% )者。上層之最佳氧含有量係0.05原子 %以下,更理想爲0.02原子%以下’最理想爲0原子%。 由如此之基底層與上層所構成之氧含有銅合金膜係從 基底層朝上層之方向,具有氧減少之深度方向濃度曲線者 爲佳。之後詳細說明,但本發明之氧含有銅合金膜係經由 濺鍍法而加以成膜爲佳之故,經由所導入之氧量,容易得 到深度方向之氧濃度曲線不同的層。例如,亦可具有從透 明基板或半導體層與銅合金膜之界面朝上層,氧量乃徐緩 地(含連續性或非連續性雙方)之濃度曲線,而亦可爲其 相反。即,基底層乃與透明基板接觸之情況,上述基底層 係在「氧量:〇 ·5原子%以上’未達3 0原子%」之範圍內 ,得到包含深度方向之氧濃度曲線不同之形態,上述上層 係在「氧量:未達〇. 5原子」之範圍內,得到包含深度方 -14- 201042059 向之氧濃度曲線不同之形態。另外’基底層乃與半導體層 接觸之情況’上述基底層係在「氣量:〇.1原子%以上3〇 ' 原子%以下」之範圍內’得到包含深度方向之氧濃度曲線 • 不同之形態,上述上層係在「氧量:未達〇·ι原子」之範 圍內,得到包含深度方向之氧濃度曲線不同之形態。 在基底層乃與透明基板接觸之情況,本發明之理想形 態係從透明基板與銅合金膜之界面’朝銅合金膜之表面’ Q 含於至約10nm之深度方向位置之基底層的氧平均含有量 乃0.5原子%以上30原子%以下’而較其基底層含於上層 之氧平均含有量乃未達0.5原子% (含0原子%),從界 面朝上層,具有氧含有量連續性減少之深度方向氧濃度曲 - 線者。 ^ 在基底層乃與透明基板接觸之情況,本發明之其他理 想形態係從透明基板與銅合金膜之界面’朝銅合金膜之表 面,含於至約50nm之深度方向位置之基底層的氧平均含 〇 有量乃〇 · 5原子%以上3 0原子%以下’而較其基底層含於 上層之氧平均含有量乃未達〇·5原子% (含0原子%), 從界面朝上層,具有氧含有量連續性減少之深度方向氧濃 度曲線者。 在基底層乃與半導體層接觸之情況,本發明之理想形 ' 態係從半導體層與銅合金膜之界面,朝銅合金膜之表面, • 含於至約1 Onm之深度方向位置之基底層的氧平均含有量 乃0.1原子%以上3 0原子%以下,而較其基底層含於上層 之氧平均含有量乃未達0.1原子% (含0原子。/。),從界 -15- 201042059 面朝上層,具有氧含有量連續性減少之深度方向氧濃度曲 線者。 在基底層乃與半導體層接觸之情況’本發明之其他理 想形態係從半導體層與銅合金膜之界面’朝銅合金膜之表 面,含於至約50nm之深度方向位置之基底層的氧平均含 有量乃0.1原子%以上30原子%以下’而較其基底層含於 上層之氧平均含有量乃未達〇·ι原子% (含〇原子% ) ’ 從界面朝上層,具有氧含有量連續性減少之深度方向氧濃 度曲線者。 接著,對於有關本發明之銅合金膜之組成加以說明。 本發明之銅合金膜係將選自Ni、A1、Zn、Mn、Fe、 Ge、Hf、Nb、Mo、W、及Ca所成的群之至少一種之緊密 性提昇元素,合計含有0.10原子%以上10原子%以下。 此等元素係容易形成與透明基板或半導體層化學性結合的 元素,與前述之基底層的緊密性提昇作用結合,更提昇銅 合金膜或透明基板或半導體層之緊密性。即,如特定量添 加上述之緊密性提昇元素,因細微化銅合金膜之結晶粒之 故,促進經由基底層之氧導入的緊密性提昇作用’於與透 明基板或半導體層之界面,容易形成逐漸堅固之化學性結 合’認爲可得到非常高之緊密性。 對於爲了實現與透明基板或半導體層之高緊密性’在 銅合金膜之上述元素的含有量(以單獨含有之情況係爲單 獨的量’含有2種以上之情況係合計量)係作爲0 · 1 0原 子%以上。但,即使上述元素的含有量變過高’上述緊密 -16- 201042059 性提昇作用係亦飽和(例如,參照後記之圖1〜4 )之故’ 將上限作爲1 0原子%。 ' 基底層乃與透明基板接觸之情況,上述元素之含有量 • 的上限係理想爲5%以下,更理想爲2%以下。上述元素之 含有量係從與透明基板之高緊密性,和低電阻率之平衡的 觀點加以決定爲佳,從低電阻率之觀點係作爲0.5 %以下 者更佳。 0 基底層乃與半導體層接觸之情況,上述元素之含有量 的上限係從銅合金膜之電阻率的觀點,作爲5.0原子%爲 佳。 在此,上述之元素量係指含於銅合金膜全體的量。如 - 上述,本發明之銅合金膜係具有氧量不同之基底層與上層 . ,含於各層之元素的組成(種類及/或含有量)係亦可爲 不同,但無論如何,含於銅合金膜(基底層+上層)之元 素的含有量之合計係必須爲在上述範圍內者。如考慮生產 〇 性等,含於基底層與上層之元素的種類乃同樣者爲佳。 上述合金元素的理想含有量係嚴格來說,經由合金元 素的種類而有所差異。因經由合金元素的種類,對於電阻 之負荷(影響)不同。 基底層乃與透明基板接觸之情況,例如選自Ni、A1 、Zn、Μη、Fe及Ca所成的群之至少一種的元素係以合 • 計0.12原子%以上0.4原子%以下者爲佳,更理想爲以合 計0.15原子%以上0.3原子%以下。另一方面,選自Ge、 Hf、Nb、Mo、及W所成的群之至少一種的元素係以合計 -17- 201042059 〇 12原子。/〇以上〇·25原子%以下者爲佳’更理想爲以合§十 0.1 5原子%以上〇 _ 2原子%以下。 基底層乃與半導體層接觸之情況’例如選自Ni、Α1 、Ζη、Μη、及Fe所成的群之至少一種的元素係以合計 〇15原子%以上4原子%以下者爲佳’更理想爲以合計〇·2 原子❶/。以上2原子%以下。另一方面,選自Ge、Hf、Nb、 Mo、及W所成的群之至少一種的元素係以合計Ο·15原子 %以上3原子%以下者爲佳’更理想爲以合計1原子%以 上2原子%以下。 上述之緊密性提昇元素係亦可以單獨含有,亦可倂用 2種以上。 基底層乃與透明基板接觸之情況,上述元素之中理想 爲 Ni、Al、Zn、Mn、Ge、及 C a,更理想爲 Ni、A1、Ζη 、Μη、C a 〇 基底層乃與半導體層接觸之情況,上述元素之中理想 爲 Ni、Al ' Zn、Mn、Ge ’ 更理想爲 Ni、Α1、Ζη、Μη。 對於本發明係亦包含有具有元素之組成(種類及/或 含有量)不同的層之銅合金膜。作爲如此之形態,例如’ 可舉出含於與透明基板或半導體層接觸的層之元素的含有 量’較含於上述層(元素的組成(種類及/或含有量)不 同的層)上的層之元素的含有量(含〇原子%)爲多之銅 合金膜。然而’在此’將元素之組成(種類及/或含有量 )不同的層,規定爲第1層(與透明基板或半導體層接觸 的層)與第2層(前述第1層上的層)之情況,上述形態 -18- 201042059 係表示含於前述第1層之元素的含有量乃較含於前述第2 層之元素的含有量(含〇原子%)爲多之銅合金膜。其上 ' 方的層係亦可爲實質上未含有合金元素的純Cu。如上述 • ,對於爲了確保與透明基板或半導體層之良好的緊密性, 至少透明基板或半導體層之界面附近係積極地含有特定量 之上述元素爲佳,另一方面,對於爲了實施低電阻,至少 ,銅合金膜之表面附近係將上述元素控制爲特定量以下( 0 含〇原子%,進而亦含有純Cu )者爲佳,上述形態之銅合 金膜係爲了確保雙方如此之「與透明基板或半導體層之高 緊密性及銅合金膜之電阻降低」之理想的例。各層之具體 的含有量係在銅合金膜全體之元素量(0.10原子%以上10 . 原子%以下)之範圍內,可適當地控制。基底層乃與透明 基板接觸之情況,對於爲了實現與透明基板之高緊密性及 銅合金膜的電阻降低,例如,銅合金膜全體之元素量係控 制爲更理想之範圍的0.1 0原子%以上0.5原子%以下之後 (〇 ,將含於與透明基板接觸的層之元素的含有量,作爲合計 0.1 〇原子%以上4.0原子%以下爲佳。更且,從降低銅合 金膜全體電阻率的觀點,更且將上方的層作爲純Cu者爲 佳。另外,基底層乃與半導體層接觸之情況,對於爲了實 現與半導體層之高緊密性及銅合金膜之電阻降低,例如, ' 銅合金膜全體之元素量係控制爲更理想之範圍的0.10原 - 子%以上5.0原子%以下。更且,從降低銅合金膜全體電 阻率的觀點,更且將上方的層作爲純Cu者爲佳。在此, 元素組成(種類及/或含有量)不同的層,和前述氧含有 -19 - 201042059 量不同的層係深度方向位置乃一致亦可,而亦可爲不同。 例如,對於後述之實施例的表2,係具體地揭示元素 的組成(種類及/或含有量)乃各種不同之銅合金膜的例 。例如,No.36係含於從界面至50nm的層之元素(在此 乃Ni)的量乃2.0原子%,含於其上方的層之元素(在此 乃N i )的量乃少的〇 . 3原子%之銅合金膜。 另外’對於後述之實施例的表6〜7,係具體地揭不 元素的組成(種類及/或含有量)乃各種不同之銅合金膜 的例。例如,表6之No.56係含於從界面至50nm的層之 元素(在此乃Ni )的量乃2.2原子%,含於其上方的層之 元素(在此乃N i )的量乃少的0.3原子%之銅合金膜。 然而’各層之元素的種類係亦可爲相同,而亦可爲不 同。例如,表2之No.43係含於從界面至50nm的層之元 素(在此乃A1)的量乃2.0原子%,含於其上方的層之元 素(在此乃Ni)的量乃少的〇.4原子%之銅合金膜。另外 ’ No·44係含於從界面至5〇nm的層之元素(在此乃Ni& A1)的合計量乃2.3原子%,含於其上方的層之元素(在 此乃N i )的量乃少的〇 . 4原子%之銅合金膜。此等任一之 銅合金膜’亦作爲本發明例所包含。 另外’表6之No.65係含於從界面至50nm的層之元 素(在此乃A1 )的量乃2 .丨原子%,含於其上方的層之元 素(在此乃Ni )的量乃少的0.4原子%之銅合金膜。另外 ,No_66係含於從界面至5〇nm的層之元素(在此乃Ni& A1)的合計量乃1.9原子。/。,含於其上方的層之元素(在 -20- 201042059 此乃Ni )的量乃少的0.4原子%之銅合金膜。此等任一之 銅合金膜,亦作爲本發明例所包含。 " 本發明之銅合金膜係含有上述之緊密性提昇元素,殘 • 留部:Cu及不可避免之不純物。 另外,在未損及本發明之作用的範圍,將其他特性付 與作爲目的,亦可添加其他的元素。本發明之銅合金膜係 發揮其特性,使用於與透明基板或薄膜電晶體之半導體層 0 直接接觸的配線或電極用,但將上述銅合金膜,適用於例 如具有底閘極型構造之TFT之閘極電極及掃描線之情況 ,作爲其特性,加上於與上述玻璃基板之緊密性,亦要求 對於耐氧化性(與ITO膜之接觸安定性)或耐蝕性優越者 。另外,亦有要求更降低電阻之情況。更且,本發明之銅 . 合金膜係亦可適用於TFT之源極電極及/或汲極電極以及 信號線,對於此情況,加上於前述耐氧化性(與ITO膜之 接觸安定性)等之特性,亦要求對於與絕緣膜(SiN膜) 〇 之緊密性優越者。另外,更且,亦可將本發明之銅合金膜 ’適用於閘極電極及信號線,對於此情況,亦要求對於與 透明基板之緊密性優越者。此等情況,加上於上述之緊密 性提昇元素,將貢獻於上述之各特性提昇之周知合金元素 ’添加在未損及本發明之作用的範圍,亦可作爲多元系之 銅合金膜者。 • 以上’已將本發明之銅合金膜,對於最具特徵之氧含 有量及組成做過說明。 更且’將上述特性更提昇作爲目標,呈如以下加以控 -21 - 201042059 制爲佳。 首先,基底層的厚度乃2nm以上未達150nm者爲佳 。當基底層過薄時,有著無法實現與透明基板或半導體層 之良好緊密性之虞。另一面’當基底層過厚時’有著銅合 金膜之電阻增大之虞。另外’基底層乃與透明基板接觸的 情況,經由基底層之場所(部位)的厚度之不均變大’結 果來說,有著成爲無法得到均—之銅合金膜之虞。因此’ 基底層之厚度係2nm以上(基底層乃與透明基板接觸之 情況,理想爲1 〇nm以上’更理想爲30nm以上;基底層 乃與半導體層接觸之情況’理想爲5nm以上,更理想爲 1 Onm以上),未達1 50nm (基底層乃與透明基板接觸之 情況,理想爲13〇nm以下’更理想爲lOOnm以下;基底 層乃與半導體層接觸之情況’理想爲130nm以下,更理 想爲lOOnm以下)。 另外,上層之厚度係在與基底層之相對關係適當地訂 定爲佳。比較於上層,基底層過厚時’因有著在銅合金膜 全體,無法維持低電阻率之虞。上層的厚度與基底層的厚 度的比(即,上層的厚度/基底層的厚度)係理想爲2.5 以上,更理想爲4以上,又更理想爲5以上。另一方面, 比較於基底層,上層過厚時,確保充分之緊密性者變爲困 難。因此,上層的厚度/基底層的厚度的比係理想爲400 以下,更理想爲1 00以下,又更理想爲5〇以下。 如考慮上述之基底層及上層之理想厚度,有關本發明 之銅合金膜係大約2〇〇nm以上700nm以下者爲佳,更佳 -22- 201042059 爲250nm以上500nm以下。 如使用本發明之銅合金膜,因有與透明基板(特別是 ' 玻璃基板)之高緊密性,低電阻率,優越之濕蝕刻性及優 ' 越之膜厚控制性之故,可效率佳製造優越特性之顯示裝置 。更且,本發明之銅合金膜係並不只對於與透明基板或半 導體層之緊密性等優越,如上述,即使與透明導電膜直接 接觸,亦顯示低接觸電阻之故,不只作爲閘極配線,亦可 ¢) 使用於源極•汲極配線。如將顯示裝置的閘極配線及源極 *汲極配線,全由本發明之銅合金膜加以製作,亦可得到 可使用相同濺鍍標靶而製造之製造工程上的優點。 上述之銅合金膜係經由濺鍍法進行成膜者爲佳。濺鍍 • 法係指於真空中’導入Ar等非活性氣體,在基板與濺鍍 標靶(以後’亦有標靶之情況)之間,形成電漿放電,將 經由該電漿放電而離子化之Ar對於上述標靶產生衝突, 逼出該標靶的原子,而堆積於基板上而製作薄膜之方法。 〇 可較以離子電鍍法或電子束蒸鑛法,真空蒸鍍法所形成之 薄膜’容易形成對於成分或膜厚之膜面內均一性優越之薄 膜’且可在剛沈積狀態形成合金元素均一固溶之薄膜之故 ’可有效地發現高溫耐氧化性。作爲濺鍍法,係例如採用 DC濺鍍法’ RF濺鍍法’磁控管濺鍍法,反應性濺鍍法等 • 任一濺鍍法亦可’其形成條件係如做適當設定即可。 - 使用濺鍍法而導入氧於基底層等,爲了將特定氧含有 銅合金膜進fr成膜’於成膜時,如供給氧氣即可。作爲氧 氣供給源’除氧(〇2)之外’可使用含氧原子之氧化氣體 -23- 201042059 (例如,〇3等)。具體而言,對於基底層之成膜時,使 用添加氧於通常使用在濺鍍法之處理氣體的混合氣體,對 於上層之成膜時,如未添加氧而使用處理氣體進行濺鍍法 ,將具有含有氧的基底層與實質尙未含有氧的上層之銅合 金膜,加以成膜。作爲上述處理氣體,作爲代表可舉出稀 有氣體(例如,氙氣,氬氣),理想爲氬氣。於基底層之 成膜時,如使處理氣體中的氧氣量變化,可形成氧含有量 不同之複數的基底層。 基底層中的氧量係可經由佔處理氣體中之氧氣之混合 比率而變化之故,如因應欲導入之氧量,適宜適當地改變 上述混合比率即可。例如,在形成基底層時,處理氣體( 氬氣等)中的〇2濃度係作爲1體積%以上50體積%以下 者爲佳,作爲20體積%以下者爲更佳。另外,對於於基 底層中欲導入1原子%的氧之情況,大槪將其約2倍的氧 量混合於處理氣體中,將佔處理氣體中之氧氣之比率作爲 約2體積%者爲佳。 在濺鍍法中,可將與濺鍍標靶略相同之組成的銅合金 膜進行成膜。因此,經由調整濺鍍標靶的組成之時,可調 整銅合金膜之組成。濺鍍標耙的組成係亦可使用不同組成 之銅合金標靶而進行調整,或經由於純Cu標靶,將合金 元素之金屬進行覆晶之時而進行調整亦可。 然而,在濺鍍法中,成膜之銅合金膜之組成與濺鍍標 靶的組成之間,有僅產生些偏移。但其偏移係大約數原子 %以內。因此,如將濺鍍標靶的組成,在即使最大而亦控 -24- 201042059 制在± 1 〇原子%之範圍內,可將所期望之組成的銅合金膜 進行成膜。 ' 於基底層之銅合金膜或上層之銅合金膜的各成膜時, - 經由變更濺鍍標靶之時,可形成合金元素的含有量不同之 複數的基底層或複數的上層。另外’在基底層之成膜時與 上層之成膜時,經由變更濺鍍標靶之時’可形成具有合金 元素的含有量不同之基底層及上層的銅合金膜。但從生產 0 效率之觀點,在基底層與上層使用相同的濺鍍標靶,形成 具有除了氧之合金元素的比率相同之基底層及上層的銅合 金膜。 • [實施例] _ 以下,舉出實施例而更具體地說明本發明,但本發明 係未經由以下的實施例而被限制,亦在可符合上述、下述 之內容範圍,可加上適宜變更而實施,此等均包含於本發 Ο 明之技術範圍。 實施例1 -1 (試料之製作) 在本實施例中,經由DC磁控管濺鍍法,於玻璃基板 (日本Corning公司製之# 1737、尺寸係直徑lOOmmx厚 度0.7mm)上,製作具有純Cu膜或銅合金膜(以下,亦 有以銅合金膜所代表之情況)之試料(膜厚5〇〇nm )。本 實施例之銅合金膜係由基底層,和上層(從上述基底層至 -25- 201042059 銅合金膜表面的層)加以構成,含於上述基底層及上層之 氧量及合金組成係如表1及表2所示。其中,表i之試料 No .1〜3 2係上層與基底層之合金組成(種類及含有量)爲 相同例,對於組成(上層=下層)的欄位,顯示銅合金膜 全體之組成。例如,表1中,No.5(上層=下層= Cu-0.05Ni)係於銅合金膜全體,含有Cu-0.05原子%…的意 思。另一方面,表2之試料No、33~44係上層與基底層 之合金組成(種類及/或含有量)爲不同的例。 上述銅合金膜之成膜係使用日本島津製作所製之濺鍍 裝置(商品名:HSR 542 ),由如以下作爲進行。 首先,銅合金膜之組成係(i )對於純Cu膜之成膜係 使用Cu濺鍍標靶、(ii )對於含有各種合金元素之銅合 金膜的成膜,係於Cu濺鍍標靶上,使用設置含有Cu以 外元素之晶片的濺鍍標靶而控制。將基底層及上層爲相同 組成之銅合金膜進行成膜之情況,係使用相同濺鍍標靶, 另外,將基底層及上層之組成或含有量不同之銅合金膜進 行成膜之情況,係呈得到特定的膜地,使用不同組成之濺 鍍標靶。 另外,銅合金膜之氧含有量係在基底層之成膜中,將 Ar與〇2之混合氣體作爲處理氣體而使用,在上層之成膜 中,經由只使用Ar氣體之時而控制。基底層中之氧含有 量係經由變更佔混合氣體之氧氣的比率而加以調整。例如 ,對於含有5原子%氧於基底層時’將處理氣體中的〇2 之比率作爲1 〇體積%。 -26- 201042059 其他的成膜條件係如以下。 .背壓:1.0x1 (T6Torr 以下 •處理氣壓:2.0x1 (Γ3 Tor r • •處理氣體的流量:30sccm •濺鍍功率:3.2W/cm2 •極間距離:5 0 m m •基板溫度:室溫 Q •成膜溫度:室溫 由上述作爲所成膜之銅合金膜的組成係使用ICP發光 分光分析裝置(日本島津製作所製之ICP發光分光分析裝 置「ICP-8 000型」,進行定量分析而加以確認。 . (基底層及上層之氧含有量) 含於基底層及上層之各氧含有量係經由以高頻率輝光 放電分光儀(GD-OES )分析之時而測定。記載於表1及 Ό 表2之各基底層及上層的〇 (氧)含有量係將經由上述分 析所得到之深度方向濃度曲線爲依據,算出含於各基底層 及上層的膜厚中之平均濃度含有量者。如根據本發明,任 何試料,上層之氧含有量係未達0.05原子%(參照表1及 2),實質上未含有氧。 • (上層及基底層之厚度測定) 銅合金膜之上層及基底層之厚度係呈對於Cu的膜面 方向(深度方向)而言,可觀察垂直的面地’另外製作厚 -27- 201042059 度測定用試料,使用日本日立製作所致電解放出型透過型 電子顯微鏡,從觀察(倍率1 5萬倍)·投影任意的測定 視野之照片,測定各層的膜厚。 將銅合金膜之構成(上層及基底層的組成,氧含有量 及厚度),彙整示於表1及表2。 (銅合金膜之特性評估) 接著’使用如上述作爲所得到之試料,由以下作爲測 定(1 )銅合金膜與玻璃基板之緊密性、及(2 )濕蝕刻性 。另外’對於測定(3 )膜厚之不均(膜厚控制性)及(4 )銅合金膜之電阻率時,經由後述之方法,製作各特性測 定用試料而測定。 (1 )與玻璃基板之緊密性的評估 將熱處理前及熱處理後(真空環境下、以3 5 0 °C進行 〇. 5小時)之銅合金膜的緊密性,由經由膠帶之剝離試驗 進行評估。詳細而言,於銅合金之成膜表面,以銑刀切成 lmm間隔之棋盤格狀。接著,將日本住友3M製黑色聚酯 膠帶(製品編號8422B ),牢固地貼合於上述成膜表面上 ,將上述膠帶之剝下角度保持成60 °之同時’一舉將上 述膠帶剝下,計算未經由上述膠帶而剝離之棋盤格之區隔 數,求得與全區隔之比率(膜殘存率)。 在本實施例中,將經由膠帶之剝離率乃未達1 0%者判 定爲〇,將10%以上者判定爲X。 -28- 201042059 (2 )濕蝕刻性之評估 " 對於上述試料而言,經由光微影法,將銅合金膜形成 , 爲具有1 Ομηι寬度之線與空間之圖案後,使用混酸蝕刻液 (磷酸:硝酸:水的體積比=75 : 5 : 20 )進行蝕刻,經 由光學顯微鏡之觀察(觀察倍率:400倍)確認殘渣之有 無。 Q 在本實施例中,將在上述光學顯微鏡觀察未看到殘渣 者判定爲◦,將看到殘渣者判定爲X。 (3 )膜厚控制性 • 在本實施例中’由以下作爲測定銅合金膜之厚度的不 , 均(稱作膜厚控制性)。首先,對於玻璃基板而言,使用 聚醯亞胺膠帶(住友3Μ製5412),遮蔽基板之一部分的 範圍後,以上述之方法進行成膜,於玻璃基板上,製作具 ί〇 有成膜有銅合金膜之部分與未成膜之部分之銅合金膜。接 著,剝下聚醯亞胺膠帶,將於膜中形成有階差之銅合金膜 ,作爲膜厚控制測定用試料。 對於上述試料(直徑1 00mm ),以觸針型階差計( VEECO製之「DEKTAK II」)測定從試料中心(厚度 • 500nm )離開25mm處之厚度d(nm),從下述式算出膜厚 - 分布(% ): 膜厚分布={ ( 500-d) / 5 00}χ1〇〇 -29- 201042059 在本實施例中’將厚度分布爲±10.0%以內者評估爲〇 ,將超過其範圍者評估爲X。 (4 )電阻率之評估 銅合金膜之電阻率係經由下述式而算出。在下述式中 ,「膜厚」係以前述的方法測定的値,「片狀電阻値」係 將上述試料切成2英吋尺寸,以四端針法測定的値。 電阻率p =(片狀電阻値)/ (膜厚) 在本實施例中,將電阻率未達4 0 μ Ω / cm者判定爲〇 ’將4.0 μ Q / c m以上者判定爲X。 然而,作爲總合評估,將(1 )與玻璃基板之緊密性 的評估、(2 )濕蝕刻性之評估、(3 )膜厚控制性、(4 )電阻率之評估所有滿足基準者判定爲〇,將並非如此者 判定爲X。 將此等結果,彙整示於表3及表4。 -30- 201042059 【表1】At least one element of the group formed by Fe, Ge, Hf, Nb, M〇, and w, in total, contains 0. 10 atom% or more 5. 0 atom% or less. [8] The copper alloy film according to any one of [1], wherein the copper alloy film of the above (2) has a depth from the base layer toward the upper layer Concentration curve. [1] The copper alloy film according to any one of [1], wherein, in the above (1), the copper alloy film has at least one of an element type and an element amount. In the first layer and the second layer, the first layer is in contact with the transparent substrate or the semiconductor layer, and the element content specified in the above (1) contained in the first layer is contained in the first layer. The element content (% by atom) specified in the above (!) of the second layer of the upper layer is large. [10] The copper alloy film according to any one of [1], wherein the upper layer is pure Cu. [1] A display device comprising the copper alloy film according to any one of [1] to [3]. [Effects of the Invention] In the present invention, 'a copper alloy film for a display device which is in direct contact with a transparent substrate' employs an oxygen amount such as a base layer containing a suitable alloying element and in direct contact with the transparent substrate. In addition to the multilayer structure (ideally, the base layer contains an appropriate amount of oxygen, the upper layer on the base layer contains substantially no oxygen), in addition to obtaining high tightness with a transparent substrate, low electrical resistivity, and superior wetness In addition to etchability, it can also reduce the thickness distribution of the film. -10- 201042059 Both. If such a copper alloy film is used in a display device, the number of engineering and cost of the manufacturing process can be reduced. The oxygen-containing copper alloy film of the present invention is used for a wiring or an electrode which is in direct contact with a transparent substrate, and is typically used for a gate wiring or a gate electrode. Further, in the present invention, as the copper alloy film for a display device which is in direct contact with the semiconductor layer of the thin film transistor, a substrate layer containing a suitable alloying element and in direct contact with the semiconductor layer contains appropriate oxygen, and the base layer is used. The upper layer on the bottom layer does not substantially contain a layered structure of oxygen, and has high tightness with the semiconductor layer, low resistivity, and superior wet etching properties. Such a copper alloy film can reduce the number of manufacturing processes and the cost according to the display device. The oxygen-containing copper alloy film of the present invention is used for wiring or electric pole which is in direct contact with a semiconductor layer (amorphous germanium or polycrystalline germanium) of a thin film transistor, and is representatively used for source-drainage Wiring or source-drain electrodes.实施Embodiment The present inventors have provided a film having a high degree of closeness to a semiconductor layer of a transparent substrate or a thin film transistor, a low resistivity and superior wet etching property, and more preferably a film of a copper alloy film. Repeated review is carried out on copper alloy films that are not thick for display devices. As a result, the oxygen contained in the alloy element containing Ni or the like contains a copper alloy film, and the copper alloy film is a base having a different amount of oxygen. The layer is formed with the upper layer, such as (i) containing a specific amount of oxygen in the base layer in direct contact with the substrate or the semiconductor layer and (u) the layer above the base layer is substantially free of oxygen' even if at most The layered product of the amount of oxygen contained in the underlayer -11 - 201042059 was found to have a copper alloy film having all of the above characteristics, and the present invention has been completed. According to the present invention, at the interface where the transparent substrate or the semiconductor layer is in contact with the copper alloy film (hereinafter, simply referred to as an interface), a layer (base layer) containing at least a specific oxygen amount is formed, or the interface system contains It is composed of a certain amount of specific elements. As a result, in combination with the tightness improving effect formed by the base layer and the tightness improving effect by the specific element addition, a strong chemical bond is formed at the interface between the transparent substrate or the semiconductor layer and the base layer, and it is considered that Should be able to get superior tightness. In the following, in the convenience of explanation, there is a case where the alloying element of Ni or the like used in the present invention is referred to as a tightness promoting element. First, the base layer and the upper layer constituting the copper alloy film of the present invention will be described. As described above, in the present invention, the relationship between the underlayer and the upper layer of the oxygen layer is different, and the laminated structure having a different oxygen content is used, whereby both the adhesion to the transparent substrate and the decrease in the resistivity are obtained. In the present specification, "base layer" means a layer in direct contact with a transparent substrate or a semiconductor layer, and "upper layer" means a layer directly above the base layer. The base layer and the upper layer are distinguished by the difference in oxygen amount. When the base layer is in contact with the transparent substrate, the amount of oxygen is preferably about 0. 5 atom% is distinguished as a boundary, and the above-mentioned underlayer is in contact with a semiconductor, and it is preferable that the amount of oxygen is distinguished by a boundary of about 0.1 atom%. When the base layer is in contact with the transparent substrate, the ratio is 0. 5 atom% or more 30 atom% or less of the range containing oxygen is preferred, in contact with the semiconductor layer -12 - 201042059 condition, to 〇. It is preferred that oxygen is contained in a range of 1 atom% or more and 30 atom% or less. As shown in the embodiment to be described later, the case where the base layer is in contact with the transparent substrate contains 0. When the base layer of oxygen is 5 atom% or more, the tightness of the copper alloy film and the transparent substrate is improved. Similarly, as shown in the later-described embodiment, the case where the underlayer is in contact with the semiconductor layer is contained via the setting. When the base layer of oxygen is 1 atom% or more, the tightness of the copper alloy film and the semiconductor layer is improved. Although the structure is not clear in detail, Q forms a strong bond between the substrate or the semiconductor layer due to the presence of a substrate layer containing a specific amount of oxygen due to the interface between the substrate or the semiconductor layer (chemical property) Combined), it is believed that the tightness should be improved. In order to sufficiently exhibit the above-described effects, the underlayer is in contact with the transparent substrate, and the oxygen content of the underlayer is preferably 5% by atom or more, more preferably 1% by atom or more, and more preferably 2 The atomic % or more is most preferably 4 atom% or more. When the basal layer is in contact with the semiconductor layer, the oxygen content of the basal layer is taken as 〇. 1 atom% or more, Q is better, more preferably 0. 5 atom% or more, more preferably as 1. 0 atomic % or more. On the other hand, when the oxygen content is excessive and the tightness is too high, the residue remains after wet etching, and the wet etching property is lowered. Further, when the oxygen content of the underlayer is excessive, the electrical resistance of the entire copper alloy film is increased. Further, when the oxygen content is excessive, it is difficult to uniformly control the film thickness of the copper alloy film (see the examples described later). In view of the above, the oxygen content of the underlayer is preferably 30% by atom or less, more preferably 20% by atom or less, in the case where the underlying layer is in contact with the transparent substrate and in contact with the semiconductor layer. More ideally as 1 5 original -13 - 201042059 sub% below, and more ideal as 13. 5 atom% or less is particularly preferably 10 atom% or less. On the other hand, when the base layer is in contact with the transparent substrate, the oxygen content of the upper layer is less than 0. 5 atom% is better. The oxygen contained in the upper layer is preferably as small as possible from the viewpoint of reducing the electric resistance, and does not exceed the lower limit of the amount of oxygen in the underlayer (0.5 atom%). The optimum oxygen content of the upper layer is 0 · 3 atom% or less, more preferably 〇. 2 atom% or less is most preferably 〇 atom%. In addition, when the base layer is in contact with the semiconductor layer, the oxygen content of the upper layer is less than 〇. 1 atom%. The oxygen contained in the upper layer is reduced from the viewpoint of electric resistance, and as small as possible, even if it does not exceed the lower limit of the amount of oxygen in the basal layer (0. 1 atom%). The optimal oxygen content of the upper layer is 0. 05 atom% or less, more preferably 0. 02 atom% or less is most preferably 0 atom%. It is preferable that the oxygen-containing copper alloy film composed of the underlayer and the upper layer has a depth-direction concentration curve in which oxygen is reduced from the basal layer toward the upper layer. Hereinafter, the oxygen-containing copper alloy film of the present invention is preferably formed by a sputtering method, and a layer having a different oxygen concentration curve in the depth direction is easily obtained by the amount of oxygen introduced. For example, it is also possible to have a concentration curve from the interface of the transparent substrate or the semiconductor layer to the copper alloy film toward the upper layer, and the amount of oxygen is slowly (both continuous or discontinuous), or vice versa. In other words, when the underlayer is in contact with the transparent substrate, the underlayer is in a range of "oxygen amount: 〇·5 atom% or more" less than 30 atom%, and a form having a different oxygen concentration curve in the depth direction is obtained. The upper layer is in the "oxygen amount: not reached." In the range of 5 atoms, a form having a different oxygen concentration curve from the depth of -14 to 201042059 is obtained. Further, the case where the underlying layer is in contact with the semiconductor layer is described above. In the range of 1 atom% or more and 3 〇 'atomic % or less", the oxygen concentration curve including the depth direction is obtained. • The upper layer is in the range of "oxygen amount: not 〇·ι atom", and the depth is included. The shape of the oxygen concentration curve in the direction is different. In the case where the base layer is in contact with the transparent substrate, the preferred embodiment of the present invention is an oxygen average of the base layer from the interface of the transparent substrate to the copper alloy film 'to the surface of the copper alloy film' Q in the depth direction to a depth of about 10 nm. The content is 0. 5 atom% or more and 30 atom% or less' and the average content of oxygen contained in the upper layer of the base layer is less than 0. 5 atom% (including 0 atom%), from the interface to the upper layer, the oxygen concentration in the depth direction in which the oxygen content continuity is reduced. ^ In the case where the base layer is in contact with the transparent substrate, another preferred embodiment of the present invention is from the interface of the transparent substrate and the copper alloy film to the surface of the copper alloy film, and the oxygen contained in the base layer at a position to a depth of about 50 nm. The average cerium content is 〇·5 atom% or more and 30 atom% or less' and the average oxygen content of the basal layer contained in the upper layer is less than 原子5 atom% (including 0 atom%), from the interface to the upper layer. A depth-direction oxygen concentration curve having a reduced oxygen content continuity. In the case where the base layer is in contact with the semiconductor layer, the ideal shape of the present invention is from the interface between the semiconductor layer and the copper alloy film toward the surface of the copper alloy film, and the base layer is contained in the depth direction to about 1 Onm. The average oxygen content is 0. 1 atom% or more and 30 atom% or less, and the average content of oxygen contained in the upper layer of the base layer is less than 0. 1 atom% (including 0 atoms. /.), from the boundary -15- 201042059 face up, with a decrease in oxygen content continuity in the depth direction oxygen concentration curve. In the case where the underlying layer is in contact with the semiconductor layer, the other preferred embodiment of the present invention is an average of oxygen from the interface of the semiconductor layer to the copper alloy film toward the surface of the copper alloy film, and the basal layer at a depth direction of about 50 nm. The content is 0. 1 atom% or more and 30 atom% or less 'the average content of oxygen contained in the upper layer of the underlayer is less than ι·1 atom% (% of yttrium containing atoms)' From the interface toward the upper layer, the oxygen content is continuously reduced. Depth direction oxygen concentration curve. Next, the composition of the copper alloy film according to the present invention will be described. The copper alloy film of the present invention is a combination of at least one selected from the group consisting of Ni, A1, Zn, Mn, Fe, Ge, Hf, Nb, Mo, W, and Ca, and has a total of 0. 10 atom% or more and 10 atom% or less. These elements are easy to form an element which is chemically bonded to the transparent substrate or the semiconductor layer, and are combined with the aforementioned adhesion improving effect of the underlying layer to further improve the tightness of the copper alloy film or the transparent substrate or the semiconductor layer. In other words, when the above-mentioned tightness-improving element is added in a specific amount, the crystal grain of the copper alloy film is finely reduced, and the adhesion enhancement effect of the oxygen introduction through the base layer is promoted to form an interface with the transparent substrate or the semiconductor layer, which is easy to form. The gradual strengthening of the chemical combination 'is considered to be very high tightness. In order to achieve high adhesion to a transparent substrate or a semiconductor layer, the content of the above-mentioned elements in the copper alloy film (the amount of the above-mentioned elements in the case of being separately contained is two or more) is taken as 0. 10 atom% or more. However, even if the content of the above element becomes too high, the above-mentioned compact -16 - 201042059 is also saturated (for example, referring to Figs. 1 to 4 which will be described later), and the upper limit is made 10% by atom. When the base layer is in contact with the transparent substrate, the upper limit of the content of the above element is preferably 5% or less, more preferably 2% or less. The content of the above elements is preferably determined from the viewpoint of the high tightness to the transparent substrate and the balance of the low resistivity, and is 0 as a viewpoint of low resistivity. Less than 5 % is better. 0 When the underlayer is in contact with the semiconductor layer, the upper limit of the content of the above element is from the viewpoint of the resistivity of the copper alloy film, as 5. 0 atom% is preferred. Here, the above element amount means the amount contained in the entire copper alloy film. As described above, the copper alloy film of the present invention has a base layer and an upper layer having different amounts of oxygen. The composition (type and/or content) of the elements contained in each layer may be different, but in any case, the total content of the elements contained in the copper alloy film (base layer + upper layer) must be in the above range. Insider. When considering the production of bismuth, etc., the types of elements contained in the basal layer and the upper layer are preferably the same. The desirable content of the above alloying elements is strictly different depending on the kind of the alloying elements. The load (impact) of the resistance varies depending on the type of the alloying element. When the underlayer is in contact with the transparent substrate, for example, an element selected from the group consisting of Ni, A1, Zn, Μ, Fe, and Ca is a combination of 0. 12 atom% or more 0. 4 atom% or less is preferable, and more desirably 0. 15 atom% or more 0. 3 atom% or less. On the other hand, an element selected from at least one of the group consisting of Ge, Hf, Nb, Mo, and W is a total of -17-201042059 〇 12 atoms. / 〇 〇 〇 25 25 atom% or less is better ‘ more ideally to § ten 0. 1 5 atom% or more _ 2 atom% or less. When the underlayer is in contact with the semiconductor layer, for example, at least one element selected from the group consisting of Ni, Α1, Ζη, Μη, and Fe is preferably 〇15 at% or more and 4 at% or less. In order to total 〇·2 atomic ❶/. Above 2 atom% or less. On the other hand, an element of at least one selected from the group consisting of Ge, Hf, Nb, Mo, and W is preferably 15 atom% or more and 3 atom% or less in total, and more preferably 1 atom% in total. Above 2 atom% or less. The above-mentioned tightness enhancing elements may be contained alone or in combination of two or more. When the underlying layer is in contact with the transparent substrate, among the above elements, Ni, Al, Zn, Mn, Ge, and Ca are preferable, and Ni, A1, Ζη, Μη, C a 〇 the underlying layer and the semiconductor layer are more preferable. In the case of contact, among the above elements, Ni, Al ' Zn, Mn, and Ge ' are preferably Ni, Α1, Ζη, Μη. The present invention also includes a copper alloy film having a layer having a different composition (type and/or content) of elements. In such a form, for example, 'the content of the element contained in the layer in contact with the transparent substrate or the semiconductor layer' is more than that contained in the layer (layer having different composition (type and/or content) of the element). The content of the element of the layer (% by atomic atom) is a copper alloy film. However, the layer in which the composition (type and/or content) of the elements is different is defined as the first layer (layer in contact with the transparent substrate or the semiconductor layer) and the second layer (layer on the first layer). In the case of the above-mentioned form -18-201042059, the content of the element contained in the first layer is a copper alloy film having a larger content of the element (the ytterbium atom-containing content) contained in the second layer. The layer on the 'square side' may also be pure Cu which does not substantially contain an alloying element. As described above, in order to ensure good adhesion to the transparent substrate or the semiconductor layer, it is preferable that at least the specific amount of the above element is positively contained in the vicinity of the interface between the transparent substrate or the semiconductor layer, and on the other hand, in order to implement low resistance, At least the vicinity of the surface of the copper alloy film is preferably controlled to a specific amount or less (0% of yttrium atoms, and further contains pure Cu), and the copper alloy film of the above form is used to ensure such a "transparent substrate" A preferred example of the high tightness of the semiconductor layer and the decrease in the resistance of the copper alloy film. The specific content of each layer is the elemental amount of the entire copper alloy film (0. 10 atom% or more 10 . Within the range of atomic % or less, it can be appropriately controlled. When the underlying layer is in contact with the transparent substrate, the elemental amount of the entire copper alloy film is controlled to a more desirable range in order to achieve high tightness with the transparent substrate and lower resistance of the copper alloy film. 1 0 atom% or more 0. After 5 atom% or less (〇, the content of the element contained in the layer in contact with the transparent substrate is taken as a total of 0. 1 〇 atom% or more 4. 0 atom% or less is preferred. Further, from the viewpoint of lowering the overall resistivity of the copper alloy film, it is preferable to use the upper layer as pure Cu. Further, in the case where the underlayer is in contact with the semiconductor layer, in order to achieve high tightness with the semiconductor layer and decrease in resistance of the copper alloy film, for example, the element amount of the entire copper alloy film is controlled to a more desirable range of 0. 10 original - sub% above 5. 0 atom% or less. Further, from the viewpoint of lowering the overall resistivity of the copper alloy film, it is preferable to use the upper layer as pure Cu. Here, the layer having different elemental compositions (types and/or contents) may be identical to or different from the depth direction of the layer having a different oxygen content of -19 - 201042059. For example, Table 2 of the examples to be described later specifically discloses an example of the composition (type and/or content) of the elements which are various copper alloy films. For example, No. The amount of the 36-series element (here, Ni) contained in the layer from the interface to 50 nm is 2. 0 atom%, the amount of the element (here, N i ) of the layer above it is less. 3 atom% copper alloy film. Further, Tables 6 to 7 of the examples described below specifically disclose examples in which the composition (type and/or content) of the elements are various copper alloy films. For example, No. in Table 6. The amount of the 56-series element (here, Ni) contained in the layer from the interface to 50 nm is 2. 2 atom%, the amount of the element (here, N i ) of the layer above it is 0. 3 atom% copper alloy film. However, the types of elements of each layer may be the same or different. For example, No. in Table 2. The amount of element 43 contained in the layer from the interface to 50 nm (here, A1) is 2. 0 atom%, the element of the layer above it (here, Ni) is less. 4 atom% copper alloy film. In addition, the total amount of the element No. 44 contained in the layer from the interface to 5 〇 nm (here, Ni & A1) is 2. 3 atom%, the amount of the element (here, N i ) of the layer above it is less. 4 atom% copper alloy film. Any of these copper alloy films' is also included as an example of the present invention. In addition, the No. of Table 6. The amount of element 65 contained in the layer from the interface to 50 nm (here, A1) is 2 . The atomic %, the element of the layer above it (in this case, Ni) is 0. 4 atom% copper alloy film. In addition, the total amount of No. 66 element (from Ni& A1) contained in the layer from the interface to 5 〇 nm is 1. 9 atoms. /. The element contained in the layer above it (this is Ni in -20- 201042059) is 0. 4 atom% copper alloy film. Any of these copper alloy films is also included as an example of the present invention. " The copper alloy film of the present invention contains the above-mentioned tightness-improving element, residual portion: Cu and unavoidable impurities. Further, other elements may be added for the purpose of not impairing the effect of the present invention, and other elements may be added. The copper alloy film of the present invention exhibits its characteristics and is used for wiring or electrodes which are in direct contact with the semiconductor layer 0 of a transparent substrate or a thin film transistor. However, the copper alloy film is applied to, for example, a TFT having a bottom gate type structure. As for the characteristics of the gate electrode and the scanning line, the adhesion to the glass substrate is required to be excellent in oxidation resistance (contact stability with an ITO film) or corrosion resistance. In addition, there are also cases where it is required to lower the resistance. Moreover, the copper of the present invention. The alloy film system can also be applied to the source electrode and/or the drain electrode of the TFT and the signal line. In this case, the characteristics of the oxidation resistance (contact stability with the ITO film) and the like are also required. Insulating film (SiN film) The tightness of the crucible is superior. Further, the copper alloy film 'of the present invention can be applied to the gate electrode and the signal line. In this case, it is also required to be superior to the transparent substrate. In addition, in addition to the above-mentioned tightness-improving element, the well-known alloying element which contributes to the above-mentioned various characteristics is added to the range which does not impair the effect of the present invention, and can also be used as a multi-layered copper alloy film. • The above description has been made on the copper alloy film of the present invention for the most characteristic oxygen content and composition. Furthermore, it is better to increase the above characteristics and to control it as follows -21 - 201042059. First, it is preferable that the thickness of the underlayer is 2 nm or more and less than 150 nm. When the underlayer is too thin, there is a possibility that a good tightness with a transparent substrate or a semiconductor layer cannot be achieved. The other side 'when the base layer is too thick' has an increase in the electrical resistance of the copper alloy film. Further, when the underlayer is in contact with the transparent substrate, the thickness unevenness of the place (the portion) passing through the underlayer becomes large. As a result, there is a possibility that the copper alloy film cannot be obtained uniformly. Therefore, the thickness of the underlying layer is 2 nm or more (when the underlying layer is in contact with the transparent substrate, it is preferably 1 〇 nm or more, more preferably 30 nm or more; and the underlying layer is in contact with the semiconductor layer) is preferably 5 nm or more, more preferably 1 Onm or more), less than 1 50 nm (the base layer is in contact with the transparent substrate, preferably 13 〇 nm or less 'more preferably 100 nm or less; the base layer is in contact with the semiconductor layer' ideally 130 nm or less, Ideally below 100 nm). Further, it is preferable that the thickness of the upper layer is appropriately defined in relation to the base layer. When the underlayer is too thick compared to the upper layer, the low resistivity cannot be maintained because of the presence of the entire copper alloy film. The ratio of the thickness of the upper layer to the thickness of the base layer (i.e., the thickness of the upper layer / the thickness of the base layer) is preferably 2. 5 or more, more preferably 4 or more, and still more preferably 5 or more. On the other hand, when the upper layer is too thick compared to the base layer, it becomes difficult to ensure sufficient tightness. Therefore, the ratio of the thickness of the upper layer to the thickness of the underlayer is preferably 400 or less, more preferably 100 or less, still more preferably 5 or less. The copper alloy film of the present invention is preferably about 2 Å nm or more and 700 nm or less, more preferably -22 - 201042059 is 250 nm or more and 500 nm or less, in consideration of the desired thickness of the underlying layer and the upper layer. If the copper alloy film of the present invention is used, it has high adhesion to a transparent substrate (especially a 'glass substrate), low resistivity, superior wet etching property, and excellent film thickness controllability, and is excellent in efficiency. A display device that produces superior characteristics. Further, the copper alloy film of the present invention is excellent not only for the adhesion to a transparent substrate or a semiconductor layer, but also has a low contact resistance even when it is in direct contact with the transparent conductive film, and is not only used as a gate wiring. It can also be used for source/drain wiring. When the gate wiring and the source/drain wiring of the display device are all fabricated by the copper alloy film of the present invention, it is possible to obtain a manufacturing engineering advantage that the same sputtering target can be used. It is preferable that the copper alloy film described above is formed by a sputtering method. Sputtering • The method refers to the introduction of an inert gas such as Ar in a vacuum, and a plasma discharge is formed between the substrate and the sputtering target (in the case where there is also a target), and the ion is discharged through the plasma. The method in which the Ar is in conflict with the above target, and the atom of the target is forced to be deposited on the substrate to form a thin film.薄膜 can be formed by ion plating or electron beam evaporation, and the film formed by vacuum evaporation can easily form a film which is superior in uniformity in film surface of component or film thickness and can form alloying elements in a freshly deposited state. The solid solution film can effectively find high temperature oxidation resistance. As the sputtering method, for example, DC sputtering method, "RF sputtering method", magnetron sputtering method, reactive sputtering method, etc., can be used, and any sputtering method can be formed as appropriate. . - Oxygen is introduced into the underlayer or the like by sputtering, and a copper alloy film is formed into a film by a specific oxygen. When the film is formed, oxygen may be supplied. As the oxygen supply source 'except oxygen (?2), an oxidizing gas containing an oxygen atom can be used -23- 201042059 (for example, 〇3, etc.). Specifically, in the case of film formation of the underlayer, a mixed gas in which oxygen is added to the processing gas which is usually used in the sputtering method is used, and when the upper layer is formed, if the oxygen is not added, the processing gas is used for the sputtering method. A copper alloy film having a base layer containing oxygen and an upper layer containing no oxygen is formed into a film. The processing gas is exemplified by a rare gas (for example, helium or argon), and is preferably argon. At the time of film formation of the underlayer, if the amount of oxygen in the process gas is changed, a plurality of underlayers having different oxygen contents can be formed. The amount of oxygen in the underlayer may be changed by the mixing ratio of oxygen in the processing gas, and the mixing ratio may be appropriately changed as appropriate in accordance with the amount of oxygen to be introduced. For example, when the underlayer is formed, the concentration of ruthenium 2 in the treatment gas (argon gas or the like) is preferably 1% by volume or more and 50% by volume or less, and more preferably 20% by volume or less. In addition, in the case where 1 atomic % of oxygen is to be introduced into the base layer, the large amount of oxygen is mixed into the processing gas by about 2 times, and the ratio of oxygen in the processing gas is preferably about 2% by volume. . In the sputtering method, a copper alloy film having a composition slightly the same as that of the sputtering target can be formed into a film. Therefore, the composition of the copper alloy film can be adjusted by adjusting the composition of the sputtering target. The composition of the sputter target can also be adjusted by using a copper alloy target of a different composition, or by adjusting the metal of the alloy element by a pure Cu target. However, in the sputtering method, there is only a slight offset between the composition of the film-formed copper alloy film and the composition of the sputtering target. However, its offset is within a few atomic %. Therefore, if the composition of the sputtering target is within the range of ± 1 〇 atomic % even if it is controlled to the maximum, the copper alloy film of the desired composition can be formed into a film. When each of the copper alloy film of the underlayer or the copper alloy film of the upper layer is formed, when the sputtering target is changed, a plurality of underlayers or a plurality of upper layers having different alloying elements may be formed. Further, when the film is formed in the underlayer and the film is formed on the upper layer, the underlayer and the upper copper alloy film having different alloying elements can be formed by changing the sputtering target. However, from the viewpoint of production efficiency, the same sputtering target is used for the underlayer and the upper layer to form a copper alloy film having a base layer and an upper layer having the same ratio of the alloy elements of oxygen. [Examples] The present invention will be more specifically described by way of examples, but the present invention is not limited by the following examples, and may be adapted to the above-mentioned and the following contents. The implementation is changed, and these are all included in the technical scope of the present invention. Example 1-1 (Production of sample) In this example, a DC magnetron sputtering method was applied to a glass substrate (#1737, manufactured by Japan Corning Co., Ltd., and a diameter of 100 mmx. A sample (having a film thickness of 5 〇〇 nm) having a pure Cu film or a copper alloy film (hereinafter, also represented by a copper alloy film) was produced on 7 mm). The copper alloy film of the present embodiment is composed of a base layer and an upper layer (a layer from the base layer to the surface of the copper alloy film of -25-201042059), and the amount of oxygen and the alloy composition contained in the base layer and the upper layer are as follows. 1 and Table 2. Among them, the sample No. of Table i. The alloy composition (type and content) of the upper layer and the base layer of the 1 to 3 2 is the same example, and the composition of the composition (upper layer = lower layer) shows the composition of the entire copper alloy film. For example, in Table 1, No. 5 (upper layer = lower layer = Cu-0. 05Ni) is attached to the entire copper alloy film and contains Cu-0. The meaning of 05 atom%... On the other hand, Sample Nos. 33 to 44 in Table 2 have different alloy compositions (types and/or contents) of the upper layer and the underlayer. The film formation system of the above-mentioned copper alloy film was carried out by using a sputtering apparatus (trade name: HSR 542) manufactured by Shimadzu Corporation, Japan. First, the composition of the copper alloy film (i) uses a Cu sputtering target for the film formation of the pure Cu film, and (ii) the film formation of the copper alloy film containing various alloy elements on the Cu sputtering target. It is controlled by using a sputtering target that is provided with a wafer containing an element other than Cu. When a copper alloy film having the same composition as the base layer and the upper layer is formed into a film, the same sputtering target is used, and a copper alloy film having a different composition or content of the underlying layer and the upper layer is formed. Sputter targets with different compositions were used to obtain a specific film. Further, the oxygen content of the copper alloy film is in the film formation of the underlayer, and a mixed gas of Ar and 〇2 is used as the processing gas, and in the film formation of the upper layer, it is controlled by using only the Ar gas. The oxygen content in the underlayer is adjusted by changing the ratio of oxygen in the mixed gas. For example, the ratio of 〇2 in the treatment gas is taken as 1 〇 vol% for the case where 5 atom% of oxygen is contained in the underlayer. -26- 201042059 Other film forming conditions are as follows. . Back pressure: 1. 0x1 (less than T6Torr • Process air pressure: 2. 0x1 (Γ3 Tor r • • Process gas flow: 30sccm • Sputter power: 3. 2W/cm2 • Distance between poles: 50 mm • Substrate temperature: room temperature Q • Film formation temperature: room temperature The ICP emission spectroscopic analyzer is used as the composition of the copper alloy film formed as described above (manufactured by Shimadzu Corporation, Japan) The ICP emission spectroscopic analyzer "ICP-8 000" was quantitatively analyzed and confirmed. (Oxygen content in the underlayer and the upper layer) The oxygen content in each of the underlayer and the upper layer was measured by a high-frequency glow discharge spectrometer (GD-OES). The cerium (oxygen) content of each of the underlayer and the upper layer described in Tables 1 and 2 is based on the depth-direction concentration curve obtained by the above analysis, and the average of the film thicknesses of the underlying layers and the upper layer is calculated. Concentration content. As the sample according to the present invention, the oxygen content of the upper layer is less than 0. 05 atom% (refer to Tables 1 and 2) does not substantially contain oxygen. • (Measurement of the thickness of the upper layer and the base layer) The thickness of the upper layer and the base layer of the copper alloy film is such that the film surface direction (depth direction) of Cu can be observed perpendicularly to the surface 'other thickness -27- 201042059 degrees The measurement sample was measured by a Hitachi, Ltd., liberation-type transmission electron microscope, and the film thickness of each layer was measured from observation (magnification of 150,000 times) and projection of an arbitrary measurement field of view. The composition of the copper alloy film (the composition of the upper layer and the base layer, the oxygen content and the thickness) are shown in Tables 1 and 2. (Evaluation of Characteristics of Copper Alloy Film) Next, the sample obtained as described above was used as the measurement (1) the tightness of the copper alloy film and the glass substrate, and (2) the wet etching property. In addition, when measuring (3) film thickness unevenness (film thickness controllability) and (4) the resistivity of the copper alloy film, each characteristic measurement sample was produced and measured by the method described later. (1) Evaluation of the tightness with the glass substrate. Before and after the heat treatment (under vacuum, at 305 °C). The tightness of the copper alloy film of 5 hours was evaluated by a peel test through a tape. Specifically, the film-forming surface of the copper alloy is cut into a checkerboard shape of a lmm interval by a milling cutter. Next, a black polyester tape (product number 8422B) made by Sumitomo 3M was firmly attached to the film-forming surface, and the tape was peeled off at 60 ° while the tape was peeled off. The ratio of the entire compartment (membrane residual ratio) was determined without the number of compartments of the checkerboard stripped by the above tape. In the present embodiment, the peeling rate of the tape was determined to be less than 10%, and 10% or more was judged as X. -28- 201042059 (2) Evaluation of wet etching property" For the above samples, a copper alloy film was formed by photolithography, and a pattern of line and space having a width of 1 Ομηι was used, and a mixed acid etching solution was used ( Phosphoric acid: nitric acid: water volume ratio = 75 : 5 : 20 ) etching was performed, and the presence or absence of the residue was confirmed by observation with an optical microscope (observation magnification: 400 times). In the present embodiment, the residue was not observed by the optical microscope observation, and the residue was judged to be X. (3) Film thickness controllability In the present embodiment, the thickness of the copper alloy film is measured as follows (referred to as film thickness control property). First, a glass substrate was formed by using a polyimide film (5412 manufactured by Sumitomo 3, Ltd.) to cover a portion of the substrate, and then formed into a film by the above method to produce a film on the glass substrate. A copper alloy film of a portion of the copper alloy film and an unformed portion. Then, the polyimide film was peeled off, and a copper alloy film having a step was formed in the film as a sample for film thickness control measurement. For the sample (diameter: 100 mm), the thickness d (nm) from the center of the sample (thickness: 500 nm) at 25 mm was measured with a stylus type step ("DEKTAK II" manufactured by VEECO), and the film was calculated from the following formula. Thickness-distribution (%): film thickness distribution = { (500-d) / 5 00} χ 1 〇〇 -29 - 201042059 In the present embodiment, the thickness distribution is ±10. Those who are within 0% are evaluated as 〇, and those who exceed the range are evaluated as X. (4) Evaluation of electrical resistivity The electrical resistivity of the copper alloy film was calculated by the following formula. In the following formula, "film thickness" is a ruthenium measured by the above-described method, and "sheet resistance" is a ruthenium measured by a four-terminal needle method by cutting the sample into a size of 2 inches. Resistivity p = (sheet resistance 値) / (film thickness) In the present embodiment, a resistance of less than 40 μ Ω / cm was judged as ’ '4. 0 μ Q / c m or more is judged as X. However, as a total evaluation, the evaluation of the tightness of (1) with the glass substrate, (2) evaluation of wet etching property, (3) film thickness controllability, and (4) evaluation of resistivity are all judged as Hey, it is not the case that X is judged as X. The results are shown in Tables 3 and 4. -30- 201042059 [Table 1]
純Cu膜或Cu合金膜 試料 組成軻 上層 基底層 No. 0含有量 膜厚 0含有量 膜厚 (上層=下層) (原子%) (nm) (原子%) (nm) 1 純 Cu(500nm) 1層(0含有J 1<0.05) 2 純Cu <0. 05 450 5 50 3 純Cu <0. 05 450 20 50 4 純Cu <0. 05 450 40 50 5 Cu-0.05Ni <0. 05 450 5 50 6 Cu-0.2Ni <0. 05 450 5 50 7 Cu-0.4Ni <0. 05 450 5 50 8 Cu-2_0Ni <0. 05 450 5 50 9 Cu-0.2Ni <0. 05 499 5 1 10 Cu-0.2Ni <0. 05 495 5 5 11 Cu-0.2Ni <0. 05 400 5 100 12 Cu-0.2Ni <0· 05 350 5 150 13 Cu-0.2Ni <0. 05 450 0.1 50 14 Cu-0.2Ni <0. 05 450 0.5 50 15 Cu-0.2Ni <0. 05 450 4 50 16 Cu-0.2Ni <0. 05 450 40 50 17 Cu-0.2A1 <0. 05 450 5 50 18 Cu~0.2Zn <0. 05 450 5 50 19 Cu-0.2Mn <0· 05 450 5 50 20 Cu-〇.2Fe <0. 05 450 5 50 21 Cu - 0.2Ge <0. 05 450 5 50 22 Cu-0.2Hf <0. 05 450 5 50 23 Cu~0.2W <0. 05 450 5 50 24 Cu-0.2Nb <0. 05 450 5 50 25 Cu - 0.2M〇 <0. 05 450 5 50 26 Cu-0.1Ni-0.1Al <0. 05 450 5 50 27 Cu-O.IN 卜 O.lZn <0. 05 450 5 50 28 Cu-0.1Ni-0.1Hf <0· 05 450 5 50 29 Cu-0.1Ni-0.1Ge <0. 05 450 5 50 30 Cu-0_lZnH3.1Hf <0_ 05 450 5 50 31 Cu-0.1M〇-0.1W <0. 05 450 5 50 32 Cu-〇.5Bi <0· 05 450 5 50 成分單位:原子% -31 - 201042059 【表2】 試料 No. 純Cu膜或Cu合金膜 上層 基底層 組成本1 0含有量 (原子%) 膜厚 ㈣ 組成w 0含有量 (原子%) 膜厚 ㈣ 33 純Cu <0_ 05 450 Cu-2.0Ni 5 50 34 純Cu <0. 05 450 Cu-2.0A1 5 50 35 純Cu 〈0. 05 450 Cu-2.0Mn 5 50 36 Cu-0.3Ni 〈0. 05 450 Cu-2.0Ni 5 50 37 Cu-0.2A1 <0. 05 450 Cu-2.0A1 5 50 38 Cu-〇.2Mn <0. 05 450 Cu - 2·0Μη 5 50 39 Cu-〇.2Ge <0. 05 450 Cu-2.0Ge 5 50 40 Cu-0.1Ni-0.1Al <0. 05 450 Cu-0.8Ni-l.5Al 5 50 41 Cu-O.IN 卜 O.lGe <0. 05 450 Cu-l.lNi-l.5Ge 5 50 42 Cu-0.1Ni-0.1Zn <0. 05 450 Cu-l.2Ni-l.4Zn 5 50 43 Cu-0.4Ni <0· 05 450 Cu-2.0A1 5 50 44 Cu-0.4Ni <0. 05 450 Cu-0.8Ni-l.5Al 5 50 成分單位:原子% -32- 201042059 【表3】Pure Cu film or Cu alloy film sample composition 轲 upper layer base layer No. 0 content film thickness 0 film thickness (upper layer = lower layer) (atomic %) (nm) (atomic %) (nm) 1 pure Cu (500 nm) 1 layer (0 contains J 1 < 0.05) 2 pure Cu < 0. 05 450 5 50 3 pure Cu < 0. 05 450 20 50 4 pure Cu < 0. 05 450 40 50 5 Cu-0.05Ni < 0. 05 450 5 50 6 Cu-0.2Ni <0. 05 450 5 50 7 Cu-0.4Ni < 0. 05 450 5 50 8 Cu-2_0Ni < 0. 05 450 5 50 9 Cu-0.2Ni < ;0. 05 499 5 1 10 Cu-0.2Ni <0. 05 495 5 5 11 Cu-0.2Ni < 0. 05 400 5 100 12 Cu-0.2Ni <0· 05 350 5 150 13 Cu-0.2 Ni < 0. 05 450 0.1 50 14 Cu-0.2Ni < 0. 05 450 0.5 50 15 Cu-0.2Ni < 0. 05 450 4 50 16 Cu-0.2Ni < 0. 05 450 40 50 17 Cu -0.2A1 <0. 05 450 5 50 18 Cu~0.2Zn < 0. 05 450 5 50 19 Cu-0.2Mn <0· 05 450 5 50 20 Cu-〇.2Fe < 0. 05 450 5 50 21 Cu - 0.2Ge < 0. 05 450 5 50 22 Cu-0.2Hf < 0. 05 450 5 50 23 Cu~0.2W < 0. 05 450 5 50 24 Cu-0.2Nb < 0. 05 450 5 50 25 Cu - 0.2M 〇 < 0. 05 450 5 50 26 Cu-0.1Ni-0.1Al < 0. 05 450 5 5 0 27 Cu-O.IN 卜O.lZn <0. 05 450 5 50 28 Cu-0.1Ni-0.1Hf <0· 05 450 5 50 29 Cu-0.1Ni-0.1Ge < 0. 05 450 5 50 30 Cu-0_lZnH3.1Hf <0_ 05 450 5 50 31 Cu-0.1M〇-0.1W <0. 05 450 5 50 32 Cu-〇.5Bi <0· 05 450 5 50 Component unit: atomic % -31 - 201042059 [Table 2] Sample No. Pure Cu film or Cu alloy film Upper layer base layer composition Ben 10 content (atomic %) Film thickness (4) Composition w 0 content (atomic %) Film thickness (4) 33 Pure Cu < 0_ 05 450 Cu-2.0Ni 5 50 34 Pure Cu < 0. 05 450 Cu-2.0A1 5 50 35 Pure Cu <0. 05 450 Cu-2.0Mn 5 50 36 Cu-0.3Ni <0. 05 450 Cu -2.0Ni 5 50 37 Cu-0.2A1 < 0. 05 450 Cu-2.0A1 5 50 38 Cu-〇.2Mn < 05. 05 450 Cu - 2·0Μη 5 50 39 Cu-〇.2Ge <0 05 450 Cu-2.0Ge 5 50 40 Cu-0.1Ni-0.1Al < 0. 05 450 Cu-0.8Ni-l.5Al 5 50 41 Cu-O.IN Bu O.lGe < 0. 05 450 Cu -l.lNi-l.5Ge 5 50 42 Cu-0.1Ni-0.1Zn < 0. 05 450 Cu-l.2Ni-l.4Zn 5 50 43 Cu-0.4Ni <0· 05 450 Cu-2.0A1 5 50 44 Cu-0.4Ni < 0. 05 450 Cu-0.8Ni-l.5Al 5 50 Component unit: Atomic % -32- 201042059 【table 3】
緊密性 電阻率 濕蝕刻性 膜厚控制 性 總合 試料 熱處理前 判 熱處理後 判 熱處理後 判 殘渣之 判 膜厚分布 判 No. 之剝離率 之剝離率 定 之電阻率 定 定 (%) 定 離 (%) 定 (%) (μ U/cm) 1 100 X 100 X 2.0 〇 脏 /»»' 〇 2.0 〇 X 2 68 X 63 X 2.4 〇 値 〇 4.2 〇 X 3 8 〇 9 〇 3.6 〇 有 X 10.2 X X 4 86 X 92 X 4.2 X 有 X 12.4 X X 5 80 X 81 X 2.4 〇 Μ …、 〇 4.4 〇 X 6 2 〇 0 〇 2.6 〇 Μ /、、、 〇 4.3 〇 〇 7 5 〇 0 〇 2.8 〇 脏 〇 4.4 〇 〇 8 3 〇 0 〇 4.2 X 姐 〇 4.5 〇 X 9 18 X 13 X 2.3 〇 無 〇 2.2 〇 X 10 2 〇 0 〇 2.3 〇 姐 〇 2.3 〇 〇 11 4 〇 0 〇 2.8 〇 無 〇 6.7 〇 〇 12 3 〇 0 〇 4.3 X 脏 y»、、 〇 10.2 X X 13 31 X 23 X 2.2 〇 钲 〇 3.6 〇 X 14 7 〇 8 〇 2.4 〇 脏 〇 4.4 〇 〇 15 4 〇 0 〇 3.2 〇 辆 川·' 〇 4.5 〇 〇 16 3 〇 0 〇 4.9 X 有 X 1L9 X X 17 7 〇 5 〇 3.0 〇 Μ /»、' 〇 4.5 〇 〇 18 7 〇 6 〇 3.2 〇 〇 4.6 〇 〇 19 3 〇 0 〇 2.9 〇 钿 /*\χ 〇 4.1 〇 〇 20 5 〇 0 〇 3.1 〇 钿 〇 4.9 〇 〇 21 4 〇 0 〇 3.2 〇 無 〇 4.6 〇 〇 22 4 〇 2 〇 3.3 〇 姐 八'·» 〇 4.3 〇 〇 23 5 〇 3 〇 3.1 〇 〇 4.6 〇 〇 24 4 〇 2 〇 3.2 〇 赃 •M、、 〇 4.8 〇 〇 25 6 〇 4 〇 3.1 〇 無 〇 4.5 〇 〇 26 4 〇 2 〇 2.8 〇 無 〇 4.4 〇 〇 27 5 〇 2 〇 2.7 〇 魅 〇 4.9 〇 〇 28 2 〇 3 〇 2.9 〇 〇 4.6 〇 〇 29 3 〇 2 〇 3.0 〇 無 〇 4.3 〇 〇 30 5 〇 3 〇 3.1 〇 無 〇 4.7 〇 〇 31 3 〇 2 〇 3.2 〇 無 〇 4.5 〇 〇 32 92 X 100 X 3.3 X i X 5.1 X X -33- 201042059 【表4】 緊密件 電阻率 濕蝕刻性 膜厚控制 熱處理前 判 熱處理後 判 熱處理後 判 殘渣之 判 膜厚分布 判 總百 No. 之剝離率 之剝離率 之電阻率 有無 (%) 評估 (%) 定 (%) 定 {μ Q/cm) 定 定 定 33 4 〇 0 0 2.6 〇 無 〇 3.9 〇 〇 34 3 〇 0 〇 2.7 〇 無 〇 4.2 〇 〇 35 3 〇 0 0 2.9 〇 無 〇 4.3 〇 〇 36 2 〇 0 0 2.8 〇 4& 川、 〇 4.1 〇 〇 37 4 〇 0 〇 3.2 〇 無 〇 4.2 〇 〇 38 3 〇 0 〇 3.3 〇 無 〇 4.1 〇 〇 39 3 〇 0 〇 3.3 〇 無 〇 4.4 〇 〇 40 3 〇 0 0 3.3 〇 Μ 〇 4.3 〇 〇 41 4 〇 0 〇 3.4 〇 無 〇 4.3 〇 〇 42 5 〇 0 〇 3.2 〇 無 〇 4.1 〇 〇 43 4 〇 0 〇 3.2 〇 無 〇 4.2 〇 〇 44 4 〇 0 〇 3.3 〇 赃 〇 4.3 〇 〇 表 3 之 No.6、7、1〇、11、I4、15、I7 〜31、表 4 之Compact Resistivity Wet Etching Film Thickness Controlled General Test Sample Heat Treatment Before Heat Treatment After Judging Heat Treatment, Judgment of Residue Thickness Distribution No. Peel Rate of Peel Rate Determined Resistivity (%) Deviation (%) ) 定 (%) (μ U/cm) 1 100 X 100 X 2.0 Dirty /»»' 〇2.0 〇X 2 68 X 63 X 2.4 〇値〇4.2 〇X 3 8 〇9 〇3.6 〇X 10.2 XX 4 86 X 92 X 4.2 X with X 12.4 XX 5 80 X 81 X 2.4 〇Μ ..., 〇 4.4 〇 X 6 2 〇 0 〇 2.6 〇Μ /,,, 〇4.3 〇〇7 5 〇0 〇2.8 〇 〇 4.4 〇〇8 3 〇0 〇4.2 X Sister 〇4.5 〇X 9 18 X 13 X 2.3 〇No 〇2.2 〇X 10 2 〇0 〇2.3 〇Sister 〇2.3 〇〇11 4 〇0 〇2.8 〇No 6.7 〇 〇12 3 〇0 〇4.3 X Dirty y»,, 〇10.2 XX 13 31 X 23 X 2.2 〇钲〇3.6 〇X 14 7 〇8 〇2.4 〇 〇 4.4 〇〇15 4 〇0 〇3.2 〇车川· ' 〇 4.5 〇〇 16 3 〇 0 〇 4.9 X with X 1L9 XX 17 7 〇 5 〇 3.0 〇Μ /», ' 〇 4.5 〇〇 18 7 〇 6 〇 3.2 〇4.6 〇〇19 3 〇0 〇2.9 〇钿/*\χ 〇4.1 〇〇20 5 〇0 〇3.1 〇钿〇4.9 〇〇21 4 〇0 〇3.2 〇No 〇4.6 〇〇22 4 〇2 〇3.3 〇姐八'·» 〇4.3 〇〇23 5 〇3 〇3.1 〇〇4.6 〇〇24 4 〇2 〇3.2 〇赃•M,, 〇4.8 〇〇25 6 〇4 〇3.1 〇无〇4.5 〇〇26 4 〇2 〇2.8 〇无〇4.4 〇〇27 5 〇2 〇2.7 〇魅〇4.9 〇〇28 2 〇3 〇2.9 〇〇4.6 〇〇29 3 〇2 〇3.0 〇No 〇4.3 〇〇30 5 〇3 〇3.1 〇无〇4.7 〇〇31 3 〇2 〇3.2 〇无〇4.5 〇〇32 92 X 100 X 3.3 X i X 5.1 XX -33- 201042059 [Table 4] Tight part resistivity wet etching film thickness control heat treatment After the heat treatment, the thickness of the film is judged by the heat treatment, and the thickness of the film is determined. (%) Evaluation (%) 33 4 〇0 0 2.6 〇无〇3.9 〇〇34 3 〇0 〇2.7 〇无〇4.2 〇〇35 3 〇0 0 2.9 〇无〇4.3 〇〇36 2 〇0 0 2.8 〇4& Sichuan, 〇4.1 〇〇37 4 〇0 〇3.2 〇无〇4.2 〇〇38 3 〇0 〇3.3 〇No 〇 4.1 〇〇39 3 〇0 〇3.3 〇无〇4.4 〇〇40 3 〇0 0 3.3 〇Μ 〇4.3 〇〇41 4 〇0 〇3.4 〇No 〇4.3 〇〇42 5 〇0 〇3.2 〇No 〇4.1 〇 〇43 4 〇0 〇3.2 〇无〇4.2 〇〇44 4 〇0 〇3.3 〇赃〇4.3 Table No.6, 7, 1〇, 11, I4, 15, I7~31, Table 4
No · 3 3〜44係均完全滿足本發明之要件’特別是緊密性提 昇元件之含有量乃從電阻率降低化的觀點’滿足理想要件 之銅合金膜,對於緊密性,電阻率’及濕蝕刻性優越,膜 厚控制性亦爲良好。其中表4之N 〇 . 3 3〜4 4係上層與基底 層之合金組成乃不同的例,但均滿足本發明之要件之故’ 得到所期望之特性。 對此,No.l〜4、5、8、9、12、13、16、32 係未滿 足本發明所規定之任一要件的例,或未滿足本發明之理想 要件的例。 表3之No.l〜4係使用純Cu的例。詳細而言,單層 之純Cu膜的No.l係剝離率爲100%,與玻璃基板的緊密 性不佳。N 〇 . 2係於基底層含有5原子%氧的例’但因未含 有特定之合金元素之故,與玻璃基板的緊密性不佳。另一 方面,N 〇 · 4係於基底層含有多的4 0原子%氧的例’即使 未含有特定之合金元素,比較於No.2,除了剝離率上升 -34- 201042059 之外,濕蝕刻性或膜厚控制性亦下降。No.3係未含有特 定之合金元素之故,對於濕蝕刻特性及膜厚控制性不佳。 ' No . 5係Ni量少的例,與玻璃基板的緊密性不佳。另 • 一方面,No. 8係Ni量多的例,熱處理後之電阻率變高。The No. 3 3 to 44 series completely satisfy the requirements of the present invention. In particular, the content of the tightness-improving element is from the viewpoint of lowering the resistivity, and the copper alloy film satisfying the ideal requirements, for the tightness, the resistivity and the wetness Excellent etchability and good film thickness controllability. Among them, N 〇 . 3 3 to 4 4 of Table 4 are different examples of the alloy composition of the upper layer and the base layer, but both satisfy the requirements of the present invention to obtain desired characteristics. On the other hand, No. 1 to 4, 5, 8, 9, 12, 13, 16, 32 are examples which do not satisfy any of the requirements specified in the present invention, or examples which do not satisfy the ideal of the present invention. Examples of Nos. 1 to 4 in Table 3 are examples in which pure Cu is used. Specifically, the No. 1 peeling rate of the single-layer pure Cu film was 100%, and the adhesion to the glass substrate was not good. N 〇 . 2 is an example in which the underlying layer contains 5 at% of oxygen. However, since it does not contain a specific alloying element, the adhesion to the glass substrate is not good. On the other hand, N 〇·4 is an example in which the base layer contains a large amount of 40% by atom of oxygen, even if it does not contain a specific alloying element, compared with No. 2, except for the peeling rate increase of -34 to 201042059, wet etching Sex or film thickness control also decreased. No. 3 does not contain a specific alloying element, and has poor wet etching characteristics and film thickness controllability. 'No. 5 is an example in which the amount of Ni is small, and the adhesion to the glass substrate is not good. On the other hand, in the case of No. 8 which has a large amount of Ni, the electrical resistivity after heat treatment becomes high.
No.9係基底層爲薄的例,與玻璃基板的緊密性不佳 。另一方面,No.12係基底層爲厚的例,對於電阻率及膜 厚控制性不佳。 Q No. 13係基底層之氧含量少的例,與玻璃基板的緊密 性不佳。另一方面,No.16係基底層之氧含有量多的例, 對於電阻率,濕蝕刻特性及膜厚控制性不佳。 Νο·32係含有在本發明未規定之合金元素的Bi的例 - ,不論於基底層,含有特定量之氧含有量,適當地控制其 . 厚度’而對於與玻璃基板之緊密性,電阻率,濕蝕刻性及 膜厚控制性不佳。 實施例1-2 在本實施例中,檢討基底層中之合金元素的種類及添 加量’對於緊密性所帶來的影響。在本實施例中.,與實施 例1-1同樣作爲,製作銅合金基底層(膜厚:5〇nm),與 基底層同一成分組成之銅合金上層(膜厚:2 5〇nm )所成 ' 之銅合金膜的試料,及作爲比較用,膜厚3 00ηπι之純Cu - 膜的試料。銅合金膜之成膜係與實施例1 -1同樣,使用於 純Cu濺鍍標靶上,設置含有Cu以外之元素(Ni、A1、 Μη、W、Zn )的晶片之濺鍍標靶,對於Ca係使用以溶製 -35- 201042059 製作特定組成之C u - C a合金之擺鍍標祀。另外,對於銅合 金膜之氧的添加,係經由控制使用於上述成膜時之濺鍍氣 體而進行。更詳細而言,係對於基底層部分之成膜,使用 於Ar中含有5體積%02之Ar+5體積%02混合氣體,對於 上層部分的成膜,使用純Ar氣體。然而,Ar氣體與〇2 氣體之混合比率係由Ar氣體與02氣體之分壓而設定,分 壓係經由調整此等之流量比而控制。將在本實施例之02 濃度,與實施例1 -1同樣地,經由以高頻率輝光放電發光 分光儀(G D - Ο E S )分析之時而測定的結果,上層的Ο 2濃 度係0.02原子%,基底層之02濃度係2.9原子%。 對於成膜後(as-depo狀態)之試料,及在成膜後, 在真空環境下進行350 °Cx3 0mi η之熱處理的試料,與實施 例1 -1同樣作爲評估緊密性。然而,將只對於Ζη剝下膠 帶的角度作爲90° 。將結果示於圖1〜3(成膜後),及圖 4~6(熱處理後)。 由圖1〜6,了解到伴隨著對於基底層之合金元素添加 量的增加,銅合金膜與玻璃基板的緊密性則提昇’另外經 由熱處理,緊密性更加提昇。特別是’在添加Ni、Α1、 Μη、Ca、及Zn的例中,於熱處理後,可達成略100%之 緊密率。 實施例1-3 在本實施例中’檢討基底層之膜厚’對於緊密性所帶 來的影響。試料之製作係將基底層與上層’均作爲Cu-2 -36- 201042059 原子%Zn,將基底層之膜厚變化在1〇~2〇〇nm之範圍以外 ,係與實施例1 - 2同樣作爲。另外,作爲比較用,亦製作 基底層之成膜時’亦使用純Ar氣體,於基底層未含有氧 的試料。之後,對於成膜後之試料,與實施例丨_ i同樣作 爲評估緊密性。將結果示於圖7。 由圖7 ’ 了解到隨著基底層之膜厚增加,有著緊密性 提昇之傾向。另外,了解到緊密性之提昇效果係在膜厚爲 〇 1 OOnm程度產生飽和,即使增加至丨〇〇nm以上,緊密性 幾乎未有變化。 實施例1-4 -. 在本實施例中’檢討處理氣體中之氧濃度,對於緊密 - 性所帶來的影響’以及處理氣體中之氧濃度與基底層中之 氧濃度的關係。試料之製作係將基底層與上層,均作爲 Cu-2原子%Zn ’將基底層部分進行成膜時之Ar中的〇2濃 Ο 度變化以外’係與實施例1 -2同樣作爲。對於成膜後之試 料而言’與實施例1 -1同樣作爲評估緊密性。另外,在將 基底層部分進行成膜時之Ar中的〇2濃度變化之各個情況 ,將基底層中之〇2濃度,與實施例1 - 1同樣地,以高頻 率輝光放電發光分光儀分析。將結果示於圖8及圖9。 ' 經由圖9,了解到伴隨著基底層成膜時之Ar中的〇2 ' 濃度之增加,基底層中之〇2含有量則增加,經由圖8, 了解到伴隨著基底層成膜時之Ar中的〇2濃度之增加,銅 合金膜與玻璃基板之緊密性則提升。 -37- 201042059 實施例2 -1 (試料之製作) 在本實施例中,製作於半導體層上,具有表5~7所示 之各種純Cu膜或銅合金膜(以下,有以銅合金膜所代表 之情況)之試料。 詳細而言’本實施例之銅合金膜係將氧含有量与〇. 1 原子%作爲界線’由基底層(從半導體層與銅合金膜之界面 至朝銅合金膜之表面l〇nm爲止的層,或至50nm爲止的 層),上層(從上述基底層至銅合金膜的表面爲止的層)加 以構成,含於上述基底層及上層之氧量及合金組成係如表 5~7所示。其中,表5係上層與基底層之合金組成(種類 及含有量)爲相同的例,對於組成(上層=下層)的欄位 ,顯示銅合金膜全體之組成。例如,表5中,N 〇_ 4 (上層 =下層= Cu-0.05Ni)係於銅合金膜全體,含有Cu-0.05 原子%Ni的意思。對於表6及表7,係顯示上層與基底層 之合金組成(種類及/或含有量)爲不同的例(除表6之 No-53 ) ’其中表7係上層與基底層之各層的組成(種類 及/或含有量)爲更不同的例。對於表7係顯示從最右欄 位(基底層)朝最左欄位(上層),從界面至銅合金膜表面的 層構成,例如,表7之N 〇 · 7 1係從界面朝銅合金膜表面, 依序5原子%氧含有Cu-2_2原子%出(l〇nm) ->5原子。/。 氧含有Cu-0.3原子%1^(4〇11111)(以上、基底層)—Cu-0.3原子%Ni ( 300nm)之層積構成所成。 -38- 201042059 試料之詳細製作方法係如以下。 首先,如以下作爲’於玻璃基板上’將半導體層進行 成膜。首先,經由使用ULVAC公司製群集式CVD裝置的 . 電漿CVD法,於玻璃基板(日本Corning公司製#1737 ,直徑100mm,厚度〇.7mm)上’形成膜厚約200nm之 氮化矽膜(SiN),作爲閘極絕緣膜。電漿CVD法之成膜溫 度係約3 50°C。接著,經由使用與上述相同CVD裝置之 0 電漿CVD法,依序將膜厚約200nm之未摻雜非晶質矽膜 [a-Si ( i )],及摻雜膜厚約40nm之不純物(P)的低阻抗非 晶質矽膜[a-Si ( η )]進行成膜。其低阻抗非晶質矽膜[a-Si ( η)]係經由將SiH4及ΡΗ3作爲原料之電漿CVD之時 • 而形成。 接著,使用日本島津製作所製之濺鍍裝置(商品名: HSR 542 ),由如以下作爲,於半導體層上,將表5~7所 示之各種組成之銅合金膜進行成膜。 〇 首先,銅合金膜之組成係(i )對於純CU膜之成膜係 使用Cu濺鍍標靶、(ii)對於含有各種合金元素之銅合 金膜的成膜,係於Cu濺鑛標靶上,使用設置含有Cu以 外元素之晶片的濺鏟標靶而控制。將基底層及上層爲相同 組成之銅合金膜進行成膜之情況,係使用相同濺鍍標靶, ' 另一方,將基底層及上層之組成或含有量不同之銅合金膜 進行成膜之情況,係呈得到特定的膜地,使用不同組成之 濺鍍標靶。 另外’銅合金膜之氧含有量係在基底層之成膜中,將 -39- 201042059The No. 9-based underlayer is thin, and the adhesion to the glass substrate is not good. On the other hand, the No. 12-based underlayer was thick, and the controllability of resistivity and film thickness was poor. The Q No. 13-based base layer has a low oxygen content and is inferior to the glass substrate. On the other hand, in the case where the No. 16-based underlayer has a large oxygen content, the resistivity, the wet etching property, and the film thickness controllability are not good. Νο·32 is an example of Bi containing an alloying element not defined in the present invention, and contains a specific amount of oxygen content in the underlying layer, and appropriately controls the thickness thereof. For the tightness to the glass substrate, the resistivity The wet etching property and the film thickness controllability are not good. [Example 1-2] In this example, the influence of the kind and amount of alloying elements in the underlayer on the tightness was examined. In the present Example, a copper alloy underlayer (film thickness: 5 Å) was produced in the same manner as in Example 1-1, and a copper alloy upper layer (film thickness: 25 〇 nm) having the same composition as the underlying layer was produced. A sample of a copper alloy film of ', and a sample of a pure Cu-film having a thickness of 300 ππι for comparison. In the same manner as in Example 1-1, the film formation system of the copper alloy film was used for a sputtering target of a wafer containing elements other than Cu (Ni, A1, Μ, W, Zn) on a pure Cu sputtering target. For the Ca system, a pendulum plating plate of a C u -C a alloy having a specific composition is prepared by dissolving -35- 201042059. Further, the addition of oxygen to the copper alloy film is carried out by controlling the sputtering gas used in the film formation described above. More specifically, for the film formation of the underlayer portion, an Ar + 5 vol% 02 mixed gas containing 5 vol% of 02 in Ar was used, and a pure Ar gas was used for film formation of the upper layer. However, the mixing ratio of the Ar gas to the 〇2 gas is set by the partial pressure of the Ar gas and the 02 gas, and the partial pressure is controlled by adjusting the flow ratio of these. In the same manner as in Example 1-1, the concentration of 02 in the present example was measured by a high-frequency glow discharge luminescence spectrometer (GD - Ο ES ), and the concentration of 上 2 in the upper layer was 0.02 at%. The concentration of 02 in the basal layer was 2.9 atom%. The sample after the film formation (as-depo state) and the sample subjected to heat treatment at 350 °C × 30 μm in a vacuum atmosphere after film formation were evaluated for tightness in the same manner as in Example 1-1. However, the angle at which the tape is peeled off only for Ζη is 90°. The results are shown in Figures 1 to 3 (after film formation) and Figures 4 to 6 (after heat treatment). From Figs. 1 to 6, it is understood that as the amount of the alloying element added to the underlayer increases, the tightness of the copper alloy film to the glass substrate increases. Further, the heat resistance is further improved. In particular, in the case of adding Ni, Α1, Μη, Ca, and Zn, a slight 100% tightness ratio can be achieved after the heat treatment. Example 1-3 In this example, the effect of the film thickness of the underlayer on the tightness was examined. In the preparation of the sample, the base layer and the upper layer were both made of Cu-2 -36-201042059 atom% Zn, and the thickness of the base layer was changed to be outside the range of 1 〇 to 2 〇〇 nm, which was the same as in Example 1-2. As. Further, for comparison, when a film of the underlayer was formed, a sample in which pure Ar gas was used and oxygen was not contained in the underlayer was also produced. Thereafter, the sample after film formation was evaluated as tightness as in Example 丨_i. The results are shown in Fig. 7. It is understood from Fig. 7' that as the film thickness of the basal layer increases, there is a tendency to increase tightness. In addition, it has been found that the effect of improving the tightness is saturated at a film thickness of 〇100 nm, and the tightness is hardly changed even if it is increased to 丨〇〇nm or more. Embodiment 1-4 - In the present embodiment, 'the effect of the oxygen concentration in the process gas on the tightness and the oxygen concentration in the process gas and the oxygen concentration in the underlayer are evaluated. In the production of the sample, the base layer and the upper layer were treated in the same manner as in Example 1-2 except that Cu-2 atomic % Zn ' was used to form a film in the base layer portion. For the sample after film formation, the evaluation was as similar as in Example 1-1. Further, in the case where the concentration of 〇2 in Ar in the formation of the underlayer portion was changed, the concentration of ruthenium 2 in the underlayer was analyzed by a high-frequency glow discharge luminescence spectrometer in the same manner as in Example 1-1. . The results are shown in FIGS. 8 and 9. Through FIG. 9, it is understood that the content of 〇2 in the basal layer increases with an increase in the concentration of 〇2' in Ar when the underlayer is formed, and it is understood that the film formation of the basal layer is accompanied by FIG. The increase in the concentration of ruthenium 2 in Ar increases the tightness of the copper alloy film to the glass substrate. -37-201042059 Example 2 -1 (Production of sample) In the present embodiment, it was produced on a semiconductor layer and had various pure Cu films or copper alloy films shown in Tables 5 to 7 (hereinafter, there is a copper alloy film). The sample represented by the case). In detail, the copper alloy film of the present embodiment has an oxygen content of 〇. 1 atom% as a boundary line from the base layer (from the interface between the semiconductor layer and the copper alloy film to the surface of the copper alloy film l〇nm). a layer or a layer up to 50 nm), an upper layer (a layer from the base layer to the surface of the copper alloy film), and oxygen content and alloy composition contained in the underlayer and the upper layer are as shown in Tables 5 to 7. . Here, Table 5 shows an example in which the alloy composition (type and content) of the upper layer and the base layer are the same, and the composition of the composition (upper layer = lower layer) shows the composition of the entire copper alloy film. For example, in Table 5, N 〇 _ 4 (upper layer = lower layer = Cu-0.05Ni) is based on the entire copper alloy film and contains Cu - 0.05 atomic % Ni. Tables 6 and 7 show examples in which the alloy composition (type and/or content) of the upper layer and the base layer are different (except Table No. 53). [Table 7 is the composition of the layers of the upper layer and the base layer. (Type and/or content) are more different examples. For Table 7, the layer structure from the rightmost column (base layer) to the leftmost column (upper layer) and from the interface to the surface of the copper alloy film is shown. For example, the N 〇 · 7 1 of Table 7 is from the interface toward the copper alloy. On the surface of the film, 5 atom% of oxygen in this order contains Cu-2_2 atomic % (l 〇 nm) -> 5 atoms. /. Oxygen contains a layered composition of Cu-0.3 at% (1 〇 11111) (above, basal layer) - Cu-0.3 at% Ni (300 nm). -38- 201042059 The detailed production method of the sample is as follows. First, the semiconductor layer is formed into a film as 'on the glass substrate' as follows. First, a tantalum nitride film having a film thickness of about 200 nm was formed on a glass substrate (manufactured by Japan Corning Corporation #1737, diameter: 100 mm, thickness: 77 mm) by a plasma CVD method using a cluster CVD apparatus manufactured by ULVAC Corporation. SiN) acts as a gate insulating film. The film formation temperature of the plasma CVD method is about 3 50 °C. Next, an undoped amorphous ruthenium film [a-Si(i)] having a film thickness of about 200 nm and an impurity having a doped film thickness of about 40 nm are sequentially passed through a 0-plasma CVD method using the same CVD apparatus as described above. The low-impedance amorphous ruthenium film [a-Si ( η )] of (P) is formed into a film. The low-impedance amorphous ruthenium film [a-Si ( η)] is formed by plasma CVD when SiH4 and yttrium 3 are used as raw materials. Then, a sputtering apparatus (trade name: HSR 542) manufactured by Shimadzu Corporation of Japan was used to form a copper alloy film of various compositions shown in Tables 5 to 7 on the semiconductor layer as follows. 〇 First, the composition of the copper alloy film (i) uses a Cu sputtering target for the film formation of the pure CU film, (ii) the film formation of the copper alloy film containing various alloying elements, and is attached to the Cu splash target. In the above, it is controlled by using a spatter target which is provided with a wafer containing an element other than Cu. When a copper alloy film having the same composition of the base layer and the upper layer is formed into a film, the same sputtering target is used, and the other side is formed by forming a copper alloy film having a different composition or content of the base layer and the upper layer. , to obtain a specific film, using a different composition of the sputtering target. In addition, the oxygen content of the copper alloy film is in the film formation of the base layer, and will be -39- 201042059
Ar與〇2之混合氣體作爲處理氣體而使用,在上層之成膜 中,經由只使用Ar氣體之時而控制。基底層中之氧含有 量係經由變更佔混合氣體之氧氣的比率而加以調整。例如 ,對於含有5原子%氧於基底層時,將處理氣體中的02 之比率作爲〗0體積%。 其他的成膜條件係如以下。 •背壓:1.0x1 〇'6Torr 以下 •處理氣壓:2.0x1 (T3Torr •處理氣體的流量:30sccm .濺鍍功率:3.2W/cm2 •極間距離:5 0 m m •基板溫度:室溫 •成膜溫度:室溫 由上述作爲所成膜之銅合金膜的組成係使用ICP發光 分光分析裝置(日本島津製作所製之ICP發光分光分析裝 置「ICP-8 000型」,進行定量分析而加以確認。 (基底層及上層之氧含有量) 含於基底層及上層之各氧含有量係經由以高頻率輝光 放電發光分光儀(GD-OES )分析之時而測定。記載於表 5 ~7之各基底層及上層的〇(氧)含有量係將經由上述分 析所得到之深度分向濃度曲線爲依據,算出含於各基底層 及上層的膜厚中之平均濃度含有量者。如根據本發明,任 何試料,上層之氧含有量係未達〇 · 0 5原子。/。(參照表5〜7) -40 - 201042059 ,實質上未含有氧。 ' (上層及基底層之厚度測定) • 銅合金膜之上層及基底層之厚度係呈對於Cu的膜面 方向(深度方向)而言’可觀察垂直的面地,另外製作厚 度測定用試料,使用曰本曰立製作所致電解放出型透過型 電子顯微鏡,從觀察(倍率1 5萬倍)·投影任意的測定 0 視野之照片,測定各層的膜厚。 將銅合金膜之構成(上層及基底層的組成,氧含有量 及厚度),彙整示於表5〜7。 . (銅合金膜之特性評估) 接著,使用如上述作爲所得到之試料,由以下作爲測 定(1 )銅合金膜與半導體層之緊密性、及(2 )濕蝕刻性 〇 ❹ (1)與半導體層之緊密性的評估 將熱處理前及熱處理後(真空環境下、以350 °C進行 〇·5小時)之銅合金膜的緊密性,由經由膠帶之剝離試驗 進行評估。詳細而言,於銅合金之成膜表面,以銑刀切成 • 1 tnm間隔之棋盤格狀。接著,將日本住友3 Μ製黑色聚酯 - 膠帶(製品編號8422Β ),牢固地貼合於上述成膜表面上 ’將上述膠帶之剝下角度保持成60。之同時,一舉將上 述膠帶剝下’計算未經由上述膠帶而剝離之棋盤格之區隔 -41 - 201042059 數,求得與全區隔之比率(膜殘存率)。然而 果係應進行亦包含經由Cu的成膜分之不均的 3分實施之結果的平均値。 在本實施例中,將經由膠帶之剝離率乃未 定爲〇,將20%以上者判定爲X。 (2 )濕蝕刻性之評估 對於上述試料而言,經由光微影法’將銅 爲具有1 Ομιη寬度之線與空間之圖案後,使用 (磷酸:硝酸:水的體積比=7 5 : 5 : 2 0 )進 由光學顯微鏡之觀察(觀察倍率:400倍)確 無。 在本實施例中,將在上述光學顯微鏡觀察 者判定爲◦,將看到殘渣者判定爲χ。 將此等結果,彙整示於表8及表9。 ,所式的結 評估,顯示 達20%者判 合金膜形成 混酸鈾刻液 行蝕刻,經 認殘渣之有 未看到殘渣 -42 - 201042059 【表5】 ΟThe mixed gas of Ar and 〇2 is used as a processing gas, and is controlled by the time when only Ar gas is used in the film formation of the upper layer. The oxygen content in the underlayer is adjusted by changing the ratio of oxygen in the mixed gas. For example, when 5 atom% of oxygen is contained in the underlayer, the ratio of 02 in the processing gas is taken as 0% by volume. Other film forming conditions are as follows. • Back pressure: 1.0x1 〇 '6 Torr or less • Process air pressure: 2.0x1 (T3Torr • Flow rate of process gas: 30sccm. Sputter power: 3.2W/cm2 • Distance between poles: 50 mm • Substrate temperature: room temperature • Film temperature: room temperature The ICP emission spectroscopic analyzer (ICP-8 000 type ICP emission spectrometer manufactured by Shimadzu Corporation) was used for the quantitative analysis of the composition of the copper alloy film to be formed. (Oxygen content in the underlayer and the upper layer) The oxygen content in each of the underlayer and the upper layer is measured by a high-frequency glow discharge luminescence spectrometer (GD-OES), and is described in Tables 5 to 7. The amount of cerium (oxygen) in the underlayer and the upper layer is calculated based on the depth-divided concentration curve obtained by the above analysis, and the average concentration of the film contained in each of the underlayer and the upper layer is calculated. For any sample, the oxygen content of the upper layer is less than 〇·0 5 atoms./ (Refer to Table 5~7) -40 - 201042059, which does not contain oxygen. ' (Measurement of thickness of upper layer and base layer) • Copper Upper layer of alloy film and The thickness of the underlayer is a surface that can be observed perpendicularly to the film surface direction (depth direction) of Cu, and a sample for thickness measurement is prepared, and a liberation-type transmission electron microscope is used. (magnification: 150,000 times) · Projection arbitrary measurement 0 Field of view photo, and measuring the film thickness of each layer. The composition of the copper alloy film (the composition of the upper layer and the underlying layer, the oxygen content and the thickness) are shown in Table 5~ (Evaluation of Characteristics of Copper Alloy Film) Next, the sample obtained as described above was used as the measurement (1) tightness of the copper alloy film and the semiconductor layer, and (2) wet etching property (1) Evaluation of the tightness of the semiconductor layer The tightness of the copper alloy film before and after the heat treatment (in a vacuum atmosphere at 350 ° C for 5 hours) was evaluated by a peel test by a tape. On the film-forming surface of the copper alloy, cut into a checkerboard shape of 1 tnm by a milling cutter. Then, a black polyester-tape (product number 8422Β) made by Sumitomo 3 of Japan was firmly attached to the above. On the film-forming surface, 'the peeling angle of the above-mentioned tape is maintained at 60. At the same time, the tape is peeled off at the same time', and the number of the checkerboards which are not peeled off by the above-mentioned tape is calculated - 41 - 201042059, and the whole area is obtained. The ratio (membrane residual ratio). However, the average enthalpy of the result of the 3-part implementation including the unevenness of the film formation by Cu should be performed. In the present embodiment, the peeling rate via the tape is not determined as 〇, 20% or more was judged as X. (2) Evaluation of wet etching property For the above-mentioned sample, copper was used as a pattern of line and space having a width of 1 μm by photolithography, and (phosphoric acid: The volume ratio of nitric acid:water = 7 5 : 5 : 2 0 ) was observed by an optical microscope (observation magnification: 400 times). In the present embodiment, the observer of the optical microscope described above was judged to be ◦, and the person who saw the residue was judged to be χ. The results are shown in Tables 8 and 9. According to the evaluation of the knot, it is shown that up to 20% of the alloy film is formed. The mixed acid uranium engraving is etched, and the residual residue is not seen. -42 - 201042059 [Table 5] Ο
純Cu膜或Cu合金 膜 試料 組成纣 上層 基底層 No. 0含有量 膜厚 0含有量 膜厚 (上僧-卜僧) (原子%) (nm) (原子%) (nm) 1 純 Cu(300nm) 1層(0含有量<〇·〇5) 2 純Cu <0.05 250 10 50 3 純Cu <0.05 250 33 50 4 Cu-0.05Ni <0.05 250 10 50 5 Cu-4Ni <0.05 260 10 50 6 Cu-6.9Ni <0.05 260 10 50 7 Cu-0.2Ni <0.05 450 0.1 50 8 Cu-0.2Ni <0.05 450 0.5 50 9 Cu-0.2Ni <0.05 450 4 50 10 Cu-0.2Ni <0.05 450 20 50 11 Cu-0.2Ni <0.05 495 15 10 12 Cu~0.05Mn <0.05 250 10 50 13 Cu-〇.4Mn <0.05 300 10 50 14 Cu - 4Mn <0.05 260 10 50 15 Cu-7.1Mn <0.05 260 10 50 16 Cu~0.2Mn <0.05 450 0.1 50 17 Cu-〇.2Mn <0.05 450 0.5 50 18 Cu - 0.2Mn <0.05 450 4 50 19 Cu-〇.2Mn <0.05 450 20 50 20 Cu-〇.2Mn <0.05 495 15 10 21 Cu-0.05A1 <0.05 250 10 50 22 Cu-0.4A1 <0.05 300 10 50 23 Cu_4Al <0.05 260 10 50 24 Cu-7.1A1 <0.05 260 10 50 25 Cu-0.2AI <0.05 450 0.1 50 26 Cu-0.2A1 <0.05 450 0.5 50 27 Cu-0.2A1 <0.05 450 4 50 28 Cu-0.2A1 <0.05 450 20 50 29 Cu-0.2A1 <0.05 495 15 10 30 Cu-〇.2Zn <0.05 450 5 50 31 Cu~0.2Fe <0.05 450 5 50 32 Cu-〇.2Ge <0.05 450 5 50 33 Cu - 0.2Hf <0.05 450 5 50 34 Cu-0.2W <0.05 450 5 50 35 Cu-0.2Nb <0.05 450 5 50 36 Cu-〇.2Mo <0.05 450 5 50 37 Cu-0.1Ni-0.1Al <0.05 450 5 50 38 Cu-0.1Ni-0.1Zn <0.05 450 5 50 39 Cu-0.1Ni-0.1Hf <0.05 450 5 50 40 Cu-0.1Ni-0.1Ge <0.05 450 5 50 41 Cu-0.1Zn-0.1Hf <0.05 450 5 50 42 Cu-0.1M〇-0.1W <0.05 450 5 50 43 Cu-0.5Bi <0.05 450 5 50 成分單位:原子% -43- 201042059 【表6】 試料 No. 純Cu膜或Cu合金膜 上層 基底層 組成約 0含有量 (原子%) 膜厚 (run) 組成μ 0含有量 (原子%) 膜厚 (nm) 51 Cu-0.3Ni <0.05 300 Cu-0.2Ni 10 50 52 純Cu <0.05 300 Cu-0.2Ni 10 50 53 Cu-0.2Ni <0.05 500 - - 一 54 純Cu <0.05 300 Cu-〇.4Mn 10 50 55 純Cu <0.05 300 Cu-0.4A1 10 50 56 Cu-0.3Ni <0.05 300 Cu-2.2Ni 5 50 57 Cu-0.2A1 <0.05 450 Cu-2.5A1 5 50 58 Cu-〇.2Mn <0.05 450 Cu-2.1Mn 5 50 59 Cu-〇.2Ge <0.05 450 Cu_2.3Ge 5 50 60 Cu - 0.3Ni <0.05 300 Cu-0.5A1 5 50 61 Cu-0.2Ni <0.05 450 Cu-〇.5Mn 5 50 62 Cu-0.1Ni-0.1Al <0.05 450 Cu-0.6Ni-l.9Al 5 50 63 Cu-0.1Ni-0.1Ge <0.05 450 Cu-l.0Ni-l.2Ge 5 50 64 Cu-0.1Ni-0.1Zn <0.05 450 Cu-1.5N 卜 l_5Zn 5 50 65 Cu-0.4Ni <0.05 450 Cu-2.1A1 5 50 66 Cu-0.4Ni <0.05 450 Cu-l.lNi-0.8Al 5 50 成分單位:原子% -44 - 201042059Pure Cu film or Cu alloy film sample composition 纣 upper layer base layer No. 0 content film thickness 0 content film thickness (upper 僧 - dip) (atomic %) (nm) (atomic %) (nm) 1 pure Cu ( 300 nm) 1 layer (0 content < 〇 · 〇 5) 2 pure Cu < 0.05 250 10 50 3 pure Cu < 0.05 250 33 50 4 Cu-0.05Ni < 0.05 250 10 50 5 Cu-4Ni < 0.05 260 10 50 6 Cu-6.9Ni <0.05 260 10 50 7 Cu-0.2Ni <0.05 450 0.1 50 8 Cu-0.2Ni <0.05 450 0.5 50 9 Cu-0.2Ni <0.05 450 4 50 10 Cu -0.2Ni <0.05 450 20 50 11 Cu-0.2Ni <0.05 495 15 10 12 Cu~0.05Mn <0.05 250 10 50 13 Cu-〇.4Mn <0.05 300 10 50 14 Cu - 4Mn <0.05 260 10 50 15 Cu-7.1Mn <0.05 260 10 50 16 Cu~0.2Mn <0.05 450 0.1 50 17 Cu-〇.2Mn <0.05 450 0.5 50 18 Cu - 0.2Mn <0.05 450 4 50 19 Cu - 〇.2Mn <0.05 450 20 50 20 Cu-〇.2Mn <0.05 495 15 10 21 Cu-0.05A1 <0.05 250 10 50 22 Cu-0.4A1 <0.05 300 10 50 23 Cu_4Al <0.05 260 10 50 24 Cu-7.1A1 <0.05 260 10 50 25 Cu-0.2AI <0.05 450 0.1 50 26 Cu-0.2A1 <0.05 450 0.5 50 27 Cu-0.2A1 <0.05 450 4 50 28 Cu-0.2A1 <0.05 450 20 50 29 Cu-0.2A1 <0.05 495 15 10 30 Cu-〇.2Zn <0.05 450 5 50 31 Cu~0.2Fe <0.05 450 5 50 32 Cu-〇.2Ge <0.05 450 5 50 33 Cu - 0.2Hf <0.05 450 5 50 34 Cu-0.2W <0.05 450 5 50 35 Cu-0.2Nb <0.05 450 5 50 36 Cu-〇.2Mo <0.05 450 5 50 37 Cu-0.1Ni-0.1Al <0.05 450 5 50 38 Cu-0.1Ni-0.1Zn <0.05 450 5 50 39 Cu-0.1Ni-0.1Hf < ; 0.05 450 5 50 40 Cu-0.1Ni-0.1Ge <0.05 450 5 50 41 Cu-0.1Zn-0.1Hf <0.05 450 5 50 42 Cu-0.1M〇-0.1W <0.05 450 5 50 43 Cu -0.5Bi <0.05 450 5 50 Component unit: Atomic % -43- 201042059 [Table 6] Sample No. Pure Cu film or Cu alloy film upper layer base layer composition about 0 content (atomic %) film thickness (run) composition μ 0 content (atomic %) film thickness (nm) 51 Cu-0.3Ni < 0.05 300 Cu-0.2Ni 10 50 52 pure Cu < 0.05 300 Cu-0.2Ni 10 50 53 Cu-0.2Ni < 0.05 500 - - a 54 pure Cu < 0.05 300 Cu-〇.4Mn 10 50 55 pure Cu < 0.05 300 Cu-0.4A1 10 50 56 Cu-0.3Ni < 0.05 300 Cu-2.2Ni 5 50 57 Cu-0.2A1 <0.05 450 Cu-2.5A1 5 50 58 Cu-〇.2Mn <0.05 450 Cu-2.1Mn 5 50 59 Cu-〇.2Ge <0.05 450 Cu_2.3Ge 5 50 60 Cu - 0.3 Ni <0.05 300 Cu-0.5A1 5 50 61 Cu-0.2Ni <0.05 450 Cu-〇.5Mn 5 50 62 Cu-0.1Ni-0.1Al <0.05 450 Cu-0.6Ni-l.9Al 5 50 63 Cu-0.1Ni-0.1Ge <0.05 450 Cu-l.0Ni-l.2Ge 5 50 64 Cu-0.1Ni-0.1Zn <0.05 450 Cu-1.5N Bu l_5Zn 5 50 65 Cu-0.4Ni <0.05 450 Cu-2.1A1 5 50 66 Cu-0.4Ni <0.05 450 Cu-l.lNi-0.8Al 5 50 Component unit: atomic % -44 - 201042059
【卜術】 1 純Cu膜或Cu合金膜 ] 基底層 膜厚 (则) 〇 1—H 1 o 1 o γΉ 1 〇 1 0含有量 (原子%) LO 1 LT3 1 LO 1 LO 1 組成μ Cu-2.2Ni 1 CU-2.2A1 1 Cu-2.2Mn 1 Cu-2.2Ni-0.8Mn 1 基底層 膜厚 (nm) o § o § o § o 0含有量 (原子%) LO LO l〇 lO ΙΛ LO LO 組成μ Cu-0.3Ni Cu-2.2Ni Cu-0.3A1 Cu-2.2A1 Cu-〇.3Mn Cu-2.2Mn Cu-0.3Ni-0.3Mn Cu-2.2Ni-0.8Mn 上層 膜厚 (nm) 1 § 1 .1 § 1 § 0含有量 (原子%) ι <0.05 1 <0.05 1 <0.05 1 <0.05 組成“ 1 Cu-2.2Ni 1 Cu-2.2A1 1 Cu~2.2Mn 1 Cu-2.2Ni-0.8Mr I 上層 膜厚 (nm) 300 「300 1 「300 1 1 300 1 o % Γ^ο^Ί 「300 I o 0含有量 (原子%) <0,05 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 <0.05 <0.05 組成d Cu-0.3Ni Cu-0.3Ni Cu-0.3Ni Cu-0.3A1 Cu - 0.3Mn Cu—0.3Mn Cu-0.3Ni-0.3Mn Cu-0.3Ni-0.3Mn 試料 No. t-H go LO CD 00 -45- 201042059[Pu Shu] 1 pure Cu film or Cu alloy film] base film thickness (then) 〇1—H 1 o 1 o γΉ 1 〇1 0 content (atomic %) LO 1 LT3 1 LO 1 LO 1 composition μ Cu -2.2Ni 1 CU-2.2A1 1 Cu-2.2Mn 1 Cu-2.2Ni-0.8Mn 1 Base layer film thickness (nm) o § o § o § o 0 content (atomic %) LO LO l〇lO ΙΛ LO LO composition μ Cu-0.3Ni Cu-2.2Ni Cu-0.3A1 Cu-2.2A1 Cu-〇.3Mn Cu-2.2Mn Cu-0.3Ni-0.3Mn Cu-2.2Ni-0.8Mn Upper film thickness (nm) 1 § 1 .1 § 1 § 0 content (atomic %) ι < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 Composition "1 Cu-2.2Ni 1 Cu-2.2A1 1 Cu~2.2Mn 1 Cu-2.2 Ni-0.8Mr I Upper film thickness (nm) 300 "300 1 "300 1 1 300 1 o % Γ^ο^Ί "300 I o 0 content (atomic %) <0,05 <0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 < 0.05 < 0.05 Composition d Cu-0.3Ni Cu-0.3Ni Cu-0.3Ni Cu-0.3A1 Cu - 0.3Mn Cu-0.3Mn Cu-0.3Ni- 0.3Mn Cu-0.3Ni-0.3Mn sample No. tH go LO CD 00 -45- 201042059
【表8】 緊密性 濕蝕刻性 試料 熱處理後 判 判 總Ή* No. 之剝離率 定 有to 評估 (%) 定 1 100 X 無 〇 X 2 38 X Μ <m、 〇 X 3 29 X 有 X X 4 23 X 〇 X 5 0 〇 無 〇 〇 6 0 〇 有 X X 7 12 〇 無 〇 〇 8 8 〇 無 〇 〇 9 5 〇 4bp /、、、 〇 〇 10 0 〇 Μ 〇 〇 11 0 〇 Μ >、、、 〇 〇 12 35 X 紐 /w\ 〇 X 13 7 〇 Μ 〇 〇 14 0 〇 Μ y\s\ 〇 〇 15 0 〇 有 X X 16 13 〇 Μ ,、、、 〇 〇 17 12 〇 Μ 〆、、、 〇 〇 18 7 〇 Μ 〇 〇 19 0 〇 4βρ /ν\> 〇 〇 20 0 〇 Μ Μ、、 〇 〇 21 41 X 组 〇 X 22 8 〇 Μ /w\ 〇 〇 23 0 〇 〇 〇 24 0 〇 有 X X 25 14 〇 Μ vwv 〇 〇 26 12 〇 鏗 〇 〇 27 6 〇 Μ 〇 〇 28 0 〇 無 〇 〇 29 0 〇 Μ 〇 〇 30 8 〇 無 〇 〇 31 7 〇 Μ >、、、 〇 〇 32 8 〇 银 〆、、、 〇 〇 33 9 〇 Μ >、ν» 〇 〇 34 7 〇 Μ /\w 〇 〇 35 6 〇 姐 〇 〇 36 8 〇 無 〇 〇 37 6 〇 Μ 〆、、、 〇 〇 38 7 〇 Μ 〇 〇 39 7 〇 鈒 y»、、 〇 〇 40 6 〇 姐 Μ'、 〇 〇 41 8 〇 姐 V»、、 〇 〇 42 8 〇 姐 /、V« 〇 〇 43 100 X 有 X X -46- 201042059[Table 8] After the heat treatment of the compact wet etching sample, the total Ή* No. is determined by the evaluation of the peeling rate. (1) 1 100 X No X 2 38 X Μ <m, 〇X 3 29 X XX 4 23 X 〇X 5 0 〇无〇〇6 0 〇有XX 7 12 〇无〇〇8 8 〇无〇〇9 5 〇4bp /,,,〇〇10 0 〇Μ 〇〇11 0 〇Μ > ;,,,〇〇12 35 X New/w\ 〇X 13 7 〇Μ 〇〇14 0 〇Μ y\s\ 〇〇15 0 〇 XX 16 13 〇Μ , , , , 〇〇 17 12 〇Μ 〆,,, 〇〇18 7 〇Μ 〇〇19 0 〇4βρ /ν\> 〇〇20 0 〇Μ Μ,, 〇〇21 41 X group 〇X 22 8 〇Μ /w\ 〇〇23 0 〇 〇〇24 0 〇 XX 25 14 〇Μ vwv 〇〇26 12 〇铿〇〇27 6 〇Μ 〇〇28 0 〇无〇〇29 0 〇Μ 〇〇30 8 〇无〇31 7 〇Μ > , , , 〇〇 32 8 〇 〆 , , , 〇〇 33 9 〇Μ >, ν» 〇〇 34 7 〇Μ /\w 〇〇 35 6 〇 sister 〇〇 36 8 〇 no 〇〇 37 6 〆 、,,, 〇〇38 7 〇Μ 〇〇39 7 〇鈒y», 〇〇40 6 〇姐Μ', 〇〇41 8 〇Sister V», 〇〇42 8 〇 sister/, V« 〇〇43 100 X has XX -46- 201042059
【表9】 試料 No. — 緊密性 濕_性 總合 評估 熱處理堡 之剝離率 (%) 判 定 殘渣之 有無 判 定 51 3 〇 無 〇 〇 52 5 〇 姐 Ό、 〇 〇 53 67 X Μ >、、、 〇 X 54 10 〇 無 〇 〇 55 12 〇 無 〇 〇 56 "〇 〇 無 〇 〇 57 0 〇 無 〇 〇 58 0 〇 無 〇 〇 59 0 〇 無 〇 〇 60 2 〇 V»、、 〇 61 3 〇 辆 〇 ~〇~ 62 0 〇 Jnt Λν» 〇 ~δ~~ 63 0 〇 ΛνΓ 〇 〇 64 0 〇 dte 〇 〇 65 0 〇 無 〇 〇 _ 66 0 〇 Μ <*、、、 〇 〇 71 0 〇 Μ 〇 〇 72 0 〇 〇 〇 73 0 〇 Μ >、、、 〇 〇 74 0 〇 输 >ν\\ 〇 〇 75 0 〇 te 〇 〇 76 0 〇 te 〇 〇_ 77 0 〇 脏 〇 〇 78 0 〇 /、、、 〇 〇 表 8 之 Νο·5、 7〜11、 13、 14、 16〜20、 22、 23' 25 〜42、表9之No.51、52及54〜78係均完全滿足本發明 之要件的銅合金膜,對於緊密性及濕蝕刻性優越。其中表 9之No.51、52及54〜78係上層與基底層之合金組成乃不 同的例,但均滿足本發明之要件之故’得到所期望之特性 〇 然而’雖未示於表中,但此等銅合金膜係完全具有低 電阻率(未達4·〇μΩ /cm)。在此’電阻率係經由下式而算 -47- 201042059 出的値。 電阻率p =(薄膜電阻値)/ (膜厚) 在上述,「薄膜電阻値」係將上述試料切成2英吋尺 寸,以四端針法測定的値、「膜厚」係以如以下作爲而測 定的値。 對於玻璃基板而言,使用聚醯亞胺膠帶(住友3M製 5412),遮蔽基板之一部分的範圍後,以上述之方法進行 成膜,於玻璃基板上,製作具有成膜有銅合金膜之部分與 未成膜之部分之銅合金膜。接著,剝下聚醯亞胺膠帶,將 於膜中形成有階差之銅合金膜,作爲膜厚控制測定用試料 。對於上述試料(直徑1 〇〇mm ),以觸針型階差計( VEECO製之「DEKTAK II」)測定從試料中心(厚度 500nm)離開25mm處之厚度d(nm)。 對此,未滿足由本發明所規定之任何要件的例係有著 如以下之問題。 Ν 〇 · 1〜3係使用純c u的例。詳細而言,單層之純C u 膜的No. 1係剝離率爲1 〇〇%,與半導體層的緊密性不佳。 No.2係於基底層含有1〇原子%氧的例,但因未含有特定 之合金元素之故,與半導體層的緊密性不佳。另一方面, No·3係於基底層含有多的33原子%的氧的例,與半導體 層的緊密性不佳,且濕蝕刻性亦降低。 N 〇. 4、1 2、2 1係各N i量、Μ η量、A1量少的例,與 -48- 201042059 半導體層的緊密性均不佳。另一方面,No.6、15、24係 Ni量、Μη量、A1量爲多的例,濕蝕刻性則降低。 . Νο.43係含有在本發明未規定之合金元素的Bi的例 - ,不論於基底層,含有特定之氧含有量,適當地控制其厚 度,而對於與半導體層之緊密性,及濕蝕刻性不佳。[Table 9] Sample No. — Tightness wetness _ total evaluation evaluation Heat treatment of the peeling rate (%) Determination of the presence or absence of residue 51 3 〇 no 〇〇 52 5 〇 Ό 〇〇, 〇〇 53 67 X Μ >, , 〇X 54 10 〇无〇〇55 12 〇无〇〇56 "〇〇无〇〇57 0 〇无〇〇58 0 〇无〇〇59 0 〇无〇〇60 2 〇V»,, 〇 61 3 〇车〇~〇~ 62 0 〇Jnt Λν» 〇~δ~~ 63 0 〇ΛνΓ 〇〇64 0 〇dte 〇〇65 0 〇无〇〇_ 66 0 〇Μ <*,,, 〇〇 71 0 〇Μ 〇〇72 0 〇〇〇73 0 〇Μ >,,,〇〇74 0 〇 &>ν\\ 〇〇75 0 〇te 〇〇76 0 〇te 〇〇_ 77 0 dirty 〇〇78 0 〇/,,, 〇〇8 Ν5·7,11~11,13,14,16~20, 22, 23' 25~42, Table 9, No.51, 52 and 54~78 The copper alloy film which completely satisfies the requirements of the present invention is superior in tightness and wet etching property. Among them, No. 51, 52 and 54 to 78 of Table 9 are different examples of the alloy composition of the upper layer and the base layer, but both satisfy the requirements of the present invention to obtain the desired characteristics, although not shown in the table. However, these copper alloy film systems have a completely low resistivity (less than 4·〇μΩ/cm). Here, the resistivity is calculated by the following formula -47- 201042059. Resistivity p = (thin film resistance 値) / (film thickness) In the above, "thin film resistance 値" is obtained by cutting the sample into a size of 2 inches, and the 値 and "film thickness" measured by the four-terminal method are as follows. As a measure of enthalpy. For the glass substrate, a polyimide tape (5412 manufactured by Sumitomo 3M) was used to cover a portion of the substrate, and then a film was formed by the above method, and a portion having a film formed of a copper alloy film was formed on the glass substrate. A copper alloy film with an unformed portion. Then, the polyimide film was peeled off, and a copper alloy film having a step was formed in the film as a sample for film thickness control measurement. With respect to the above-mentioned sample (diameter: 1 mm), the thickness d (nm) which was separated from the sample center (thickness: 500 nm) by 25 mm was measured with a stylus type step ("DEKTAK II" manufactured by VEECO). In this regard, the case in which any of the requirements specified by the present invention are not satisfied has the following problems. Ν 〇 · 1 to 3 are examples of pure c u. Specifically, the No. 1-based peeling ratio of the single-layer pure Cu film was 1%, and the adhesion to the semiconductor layer was not good. No. 2 is an example in which the underlayer contains 1 〇 atomic % of oxygen. However, since it does not contain a specific alloying element, the adhesion to the semiconductor layer is not good. On the other hand, No. 3 is an example in which 33% by atom of oxygen is contained in the underlayer, and the adhesion to the semiconductor layer is not good, and the wet etching property is also lowered. N 〇. 4, 1, 2, 2 1 The examples of the amount of N i, the amount of Μ η, and the amount of A1 are small, and the tightness of the semiconductor layer is not good with -48- 201042059. On the other hand, No. 6, 15, and 24 are examples in which the amount of Ni, the amount of Μη, and the amount of A1 are large, and the wet etching property is lowered. Νο.43 is an example of Bi containing an alloying element not defined in the present invention, and contains a specific oxygen content in the underlying layer, appropriately controls the thickness thereof, and is close to the semiconductor layer, and wet etching Poor sex.
No. 43係基底層之氧含量少的例,與玻璃基板的緊密 性不佳。另一方面,No.16係基底層之氧含量多的例,對 0 於濕蝕刻性不佳。 Νο·53係未具有基底層之(^-0.2原子%Ni單層的例, 與半導體層之緊密性降低。 將本申請專利,參照特定之實施形態,已做過詳細說 - 明,該業者可在不脫離本發明之精神與範圍,做各種變更 或加上各種修正。 本申請專利係依據2009年1月16日申請之日本專利 申請(日本特願2009-008265) 、2009年1月16日申請 〇 之日本專利申請(曰本特願2009-008266),其內容係作 爲參照導引於此。 [產業上之可利用性] 在本發明中’作爲與透明基板直接接觸之顯示裝置用 銅合金膜,採用如含有適當之合金元素,且與透明基板直 接接觸之基底層的氧量係較上層的氧量爲多(理想爲基底 層係含有適量的氧,基底層上之上層係實質上未含有氧) 之層積構成之故’除得到與透明基板之高緊密性,低電阻 -49- 201042059 率,及優越之濕蝕刻性之外,亦可縮小抑制膜厚分布之不 均者。如採用如此之銅合金膜於顯示裝置,可降低製造之 工程數及成本。本發明之氧含有銅合金膜係使用於與透明 基板直接接觸之配線或電極,而代表性而言係使用於閘極 配線或閘極電極用。 另外,在本發明中,作爲與薄膜電晶體之半導體層直 接接觸之顯示裝置用銅合金膜,採用如含有適當之合金元 素,且與半導體層直接接觸之基底層係含有適當的氧’基 f| 底層上之上層係實質上未含有氧之層積構成之故’得到與 半導體層之高緊密性,低電阻率,及優越之濕蝕刻性。如 將如此之銅合金膜,根據顯示裝置,可降低製造之工程數 及成本。本發明之氧含有銅合金膜係使用於與薄膜電晶體 · 之半導體層(非晶形矽或多結晶矽)直接接觸之配線或電 極,而代表性而言係使用於源極-汲極配線或源極-汲極電 極用。 υ 【圖式簡單說明】 圖1乃顯示在實施例1 -2之成膜後之緊密率,和緊密 性提昇元素(Ni、Al、Mn、Ca)之含有量的關係圖表。 圖2乃顯示在實施例1 -2之成膜後之緊密率,和緊密 性提昇元素(W )之含有量的關係圖表。 圖3乃顯示在實施例1 -2之成膜後之緊密率,和緊密 - 性提昇元素(Zn )之含有量的關係圖表。 圖4乃顯示在實施例1-2之熱處理後之緊密率,和緊 -50- 201042059 密性提昇元素(Ni、 ο 圖5乃顯示在實 密性提昇元素(W) 圖6乃顯示在實 密性提昇元素(Ζη ) 圖7乃顯示在實 0 層之膜厚的關係圖表 圖8乃顯示Cu· 氧濃度,和緊密率之 圖9乃顯示Cu. . 氣中的氧濃度,和該In the case where the No. 43-based underlayer has a small oxygen content, the adhesion to the glass substrate is not good. On the other hand, in the case where the No. 16-based underlayer has a large oxygen content, the wet etching property is not good. Νο·53 is an example in which a base layer (^-0.2 atom% Ni monolayer is not provided, and the tightness of the semiconductor layer is lowered. The present patent application has been described in detail with reference to a specific embodiment, and the manufacturer Various changes or various modifications may be made without departing from the spirit and scope of the invention. The present patent application is based on a Japanese patent application filed on January 16, 2009 (Japanese Patent Application No. 2009-008265), January 16, 2009 Japanese Patent Application No. 2009-008266, the entire contents of which is incorporated herein by reference. The copper alloy film adopts a base layer containing a suitable alloying element and in direct contact with the transparent substrate, and the amount of oxygen is higher than that of the upper layer (ideally, the base layer contains an appropriate amount of oxygen, and the upper layer on the base layer is substantially The layered structure of oxygen is not contained. In addition to the high tightness with the transparent substrate, the low resistance of -49-201042059, and the superior wet etching property, the unevenness of the film thickness distribution can be reduced. .Such as The use of such a copper alloy film in a display device can reduce the number of manufacturing processes and the cost. The oxygen-containing copper alloy film of the present invention is used for wiring or electrodes in direct contact with a transparent substrate, and is typically used for a gate. Further, in the present invention, as the copper alloy film for a display device which is in direct contact with the semiconductor layer of the thin film transistor, a base layer which contains an appropriate alloying element and is in direct contact with the semiconductor layer is used. Containing an appropriate oxygen 'group f| The upper layer on the underlayer is substantially free of oxygen. The layer is formed to have high tightness with the semiconductor layer, low resistivity, and superior wet etching properties. The alloy film can reduce the number of manufacturing processes and the cost according to the display device. The oxygen-containing copper alloy film of the present invention is used for wiring or electrode which is in direct contact with the semiconductor layer (amorphous germanium or polycrystalline germanium) of the thin film transistor. Typically, it is used for source-drain wiring or source-drain electrodes. υ [Simplified illustration] Figure 1 shows the structure of Example 1-2. The relationship between the subsequent tightness ratio and the content of the tightness-enhancing element (Ni, Al, Mn, Ca). Fig. 2 shows the compaction ratio and the adhesion-improving element after the film formation of Example 1-2 ( Fig. 3 is a graph showing the relationship between the tightness ratio after the film formation of Example 1-2 and the content of the compactness-enhancing element (Zn). Fig. 4 is shown in the example. The tightness rate after heat treatment of 1-2, and the tightness of -50-420,420,519 tightness enhancement elements (Ni, ο Figure 5 is shown in the solidity enhancement element (W) Figure 6 is shown in the solidity enhancement element (Ζη) Fig. 7 is a graph showing the relationship between the film thicknesses in the real 0 layer. Fig. 8 shows the Cu·oxygen concentration, and the compact ratio is shown in Fig. 9 which shows the oxygen concentration in the gas.
Al、Mn、Ca )之含有量的關係圖表 施例1 -2之熱處理後之緊密率,和緊 之含有量的關係圖表。 施例1 -2之熱處理後之緊密率,和緊 之含有量的關係圖表。 施例1 -3之成膜後之緊密率,和基底 〇 • 2原子%Zn合金膜成膜時之氬氣中的 關係圖表。 .2原子%Zn合金膜基底層成膜時之氬 基底層中之氧濃度的關係圖表。 〇 -51 -Relationship chart between the contents of Al, Mn, and Ca) The relationship between the tightness ratio after heat treatment of Example 1-2 and the tight content. A graph showing the relationship between the tightness ratio after heat treatment of Example 1-2 and the tight content. The tightness ratio after film formation of Example 1-3, and the relationship between the argon gas at the time of film formation of the substrate 〇 2 atom% Zn alloy film. Fig. 2 is a graph showing the relationship between the oxygen concentration in the argon base layer at the time of film formation of the atomic layer of the Zn alloy film. 〇 -51 -
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009008266 | 2009-01-16 | ||
JP2009008265A JP2010165955A (en) | 2009-01-16 | 2009-01-16 | Cu ALLOY FILM, AND DISPLAY DEVICE |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201042059A true TW201042059A (en) | 2010-12-01 |
Family
ID=42339891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099101242A TW201042059A (en) | 2009-01-16 | 2010-01-15 | Cu alloy film, and display device |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20110105806A (en) |
CN (1) | CN102246311A (en) |
TW (1) | TW201042059A (en) |
WO (1) | WO2010082638A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103237910B (en) * | 2010-10-13 | 2015-06-24 | 大连理工大学 | Low resistivity high thermal-stability copper-nickel-molybdenum alloy film and producing method thereof |
JP6528597B2 (en) * | 2015-08-20 | 2019-06-12 | 住友金属鉱山株式会社 | Conductive substrate, and method of manufacturing conductive substrate |
WO2017051820A1 (en) * | 2015-09-25 | 2017-03-30 | 株式会社アルバック | Sputtering target and method for producing target |
CN105603363B (en) * | 2016-01-06 | 2018-06-22 | 大连理工大学 | A stable high-conductivity Cu-Ge-Fe ternary dilute alloy film and its preparation process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3619192B2 (en) * | 1999-08-19 | 2005-02-09 | 三井金属鉱業株式会社 | Aluminum alloy thin film, target material, and thin film forming method using the same |
TWI248978B (en) * | 2003-12-04 | 2006-02-11 | Kobe Steel Ltd | Ag-based interconnecting film for flat panel display, Ag-base sputtering target and flat panel display |
WO2008018490A1 (en) * | 2006-08-10 | 2008-02-14 | Ulvac, Inc. | Method for forming conductive film, thin film transistor, panel with thin film transistor, and method for manufacturing thin film transistor |
KR101073421B1 (en) * | 2006-12-28 | 2011-10-17 | 가부시키가이샤 알박 | Method for forming wiring film, transistor, and electronic device |
JP5234483B2 (en) * | 2007-06-12 | 2013-07-10 | 三菱マテリアル株式会社 | Wiring base film with excellent adhesion and sputtering target for forming this wiring base film |
-
2010
- 2010-01-15 WO PCT/JP2010/050438 patent/WO2010082638A1/en active Application Filing
- 2010-01-15 KR KR1020117016462A patent/KR20110105806A/en not_active Ceased
- 2010-01-15 CN CN2010800035759A patent/CN102246311A/en active Pending
- 2010-01-15 TW TW099101242A patent/TW201042059A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2010082638A1 (en) | 2010-07-22 |
KR20110105806A (en) | 2011-09-27 |
CN102246311A (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI390059B (en) | Conductive film forming method, thin film transistor, panel with thin film transistor, and method for manufacturing thin film transistor | |
TWI437107B (en) | Display device | |
TWI437697B (en) | Wiring structure and a display device having a wiring structure | |
TWI454373B (en) | Cu alloy film for display device and display device | |
TWI394850B (en) | A display device using a Cu alloy film and a Cu alloy sputtering target | |
CN102804352B (en) | Wiring layer structure and manufacture method thereof | |
JP2011091364A (en) | Wiring structure and method of manufacturing the same, as well as display apparatus with wiring structure | |
CN101728357B (en) | Wiring structure and method for fabricating the same | |
KR20090045255A (en) | A method of forming a conductive film, a thin film transistor, a panel having a thin film transistor, and a manufacturing method of a thin film transistor | |
TW201034200A (en) | Thin-film transistor having barrier layer as constituent layer and copper alloy sputtering target for forming barrier layer by sputter deposition | |
TW201042059A (en) | Cu alloy film, and display device | |
TW201009849A (en) | Wiring material and wiring board using the same | |
JP5774005B2 (en) | Thin film transistor (TFT) with copper electrode | |
JP2008124450A (en) | Target, film forming method, thin film transistor, panel with thin film transistor, manufacturing method for thin film transistor, and manufacturing method for panel with thin film transistor | |
JP5420964B2 (en) | Display device and Cu alloy film used therefor | |
JP5416470B2 (en) | Display device and Cu alloy film used therefor | |
TW201214623A (en) | Wiring structure, display device, and semiconductor device | |
JP2008112989A (en) | Target, film forming method, thin film transistor, panel with thin film transistor, and manufacturing method for thin film transistor | |
JP2010185139A (en) | Cu ALLOY FILM AND DISPLAY DEVICE | |
JP5464667B2 (en) | Connection structure using Cu alloy for wiring and sputtering target made of Cu alloy for wiring | |
JP2010165955A (en) | Cu ALLOY FILM, AND DISPLAY DEVICE |