[go: up one dir, main page]

TW201040595A - Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same - Google Patents

Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same Download PDF

Info

Publication number
TW201040595A
TW201040595A TW099114109A TW99114109A TW201040595A TW 201040595 A TW201040595 A TW 201040595A TW 099114109 A TW099114109 A TW 099114109A TW 99114109 A TW99114109 A TW 99114109A TW 201040595 A TW201040595 A TW 201040595A
Authority
TW
Taiwan
Prior art keywords
polarizing plate
liquid crystal
polarizer
coupling
refractive index
Prior art date
Application number
TW099114109A
Other languages
Chinese (zh)
Other versions
TWI495912B (en
Inventor
Bong-Choon Kim
Original Assignee
Dongwoo Fine Chem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongwoo Fine Chem Co Ltd filed Critical Dongwoo Fine Chem Co Ltd
Publication of TW201040595A publication Critical patent/TW201040595A/en
Application granted granted Critical
Publication of TWI495912B publication Critical patent/TWI495912B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention discloses a coupled polarizing plate set comprising a first coupled polarizing plate and a second coupled polarizing plate where compensation films having specific optical properties are laminated and a liquid crystal display capable of be easily mass-producing the coupled polarizing plate while ensuring a wide viewing angle equal to or more than the known other liquid crystal mode by adopting the coupled polarizing plate set to a blue phase liquid crystal mode.

Description

201040595 六、發明說明: 【發明所屬之技術領域】 ' 本發明關於可將特定耦合偏光板組用於藍相液晶模式來 • 確保廣視角的液晶顯示器。 【先前技術】 由於初期開發階段的技術問題幾乎已解決,所以液晶顯 示器(LCD)目前廣泛做為公開的影像顯示器。[CD包含液晶顯 〇 示面板和提供光給液晶顯示面板的背光組合。 液晶顯示器將電壓施於場產生電極而在液晶層產生電場 ,藉以決定液晶層的液晶分子對位並由控制入射光偏極來顯示 -' 影像。 - 因為液晶層對位狀態決定光的透射比,所以需要快反應 速度的液晶層以快速改變對位狀態。 已開發使用所謂藍相液晶的液晶顯示器,其液晶狀態介 Q 於向列(nematic)模式與同向(isotropic)模式之間。由於不施加電 ~時有光學同向特性,施加電場時有光學異向(aniS〇^〇piC)特 性,所以藍相液晶有約3微秒之相當快的反應速度。 使用平面轉換(in-plane switching)液晶顯示器的耦合偏光 板組以確保藍相液晶顯示器的廣視角。耦合偏光板組包括同向 保護膜,及有不同光學性質的二種補償膜(至少其中一個補償 膜會具有延遲性)。同向保護膜和二種補償膜各位於藍相液晶 與任一偏光片之間。 201040595 【發明内容】 然而’使科面轉換液晶齡合偏光板組時,由 於須包含二種補償膜’所以相較於使用不同液晶模式的傳統液 晶顯示器’無法降低藍她晶顯示器厚度並以低成本製造。也 由於液晶二侧的厚度獨’所以很可能會因溫度或濕度的改 而·彎曲。 本發明提縣合偏紐組給藍相液晶顯示n,具有簡單 構造並以健來量產,可提供等於紐於先前耦合偏光板組的 廣視角,尤指平面轉換液晶顯示器的耦合偏光板組。 本發明也提供包含本發明之耦合偏光板組的藍相液晶顯 示器。 ’ 依據本發明的觀點,提供耦合偏光板組,包括:第一耦 合偏光板;第二耦合偏光板,其中第一麵合偏光板和第二辆合 偏光板從液晶各依序由補償膜、偏光片、保護膜構成,第一耦 合偏光板補償膜的平面延遲讲0)為15至13011111,折射率比πζ) 為-6.0至-0.1,其慢軸平行於鄰近偏光片的吸收軸,第二耦合 偏光板補償膜的平面延遲讲0)為15至13〇11111,折射率比為 1.1至7.0,其慢軸垂直於鄰近偏光片的吸收轴。 依據本發明另一觀點,提供包含耦合偏光板組的藍相液 晶顯不器,包括第一耦合偏光板和第二耦合偏光板做為藍相液 晶模式的上下偏光板。 依據本發明的實施例,藍相液晶顯示器的耦合偏光板組 具有簡單構造並以低價來量產,可提供等於或優於先前耦合偏 光板組的廣視角’尤指平面轉換液晶顯示器的耦合偏光板組。 201040595 依據本發明的實施例,藍相液晶顯示器提供等於或優於 先前平面轉換液晶顯示器的廣視角。 【實施方式】 本發明關於包括第一耦合偏光板和第二耦合偏光板的耦 合偏光板組,其中分別堆疊具有特殊光學性質的補償膜。詳言 之,耦合偏光板組的第一耦合偏光板和第二耦合偏光板從液晶 依序各由補償膜、偏光片、保護膜構成。 第一耦合偏光板補償膜的平面延遲(R0)為丨5至I30nm , 折射率比(NZ)為-6.0至-0.1,第二耦合偏光板補償膜的平面延 遲(R0)為15至130nm,折射率比(NZ)為1.1至7.0。此時,第一 耦合偏光板補償膜的慢軸平行於鄰近偏光片的吸收轴,第二耦 合偏光板補償膜的慢軸垂直於鄰近偏光片的吸收轴。 本發明的補償膜光學性質由相對於可見光區域内之所有 波長的以下公式1至3來定義。 若光源波長未特別說明,則描述在589nm的光學性質。 本文中’ Nx是光在平面方向振盪具有最大折射率之軸的折射 率,Ny是光在平面方向之NX垂直方向振盪的折射率,Nz是光 在厚度方向振盡的折射率,在圖2表示如下。 [公式1]201040595 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a liquid crystal display capable of using a specific coupled polarizing plate group for a blue phase liquid crystal mode to ensure a wide viewing angle. [Prior Art] Since the technical problems in the initial development stage have been almost solved, a liquid crystal display (LCD) is currently widely used as a public image display. [CD includes a liquid crystal display panel and a backlight combination that provides light to the liquid crystal display panel. The liquid crystal display applies a voltage to the field generating electrode to generate an electric field in the liquid crystal layer, thereby determining the alignment of the liquid crystal molecules of the liquid crystal layer and displaying the -' image by controlling the polarization of the incident light. - Since the alignment state of the liquid crystal layer determines the transmittance of light, a liquid crystal layer of a fast reaction speed is required to rapidly change the alignment state. Liquid crystal displays using so-called blue phase liquid crystals have been developed, the liquid crystal state of which is between the nematic mode and the isotropic mode. Since there is optical anisotropy when no electricity is applied, and an optical anisotropy (aniS〇^〇piC) characteristic when an electric field is applied, the blue phase liquid crystal has a relatively fast reaction speed of about 3 microseconds. A coupled polarizing plate set of an in-plane switching liquid crystal display is used to ensure a wide viewing angle of the blue phase liquid crystal display. The coupled polarizing plate group includes an isotropic protective film and two kinds of compensation films having different optical properties (at least one of the compensation films may have retardation). The co-directional protective film and the two compensation films are each located between the blue phase liquid crystal and any of the polarizers. 201040595 [Summary of the Invention] However, when the panel is converted to a liquid crystal age-old polarizing plate group, since the two kinds of compensation films must be included, the conventional liquid crystal display using different liquid crystal modes cannot reduce the thickness of the blue crystal display and is low. Cost manufacturing. Also, since the thickness of the two sides of the liquid crystal is unique, it is likely to be bent due to changes in temperature or humidity. The present invention provides a blue phase liquid crystal display n, has a simple structure and is mass-produced by a health, and can provide a wide viewing angle equal to that of the previously coupled polarizing plate group, especially a coupled polarizing plate group of a planar conversion liquid crystal display. . The present invention also provides a blue phase liquid crystal display comprising the coupled polarizing plate group of the present invention. According to the aspect of the present invention, a coupled polarizing plate set is provided, comprising: a first coupled polarizing plate; and a second coupled polarizing plate, wherein the first surface polarizing plate and the second combined polarizing plate are sequentially processed from the liquid crystal by a compensation film, The polarizer and the protective film are formed. The plane delay of the first coupling polarizer compensation film is 0 to 13011111, the refractive index ratio πζ) is -6.0 to -0.1, and the slow axis is parallel to the absorption axis of the adjacent polarizer. The plane delay of the two coupled polarizer compensation film is 0 to 13 〇 11111, the refractive index ratio is 1.1 to 7.0, and the slow axis is perpendicular to the absorption axis of the adjacent polarizer. According to another aspect of the present invention, a blue phase liquid crystal display comprising a coupled polarizing plate group is provided, comprising a first coupling polarizing plate and a second coupling polarizing plate as upper and lower polarizing plates in a blue phase liquid crystal mode. According to an embodiment of the present invention, a coupled polarizing plate group of a blue phase liquid crystal display has a simple configuration and is mass-produced at a low price, and can provide a wide viewing angle equal to or better than that of the previously coupled polarizing plate group, especially a coupling of a planar conversion liquid crystal display. Polarized plate set. 201040595 In accordance with an embodiment of the present invention, a blue phase liquid crystal display provides a wide viewing angle equal to or better than that of a prior art planar conversion liquid crystal display. [Embodiment] The present invention relates to a coupling polarizing plate group including a first coupling polarizing plate and a second coupling polarizing plate, in which compensation films having special optical properties are respectively stacked. In detail, the first coupled polarizing plate and the second coupled polarizing plate of the coupled polarizing plate group are composed of a compensation film, a polarizing plate and a protective film, respectively, from the liquid crystal. The first coupling polarizer compensation film has a plane retardation (R0) of 丨5 to I30 nm, a refractive index ratio (NZ) of -6.0 to -0.1, and a second coupling polarizer compensation film having a plane retardation (R0) of 15 to 130 nm. The refractive index ratio (NZ) is from 1.1 to 7.0. At this time, the slow axis of the first coupled polarizer compensation film is parallel to the absorption axis of the adjacent polarizer, and the slow axis of the second coupling polarizer compensation film is perpendicular to the absorption axis of the adjacent polarizer. The optical properties of the compensation film of the present invention are defined by the following formulas 1 to 3 with respect to all wavelengths in the visible light region. If the wavelength of the light source is not specifically stated, the optical properties at 589 nm are described. In this paper, 'Nx is the refractive index of the axis in which the light oscillates in the plane direction with the maximum refractive index, Ny is the refractive index of the light oscillating in the NX vertical direction in the plane direction, and Nz is the refractive index of the light in the thickness direction, in Fig. 2 Expressed as follows. [Formula 1]

Rth = [(Nx + Ny) / 2 - Νζ] χ d (其中Nx和Ny是光在平面方向振盪的折射率且Nxasiy , Νζ是光在膜厚度方向振盪的折射率,d是膜厚度)。 [公式2] 201040595 R0 = (Nx - Ny) x d ,NX^NX和狀光在平面方向振鑛醉,歧膜厚度 [公式3] NZ (Nx - Nz) / (Nx - Ny) = Rth / R〇 + 〇#5 (其中Nx和Ny是絲平的向缝㈣卿且Νχ Nz是光在膜厚度方向振盛的折射率,d是膜厚度)。Rth = [(Nx + Ny) / 2 - Νζ] χ d (where Nx and Ny are refractive indices of light oscillating in the plane direction and Nxasiy, Νζ is the refractive index of light oscillating in the film thickness direction, and d is the film thickness). [Formula 2] 201040595 R0 = (Nx - Ny) xd , NX ^ NX and the shape of light in the plane direction, the film thickness [Formula 3] NZ (Nx - Nz) / (Nx - Ny) = Rth / R 〇+ 〇#5 (where Nx and Ny are the flattened slits (4) and ΝχNz is the refractive index of the light oscillating in the film thickness direction, and d is the film thickness).

Rth疋厚度㈣’呈輯厚度额之平面平撕射率的相 差’並非實質相差’而是參考值,R〇是平面延遲是光在法 線方向(垂直方向)穿過膜時的實質相差。 再者,NZ是折射率比,可難區分補伽的板種類。補 償膜的板種類在無相差的光學轴存在於辭面方向時稱為A板 ’光學轴存在於平面垂直方向時稱為C板,二雜存在時稱為 雙軸板。 詳言之’折射率對NZ=1滿足Nx>Ny=Nz,稱為正a板, 折射率對1<NZ滿足Nx>Ny>Nz,稱為負雙軸a板,折射率對 〇<ΝΖ<1具有Nx>Nz>Ny關係,稱為2轴對位膜,折射率對 ΝΖ=0具有Nx=Nz>Ny關係,稱為負A板,折射率對NZ<〇具有 Nz>Nx>Ny關係,稱為正雙軸八板,折射率對NZ=〇〇具有 Nx=Ny>Nz關係,稱為負C板,折射率對nz=-〇〇具有Nz>Nx=Ny 關係,稱為正C板。 然而,在真實世界製程中遵循理論定義也無法完美製造 A板和C板。因此’一般製程中’對a板設定折射率比近似範 圍並對C板在平面延遲範圍内設一預定值,來區分A板和c板。 201040595 設定預定值限於因延伸而有不同折射率之所有其他材料的應 用。因此,包含在本發明上下偏光板的補償膜由板之光學性質 的NZ、R〇、Rth等等代表,而非依據折射率同向性。 這麵伽目㈣有減,其巾折射率扭伸方向增 加的膜具有正⑴折射率性質’折射率在延伸方向減少的膜具 有負㈠折射率性質。具有正(+)折射率性質的補償膜可選自由 TAC (TriAcetyl Cellulose,三醋酸纖維素)、c〇p (Cycl〇 〇lefm ,環稀烴聚合物)、C0C (Cyclo_〇lefm c〇p〇lymer,環 烯烴共聚物)、PET (Polyethylene Terephthalate,聚乙稀對苯二 甲酸酯)、PP (Polypropylene,聚丙婦)、Pc (p〇lycarb〇她,聚 碳酸酯)、PSF (Polysulfone ,聚砜)、PMMA (Poly , Methylmethacrylate,聚甲基丙烯酸甲酯)所組成的群類中,具 有負㈠折射率的補償膜可由modified-PS (Polystyrene,聚苯乙 烯)或modified-PC (Polycarbonate,聚碳酸酯)製成。 再者,提供補償膜光學性質延伸方法分成固定端延伸和 Q 自由端延伸,其中固定端延伸是在膜延伸時固定延伸方向除外 的長度,自由端延伸是在膜延伸時在延伸方向之外的方向提供 自由度。大體上,膜在延伸方向之外的方向收縮,但Z轴對位 膜需要特定收縮製程而非延伸。 圖3顯示捲繞生膜的方向,其中捲繞膜的未捲繞方向稱為 MD (Machine direction,加工方向),垂直於MD的方向稱為TD (Transverse direction,橫向)。再者,製程中,在md的膜延伸 稱為自由端延伸,在TD的延伸稱為固定端延伸。 總結依據延伸方法(只用第一製程時)的板種類和NZ,正The thickness difference (R) 呈 'the thickness difference of the plane flat tear rate is not a substantial difference ′ is a reference value, and R 〇 is the plane retardation is the substantial phase difference when the light passes through the film in the normal direction (vertical direction). Furthermore, NZ is a refractive index ratio, and it is difficult to distinguish the type of plate of the complementary gamma. The type of the sheet of the compensation film is called the A plate when the optical axis having no phase difference exists in the plane of the rhyme. The optical axis is called the C plate when it exists in the plane perpendicular direction, and the biaxial plate when it exists. In detail, the refractive index pair NZ = 1 satisfies Nx > Ny = Nz, which is called a positive a plate, and the refractive index pair 1 < NZ satisfies Nx > Ny > Nz, which is called a negative biaxial a plate, and the refractive index is opposite <ΝΖ<1 has a Nx>Nz>Ny relationship, which is called a 2-axis alignment film, and has a refractive index versus ΝΖ = 0 having a Nx = Nz > Ny relationship, called a negative A plate, and a refractive index pair NZ < 〇 has Nz >Nx> The Ny relationship, called the positive biaxial eight plate, has a refractive index versus NZ = 〇〇 having a Nx = Ny > Nz relationship, called a negative C plate, and the refractive index versus nz = - 〇〇 has a Nz > Nx = Ny relationship, called Positive C board. However, it is not possible to perfectly manufacture the A and C plates in accordance with the theoretical definition in the real world process. Therefore, in the 'general process', the refractive index ratio of the a plate is set to an approximate range and the C plate is set to a predetermined value within the plane retardation range to distinguish the A plate from the c plate. 201040595 Sets the predetermined value to be limited to the application of all other materials with different refractive indices due to the extension. Therefore, the compensation film included in the upper and lower polarizing plates of the present invention is represented by NZ, R 〇, Rth and the like of the optical properties of the plate, and not according to the refractive index isotropic. This gamma (4) is reduced, and the film whose refractive index is twisted and stretched has a positive (1) refractive index property. The film whose refractive index decreases in the extending direction has a negative (a) refractive index property. The compensation film with positive (+) refractive index properties can be selected from TAC (TriAcetyl Cellulose, cellulose triacetate), c〇p (Cycl〇〇lefm, cycloaliphatic polymer), COC (Cyclo_〇lefm c〇p) 〇lymer, cyclic olefin copolymer), PET (Polyethylene Terephthalate, polyethylene terephthalate), PP (Polypropylene), Pc (p〇lycarb〇, polycarbonate), PSF (Polysulfone, Among the group consisting of polysulfone) and PMMA (Poly, Methylmethacrylate, polymethyl methacrylate), the compensation film having a negative (one) refractive index may be modified-PS (Polystyrene) or modified-PC (Polycarbonate, Made of polycarbonate). Furthermore, the method for providing optical properties of the compensation film is divided into a fixed end extension and a Q free end extension, wherein the fixed end extension is a length excluding the fixed extension direction when the film is extended, and the free end extension is outside the extension direction when the film is extended. Direction provides freedom. In general, the film shrinks in a direction other than the direction of extension, but the Z-axis alignment film requires a specific shrinking process rather than an extension. 3 shows the direction in which the green film is wound, in which the unwound direction of the wound film is referred to as MD (Machine direction), and the direction perpendicular to the MD is referred to as TD (Transverse direction). Furthermore, in the process, the film extension at md is referred to as a free end extension, and the extension at TD is referred to as a fixed end extension. Summarize the board type and NZ based on the extension method (only when using the first process)

PiK)〇RA〇〇3W n 201040595 A板可由自由端延伸具有正(+)折射率性質的膜來製造,負雙軸 A板由固定端延伸具有正(+)折射性質的膜,2轴對位膜由自由 端延伸然後固定端收縮具有正(+)折射性f或貞(_)折射性質的 膜,負A板由自由端延伸具有負㈠折射性質的膜,正雙軸八板 由固定端延伸具有負㈠折射性質的膜。 應用上述製程之外的其他製程也可控制慢轴方向、相差 NZ值,其他製程通常用於包含本發明的領域而無特殊限 制。 依據本發明的耦合偏光板組包括第一耦合偏光板和第二 耦合偏光板,各由補償膜、偏光片、保護膜構成。 第一輕合偏光板補償膜的平面延遲讲〇)為15至13〇腿, 折射率比(NZ)為-6.0至_0]。當平面延遲(R〇)在上述範圍内增加 =折射率比(NZ)_對值減辦’偏極狀態分散特性傾向減 少。於是,可確保更優良的廣視角。平面延遲(R〇)可依折射率 比(NZ)適當選擇。 、若折射率比(NZ)小於-6.0,則分散特性變太大,分散特性 代表取決於波長通過具有最佳視肢應之液歸示器後的偏極 狀態差異’液晶顯示器由第—補伽、液晶胞、第二補償膜構 成’而雖鋪償參考波長,但通常不補償其他波長。因此,難 =達成本發_效應。若折射率_取於·αι,則補償膜的 慢軸方向和MD彼此不同。因此,不錢驗崎軸⑽Η〇_ r〇U)製程。 最好平面延遲(R0)在40至i3〇nm範圍,折射率比^]^2)在_ 2’0至-〇·1範圍,考慮光學特性和製程設施來決定這些範圍。最 201040595 小延遲值應維持在4〇nm以上,以製造通常用於液晶顯示器且 具有均勻延遲值(目標值在±5nm内)和延遲角(±〇 〇 5。)的補償 膜。再者’ -0.2至-0.1的折射率比(NZ)是本發明所要的補償膜 僅可由TD單軸延伸來製造的範圍。由於在實際製程中容易製 造具有均勻延遲值和延遲角之補償膜的最小延遲值為5〇ηηι& 上,所以最好平面延遲(R〇)為5〇至13〇皿1,實際製程中之容易 TD單軸延伸的折射率比(NZ)維持在-1.0至_〇.1。TD單軸延伸的 製程比雙軸延伸簡單,藉以降低製造成本。 〇 使第一耦合偏光板補償膜的慢軸平行於鄰近偏光片的吸 收轴。 第二搞合偏光板補償膜的平面延遲(R0)為15至i3〇nm , 折射率比(NZ)為1.1至7.0,折射率比絕對值愈小,愈容易確保 - 較優良的廣視角,平面延遲(R〇)可依據折射率比(NZ)適當組 合。再者,考慮第一耦合偏光板的補償膜和光學特性來使用容 易確保廣視角的組合。 〇 最好平面延遲(R0)為40至130nm,折射率比(NZ)為1.1至 3.〇 ’平面延遲(R0)為50至130更好’折射率比(NZ)為丨m2 〇。 也考慮光學特性和製程設施來決定這些範圍,類似於第一麵合 偏光板補償膜。 第一輕合偏光板補償膜的慢轴垂直於鄰近偏光片的吸收 - 車由。 • 大體上’補償膜相差隨入射光波長而異。相差在短波長 大,在長波長小,有這些性質的補償膜稱為有正常分散特性的 補償臈。再者,在短波長有小相差而在長波長有大相差的膜稱 ^HODRAOoyrw 201040595 為有反轉分散特性的補償膜。 本發明中,補償膜分散特性由380nm光源相差與78〇nm光 源相差的比值代表’如同一般用於此領域者。對所有波長可實 現相同偏極狀態之具有完整反轉波長分散特性的補償膜中, [R0(380nm)/R0(780nm)]=0.4872。 第一和第二耦合偏光板的偏光片可各有偏極功能層,將 PVA(Polyvinyl Alcoho卜聚乙烯醇)延伸和染色而製成。偏光片 分別在液晶胞的遠侧具有保護膜。第一和第二耦合偏光板可由 通常用於此領域的方法製成,詳言之,可使用軸對軸製程和片 對片(sheet-to-sheet)製程。考慮製程中的良率和效率,最好使 用轴對轴製程,詳言之,因PVA偏光片吸收軸方向一直固定在 MD,故有效。 第一和第二耦合偏光板的保護膜可為通常用於此領域的 東西。保護膜最好有盡量不影響視角的光學性質。保護膜的材 料可選自TAC (TriAcetyl Cellulose,三醋酸纖維素)、c〇p (Cyclo-Olefin Polymer ’ 環烯烴聚合物)、COC (Cyclo-Olefin Copolymer,環烯烴共聚物)、PET (Polyethylene Terephthalate, 聚乙稀對苯二曱酸酯)、PP (Polypropylene ,聚丙稀)、PC (Polycarbonate,聚碳酸醋)、PSF (Polysulfone,聚瑕)、pmma (PolyMethylmethacrylate,聚曱基丙婦酸曱酯)。 再者,本發明關於包含藍相液晶面板和耦合偏光板組的 液晶顯示器,耦合偏光板組包括分別做為上下偏光板的第一麵 合偏光板和第二耥合偏光板。液晶顯示器中,第一耦合偏光板 可做為上偏光板,第二耦合偏光板可做為下偏光板,或第二柄 10 201040595 合偏光板可做為上偏光板,第一耦合偏光板可做為下偏光板。 第一耦合偏光板偏光片的吸收軸垂直於第二耦合偏光板偏光片 的吸收轴。 不施加電場時,藍相液晶有光學同向特性,施加電場時 ,有光學異向特性。液晶形成分子扭轉並以3D螺旋排列的圓 柱陣列。此對位結構稱為雙扭轉圓柱(d〇ubie Cyiin(jer,下 文中,稱為‘DTC’)。藍相液進一步從DTC中心軸扭轉到外侧。 亦即,藍相液晶排列成二扭轉軸在DTC彼此垂直的扭轉狀態, 其在DTC的方向性取決於DTC中心軸。 藍相液晶包含第一藍相、第二藍相、第三藍相。排列結 構取決於DTC中的藍相種類。第一藍相中,DTC排列成體心立 … 方結構,是一種晶格結構,第二藍相中,DTC排列成簡單立方 - 結構。由於藍相巾’ DTC排列成晶格結構,所以向錯 (disclinatkm)發生在三個鄰近DTC交會的部分。向錯是液晶不 規則排列而無規則方向性並形成向錯線的部分。 〇 藍相液晶的異向折射率變化正比於施加電壓的平方,取 決於施加電壓強度。當電場施於同向偏極材料時,折射率正比 於施加電壓平方的光學效應稱為克爾效應(Kerr effect)。由於液 晶顯不器使用藍相液晶的克爾效應來顯像,所以增進反應速 度。 再者,對形成電場的各區域決定藍相液晶折射率。當電 場形成區域不_斜,液晶顯示H具有均勻亮度而與晶胞間 隙均勻性無關,藉以增進液晶顯示器的顯示特性。 在本發明之光學條件下的液晶顯示器中,來自所有光方 201040595 向的最大透射比在黑模式滿足0.05%以下的補償關係,最好是 0.02%以下的補償關係。使用垂直對位(VA)模式,目前生產之 液晶顯示器的最高正面亮度約呈現10000 nits。亮度在6〇。傾斜 角的視角約為10000 nits X cos60。,對應於0.05%亮度的亮度為 2.5 nits。因此’本發明使來自所有光方向的透射比等於或大於 採用VA模式的液晶顯示器。 圖1是透視圖,繪示依據本發明之藍相液晶的液晶顯示器 基本結構,以下將說明。 藍相液晶的液晶顯示器中,從背光單元4〇依序堆疊第二 保護膜13、第二偏光片11、第二補償膜14、藍相液晶胞3〇、第 一補償膜24、第一偏光片21、第一保護膜23。從顯示器觀眾觀 看時,第一偏光片21和第二偏光片11的吸收轴12和22彼此垂直 ,第一補償膜慢軸平行於第一偏光片吸收軸,第二補償膜慢轴 垂直於第二偏光片吸收轴。詳言之,如圖1(a),第一麵合偏光 板位於耦合偏光板組上區做為上偏光板,其中第一補償膜24的 慢轴25平行於第一偏光片21的吸收軸22,第二補償膜14的慢轴 15垂直於第二偏光片11的吸收軸12。如圖1(b),第一輕合偏光 板位於搞合偏光板組下區做為下偏光板,其中第一補償膜24的 慢軸25平行於第一偏光片21的吸收轴22,第二補償膜14的慢轴 15垂直於第二偏光片11的吸收軸12。 採用便於量產的轴對軸方法可製造第一耦合偏光板2〇和 第二耦合偏光板10。圖3是示意圖,繪示轴對軸製程的_。 參照圖3,圖1(a)的組態說明如下。 各種光學膜的組合製成第一耦合偏光板20和第二輕合偏 12 201040595 光板ίο ’各光學膜在附在耦合偏光板前為捲繞狀態。從滾筒或 其上未捲繞或捲繞膜的方向稱為加工方向(machine direction,PiK)〇RA〇〇3W n 201040595 A plate can be manufactured by a film having a positive (+) refractive index property extending from the free end, and a negative biaxial A plate extending from the fixed end with a film having positive (+) refractive properties, 2-axis pair The film is extended by the free end and then the fixed end shrinks the film with positive (+) refractive f or 贞 (_) refractive properties, and the negative A plate extends from the free end with a film having negative (a) refractive properties, and the positive biaxial plate is fixed by The end extends a film having negative (a) refractive properties. Other processes other than the above processes can also control the slow axis direction and the phase difference NZ value, and other processes are generally used to encompass the field of the present invention without particular limitation. The coupled polarizing plate group according to the present invention comprises a first coupling polarizing plate and a second coupling polarizing plate each composed of a compensation film, a polarizing plate, and a protective film. The plane retardation of the first light-duty polarizer compensation film is 15 to 13 〇, and the refractive index ratio (NZ) is -6.0 to _0]. When the plane retardation (R 〇) is increased within the above range = the refractive index ratio (NZ) _ the value is reduced, and the polarization state dispersion characteristic tends to decrease. Thus, a better wide viewing angle can be ensured. The plane retardation (R〇) can be appropriately selected depending on the refractive index ratio (NZ). If the refractive index ratio (NZ) is less than -6.0, the dispersion characteristics become too large, and the dispersion characteristics represent a difference in the polarization state after passing through the liquid returner having the best visual limbs. The gamma, the liquid crystal cell, and the second compensation film constitute ' while compensating for the reference wavelength, but generally do not compensate for other wavelengths. Therefore, it is difficult to achieve the _ effect. If the refractive index _ is taken from ?ι, the slow axis direction of the compensation film and the MD are different from each other. Therefore, it is not a good idea to check the axis (10) Η〇 _ r 〇 U) process. Preferably, the plane retardation (R0) is in the range of 40 to i3 〇 nm, and the refractive index ratio ^^^2) is in the range of _ 2'0 to -〇·1, and these ranges are determined in consideration of optical characteristics and process facilities. Most 201040595 Small delay value should be maintained above 4〇nm to make a compensation film commonly used in liquid crystal displays with uniform retardation value (target value within ±5nm) and retardation angle (±〇 〇 5). Further, the refractive index ratio (NZ) of -0.2 to -0.1 is a range in which the compensation film of the present invention can be manufactured only by uniaxial stretching of TD. Since the minimum retardation value of the compensation film having a uniform retardation value and the retardation angle is easily manufactured in an actual process, it is preferable that the plane retardation (R〇) is 5 〇 to 13 〇 1 1 in the actual process. The refractive index ratio (NZ) of the TD uniaxially stretched is easily maintained at -1.0 to _〇.1. The TD single-axis extension process is simpler than the two-axis extension, thereby reducing manufacturing costs. 〇 The slow axis of the first coupled polarizer compensation film is parallel to the absorption axis of the adjacent polarizer. The second planar polarizing plate compensation film has a plane retardation (R0) of 15 to i3 〇 nm and a refractive index ratio (NZ) of 1.1 to 7.0. The smaller the refractive index ratio is, the easier it is to ensure - a superior wide viewing angle. The plane retardation (R〇) can be appropriately combined depending on the refractive index ratio (NZ). Furthermore, considering the compensation film and optical characteristics of the first coupling polarizer, it is easy to use a combination that ensures a wide viewing angle.最好 Preferably, the plane retardation (R0) is 40 to 130 nm, the refractive index ratio (NZ) is 1.1 to 3. 〇 'the plane retardation (R0) is preferably 50 to 130, and the refractive index ratio (NZ) is 丨m2 〇. These ranges are also considered in consideration of optical characteristics and process facilities, similar to the first facet polarizer compensation film. The slow axis of the first light-duty polarizer compensation film is perpendicular to the absorption of the adjacent polarizer - the vehicle. • The general 'compensation film phase difference varies with the wavelength of the incident light. The phase difference is large at short wavelengths and small at long wavelengths. A compensation film having these properties is called a compensation 有 having normal dispersion characteristics. Further, a film having a small phase difference at a short wavelength and a large phase difference at a long wavelength is called "HODRAOoyrw 201040595" as a compensation film having a reverse dispersion characteristic. In the present invention, the compensation film dispersion characteristic is represented by a ratio of the difference between the 380 nm light source and the 78 〇 nm light source as 'as is generally used in the field. [R0 (380 nm) / R0 (780 nm)] = 0.4872 in a compensation film having a complete inverted wavelength dispersion characteristic in which all wavelengths can achieve the same polarization state. The polarizers of the first and second coupling polarizers may each have a polarizing functional layer, and are formed by stretching and dyeing PVA (Polyvinyl Alcoho). The polarizers each have a protective film on the far side of the liquid crystal cell. The first and second coupling polarizers can be made by methods commonly used in this field, and in particular, shaft-to-axis processes and sheet-to-sheet processes can be used. Considering the yield and efficiency in the process, it is best to use the shaft-to-axis process. In detail, since the absorption axis direction of the PVA polarizer is always fixed at the MD, it is effective. The protective film of the first and second coupling polarizers may be what is commonly used in this field. The protective film preferably has an optical property that does not affect the viewing angle as much as possible. The material of the protective film may be selected from TAC (TriAcetyl Cellulose, cellulose triacetate), c〇p (Cyclo-Olefin Polymer 'cycloolefin polymer), COC (Cyclo-Olefin Copolymer), PET (Polyethylene Terephthalate). , Polyethylene terephthalate), PP (Polypropylene, Polypropylene), PC (Polycarbonate, Polycarbonate), PSF (Polysulfone, Polyfluorene), pmma (PolyMethylmethacrylate, Polymethylmethacrylate) . Furthermore, the present invention relates to a liquid crystal display comprising a blue phase liquid crystal panel and a coupled polarizing plate group, the coupling polarizing plate group comprising a first surface polarizing plate and a second coupling polarizing plate respectively serving as upper and lower polarizing plates. In the liquid crystal display, the first coupled polarizing plate can be used as an upper polarizing plate, the second coupled polarizing plate can be used as a lower polarizing plate, or the second handle 10 201040595 combined polarizing plate can be used as an upper polarizing plate, and the first coupled polarizing plate can be As a lower polarizer. The absorption axis of the first coupling polarizer polarizer is perpendicular to the absorption axis of the second coupling polarizer polarizer. When no electric field is applied, the blue phase liquid crystal has optical anisotropy characteristics, and when an electric field is applied, it has optical anisotropy characteristics. The liquid crystal forms an array of prisms in which the molecules are twisted and arranged in a 3D spiral. This alignment structure is called a double twisted cylinder (jerubie Cyiin (jer, hereinafter, referred to as 'DTC'). The blue phase liquid is further twisted from the center axis of the DTC to the outside. That is, the blue phase liquid crystals are arranged in two torsion axes. In the twisted state in which the DTCs are perpendicular to each other, its directivity at the DTC depends on the DTC central axis. The blue phase liquid crystal contains the first blue phase, the second blue phase, and the third blue phase. The alignment structure depends on the blue phase species in the DTC. In the first blue phase, the DTCs are arranged in a body-centered structure. The square structure is a lattice structure. In the second blue phase, the DTCs are arranged in a simple cubic-structure. Since the blue phase towels 'DTC are arranged in a lattice structure, Discognition occurs in the part of three adjacent DTC intersections. The disclination is the irregular arrangement of liquid crystals and irregular directionality and forms the part of the disclination line. The change of the isotropic refractive index of the indigo phase liquid crystal is proportional to the square of the applied voltage. Depending on the applied voltage strength, when the electric field is applied to the co-polar material, the optical effect of the refractive index proportional to the square of the applied voltage is called the Kerr effect. Since the liquid crystal display uses the Kerr effect of the blue phase liquid crystal. Display Therefore, the reaction speed is increased. Furthermore, the refractive index of the blue phase liquid crystal is determined for each region where the electric field is formed. When the electric field forming region is not oblique, the liquid crystal display H has uniform brightness regardless of the uniformity of the cell gap, thereby enhancing the liquid crystal display. In the liquid crystal display of the optical condition of the present invention, the maximum transmittance from the all-direction 201040595 direction satisfies a compensation relationship of 0.05% or less in the black mode, preferably a compensation relationship of 0.02% or less. (VA) mode, the highest front brightness of the currently produced liquid crystal display is about 10000 nits. The brightness is 6 〇. The viewing angle of the tilt angle is about 10000 nits X cos60. The brightness corresponding to 0.05% brightness is 2.5 nits. The invention makes the transmittance from all light directions equal to or greater than the liquid crystal display adopting the VA mode. Fig. 1 is a perspective view showing the basic structure of a liquid crystal display of a blue phase liquid crystal according to the present invention, which will be described below. Liquid crystal display of blue phase liquid crystal The second protective film 13, the second polarizer 11, the second compensation film 14, and the blue phase are sequentially stacked from the backlight unit 4 a unit cell 3, a first compensation film 24, a first polarizer 21, and a first protective film 23. When viewed from a viewer of the display, the absorption axes 12 and 22 of the first polarizer 21 and the second polarizer 11 are perpendicular to each other, A compensation film slow axis is parallel to the first polarizer absorption axis, and a second compensation film slow axis is perpendicular to the second polarizer absorption axis. In detail, as shown in FIG. 1(a), the first surface polarizing plate is located on the coupled polarizing plate. The upper region of the group is used as an upper polarizing plate, wherein the slow axis 25 of the first compensation film 24 is parallel to the absorption axis 22 of the first polarizer 21, and the slow axis 15 of the second compensation film 14 is perpendicular to the absorption axis of the second polarizer 11. 12. As shown in FIG. 1(b), the first light-duty polarizing plate is located in the lower region of the polarizing plate group as a lower polarizing plate, wherein the slow axis 25 of the first compensation film 24 is parallel to the absorption axis 22 of the first polarizer 21. The slow axis 15 of the second compensation film 14 is perpendicular to the absorption axis 12 of the second polarizer 11. The first coupling polarizing plate 2A and the second coupling polarizing plate 10 can be manufactured by a shaft-to-axis method which is easy to mass-produce. Figure 3 is a schematic diagram showing the axis-to-axis process. Referring to Figure 3, the configuration of Figure 1 (a) is explained below. The combination of the various optical films is made into a first coupled polarizing plate 20 and a second light-biased bias 12 201040595 light plate ίο ' each optical film is wound before being attached to the coupled polarizing plate. The direction from the drum or the unwound or wound film thereon is called the machine direction.

MD)°在第二耦合偏光板10的情形,只有當第二偏光片u之吸 收軸12和第二補償膜14之慢軸15的MD彼此一致而與第二保護 膜13的方向無關時,才可以軸對轴生產。同樣地,在第一耦合 偏光板20的情形,只有當第一偏光片21和第一補償膜24的MD 彼此一致而與第一保護膜23的方向無關時,才可以轴對軸生 產。 〇 再者,當接近背光單元之第二偏光片11的吸收軸12在垂 直方向時,通過第二耦合偏光板10的光在水平方向偏極。在此 情形,當光通過在亮模式施以面板電壓的液晶胞時,光在垂直 方向,在具有水平吸收軸的顯示侧通過第一耦合偏光板2〇。此 .· 時,戴著水平吸收軸在顯示侧的偏光太陽眼鏡(偏光太陽眼鏡 的吸收軸在水平方向)也可看到發自液晶顯示器的光。若接近 背光單元之第二偏光片11的吸收軸12在水平方向,則戴著偏光 Q 太陽眼鏡無法看到影像。再者,在大尺寸液晶顯示器的情形, 為在顯示側良好看到影像,由於人的主視範圍在水平方向比垂 直方向寬,所以除了廣告液晶顯示器等等的特殊用途液晶顯示 器外’ 一般液晶顯示器製成4 : 3或16 : 9形式。因此,從顯示 器觀眾來看時,第二偏光片吸收轴在垂直方向,第一偏光片吸 • 收軸在水平方向。 本發明的視角補償效應可經由邦加球來說明。由於邦加 球是表達在預定角之偏極狀態改變的有用工具,所以當以預定 視角照射的光通過使用偏極來顯像之液晶顯示器的光學元件時In the case of the second coupling polarizing plate 10, only when the MDs of the absorption axis 12 of the second polarizer u and the slow axis 15 of the second compensation film 14 coincide with each other regardless of the direction of the second protective film 13, It is only possible to produce shaft-to-shaft. Similarly, in the case of the first coupling of the polarizing plate 20, the axis can be produced only when the MDs of the first polarizer 21 and the first compensation film 24 coincide with each other regardless of the direction of the first protective film 23. Further, when the absorption axis 12 of the second polarizer 11 approaching the backlight unit is in the vertical direction, the light passing through the second coupling polarizing plate 10 is polarized in the horizontal direction. In this case, when the light passes through the liquid crystal cell to which the panel voltage is applied in the bright mode, the light passes through the first coupling polarizing plate 2 in the vertical direction on the display side having the horizontal absorption axis. At this time, the polarized sunglasses with the horizontal absorption axis on the display side (the absorption axis of the polarized sunglasses in the horizontal direction) can also see the light emitted from the liquid crystal display. If the absorption axis 12 of the second polarizer 11 close to the backlight unit is in the horizontal direction, the image cannot be seen with the polarized lens. Furthermore, in the case of a large-sized liquid crystal display, in order to see the image well on the display side, since the main viewing range of the person is wider in the horizontal direction than in the vertical direction, in addition to the special-purpose liquid crystal display for advertising a liquid crystal display or the like, the general liquid crystal The display is made in 4:3 or 16:9 form. Therefore, when viewed from the viewer of the display, the second polarizer absorbs the axis in the vertical direction, and the first polarizer absorbs the axis in the horizontal direction. The viewing angle compensation effect of the present invention can be illustrated by a Bangka ball. Since the Bangka ball is a useful tool for expressing a change in the polarization state of a predetermined angle, when the light irradiated at a predetermined angle of view is illuminated by the optical element of the liquid crystal display using the polarized pole

FK0DRA0u3TW 201040595 ,邦加球可表達偏極狀態改變。本發明中,預定視角在圖4之 半圓座標系統的θ=60。和φ=45。方向,根據人覺得最亮的550nm 波長,說明在此方向發出之光的偏極狀態改變。詳言之,呈現 當Φ方向表面在正面繞φ+9〇。軸轉動0到觀眾方向時在前方離開 之光之邦加球上的偏極狀態改變。當83轴的座標在邦加球上為 正(+)的時,出現右圓偏極,其中當某一偏極水平分量為£乂而 偏極垂直分量為Ey時’右圓偏極暗示Εχ分量相對於Ey分量的 光相位延遲大於〇而小於半波長。 下文中’在上述組態,經由實例和比較例來說明不施加 電壓時在所有視角實現黑狀態的效應。雖然經由以下實施例更 易明瞭本發明,但以下實施例只做為本發明的實例,而不限制 申請專利範圍所主張之本發明的保護範疇。 實例 使用TECH WIZ LCD 1D (韓國Sanayi System公司)經由模 擬來比較廣視角效應,這是以下第一至第十實例和第一至第六 比較例的LCD模擬系統。 第一實例 依據本發明之光學膜、液晶胞、背光的實際測量資料用 於TECH WIZ LCD 1D (韓國Sanayi System公司),具有圖i⑻的 堆疊結構。下文詳述圖1(a)的結構。 從背光單元40,設置第二保護膜13、第二偏光片n、第 二補償膜14、藍相液晶胞3〇、第一補償膜24、第—偏光片2卜 201040595 第一保護膜23,其中從顯示側看時,第二偏光片u的吸收轴12 在垂直方向,第一偏光片21的吸收軸22在水平方向。因此,第 一和弟二偏光片21和11的吸收軸12和22彼此垂直,第一補償膜 24的慢轴25和第一偏光片21的吸收軸22彼此平行,第二補償膜 14的慢軸15和第二偏光片11的吸收軸12彼此垂直。 當電場不施於液晶胞時,液晶胞折射率同向,當電場施 於液晶胞時,折射率在電場施加方向增加。藍相液晶(三星電 子公司,SID 2008)做為液晶模式的樣本產品。採用該液晶時 ,不需起始液晶對位,藉以簡化液晶胞製程。 用於第一實例的光學膜和背光單元各有以下光學性質。 首先’將延伸的PVA染上碘而使第一和第二偏光片u和 21設有偏極功能,偏光片偏極性能在370至780nm可見光區域 内具有99.9%以上的偏極亮度程度(iuminanCe degree 〇f polarization)和 41% 以上的亮度群透射比(luminance group transmittance)。當隨波長之透射軸的透射比為Τϋ(λ),隨波長 之吸收軸的透射比為ΜΟ(λ),定義於JIS Ζ 8701 : 1999的亮度 補償值為卩⑴時,偏極亮度程度和亮度群透射比由以下公式4至 8定義,其中S(X)是光源光譜,光源是C光源。 [公式4]FK0DRA0u3TW 201040595, Bangka ball can express the change of the polar state. In the present invention, the predetermined angle of view is θ = 60 in the semicircular coordinate system of Fig. 4. And φ=45. The direction, according to the 550nm wavelength that people think is the brightest, indicates the change in the polarization state of the light emitted in this direction. In detail, it appears that the surface in the Φ direction is φ+9〇 on the front side. When the axis rotates from 0 to the direction of the viewer, the state of the pole on the ball that is moving away from the front changes. When the coordinates of the 83-axis are positive (+) on the Bangka ball, the right circular pole appears. When the horizontal component of a polarized pole is 乂 and the vertical component of the polar phase is Ey, the right circular bias implies Εχ The optical phase retardation of the component relative to the Ey component is greater than 〇 and less than half the wavelength. In the following, in the above configuration, the effect of realizing the black state at all viewing angles when no voltage is applied is explained by way of examples and comparative examples. Although the present invention will be more readily understood by the following examples, the following examples are merely illustrative of the invention and are not intended to limit the scope of the invention claimed. EXAMPLES A wide viewing angle effect was compared by simulation using TECH WIZ LCD 1D (Sanayi System, Korea), which are LCD simulation systems of the following first to tenth examples and first to sixth comparative examples. First Example The actual measurement data of the optical film, liquid crystal cell, and backlight according to the present invention was applied to TECH WIZ LCD 1D (Sanayi System Co., Korea), and has a stacked structure of Fig. i (8). The structure of Figure 1 (a) is detailed below. From the backlight unit 40, a second protective film 13, a second polarizer n, a second compensation film 14, a blue phase liquid crystal cell 3, a first compensation film 24, a first polarizer 2, a 201040595 first protective film 23, When viewed from the display side, the absorption axis 12 of the second polarizer u is in the vertical direction, and the absorption axis 22 of the first polarizer 21 is in the horizontal direction. Therefore, the absorption axes 12 and 22 of the first and second polarizers 21 and 11 are perpendicular to each other, the slow axis 25 of the first compensation film 24 and the absorption axis 22 of the first polarizer 21 are parallel to each other, and the second compensation film 14 is slow. The shaft 15 and the absorption axis 12 of the second polarizer 11 are perpendicular to each other. When the electric field is not applied to the liquid crystal cell, the refractive index of the liquid crystal cell is in the same direction, and when the electric field is applied to the liquid crystal cell, the refractive index increases in the direction in which the electric field is applied. Blue phase liquid crystal (Samsung Electronics, SID 2008) is used as a sample product for the liquid crystal mode. When the liquid crystal is used, it is not necessary to initiate liquid crystal alignment, thereby simplifying the liquid crystal cell process. The optical film and the backlight unit used in the first example each have the following optical properties. First, the extended PVA is dyed with iodine so that the first and second polarizers u and 21 have a polarization function, and the polarizer has a polarization degree of 99.9% or more in the visible light region of 370 to 780 nm (iuminanCe). Degree 〇f polarization) and 41% or more of luminance group transmittance. When the transmittance of the transmission axis with wavelength is Τϋ(λ), the transmittance of the absorption axis with wavelength is ΜΟ(λ), which is defined by the brightness compensation value of IS(1) of JIS Ζ 8701 : 1999, the degree of polarization of the extreme polarity and The luminance group transmittance is defined by the following formulas 4 to 8, where S(X) is the source spectrum and the source is the C source. [Formula 4]

Tw=k( mS{X)y{X) TD{X)dXTw=k( mS{X)y{X) TD{X)dX

[公式5] W0DRA003TW i c 201040595 [公式6] 100 ~Fm ~ /办綱办 • 3fl0 [公式7] 偏極程度= 丨 Tw-Tmo V Ttd + Tmd [公式8] 群透射比= {Ttd-\-Tmd) 2 在589.3nm波長,使用具有8〇nm平面延遲(R0)和1.1折射 率比(NZ)的第二耦合偏光板第二補償膜14,及具有9〇nm平面 延遲(R0)和-0.11折射率比(NZ)的第一耦合偏光板第一補償膜 24。 第二補償膜14之全範圍波長的波長分散特性顯示於圖5, 平面延遲(380nm波長)/平面延遲(780nm波長)的比值=[R〇 (380nm) / R〇 (780nm)]為0.862。第一補償膜24之全範圍波長的 波長分散特性顯示於圖6 ’平面延遲(380nm波長)/平面延遲 (780nm波長)的比值=[R〇 (380nm) / R〇 (780nm)]為 1.197。 相對於589.3nm入射光有50nm厚度延遲(Rth)之光學性質 的TAC (TriAcetyl Cellulose,三醋酸纖維素)膜用於第一和第二 保瘦膜23和13以保護第一和第二偏光片。裝在46对液晶電視 PAW (LTA460HR0)機型(三星電子公司)的實際測量光譜資料 用於背光單元。 ' 在堆疊光學分量後進行來自所有光方向的透射比模擬, 16 201040595 如圖1⑻’獲得圖7的結果。在參考視角(Θ = 6〇。和φ = 45。)之 55〇nm波長的偏極狀態改變顯示於圖8。i代表通過邦加球上之 第二偏光片U時的偏極狀態,2代表通過第二補償膜14時的偏 極狀態和通過液晶胞時的偏極狀‘態,3代表通過第—補償膜% 時的偏極狀態。 圖7呈現黑狀態顯示於絲時來自所有光方向的透射比分 布’其中透射比為0%至0.05% ’紅色呈現超過〇〇5%透射比的 〇 部分,藍色呈現黑狀態時的低透射比部分。在此情形,可看到 藍部分在中心愈寬’則愈易確保較廣視角。 因此’看到視角補償效應優於圖9,圖9呈現平面轉換液 晶顯示器偏光板(I Plus Pol組態,韓國東友精細化工公司)用於 … 本發明之液晶模式時來自所有光方向的透射比。 第二實例 雖然組態與第一實例相同,但藍相液晶的液晶顯示器使 〇 用在589.3nm波長具有35nm平面延遲(R0)和6.9折射率比(NZ)的 第二補償膜14及具有3 5 nm平面延遲(R0)和-5.9折射率比(NZ)的 第一補償膜24。 圖10呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布,其中透射比為0%至0.05%,紅色呈現超過0.05%透射比 ' 的部分,藍色呈現黑狀態時的低透射比部分。在此情形,可看 到藍部分在中心愈寬,則愈易確保較廣視角。 因此,看到視角補償效應等同於圖9,圖9呈現平面轉換 液晶顯示器偏光板(I Plus Pol組態,韓國東友精細化工公司)用 ^n〇DRA〇〇3TW 17 201040595 於本發明之液晶模式時來自所有光方向的透射比。 圖11呈現邦加球上之第二實例的光學補償原理,圖8呈現 邦加球上之第_實觸光學補償顧。圖中,可翻無數的可 補償路徑在邦加球上的二路徑之間,第一和第二補償膜14和24 不僅增進光學性質,第二補^|膜14的光學性質還決定第一補償 膜24的最佳光學性質。 第三實例 雖然組態與第-實例相同,但藍相液晶的液晶顯示器使 用在589.3nm波長具有129nm平面延遲(R〇)和1 · 1折射率比(NZ) 的第二補償膜14及具有πnm平面延遲(R〇)和-5.9折射率比(NZ) 的第一補償膜24。 圖1 2呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布。此圖中,可看到可確保廣視角。圖13呈現在本發明之參 考視角(Θ = 60。和φ = 45。)之550nm波長的偏極狀態改變。 第四實例 雖然組態與第一實例相同,但藍相液晶的液晶顯示器使 用在589.3nm波長具有17肺平面延遲(R〇)和6 9折射率比(NZ)的 第一補償膜14及具有I29nm平面延遲(R0)和-0.11折射率比(Nz) 的第一補償膜24。 圖1 4呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布。此圖中,可看到可確保廣視角。圖15呈現在本發明之參 考視角(Θ = 60。和φ = 45。)之550nm波長的偏極狀態改變。 1 18 201040595 第五實例 雖然組態與第一實例相同,但從背光單元4〇,設置第一 保護膜23、第一偏光片21、第一補償膜24、藍相液晶胞3〇、第 二補償膜14、第二偏光片11、第二保護膜13,如圖。從顯 示侧看時,第一偏光片21的吸收轴22在垂直方向,從顯示侧看 時’第二偏光片11的吸收軸12在水平方向。因此,第一和第二 偏光片21和11的吸收軸22和12彼此垂直’第二補償膜14的慢轴 15垂直於第二偏光片11的吸收軸12,第一補償膜24的慢轴乃和 Θ 第一偏光片21的吸收軸22彼此平行。 依據在各膜方向之内部折射率差異所產生的光學性質, 在589.3nm波長,使用具有80nm平面延遲(R〇)和ι·ι折射率比 (ΝΖ)的第二補償膜14及具有90nm平面延遲(尺〇)和_〇.11折射率 比(NZ)的第一補償膜24。 第二補償膜14之全範圍波長的波長分散特性呈現圖5的全 波長分散特性程度,其中平面延遲(38〇nm波長)/平面延遲 q (780nm波長)=[R〇 (38〇nm) / R〇 (780nm)]為0.862。第一補償膜 24之全範圍波長的波長分散特性呈現圖6的全波長分散特性程 度,其中平面延遲(380nm波長)/平面延遲(78〇nm波長)=[r〇 (380nm) / R0 (780nm)]為 1.197。 在堆疊光學分量後進行來自所有光方向的透射比模擬, 如圖1(b) ’獲得圖16的結果。在參考視角(0 = 6〇。和φ = 45。)之 - 550nm波長的偏極狀態改變顯示於圖1 7。1代表通過邦加球上 之第一偏光片21時的偏極狀態,2代表通過第一補償膜24時的 偏極狀態和通過液晶胞時的偏極狀態,3代表通過第二補償膜 F110DRAD037'W ^ 201040595 14時的偏極狀態。 圖1 6呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布,其中透射比為0%至0.05% ’紅色呈現超過〇.〇5%透射比 的部分’藍色呈現黑狀態時的低透射比部分。在此情形,可看 到藍部分在中心愈寬’則愈易確保較廣視角。 因此’看到視角補償效應優於圖9,圖9呈現平面轉換液 晶顯示器偏光板(I Plus Pol組態,韓國東友精細化工公司)用於 本發明之液晶模式時來自所有光方向的透射比。 第六實例 雖然圖1(b)的分量以第五實例的相同方式堆疊,但藍相 液晶的液晶顯示器使用在589.3nm波長具有3 5 nm平面延遲(r0) 和6.9折射率比(NZ)的第二補償膜14及具有”以^平面延遲(r〇) 和-5.9折射率比(nz)的第一補償膜24。 圖1 8呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布。此圖中,可看到可確保廣視角。圖19呈現在本發明之參 考視角(θ =咖㈣=45。)之55Gnm波長的偏極狀態改變。 第七實例 雖然圖1(b)的分量以第五實例的相同方式堆疊,但藍相 液晶的液晶顯示器使用在589.3nm波長具有1 2 9 nm平面延遲 ⑽)和1.1折神比(NZ)㈣二補伽14及具有丨7聰平面延遲 (R0)和·5.9折射率比(nZ)的第一補償膜24。 圖20呈現黑狀態顯示於螢幕時來自所有光方向的透射比 20 201040595 分布。此圖中,可看到可確保廣視角。圖21呈現在本發明之參 考視角(Θ = 60。和Φ = 45°)之550nm波長的偏極狀態改變。 該組態之來自所有光方向的透射比顯示於圖16。圖17呈 現在本發明之參考視角(Θ = 60。和φ = 45。)之550nm波長的偏極 狀態改變。 第八實例 雖然圖1(b)的分量以第五實例的相同方式堆疊,但藍相 液晶的液晶顯示器使用在589.3nm波長具有1 7nm平面延遲(R〇) 和6.9折射率比(NZ)的第二補償膜14及具有129nm平面延遲(R〇) 和-0.11折射率比(NZ)的第一補償膜24。 圖22呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布。此圖中,可看到可確保廣視角。圖23呈現在本發明之參 考視角(Θ = 60。和Φ = 45。)之550nm波長的偏極狀態改變。 第九實例 雖然組態與第一實例相同’但藍相液晶的液晶顯示器使 用在589.3nm波長具有4 9nm平面延遲(R0)和3折射率比(NZ)的 第二補償膜14及具有49nm平面延遲(R0)和-1.9折射率比(NZ)的 第一補償膜24。 圖24呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布。此圖中’可看到可確保廣視角。圖25呈現在本發明之參 考視角(Θ = 60。和φ = 45。)之550nm波長的偏極狀態改變。 ^hOORAOOSTV./ 21 201040595 第十實例 雖然組態與第一實例相同’但藍相液晶的液晶顯示器使 用在589.3nm波長具有6〇nm平面延遲(R0)和2折射率比(NZ)的 第二補償膜14及具有60nm平面延遲(R0)和-0.9折射率比(^)的 第一補償膜24。 圖26呈現黑狀態顯示於螢幕時來自所有光方向的透射比 分布。此圖中,可看到可確保廣視角。圖27呈現在本發明之參 考視角(Θ = 60。和φ = 45。)之550nm波長的偏極狀態改變。 第一比較例 雖然組態與第一實例相同,但藍相液晶的液晶顯示器使 用具有一般TAC之光學性質(2麵平面延遲(R〇)和52nm厚度延 遲(Rth))的第二補償膜14和第一補償膜24。 液晶顯示器之來自所有光方向的透射比模擬結果顯示於 圖28。如圖28,可看到由於傾斜表面的透射比在黑狀態高’所 以視角窄。 第二比較例 雖然組態與第一實例相同’但藍相液晶的液晶顯示器使 用具有用於低價平面轉換液晶顯示器之〇_TAC的第一和第二補 償膜14和24 (lnm平面延遲(R0)和211111厚度延遲(Rth))。 液晶顯示器之來自所有光方向的透射比模擬結果顯示於 圖29。如圖29,可看到由於傾斜表面的透射比在黑狀態高,所 以視角窄。 22 201040595 第三比較例 雖然組態與第一實例相同,但使第一補償膜24的慢軸25 和第一偏光片21的吸收轴22彼此垂直來製成藍相液晶顯示器。 液晶顯示器之來自所有光方向的透射比模擬結果顯示於 圖30。如圖30 ’可看到由於傾斜表面的透射比在黑狀態高,所 以視角窄。 第四比較例 雖然組態與第一實例相同,但藍相液晶的液晶顯示器使 用在589.3nm波長具有80nm平面延遲(R0)和1.1折射率比(NZ)的 第一補償膜14及具有150nm平面延遲(R0)和-0.1折射率比 的第一補償膜24。 液晶顯示器之來自所有光方向的透射比模擬結果顯示於 圖31。如圖31 ’可看到由於傾斜表面的透射比在黑狀態高,所 以視角窄。 第五比較例 雖然組態與第一實例相同,但藍相液晶的液晶顯示器使 用在589.3nm波長具有l〇nm平面延遲(R0)和8.0折射率比(NZ)的 第一補償膜14及具有55mn平面延遲(R0)和-6.0折射率比(nz)的 第一補償膜24。 液晶顯示器之來自所有光方向的透射比模擬結果顯示於 圖32。如圖32 ’可看到由於傾斜表面的透射比在黑狀態高,所 以視角窄。 23 201040595 第六比較例 雖然組態與第一實例相同,但藍相液晶的液晶顯示器使 用在589.3nm波長具有1〇〇碰平面延遲(R〇)和5.0折射率比 的第一補償膜14及具有i〇nm平面延遲(R〇)和-7.0折射率比(νζ) 的第一補償膜24。 液晶顯示器之來自所有光方向的透射比模擬結果顯示於 圖33 °如圖33 ’可看到由於傾斜表面的透射比在黑狀態高,所 以視角窄。 如上述’因為依據本發明之藍相液晶的液晶顯示器可提 供廣視角,所以可用於需要高光學水準的大螢幕液晶顯示器。 【圖式簡單說明】 圖1是透視圖,繪示依據本發明一實施例的垂直對位型 液晶顯示器結構; 圖2是示意圖,繪示依據本發明的補償膜折射率; 圖3是示意圖,呈現製程中的_以說明依據本發明之補 償膜和偏光板的未捲繞方向; .圖4是示意圖,缚示本發明之座標系統中之①和㊀的表示 圖5緣不用於本發明第一實例之第二補償膜之波長全範圍 的波長分散特性; 圖6緣不用於第一實例之第一補償膜之波長全範圍的波長 分散特性; 24 201040595 圖7呈現依據本㈣第—實例之來自所有光方向的透射比 模擬結果; 圖8呈現本發明第一實例之邦加球(pdn· sphere)上發 自傾斜表_ = 60。和φ = 45。)方向之光的偏極狀態改變; 圖9呈現將平面轉換液晶顯示器麵合偏光板組用於本發明 的液晶模式時來自所有光方向的透射比模擬結果; 圖10呈現依據本發明第二實例之來自所有光方向的透射 _ 比模擬結果; 〇 圖11呈現本發明第二實例之邦加球上發自傾斜表面(θ = 60°和φ = 45。)方向之光的偏極狀態改變; 圖12呈現依據本發明第三實例之來自所有光方向的透射 •比模擬結果; 圖13呈現本發明第三實例之邦加球上發自傾斜表面(㊀= 60°和φ = 45。)方向之光的偏極狀態改變; 圖14呈現依據本發明第四實例之來自所有光方向的透射 〇 比模擬結果; 圖15呈現本發明第四實例之邦加球上發自傾斜表面(θ = 60°和φ = 45°)方向之光的偏極狀態改變; 圖16呈現依據本發明第五實例之來自所有光方向的透射 比模擬結果; 圖17呈現本發明第五實例之邦加球上發自傾斜表面(❸= 60°和φ = 45。)方向之光的偏極狀態改變; 圖18呈現依據本發明第六實例之來自所有光方向的透射 比模擬結果; 201040595 圖19呈現本發明第六實例之邦树上發自傾絲_二 60。和Φ = 45°)方向之光的偏極狀態改變; 圖2〇呈現依據本發明第七實例之來自所有光方向的透射 比模擬結果; 圖21呈現本發明第七實例之邦加球上發自傾斜表面(θ = 60°和Φ = 45°)方向之光的偏極狀態改變; 圖22呈現依據本發明第八實例之來自所有光方向的透射 比模擬結果; 圖23呈現本發明第八實例之邦加球上發自傾斜表师= 60°和φ = 45°)方向之光的偏極狀態改變; 圖24呈現依據本發明第九實例之來自所有光方向的透射 比模擬結果; 圖25呈現本發明第九實例之邦加球上發自傾斜表面⑴= 60°和φ = 45°)方向之光的偏極狀態改變; 圖26呈現依據本發明第十實例之來自所有光方向的透射 比模擬結果; 圖27呈現本發明第十實例之邦加球上發自傾斜表面(θ = 60°和φ = 45°)方向之光的偏極狀態改變; 圖28呈現依據本發明第一比較例之來自所有光方向的透 射比模擬結果; 圖29呈現依據本發明第二比較例之來自所有光方向的透 射比模擬結果; 圖30呈現依據本發明第三比較例之來自所有光方向的透 射比模擬結果; 201040595 圖31呈現依據本發明第四比較例之來自所有光方向的透 射比模擬結果; 圖32呈現依據本發明第五比較例之來自所有光方向的透 射比模擬結果; 圖33呈現依據本發明第六比較例之來自所有光方向的透 射比模擬結果。 〇 【主要元件符號說明】 10 第二耦合偏光板 11 第二偏光片 12 13 14 15 〇 20 21 22 23 24 25 30 40 吸收轴 第二保護膜 第二補償膜 慢轴 第一耦合偏光板 第一偏光片 吸收轴 第一保護膜 第一補償膜 慢軸 藍相液晶胞 背光單元 MODRAGCKyiVV 27[Formula 5] W0DRA003TW ic 201040595 [Formula 6] 100 ~Fm ~ / Office • 3fl0 [Formula 7] Polarization degree = 丨Tw-Tmo V Ttd + Tmd [Equation 8] Group transmittance = {Ttd-\- Tmd) 2 at a wavelength of 589.3 nm, using a second coupling polarizer second compensation film 14 having a plane retardation (R0) of 8 〇 nm and a refractive index ratio (NZ) of 1.1, and having a plane delay (R0) of 9 〇 nm and - The first compensation polarizing plate first compensation film 24 of 0.11 refractive index ratio (NZ). The wavelength dispersion characteristics of the entire range of wavelengths of the second compensation film 14 are shown in Fig. 5. The ratio of the plane retardation (380 nm wavelength) / plane retardation (780 nm wavelength) = [R 〇 (380 nm) / R 〇 (780 nm)] was 0.862. The wavelength dispersion characteristic of the full range wavelength of the first compensation film 24 is shown in Fig. 6 as a ratio of plane retardation (380 nm wavelength) / plane retardation (780 nm wavelength) = [R 〇 (380 nm) / R 〇 (780 nm)] is 1.197. A TAC (TriAcetyl Cellulose) film having an optical property of 50 nm thickness retardation (Rth) with respect to 589.3 nm incident light is used for the first and second thin films 23 and 13 to protect the first and second polarizers . The actual measured spectral data of 46 pairs of LCD TV PAW (LTA460HR0) models (Samsung Electronics Co., Ltd.) is used for the backlight unit. Transmittance simulation from all light directions after stacking optical components, 16 201040595 Obtain the results of Figure 7 as shown in Figure 1 (8)'. The change in the polar state of the 55 〇 nm wavelength at the reference viewing angle (Θ = 6 〇 and φ = 45) is shown in Fig. 8. i represents the polarization state when passing the second polarizer U on the Bangka ball, 2 represents the polarization state when passing through the second compensation film 14, and the polarization state when passing through the liquid crystal cell, and 3 represents the first compensation The state of the pole when the film is %. Figure 7 shows a transmittance distribution from all light directions when the black state is displayed on the filament 'where the transmittance is 0% to 0.05% 'red indicates a 〇 portion exceeding 〇〇 5% transmittance, and blue has a low transmission when it is black Than the part. In this case, it can be seen that the wider the blue portion is at the center, the easier it is to ensure a wider viewing angle. Therefore, the effect of seeing the viewing angle compensation is better than that of FIG. 9. FIG. 9 shows a polarizing plate of a planar conversion liquid crystal display (I Plus Pol configuration, Korea Dongyou Fine Chemical Co., Ltd.) for transmitting from all light directions in the liquid crystal mode of the present invention. ratio. Second Embodiment Although the configuration is the same as the first example, the liquid crystal display of the blue phase liquid crystal is used for the second compensation film 14 having a 35 nm plane retardation (R0) and a 6.9 refractive index ratio (NZ) at a wavelength of 589.3 nm and having 3 The first compensation film 24 has a 5 nm plane retardation (R0) and a -5.9 refractive index ratio (NZ). Figure 10 is a diagram showing the transmittance distribution from all light directions when the black state is displayed on the screen, wherein the transmittance is 0% to 0.05%, the red portion exhibits a transmittance of more than 0.05%, and the low transmittance portion when the blue color is black. . In this case, it can be seen that the wider the blue portion is at the center, the easier it is to ensure a wider viewing angle. Therefore, it is seen that the viewing angle compensation effect is equivalent to that of FIG. 9. FIG. 9 shows a plane-converted liquid crystal display polarizing plate (I Plus Pol configuration, Korea Dongyou Fine Chemical Co., Ltd.) used in the liquid crystal of the present invention by ^n〇DRA〇〇3TW 17 201040595 The mode is the transmittance from all light directions. Figure 11 presents the optical compensation principle of the second example on the Bangka ball, and Figure 8 presents the first actual optical compensation on the Bangka ball. In the figure, the countable compensable path is between the two paths on the Bangka ball, and the first and second compensation films 14 and 24 not only enhance the optical properties, but also the optical properties of the second film 14 are determined first. The optimal optical properties of the compensation film 24 are compensated. Third Embodiment Although the configuration is the same as that of the first example, the liquid crystal display of the blue phase liquid crystal uses the second compensation film 14 having a plane retardation (R〇) of 129 nm and a refractive index ratio (NZ) of 1.9 at a wavelength of 589.3 nm and has The first compensation film 24 has a πnm plane retardation (R〇) and a -5.9 refractive index ratio (NZ). Figure 12 shows the transmittance distribution from all light directions when the black state is displayed on the screen. In this picture, you can see that a wide viewing angle is ensured. Figure 13 shows the change in the polar state of the 550 nm wavelength at the reference angle of view (? = 60 and φ = 45) of the present invention. Fourth Embodiment Although the configuration is the same as the first example, the liquid crystal display of the blue phase liquid crystal uses the first compensation film 14 having a lung plane retardation (R〇) and a refractive index ratio (NZ) of 17 at a wavelength of 589.3 nm and has The first compensation film 24 has an I29 nm plane retardation (R0) and a -0.11 refractive index ratio (Nz). Figure 14 shows the transmittance distribution from all light directions when the black state is displayed on the screen. In this picture, you can see that a wide viewing angle is ensured. Fig. 15 shows the change in the polarization state of the 550 nm wavelength at the reference angle of view (Θ = 60 and φ = 45) of the present invention. 1 18 201040595 Fifth example Although the configuration is the same as that of the first example, from the backlight unit 4, the first protective film 23, the first polarizer 21, the first compensation film 24, the blue phase liquid crystal cell 3, and the second are disposed. The compensation film 14, the second polarizer 11, and the second protective film 13 are as shown in the drawing. When viewed from the display side, the absorption axis 22 of the first polarizer 21 is in the vertical direction, and when viewed from the display side, the absorption axis 12 of the second polarizer 11 is in the horizontal direction. Therefore, the absorption axes 22 and 12 of the first and second polarizers 21 and 11 are perpendicular to each other 'the slow axis 15 of the second compensation film 14 is perpendicular to the absorption axis 12 of the second polarizer 11, the slow axis of the first compensation film 24 The absorption axes 22 of the first polarizer 21 are parallel to each other. According to the optical properties produced by the difference in internal refractive index in the direction of each film, at a wavelength of 589.3 nm, a second compensation film 14 having a plane retardation (R〇) of 80 nm and a refractive index ratio (ΝΖ) of ι·ι and a plane having a 90 nm plane are used. The first compensation film 24 of retardation (footprint) and _〇.11 refractive index ratio (NZ). The wavelength dispersion characteristic of the full range wavelength of the second compensation film 14 exhibits the degree of full wavelength dispersion characteristic of FIG. 5, wherein the plane retardation (38 〇 nm wavelength) / plane retardation q (780 nm wavelength) = [R 〇 (38 〇 nm) / R〇(780nm)] was 0.862. The wavelength dispersion characteristic of the full range wavelength of the first compensation film 24 exhibits the degree of full wavelength dispersion characteristic of FIG. 6, in which the plane retardation (380 nm wavelength) / plane retardation (78 〇 nm wavelength) = [r 〇 (380 nm) / R0 (780 nm) )] is 1.197. Transmittance simulations from all light directions were performed after stacking the optical components, and the results of Fig. 16 were obtained as shown in Fig. 1(b)'. At the reference viewing angle (0 = 6 〇 and φ = 45) - the change in the polar state of the 550 nm wavelength is shown in Fig. 17. The representative value of the first polarizer 21 on the Bangka ball is 2, 2 Representing the polarization state when passing through the first compensation film 24 and the polarization state when passing through the liquid crystal cell, 3 represents the polarization state when passing through the second compensation film F110DRAD037'W^20104059514. Figure 16.6 shows the transmittance distribution from all light directions when the black state is displayed on the screen, where the transmittance is 0% to 0.05%. 'Red shows a portion that exceeds 〇. 5% transmittance. 'Blue is low in the black state. Transmittance portion. In this case, it can be seen that the wider the blue portion is at the center, the easier it is to ensure a wider viewing angle. Therefore, the viewing angle compensation effect is better than that of FIG. 9. FIG. 9 shows the transmittance from all light directions when the plane conversion liquid crystal display polarizing plate (I Plus Pol configuration, Korea Dongyou Fine Chemical Co., Ltd.) is used in the liquid crystal mode of the present invention. . Sixth Example Although the components of FIG. 1(b) are stacked in the same manner as the fifth example, the liquid crystal display of the blue phase liquid crystal has a plane retardation (r0) of 35 nm and a refractive index ratio (NZ) of 6.9 at a wavelength of 589.3 nm. The second compensation film 14 and the first compensation film 24 having a "plane retardation (r〇) and a -5.9 refractive index ratio (nz). Fig. 18 shows a transmittance distribution from all light directions when the black state is displayed on the screen. In this figure, it can be seen that a wide viewing angle can be ensured. Fig. 19 shows a change in the polarization state of the 55 Gnm wavelength at the reference viewing angle (θ = coffee (4) = 45) of the present invention. The seventh example is shown in Fig. 1(b) The components are stacked in the same manner as in the fifth example, but the liquid crystal display of the blue phase liquid crystal has a plane retardation (10) of 1 29 nm at a wavelength of 589.3 nm) and a folding ratio of (NZ) (four) two complementary gamma 14 and has a 丨7 Cong plane. Delaying the (R0) and ·5.9 refractive index ratio (nZ) of the first compensation film 24. Figure 20 shows the transmission ratio 20 201040595 from all light directions when the black state is displayed on the screen. In this figure, it can be seen that it can be ensured Angle of view. Figure 21 presents the polarization of the 550 nm wavelength at the reference viewing angle (Θ = 60 and Φ = 45°) of the present invention. The state change. The transmittance of the configuration from all light directions is shown in Fig. 16. Fig. 17 shows the change in the polar state of the 550 nm wavelength at the reference viewing angle (Θ = 60 and φ = 45) of the present invention. Example Although the components of FIG. 1(b) are stacked in the same manner as the fifth example, the liquid crystal display of the blue phase liquid crystal uses a second having a plane retardation (R〇) of 17 nm and a refractive index ratio (NZ) of 6.9 at a wavelength of 589.3 nm. The compensation film 14 and the first compensation film 24 having a plane retardation (R〇) of 129 nm and a refractive index ratio (NZ) of -0.11. Fig. 22 shows a transmittance distribution from all light directions when the black state is displayed on the screen. It can be seen that a wide viewing angle can be ensured. Figure 23 presents a change in the polar state of the 550 nm wavelength at the reference viewing angle (Θ = 60 and Φ = 45) of the present invention. The ninth example is identical in configuration to the first example. The liquid crystal display of the blue phase liquid crystal uses the second compensation film 14 having a plane retardation (R0) and a refractive index ratio (NZ) of 49 nm at a wavelength of 589.3 nm and has a plane retardation (R0) of 49 nm and a refractive index ratio (NZ) of -1.9. The first compensation film 24. Figure 24 shows the black state from all light directions when displayed on the screen Transmittance distribution. It can be seen in this figure to ensure a wide viewing angle. Figure 25 shows the change in the polar state of the 550 nm wavelength at the reference viewing angle (Θ = 60 and φ = 45) of the present invention. ^hOORAOOSTV./ 21 201040595 The tenth example is the same as the first example, but the liquid crystal display of the blue phase liquid crystal uses the second compensation film 14 having a plane retardation (R0) and a refractive index ratio (NZ) of 6 〇 nm at a wavelength of 589.3 nm and The first compensation film 24 has a plane retardation (R0) of 60 nm and a refractive index ratio (^) of -0.9. Figure 26 shows the transmittance distribution from all light directions when the black state is displayed on the screen. In this picture, you can see that a wide viewing angle is ensured. Fig. 27 shows the change in the polarization state of the 550 nm wavelength at the reference angle of view (Θ = 60 and φ = 45) of the present invention. First Comparative Example Although the configuration is the same as that of the first example, the liquid crystal display of the blue phase liquid crystal uses the second compensation film 14 having the general TAC optical properties (2-plane retardation (R〇) and 52 nm thickness retardation (Rth)). And a first compensation film 24. The results of the transmittance simulation of the liquid crystal display from all light directions are shown in Fig. 28. As shown in Fig. 28, it can be seen that since the transmittance of the inclined surface is high in the black state, the viewing angle is narrow. The second comparative example is identical in configuration to the first example 'but the liquid crystal display of the blue phase liquid crystal uses the first and second compensation films 14 and 24 having a 〇_TAC for a low-cost planar conversion liquid crystal display (lnm plane delay ( R0) and 211111 thickness retardation (Rth)). The results of the transmittance simulation of the liquid crystal display from all light directions are shown in Fig. 29. As shown in Fig. 29, it can be seen that since the transmittance of the inclined surface is high in the black state, the viewing angle is narrow. 22 201040595 Third Comparative Example Although the configuration is the same as that of the first example, the slow axis 25 of the first compensation film 24 and the absorption axis 22 of the first polarizer 21 are made perpendicular to each other to form a blue phase liquid crystal display. The results of the transmittance simulation of the liquid crystal display from all light directions are shown in Fig. 30. As seen in Fig. 30', since the transmittance of the inclined surface is high in the black state, the viewing angle is narrow. Fourth Comparative Example Although the configuration is the same as that of the first example, the liquid crystal display of the blue phase liquid crystal uses the first compensation film 14 having a plane retardation (R0) of 80 nm and a refractive index ratio (NZ) of 91 at a wavelength of 589.3 nm and has a plane of 150 nm. The first compensation film 24 is delayed (R0) and -0.1 refractive index ratio. The results of the transmittance simulation of the liquid crystal display from all light directions are shown in Fig. 31. As seen in Fig. 31', since the transmittance of the inclined surface is high in the black state, the viewing angle is narrow. Fifth Comparative Example Although the configuration is the same as that of the first example, the liquid crystal display of the blue phase liquid crystal uses the first compensation film 14 having a plane retardation (R0) of l〇nm and a refractive index ratio (NZ) of 8.0 at a wavelength of 589.3 nm and has The first compensation film 24 has a 55 nm plane retardation (R0) and a -6.0 refractive index ratio (nz). The results of the transmittance simulation of the liquid crystal display from all light directions are shown in Fig. 32. As can be seen from Fig. 32', since the transmittance of the inclined surface is high in the black state, the viewing angle is narrow. 23 201040595 Sixth Comparative Example Although the configuration is the same as the first example, the liquid crystal display of the blue phase liquid crystal uses the first compensation film 14 having a collision plane retardation (R〇) and a refractive index ratio of 5.0 at a wavelength of 589.3 nm and The first compensation film 24 has an i〇nm plane retardation (R〇) and a -7.0 refractive index ratio (νζ). The results of the transmittance of the liquid crystal display from all light directions are shown in Fig. 33 ° as shown in Fig. 33'. Since the transmittance of the inclined surface is high in the black state, the viewing angle is narrow. As described above, since the liquid crystal display of the blue phase liquid crystal according to the present invention can provide a wide viewing angle, it can be used for a large-screen liquid crystal display requiring high optical level. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a structure of a vertical alignment type liquid crystal display according to an embodiment of the present invention; FIG. 2 is a schematic view showing a refractive index of a compensation film according to the present invention; Presenting the process in the process to illustrate the unwinding direction of the compensation film and the polarizing plate according to the present invention; FIG. 4 is a schematic view showing the representation of 1 and 1 in the coordinate system of the present invention. FIG. 5 is not used in the present invention. An example of the second compensation film has a full range of wavelength dispersion characteristics; FIG. 6 is not used for the wavelength dispersion characteristic of the full range of wavelengths of the first compensation film of the first example; 24 201040595 FIG. 7 is presented in accordance with the present invention. Transmittance simulation results from all light directions; Figure 8 shows a state in which the pd sphere of the first example of the invention is sent from the tilt table _ = 60. And φ = 45. a change in the polarization state of the light of the direction; FIG. 9 shows a simulation result of the transmittance from all light directions when the planar conversion liquid crystal display panel polarizing plate group is used in the liquid crystal mode of the present invention; FIG. 10 presents a second example according to the present invention. Transmittance from all light directions _ simulation results; 〇 Figure 11 shows a change in the polar state of light from the direction of the inclined surface (θ = 60° and φ = 45) on the Banga ball of the second example of the present invention; Figure 12 is a graph showing transmission and ratio simulation results from all light directions according to a third example of the present invention; Figure 13 is a view showing a direction from a sloping surface (one = 60° and φ = 45) in a state ball of the third example of the present invention. The polarization state of the light changes; Figure 14 shows the results of the transmission pupil ratio simulation from all light directions according to the fourth example of the present invention; Figure 15 shows the state of the ball added to the inclined surface from the fourth example of the present invention (θ = 60) The polarization state of the light in the direction of ° and φ = 45°) is changed; FIG. 16 shows the simulation result of the transmittance from all the light directions according to the fifth example of the present invention; FIG. 17 shows the state of the ball added to the ball according to the fifth example of the present invention. Self-tilting surface = 60° and φ = 45.) the polarization state change of the direction light; FIG. 18 shows the transmittance simulation result from all the light directions according to the sixth example of the present invention; 201040595 FIG. 19 shows the state tree of the sixth example of the present invention. From the hairline _ two 60. And the polarization state of the light in the direction of Φ = 45°); FIG. 2 shows the simulation results of the transmittance from all the light directions according to the seventh example of the present invention; FIG. 21 shows the state of the ball added to the seventh example of the present invention. The polarization state of light from the direction of the inclined surface (θ = 60° and Φ = 45°) is changed; Fig. 22 shows the simulation results of the transmittance from all the light directions according to the eighth example of the present invention; Example of a state in which the ball is rotated from a tilted meter = 60° and φ = 45°) direction change; FIG. 24 shows a simulation result of transmittance from all light directions according to the ninth example of the present invention; 25 shows a change in the polar state of light from the direction of the inclined surface (1) = 60° and φ = 45° on the state ball of the ninth example of the present invention; FIG. 26 shows the light source from all light directions according to the tenth example of the present invention. Transmittance simulation results; Figure 27 is a diagram showing the change in the polar state of light from the direction of the inclined surface (θ = 60° and φ = 45°) on the state ball of the tenth example of the present invention; Comparative example of the transmittance from all light directions Figure 29 presents a simulation result of transmittance from all light directions according to a second comparative example of the present invention; Figure 30 shows a simulation result of transmittance from all light directions according to a third comparative example of the present invention; 201040595 Figure 31 is presented in accordance with the present invention Transmittance simulation results from all light directions of the fourth comparative example; Fig. 32 shows transmittance simulation results from all light directions according to the fifth comparative example of the present invention; Fig. 33 shows all light from the sixth comparative example according to the present invention The transmittance of the direction is simulated. 〇【Main component symbol description】 10 Second coupling polarizer 11 Second polarizer 12 13 14 15 〇20 21 22 23 24 25 30 40 Absorption axis second protective film Second compensation film Slow axis First coupling polarizer First Polarizer absorption axis first protective film first compensation film slow axis blue phase liquid crystal cell backlight unit MODRAGCKyiVV 27

Claims (1)

201040595 七、申請專利範圍: 1· 一種耦合偏光板組,包括: 第一耦合偏光板;及 第二_合偏光板, 其中第一耦合偏光板和第二耦合偏光板從液晶依序各由 補償膜、偏光片、保護膜構成, 第一耦合偏光板補償膜的平面延遲(R0)為15至13Onm, 折射率比(NZ)為-6.0至_0.1,其慢轴平行於第一耦合偏光板偏 光片的吸收轴, 第二耦合偏光板補償膜的平面延遲(R0)為15至i3〇nm, 折射率比(NZ)為1.1至7.0,其慢軸垂直於第二耦合偏光板偏光 片的吸收軸。 2. 依據申請專利範圍第1項的耦合偏光板組,其中第一搞合 偏光板補償膜的平面延遲(r〇)為4〇至l3〇nm,折射率比(nz)為_ 2.0至-0J。 3* 依據申請專利範圍第1項的耦合偏光板組,其中第一輕合 偏光板補償膜的平面延遲(R0)為50至I30nm,折射率比(^)為_ 1.0至-0.卜 4·依據申請專利範圍第1項的耦合偏光板組,其中第二輛合 偏光板補償膜的平面延遲為4〇至l3〇nm,折射率比為 U 至 3.0。 ”、' 5.依據申請專利範圍第1項的耦合偏光板組,其中第二耦合 偏光板補償膜的平面延遲(R0)為50至130肺,折射率比為 28 201040595 6. 依據申請專利範圍第1項的耦合偏光板組,其中第一耦合 偏光板和第二耦合偏光板的補償膜和保護膜獨立選自由TAC (TriAcetyl Cellulose,三醋酸纖維素)、COP (Cyclo-Olefin Polymer,環烯烴聚合物)、COC (Cyclo-Olefin Copolymer,環 烯烴共聚物)、PET (Polyethylene Terephthalate,聚乙烯對苯二 甲酸酯)、PP (Polypropylene,聚丙烯)、pc (Polycarbonate,聚 碳酸酯)、PSF (Polysulfone ,聚砜)、PMMA (Poly Me%lmethaciylate,聚甲基丙烯酸甲酯)所組成的群類中。 7. 一種藍相模式液晶顯示器,包括耦合偏光板組和藍相液 晶,耦合偏光板組包括依據申請專利範圍第丨項的第一耦合偏 光板和第二輕合偏光板做為上下偏光板。 8. 依射請專概圍第7項的藍械式液晶顯示器,其中不 施加電場時藍相液晶有光學同向特性,施加電場時有光學異向 特性。 9·依射請專利範圍第7項的藍相模式液晶顯示器,盆中在 Ο傾斜角(θ = 6〇。,㈣5。)來自觀看方向的最大透射比為_0以 0DRA003TW 29201040595 VII. Patent application scope: 1. A coupled polarizing plate group, comprising: a first coupling polarizing plate; and a second coupling polarizing plate, wherein the first coupling polarizing plate and the second coupling polarizing plate are respectively compensated from the liquid crystal sequentially The film, the polarizer, and the protective film are formed. The first coupling polarizer compensation film has a plane retardation (R0) of 15 to 13 nm, a refractive index ratio (NZ) of -6.0 to _0.1, and a slow axis parallel to the first coupling polarizer. The absorption axis of the polarizer, the second coupling polarizer compensation film has a plane retardation (R0) of 15 to i3 〇 nm, a refractive index ratio (NZ) of 1.1 to 7.0, and a slow axis perpendicular to the second coupling polarizer polarizer Absorption axis. 2. According to the coupled polarizing plate group of claim 1, wherein the first retarding film of the polarizing plate has a plane retardation (r〇) of 4 〇 to 13 〇 nm, and a refractive index ratio (nz) of _ 2.0 to - 0J. 3* According to the coupled polarizing plate group of claim 1, wherein the first light-duty polarizing plate compensation film has a plane retardation (R0) of 50 to 130 nm, and a refractive index ratio (^) of _1.0 to -0. According to the coupled polarizing plate group of claim 1, wherein the second polarizing plate compensation film has a plane retardation of 4 〇 to 13 〇 nm and a refractive index ratio of U to 3.0. "," 5. According to the coupling polarizing plate group of claim 1, wherein the second coupling polarizing plate compensation film has a plane retardation (R0) of 50 to 130 lungs, and a refractive index ratio of 28 201040595 6. According to the patent application scope The coupled polarizing plate group of item 1, wherein the compensation film and the protective film of the first coupling polarizing plate and the second coupling polarizing plate are independently selected from TAC (TriAcetyl Cellulose, cellulose triacetate), COP (Cyclo-Olefin Polymer, cycloolefin) Polymer), COC (Cyclo-Olefin Copolymer), PET (Polyethylene Terephthalate, Polyethylene terephthalate), PP (Polypropylene, Polypropylene), PC (Polycarbonate, Polycarbonate), PSF (Polysulfone, polysulfone), PMMA (Poly Me%lmethaciylate, polymethyl methacrylate). 7. A blue phase mode liquid crystal display, including a coupled polarizer group and blue phase liquid crystal, coupled polarizer The group includes the first coupling polarizer and the second light polarizer according to the scope of the patent application as the upper and lower polarizers. 8. According to the shot, please refer to the blue mechanical LCD display of the seventh item. The blue phase liquid crystal has an optically isotropic characteristic when no electric field is applied, and has an optical anisotropy characteristic when an electric field is applied. 9. According to the blue phase mode liquid crystal display of the seventh item of the patent range, the tilt angle of the crucible in the pot (θ = 6〇., (4) 5.) The maximum transmittance from the viewing direction is _0 at 0DRA003TW 29
TW099114109A 2009-05-04 2010-05-03 Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same TWI495912B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090038904A KR101632610B1 (en) 2009-05-04 2009-05-04 A laminated polarizer set and blue phase liquid crystal mode liquid crystal display comprising the same

Publications (2)

Publication Number Publication Date
TW201040595A true TW201040595A (en) 2010-11-16
TWI495912B TWI495912B (en) 2015-08-11

Family

ID=43050608

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114109A TWI495912B (en) 2009-05-04 2010-05-03 Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same

Country Status (5)

Country Link
JP (1) JP5602221B2 (en)
KR (1) KR101632610B1 (en)
CN (1) CN102414588A (en)
TW (1) TWI495912B (en)
WO (1) WO2010128779A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235447B (en) * 2013-03-25 2016-01-06 京东方科技集团股份有限公司 Optical compensation films, optical compensating polarized light plate and liquid crystal indicator
JP6437854B2 (en) * 2015-03-17 2018-12-12 日東電工株式会社 Liquid crystal panel and liquid crystal display device
EP3528015B1 (en) * 2016-10-14 2024-05-29 LG Chem, Ltd. Antireflection optical filter and organic light-emitting device
CN115685432A (en) * 2018-03-02 2023-02-03 加里夏普创新有限责任公司 Retarder stack pair for polarization basis vector conversion
JP6896118B1 (en) * 2020-01-23 2021-06-30 日東電工株式会社 Liquid crystal display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003282048A1 (en) * 2002-11-02 2004-06-07 Merck Patent Gmbh Optically compensated electro-optical light modulation elementwith optically isotropic phase
KR100677050B1 (en) * 2003-10-22 2007-01-31 주식회사 엘지화학 Planar switching liquid crystal display comprising a viewing angle compensation film using + A-plate and + C-plate
KR100601916B1 (en) * 2003-11-21 2006-07-14 주식회사 엘지화학 Planar switching liquid crystal display comprising a viewing angle compensation film using a positive biaxial retardation film
TWI268372B (en) * 2004-03-26 2006-12-11 Nitto Denko Corp IPS mode liquid crystal display to realize a high contrast ratio over a wide range by laminating a polarizing plate and a retardation film to form an optical film
US7365816B2 (en) * 2004-05-26 2008-04-29 Nitto Denko Corporation Liquid crystal display
JP4642493B2 (en) * 2005-01-31 2011-03-02 Nec液晶テクノロジー株式会社 Liquid crystal display device
JP5311605B2 (en) * 2005-06-30 2013-10-09 日東電工株式会社 Liquid crystal panel and liquid crystal display device
KR20080067041A (en) * 2007-01-15 2008-07-18 삼성전자주식회사 Transflective Liquid Crystal Display Panel
JP2008197192A (en) * 2007-02-09 2008-08-28 Hitachi Displays Ltd Liquid crystal display
JP4878306B2 (en) * 2007-02-09 2012-02-15 株式会社 日立ディスプレイズ Liquid crystal display
JP4479928B2 (en) * 2007-06-15 2010-06-09 株式会社 日立ディスプレイズ Liquid crystal display
KR100877926B1 (en) * 2008-02-20 2009-01-12 동우 화인켐 주식회사 Negative C and negative biaxial plates A vertically aligned liquid crystal display comprising a retardation film combined with the retardation films
CN101925848B (en) * 2008-04-07 2012-11-21 夏普株式会社 Liquid crystal display

Also Published As

Publication number Publication date
WO2010128779A2 (en) 2010-11-11
CN102414588A (en) 2012-04-11
JP2012526298A (en) 2012-10-25
KR101632610B1 (en) 2016-06-22
JP5602221B2 (en) 2014-10-08
WO2010128779A3 (en) 2011-01-20
WO2010128779A9 (en) 2011-03-10
TWI495912B (en) 2015-08-11
KR20100119968A (en) 2010-11-12

Similar Documents

Publication Publication Date Title
TWI546576B (en) A coupled polarizing plate set and in-plane switching mode liquid crystal display including the same
KR101605031B1 (en) In-plane switching mode liquid crystal display
CN102472919B (en) Liquid crystal display device
WO2014153876A1 (en) Optical compensation film, optical compensation polarizing plate and liquid crystal display device
TW201040595A (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
KR20110066255A (en) Planar Switching Mode Liquid Crystal Display
TWI495911B (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
KR20100101981A (en) Narrowviewing liquid crystal display
JP5621084B2 (en) In-plane switching type liquid crystal display device
KR20100060092A (en) Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR101565009B1 (en) A lower plate polarizing plate and a surface switching mode liquid crystal display including the same
TWI495910B (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
KR101512710B1 (en) Wide Viewing Angle Vertically Oriented Liquid Crystal Display
KR20110012129A (en) Phase difference control method of vertical alignment mode liquid crystal display device and liquid crystal display device to which the method is applied
KR20100071255A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20100071457A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20110031537A (en) Planar Switching Mode Liquid Crystal Display
KR20100071253A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20110016211A (en) Wide viewing angle vertical alignment mode LCD
KR20110032702A (en) Planar Switching Mode Liquid Crystal Display
KR20100071456A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20110135464A (en) Twist nematic mode liquid crystal display
KR20100071252A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
TW201243449A (en) Liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees