[go: up one dir, main page]

TW201034055A - Continuous feed chemical vapor deposition - Google Patents

Continuous feed chemical vapor deposition Download PDF

Info

Publication number
TW201034055A
TW201034055A TW098134514A TW98134514A TW201034055A TW 201034055 A TW201034055 A TW 201034055A TW 098134514 A TW098134514 A TW 098134514A TW 98134514 A TW98134514 A TW 98134514A TW 201034055 A TW201034055 A TW 201034055A
Authority
TW
Taiwan
Prior art keywords
deposition
wafer
region
depositing
layer
Prior art date
Application number
TW098134514A
Other languages
Chinese (zh)
Inventor
Gang He
Original Assignee
Alta Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alta Devices Inc filed Critical Alta Devices Inc
Publication of TW201034055A publication Critical patent/TW201034055A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/025Continuous growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Embodiments of the invention generally relate to method for forming a multi-layered material during a continuous chemical vapor deposition (CVD) process. In one embodiment, a method for forming a multi-layered material during a continuous CVD process is provided which includes continuously advancing a plurality of wafers through a deposition system having at least four deposition zones. Multiple layers of materials are deposited on each wafer, such that one layer is deposited at each deposition zone. The methods provide advancing each wafer through each deposition zone while depositing a first layer from the first deposition zone, a second layer from the second deposition zone, a third layer from the third deposition zone, and a fourth layer from the fourth deposition zone. Embodiments described herein may be utilized to form an assortment of materials on wafers or substrates, especially for forming Group III/V materials on GaAs wafers.

Description

201034055 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大體上是關於氣相沉積方法和設備, 且特別是關於化學氣相沉積製程和腔室。 【先前技術】 化學氣相沉積(CVD)是利用氣相化學品之反應而沉積 © 薄膜於基板(如晶圓)上。化學氣相沉積反應器用來沉積 各種組成薄膜至基板上。CVD係高度應用在許多方面, 例如製造用於半導體、太陽能、顯示器和其他電子應用 的裝置之過程中。 針對非常不同的應用而有多種類型的CVD反應器。例 如’ CVD反應器包括大氣壓反應器、低壓反應器、低溫 反應器、高溫反應器和電漿增強反應器。不同設計解決 了在CVD製程期間所遭遇的各種挑戰,例如空乏效應 η (depletion effect )、污染問題和反應器維護。 儘管有許多不同的反應器設計,然依舊需要新穎與改 '良式的CVD反應器設計》 t 【發明内容】 本發明之實施例大體上是關於連續化學氣相沉積 (CVD)製程期間形成多層材料的方法。在許多實施例 中’晶圓朝相同方向水平前進或移動,同時以同樣的相 201034055 對速度通過沉積系統内的多個沉積區域。多層材料沉積 在各晶圓上,如此一層於每一沉積區域沉積而得。各個 晶圓上的多個沉積層皆可具相同組成,但各層通常有不 同組成。所述實施例可用於多種CVD及/或磊晶沉積製 程’以沉積、生長或形成各種材料至晶圓或基板上,特 別是形成第III/V族材料於砷化鎵晶圓上。201034055 VI. Description of the Invention: [Technical Fields of the Invention] Embodiments of the present invention generally relate to vapor deposition methods and apparatus, and more particularly to chemical vapor deposition processes and chambers. [Prior Art] Chemical vapor deposition (CVD) is performed by reacting a gas phase chemical with a thin film on a substrate such as a wafer. A chemical vapor deposition reactor is used to deposit various constituent films onto the substrate. CVD systems are highly useful in many applications, such as in the fabrication of devices for semiconductors, solar, displays, and other electronic applications. There are many types of CVD reactors for very different applications. For example, a CVD reactor includes an atmospheric pressure reactor, a low pressure reactor, a low temperature reactor, a high temperature reactor, and a plasma enhanced reactor. Different designs address various challenges encountered during CVD processes, such as depletion effects, contamination problems, and reactor maintenance. Although there are many different reactor designs, there is still a need for a novel and improved CVD reactor design. [Inventive] Embodiments of the present invention generally relate to the formation of multiple layers during a continuous chemical vapor deposition (CVD) process. Method of material. In many embodiments, the wafers are advanced or moved horizontally in the same direction while passing the same phase 201034055 through multiple deposition zones within the deposition system. Multiple layers of material are deposited on each wafer, such a layer deposited in each deposition area. Multiple deposit layers on each wafer can have the same composition, but the layers typically have different compositions. The described embodiments can be used in a variety of CVD and/or epitaxial deposition processes to deposit, grow or form various materials onto a wafer or substrate, particularly a Group III/V material on a gallium arsenide wafer.

在一實施例中,提出連續CVD製程期間形成多層材料 的方法’其包括:使複數個晶圓連續前進通過沉積系統, 其中沉積系統具有第一沉積區域、第二沉積區域、第三 沉積區域和第四沉積區域;以及沉積第一材料層至第一 沉積區域内的第一晶圓上。方法更提出沉積第二材料層 至第二沉積區域内的第一晶圓上,同時沉積第一材料層 至第-沉積區域内的第二晶圓上。方法更提出沉積第三 材料層至第二沉積區域内的第一晶圓上,同時沉積第二 材料漘至第二沉積區域内的第二晶圓上,且同時沉積第 -材料層至第一沉積區域内的第三晶圓上。方法更提出 沉積第四材料層至第四沉積區域内的第一晶圓上,同時 /儿積第一材料層至第三沉積區域内的第二晶圓上,並同 時沉積第二材料層至第二沉積區域内的第三晶圓上,且 同時沉積第一材料層至第一沉錄 ^ /儿檟區域内的第四晶圓上。 在一些實施例中,方法 万法更提出,儿積第五材料層至第五 沉積區域内的第一晶圚上,因拄 曰圓上冋時"L積第四材料層至第四 沉積區域内的第二晶圓上, 一 圓上又冋時 >儿積第三材料層至第 二沉積區域内的第r:曰圓μ ^ 弟—日日圓上,並同時沉積第二材料層至 201034055 第二沉積區域内的第四晶圓上’且同時沉積第一材料層 至第一沉積區域内的第五晶圓上。 在一些實例中,第一材料層、第二材料層、第三材料 層和第四材料層具有相同組成。在其他實例中第一材 -料層、第二材料層、第三材料層和第四材料層各具不同 ,組成。在許多實例中,第一材料層、第二材料層、第三 材料層和第四材料層各自含有砷(如砷化鎵、砷化鋁或砷 化鋁鎵)。 方法更提出在前進到第一沉積區域前,於加熱區域中 加熱晶圓達預定溫度。預定溫度可為約5〇t;至約75〇 °C,較佳約i〇(TC至約35(rc »在一些實施例中,晶圓經 加熱達預定溫度、計約2分鐘至約6分鐘、或約3分鐘 至約5分鐘。方法還提出在沉積第四材料層後,將晶圓 傳送到冷卻區域β隨後,於冷卻區域中冷卻晶圓至預定 溫度。預定溫度可為約18。(:至約30〇c。在一些實施例 Ο 中,各個晶圓經冷卻成預定溫度、計約2分鐘至約6分 鐘、或約3分鐘至約5分鐘。 „ 在其他實施例中,進入第一沉積區域前,晶圓通過加 ^ 熱區域’且離開第四沉積區域後,晶圓通過冷卻區域。 加熱區域、第一、第二、第三與第四沉積區域、和冷卻 區域全共用一共同線性路徑。晶圓可沿著沉積系統内的 共同線性路徑連續且水平前進。 在一實施例中,提出連續CVD製程期間形成多層材料 的方法’其包括使複數個晶圓連續前進通過沉積系統, 6 201034055 其中沉積系統具有第一沉積區域、第二沉積區域、第三 沉積區域和第四沉積區域。方法更提出沉積緩衝層至第 一沉積區域内的第一晶圓上、沉積犧牲層至第二沉積區 域内的第一晶圓上,同時沉積緩衝層至第一沉積區域内 . 的第二晶圓上。方法更提出沉積鈍化層至第三沉積區域 ’· 内的第一晶圓上,同時沉積犧牲層至第二沉積區域内的 第二晶圓上,且同時沉積緩衝層至第一沉積區域内的第 三晶圓上。方法更提出沉積砷化鎵主動層至第四沉積區 域内的第一晶圓上,同時沉積鈍化層至第三沉積區域内 的第二晶圓上,並同時沉積犧牲層至第二沉積區域内的 第二晶圓上,且同時沉積緩衝層至第一沉積區域内的第 四晶圓上。在許多實例中,晶圓為珅化鎵晶圓。 在一些實施例中,方法更提出沉積含鎵層至第五沉積 區域内的第一晶圓上,同時沉積砷化鎵主動層至第四沉 積&域内的第_一晶圓上,又同時沉積純化層至第三沉積 φ 區域内的第三晶圓上,並同時沉積犧牲層至第二沉積區 域内的第四晶圓上,且同時沉積緩衝層至第一沉積區域 内的第五晶圓上。在一些實例中,含鎵層含有坤化磷鎵。 在一些實施例中’方法更提出在晶圓前進到第一沉積 區域前,於加熱區域中加熱晶圓達預定溫度。預定溫度 可為約50°C至約750°C,較佳約100°C至約35〇〇c。在其 他實施例中,方法更提出在沉積砷化鎵主動層後,將晶 圓傳送到冷卻區域。隨後’於冷卻區域令冷卻晶圓至約 18°C至約3(TC之預定溫度。 7 201034055 在其他實施例中’進入第一沉積區域前,晶圓通過加 熱區域,且離開第四沉積區域後,晶圓通過冷卻區域。 加熱區域、第一、第二、第三與第四沉積區域、和冷卻 區域全共用一共同線性路徑。視情況而定,附加沉積區 域(如第五、第六、第七或以上)亦共用共同線性路徑。 方法提出晶圓可沿著沉積系統内的共同線性路徑連續且 水平前進 在其他實施例中,方法更提出流入至少一氣體至各沉 積區域之間,以於其間形成氣體幕(curtain)。在一些實施 例中,氣髏幕或隔離幕含有或由至少一氣體組成例如 氫氣、胂、氫氣與胂之混合物、氮氣、氬氣、或其組合 物在許多實例中,氫氣與肺之混合物用來形成氣體幕 或隔離幕。 在另一實施例中,提出連續CVD製程期間形成多層材 料的方法,其包括使複數個晶圓連續前進通過沉積系 統,其中沉積系統具有加熱區域、第一沉積區域、第二 >儿積區域、第三沉積區域、第四沉積區域和冷卻區域。 方法更提出沉積珅化鎵緩衝層至第—沉積區域内的第一 晶圓上’接著沉積珅化_牲層至第二沉積區域内的第 -晶圓上’同時沉積砷化鎵緩衝層至第一沉積區域内的 第二晶圓上。方法更提出沉積珅化銘鎵鈍化層至第三沉 積區域内的第-晶圓上’同時沉積坤化銘犧牲層至第二 沉積區域内的第二晶圓上’且同時沉積砷化鎵緩衝層至 第一沉積區域内的第三晶圓上。方法更提出沉積彻 201034055 ’ 一 門吁 >兀很"τ… 銘鎵鈍化層至第三沉積區域㈣第二晶圓上,並同時沉 積珅化銘犧牲層至第二沉積區域内的第三晶圓上,且同 時沉積砷化鎵緩衝層至第一沉積區域内的第四晶圓上。In one embodiment, a method of forming a multilayer material during a continuous CVD process is proposed 'which includes: continuously advancing a plurality of wafers through a deposition system, wherein the deposition system has a first deposition region, a second deposition region, a third deposition region, and a fourth deposition region; and depositing the first material layer onto the first wafer in the first deposition region. The method further proposes depositing a second material layer onto the first wafer in the second deposition region while depositing the first material layer onto the second wafer in the first deposition region. The method further proposes depositing a third material layer onto the first wafer in the second deposition region while depositing the second material layer onto the second wafer in the second deposition region, and simultaneously depositing the first material layer to the first On the third wafer in the deposition area. The method further proposes depositing a fourth material layer onto the first wafer in the fourth deposition region, simultaneously stacking the first material layer to the second wafer in the third deposition region, and simultaneously depositing the second material layer to On the third wafer in the second deposition region, and simultaneously depositing the first material layer onto the fourth wafer in the first sinking/parent region. In some embodiments, the method further proposes to stack the fifth material layer to the first crystal grain in the fifth deposition region, because the 冋 round 冋 & L L 第四 第四 第四 第四 第四 第四On the second wafer in the area, when the circle is on the other side, the third material layer is stacked on the second r-th cup in the second deposition area, and the second material layer is simultaneously deposited. 201034055 On the fourth wafer in the second deposition region and simultaneously depositing the first material layer onto the fifth wafer in the first deposition region. In some examples, the first material layer, the second material layer, the third material layer, and the fourth material layer have the same composition. In other examples, the first material layer, the second material layer, the third material layer, and the fourth material layer are each different in composition. In many examples, the first material layer, the second material layer, the third material layer, and the fourth material layer each contain arsenic (e.g., gallium arsenide, aluminum arsenide, or aluminum gallium arsenide). The method further proposes heating the wafer to a predetermined temperature in the heated region before proceeding to the first deposition region. The predetermined temperature may be about 5 〇t; to about 75 ° C, preferably about 〇 (TC to about 35 (rc » In some embodiments, the wafer is heated to a predetermined temperature, from about 2 minutes to about 6 Minutes, or from about 3 minutes to about 5 minutes. The method also proposes that after depositing the fourth material layer, the wafer is transferred to the cooling zone β and then the wafer is cooled to a predetermined temperature in the cooling zone. The predetermined temperature may be about 18. (: to about 30 〇 c. In some embodiments, each wafer is cooled to a predetermined temperature, for about 2 minutes to about 6 minutes, or for about 3 minutes to about 5 minutes. „ In other embodiments, enter Before the first deposition region, after the wafer passes through the heating region and exits the fourth deposition region, the wafer passes through the cooling region. The heating region, the first, second, third, and fourth deposition regions, and the cooling region are all shared. A common linear path. The wafers can be continuously and horizontally advanced along a common linear path within the deposition system. In one embodiment, a method of forming a multilayer material during a continuous CVD process is proposed, which includes continuously advancing a plurality of wafers through deposition System, 6 201034055 where sink The system has a first deposition region, a second deposition region, a third deposition region, and a fourth deposition region. The method further proposes depositing a buffer layer onto the first wafer in the first deposition region, depositing the sacrificial layer into the second deposition region On the first wafer, a buffer layer is simultaneously deposited onto the second wafer in the first deposition region. The method further proposes depositing a passivation layer onto the first wafer in the third deposition region, while depositing a sacrificial layer And onto the second wafer in the second deposition region, and simultaneously depositing the buffer layer on the third wafer in the first deposition region. The method further proposes depositing the gallium arsenide active layer to the first crystal in the fourth deposition region Rounding, simultaneously depositing a passivation layer onto the second wafer in the third deposition region, and simultaneously depositing the sacrificial layer onto the second wafer in the second deposition region, and simultaneously depositing the buffer layer into the first deposition region On the fourth wafer, in many examples, the wafer is a gallium antimonide wafer. In some embodiments, the method further proposes depositing a gallium-containing layer onto the first wafer in the fifth deposition region while depositing arsenic Gallium active layer to On the first wafer in the four deposition & field, the purification layer is simultaneously deposited onto the third wafer in the third deposition φ region, and the sacrificial layer is simultaneously deposited onto the fourth wafer in the second deposition region. And depositing a buffer layer on the fifth wafer in the first deposition region at the same time. In some examples, the gallium-containing layer contains cobalt gallium. In some embodiments, the method further advances the wafer to the first deposition region. The wafer is heated to a predetermined temperature in the heated region. The predetermined temperature may be from about 50 ° C to about 750 ° C, preferably from about 100 ° C to about 35 ° C. In other embodiments, the method is further After depositing the active layer of gallium arsenide, the wafer is transferred to the cooling zone. Then, in the cooling zone, the wafer is cooled to about 18 ° C to about 3 (the predetermined temperature of TC. 7 201034055 in other embodiments ' enters the first Before the deposition area, the wafer passes through the heating region, and after leaving the fourth deposition region, the wafer passes through the cooling region. The heating zone, the first, second, third and fourth deposition zones, and the cooling zone all share a common linear path. Additional deposition areas (such as fifth, sixth, seventh or above) also share a common linear path, as the case may be. The method proposes that the wafer can be continuously and horizontally advanced along a common linear path within the deposition system. In other embodiments, the method further suggests flowing at least one gas between the deposition regions to form a gas curtain therebetween. In some embodiments, the gas curtain or screen contains or consists of at least one gas such as hydrogen, helium, a mixture of hydrogen and helium, nitrogen, argon, or a combination thereof. In many instances, a mixture of hydrogen and lung is used. To form a gas curtain or screen. In another embodiment, a method of forming a multilayer material during a continuous CVD process is proposed, comprising continuously advancing a plurality of wafers through a deposition system, wherein the deposition system has a heating region, a first deposition region, a second > a third deposition zone, a fourth deposition zone, and a cooling zone. The method further proposes depositing a gallium antimonide buffer layer onto the first wafer in the first deposition region, and then depositing the arsenic layer onto the first wafer in the second deposition region while depositing a gallium arsenide buffer layer to On the second wafer in the first deposition area. The method further proposes depositing a passivation layer of bismuth-deposited gallium onto the first wafer in the third deposition region, and simultaneously depositing a sacrificial layer of Kunming Ming onto the second wafer in the second deposition region and simultaneously depositing a gallium arsenide buffer. The layer is on the third wafer in the first deposition region. The method is further proposed to deposit the third layer of 201034055 'a door call> 兀 very " τ... Ming gallium passivation layer to the third deposition area (4), and simultaneously deposit the sacrificial layer of the 珅化铭 into the third deposition area A gallium arsenide buffer layer is deposited on the wafer and simultaneously onto the fourth wafer in the first deposition region.

本發明之其他實施例大體上是關於CVD反應器系統 和其使用方法。在—實施例中,提出CVD系統其包括 蓋組件’例如沿著頂板縱轴設置複數個凸料的頂板。 系統包括具有沿著執道㈣設置料路徑(如通道)的軌 道’其中料係適以容納頂板的複數個凸起部以在複 數個凸起部與軌道地面(floor)間形成間隙,其中間隙係 配置以接收基板。系統包括加熱組件,例如加熱元件, 其可操作以於基板沿著軌道的通道移動時,加熱基板。 在一實施例中,軌道可操作以沿著軌道的通道浮置基板。 在-實施例中,系統包括溝槽,用以支撐軌道。間隙 的厚度為約0·5毫米(mm)至約5mm、或約〇 5咖至約 1酿。頂板由翻或石英組成,軌道由石英或二氧切組 成。頂板係可操作以引導氣體至間隙,並更包括沿著頂 板縱軸設置且位於複數個凸起部間的複數個埠口,因而 在複數個凸起部間界定路徑。一或多個埠口用來係適以 輸送及/或排放氣體至頂板之複數個凸起部與軌道地面 間的間隙》 加熱元件實例包括耦接至軌道的加熱燈、複數個沿著 軌道設置的加熱燈、隨基板沿著軌道之通道移動而沿著 軌道移動的加熱燈組、耦接至軌道的電阻式加熱器、耦 9 201034055 接至基板及/或軌道的感應加熱源。加熱元件用來維持基 板各處的溫度差異’其中溫度差異小於耽。在一實施 例中’ CVD系統為大氣壓cvd系統。 在-實施例中,提出CVD系統’其包括:入口隔離器, 係可操作以以防止污染物從系統人口進人系統;出口隔 離器’用以防止污染物從系統出口進人系統;以及置於 入口隔離器與出口隔離器間的中間隔離器。系統更包括Other embodiments of the invention are generally directed to CVD reactor systems and methods of use thereof. In an embodiment, a CVD system is proposed which includes a cover assembly' such as a top plate having a plurality of projections disposed along the longitudinal axis of the top plate. The system includes a track having a material path (e.g., a channel) disposed along the roadway (4), wherein the material system is adapted to receive a plurality of raised portions of the top plate to form a gap between the plurality of raised portions and the floor of the track, wherein the gap It is configured to receive the substrate. The system includes a heating assembly, such as a heating element, operable to heat the substrate as the substrate moves along the path of the track. In an embodiment, the track is operable to float the substrate along the channel of the track. In an embodiment, the system includes a groove to support the track. The thickness of the gap is from about 0.5 mm to about 5 mm, or from about 5 to about 1. The top plate consists of a turn or quartz, and the track consists of quartz or dioxotomy. The top plate is operable to direct gas to the gap and further includes a plurality of weirs disposed along the longitudinal axis of the top plate and between the plurality of raised portions, thereby defining a path between the plurality of raised portions. One or more jaws are adapted to transport and/or vent gas to the gap between the plurality of raised portions of the top plate and the track floor. Examples of heating elements include heat lamps coupled to the track, a plurality of tracks along the track The heating lamp, the heating lamp group moving along the track along the track of the substrate, the resistance heater coupled to the track, the induction heating source coupled to the substrate and/or the track by the 201034055. The heating element is used to maintain a temperature difference across the substrate' where the temperature difference is less than 耽. In one embodiment, the CVD system is an atmospheric pressure cvd system. In an embodiment, a CVD system is proposed which includes: an inlet isolator operable to prevent contaminants from entering the system from the system population; an outlet isolator 'to prevent contaminants from entering the system from the system outlet; An intermediate isolator between the inlet isolator and the outlet isolator. The system also includes

❹ 設置鄰近入口隔離器的第一沉積區域和設置鄰近出口隔 離器的第:沉積區域° +間隔離器設在各沉積區域之 間’並可操作以預防氣體在第一沉積區域與第二沉積區 域間混合》 在實施例中,入口隔離器更可操作以防止注入第~ 沉積區域^氣體往回擴散,中間隔離器更可操作以防止 第’儿積區域的氣體往回擴散,出口隔離器更可操 作、防止注入第—沉積區域的氣體往回擴散。至少一隔 離器構成的隔離區域長度為約i公尺至約2公尺。氣體 (如氮乳)以第一流逮(如每分鐘3〇公升)注入到人口隔離 、免氣體從第一沉積區域往回擴I。氣體(如胂)以 第1速(如每分鐘3公升)注入到中間隔離器以免氣 體在第’儿積區蜮與第二沉積區域間混合。氣體(如氮氣) 以第;^速(如每分鐘3〇公升)注入到出口隔離器,以免 /亏染物從系統出口進入系統。在一實施例中,排放裝置 係认置而鄰近各隔離器用以排放隔離器注人的氣趙。 排放裝置可狄置而鄰近各沉積區域,用以排放注入到沉 201034055 積區域的氣體。 在-實施例中,提出CVD系、統,其包括外殼、被外殼 包園的軌道’其中軌道界定引導路徑(如通道)而適以引 導基板通過CVD系統。系統包括沿著軌道之通道移動基 • 板的載具,其中軌道係可操作以沿著轨道的通道浮置載 .· 具。外殼由鉬、石英或不鏽鋼組成,轨道由石英、鉬、 熔融二氧化矽或陶瓷組成,載具由石墨組成。 在實施例中,軌道包含沿著軌道地面設置的複數個 開口及/或導管,其各自可操作以供應氣墊給通道和載具 底面,以抬起或浮置載具、及沿著軌道的通道實質置中 載具。導管呈V形,且載具具有沿著其底面設置的凹口 (如V形)。氣體供應到載具的凹口,以實質將載具自轨 道地面抬起、及沿著軌道的通道實質置中載具。軌道例 如傾斜小於約10度、小於約20度、或介於約i度至5 度之間,以將基板從通道的第一末端移動及浮置到通道 籲 的第一末端。軌道及/或外殼包括多個片段。 在一實施例中,系統包括可操作以自動將基板引進通 • 道的輸送器、可操作以自動自通道取回基板的回收器、 及/或可操作以加熱基板的加熱元件。加熱元件耦接至外 殼、基板及/或軌道。載具係可操作以沿著軌道的通道承 載基板條帶(strip) » 在一實施例中,提出用以移動基板通過CVD系統的執 道組件’其包括具地面之頂部區段、設置而鄰近地面的 側邊支撐件(如成對的軌條;a pair 〇f raiis),進而界定引 201034055 導路徑(如通道)來沿著地面引導基板。底部區段耦接至 頂部區段而於二者間形成一或多個腔室。頂部區段包括 凹陷底面,底部區段包括凹陷頂面,因而形成腔室。在 一實施例中’頂部區段及/或底部區段由鉬、石英、二氧 - 化矽、氧化鋁或陶瓷形成。 • 在一實施例中’頂部區段具有有複數個穿設於地面的 開口,藉以提供腔室和通道的流體連通。腔室係將氣墊 (如氮氣)供應至通道,以實質抬起基板及沿著頂部區段 地面承載基板。地面例如傾斜小於約1 〇度、小於約2〇 度、或介於約1度至5度之間,以將基板從通道的第一 末端移動及浮置到通道的第二末端。 在一實施例中,頂部區段具有複數個穿設於成對的軌 條(鄰近地面)的開口。氣體由複數個開口供應,以實 質置中沿著頂部區段之通道移動的基板。地面還包括錐 形剖面及/或供應氣體的導管,其各自可操作以實質置中 • 沿著頂部區段之通道移動的基板。導管呈V形,及/或基 板具有凹口(如V形)來接收沿著基板底面設置的氣墊, , 以實質置中沿著頂部區段之通道移動的基板。 ^ | —實施例中,軌道組件包括可操作以自動將基板引 進通道的輸送器、及/或可操作以自冑自通道取回基板的 回收器。注入管線耦接至底部區段,以經由地面供應腔 至氣體而沿著頂部區段之地面實質浮置基板。頂部區段 更包括鄰近於軌條的凹陷部’用以容納反應器蓋組件, 例如頂板。轨道組件包括溝槽,用以安置頂部區段和底 12 201034055 部區段。溝槽由石英、鉬或不鏽鋼形成。 在一實施例中,提出CVD製程期間形成多層材料的方 法,其包括形成砷化鎵緩衝層至砷化鎵基板上、形成坤 化鋁犧牲層至緩衝層上、以及形成砷化鋁鎵鈍化層至犧 • 牲層上。方法更包括形成砷化鎵主動層(如厚度約1000 " 奈米(nm))至鈍化層上。方法更包括形成砷化磷鎵層至主 動層上。方法更包括移除犧牲層,以隔開主動層和基板。 φ 坤化銘犧牲層可暴露於餘刻液’蟲晶剝離(epitaxial lift off)製程則隔開砷化鎵主動層和基板。方法更包括於後續 CVD製程期間形成附加多層材料至基板上β緩衝層的厚 度為約300nm,鈍化層的厚度為約3〇nm,及/或犧牲層 的厚度為約5nm ^ 在一實施例中’提出利用CVD系統形成多層磊晶層至 基板上的方法’其包括將基板從系統入口引進引導路徑 (如通道),同時防止污染物從入口進入系統沉積第一 • 磊晶層至基板上,同時基板沿著系統通道移動、沉積第 曰曰層至基板上,同時基板沿著系統通道移動、避免 氣體在第一沉積步驟與第二沉積步驟間混合以及從系 . 統出口取回通道的基板,同時防止污染物從出口進入系 統方法更包括:在沉積第一磊晶層前,加熱基板;沉 積第一和第二磊晶層至基板上時,保持基板溫度;及/或 在沉積第二磊晶層後’冷卻基板。基板實質沿著系統通 道浮置。第一蟲晶層包括珅化銘,及/或第二蠢晶層包括 神化嫁。在—實施例中’基板實質沿著系統通道浮置。 13 201034055 方法更包括沉積砷化磷鎵層至基板上、及/或在沉積磊晶 層時,加熱基板達約300°C至約800。(:。基板的中心溫度 到邊緣溫度差異在1 0°C以内。 在一實施例中,提出CVD反應器,其包括具主髏之蓋 組件、以及具主體與沿著主體縱軸設置之引導路徑的軌 道組件。蓋組件的主體和軌道組件的主體耦接在一起而 於二者間形成間隙,用以接收基板。反應器更包括加熱 組件,含有複數個沿著軌道組件設置的加熱燈,而可操 作以於基板沿著引導路徑移動時,加熱基板。反應器更 包括軌道組件支撐件,其中軌道組件設於軌道組件支撐 件中。軌道組件的主體内設沿著主體縱軸延伸的氣穴和 複數個從氣穴延伸到引導路徑上表面的埠口,以配置以 沿著引導路徑供應氣墊。軌道組件的主體包含石英。蓋 組件的主體包括複數個埠口,該些埠口係配置以提供至 引導路徑㈣體連通。g組件可操作以維持跨越基板 的溫度差異’丨中溫度差異小於抓。在一實施例中, CVD反應器為大氣壓cvd反應器。 在實施例中,提出CVD系統,其包括入口隔離器, 係可操作以防止污染物從系統入口進入系統、出口隔離 器,係可操作以防止污染物從系統出口進入系統、以及 置於入口隔離器與出口隔離器間的中間隔離器。系統更 包括設置而鄰近入口隔離器的第一沉積區域和設置而鄰 ,出口隔離器的第二沉積區域。中間隔離器設在各沉積 區域之間以免氣體在第一沉積區域與第二沉積區域間 14 201034055 混合。氣體以第一流速注入到入口隔離器,以免氣艎從 第一沉積區域往回擴散,氣體以第一流速注入到中間隔 離器’以免氣體在第一沉積區域與第二沉積區域間混 合’及/或氣體以第一流速注入到出口隔離器,以免污染 * 物從系統出口進入系統。排放裝置係設置而鄰近各隔離 v 器’並可操作以排放隔離器注入的氣體、及/或設置而鄰 近各沉積區域,並可操作以排放注入到沉積區域的氣艎。 φ 在一實施例中’提出CVD系統,其包括外殼、被外殼 包圍的軌道,其中軌道包含引導路徑而適以引導基板通 過CVD系統、以及沿著引導路徑移動基板的基板載具, 其中軌道係可操作以沿著引導路徑浮置基板載具。軌道 包括複數個開口’係可操作以將氣墊供應至引導路徑。 氣墊施加於基板載具底面,以將基板載具軌道自地面抬 起。軌道包括沿著引導路徑設置的導管,用以沿著軌道 的引導路徑實質置中基板載具。氣墊經由導管供應到基 • 板載具底面,以實質將基板載具自轨道地面抬起《執道 可傾斜讓基板從引導路徑的第一末端移動到引導路徑的 第二末端。系統包括加熱組件,含有複數個沿著軌道設 置的加熱燈,並可操作以於基板沿著引導路徑移動時, 加熱基板。 【實施方式】 本發明之冑施例大體上是關於化學氣相沉積(CVD)設 15 201034055 備和方法。如前所述,本發明之實施例是有關大氣壓cVD 反應器和金屬有機前驅物氣體。然須注意本發明之態樣 不限於使用大氣壓CVD反應器或金屬有機前驅物氣 體,而可應用到其他類型的反應器系統和前驅物氣體。 為更加了解本發明設備的新穎性和其使用方法,將參照 所附圖式說明於下。设置 setting a first deposition area adjacent to the inlet isolator and a first deposition area adjacent to the outlet isolator: an inter-isolator is disposed between each deposition area' and operable to prevent gas in the first deposition area and the second deposition Inter-area mixing In the embodiment, the inlet isolator is more operable to prevent the gas from being diffused back into the first deposition zone, and the intermediate separator is more operable to prevent the gas in the first accumulation region from diffusing back, the outlet isolator It is more operable to prevent the gas injected into the first deposition zone from diffusing back. The isolation region formed by at least one of the separators has a length of from about i meters to about 2 meters. Gases (such as nitrogen milk) are injected into the population with a first-rate catch (such as 3 liters per minute), and gas is freed from the first deposition area. A gas such as helium is injected into the intermediate separator at a first velocity (e.g., 3 liters per minute) to prevent gas from mixing between the first deposition zone and the second deposition zone. A gas (such as nitrogen) is injected into the outlet isolator at a speed of 3 liters per minute to prevent the/loss material from entering the system from the system outlet. In one embodiment, the venting means is positioned adjacent to each of the isolators for discharging the isolator. The discharge device can be placed adjacent to each deposition area to discharge the gas injected into the sinking area of 201034055. In an embodiment, a CVD system is proposed which includes a housing, a track surrounded by a housing, wherein the track defines a guiding path (e.g., a channel) adapted to guide the substrate through the CVD system. The system includes a carrier that moves the base plate along a path of the track, wherein the track system is operable to float along the track of the track. The outer casing is composed of molybdenum, quartz or stainless steel, and the orbit is composed of quartz, molybdenum, molten cerium oxide or ceramic, and the carrier is composed of graphite. In an embodiment, the track includes a plurality of openings and/or conduits disposed along the track floor, each operative to supply a cushion to the channel and the underside of the carrier to lift or float the carrier, and along the track Substantially centered the vehicle. The catheter is V-shaped and the carrier has a recess (e.g., a V-shape) disposed along its bottom surface. Gas is supplied to the recess of the carrier to substantially lift the carrier from the track floor and substantially center the carrier along the path of the track. The track is, for example, inclined less than about 10 degrees, less than about 20 degrees, or between about 1 degree and 5 degrees to move and float the substrate from the first end of the channel to the first end of the channel. The track and/or housing includes a plurality of segments. In one embodiment, the system includes a conveyor operable to automatically introduce the substrate into the channel, a recycler operable to automatically retrieve the substrate from the channel, and/or a heating element operable to heat the substrate. The heating element is coupled to the housing, the substrate, and/or the track. The carrier is operable to carry a substrate strip along the path of the track » In one embodiment, an obstruction assembly for moving the substrate through the CVD system is proposed, which includes a top section having a ground, disposed adjacent The side supports on the ground (such as pairs of rails; a pair 〇f raiis), which in turn define the 201034055 guide path (such as the channel) to guide the substrate along the ground. The bottom section is coupled to the top section to form one or more chambers therebetween. The top section includes a recessed bottom surface that includes a recessed top surface thereby forming a chamber. In one embodiment the 'top section and/or the bottom section are formed of molybdenum, quartz, dioxin, alumina or ceramic. • In one embodiment, the top section has a plurality of openings that extend through the ground to provide fluid communication between the chamber and the passage. The chamber supplies an air cushion (e.g., nitrogen) to the passage to substantially lift the substrate and carry the substrate along the top section of the ground. The ground, for example, is inclined less than about 1 inch, less than about 2 degrees, or between about 1 and 5 degrees to move and float the substrate from the first end of the channel to the second end of the channel. In one embodiment, the top section has a plurality of openings that are threaded through the pair of rails (near the ground). The gas is supplied by a plurality of openings to physically center the substrate moving along the channels of the top section. The floor also includes a tapered profile and/or a gas supply conduit, each operable to substantially center the substrate moving along the passage of the top section. The conduit is V-shaped and/or the substrate has a recess (e.g., a V-shape) to receive an air cushion disposed along the bottom surface of the substrate to substantially center the substrate moving along the passage of the top section. In the embodiment, the track assembly includes a conveyor operable to automatically introduce the substrate into the channel, and/or a recycler operable to retrieve the substrate from the channel. An injection line is coupled to the bottom section to substantially float the substrate along the ground of the top section via the ground supply chamber to the gas. The top section further includes a recess ' adjacent to the rail for receiving a reactor cover assembly, such as a top plate. The track assembly includes a groove for seating the top section and the bottom 12 201034055 section. The grooves are formed of quartz, molybdenum or stainless steel. In one embodiment, a method of forming a multilayer material during a CVD process includes forming a gallium arsenide buffer layer onto a gallium arsenide substrate, forming a sacrificial aluminum sacrificial layer onto the buffer layer, and forming an aluminum gallium arsenide passivation layer. To the sacrifice • on the ground. The method further includes forming an active layer of gallium arsenide (eg, a thickness of about 1000 " nanometer (nm)) onto the passivation layer. The method further includes forming a phosphorous gallium arsenide layer onto the active layer. The method further includes removing the sacrificial layer to separate the active layer from the substrate. φ Kunming Ming sacrificial layer can be exposed to the residual liquid. The epitaxial lift off process separates the active layer of gallium arsenide and the substrate. The method further includes forming an additional multilayer material to a thickness of the beta buffer layer on the substrate during the subsequent CVD process to a thickness of about 300 nm, a passivation layer having a thickness of about 3 nm, and/or a thickness of the sacrificial layer of about 5 nm ^ in one embodiment. 'Proposed method of forming a multilayer epitaxial layer onto a substrate using a CVD system' which includes introducing a substrate from a system inlet into a guiding path (eg, a via) while preventing contaminants from entering the system from the inlet into the system to deposit a first epitaxial layer onto the substrate, At the same time, the substrate moves along the system channel, deposits the second layer onto the substrate, and the substrate moves along the system channel, avoids mixing of the gas between the first deposition step and the second deposition step, and retrieves the substrate of the channel from the system outlet. The method for preventing contaminants from entering the system from the outlet further comprises: heating the substrate before depositing the first epitaxial layer; maintaining the substrate temperature when depositing the first and second epitaxial layers onto the substrate; and/or depositing the second After the epitaxial layer, the substrate is cooled. The substrate is substantially floating along the system channel. The first insect layer includes Sui Huaming, and/or the second stupid layer includes Shenhua Marriage. In the embodiment the substrate is substantially floating along the system channel. 13 201034055 The method further includes depositing a gallium arsenide layer onto the substrate, and/or heating the substrate from about 300 ° C to about 800 when depositing the epitaxial layer. (: The center-to-edge temperature difference of the substrate is within 10 ° C. In an embodiment, a CVD reactor is proposed that includes a lid assembly with a main crucible, and a body with a guide along the longitudinal axis of the body a track assembly of the path. The body of the cover assembly and the body of the track assembly are coupled together to form a gap therebetween for receiving the substrate. The reactor further includes a heating assembly including a plurality of heating lamps disposed along the track assembly. And operable to heat the substrate as the substrate moves along the guiding path. The reactor further includes a track assembly support, wherein the track assembly is disposed in the track assembly support. The body of the track assembly is provided with gas extending along the longitudinal axis of the body. a cavity and a plurality of openings extending from the air pocket to the upper surface of the guiding path to be configured to supply the air cushion along the guiding path. The body of the track assembly comprises quartz. The body of the cover assembly includes a plurality of ports, the mouthpieces are configured Provided to the guiding path (iv) body communication. The g component is operable to maintain a temperature difference across the substrate 'the temperature difference in the crucible is less than the grip. In an embodiment, The CVD reactor is an atmospheric pressure cvd reactor. In an embodiment, a CVD system is proposed that includes an inlet isolator that is operable to prevent contaminants from entering the system from the system inlet, exiting the isolator, and is operable to prevent contaminants from the system An outlet inlet system, and an intermediate separator disposed between the inlet isolator and the outlet isolator. The system further includes a first deposition zone disposed adjacent to the inlet isolator and a second deposition zone disposed adjacent to the outlet isolator. The gas is disposed between the deposition regions to prevent the gas from mixing between the first deposition region and the second deposition region 14 201034055. The gas is injected into the inlet separator at a first flow rate to prevent the gas from diffusing back from the first deposition region, and the gas is The first flow rate is injected into the intermediate isolator 'to prevent gas from mixing between the first deposition zone and the second deposition zone' and/or the gas is injected into the outlet isolator at a first flow rate to prevent contamination from entering the system from the system outlet. Is disposed adjacent to each of the isolated v-' and operable to discharge gas injected into the isolator, and/or set adjacent to each An area that is operable to discharge gas injected into the deposition zone. φ In one embodiment, a CVD system is proposed that includes a housing, a track surrounded by the housing, wherein the track includes a guiding path adapted to guide the substrate through the CVD system And a substrate carrier that moves the substrate along the guiding path, wherein the track system is operable to float the substrate carrier along the guiding path. The track includes a plurality of openings ' operable to supply the air cushion to the guiding path. The air cushion is applied to the substrate a bottom surface of the carrier to lift the substrate carrier track from the ground. The track includes a conduit disposed along the guiding path for substantially centering the substrate carrier along the guiding path of the track. The air cushion is supplied to the base plate carrier via the conduit a bottom surface to substantially lift the substrate carrier from the track surface. The track is tiltable to move the substrate from the first end of the guiding path to the second end of the guiding path. The system includes a heating assembly that includes a plurality of heating along the track. A lamp is operable to heat the substrate as the substrate moves along the guiding path. [Embodiment] The embodiment of the present invention is generally directed to a chemical vapor deposition (CVD) apparatus 15 201034055. As previously stated, embodiments of the invention relate to atmospheric pressure cVD reactors and metal organic precursor gases. It is to be noted that aspects of the invention are not limited to the use of atmospheric pressure CVD reactors or metal organic precursor gases, but may be applied to other types of reactor systems and precursor gases. For a better understanding of the novelty of the apparatus of the present invention and its method of use, reference will now be made to the accompanying drawings.

根據本發明之一實施例,係提供一種大氣壓CVD反應 器。CVD反應器可用來提供多個磊晶層於基板上,例如 BB圓(如砷化鎵晶圓)。磊晶層包括砷化鋁鎵、砷化鎵和 砷化磷鎵。磊晶層可生成在砷化鎵晶圓上並於後移除 之,如此晶圓可重新用來產生附加材料。在一實施例中, CVD反應器用來提供太陽能電池。太陽能電池更包括單 接面、異接面或其他構造。在一實施例中,CVD反應器 可配置以形成晶圓,其產出約2.5瓦且尺寸為約ι〇公分 (cm)X約10cm。在一實施例中,CVD反應器所提供的產 量為每分鐘約1片晶圓至每分鐘約10片晶圓。 第1A圖繪示根據本發明一實施例iCVD反應器10。 反應器H) &括反應器蓋組件20、晶s载具軌道…伽 carrier traCk)30、晶圓載具軌道支撐件4〇和加熱燈組件 50»反應器蓋組件20可由銦、銷合金、不鏽鋼和石英形 成。反應器蓋組件20設在晶圓載具軌道3〇上。晶圓載 具軌道30可由石英、鉬、二氧化矽(如熔融二氧化矽)、 氧化鋁或其他陶竞材料形成。晶圓載具軌道3〇可容納於 晶@載具軌道支撐件40中。晶圓載具軌道支揮件可 16 201034055 由石英或金屬形成,例如鉬、 鋼合金、鋼、不鏽鋼、鎳、 鉻、鐵或其合金。最後, 交加熱燈組件50(將配合第1〇圓 進一步說明於後)設在晶圓恭目虹μAccording to one embodiment of the invention, an atmospheric pressure CVD reactor is provided. A CVD reactor can be used to provide a plurality of epitaxial layers on a substrate, such as a BB circle (e.g., a gallium arsenide wafer). The epitaxial layer includes aluminum gallium arsenide, gallium arsenide, and gallium arsenide. The epitaxial layer can be formed on the gallium arsenide wafer and removed later so that the wafer can be reused to create additional material. In one embodiment, a CVD reactor is used to provide a solar cell. Solar cells also include single junctions, different junctions, or other configurations. In one embodiment, the CVD reactor is configurable to form a wafer that produces about 2.5 watts and is about ι by centimeters (cm) x about 10 cm in size. In one embodiment, the CVD reactor provides a throughput of from about 1 wafer per minute to about 10 wafers per minute. FIG. 1A illustrates an iCVD reactor 10 in accordance with an embodiment of the present invention. Reactor H) & includes reactor cover assembly 20, crystal s carrier track ... gamma carrier traCk) 30, wafer carrier track support 4 〇 and heat lamp assembly 50 » reactor cover assembly 20 may be indium, pin alloy, Stainless steel and quartz are formed. The reactor lid assembly 20 is disposed on the wafer carrier track 3〇. The wafer carrier track 30 can be formed from quartz, molybdenum, cerium oxide (e.g., molten cerium oxide), alumina, or other ceramic materials. The wafer carrier track 3 can be housed in the crystal@carrier track support 40. Wafer carrier track support 16 201034055 Formed from quartz or metal, such as molybdenum, steel alloy, steel, stainless steel, nickel, chromium, iron or alloys thereof. Finally, the heating lamp assembly 50 (which will be matched with the first circle is further described later) is placed on the wafer.

日曰圓載具轨道支撐件4〇下方。CVD 反應器的總長為約18吸(feet)至約 用當可超出此範圍。 25吸’但針對不同應 第1B、2、3及4圖徐开甘 聲下反應|§蓋組件20之實施例的 各種視圖。參照第2圖,反廄 回夂應器蓋組件20構成矩形主體,The sundial round carrier rail support is below the 4 inch. The total length of the CVD reactor is from about 18 feet to about when it can be exceeded. 25 suctions, but for various views 1B, 2, 3 and 4, the various views of the embodiment of the cover assembly 20 are explained. Referring to Figure 2, the back-twisting device cover assembly 20 constitutes a rectangular body.

具有從反應H蓋組件2G底面延伸的侧壁25和複數個置 中於側壁2 5間的凸無ar , π . Ϊ町凸起。Ρ 26 ^凸起部26從頂板底面沿著 反應器蓋組件20延伸不同長度。凸起部26設在側壁25 之間’而於凸起部26與側壁25間形成空隙。空隙有助 於耦接反應器蓋組件20和軌道3〇(將進一步說明於後)。 側壁25和凸起部26實質延伸反應器蓋組件2〇的縱長。 反應器蓋組件20可製作成單一實心結構部件、或由數個 片段耦接在一起而構成。凸起部20可有不同長度和數 量,藉以形成用於不同CVD製程應用的區域。反應器蓋 組件20沿著其長度還包括多個凸起部26圖案,以例如 發展眾多的CVD製程佈局或平臺。 第3圖亦繪示反應器蓋組件2〇。如上所述,第3圖之 反應器蓋組件20代表整個頂板結構或大型頂板結構的 單一片段。圖尚顯示複數個埠口 21設置穿過反應器蓋組 件20的頂面且沿著反應器蓋組件2〇的縱軸而置中放 置。沿著反應器蓋組件2〇頂面設置的埠口 21可有不同 尺寸、形狀、數量和位置。埠口 21可做為注入、沉積及 17 201034055 /或排放埠口,以將氣體輸送到CVD反應器 璋…於二相鄰凸起部26之間(如第2圖所二 而構成路么供注入、沉積及/或排放氣體。在一實例中, 將氣體;主人到痒口 21,使氣趙先沿著相鄰凸起部%側 • 編、然後沿著凸起部%的底面行進而至基板的流動 . 隸。如第3圖所示,側壁25圍住反應器蓋組件2〇的 末端,以封裝任何輸送到反應器蓋組件20之埠口 21與 凸起部26構成之區域和路徑的流體。 、 第4圖為根據一實施例之反應器蓋組件2〇的俯視圖, 設有一或多個開口,例如設置穿過主體28的沉積埠口 23、排放埠口 22和注入埠口 24(亦如第ib圖所示開 口設置從上表面29穿過主體28而至下表面27。這些埠 口可裝設有可拆式_器、喷氣頭、排放裝置或其他氣 體歧管組件,其可延伸越過主體28的下表面27,以助 於將氣體分配進及/或出CVD反應器,尤其是均勻施加 • 氣體於通過組件下方的晶圓。在一實施例中,埠口 22、 23、24界定圓形、方形、矩形或其組合形狀。在一實施 例中’喷氣頭組件的注入孔直徑約〇」毫米(mm)至約 5mm、注入孔間距約imm至約3〇mm。針對不同應用軎 ’ 可超出此尺寸範圍。氣體歧管組件和反應器蓋組件2〇乃 配置以提供高反應物利用率,意即反應器内所使用的氣 體幾乎100%被CVD製程的反應消耗掉。 第19圖繪示根據所述實施例之冷卻噴氣頭19〇〇。冷 卻喷氣頭1900可併入反應器蓋組件20的一或多個開口 18 201034055 内’例如沉積埠口 23。冷卻喷氣頭1900具有冷卻板1902 延伸越過冷卻喷氣頭1900的上部,且與至少一氣體分配 板1904為熱連通(thermal communication)。各個氣體分 配板1904含有複數個喷氣孔1906,用以分配氣體或供 . 氣體流經其中。冷卻喷氣頭1900、冷卻板1902和分配 •板1904可各自含有或由鋼、不鏽鋼、鋁或其他金屬製 成。在一實例中,冷卻喷氣頭1900、冷卻板1902和分 φ 配板1904各自含有316不鏽鋼。冷卻喷氣頭1900的厚 度為約20mm至約40mm。 熱經由冷卻噴氣頭1900消散,並產生跨越冷卻喷氣頭 1900的厚度之溫度梯度。冷卻喷氣頭1900經加熱達約 20 C至約750°C。在一實例中,冷卻喷氣頭19〇〇的正面 1910加熱達約30(rc之溫度(Tl),背面1912則冷卻成約 50 C之溫度(Τ2) »在另一實施例中,冷卻嗔氣頭19〇〇具 有多個可堆疊的氣體分配板1904,其由硬焊層(braze # layer)1916結合在一起,以構成多層次分配或獨立的多 源分配。 . 冷卻流髏1920用於在冷卻板1902内循環及把熱能傳 遞遠離分配板1904的正面並傳到冷卻貯槽(未繪示)。 水、乙醇溶液、乙二醇溶液及/或其他流體可用來傳遞熱 遠離冷卻喷氣頭19〇〇的正面和遠離反應器蓋組件2〇。 排放埠口 22和注入埠口 24用來形成「氣體幕(curtain)」 或「隔離幕」,以協助避免污染及防止引進CVD反應器 1〇之各區域間的氣體往回擴散。氣體幕或隔離幕可用於 201034055 CVD反應器10的前端(入口 )和後端(出口 )、及㈣反應 器内的各區域間。在-實例中,注入氮氣或氬氣至注 入埠口 24,以清除特定區域的污染物,例如氧氣,其接 著排出相鄰的排放琿口 22。利用氣趙幕或隔離幕和反應 器蓋組件20構成之路徑與區域’ CVD反應器ι〇把氣體 隔離限制成二維配置,其保護各區域間及隔離反應器 和外部污染物,例如空氣。There are side walls 25 extending from the bottom surface of the reaction H-cover assembly 2G and a plurality of convex ar, π. Ϊ 凸起 bulges centered between the side walls 25. Ρ 26 ^ The raised portions 26 extend different lengths from the bottom surface of the top plate along the reactor lid assembly 20. The raised portion 26 is disposed between the side walls 25 to form a gap between the raised portion 26 and the side wall 25. The voids help to couple the reactor lid assembly 20 and the rails 3 (which will be further described later). Side wall 25 and raised portion 26 substantially extend the length of reactor cover assembly 2〇. Reactor cover assembly 20 can be constructed as a single solid structural component or by a plurality of segments coupled together. The raised portions 20 can be of different lengths and numbers to form regions for different CVD process applications. Reactor cover assembly 20 also includes a plurality of raised portions 26 patterns along its length to, for example, develop a multitude of CVD process layouts or platforms. Figure 3 also shows the reactor lid assembly 2〇. As noted above, reactor cover assembly 20 of Figure 3 represents a single segment of the entire roof structure or large roof structure. The figure also shows that a plurality of jaws 21 are disposed through the top surface of the reactor lid assembly 20 and placed centrally along the longitudinal axis of the reactor lid assembly 2〇. The jaws 21 disposed along the top surface of the reactor lid assembly 2 can vary in size, shape, number and location. The mouth 21 can be used as an injection, deposition and 17 201034055 / or discharge vent to transport gas to the CVD reactor 于 ... between two adjacent raised portions 26 (as shown in Figure 2 Injecting, depositing, and/or venting the gas. In one example, the gas is passed to the itch 21 so that the gas is first along the adjacent convex portion % side and then along the bottom surface of the convex portion % to the substrate. Flow. As shown in Figure 3, the side wall 25 encloses the end of the reactor lid assembly 2 to enclose any area and path formed by the jaw 21 and the boss 26 that are delivered to the reactor lid assembly 20. Figure 4 is a top plan view of a reactor cover assembly 2 according to an embodiment, with one or more openings, such as a deposition port 23 disposed through the body 28, a discharge port 22, and an injection port 24 ( The opening is also disposed from the upper surface 29 through the body 28 to the lower surface 27 as shown in Fig. ib. The ports may be provided with a detachable device, a jet head, a discharge device or other gas manifold assembly. Extending over the lower surface 27 of the body 28 to assist in the distribution of gas into and/or out of the CVD The device, in particular, uniformly applies a gas to the wafer below the assembly. In one embodiment, the ports 22, 23, 24 define a circle, a square, a rectangle, or a combination thereof. In one embodiment, the 'jet head The injection hole diameter of the assembly is about 毫米 mm (mm) to about 5 mm, and the injection hole spacing is about imm to about 3 〇 mm. This size range can be exceeded for different applications. Gas manifold assembly and reactor cover assembly 2 It is configured to provide high reactant utilization, meaning that almost 100% of the gas used in the reactor is consumed by the reaction of the CVD process. Figure 19 illustrates a cooling jet head 19 according to the embodiment. 1900 can be incorporated into one or more openings 18 201034055 of the reactor lid assembly 20 'eg, a deposition port 23 . The cooling jet head 1900 has a cooling plate 1902 extending across the upper portion of the cooling jet head 1900 and with at least one gas distribution plate 1904 For thermal communication, each gas distribution plate 1904 includes a plurality of gas vents 1906 for distributing gas or gas therethrough. Cooling the jet head 1900, cooling plate 1902, and distribution The plates 1904 may each contain or be made of steel, stainless steel, aluminum, or other metal. In one example, the cooling jet 1900, the cooling plate 1902, and the sub-φ plate 1904 each contain 316 stainless steel. The thickness of the cooling jet 1900 is about From 20 mm to about 40 mm. Heat is dissipated via the cooling jet head 1900 and produces a temperature gradient across the thickness of the cooling jet head 1900. The cooling jet head 1900 is heated up to about 20 C to about 750 ° C. In one example, the cooling jet head The 19 正面 front surface 1910 is heated to a temperature of about 30 (the temperature of rc (Tl), and the back surface 1912 is cooled to a temperature of about 50 C (Τ2). » In another embodiment, the cooled helium head 19 〇〇 has a plurality of stackable A gas distribution plate 1904, which is bonded together by a braze #layer 1916, constitutes a multi-level distribution or a separate multi-source distribution. The cooling flow 1920 is used to circulate within the cooling plate 1902 and transfer heat away from the front side of the distribution plate 1904 and to the cooling sump (not shown). Water, ethanol solution, ethylene glycol solution, and/or other fluids can be used to transfer heat away from the front side of the cooling jet 19 和 and away from the reactor lid assembly 2 〇. The discharge port 22 and the injection port 24 are used to form a "curtain" or "screen" to assist in avoiding contamination and preventing the gas from being introduced back into the various regions of the CVD reactor. A gas curtain or screen can be used between the front end (inlet) and the back end (outlet) of the 201034055 CVD reactor 10, and (iv) between the various zones within the reactor. In the example, nitrogen or argon is injected into the injection port 24 to remove contaminants in a particular area, such as oxygen, which in turn exits adjacent discharge ports 22. The path and region using the gas curtain or screen and the reactor cover assembly 20 CVD reactor 限制 confines gas isolation to a two-dimensional configuration that protects the various regions and isolates the reactor and external contaminants such as air.

第2、5、6、7及8圖繪示晶圓載具轨道”之實施例 的各種視圖。晶圓載具軌道3〇提供浮置型 (ievimi〇n-type)系統,使晶圓浮置越過氣墊(例如晶圓 載具軌道30之氣孔33供應的氮氣或氬氣)。回溯第2 圖,晶圓載具執道30 —般為具上部31和下部32的矩形 主體。上部31包括從晶圓載具軌道3〇之頂面延伸且沿 著晶圓載具軌道30之縱長設置的側面35,進而構成供 晶圓行進通過CVD反應器的「引導路徑」。引導路徑的 寬度(如侧面35内側之間的距離)為約11〇mm至 130mm,引導路徑的高度為約3〇mm至5〇mm,引導路徑 的長度為約970mm至i〇3〇mm ’然針對不同應用當可超 出此尺寸範圍。上部31包括凹陷底面,底部區段包括凹 陷頂面,如此結合在一起後將於二者間形成氣穴36。氣 穴36用來循環及分配注入到氣穴36的氣體至晶圓載具 軌道30的引導路徑’藉以產生氣墊。沿著晶圓載具軌道 30設置的氣穴36可有不同數量、尺寸、形狀和位置。 側面35和氣穴36均實質擴及晶圓載具軌道3〇之縱長。 20 201034055 晶圓載具軌道30可製作成單一實心結構部件、或由數個 片段耦接在一起而構成。在一實施例中,晶圓載具軌道 30傾斜一角度讓入口高於出口,使晶圓得以藉助重力往 軌道下方浮置。如上所述’晶圓載具執道3〇的側面35 可容納於凸起部26與反應器蓋組件20之凸緣構件25間 •的間隙,以沿著晶圓載具軌道30圍住「引導路徑」、並 進一步圍繞凸起部26沿著晶圓載具轨道30形成的區域。 參第5圖繪示晶圓載具軌道30之實施例。如圖所示晶 圓载具軌道30包括複數個氣孔33沿著晶圓載具軌道3〇 之引導路徑設置且位於側面35之間。氣孔33沿著晶圓 載具軌道30之引導路徑均勻配置成多列(r〇w)。氣孔33 的直徑為約0.2mm至約0.1〇mm,氣孔33的節距(pitch) 為約10mm至約30mm’然針對不同應用當可超出此尺寸 範圍。沿著晶圓載具轨道30設置的氣孔33可有不同數 量、尺寸 '形狀和位置。在一替代實施例中,氣孔33包 • 括矩形狹缝列或沿著晶圓載具轨道30之引導路徑設置 的狹缝。 氣孔33與晶圓載具軌道30之引導路徑下方的氣穴36 為連通。供給至氣穴36的氣體經由氣孔33均勻釋出, 而沿著晶圓載具轨道30形成氣墊。位於晶圓载具轨道 30之引導路徑上的晶圓由下方供應的氣體而浮置,並能 輕易沿著晶圓載具軌道3〇之引導路徑傳送。浮置晶圓與 晶圓載具轨道30之弓丨導路徑間的間隙大於約〇 〇5讯瓜, 但可視不同應用而定。浮置型系統可減少持續直接接觸 21 201034055 晶圓載具軌道3〇之引導路徑引起的阻力效應(drag effect)。此外,氣口 34沿著與晶圓載具軌道30之引導 路徑相鄰的側面3 5之側邊而設置。氣口 34可當作經由 氣孔33供應之氣體的排放裝置。或者,氣口 34可用作 ‘為側向注入氣體至晶圓載具軌道30的中心,以協助穩定 ‘及置中沿著晶圓載具軌道30之引導路徑浮置的晶圓。在 一替代實施例中,晶圓載具軌道30之引導路徑包括錐形 φ 剖面(taPered Profile),以助於穩定及置中沿著晶圓載具 軌道30之引導路徑浮置的晶圓。 第6圖為晶圓載具軌道30之實施例的正視圖。如圖所 示’晶圓載具軌道30包括上部31和下部32。上部31 包括側面35 ’其沿著晶圓載具軌道3〇之長度構成「引 導路徑」。上部31更包括側面35,其在側面35之側邊 間形成凹部39。凹部39係適於容納反應器蓋組件2〇的 凸緣構件25(第2圖)’以將反應器蓋組件2〇和晶圓载具 • 軌道3〇耦接在一起及圍住沿著晶圓載具軌道3〇設置之 引導路徑。第5圖亦顯示氣孔33從晶圓載具軌道%之 引導路徑延伸到氣穴36。下部32當作上部3 i的支撐件 i包括凹陷底面。注入管線38連接至下部32,如此氣 體可經由管線38注入至氣穴36。 第7圖為晶圓載具軌道30的側視圖,其具有沿著晶圓 載具軌道30全長而進入氣穴36的單一注入管線38。或 者,晶圓載具軌道30沿著其長度包括多個氣穴%和多 個注入管線38。又或者’晶圓載具軌道3〇包括多個片 22 201034055 段,每一片段具有單一氣穴和單一注入管線38。又戋者, 晶圓載具軌道30包括上述氣穴36和注入管線38的配置 組合。 第8圖為晶圓栽具軌道3〇之實施例的截面立體視圓, 具有上部31和下部32。具側面35、氣孔33和氣穴% 的上部31位於下部32之上。在此實施例中,側面和 下部32是中空的,以實質減輕晶圓載具軌道3〇的重量, 及加強晶圓載具軌道3〇相對於沿著晶圓載具軌道3〇行 β 進之晶圓的熱控制。 第9圖繪示反應器蓋組件2〇耦接晶圓載具軌道3〇。〇 形環用來密封反應器蓋組件2〇和晶圓載具轨道3〇的界 面。如圖所示,CVD反應器1〇的入口可調整大小來接 收不同尺寸的晶圓。在一實施例中,反應器蓋組件2〇之 凸起部26與晶圓載具軌道30之引導路徑間的間隙6〇用 來接收晶圓,且按規格尺寸製作以避免污染物從任一端 • 進入CVD反應器1〇、防止各區域間的氣體往回擴散、 及確保CVD製程期間供給晶圓的氣體均勻分配到整個 $隙厚度和晶圓各處。在-實施例中,間隙60形成在反 應器蓋組件20之下表面與晶圓載具軌道30之引導路徑 間❶在一實施例中,間隙6〇形成在氣體歧管組件之下表 面與晶圓載具轨道3〇之引導路徑間。在一實施例中間 隙6〇的厚度為約0.5mm至約5mm,且可隨反應器蓋組 件20和晶圓載具軌道30之長度變化。在一實施例中, 晶圓的長度為約5〇mm至約i5〇mm、寬度約50mm至約 23 201034055 15 0mm、厚度約0_5mm至約5mm。在一實施例中,晶圓 包括基底層,具有個別條帶層(strips of layers)於基底層 上。條帶層在CVD製程中經過處理。各條帶的長度為約 10公分(cm)、寬度約lcm(但也可採用其他尺寸),依此 方式形成有助於自晶圓移除已處理條帶及減少CVD製 程期間在已處理條帶上引起的應力》對不同應用來說, CVD反應器10可適於接收超出上述尺寸範圍的晶圓。 CVD反應器10可適於提供進出反應器的自動且連續 的晶圓供給及離開,例如利用輸送器型系統。利用手動 及/或自動化系統將晶圓例如以輸送器而從反應器的一 端送入CVD反應器10、傳送通過CVD製程、及例如以 回收器(retriever)從反應器的另一端移除。CVD反應器 10可適以約每10分鐘1片晶圓至約每1 〇秒1片晶圓的 速度製造晶圓,但針對不同應用當可超出此範圍。在一 實施例中,CVD反應器10可適於每分鐘可製造6-10片 經處理的晶圓。 在一實施例中,晶圓連續送入CVD系統或反應器(類 似CVD反應器10)中,且連續、水平移動通過CVD系統 内的多個處理區域。多層係生長或形成於各基板上。各 層組成與緊接之下層組成相同或不同。在一些實施例 中,通過CVD系統時,晶圓通過加熱區域、生長區域和 冷卻區域。在一實例中,晶圓通過加熱區域計約3分鐘、 通過生長區域計約14分鐘、接著通過冷卻區域計約3分 鐘。沉積區域可分成多個子區域,其由距離與隔離器隔 24 201034055 開’例如選擇性氣體幕和真空隔離器。在一實例中,各 個晶圓通過7個不同的沉積子區域,其彼此相隔。晶圓 連續移動通過子區域並在各區域中度過預定時間,例如 約2分鐘。故各沉積子區域中可沉積單層至晶圓上。Figures 2, 5, 6, 7, and 8 illustrate various views of an embodiment of a wafer carrier track. The wafer carrier track 3 provides a floating type (ievimi〇n-type) system to float the wafer over the air cushion. (e.g., nitrogen or argon supplied by the air holes 33 of the wafer carrier track 30.) Back to Figure 2, the wafer carrier track 30 is generally a rectangular body having an upper portion 31 and a lower portion 32. The upper portion 31 includes a wafer carrier track. The side surface 35 of the top surface of the crucible extending along the length of the wafer carrier track 30 further constitutes a "guide path" for the wafer to travel through the CVD reactor. The width of the guiding path (such as the distance between the inner sides of the side faces 35) is about 11 〇 mm to 130 mm, the height of the guiding path is about 3 〇 mm to 5 〇 mm, and the length of the guiding path is about 970 mm to i 〇 3 〇 mm ' However, this size range can be exceeded for different applications. The upper portion 31 includes a recessed bottom surface that includes a recessed top surface that, when joined together, forms an air pocket 36 therebetween. The cavitation 36 is used to circulate and distribute the gas injected into the cavitation 36 to the guiding path of the wafer carrier track 30 to create an air cushion. The air pockets 36 disposed along the wafer carrier track 30 can vary in number, size, shape, and location. Both the side 35 and the air pocket 36 substantially extend the length of the wafer carrier track 3〇. 20 201034055 The wafer carrier track 30 can be fabricated as a single solid structural component or by a plurality of segments coupled together. In one embodiment, the wafer carrier track 30 is tilted at an angle such that the inlet is above the exit, allowing the wafer to float below the track by gravity. As described above, the side surface 35 of the wafer carrier can be accommodated in the gap between the boss 26 and the flange member 25 of the reactor cover assembly 20 to enclose the "guide path" along the wafer carrier track 30. And further surrounding the area of the raised portion 26 formed along the wafer carrier track 30. Referring to Figure 5, an embodiment of a wafer carrier track 30 is illustrated. As shown, the wafer carrier track 30 includes a plurality of air holes 33 disposed along the guiding path of the wafer carrier track 3A and between the side faces 35. The air holes 33 are evenly arranged in a plurality of columns (r〇w) along the guiding path of the wafer carrier track 30. The diameter of the air holes 33 is from about 0.2 mm to about 0.1 mm, and the pitch of the air holes 33 is from about 10 mm to about 30 mm. However, this size range can be exceeded for different applications. The vents 33 disposed along the wafer carrier track 30 can vary in number, size & shape and position. In an alternate embodiment, the air vent 33 includes a rectangular slot array or a slit disposed along the guiding path of the wafer carrier track 30. The air holes 33 are in communication with the air pockets 36 below the guiding path of the wafer carrier track 30. The gas supplied to the air pockets 36 is uniformly released through the air holes 33, and an air cushion is formed along the wafer carrier rails 30. The wafer on the guiding path of the wafer carrier track 30 is floated by the gas supplied from below and can be easily transported along the guiding path of the wafer carrier track 3〇. The gap between the floating wafer and the bow guide path of the wafer carrier track 30 is greater than about 〇5, but may vary depending on the application. The floating system reduces the direct drag contact. 201034055 The drag effect caused by the guided path of the wafer carrier track. Further, the port 34 is provided along the side of the side face 35 adjacent to the guiding path of the wafer carrier track 30. The port 34 can be regarded as a discharge means for the gas supplied through the air hole 33. Alternatively, port 34 can be used as ' laterally injecting gas into the center of wafer carrier track 30 to assist in stabilizing & and centering the wafer that is floating along the guiding path of wafer carrier track 30. In an alternate embodiment, the guiding path of the wafer carrier track 30 includes a tapered taPered profile to help stabilize and center the wafer that is floating along the guiding path of the wafer carrier track 30. Figure 6 is a front elevational view of an embodiment of a wafer carrier track 30. As shown, the wafer carrier track 30 includes an upper portion 31 and a lower portion 32. The upper portion 31 includes a side surface 35' which constitutes a "guide path" along the length of the wafer carrier track 3''. The upper portion 31 further includes a side surface 35 which defines a recess 39 at the side of the side surface 35. The recess 39 is adapted to receive the flange member 25 (Fig. 2) of the reactor cover assembly 2' to couple the reactor cover assembly 2 and the wafer carrier/track 3〇 together and enclose the crystal The guiding path of the round carrier track 3〇. Figure 5 also shows that the air vent 33 extends from the guide path of the wafer carrier track % to the air pocket 36. The lower portion 32 serves as a support member for the upper portion 3 i and includes a recessed bottom surface. Injection line 38 is coupled to lower portion 32 such that gas can be injected into cavitation 36 via line 38. Figure 7 is a side elevational view of the wafer carrier track 30 with a single injection line 38 that enters the air pockets 36 along the entire length of the wafer carrier track 30. Alternatively, wafer carrier track 30 includes a plurality of air pockets and a plurality of injection lines 38 along its length. Alternatively, the 'wafer carrier track 3' includes a plurality of sheets 22 201034055 segments, each segment having a single air pocket and a single injection line 38. Still further, the wafer carrier track 30 includes a combination of the above-described air pockets 36 and injection lines 38. Figure 8 is a cross-sectional perspective view of an embodiment of a wafer carrier track 3 having an upper portion 31 and a lower portion 32. The upper portion 31 having the side faces 35, the air holes 33 and the cavitation % is located above the lower portion 32. In this embodiment, the side and lower portions 32 are hollow to substantially reduce the weight of the wafer carrier track 3 and enhance the wafer carrier track 3 relative to the wafer along the wafer carrier track 3. Thermal control. Figure 9 illustrates the reactor cover assembly 2〇 coupled to the wafer carrier track 3〇. A 形 ring is used to seal the interface between the reactor lid assembly 2 and the wafer carrier track 3〇. As shown, the inlet of the CVD reactor 1〇 can be sized to receive wafers of different sizes. In one embodiment, the gap 6 between the raised portion 26 of the reactor cover assembly 2 and the guiding path of the wafer carrier track 30 is used to receive the wafer and is sized to avoid contaminants from either end. The CVD reactor is introduced, the gas between the regions is prevented from diffusing back, and the gas supplied to the wafer during the CVD process is evenly distributed throughout the thickness of the wafer and throughout the wafer. In an embodiment, a gap 60 is formed between the lower surface of the reactor lid assembly 20 and the guiding path of the wafer carrier track 30. In one embodiment, the gap 6 is formed on the lower surface of the gas manifold assembly and on the wafer. Between the guiding paths of the track 3〇. In one embodiment, the gap 6 〇 has a thickness of from about 0.5 mm to about 5 mm and may vary with the length of the reactor cover assembly 20 and the wafer carrier track 30. In one embodiment, the wafer has a length of from about 5 mm to about i5 mm, a width of from about 50 mm to about 23 201034055 15 mm, and a thickness of from about 0 mm to about 5 mm. In one embodiment, the wafer includes a substrate layer having individual strips of layers on the substrate layer. The strip layer is processed in a CVD process. Each strip has a length of about 10 cm (cm) and a width of about 1 cm (but other sizes are also possible), which in this way facilitates removal of the treated strip from the wafer and reduces the processed strip during the CVD process. The stress caused by the band. For different applications, the CVD reactor 10 can be adapted to receive wafers outside the above size range. The CVD reactor 10 can be adapted to provide automatic and continuous wafer supply and exit into and out of the reactor, such as with a conveyor type system. The wafer is transferred from one end of the reactor to the CVD reactor 10, e.g., by a conveyor, using a manual and/or automated system, transported through a CVD process, and removed from the other end of the reactor, e.g., in a retriever. The CVD reactor 10 can be used to fabricate wafers at a rate of from about 1 wafer per 10 minutes to about 1 wafer per 1 second, but can be exceeded for different applications. In one embodiment, CVD reactor 10 can be adapted to produce 6-10 processed wafers per minute. In one embodiment, the wafer is continuously fed into a CVD system or reactor (like CVD reactor 10) and continuously and horizontally moved through a plurality of processing regions within the CVD system. The multilayer layer is grown or formed on each substrate. The composition of each layer is the same as or different from the composition of the layer immediately below. In some embodiments, the wafer passes through the heating zone, the growth zone, and the cooling zone as it passes through the CVD system. In one example, the wafer is passed through the heated zone for about 3 minutes, by the growth zone for about 14 minutes, and then by the cooling zone for about 3 minutes. The deposition zone can be divided into a plurality of sub-areas that are separated by a distance from the isolator 24 201034055, such as a selective gas curtain and a vacuum isolator. In one example, each wafer passes through seven different deposition sub-regions that are separated from one another. The wafer is continuously moved through the sub-areas and spent a predetermined time in each area, for example about 2 minutes. Therefore, a single layer can be deposited on each of the deposition sub-regions onto the wafer.

第10A圖繪示CVD反應器1〇〇之另一實施例。CVD . 反應器100包括反應器主體120、晶圓載具軌道130、晶 圓載具140和加熱燈組件15〇。反應器主體12〇構成矩 φ 形主體,且可含有鉬、石英、不鏽鋼或其他類似材料。 反應器主體120圍住晶圓載具軌道13〇及實質延伸晶圓 載具軌道130的長度。晶圓載具轨道13〇亦構成矩形主 體,且可含有石英或其他低導熱性材料,以協助製 程期間的溫度分佈。晶圓載具軌道13〇配置以提供浮置 型系統,其供應氣墊以沿著晶圓載具軌道13〇傳送晶 圓。如圖所示,導管(如具v形頂壁135之氣穴137)沿著 阳圓載具軌道丨30之引導路徑縱轴而置中設置。氣體經 瘳 由氣八I37供應並注入通過頂壁135的氣孔而提供氣 塾,該氣塾沿著晶圓载具軌道13〇而浮置晶圓,該晶圓 , 之底面具對應V形凹口(未繪示)。在一實施例中,反應 器主體12G和晶圓載具轨道13()各自為單—結構部件。 在一替代實施例中,反應器主體m包括多個輕接在一 起而組成完整結構料的片段。在―替代實施例中,晶 圓載具軌道130包括多個耦接在一起而組成完整結構部 件的片段。 第10A圖尚繪示晶圓载具14〇,其適以沿著晶圓栽具 25 201034055 軌道130承載單一晶圓(未繪示)或晶圓條帶16〇 ^晶圓載 具140可由石墨或其他類似材料形成。在一實施例中, 晶圓載具140沿著其底面設有ν形凹口 136以相應晶圓 載具軌道130的V形頂壁ι:35 β ν形凹口 136置於、形 頂壁135上方,有助於沿著晶圓載具軌道13〇引導晶圓 載具140。CVD製程期間,晶圓載具14〇用來承載晶圓 條帶160,以於處理時減少熱應力衝擊晶圓。氣穴 % 之頂壁135的氣孔沿著晶圓載具140底部引導氣墊,其 在CVD製程期間利用對應之ν形特徵結構來穩定及置中 晶圓載具140和晶圓條帶16(^如上所述,晶圓可放成 條帶160 ,以便於從晶圓载具14〇移出已處理條帶及 減少CVD製程期間產生應力作用於條帶上。 在另一實施例中,第10B-10F圖繪示晶圓载具7〇,其 用來承載晶園通過各種處理腔室,包括所述CVD反應器 和其他用以沉積或蝕刻之處理腔室。晶圓載具7〇具有短 # 側邊71、長側邊73、上表面72和下表面74。晶圓載具 70繪示呈矩形’但其也為方形、圓形或其他幾何形狀。 .晶圓載具70含有或由石墨或其他材料形成。晶圓載具 . 70通常以短側邊面朝前、長側邊73面向cvd反應 器側邊的方式行經CVD反應器。 第10B圖為晶圓載具70的俯視圖,其中上表面72設 有3個凹口 75。將晶圓傳送通過CVD反應器處理時: 晶圓可放在凹口 75内。雖然圖顯示3個凹口 75,但上 表面72可設置更多或更少個凹口,包括無凹口。例如, 26 201034055 晶圓载具70的上表面72設有〇、1、2'3、4、5、6、7、 8、9、1〇、12或更多個凹口來容納晶圓。在一些實例中, 一或多個晶圓直接放在不含凹口的上表面72上。 第i〇c圖為根據所述實施例之晶圓載具7〇的仰視圖, 其中下表面74上設有凹口 78β在晶圓載具7〇下方引用 氣墊後,凹口 78即可協助浮置晶圓載具70。氣流可引 導至凹口 78,其聚集氣體而形成氣塾。晶圓載具7〇的 ❿ 下表面74可以不具有凹口、或設置1個凹口 78(第1〇c 圖)、2個凹口 78(第10D-10F圖)、3個凹口 78(未繪示) 或以上。凹口 78具有平直側邊或錐形側邊(tapered side)。在一實例中,凹口 78具有錐形側邊故側邊% 比(角度變化較緩的)側邊77還要斜或陡。凹口 78中 的側邊77可呈錐形’藉以補償跨越晶圓載具7〇的熱梯 度。在另一實例中’凹口 78具有平直側邊和錐形側邊, 故側邊76為平直,側邊77呈錐形;或側邊77為平直, ft 側邊76呈錐形。或者,凹口 78全為平直側邊,故側邊 76、77為平直。 在另一實施例中,第10D_10F囷為晶圓載具7〇的仰視 圖’其中下表面74上設置2個凹口 78。在晶圓載具70 下方引用氣墊後,二凹口 78即可協助浮置晶圓載具7〇。 氣流可引導至凹口 78,其聚集氣體而形成氣墊。凹口 ?8 具有平直側邊或錐形側邊。在一實例中,如第1〇E圖所 示’凹口 78全為平直側邊,故側邊76、77為平直,例 如垂直於下表面74的平面。在另一實例中,如第10F圖 27 201034055 所示,凹口 78全為錐形側邊,故側邊76比角度變化較 緩的側邊77斜或陡。凹口 78中的側邊77可呈錐形,藉 以補償跨越晶圓載具70的熱梯度。或者,凹口 78具有 平直側邊與錐形側邊的組合’故側邊76為平直,侧邊 77呈錐形;或側邊77為平直,側邊76呈錐形。 •晶圓載具70含有從下表面74延伸至上表面72和放置 其上的任一晶圓的熱通量(heat flux)。熱通量可由處理系 統的内部壓力和長度來控制。晶圓載具70的剖面可呈錐 形,用以補償其他來源的熱損失。處理時,熱經由晶圓 載具70的邊緣消失,例如短側邊71和長側邊73。但藉 由縮短浮置裝置中的引導路徑間隙,而讓更多熱通量進 入晶圓載具70的邊緣,可補償熱損失。 第10A圖還繪示設於加熱燈組件150上的反應器主體 120。加熱燈組件150藉由提高及降低反應器主體12〇、 晶圓載具軌道130以及尤其是晶圓沿著cvd反應器長度 _ 的溫度,而配置以控制CVD反應器内的溫度分佈。加熱 燈組件150包括複數個沿著晶圓載具執道13〇之縱長而 . 設置的加熱燈。在一實施例中,加熱燈組件15〇包括沿 - 著晶圓載具軌道130之長度設置且個別控制的加熱燈。 在一替代實施例中,加熱燈組件15〇包括一組沙⑽”可 移動且跟隨晶圓沿著晶圓載具軌道13〇行進的加熱燈。 加熱燈組件150之實施例也可做為上述第i圏的加熱燈 組件5 0。 在-替代實施例中,其他類型的加熱組件(未繪示)可 28 201034055 取代加熱燈組件150來加熱反應器主體12〇。在一實施 例中,加熱組件包括電阻式加熱元件,例如電阻式加熱 器,其可沿著晶圓載具軌道丨3 〇之長度而個別控制。在 一實例中’電阻式加熱元件結合或塗在反應器主體12〇、 . 晶圓載具軌道130或晶圓載具140上。在一替代實施例 . 中,用來加熱反應器主體120的其他加熱組件類型為感 應加熱元件,例如裝設射頻功率源(未繪示)。感應加熱 元件耦接反應器主體120、晶圓載具軌道i3〇及/或晶圓 ® 載具U0。所述各種加熱組件實施例(包括加熱燈組件 50、150)可單獨或配合CVD反應器使用。 在一實施例中’加熱燈組件丨5〇可配置以加熱Cvd反 應器内的晶圓達約300°C至約800°C。在一實施例中,將 BB圓引進CVD反應器的沉積區域前,加熱燈組件15〇可 配置以升兩晶圓溫度至一適合的製程溫度。在一實施例 中’加熱燈組件150可以與CVD反應器一同配置以將晶 φ 圓在引進CVD反應器的沉積區域前,使晶圓溫度達約 300°C至約800t。在一實施例中,晶圓進入CVD反應 器的一或多個沉積區域前,晶圓係加熱至製程溫度範圍 _ 内,以促進沉積製程,且當晶圓通過一或多個沉積區域 •時,晶圓溫度保持在製程溫度範圍内。晶圓沿著晶圓載 具軌道移動時,晶圓係加熱並维持在製程溫度範圍内。 晶圓的中心溫度到邊緣溫度差異在1〇t以内。 在一些實施例中,提出連續CVD製程期間形成多層材 料的方法,其包括使複數個晶圓連續移動或前進通過沉 29 201034055 積系統,其令沉積系統包含第一沉積區域、第二沉積區 第一 /儿積區域和第四沉積區域。在一些配置下,系 統具有第五沉積區域、第六沉積區域、附加沉積區域、 加,、,、區域、冷卻區域和其他處理區域。方法更提出沉積 -第一材料層至第一沉積區域内的第—晶圓上使第一晶 圓移動或前進至第二沉積區域、以及使第二晶圓移動或 前進至第一沉積區域,然後沉積第二材料層至第二沉積 φ 區域内的第-晶圓上’同時沉積第-材料層至第一沉積 區域内的第二晶圓上。第二材料層沉積在各晶圓的第一 材料層上。 方法更長:出使第一晶圓移動或前進至第三沉積區域、 使第二晶圓移動或前進至第二沉積區域、以及使第三晶 圓移動或别進至第一沉積區域,然後沉積第三材料層至 第一 /儿積區域内的第一晶圓上,同時沉積第二材料層至 第二沉積區域内的第二晶圓上,且同時沉積第一材料層 ❿ 至第一沉積區域内的第三晶圓上。 方法更提出使第一晶圓移動或前進至第四沉積區域、 使第二晶圓移動或前進至第三沉積區域、使第三晶圓移 動或刖進至第二沉積區域、以及使第四晶圓移動或前進 至第一沉積區域,然後沉積第四材料層至第四沉積區域 内的第一晶圓上,同時沉積第三材料層至第三沉積區域 内的第二晶圓上,並同時沉積第二材料層至第二沉積區 域内的第三晶圓上,且同時沉積第一材料層至第一沉積 區域内的第四晶圓上。 30 201034055 在一些實施例中,方法更提出沉積第五材料層至第五 沉積區域内的第一晶圓上,同時沉積第四材料層至第四 沉積區域内的第二晶圓上,又同時沉積第三材料層至第 • 三沉積區域内的第三晶圓上,並同時沉積第二材料層至 ‘ 第二沉積區域内的第四晶圓上’且同時沉積第一材料層 ' 至第一沉積區域内的第五晶圓上。在提出實例中,晶圓 或基板大致朝相同方向水平前進,同時以同樣的相對速 ❹ 度通過沉積系統内的多個沉積區域。 在一些實例中’第-材料層、第二材料層、第三材料 層和第四材料層具有相同組成。在其他實例中,第一材 料層、第二材料層、第三材料層和第四材料層各具不同 組成。在許多實例中,第一材料層、第二材料層、第三 材料層和第四材料層各自含有坤(槪nic)(如坤化嫁畔 化鋁或砷化鋁鎵)。 方法更提出在前進到第一沉積區域前,於加熱區域t 攀力熱各個晶圓達預定溫度。預定溫度可為約5代至約 75〇°C,較佳約hhtc至約35代。在―些實 , 個晶圓經加熱達狀溫度、計約2分鐘至約6分鐘、或 约3分鐘至约5分鐘。方法還提出在沉積第四材料層後, 將各個晶圓傳送到冷卻區域。隨後,於冷卻區域中冷卻 晶圓至預定溫度。預定溫度可為約财至約骑。在一 些實施例中,各個晶I經冷卻至預定溫度、計約2分鐘 至約6分鐘、或约3分鐘至約5分鐘。 在其他實施例中,於晶圓進入第一沉積區域前晶圓 31 201034055 通過加熱區域’且離開第四沉積區域後,晶圓通過冷卻 區'。加熱區域、第一、第二、第三與第四沉積區域、 和冷部區域全共用一共同線性路徑。晶圓可沿著沉積系 統内的共同線性路徑而連續且水平前進。 在一實施例中,提出連續CVD製程期間形成多層材料 的方法’其包括使複數個晶圓連續前進通過沉積系統, 其中沉積系統具有第-沉積區域、第二沉積區域、第三 m 沉積區域和第四沉積區域。方法更提出沉積緩衝層至第 ’儿積區域内的第一晶圓上、沉積犧牲層至第二沉積區 域内的第-晶圓上,同時沉積緩衝層至第一沉積區域内 的第BB圓:$*法更提出沉積鈍化層至第三沉積區域 内的第-晶圓上’同時沉積犧牲層至第二沉積區域内的 第一 圓上,且同時沉積緩衝層至第一沉積區域内的第 三晶圓上。方法更提出沉積坤化鎵主動層至第四沉積區 域内的第-晶圓上,同時沉積鈍化層至第三沉積區域内 ^ 的第二晶圓上’並同時沉積犧牲層至第二沉積區域内的 第三晶圓上’且同時沉積緩衝層至第—沉積區域内的第 四晶圓上。在許多實例中’晶圓為坤化鎵晶圓。 纟-些實關中’方法更提出沉積含鎵層至第五沉積 區域内的第_晶圓上,同時沉料化鎵主動層至第四沉 積區域内的第二晶圓上’又同時沉積鈍化層至第三沉積 區域内的第三晶圓上’並同時沉積犧牲層至第二沉積區 域内的第四晶圓上’且同時沉積緩衝層至第一沉積區域 内的第五晶圓上。在-些實例中,含鎵層含有神化鱗嫁。 32 201034055 在一些實施例中’方法更提出在晶圓前進到第一沉積 區域前’於加熱區域中加熱各個晶圓達預定溫度。預定 溫度可為約50。(:至約750°C,較佳約l〇〇t至約35〇r。 在其他實施例中’方法更提出在沉積砷化鎵主動層後, 將晶圓傳送到冷卻區域。隨後,於冷卻區域中冷卻晶圓 至約1 8°C至約30。(:之預定溫度。Figure 10A illustrates another embodiment of a CVD reactor. CVD. Reactor 100 includes reactor body 120, wafer carrier track 130, wafer carrier 140, and heat lamp assembly 15A. The reactor body 12〇 constitutes a moment φ shaped body and may contain molybdenum, quartz, stainless steel or the like. Reactor body 120 encloses the length of wafer carrier track 13 and substantially extended wafer carrier track 130. The wafer carrier track 13〇 also forms a rectangular body and may contain quartz or other low thermal conductivity materials to assist in temperature distribution during processing. The wafer carrier track 13 is configured to provide a floating type system that supplies an air cushion to transport a wafer along the wafer carrier track 13 . As shown, the conduit (e.g., the air pocket 137 having the v-shaped top wall 135) is disposed centrally along the longitudinal axis of the guide path of the dome carrier track 30. The gas is supplied by the gas argon I37 and injected into the pores of the top wall 135 to provide gas enthalpy. The gas rafts floats along the wafer carrier track 13 ,, and the bottom mask corresponds to the V-shaped recess ( Not shown). In one embodiment, the reactor body 12G and the wafer carrier track 13 () are each a single-structural component. In an alternate embodiment, the reactor body m includes a plurality of segments that are joined together to form a complete structural material. In an alternate embodiment, the wafer carrier track 130 includes a plurality of segments that are coupled together to form a complete structural component. FIG. 10A further illustrates a wafer carrier 14〇 adapted to carry a single wafer (not shown) or a wafer strip 16 along the wafer fixture 25 201034055 track 130. The wafer carrier 140 may be graphite or Other similar materials are formed. In one embodiment, the wafer carrier 140 is provided with a v-shaped recess 136 along its bottom surface such that the V-shaped top wall ι:35 β ν-shaped recess 136 of the corresponding wafer carrier track 130 is placed over the top wall 135. Helping to guide the wafer carrier 140 along the wafer carrier track 13A. During the CVD process, the wafer carrier 14 is used to carry the wafer strips 160 to reduce thermal stress on the wafer during processing. The air holes of the top wall 135 of the air pocket % guide the air cushion along the bottom of the wafer carrier 140, which utilizes the corresponding v-shaped feature structure to stabilize and center the wafer carrier 140 and the wafer strip 16 during the CVD process (^ as above As described, the wafer can be placed into strips 160 to facilitate removal of the processed strip from the wafer carrier 14 and to reduce stress generated during the CVD process on the strip. In another embodiment, 10B-10F A wafer carrier 7 is shown for carrying a crystallizer through various processing chambers, including the CVD reactor and other processing chambers for deposition or etching. The wafer carrier 7 has a short # side 71 The long side 73, the upper surface 72, and the lower surface 74. The wafer carrier 70 is depicted as a rectangle 'but it is also square, circular, or other geometric shape. The wafer carrier 70 contains or is formed of graphite or other materials. The wafer carrier 70 usually passes through the CVD reactor with the short side facing forward and the long side 73 facing the side of the cvd reactor. Fig. 10B is a plan view of the wafer carrier 70, wherein the upper surface 72 is provided with three Notch 75. When the wafer is transferred through the CVD reactor: the wafer can be placed in the notch 75 Although the figure shows three notches 75, the upper surface 72 may be provided with more or fewer notches, including no notches. For example, 26 201034055 The upper surface 72 of the wafer carrier 70 is provided with 〇1, 2'3, 4, 5, 6, 7, 8, 9, 1 , 12 or more notches to accommodate the wafer. In some instances, one or more wafers are placed directly in the notch The upper surface 72. The first embodiment is a bottom view of the wafer carrier 7〇 according to the embodiment, wherein the lower surface 74 is provided with a notch 78β after the air cushion is referenced below the wafer carrier 7〇, the notch 78 The floating wafer carrier 70 can be assisted. The gas flow can be directed to the recess 78, which collects gas to form a gas pocket. The lower surface 74 of the wafer carrier 7 can have no recess or a notch 78 (first) 1)c), 2 notches 78 (Fig. 10D-10F), 3 notches 78 (not shown) or above. The notches 78 have straight sides or tapered sides. In one example, the recess 78 has a tapered side such that the side % ratio (slower angle change) side 77 is more oblique or steep. The side 77 of the recess 78 can be tapered to compensate for the span. crystal The circular carrier has a thermal gradient of 7 。. In another example, the 'notch 78 has a flat side and a tapered side so that the side 76 is straight, the side 77 is tapered; or the side 77 is straight The ft side 76 is tapered. Alternatively, the notches 78 are all straight sides, so the sides 76, 77 are straight. In another embodiment, the 10D_10F囷 is the bottom view of the wafer carrier 7〇. 'There are two notches 78 on the lower surface 74. After the air cushion is referenced below the wafer carrier 70, the two notches 78 can assist in floating the wafer carrier 7〇. The gas stream can be directed to a notch 78 which collects gas to form an air cushion. Notch ? 8 has a flat side or a tapered side. In one example, the notches 78 are all straight sides as shown in Fig. 1E, so the sides 76, 77 are straight, such as a plane perpendicular to the lower surface 74. In another example, as shown in FIG. 10F, FIG. 27, 201034055, the notches 78 are all tapered sides, so the side 76 is oblique or steeper than the side 77 where the angle of change is slower. The side edges 77 in the recesses 78 can be tapered to compensate for thermal gradients across the wafer carrier 70. Alternatively, the recess 78 has a combination of a flat side and a tapered side so that the side 76 is straight and the side 77 is tapered; or the side 77 is straight and the side 76 is tapered. • Wafer carrier 70 contains heat flux extending from lower surface 74 to upper surface 72 and any wafer placed thereon. The heat flux can be controlled by the internal pressure and length of the processing system. The profile of the wafer carrier 70 can be tapered to compensate for heat losses from other sources. At the time of processing, heat disappears through the edges of the wafer carrier 70, such as the short side 71 and the long side 73. However, by shortening the guiding path gap in the floating device, more heat flux is introduced into the edge of the wafer carrier 70 to compensate for heat loss. Figure 10A also illustrates the reactor body 120 disposed on the heater lamp assembly 150. The heat lamp assembly 150 is configured to control the temperature distribution within the CVD reactor by increasing and decreasing the temperature of the reactor body 12, the wafer carrier track 130, and particularly the wafer along the length of the cvd reactor. The heater lamp assembly 150 includes a plurality of heater lamps disposed along the length of the wafer carrier. In one embodiment, the heater lamp assembly 15 includes a heat lamp disposed along the length of the wafer carrier track 130 and individually controlled. In an alternate embodiment, the heater lamp assembly 15 includes a set of sand (10)" heat lamps that are movable and follow the wafer along the wafer carrier track 13. Embodiments of the heater lamp assembly 150 can also be used as described above I圏's heater lamp assembly 50. In an alternative embodiment, other types of heating assemblies (not shown) may be used to replace the heater lamp assembly 150 to heat the reactor body 12A. In one embodiment, the heating assembly A resistive heating element, such as a resistive heater, is included, which can be individually controlled along the length of the wafer carrier track 。3 。. In one example, a resistive heating element is bonded or coated to the reactor body 12, . The circular carrier track 130 or wafer carrier 140. In an alternate embodiment, the other type of heating element used to heat the reactor body 120 is an inductive heating element, such as an RF power source (not shown). The components are coupled to the reactor body 120, the wafer carrier track i3, and/or the wafer® carrier U0. The various heating assembly embodiments (including the heat lamp assemblies 50, 150) can be used alone or in conjunction with a CVD reactor. In one embodiment, the 'heat lamp assembly 〇5〇 can be configured to heat the wafer in the Cvd reactor from about 300 ° C to about 800 ° C. In one embodiment, the BB circle is introduced into the deposition of the CVD reactor. Before the zone, the heater lamp assembly 15A can be configured to raise the temperature of the two wafers to a suitable process temperature. In one embodiment, the 'heat lamp assembly 150 can be configured with the CVD reactor to introduce the crystal φ circle into the CVD reactor. Before the deposition area, the wafer temperature is about 300 ° C to about 800 t. In one embodiment, before the wafer enters one or more deposition regions of the CVD reactor, the wafer is heated to a process temperature range _, To facilitate the deposition process, and when the wafer passes through one or more deposition areas, the wafer temperature is maintained within the process temperature range. When the wafer moves along the wafer carrier track, the wafer is heated and maintained at the process temperature range. The center-to-edge temperature difference of the wafer is within 1 〇t. In some embodiments, a method of forming a multilayer material during a continuous CVD process is proposed, which includes continuously moving or advancing a plurality of wafers through a sink 29 201034055 product system The deposition system includes a first deposition region, a second deposition region first/child region, and a fourth deposition region. In some configurations, the system has a fifth deposition region, a sixth deposition region, an additional deposition region, and , , , region, cooling region, and other processing regions. The method further proposes depositing - the first material layer to the first wafer in the first deposition region to move or advance the first wafer to the second deposition region, and The second wafer moves or advances to the first deposition region, and then deposits the second material layer onto the first wafer in the second deposition φ region while simultaneously depositing the first material layer onto the second wafer in the first deposition region A second layer of material is deposited on the first layer of material of each wafer. The method is longer: moving or advancing the first wafer to the third deposition area, moving or advancing the second wafer to the second deposition area, and moving or otherwise advancing the third wafer to the first deposition area, and then Depositing a third material layer onto the first wafer in the first/intervening region while depositing the second material layer onto the second wafer in the second deposition region, and simultaneously depositing the first material layer 至 to the first On the third wafer in the deposition area. The method further proposes moving or advancing the first wafer to the fourth deposition region, moving or advancing the second wafer to the third deposition region, moving or expanding the third wafer to the second deposition region, and making the fourth The wafer is moved or advanced to the first deposition region, and then the fourth material layer is deposited onto the first wafer in the fourth deposition region while depositing the third material layer to the second wafer in the third deposition region, and A second material layer is simultaneously deposited onto the third wafer in the second deposition region, and the first material layer is simultaneously deposited onto the fourth wafer in the first deposition region. 30 201034055 In some embodiments, the method further proposes depositing a fifth material layer onto the first wafer in the fifth deposition region while depositing the fourth material layer to the second wafer in the fourth deposition region, and simultaneously Depositing a third material layer onto a third wafer in the third deposition region, and simultaneously depositing a second material layer onto the fourth wafer in the second deposition region and simultaneously depositing the first material layer to On a fifth wafer in a deposition area. In the proposed example, the wafer or substrate is advanced horizontally in the same direction while passing through multiple deposition regions within the deposition system at the same relative velocity. In some examples, the 'first material layer, the second material layer, the third material layer, and the fourth material layer have the same composition. In other examples, the first material layer, the second material layer, the third material layer, and the fourth material layer each have a different composition. In many instances, the first material layer, the second material layer, the third material layer, and the fourth material layer each contain a quinonic (e.g., koning or aluminum gallium arsenide). The method further proposes to heat the respective wafers to a predetermined temperature in the heating region t before advancing to the first deposition region. The predetermined temperature may be from about 5 passages to about 75 °C, preferably from about hhtc to about 35 passages. In some cases, the wafers are heated to a temperature of about 2 minutes to about 6 minutes, or about 3 minutes to about 5 minutes. The method also proposes transferring the individual wafers to the cooling zone after depositing the fourth material layer. Subsequently, the wafer is cooled to a predetermined temperature in the cooling zone. The predetermined temperature can range from about a fortune to about a ride. In some embodiments, each crystal I is cooled to a predetermined temperature for from about 2 minutes to about 6 minutes, or from about 3 minutes to about 5 minutes. In other embodiments, the wafer passes through the cooling zone after the wafer enters the first deposition zone before the wafer 31 201034055 passes through the heating zone & and exits the fourth deposition zone. The heating zone, the first, second, third and fourth deposition zones, and the cold zone all share a common linear path. The wafers can be continuously and horizontally advanced along a common linear path within the deposition system. In one embodiment, a method of forming a multilayer material during a continuous CVD process is proposed 'which includes continuously advancing a plurality of wafers through a deposition system, wherein the deposition system has a first deposition region, a second deposition region, a third m deposition region, and The fourth deposition area. The method further proposes depositing a buffer layer onto the first wafer in the first region, depositing the sacrificial layer onto the first wafer in the second deposition region, and depositing the buffer layer to the BB circle in the first deposition region. The $* method further proposes depositing a passivation layer onto the first wafer in the third deposition region to simultaneously deposit a sacrificial layer onto the first circle in the second deposition region, and simultaneously depositing the buffer layer into the first deposition region. On the third wafer. The method further proposes depositing the active layer of the gallium arsenide onto the first wafer in the fourth deposition region while depositing the passivation layer onto the second wafer in the third deposition region and simultaneously depositing the sacrificial layer to the second deposition region On the third wafer inside and simultaneously depositing the buffer layer onto the fourth wafer in the first deposition region. In many instances, the wafer is a Kunlunium wafer. The 纟- some implementations method proposes depositing a gallium-containing layer onto the first wafer in the fifth deposition region, while depositing the gallium active layer to the second wafer in the fourth deposition region and simultaneously depositing passivation The layer is on the third wafer in the third deposition region and simultaneously deposits the sacrificial layer onto the fourth wafer in the second deposition region and simultaneously deposits the buffer layer onto the fifth wafer in the first deposition region. In some examples, the gallium-containing layer contains a deified scale. 32 201034055 In some embodiments, the method further proposes heating the individual wafers in the heating zone for a predetermined temperature before the wafer advances to the first deposition zone. The predetermined temperature can be about 50. (: to about 750 ° C, preferably about l〇〇t to about 35 〇r. In other embodiments, the method further proposes to transfer the wafer to the cooling region after depositing the active layer of gallium arsenide. Subsequently, The wafer is cooled in the cooling zone to a temperature of about 18 ° C to about 30 ° (.).

在其他實施例中,於晶圓進入第一沉積區域前,晶圓 通過加熱區域,且離開第四沉積區域後,晶圓通過冷卻 區域。加熱區域、第一、第二、第三與第四沉積區域、 和冷卻區域全共用一共同線性路徑。視情況而定,附加 沉積區域(如第五、第六、第七或以上)亦共用共同線性 路私方法知出曰曰圓可沿著沉積系統内的共同線性路徑 連續且水平前進。 在其他實施例中,方法更提出流入至少一氣體至各沉 積區域之間,以於其間形成氣體幕。在—些實施例中, 氣體幕或隔離幕含有或由至少一氣體形成,例如氫氣、 胂(arsine)、氫氣與胂之混合物、氮氣、氬氣、或其組合 物在許多實例中,氫氣與胂之混合物用來形成氣體幕 或隔離幕。 在另一實施例中,提出連續CVD製程期間形成多層材 料的方法’其包括使複數個晶圓連續前進通過沉積系 統,其中沉積系統具有加熱區域、第一沉積區域、第二 沉積區域、第三沉積區域、第四沉積區域和冷卻區域。 方法更提出沉積珅化鎵緩衝層至第—沉積區域内的第— 33 201034055 晶圓上,接著沉積砷化鋁犧牲層至第二沉積區域内的第 一晶圓上’同時沉積砷化鎵緩衝層至第一沉積區域内的 第二晶圓上。方法更提出沉積砷化鋁鎵鈍化層至第三沉 積區域内的第一晶圓上,同時沉積坤化銘犧牲層至第二 ί儿積區域内的第二晶圓上’且同時沉積神化嫁緩衝層至 • 第一沉積區域内的第三晶圓上。方法更提出沉積珅化鎵 主動層至第四沉積區域内的第一晶圓上’同時沉積神化 # 銘鎵鈍化層至第三沉積區域内的第二晶圓上,並同時沉 積砷化鋁犧牲層至第二沉積區域内的第三晶圓上,且同 時 >儿積砰化嫁緩衝廣至第一沉積區域内的第四晶圓上。 第11-17圖繪示不同CVD製程配置,其可配合所述 CVD反應器使用。第11圖繪示第一配置200,具有入口 隔離器組件220、第一隔離器組件23〇、第二隔離器組件 240、第三隔離器組件250和出口隔離器組件26〇。複數 個沉積區域290沿著CVD反應器的晶圓載具軌道設置, # 且被隔離器組件圍繞。各隔離器組件間設置一或多個排 放裝置225,用以移除供給位於各隔離器組件或沉積區 域之晶圓的任何氣體。如圖所示,前驅物氣體在入口隔 離器組件220處注入,其依循二維流動路徑例如往下 ' 到晶圓、然後沿著晶圓載具軌道的長度行進(如流動路徑 210)。氣體接著往上透過排放裝置225排出該排放裝 置225可設在隔離器組件22〇各侧。氣髏引導至入口隔 離器組件220、錢沿著晶圓載具軌道之長度行進(如流 動路徑215),以免污染物進入CVD反應器的入口。注入 34 201034055 中間隔離器組件(如隔離器組件230)或沉積區域290的氣 體可在晶圓流動之上游行進(如流動路徑21 9)。利用相鄰 的排放裝置接收往回擴散的氣體’可避免沿著CVD反應 器之晶圓載具軌道之區域間的污染及氣體混合。此外,In other embodiments, the wafer passes through the heated region before the wafer enters the first deposition region, and the wafer passes through the cooling region after exiting the fourth deposition region. The heating zone, the first, second, third and fourth deposition zones, and the cooling zone all share a common linear path. Depending on the situation, additional deposition areas (such as fifth, sixth, seventh or above) also share a common linear method to know that the circle can continue continuously and horizontally along a common linear path within the deposition system. In other embodiments, the method further contemplates flowing at least one gas between the deposition zones to form a gas curtain therebetween. In some embodiments, the gas curtain or screen contains or consists of at least one gas, such as hydrogen, arsine, a mixture of hydrogen and helium, nitrogen, argon, or combinations thereof. In many instances, hydrogen and A mixture of crucibles is used to form a gas curtain or screen. In another embodiment, a method of forming a multilayer material during a continuous CVD process is proposed 'which includes continuously advancing a plurality of wafers through a deposition system, wherein the deposition system has a heating region, a first deposition region, a second deposition region, and a third a deposition zone, a fourth deposition zone, and a cooling zone. The method further deposits a gallium antimonide buffer layer onto the first wafer in the first deposition region, and then deposits a sacrificial aluminum arsenide layer onto the first wafer in the second deposition region to simultaneously deposit a gallium arsenide buffer. The layer is on the second wafer in the first deposition area. The method further proposes depositing an aluminum gallium arsenide passivation layer onto the first wafer in the third deposition region, and depositing a sacrificial layer of Kunming Ming onto the second wafer in the second region, and simultaneously depositing a deified marriage The buffer layer is on the third wafer in the first deposition area. The method further proposes depositing a gallium antimonide active layer onto the first wafer in the fourth deposition region to simultaneously deposit a degenerate gallium passivation layer onto the second wafer in the third deposition region, and simultaneously depositing an aluminum arsenide sacrifice. The layer is on the third wafer in the second deposition region, and at the same time, the implantation buffer is spread over the fourth wafer in the first deposition region. Figures 11-17 illustrate different CVD process configurations that can be used with the CVD reactor. 11 illustrates a first configuration 200 having an inlet isolator assembly 220, a first isolator assembly 23A, a second isolator assembly 240, a third isolator assembly 250, and an outlet isolator assembly 26A. A plurality of deposition zones 290 are disposed along the wafer carrier track of the CVD reactor, # and surrounded by the isolator assembly. One or more discharge means 225 are provided between each isolator assembly for removing any gas supplied to the wafers located in each isolator assembly or deposition area. As shown, the precursor gas is injected at the inlet isolator assembly 220, which follows a two-dimensional flow path, e.g., down to the wafer, and then along the length of the wafer carrier track (e.g., flow path 210). The gas is then discharged upwardly through the discharge means 225. The discharge means 225 can be provided on each side of the isolator assembly 22. The gas is directed to the inlet isolator assembly 220, and the money travels along the length of the wafer carrier track (e.g., flow path 215) to prevent contaminants from entering the inlet of the CVD reactor. The gas injected into the 34 201034055 intermediate isolator assembly (e.g., isolator assembly 230) or deposition zone 290 can travel upstream of the wafer flow (e.g., flow path 21 9). The use of adjacent exhaust devices to receive the diffused gas back' avoids contamination and gas mixing between the regions of the wafer carrier track along the CVD reactor. In addition,

改變按晶圓流動方向注入通過隔離器組件(如沿著流動 路徑210)的氣體流速亦可進一步防止往回擴散的氣體進 入隔離區域。沿著流動路徑210的層流可以採不同流速 流動’以例如在排放裝置225下方的匯流處217遇到往 回擴散的氣體,進而防止從隔離器組件230往回擴散的 氣體進入隔離器組件220構成的隔離區域。在一實施例 中’晶圓沿著晶圓載具轨道行進而進入沉積區域290 前,晶圓係加熱至製程溫度範圍内。晶圓沿著晶圓載具 轨道行進通過沉積區域290時,晶圓溫度保持在製程溫 度範圍内。晶圓沿著晶圓載具轨道其餘部分行進而離開 儿積區域290後,晶圓係冷卻至特定溫度範圍内。 改變隔離區域和沉積區域的長度可減少氣體往回擴散 的效應。在—實施例中,隔離區域的長度為約1公尺至 約2公尺,但針對不同應用當可超出此範圍。 也可改變由隔離器細件注入的氣體流速來減少氣體往 回擴散的效應。在—實施例中,人口隔離器組件220和 出口隔離器組件260每公鐮似命 ^ 母刀鐘供應約30公升的前驅物氣 體’第一隔離器組件23〇、货 0第二隔離器組件240和第三 隔離器組件250每分锫板成, 一 鐘供應約3公升的前驅物氣體。在 實施例中’在入〇 @ afe . ^離器組件22〇和出口隔離器組件 35 201034055 260供應的前驅物氣體包括氮氣。在-實施例中’第一 隔離器組# 230、第二隔離器組件24〇和第三隔離器組 件250供應的前驅物氣體包括肿。在一實施例中, 離器組件每分鐘共供應約6公升的氣氣。在_實:例 中,三隔離器組件每分鐘共供應約9公升的胂。 參 參 亦可改變隔離區域的間隙(如晶圓載具軌道之引導路 徑與反應器蓋組件之凸起部間的厚度、或供晶 CVD反應器的空間厚度)來減少氣體往回擴散的作用。在 一實施例中,隔離器間隙為約〇 lmm至約5mm。 第丨8圖繪示CVD反應器提供的數個流動路徑配置 900。流動路徑配置900用來注入氣體通過一或多個隔離 器組件、注入氣體至沉積區域、及/或排出隔離區域及/ 或沉積區域的氣體。雙流動路徑配置91〇顯示以與晶圓 流動路徑相同和與晶圓流動路徑相反的方向引導氣體。 此外,因流動區域911較寬,故有較大流量引導通過雙 流動路徑配置910。較寬流動區域911可適用於所述其 他實施例。單一流動路徑配置92〇顯示以單一方向引導 氣體’其和晶圓流動路徑同向或反向。此外,因流動區 域921較窄’故有小流量引導通過單一流動路徑配置 920 »較窄流動區域921可適用於所述其他實施例。排放 流動路徑配置930顯示氣體從相鄰區域排放通過較寬的 流動區域93 1,例如相鄰的隔離區域、相鄰的沉積區域、 或與沉積區域相鄰的隔離區域。 在一實施例中,第一排放/注入器流動路徑配置940顯 36 201034055 示雙流動路徑配置941,具有窄流動區域943位於排放 流動路徑944與單一注入流動路徑945之間。圖亦繪示 較窄間隙部942,晶圓係沿著該間隙部942而行進通I CVD反應器。如上所述,間隙部942可沿著反應 * 器之晶圓載具軌道而變化,藉以使氣體直接又均勻地注 • 入到晶圓表面。沉積區域進行反應時,較窄間隙部942 可用於提供注入到晶圓的氣體之完全消耗或幾乎完全消 ❿ 耗。此外,隔離及/或沉積製程期間,間隙部942可用於 協助熱控制。氣體注入到晶圓時,注入較窄間隙部942 中的氣體可維持較高溫度。 在實施例中,第一排放/注入器流動路徑配置9 5 〇提 供具寬流動區域的第一排放流動路徑954、具窄間隙部 952與流動區域953的第一雙流動路徑配置951、具寬流 動區域的第一單一注入流動路徑955、具窄流動區域與 寬間隙部的複數個單一注入流動路徑956、具寬流動區 φ 域的第二排放流動路徑957、具窄間隙部959與流動區 域的第二雙流動路徑配置958、和具寬流動區域與間隙 部的第二單一注入流動路徑960 » 在一實施例中,以與晶圓流動路徑相同的方向引導氣 體注入通過隔離器組件。在一替代實施例中,以與晶圓 流動路徑相反的方向引導氣體注入通過隔離器組件。在 一替代實施例中’以與晶圓流動路徑相同和相反的方向 引導氣體注入通過隔離器組件。在一替代實施例中,隔 離器組件視其在CVD反應器的位置而定,以不同方向引 37 201034055 導氣體。 在實包例中,以與晶圓流動路徑相同的方向引導氣 體’主入到沉積區域。在一替代實施例中,以與晶圓流動 路徑相反的方向引導氣艘注入到沉積區域。在一替代實 施例中’ α與晶圓流動路徑相同和相反的方向引導氣體 庄入到/儿積區域。在一替代實施例中,視反應器的 沉積區域位置而定,以不同方向引導氣體。 φ 第12圖綠示第二配置300。晶圓310引進CVD反應 器的入口並沿著反應器的晶圓載具軌道行進。反應器蓋 組件320提供數個氣體隔離幕35〇,其設於反應器 的入口與出口、和沉積區域340、380、390之間,以避 免在沉積區域與隔離區域間的污染及氣體混合。氣體隔 離幕和沉積區域可由反應器蓋組件32〇的一或多個氣體 歧管組件提供。沉積區域包括砷化鋁沉積區域34〇、砷 化鎵沉積區域380和砷化磷鎵沉積區域39〇,進而構成 ❹ 多層磊晶沉積製程和結構。晶圓3 1 0沿著反應器底部 330(其通常包括晶圓載具軌道和加熱燈組件)行進時,在 進入及離開沉積區域340、380、390前,晶圓310於反 應器入口和出口處經歷溫度斜坡(temperature ramp)36〇 而逐漸提尚及降低晶圓溫度’以減少熱應力衝擊晶圓 31〇。晶圓進入沉積區域340、380、390前,晶圓係加熱 至製程溫度範圍内,以促進沉積製程。當晶圓31〇通過 沉積區域340、380、390時,晶圓溫度維持在熱區域37〇 内’以促進沉積製程。晶圓310可放在運輸系統上,以 38 201034055 連續送入及接收晶圓進出CVD反應器。 第13圖繪示第三配置400。CVD反應器可配置以供應 氮氣410至反應器,以沿著反應器之晶圓載具軌道而在 入口和出口處浮置晶圓。氫氣/胂混合物420也可用來沿 著CVD反應器的晶圓載具軌道而在出口與入口間浮置 晶圓。第三配置400的平臺可由反應器蓋組件的一或多 個氣體歧管組件提供。沿著晶圓載具軌道的平臺包括入 口氮氣隔離區域415、預熱排放區域425、氫氣/胂混合 物預熱隔離區域430、砷化鎵沉積區域435、砷化鎵排放 區域440、砷化鋁鎵沉積區域445、砷化鎵N-層沉積區 域450、砷化鎵P-層沉積區域455、砷化磷氫隔離區域 460、第一砷化磷鋁鎵沉積區域465、珅化磷鋁鎵排放區 域470、第二砷化磷鋁鎵沉積區域475、氫氣/胂混合物 冷卻隔離區域480、冷卻排放區域485和出口氮氣隔離 區域490。當晶圓沿著反應器底部(其通常包括晶圓載具 軌道和加熱燈組件)行進時,在進入及離開沉積區域 435、445、450、455、465、475 前,晶圓於反應器入口 和出口處經歷一或多個溫度斜坡411而逐漸提高及降低 晶圓溫度,以減少熱應力衝擊晶圓。晶圓進入沉積區域 435、445、450、455、465、475前,晶圓加熱係加熱至 製程溫度範圍内,以促進沉積製程。當晶圓通過沉積區 域435、445、450、455、465、475時,晶圓溫度維持在 熱區域412内,以促進沉積製程。如圖所示,行進通過 第三配置400的晶圓溫度在經過入口隔離區域415時會 39 201034055 上升、通過區域 430、435、440、445、450、455、465、 470、475時將維持不變、靠近氫氣/胂混合物冷卻隔離區 域480及沿著晶圓載具軌道其餘部分行進時則會下降。 第14圖繪示第四配置5〇〇。cVE&gt;反應器可配置以供應 •氮氣510至反應器’以沿著反應器的晶圓載具軌道而在 入口和出口處浮置晶圓。氫氣/胂混合物520也可用來沿 著CVD反應器的晶圓載具軌道而在出口與入口間浮置 ❹ a曰圓。第四配置5〇〇的平臺可由反應器蓋組件的一或多 個氣體歧管組件提供。沿著晶圓載具軌道的平臺包括入 口氮氣隔離區域515、預熱排放區域525、氫氣/胂混合 物預熱隔離區域530、排放區域535、沉積區域540、排 放區域545、氫氣/胂混合物冷卻隔離區域550、冷卻排 放區域555和出口氮氣隔離區域560 »在一實施例中, 沉積區域540包括振盪喷氣頭組件。當晶圓沿著反應器 底部(其通常包括晶圓載具軌道和加熱燈組件)行進時, # 在進入及離開沉積區域540前,晶圓於反應器入口和出 口處經歷溫度斜坡5Π、513而逐漸提高及降低晶圓溫 度’以減少熱應力衝擊晶圓。晶圓進入沉積區域540前, 晶圓係加熱至製程溫度範圍内,以促進沉積製程。在一 實施例中’晶圓行進通過溫度斜坡511時,晶圓係加熱 及/或冷卻至第一溫度範圍内。在一實施例中,晶圓行進 通過溫度斜坡513時’晶圓係加熱及/或冷卻晶圓至第二 溫度範圍内。第一溫度範圍可大於、小於及/或等於第二 溫度範圍。當晶圓通過沉積區域540時,晶圓溫度維持 201034055 在熱區域512内,以促進沉積製程。如圖所示行進通 過第四配置500的晶圓溫度在經過入口隔離區域515時 會上升、通過沉積區域54〇時將維持不變、靠近氫氣/胂 . 混合物冷卻隔離區域550及沿著晶圓載具軌道其餘部分 行進時則會下降。 第I5圖繪示第五配置6〇〇e CVD反應器可配置以供應 氮氣610至反應器,以沿著反應器的晶圓載具軌道而在 % 入口和出口處浮置晶圓。氫氣/胂混合物620也可用來沿 著CVD反應器的晶圓載具軌道而在出口與入口間浮置 晶圓。第五配置600的平臺可由反應器蓋組件的一或多 個氣體歧管組件提供。沿著晶圓載具軌道的平臺包括入 口氮氣隔離區域615、預熱排放與流量平衡限流區域 625、主動氫氣/胂混合物隔離區域63〇、坤化鎵沉積區域 635、砷化鋁鎵沉積區域64〇、砷化鎵N_層沉積區域、 砷化鎵p-層沉積區域650、砷化磷鋁鎵沉積區域655、冷 瞻卻排放區域660和出口氮氣隔離區域665。當晶圓沿著 反應器底部(其通常包括晶圓載具軌道和加熱燈組件)行 進時在進入及離開沉積區域635、640、645、650、655 前,晶圓於反應器入口和出口處經歷一或多個溫度斜坡 611而逐漸提高及降低晶圓溫度,以減少熱應力衝擊晶 圓。晶圓進入沉積區域635、640、645、65〇、655前, 晶圓係加熱至製程溫度範園内,以促進沉積製程。當晶 圓通過沉積區域635、64〇、645、650、655時,晶圓溫 度維持在熱區域612内,以促進沉積製程。如圓所示’ 201034055 行進通過第五配置600的晶圓溫度在經過入口隔離區域 615及接近主動氫氣/胂混合物隔離區域630時會上升、 通過區域635、640、645、650、655時將維持不變、靠 近冷卻排放區域660及沿著晶圓載具軌道其餘部分行進 時則會下降。 第16圖繪示第六配置700。CVD反應器可配置以供應 氮氣710至反應器,以沿著反應器的晶圓載具軌道而在 入口和出口處浮置晶圓。氫氣/胂混合物720也可用來沿 著CVD反應器的晶圓載具軌道而在出口與入口間浮置 晶圓。第六配置700的平臺可由反應器蓋組件的一或多 個氣體歧管組件提供。沿著晶圓載具軌道的平臺包括入 口氣氣隔離區域715、預熱排放與流量平衡限流區域 725、砷化鎵沉積區域730、砷化鋁鎵沉積區域735、珅 化鎵N-層沉積區域740、砷化鎵ρ·層沉積區域745、砷 化磷鋁鎵沉積區域750、冷卻排放與流量平衡限流區域 755和出口氮氣隔離區域76(μ當晶圓沿著反應器底部(其 通常包括晶圓載具軌道和加熱燈組件)行進時,在進入及 離開沉積區域730、735、740、745、750前,晶圓於反 應器入口和出口處經歷一或多個溫度斜坡711而逐漸提 两及降低晶圓溫度,以減少熱應力衝擊晶圓。晶圓進入 沉積區域730、735、740、745、75〇前,晶圓係加熱至 製程溫度範圍内,以促進沉積製程。當晶圓通過沉積區 域730、735、74G、745、75G時’晶g溫度維持在熱區 域712内,以促進沉積製程。如圖所示行進通過第六 42 201034055 配置700的晶圓溫度在經過入口隔離區域715及接近坤 化鎵沉積區域730時會上升、通過沉積區域73〇、735、 740、745、750時將維持不變、靠近冷卻排放區域755 及沿著aa圓載具轨道其餘部分行進時則會下降。Varying the gas flow rate through the isolator assembly (e.g., along the flow path 210) in the direction of wafer flow also further prevents back-diverging gases from entering the isolation region. The laminar flow along the flow path 210 can flow at different flow rates to encounter gas diffusing back, for example, at the confluence 217 below the discharge device 225, thereby preventing gas diffusing back from the isolator assembly 230 from entering the isolator assembly 220. The isolated area that is constructed. In one embodiment, the wafer is heated to a process temperature range before the wafer travels along the wafer carrier track into the deposition zone 290. As the wafer travels along the wafer carrier track through the deposition zone 290, the wafer temperature remains within the process temperature range. After the wafer travels along the remainder of the wafer carrier track leaving the plasmon region 290, the wafer is cooled to a specific temperature range. Changing the length of the isolation and deposition areas reduces the effect of gas diffusion back. In an embodiment, the length of the isolation region is from about 1 meter to about 2 meters, although this range can be exceeded for different applications. It is also possible to vary the flow rate of the gas injected by the isolator to reduce the effect of gas diffusion back. In an embodiment, the population isolator assembly 220 and the outlet isolator assembly 260 supply approximately 30 liters of precursor gas per first gong of the master knife clock 'first isolator assembly 23 〇, cargo 0 second isolator assembly The 240 and third isolator assemblies 250 are formed into a bifurcated plate, supplying approximately 3 liters of precursor gas per clock. The precursor gas supplied in the embodiment </ RTI> and the outlet isolator assembly 35 201034055 260 includes nitrogen. The precursor gases supplied by the first separator set #230, the second separator assembly 24A, and the third isolator assembly 250 in the embodiment include swelling. In one embodiment, the dispenser assembly supplies a total of about 6 liters of air per minute. In the _ real: example, the three isolator assemblies supply a total of about 9 liters of helium per minute. The reference can also change the gap between the isolation regions (such as the thickness of the guide path of the wafer carrier track and the raised portion of the reactor cover assembly, or the space thickness of the crystal CVD reactor) to reduce the diffusion of gas back. In one embodiment, the isolator gap is from about 1 mm to about 5 mm. Figure 8 depicts several flow path configurations 900 provided by the CVD reactor. Flow path configuration 900 is used to inject gas through one or more isolator assemblies, inject gas into the deposition zone, and/or exit the gas of the isolation zone and/or deposition zone. The dual flow path configuration 91〇 displays the gas in the same direction as the wafer flow path and in the opposite direction to the wafer flow path. In addition, because the flow area 911 is wider, a larger flow rate is directed through the dual flow path configuration 910. The wider flow area 911 can be adapted to the other embodiments described. A single flow path configuration 92 〇 shows that the gas is directed in the same direction as it is in the same or opposite direction as the wafer flow path. In addition, because the flow region 921 is narrower, there is a small flow path through the single flow path configuration 920. The narrower flow region 921 can be adapted for use with the other embodiments. The venting flow path configuration 930 shows that gas is vented from adjacent regions through a wider flow region 93 1, such as an adjacent isolation region, an adjacent deposition region, or an isolation region adjacent to the deposition region. In an embodiment, the first drain/injector flow path configuration 940 shows that the dual flow path configuration 941 has a narrow flow region 943 between the discharge flow path 944 and the single injection flow path 945. The figure also shows a narrower gap portion 942 along which the wafer travels through the I CVD reactor. As described above, the gap portion 942 can be varied along the wafer carrier track of the reactor, thereby allowing the gas to be directly and evenly injected into the wafer surface. The narrower gap portion 942 can be used to provide complete or near complete consumption of gas injected into the wafer as the deposition region undergoes a reaction. Additionally, the gap portion 942 can be used to assist in thermal control during the isolation and/or deposition process. When gas is injected into the wafer, the gas injected into the narrower gap portion 942 can maintain a higher temperature. In an embodiment, the first drain/injector flow path configuration 9 5 〇 provides a first discharge flow path 954 having a wide flow region, a first dual flow path configuration 951 having a narrow gap portion 952 and a flow region 953, and a width a first single injection flow path 955 of the flow region, a plurality of single injection flow paths 956 having a narrow flow region and a wide gap portion, a second discharge flow path 957 having a wide flow region φ domain, a narrow gap portion 959 and a flow region A second dual flow path configuration 958, and a second single injection flow path 960 having a wide flow region and a gap portion. In one embodiment, gas is injected through the isolator assembly in the same direction as the wafer flow path. In an alternate embodiment, gas is injected through the isolator assembly in a direction opposite the flow path of the wafer. In an alternate embodiment, the gas is injected through the isolator assembly in the same and opposite directions as the wafer flow path. In an alternate embodiment, the isolator assembly depends on its position in the CVD reactor to direct the gas in different directions. In the actual package example, the gas is directed into the deposition zone in the same direction as the wafer flow path. In an alternate embodiment, the gas boat is directed into the deposition zone in a direction opposite the flow path of the wafer. In an alternate embodiment, &apos;α directs the gas into the /gile region in the same and opposite directions as the wafer flow path. In an alternate embodiment, the gas is directed in different directions depending on the location of the deposition zone of the reactor. φ Figure 12 shows the second configuration 300 green. Wafer 310 introduces the inlet of the CVD reactor and travels along the wafer carrier track of the reactor. The reactor cover assembly 320 provides a plurality of gas barriers 35 设 disposed between the inlet and outlet of the reactor and the deposition zones 340, 380, 390 to avoid contamination and gas mixing between the deposition zone and the isolation zone. The gas isolation curtain and deposition zone may be provided by one or more gas manifold assemblies of the reactor lid assembly 32. The deposition area includes an aluminum arsenide deposition region 34 〇, a gallium arsenide deposition region 380, and a gallium arsenide deposition region 39 〇, which constitute a 多层 multilayer epitaxial deposition process and structure. As the wafer 310 travels along the reactor bottom 330 (which typically includes the wafer carrier track and the heat lamp assembly), the wafer 310 is at the reactor inlet and outlet before entering and exiting the deposition regions 340, 380, 390. After experiencing a temperature ramp of 36 〇 and gradually increasing and lowering the wafer temperature 'to reduce the thermal stress on the wafer 31 〇. Before the wafer enters the deposition areas 340, 380, and 390, the wafer is heated to a process temperature range to facilitate the deposition process. As the wafer 31 passes through the deposition regions 340, 380, 390, the wafer temperature is maintained within the thermal region 37" to facilitate the deposition process. Wafer 310 can be placed on the transport system to continuously feed and receive wafers into and out of the CVD reactor at 38 201034055. FIG. 13 illustrates a third configuration 400. The CVD reactor can be configured to supply nitrogen 410 to the reactor to float the wafer at the inlet and outlet along the wafer carrier track of the reactor. The hydrogen/helium mixture 420 can also be used to float the wafer between the outlet and the inlet along the wafer carrier track of the CVD reactor. The platform of the third configuration 400 can be provided by one or more gas manifold assemblies of the reactor lid assembly. The platform along the wafer carrier track includes an inlet nitrogen isolation region 415, a preheating discharge region 425, a hydrogen/helium mixture preheat isolation region 430, a gallium arsenide deposition region 435, a gallium arsenide discharge region 440, and an aluminum gallium arsenide deposition. A region 445, a gallium arsenide N-layer deposition region 450, a gallium arsenide P-layer deposition region 455, an arsine phosphorous-hydrogen isolation region 460, a first aluminophosphorus aluminide deposition region 465, and a phosphorous-aluminum gallium halide discharge region 470 A second aluminum arsenide aluminum gallium deposition region 475, a hydrogen/helium mixture cooling isolation region 480, a cooling discharge region 485, and an outlet nitrogen isolation region 490. When the wafer travels along the bottom of the reactor (which typically includes the wafer carrier track and the heat lamp assembly), the wafer is at the reactor inlet and before entering and leaving the deposition areas 435, 445, 450, 455, 465, 475 The exit undergoes one or more temperature ramps 411 to gradually increase and decrease the wafer temperature to reduce thermal stress on the wafer. Before the wafer enters the deposition area 435, 445, 450, 455, 465, 475, the wafer heating system is heated to the process temperature range to facilitate the deposition process. As the wafer passes through deposition areas 435, 445, 450, 455, 465, 475, the wafer temperature is maintained within thermal region 412 to facilitate the deposition process. As shown, the wafer temperature traveling through the third configuration 400 will rise when passing through the inlet isolation region 415, 39 201034055, and will remain unchanged through the regions 430, 435, 440, 445, 450, 455, 465, 470, 475. The change, near the hydrogen/helium mixture, cools the isolation region 480 and decreases as it travels along the rest of the wafer carrier track. Figure 14 shows a fourth configuration 5〇〇. The cVE&gt; reactor can be configured to supply • nitrogen 510 to the reactor&apos; to float the wafer at the inlet and outlet along the wafer carrier track of the reactor. The hydrogen/helium mixture 520 can also be used to float ❹ a曰 between the outlet and the inlet along the wafer carrier track of the CVD reactor. The platform of the fourth configuration 5〇〇 can be provided by one or more gas manifold assemblies of the reactor lid assembly. The platform along the wafer carrier track includes an inlet nitrogen isolation region 515, a preheating discharge region 525, a hydrogen/helium mixture preheat isolation region 530, a discharge region 535, a deposition region 540, a discharge region 545, and a hydrogen/helium mixture cooling isolation region. 550. Cooling Discharge Area 555 and Outlet Nitrogen Isolation Area 560. In one embodiment, deposition area 540 includes an oscillating jet head assembly. As the wafer travels along the bottom of the reactor (which typically includes the wafer carrier track and the heat lamp assembly), the wafer undergoes temperature ramps 5, 513 at the reactor inlet and outlet before entering and exiting the deposition zone 540. Gradually increase and lower the wafer temperature' to reduce thermal stress on the wafer. Before the wafer enters the deposition zone 540, the wafer is heated to a process temperature range to facilitate the deposition process. In one embodiment, when the wafer travels through temperature ramp 511, the wafer is heated and/or cooled to a first temperature range. In one embodiment, the wafer is heated through the temperature ramp 513 and the wafer is heated and/or cooled to a second temperature range. The first temperature range can be greater than, less than, and/or equal to the second temperature range. As the wafer passes through the deposition region 540, the wafer temperature remains in 201034055 within the thermal region 512 to facilitate the deposition process. The wafer temperature traveling through the fourth configuration 500 as shown increases as it passes through the inlet isolation region 515, remains unchanged through the deposition region 54, is close to the hydrogen/gas. The mixture cools the isolation region 550 and along the wafer. The rest of the track will fall as it travels. Figure I5 depicts a fifth configuration 6 〇〇e CVD reactor configurable to supply nitrogen 610 to the reactor to float the wafer at the % inlet and outlet along the wafer carrier track of the reactor. The hydrogen/helium mixture 620 can also be used to float the wafer between the outlet and the inlet along the wafer carrier track of the CVD reactor. The platform of the fifth configuration 600 can be provided by one or more gas manifold assemblies of the reactor lid assembly. The platform along the wafer carrier track includes an inlet nitrogen isolation region 615, a preheating discharge and flow balance current limiting region 625, an active hydrogen/helium mixture isolation region 63, a kung gallium deposition region 635, and an aluminum gallium arsenide deposition region 64. A germanium, a gallium arsenide N_ layer deposition region, a gallium arsenide p-layer deposition region 650, a gallium arsenide deposition region 655, a cold-view discharge region 660, and an outlet nitrogen isolation region 665. The wafer undergoes at the reactor inlet and outlet before entering and leaving the deposition areas 635, 640, 645, 650, 655 as the wafer travels along the bottom of the reactor, which typically includes the wafer carrier track and the heat lamp assembly. One or more temperature ramps 611 gradually increase and decrease the wafer temperature to reduce thermal stress on the wafer. Before the wafer enters the deposition area 635, 640, 645, 65 〇, 655, the wafer is heated to the process temperature to promote the deposition process. As the wafer passes through the deposition regions 635, 64, 645, 650, 655, the wafer temperature is maintained within the thermal region 612 to facilitate the deposition process. As indicated by the circle '201034055, the wafer temperature traveling through the fifth configuration 600 will rise as it passes through the inlet isolation region 615 and near the active hydrogen/germanium mixture isolation region 630, and will remain when passing through the regions 635, 640, 645, 650, 655 It does not change, approaches the cooling discharge area 660, and descends as it travels along the rest of the wafer carrier track. FIG. 16 illustrates a sixth configuration 700. The CVD reactor can be configured to supply nitrogen 710 to the reactor to float the wafer at the inlet and outlet along the wafer carrier track of the reactor. The hydrogen/helium mixture 720 can also be used to float the wafer between the outlet and the inlet along the wafer carrier track of the CVD reactor. The platform of the sixth configuration 700 can be provided by one or more gas manifold assemblies of the reactor lid assembly. The platform along the wafer carrier track includes an inlet gas isolation region 715, a preheating and flow balance current limiting region 725, a gallium arsenide deposition region 730, an aluminum gallium arsenide deposition region 735, and a gallium antimonide N-layer deposition region. 740, a gallium arsenide ρ layer deposition region 745, a gallium arsenide deposition region 750, a cooling discharge and flow balance current limiting region 755, and an outlet nitrogen isolation region 76 (μ when the wafer is along the bottom of the reactor (which typically includes As the wafer carrier track and heater lamp assembly travels, the wafer undergoes one or more temperature ramps 711 at the reactor inlet and outlet before entering and exiting the deposition zones 730, 735, 740, 745, 750. And lowering the wafer temperature to reduce the thermal stress on the wafer. Before the wafer enters the deposition area 730, 735, 740, 745, 75, the wafer is heated to the process temperature range to facilitate the deposition process. When the deposition regions 730, 735, 74G, 745, 75G are deposited, the temperature of the crystal g is maintained in the thermal region 712 to facilitate the deposition process. As shown in the figure, the wafer temperature through the sixth 42 201034055 configuration 700 passes through the inlet isolation region. 715 and will rise as it approaches the Kunming gallium deposition area 730, will remain unchanged through the deposition areas 73〇, 735, 740, 745, 750, approach the cooling discharge area 755 and travel along the rest of the aa round vehicle track decline.

第17圖綠示第七配置80〇eCVD反應器可配置以供應 氮氣810至反應器,以沿著反應器的晶圓載具軌道而在 入口和出口處浮置晶圓。氫氣/胂混合物82〇也可用來沿 著CVD反應器的晶圓載具軌道而在出口與入口間浮置 晶圓。第七配置800的平臺可由反應器蓋組件的一或多 個氣體歧管組件提供《沿著晶圓載具軌道的平臺包括入 口氮氣隔離區域815、預熱排放區域825、沉積區域83〇、 冷卻排放區域835和出口氮氣隔離區域84〇。在一實施 例中,沉積區域830包括振盪喷氣頭組件。當晶圓沿著 反應器底部(其通常包括晶圓載具轨道和加熱燈組件)行 進時,在進入及離開沉積區域83〇前,晶圓於反應器入 口和出口處經歷溫度斜坡811、813而逐漸提高及降低晶 圓溫度,以減少熱應力衝擊晶圓。晶圓進入沉積區域83〇 前,晶圓係加熱至製程溫度範圍,以促進沉積製程。在 一實施例中,晶圓行進通過溫度斜坡8丨〗時,晶圓係加 熱及/或冷卻至第一溫度範圍内。在一實施例中,晶圓行 進通過溫度斜坡813時,晶圓係加熱及/或冷卻至第二溫 度範圍内。第一溫度範圍可大於、小於及/或等於第二溫 度範圍。當晶圓通過沉積區域83〇時,晶圓溫度維持在 熱區域812内,以促進沉積製程。如圖所示,行進通過 43 201034055 第七配置800的晶圓溫度在經過入口隔離區域815及接 近沉積區域830時會上升、通過沉積區域830時將維持 不變、靠近冷卻排放區域835、接著離開出口氮氣隔離 區域840及沿著晶圓載具軌道其餘部分行進時則會下 . 降。 ' 在一實施例中’ CVD反應器可以:配置以約1微米/ 分鐘之沉積速度生成或沉積高品質砷化鎵與砷化鋁鎵雙 異質結構;配置以生成或沉積高品質砷化鋁磊晶側向附 生(overgrowth)犧牲層;及配置以提供每分鐘約6片晶圓 至每分鐘約10片晶圓的產量。Figure 17 Green shows a seventh configuration 80 〇 eCVD reactor configurable to supply nitrogen 810 to the reactor to float the wafer at the inlet and outlet along the wafer carrier track of the reactor. The hydrogen/helium mixture 82〇 can also be used to float the wafer between the outlet and the inlet along the wafer carrier track of the CVD reactor. The platform of the seventh configuration 800 can be provided by one or more gas manifold assemblies of the reactor cover assembly. "The platform along the wafer carrier track includes an inlet nitrogen isolation region 815, a preheating discharge region 825, a deposition region 83", and a cooling discharge. Region 835 and outlet nitrogen isolation region 84A. In one embodiment, deposition zone 830 includes an oscillating jet head assembly. As the wafer travels along the bottom of the reactor (which typically includes the wafer carrier track and the heat lamp assembly), the wafer undergoes temperature ramps 811, 813 at the reactor inlet and outlet before entering and exiting the deposition zone 83. Gradually increase and lower the wafer temperature to reduce thermal stress on the wafer. Before the wafer enters the deposition area 83〇, the wafer is heated to the process temperature range to facilitate the deposition process. In one embodiment, as the wafer travels through the temperature ramp 8, the wafer is heated and/or cooled to a first temperature range. In one embodiment, as the wafer advances through the temperature ramp 813, the wafer is heated and/or cooled to a second temperature range. The first temperature range can be greater than, less than, and/or equal to the second temperature range. As the wafer passes through the deposition area 83, the wafer temperature is maintained within the thermal region 812 to facilitate the deposition process. As shown, the wafer temperature traveling through the 43 201034055 seventh configuration 800 will rise as it passes through the inlet isolation region 815 and near the deposition region 830, will remain unchanged as it passes through the deposition region 830, approach the cooling discharge region 835, and then exit. The outlet nitrogen isolation zone 840 and the remainder of the wafer carrier track will travel down. In one embodiment, a CVD reactor can be configured to form or deposit high quality gallium arsenide and aluminum gallium arsenide double heterostructures at a deposition rate of about 1 micrometer per minute; configured to form or deposit high quality aluminum arsenide. A laterally overgrowth sacrificial layer; and configured to provide about 6 wafers per minute to about 10 wafers per minute.

在一些實施例中,CVD反應器配置以生成或沉積材料 至不同尺寸的晶圓,例如4cmx4cm或lOcmxlOcm。在一 實施例中,CVD反應器配置以形成300nm之砷化鎵緩衝 層。在另一實施例中,CVD反應器配置以形成30nm之 砷化鋁鎵鈍化層。在又一實施例中,CVD反應器配置以 Φ 形成WOOnm之砷化鎵主動層。在再一實施例中,CVD 反應器配置以形成30nm之砷化鋁鎵鈍化層》在另一實 施例中,CVD反應器配置以提供小於ixl04/cm2之差排 (dislocation)密度、99%之光致發光效率和250毫微秒 (nanosecond)之光致發光壽命〇 在又一實施例中,CVD反應器配置以形成磊晶側向附 生層,其沉積厚度為5nm±0.5nm、蝕刻選擇性大於lx 1〇6、無針孔(pinhole)、且砷化鋁蝕刻速度大於0.2毫米/ 小時。在再一實施例中,CVD反應器配置以提供中心到 44 201034055 邊緣溫度不均勻度在高於30(TC時不超過10°C、第V-III 族比例(V-III ratio)不超過5、且最高溫度為80(TC。 在一實施例中,CVD反應器配置以形成沉積層’包括 300nm之砷化鎵緩衝層、5ηιη之砷化鋁犧牲層、10nm之 神化銘嫁窗層(window layer)、700nm 且含 2χ1017砍(Si) 之砷化鎵主動層'30〇11111且含1乂1019碳(〇:)、?+之砷化鋁 鎵層、和300nm且含ΐχΐ〇19 c、P+之砷化鎵層。 在另一實施例中,CVD反應器配置以形成沉積層,包 括3 00nm之砷化鎵緩衝層、5nm之神化鋁犧牲層、l〇nm 之磷化鎵銦窗層、700nm且含2x1017 Si之砷化鎵主動 層、100nm且含C、P之砷化鎵層、3 00nm且含P之磷化 鎵銦窗層、20nm且含ΐχίο20 p+之磷化鎵銦穿隧接面 (tunnel junction)層、2〇ηιη 且含 ΙχΙΟ2。N+之鱗化鎵銦穿 随接面層、30nm之砷化鋁鎵窗層、400nm且含N之磷化 鎵銦主動層、10〇nm且含P之磷化鎵銦主動層、3〇nm且 含P之神化銘鎵窗層、和300nm且含P+之坤化鎵接觸層。 本發明之實施例大體上是關於浮置基板載具或支撐 件。在一實施例中’提出用以支撐及承載至少一基板或 晶圓通過反應器的基板載具,其包括具上表面與下表面 的基板載具主體、和設於下表面中的至少一凹口袋部。 在另一實施例中,基板載具包括具上表面與下表面的基 板載具主髏、和設於下表面中的至少二凹口袋部。在又 一實施例中,基板載具包括具上表面與下表面的基板載 具主體、設於上表面中的凹口區域、和設於下表面中的 45 201034055In some embodiments, the CVD reactor is configured to generate or deposit material to different sized wafers, such as 4 cm x 4 cm or 10 cm x 10 cm. In one embodiment, the CVD reactor is configured to form a 300 nm gallium arsenide buffer layer. In another embodiment, the CVD reactor is configured to form a 30 nm aluminum gallium arsenide passivation layer. In yet another embodiment, the CVD reactor is configured to form a 10,000 nm gallium arsenide active layer at Φ. In still another embodiment, the CVD reactor is configured to form a 30 nm aluminum gallium arsenide passivation layer. In another embodiment, the CVD reactor is configured to provide a dislocation density of less than ixl 04/cm 2 , 99% Photoluminescence efficiency and photoluminescence lifetime of 250 nanoseconds. In yet another embodiment, the CVD reactor is configured to form an epitaxial lateral epitaxial layer having a deposition thickness of 5 nm ± 0.5 nm, etching choice The property is greater than lx 1〇6, no pinhole, and the etching speed of aluminum arsenide is greater than 0.2 mm/hour. In still another embodiment, the CVD reactor is configured to provide a center to 44 201034055 edge temperature non-uniformity above 30 (TC does not exceed 10 ° C, V-III ratio does not exceed 5) And the maximum temperature is 80 (TC. In an embodiment, the CVD reactor is configured to form a deposited layer' including a 300 nm gallium arsenide buffer layer, a 5 nm aluminum arsine sacrificial layer, and a 10 nm deified window layer (window) Layer), 700 nm and containing 2χ1017 chopped (Si) gallium arsenide active layer '30〇11111 and containing 1乂1019 carbon (〇:), ?+ aluminide gallium layer, and 300nm and containing ΐχΐ〇19 c, P+ gallium arsenide layer. In another embodiment, the CVD reactor is configured to form a deposited layer, including a 300 nm gallium arsenide buffer layer, a 5 nm deuterated aluminum sacrificial layer, and a 1 nm nm gallium indium phosphide window layer. , 700 nm and 2x1017 Si gallium arsenide active layer, 100 nm and C, P-containing gallium arsenide layer, 300 nm and P-containing gallium phosphide indium window layer, 20 nm and ΐχίο20 p+ gallium phosphide indium tunneling The tunnel junction layer, 2〇ηηη and containing ΙχΙΟ2. N+ squamized gallium indium through the interface layer, 30nm arsenide aluminum gallium window layer, 400nm and N gallium phosphide indium active layer, 10 〇 nm and P-containing gallium phosphide indium active layer, 3 〇 nm and P-containing Dehua-Gallium window layer, and 300 nm and P+-containing koning gallium contact layer. Embodiments are generally directed to a floating substrate carrier or support. In one embodiment, a substrate carrier is provided for supporting and carrying at least one substrate or wafer through a reactor, including an upper surface and a lower surface. a substrate carrier body and at least one recessed pocket portion disposed in the lower surface. In another embodiment, the substrate carrier includes a substrate carrier main body having an upper surface and a lower surface, and a substrate disposed in the lower surface At least two recessed pockets. In still another embodiment, the substrate carrier includes a substrate carrier body having an upper surface and a lower surface, a recessed region disposed in the upper surface, and a 45 disposed in the lower surface.

至少二凹口袋部。在再一實施例中,基板載具包括具上 表面與下表面的基板載具主體、設於上表面中的凹口區 域、和設於下表面中的至少二凹口袋部,其中每一凹口 袋部具矩形幾何形狀’且四侧壁,該些側壁延伸垂直或 實質垂直下表面。在另一實施例中,基板載具包括具上 表面與下表面的基板載具主體、和設於下表面中的至少 二凹口袋部,其中每一凹口袋部具矩形幾何形狀且四 側壁延伸垂直或實質垂直下表面。 在另一實施例中,提出用以支撐及承載至少一基板通 過反應器的基板載具,其包括具上表面與下表面的基板 載具主體、和設於下表面中的至少一凹口袋部。基板载 具主體可具矩形幾何形狀、方形幾何形狀或其他幾何形 狀。在一實例中,基板載具主體具有二短側邊和二長側 邊,其中一短側邊為基板載具主體的前面,另一短侧邊 為基板載具主體的後面。基板載具主體含有石墨或由石 墨組成。 在-些實例中,上表面内含至少一凹口區域。上表面 内的凹口區域係配置以將基板支托於其上。在其他實例 中’上表面具有至少二、三、四、八、十二或更多個凹 口區域。在另一實例中,上表面不含凹口區域。 在又一實施例中,下表面設有至少_ 夕一凹口袋部,該些 凹口袋部配置以接收氣墊。在一此實 一 一 一1Γ例宁,下表面具有 -、三或更多個凹口袋部。凹口袋部可具矩形幾何形狀、 方形幾何形狀或其他幾何形狀。每一凹口袋部通常具有 46 201034055 二短側邊和二長側邊《在一實例中,短側邊和長側邊為 平直的》短側邊和長側邊垂直於下表面。在另一實例中, 至少一短側邊朝第一角度呈錐形,至少一長側邊朝第二 角度呈錐形,第一角度可大於或小於第二角度。在又— 實例中,至少一短側邊為平直的,至少一長側邊呈錐形。 • 在再一實例中,至少一短側邊呈錐形,至少一長側邊為 平直的。在一實施例中’凹口袋部具矩形幾何形狀,且 _ 凹口袋部係配置以接收氣墊。凹口袋部具有錐形側壁, 其遠離上表面逐漸變細。 在另一實施例中’提出氣相沉積製程期間浮置基板載 具上表面之基板的方法’其包括:使基板載具的下表面 暴露於氣流;在基板載具下方形成氣墊;浮置處理腔室 内的基板載具;以及沿著處理腔室内的路徑移動基板載 具。在許多實例中,基板載具沿著路徑的動作及/或基板 載具的速度乃藉著調整氣流流速而控制。氣墊可形成在 鲁 下表面中所設置的至少一凹口袋部内》在一些實例中, 下表面設有至少二凹口袋部。凹口袋部配置以接收氣 .墊。基板載具的上表面包含至少一凹口區域,用以支撐 基板。凹口袋部具有錐形侧壁,其遠離基板載具的上表 面逐漸變細。 在又一實施例中,提出氣相沉積製程期間浮置基板載 具上之基板的方法’其包括:使基板載具的下表面暴露 於氣流,其中至少一晶圓設置在基板載具的上表面上, 且下表面設有至少一凹口袋部;在基板載具下方形成氣 47 201034055 塾;浮置處理腔室内的基板載具;以及沿著處理腔室内 的路徑移動基板栽具。 ,提出氣相沉積製程期間浮置基板載 ,其包括.使基板载具的下表面暴露 在再一實施例中 具上之基板的方法 於氣流,其中下表面設有至少-凹σ袋部;在基板載具 底下形成氣塾;浮置處理腔室内的基板載具;以及沿著 處理腔室内的路徑移動基板載具。At least two concave pockets. In still another embodiment, the substrate carrier includes a substrate carrier body having an upper surface and a lower surface, a recessed region disposed in the upper surface, and at least two recessed pocket portions disposed in the lower surface, wherein each recess The pocket has a rectangular geometry 'and four side walls that extend perpendicular or substantially perpendicular to the lower surface. In another embodiment, the substrate carrier includes a substrate carrier body having an upper surface and a lower surface, and at least two concave pocket portions disposed in the lower surface, wherein each concave pocket portion has a rectangular geometry and four sidewalls extend Vertical or substantially vertical lower surface. In another embodiment, a substrate carrier for supporting and carrying at least one substrate through a reactor is provided, including a substrate carrier body having an upper surface and a lower surface, and at least one concave pocket portion disposed in the lower surface . The substrate carrier body can have a rectangular geometry, a square geometry, or other geometric shape. In one example, the substrate carrier body has two short sides and two long sides, one short side being the front side of the substrate carrier body and the other short side being the back side of the substrate carrier body. The substrate carrier body contains graphite or consists of graphite. In some examples, the upper surface contains at least one notch region. The recessed area in the upper surface is configured to support the substrate thereon. In other examples, the upper surface has at least two, three, four, eight, twelve or more notch regions. In another example, the upper surface does not contain a recessed area. In still another embodiment, the lower surface is provided with at least a recessed pocket portion configured to receive the air cushion. In one case, the lower surface has -, three or more concave pockets. The pocket portion can have a rectangular geometry, a square geometry or other geometric shape. Each pocket portion typically has 46 201034055 two short sides and two long sides "in one example, the short sides and the long sides are straight" and the short sides and long sides are perpendicular to the lower surface. In another example, at least one of the short sides is tapered toward the first angle, and at least one of the long sides is tapered toward the second angle, the first angle being greater or less than the second angle. In still another example, at least one of the short sides is straight and at least one of the long sides is tapered. • In still another example, at least one of the short sides is tapered and at least one of the long sides is straight. In one embodiment, the 'recess pocket portion has a rectangular geometry and the _ pocket portion is configured to receive an air cushion. The recessed pocket has a tapered side wall that tapers away from the upper surface. In another embodiment, 'a method of floating a substrate on an upper surface of a substrate carrier during a vapor deposition process' includes: exposing a lower surface of the substrate carrier to a gas flow; forming an air cushion under the substrate carrier; and floating processing a substrate carrier within the chamber; and moving the substrate carrier along a path within the processing chamber. In many instances, the action of the substrate carrier along the path and/or the speed of the substrate carrier is controlled by adjusting the flow rate of the gas stream. The air cushion may be formed in at least one of the recessed pockets provided in the lower surface. In some examples, the lower surface is provided with at least two recessed pocket portions. The pocket is configured to receive a gas cushion. The upper surface of the substrate carrier includes at least one recessed area for supporting the substrate. The recessed pocket has a tapered side wall that tapers away from the upper surface of the substrate carrier. In still another embodiment, a method of floating a substrate on a substrate carrier during a vapor deposition process is provided, which includes: exposing a lower surface of the substrate carrier to a gas flow, wherein at least one wafer is disposed on the substrate carrier On the surface, the lower surface is provided with at least one concave pocket portion; under the substrate carrier, a gas 47 201034055 形成 is formed; the substrate carrier in the processing chamber is floated; and the substrate carrier is moved along a path in the processing chamber. a method of floating a substrate during a vapor deposition process, comprising: exposing a lower surface of the substrate carrier to a substrate on a further embodiment, wherein the lower surface is provided with at least a concave σ pocket; Forming a gas pocket under the substrate carrier; floating the substrate carrier within the processing chamber; and moving the substrate carrier along a path within the processing chamber.

在另一實施例中,提出氣相沉積製程期間浮置基板載 具亡之基板的方法’其包括:使基板載具的下表面暴露 於氣流’其中下表面設有至少n部;在基板載具 下方形成氣墊;浮置處理腔室内的基板載具;以及沿著 處理腔室内的路徑移動基板載具。 本發明之實施例大體上是關於CVD反應器系統和其 使用方法。在一實施例中,提出CVD系統,其包括蓋組 件’例如沿著頂板縱軸設置複數個凸起部的頂板。系統 包括具有沿著軌道縱轴設置引導路徑(如通道)的軌道, 其中通道係適以容納頂板的複數個凸起部,以在複數個 凸起部與轨道地面(floor)間形成間隙’其中間隙係配置 以接收基板。系統包括加熱組件’例如加熱元件,以於 基板沿著轨道的通道移動時’加熱基板。在一實施例中, 勒道·用來沿著軌道的通道浮置基板。 在—實施例中,系統包括溝槽’用以支撐軌道。間隙 的厚度為約〇.5mm至約5mm、或約0.5mm至約imm。 頂板由銷或石英組成,轨道由石英或二氡化矽組成。頂 48 201034055 板用來引導氣體至間隙,並更包括沿著頂板縱軸設置且 位於複數個凸起部間的複數個埠口,因而在複數個凸起 部間構成路徑。—或多個埠口適以輸送及/或排放氣體至 頂板之複數個凸起部與轨道地面間的間隙。In another embodiment, a method of floating a substrate carrying a substrate during a vapor deposition process is proposed, which includes: exposing a lower surface of the substrate carrier to a gas flow, wherein at least n portions of the lower surface are provided; Forming an air cushion underneath; floating the substrate carrier within the processing chamber; and moving the substrate carrier along a path within the processing chamber. Embodiments of the invention are generally directed to CVD reactor systems and methods of use thereof. In one embodiment, a CVD system is proposed that includes a cover assembly&apos; such as a top plate that provides a plurality of raised portions along the longitudinal axis of the top plate. The system includes a track having a guiding path (e.g., a channel) disposed along a longitudinal axis of the track, wherein the channel is adapted to receive a plurality of raised portions of the top plate to form a gap between the plurality of raised portions and the floor of the track. The gap is configured to receive the substrate. The system includes a heating element, such as a heating element, to heat the substrate as it moves along the path of the track. In one embodiment, the track is used to float the substrate along the path of the track. In an embodiment, the system includes a groove 'to support the track. The thickness of the gap is from about 55 mm to about 5 mm, or from about 0.5 mm to about imm. The top plate consists of a pin or quartz, and the track consists of quartz or tantalum. Top 48 201034055 The plate is used to direct gas to the gap and further includes a plurality of ports disposed along the longitudinal axis of the top plate and located between the plurality of raised portions, thereby forming a path between the plurality of raised portions. - or a plurality of mouthpieces adapted to transport and/or discharge gas to the gap between the plurality of raised portions of the top plate and the track floor.

加熱元件實例包括輕接至軌道的加熱燈、複數個沿著 軌道設置的加熱燈、隨基板沿著軌道之通道移動而沿著 軌道移動的加熱燈組、耦接至軌道的電阻式加熱器耦 接至基板及/或軌道的感應加熱源。加熱元件係可操作以 維持跨越基板的溫度差異,其中溫度差異小於l(rc❶在 一實施例中,CVD系統為大氣壓CVD系統。 在一實施例中,提出CVD系統,其包括:入口隔離器, 係可操作以防止污染物從系統入口進入系統;出口隔離 器,係可操作以防止污染物從系統出口進入系統;以及Examples of heating elements include a heating lamp that is lightly attached to the track, a plurality of heating lamps disposed along the track, a heating lamp set that moves along the track as the substrate moves along the track, and a resistive heater coupling coupled to the track. An induction heating source connected to the substrate and/or track. The heating element is operable to maintain a temperature differential across the substrate, wherein the temperature difference is less than 1 (rc) In one embodiment, the CVD system is an atmospheric pressure CVD system. In an embodiment, a CVD system is proposed that includes an inlet isolator, Is operable to prevent contaminants from entering the system from the system inlet; the outlet isolator is operable to prevent contaminants from entering the system from the system outlet;

置於入口隔離器與 包括設置鄰接入口 口隔離器的第二沉 之間,並且可操作 積區域間混合。 出口隔離器間的中 隔離器的第一沉積 積區域。中間隔離 以預防氣體在第一 間隔離器。系統更 區域和設置鄰接出 器設在各沉積區域 沉積區域與第二沉 在一實施例中,入口隔離器更可操作以防止注入第一 沉積區域的氣體往回擴散,中間隔離器更可操作以防止 注入第二沉積區域的氣髏往回擴散,出口隔離器更可操 作以防止注入第二沉積區域的氣體往回擴散。至少一隔 離器構成的隔離區域長度為約1公尺至約2公尺。氣體 (如氮氣)以第一流速(如每分鐘30公升)注入到入口隔離 49 201034055 器,以免來自第一沉積區域的氣體往回擴散。氣體(如胂) 以第一流速(如每分鐘3公升)注入到中間隔離器,以免 氣體在第一沉積區域與第二沉積區域間混合。氣體(如氮 氣)以第一流速(如每分鐘30公升)注入到出口隔離器,以 免污染物從系統出口進入系統。在一實施例中,排放裝 . 置設在各隔離器旁,並可操作以以排放隔離器注入的氣 體。排放裝置可設置而鄰近各沉積區域,用以排放注入 到沉積區域的氣體。 在一實施例中,提出CVD系統,其包括外殼、被外殼 包圍的轨道,其中轨道構成引導路徑(如通道)而適以引 導基板通過CVD系統。系統包括沿著軌道之通道移動基 板的載具,其中軌道係可操作以沿著軌道的通道浮置載 具。外殼含有鉬、石英或不鏽鋼或由鉬、石英或不鏽鋼 形成,軌道含有石英、鉬、熔融二氧化矽或陶瓷或由石 英、鉬、熔融二氧化矽或陶瓷形成,載具由石墨形成。 • 在一實施例中,軌道包含沿著轨道地面設置的複數個 開口及/或導管,其各自可操作以供應氣墊給通道和載具 底面,以抬起或浮置載具、及沿著軌道的通道實質置中 載具。導管呈V形,且載具具有沿著其底面設置的凹口 (如V形)。氣體供應到載具的凹口,以實質抬起軌道地 面的載具、及沿著轨道的通道實質置中載具。轨道例如 傾斜小於約20度、小於約10度、或介於約i度至5度 之間,以將基板從通道的第一末端移動及浮置到通道的 第二末端®軌道及/或外殼包括多個片段。 50 201034055 在實施例中,系統包括可操作以自動將基板引進通 道的輸送器、可操作以自動自通道取回基板的回收器及/ 或可操作以加熱基板的加熱元件。加熱元件耦接至外 殻、基板及/或軌道。載具沿著轨道的通道承載基板條帶 (strip)。 •在一實施例中,提出用以移動基板通過CVD系統的軌 道組件,其包括具地面之頂部區段、設置鄰近地面的側 瘳 邊支撲件(如成對的軌條;a pair of rails),進而構成引導 路徑(如通道)來沿著地面引導基板。底部區段耦接至頂 部區段而於二者間形成一或多個腔室。頂部區段包括凹 陷底面’底部區段包括凹陷頂面,因而形成腔室。在一 實施例中’頂部區段及/或底部區段由錮、石英、二氧化 矽、氧化鋁或陶瓷形成。 在一實施例中’頂部區段具有複數個穿設於地面的開 口’以提供腔室和通道之間的流體連通。腔室係供應氣 Φ 塾(如氮氣)至通道’以實質抬起基板及沿著頂部區段之 地面承載基板。地面例如傾斜小於約i 〇度、小於約2〇 度、或介於約1度至5度之間,以將基板從通道的第一 末端移動及浮置到通道的第二末端。 在一實施例中’頂部區段具有複數個穿設於成對的軌 條(鄰近於地面)的開口。氣體由複數個開口供應,以 實質置中著頂部區段之通道移動的基板。地面還包括 錐形剖面及/或供應氣體的導管,其各自可操作以實質置 中沿著頂部區段之通道移動的基板。導管呈V形,及/ 51 201034055 或基板具有凹口(如v形)來接收沿著基板底面設置的氣 整,並可操作以實質置中沿著頂部區段之通道移動的基 板。 在一實施例中’軌道組件包括可操作以自動將基板引 ’ 進通道的輸送器及/或可操作以自動自通道取回基板的 • 回收器。注入管線係耦接至底部區段,以經由地面供應 腔室氣體而沿著頂部區段之地面實質浮置基板。頂部區 ❹ 段更包括鄰近軌條的凹陷部,而可操作以容納反應器蓋 組件’例如頂板。軌道組件包括溝槽,用以安置頂部區 段和底部區段。溝槽由石英、鉬或不鏽鋼形成。 在一實施例中’提出CVD製程期間形成多層材料的方 法’其包括:形成砷化鎵緩衝層至砷化鎵基板上;形成 坤化铭犧牲層至緩衝層上;以及形成砷化鋁鎵鈍化層至 犧牲層上。方法更包括形成砷化鎵主動層(如厚度約 lOOOnm)至鈍化層上。方法更包括形成砷化磷鎵層至主動 • 層上。方法更包括移除犧牲層,以隔開主動層和基板。 坤化銘犧牲層可暴露於蝕刻液,磊晶剝離(epitaxial Hft , off)製程則隔開砷化鎵主動層和基板。方法更包括於後續 CVD製程期間形成附加多層材料至基板上。緩衝層的厚 度為約3〇〇nm ’鈍化層的厚度為約3〇nm,及/或犧牲層 的厚度為約5nm。 在一實施例中’提出利用CVD系統形成多層磊晶層至 基板上的方法’其包括:將基板從系統入口引進引導路 徑(如通道),同時防止污染物從入口進入系統;沉積第 52 201034055 一磊晶層至基板上,同時基板沿著系統通道移動;沉積 第二磊晶層至基板上,同時基板沿著系統通道移動;避 免氣體在第一沉積步驟與第二沉積步驟間混合;以及從 系統出口取回通道的基板,同時防止污染物從出口進入 系統。方法更包括:在沉積第一磊晶層前,加熱基板;It is placed between the inlet isolator and the second sink including the abutment inlet isolator, and the interoperable region is mixed. The first deposition area of the middle isolator between the outlet isolators. Intermediate isolation to prevent gas in the first isolator. The system is further zoned and disposed adjacent to each deposition zone deposition zone and second sink. In one embodiment, the inlet isolator is more operable to prevent gas injecting into the first deposition zone from diffusing back, the intermediate isolator being more operable To prevent the gas bubbles injected into the second deposition zone from diffusing back, the outlet separator is more operable to prevent gas injected into the second deposition zone from diffusing back. The isolation region formed by at least one of the separators has a length of from about 1 meter to about 2 meters. A gas such as nitrogen is injected at a first flow rate (e.g., 30 liters per minute) into the inlet isolation 49 201034055 to prevent gas from the first deposition zone from diffusing back. A gas such as helium is injected into the intermediate separator at a first flow rate (e.g., 3 liters per minute) to prevent gas from mixing between the first deposition zone and the second deposition zone. A gas (such as nitrogen) is injected into the outlet isolator at a first flow rate (e.g., 30 liters per minute) to prevent contaminants from entering the system from the system outlet. In one embodiment, the venting device is disposed adjacent each isolator and is operable to vent the gas injected into the isolator. A discharge device may be disposed adjacent to each deposition zone for discharging gas injected into the deposition zone. In one embodiment, a CVD system is proposed that includes a housing, a track surrounded by a housing, wherein the track forms a guiding path (e.g., a channel) adapted to guide the substrate through the CVD system. The system includes a carrier that moves the substrate along a path of the track, wherein the track is operable to float the carrier along the path of the track. The outer casing contains molybdenum, quartz or stainless steel or is formed of molybdenum, quartz or stainless steel. The orbit contains quartz, molybdenum, fused ceria or ceramic or is formed of quartz, molybdenum, fused ceria or ceramic. The carrier is formed of graphite. • In one embodiment, the track includes a plurality of openings and/or conduits disposed along the track floor, each operative to supply a cushion to the channel and the underside of the carrier to lift or float the carrier, and along the track The channel is essentially centered on the vehicle. The catheter is V-shaped and the carrier has a recess (e.g., a V-shape) disposed along its bottom surface. The gas is supplied to the recess of the carrier to substantially lift the carrier on the track surface and the passage along the track to substantially center the carrier. The track is, for example, inclined less than about 20 degrees, less than about 10 degrees, or between about 1 degree and 5 degrees to move and float the substrate from the first end of the channel to the second end of the channel® track and/or housing Includes multiple clips. 50 201034055 In an embodiment, the system includes a conveyor operable to automatically introduce the substrate into the channel, a recycler operable to automatically retrieve the substrate from the channel, and/or a heating element operable to heat the substrate. The heating element is coupled to the housing, the substrate, and/or the track. The carrier carries a substrate strip along the path of the track. • In an embodiment, a track assembly for moving a substrate through a CVD system is proposed, comprising a top section having a ground surface, a side edge supporting member disposed adjacent to the ground (eg, a pair of rails; a pair of rails; And, in turn, constitute a guiding path (such as a channel) to guide the substrate along the ground. The bottom section is coupled to the top section to form one or more chambers therebetween. The top section includes a recessed bottom surface. The bottom section includes a recessed top surface thereby forming a chamber. In one embodiment the 'top section and/or the bottom section are formed of tantalum, quartz, ceria, alumina or ceramic. In one embodiment, the 'top section has a plurality of openings 'way through the ground' to provide fluid communication between the chamber and the passage. The chamber supplies gas Φ 塾 (e.g., nitrogen) to the channel to substantially lift the substrate and carry the substrate along the ground of the top section. The ground, for example, is inclined less than about i 〇, less than about 2 、, or between about 1 and 5 degrees to move and float the substrate from the first end of the channel to the second end of the channel. In one embodiment, the 'top section' has a plurality of openings that are threaded through the pair of rails (near the ground). The gas is supplied by a plurality of openings to physically move the substrate of the passage of the top section. The floor also includes a conical section and/or a conduit for supplying gas, each operative to substantially centrally move the substrate along the passage of the top section. The conduit is V-shaped, and / 51 201034055 or the substrate has a notch (e.g., a v-shape) to receive the condensation disposed along the bottom surface of the substrate and is operable to substantially center the substrate moving along the passage of the top section. In one embodiment the 'track assembly includes a conveyor operable to automatically guide the substrate into the channel and/or a recycler operable to automatically retrieve the substrate from the channel. An injection line is coupled to the bottom section to supply chamber gas via the ground and substantially float the substrate along the ground of the top section. The top section ❹ section further includes recesses adjacent the rails and is operable to receive a reactor cover assembly such as a top plate. The track assembly includes a groove for seating the top section and the bottom section. The grooves are formed of quartz, molybdenum or stainless steel. In one embodiment, a method of forming a multilayer material during a CVD process is proposed, which includes: forming a gallium arsenide buffer layer onto a gallium arsenide substrate; forming a sacrificial layer of the Kunming Ming onto the buffer layer; and forming an aluminum gallium arsenide passivation layer Layer to the sacrificial layer. The method further includes forming an active layer of gallium arsenide (eg, a thickness of about 100 nm) onto the passivation layer. The method further includes forming a gallium arsenide layer to the active layer. The method further includes removing the sacrificial layer to separate the active layer from the substrate. The Kumaning sacrificial layer can be exposed to the etchant, and the epitaxial Hft (off) process separates the gallium arsenide active layer from the substrate. The method further includes forming additional layers of material onto the substrate during the subsequent CVD process. The thickness of the buffer layer is about 3 Å. The thickness of the passivation layer is about 3 Å, and/or the thickness of the sacrificial layer is about 5 nm. In one embodiment, 'the method of forming a multi-layer epitaxial layer onto a substrate using a CVD system' includes: introducing a substrate from a system inlet into a guiding path (eg, a channel) while preventing contaminants from entering the system from the inlet; depositing 52, 201034055 An epitaxial layer is on the substrate while the substrate moves along the system channel; depositing a second epitaxial layer onto the substrate while the substrate moves along the system channel; avoiding gas mixing between the first deposition step and the second deposition step; The substrate of the channel is retrieved from the system outlet while preventing contaminants from entering the system from the outlet. The method further includes: heating the substrate before depositing the first epitaxial layer;

沉積第一和第二磊晶層至基板上時,保持基板溫度;及/ 或在沉積第二磊晶層後,冷卻基板。基板實質沿著系統 通道浮置。第一磊晶層包括砷化鋁,及/或第二磊晶層包 括砷化鎵。方法更包括沉積砷化磷鎵層至基板上、及/或 在沉積磊晶層時,加熱基板達約30(rc至約8〇〇t&gt;c。基板 的中心溫度到邊緣溫度差異在1(rc以内。 在一實施例中,提出CVD反應器,其包括具主體之蓋 組件、以及具主體與沿著主體縱轴設置之引導路徑的軌The substrate temperature is maintained when depositing the first and second epitaxial layers onto the substrate; and/or after depositing the second epitaxial layer, the substrate is cooled. The substrate is substantially floating along the system channel. The first epitaxial layer comprises aluminum arsenide and/or the second epitaxial layer comprises gallium arsenide. The method further includes depositing a gallium arsenide layer onto the substrate, and/or heating the substrate up to about 30 (rc to about 8 〇〇t) when depositing the epitaxial layer. The center-to-edge temperature difference of the substrate is 1 ( In one embodiment, a CVD reactor is proposed that includes a cover assembly having a body and a rail having a body and a guiding path disposed along a longitudinal axis of the body

道組件。L组件的纟體和軌道組件以體轉接在一起而 於二者間形成間隙’而配置以接收基板。反應器更包括 加熱組件,含有複數個沿著軌道組件設置的加熱燈,而 可操作以於基板沿㈣導路徑移動時,加熱基板。反應 器更包括軌道組件支撐件’其中軌道組件設於軌道組件 支撐件中。軌道組件的主體内設沿著主體縱轴延伸的氣 穴和複數個從氣穴延伸到引導路徑上表面的槔口,而配 置以沿著引導路徑供應氣墊。軌道組件的主體包含石 英。蓋組件的主體包括複數個配置以提供至引導路徑的 流體連通的埠〇 溫度差異,其中溫度差異小於 加熱組件係可操作以維持基板各處的Road component. The body and track assemblies of the L assembly are configured to receive the substrate by transferring the bodies together to form a gap therebetween. The reactor further includes a heating assembly including a plurality of heat lamps disposed along the track assembly and operable to heat the substrate as the substrate moves along the (four) conductive path. The reactor further includes a track assembly support member wherein the track assembly is disposed in the track assembly support. The body of the track assembly houses a cavity extending along the longitudinal axis of the body and a plurality of pockets extending from the air pocket to the upper surface of the guiding path and configured to supply the air cushion along the guiding path. The body of the track assembly contains stone. The body of the lid assembly includes a plurality of configurations to provide a 埠〇 temperature difference to the fluid communication of the guiding path, wherein the temperature difference is less than the heating assembly is operable to maintain the substrate throughout

10°〇在一實施例中,CVD 53 201034055 反應器為大氣壓CVD反應器。 在一實施例中,提出CVD系統,其包括:入口隔離器, 其可操作以防止污染物從系統入口進入系統;出口隔離 器,其可操作以防止污染物從系統出口進入系統;以及 •置於入口隔離器與出口隔離器間的中間隔離器。系統更 包括《χ置鄰近入口隔離器的第一沉積區域和設置鄰近出 隔離器的第二沉積區域。中間隔離器設在各沉積區域 ❹ 之間,以免氣體在第一沉積區域與第二沉積區域間混 合。氣體以第一流速注入到入口隔離器,以免第一沉積 區域的氣體往回擴散,氣體以第一流速注入到中間隔離 器’以免氣體在第一沉積區域與第二沉積區域間混合, 及/或氣體以第一流速注入到出口隔離器,以免污染物從 系統出口進入系統。排放裝置設置而鄰近各隔離器,並 可操作以排放隔離器注入的氣體、及/或設置而鄰近各沉 積區域’並可操作以排放注入到沉積區域的氣體。 〇 在一實施例中,提出CVD系統,其包括外殼、被外殼 包圍的轨道,其中軌道包含引導路徑適以引導基板通過 CVD系統、以及沿著引導路徑移動基板的基板載具,其 中轨道係可操作以沿著引導路徑浮置基板載具。執道包 括複數個開口,其可操作以供應引導路徑氣墊。氣塾施 加於基板載具底面,以將基板載具自軌道地面抬起。轨 道包括沿著引導路徑設置的導管,而可操作以沿著軌道 的引導路徑實質置中基板載具。氣墊經由導管供應到基 板載具底面,以實質抬起將基板自載具軌道地面抬起。 54 201034055 軌道可傾斜讓基板從引導路徑的第一末端移動到引導路 徑的第二末端。f、統包括加熱組件,含有複數個沿著軌 道設置的加熱燈,並可操作以於基板沿著引導路徑移動 時,加熱基板。 ' 如同前述實施例,CVD反應器、腔室、系統、區域和 -运些反應器的衍生物可用於多種(:¥〇及/或磊晶沉積製 程,以形成各種材料至晶圓或基板上。在一實施例中, _ 含有至少一第III族元素(如硼、鋁、鎵或銦)和至少一第 V族7C素(如氮、磷、砷或銻)的第ΙΠ/ν族材料可形成或 沉積於晶圓上。沉積材料實例包含氮化鎵、磷化銦、磷 化銦鎵、砷化鎵、砷化鋁鎵、砷化鋁、其衍生物、其合 金、其多層、或其組合。在一些實施例中,沉積材料為 蟲晶材料。沉積材料或蟲晶材料含有一層,但通常包含 多層。在一些實例中’磊晶材料包含具有砷化鎵的一層 和具有砷化鋁鎵的一層。在另一實例中,磊晶材料含有 • 珅化鎵緩衝層、砷化鋁鎵鈍化層和砷化鎵主動層。珅化 鎵緩衝層的厚度為約l〇〇nm至约500nm,例如約300nm; 坤化銘犧牲層的厚度為約lnm至約20nm,例如約5nm ; 坤化銘鎵鈍化層的厚度為約1 〇ηιη至約50nm,例如約 30nm ;砷化鎵主動層的厚度為約500nm至約2000nm, 例如約l〇〇〇nm。在一些實例中,磊晶材料更包含第二坤 化鋁鎵鈍化層。 在一實施例中,用於CVD反應器、腔室、系統、區域 的製程氣體包含胂、氬氣、氦氣、氮氣、氫氣或其混合 55 201034055 物》在一實例中,製程氣體包含砷前驅物,例如胂。在 其他實施例中,第一前驅物包含銘前驅物、鎵前驅物、 銦前驅物或其組合物,且第二前驅物包含氮前驅物、填 前驅物、砷前驅物、銻前驅物或其組合物。 •在一替代實施例中,如第20圖所示,CVD系統2000 - 含有接連地(one after another)排成線性路徑的複數個喷 氣頭2010。喷氣頭2010可堆砌(tiled)在一起,以產生 較大喷氣頭的效果’例如用以形成大生長區域或大沉積 區域。沉積製程期間’多個晶圓2002放在盤(piatter)2〇〇4 上。晶圓2002也可放成堆ί切圖案,以遠離各喷氣頭2010 間的任何狹缝。在一製程實施例中,CVD系統2000可 於各堆喷氣頭2010間排氣’例如從排放埠口 2〇14、 2016,以減慢流速。CVD系統2000亦可從排放埠口 2012、2018 排氣。 在另一替代實施例中,如第21圖所示,CVD系統2100 ❹ 沿著線性路徑設有加熱區域2120、生長區域2130和冷 卻區域2140。喷氣頭(未繪示)通常設於生長區域213〇。 多個晶圓2102放在各處理區域(如加熱區域212〇、生長 區域2130和冷卻區域2140)的盤2104上。盤2104含有 凸起邊緣2106而於各組晶圓21〇2周圍構成「袋部」,例 如處理區域2110。處理區域211〇使晶圓21〇2保持在各 處理區域的半封閉環境中。盤21〇4置於平臺21〇8上, 其設有加熱器、冷卻器和溫度調節系統(未繪示)。故平 臺2108可個別控制及調節加熱區域212〇、生長區域213〇 56 201034055 和冷卻區域2140的溫度。 CVD系統2100提供遠比生長區域窄的間隙隔離並 減低回流隔離所需的總體流速。在一製程實施例中,加 熱區域2120和生長區域2130被二者間的隔離排放埠口 2Π4隔開,同樣地,生長區域2130和冷卻區域2140被 * 隔離排放埠口 2 11 6隔開。 雖然本發明已以實施例揭露如上,然在不脫離本發明 ❹ 之精神和範圍内,當可衍生其他和進一步之實施例,因 此本發明之保護範圍視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 為讓本發明之上述特徵更明顯易懂,可配合參考實施 例說明,其部分乃繪示如附圖式。須注意的是,雖然所 附圖式揭露本發明特定實施例,但其並非用以限定本發 • 明之精神與範圍,任何熟習此技藝者,當可作各種之更 動與潤飾而得等效實施例。 第1A圖繪示根據本發明一實施例之化學氣相沉積 (CVD)反應器; 第1B圖為根據本發明一實施例之反應器蓋組件的立 體視圖; 第2圏為根據所述實施例之CVD反應器的側面立體視 ISI · 圓, 57 201034055 第3圖繪示根據所述實施例之CVD反應器的反應器蓋 組件; 第4圖為根據所述另一實施例,CVD反應器之反應器 蓋組件的俯視圖; 第5圖繪示根據所述實施例之CVD反應器的晶圓載具 軌道; 第6圖為根據所述實施例,CVD反應器之晶圓載具軌 道的正視圖; 第7圖為根據所述實施例,CVD反應器之晶圓載具軌 道的側視圖; 第8圖為根據所述實施例,CVD反應器之晶圓載具軌 道的立體視圖; 第9圖繪示根據所述實施例之CVD反應器的反應器蓋 組件和晶圓載具軌道; 第10A圖繪示根據所述實施例之CVD反應器; 第10B-10C圖繪示根據所述另一實施例之浮置晶圓載 具; 第10D-10F圖繪示根據所述又一實施例之其他浮置晶 圓載具; 第11圖繪示根據所述實施例之CVD反應器的第一佈 局; 第12圖繪示根據所述實施例之CVD反應器的第二佈 局; 第13圖繪示根據所述實施例之CVD反應器的第三佈 58 201034055 局; 第14圖修示根據所述實施例之CVD反應器的第四佈 局; 第15圖燴示根據所述實施例之CVD反應器的第五佈 •局; 第16圖燴示根據所述實施例之CVD反應器的第六佈 局; 第17圖翁不根據所述實施例之CVD反應器的第七佈 ❹ A . 第1 8圖鳍·示根據所述實施例之CVD反應器的流動路 徑配置; 第19圖繪示根據所述實施例之冷卻喷氣頭; 第20圖繪示根據所述一替代實施例’設有複數個堆砌 喷氣頭的CVD系統;以及 第21圖繪示根據所述另一替代實施例,具有數個處理 ^ 區域的CVD系統。 【主要元件符號說明】 10 反應器 20 蓋組件 21-24 埠口 25 側壁/凸緣構件 26 凸起部 27,25 &gt; 表面 28 主體 30 軌道 31 上部 32 下部 59 20103405510° In one embodiment, the CVD 53 201034055 reactor is an atmospheric pressure CVD reactor. In an embodiment, a CVD system is proposed comprising: an inlet isolator operable to prevent contaminants from entering the system from a system inlet; an outlet isolator operable to prevent contaminants from entering the system from the system outlet; An intermediate isolator between the inlet isolator and the outlet isolator. The system further includes a first deposition zone adjacent the inlet isolator and a second deposition zone adjacent the isolation isolator. An intermediate separator is disposed between each deposition zone 以 to prevent gas from mixing between the first deposition zone and the second deposition zone. The gas is injected into the inlet isolator at a first flow rate to prevent the gas in the first deposition zone from diffusing back, and the gas is injected into the intermediate separator at a first flow rate to prevent the gas from mixing between the first deposition zone and the second deposition zone, and/ Or the gas is injected into the outlet isolator at a first flow rate to prevent contaminants from entering the system from the system outlet. A discharge device is disposed adjacent each of the separators and is operable to discharge gas injected by the separator and/or disposed adjacent to each of the deposition regions' and operable to discharge gas injected into the deposition region. In one embodiment, a CVD system is proposed that includes a housing, a track surrounded by the housing, wherein the track includes a substrate path for guiding the substrate through the CVD system and moving the substrate along the guiding path, wherein the track system is Operating to float the substrate carrier along the guiding path. The obstruction includes a plurality of openings operable to supply a guide path air cushion. Air is applied to the bottom surface of the substrate carrier to lift the substrate carrier from the track surface. The track includes a conduit disposed along the guide path and is operable to substantially center the substrate carrier along the guide path of the track. The air cushion is supplied to the bottom surface of the substrate carrier via a conduit to substantially lift the substrate from the carrier track ground. 54 201034055 The track can be tilted to move the substrate from the first end of the guiding path to the second end of the guiding path. f. The system includes a heating assembly including a plurality of heating lamps disposed along the track and operable to heat the substrate as the substrate moves along the guiding path. As with the previous embodiments, CVD reactors, chambers, systems, regions, and derivatives of these reactors can be used in a variety of (: 〇 and / or epitaxial deposition processes to form various materials onto wafers or substrates) In one embodiment, _ a Group ν/ν material containing at least one Group III element (such as boron, aluminum, gallium or indium) and at least one Group V 7C (such as nitrogen, phosphorus, arsenic or antimony) Can be formed or deposited on a wafer. Examples of deposition materials include gallium nitride, indium phosphide, indium gallium phosphide, gallium arsenide, aluminum gallium arsenide, aluminum arsenide, derivatives thereof, alloys thereof, multilayers thereof, or In some embodiments, the deposition material is a parasitic material. The deposition material or the parasitic material contains one layer, but typically comprises multiple layers. In some examples, the 'epitaxial material comprises a layer with gallium arsenide and aluminum arsenide A layer of gallium. In another example, the epitaxial material comprises a gallium antimonide buffer layer, an aluminum gallium arsenide passivation layer, and an active layer of gallium arsenide. The thickness of the gallium antimonide buffer layer is from about 10 nm to about 500 nm. , for example, about 300 nm; the thickness of the sacrificial layer of Kunming is about 1 nm to about 20 nm. For example, about 5 nm; the thickness of the gallium passivation layer of Kunming is about 1 〇 ηηη to about 50 nm, for example about 30 nm; the thickness of the active layer of gallium arsenide is about 500 nm to about 2000 nm, for example about 10 nm. In some examples The epitaxial material further comprises a second quinned aluminum gallium passivation layer. In one embodiment, the process gas for the CVD reactor, chamber, system, region includes helium, argon, helium, nitrogen, hydrogen or Mixture 55 201034055. In one example, the process gas comprises an arsenic precursor, such as ruthenium. In other embodiments, the first precursor comprises a precursor, a gallium precursor, an indium precursor, or a combination thereof, and The second precursor comprises a nitrogen precursor, a pre-filled precursor, an arsenic precursor, a hafnium precursor or a combination thereof. • In an alternate embodiment, as shown in Figure 20, the CVD system 2000 - contains one after another a plurality of jet heads 2010 arranged in a linear path. The jet heads 2010 can be slid together to produce the effect of a larger jet head 'for example to form a large growth area or a large deposition area. During the deposition process 'multiple Wafer 2002 The wafers 2 can be placed on the wafers 2002. The wafers 2002 can also be placed in a stack pattern to move away from any slits between the individual jet heads 2010. In a process embodiment, the CVD system 2000 can be used in various stacks of jet heads. The 2010 exhaust is 'evented from the discharge ports 2, 14, 2016 to slow the flow rate. The CVD system 2000 can also be vented from the discharge ports 2012, 2018. In another alternative embodiment, as shown in Figure 21 The CVD system 2100 设有 is provided with a heating region 2120, a growth region 2130, and a cooling region 2140 along a linear path. A jet head (not shown) is generally disposed in the growth region 213A. A plurality of wafers 2102 are placed on the disk 2104 of each of the processing regions (e.g., the heating region 212, the growth region 2130, and the cooling region 2140). The disk 2104 includes a raised edge 2106 and forms a "pocket portion" around each set of wafers 21A2, such as a processing region 2110. The processing area 211 is such that the wafer 21 〇 2 is held in a semi-enclosed environment of each processing area. The tray 21〇4 is placed on the platform 21〇8, which is provided with a heater, a cooler and a temperature adjustment system (not shown). Therefore, the stage 2108 can individually control and adjust the temperature of the heating zone 212, the growth zone 213 〇 56 201034055, and the cooling zone 2140. The CVD system 2100 provides a narrow gap isolation that is much narrower than the growth region and reduces the overall flow rate required for backflow isolation. In a process embodiment, the heating zone 2120 and the growth zone 2130 are separated by an isolating discharge port 2Π4 therebetween, and likewise, the growth zone 2130 and the cooling zone 2140 are separated by a *islet discharge port 2 11 6 . Although the present invention has been disclosed in the above embodiments, the scope of the present invention is defined by the scope of the appended claims. quasi. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above-described features of the present invention more apparent and easy to understand, reference may be made to the accompanying embodiments. It is to be understood that the invention is not limited by the scope of the invention, and is intended to be example. 1A is a chemical vapor deposition (CVD) reactor according to an embodiment of the present invention; FIG. 1B is a perspective view of a reactor cover assembly according to an embodiment of the present invention; Side stereopsis of a CVD reactor ISI · circle, 57 201034055 FIG. 3 illustrates a reactor cover assembly of a CVD reactor according to the embodiment; FIG. 4 is a CVD reactor according to another embodiment a top view of the reactor cover assembly; FIG. 5 is a wafer carrier track of the CVD reactor according to the embodiment; FIG. 6 is a front view of the wafer carrier track of the CVD reactor according to the embodiment; 7 is a side view of a wafer carrier track of a CVD reactor according to the embodiment; FIG. 8 is a perspective view of a wafer carrier track of a CVD reactor according to the embodiment; FIG. 9 is a view a reactor cover assembly and a wafer carrier track of the CVD reactor of the embodiment; FIG. 10A illustrates a CVD reactor according to the embodiment; and FIGS. 10B-10C illustrate a floating according to the other embodiment Wafer carrier; Figure 10D-10F shows the basis Another floating wafer carrier of still another embodiment; FIG. 11 illustrates a first layout of a CVD reactor according to the embodiment; and FIG. 12 illustrates a second layout of a CVD reactor according to the embodiment; Figure 13 shows a third cloth 58 201034055 of the CVD reactor according to the embodiment; Figure 14 illustrates a fourth layout of the CVD reactor according to the embodiment; Figure 15 shows the implementation according to the embodiment a fifth layout of a CVD reactor; FIG. 16 illustrates a sixth layout of a CVD reactor according to the embodiment; and FIG. 17 is a seventh layout of a CVD reactor not according to the embodiment. A. Figure 14 shows a flow path configuration of a CVD reactor according to the embodiment; FIG. 19 illustrates a cooling jet head according to the embodiment; and FIG. 20 illustrates an alternative embodiment according to the embodiment. 'A CVD system having a plurality of stacked jet heads; and Figure 21 shows a CVD system having a plurality of processing areas according to the alternative embodiment. [Main component symbol description] 10 Reactor 20 Cover assembly 21-24 Mouth opening 25 Side wall/flange member 26 Raised portion 27, 25 &gt; Surface 28 Main body 30 Track 31 Upper 32 Lower part 59 201034055

33 氣孔 34 氣口 35 側面 36 氣穴 38 管線 39 凹部 40 支撐件 50 加熱燈組件 60 間隙 70 載具 71 短侧邊 72,74 表面 73 長側邊 75,78 ; 凹口 76,77 側邊 100 反應器 120 主體 130 軌道 135 頂壁 136 凹口 137 氣穴 140 載具 150 加熱燈組件 160 條帶 200 配置 210,215,219 流動路徑 217 匯流處 220,230,240,250,260 隔離器組件 225 排放裝置 290 沉積區域 300 配置 310 晶圓 320 蓋組件 330 底部 340,380,390 區域 350 幕 360 溫度斜坡 370 熱區域 400 配置 410 氮氣 411 溫度斜坡 412 熱區域 415,425,43 0,435,440,445,450,455,460,465,470,475,480 ,485,490 區域 60 201034055 420 氫氣/胂混合物 500 配置 510 氮氣 511,513 溫度斜坡 512 熱區域 515,525,530,535,540,5 45,55 0,555,5 60 區域 520 氫氣/胂混合物 600 配置 610 氮氣 611 溫度斜坡 612 熱區域 615,625,63 0,63 5,640,645,65 0,65 5,660,665 區域 620 氫氣/胂混合物 700 配置 711 溫度斜坡 715,725,730,735,740,7^ 720 氫氣/胂混合物 800 配置 811,813 溫度斜坡 815,825,830,835,840 820 氫氣/胂混合物 710 氮i氣 712 熱區域 5,750,755,760 區域 810 氮氣 812 熱區域 區域 900,910,920,93 0,940,941,95 0,951,95 8 路徑配置 911,921,93 1,943,953 流動區域 942,952,959 間隙部 944,945,954-957,960 流動路徑 1900 喷氣頭 1902 冷卻板 1904 分配板 1906 喷氣孔 1910 正面 1912 背面 201034055 1916 硬焊層 1920 流體 2000,2100 系統 2002,2102 晶圓 2004,2104 盤 2010 喷氣頭 2012,2014,2016,2018,2114,2116 埠口 2106 邊緣 2108 平臺 2110,2120,2130,2140 區域 Τι,Τ2 溫度33 Air vent 34 Air port 35 Side 36 Air pocket 38 Line 39 Concave 40 Support 50 Heat lamp assembly 60 Clearance 70 Carrier 71 Short side 72, 74 Surface 73 Long side 75, 78; Notch 76, 77 Side 100 Reaction 120 Main body 130 Track 135 Top wall 136 Notch 137 Air pocket 140 Carrier 150 Heat lamp assembly 160 Strip 200 Configuration 210, 215, 219 Flow path 217 Confluence 220, 230, 240, 250, 260 Isolator assembly 225 Discharge device 290 Deposition area 300 Configuration 310 Wafer 320 Cover assembly 330 Bottom 340, 380, 390 Zone 350 Curtain 360 Temperature Ramp 370 Thermal Zone 400 Configuration 410 Nitrogen 411 Temperature Ramp 412 Hot Zone 415, 425, 43 0, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490 Zone 60 201034055 420 Hydrogen/Hydrazine Mixture 500 Configuration 510 Nitrogen 511, 513 Temperature ramp 512 Thermal zone 515, 525, 530, 535, 540, 5 45 , 55 0,555,5 60 Zone 520 Hydrogen/胂 Mixture 600 Configuration 610 Nitrogen 611 Temperature ramp 612 Hot zone 615, 625, 63 0, 63 5,640,645, 65 0,65 5,660,665 Zone 620 Hydrogen/胂 mixture 700 Configuration 711 Temperature ramp 715, 725, 730, 73 5,740,7^ 720 Hydrogen/胂 mixture 800 Configuration 811,813 Temperature ramp 815,825,830,835,840 820 Hydrogen/helium mixture 710 Nitrogen i gas 712 Hot zone 5,750,755,760 Zone 810 Nitrogen 812 Hot zone 900,910,920,93 0,940,941,95 0,951,95 8 Path configuration 911,921,93 1,943,953 Flow area 942,952,959 Clearance 944,945,954-957,960 Flow path 1900 Air head 1902 Cooling plate 1904 Distribution plate 1906 Jet hole 1910 Front 1912 Back 201034055 1916 Hard solder layer 1920 Fluid 2000, 2100 System 2002, 2102 Wafer 2004, 2104 Disk 2010 Jet head 2012,2014,2016,2018,2114,2116 埠口2106 Edge 2108 Platform 2110,2120,2130,2140 Area Τι,Τ2 Temperature

6262

Claims (1)

201034055 七、申請專利範圍: K 一種在連續化學氣相沉積製程期間形成一多層材料 的方法,該方法包含: - 使複數個晶圓連續前進通過一沉積系統,其中該沉 • 積系統包含一第一沉積區域、一第二沉積區域、一第= &gt;冗積區域和一第四沉積區域; 沉積一緩衝層至該第一沉積區域内的一第一晶圓 φ ^ ; 沉積一犧牲層至該第二沉積區域内的該第一晶圓 上,同時沉積該緩衝層至該第一沉積區域内的一 曰 圓上; ~Βθ 沉積一鈍化層至該第三沉積區域内的該第一晶圓 上,同時沉積該犧牲層至該第二沉積區域内的該第二晶 圓上,且同時沉積該緩衝層至該第一沉積區域内的—第 三晶圓上;以及 % 此積一砷化鎵主動層至該第四沉積區域内的該第一 阳圓上,同時沉積該鈍化層至該第三沉積區域内的該第 晶圓上,並同時沉積該犧牲層至該第二沉積區域内的 ,該第三晶圓上,且同時沉積該緩衝層至該第一沉積區域 内的一第四晶圓上。 厶如申請專利範圍第丨項所述之方法,更包含在前進到 〜第&quot;L積區域前,於一加熱區域中加熱各個該些晶圓 63 201034055 達一預定溫度。 3.如申請專利範圍帛2項所述之方法,其中該預定溫度 為約50°C至約75(TC。 ' 4.如申請專利範圍第3項所述之方法,其中該預定溫度 為約l〇〇°C至約350。(:。 φ 5·如申請專利範圍第丨項所述之方法,更包含在沉積該 砷化鎵主動層後,將各個該些晶圓傳送到一冷卻區域内。 6.如申請專利範圍第5項所述之方法,更包含於該冷卻 區域中冷卻各個該些晶圓至約18〇c至約3〇&lt;&gt;(:之一預定 溫度》 ❹ 7.如申請專利範圍第1項所述之方法,其中該些晶圓進 入該第一沉積區域前,通過一加熱區域,且該些晶圓離 開該第四&gt;儿積區域後,通過一冷卻區域。 8.如申請專利範圍第7項所述之方法,其中該加熱區 域、該第一沉積區域、該第二沉積區域、該第三沉積區 域與該第四沉積區域、和該冷卻區域共用一共同線性路 徑’該些晶圓沿著該沉積系統内的該共同線性路徑連續 且水平前進。 64 201034055 9.如申請專利範圍第1項所述之方法,更包含流入至少 一氣體至各個該些沉積區域之間,以於各個該些沉積區 域之間形成一氣體幕(gas curtain)。 ι〇·如申請專利範圍第9項所述之方法,其中該至少一氣 體包含氫氣、胂、氫氣與胂之—混合物、氣氣、氯氣、 或其組合物。 11.如申請專利範圍第10項所述之方法,其中該至少一 氣體包含氫氣與胂之一混合物。 12.如申請專利範圍第1項 7 •万法,更包含沉積一含 鎵層至一第五沉積區域内的竑餿 埤門的该第一晶圓上,同時沉積該 砷化鎵主動層至該第四沉籍斤说 乐/儿積區域内的該第二晶圓上,又 同時沉積該鈍化層至該篦- .、„扯广 第一,儿積區域内的該第三晶圓 上’並同時沉積該犧牲層至該笫_ 百王硪弟— &gt;儿積區域内的該第四 晶圓上,且同時沉積該緩衝層 w i r丄 9主孩第一沉積區域内的一 第五晶圓上。 其中該含鎵層 13.如申請專利範圍第12項所述之方法 含有砰化鱗鎵。 14.如申請專利範圍第 1項所述之方法,其令該些晶圓為 65 201034055 一坤化鎵晶圓。 15. —種在連續化學氣相沉積製程期間形成多層材料的 方法’該方法包含: 使複數個晶圓連續前進通過一沉積系統,其中該沉 積系統包含一加熱區域、一第一沉積區域、一第二沉積 區域、一第三沉積區域、一第四沉積區域和一冷卻區域;201034055 VII. Patent Application Range: K A method of forming a multilayer material during a continuous chemical vapor deposition process, the method comprising: - continuously advancing a plurality of wafers through a deposition system, wherein the sink system comprises a a first deposition region, a second deposition region, a first &gt; redundant region and a fourth deposition region; depositing a buffer layer to a first wafer φ in the first deposition region; depositing a sacrificial layer Depositing the buffer layer onto a circle in the first deposition region on the first wafer in the second deposition region; ~Βθ depositing a passivation layer to the first in the third deposition region Depositing the sacrificial layer on the second wafer in the second deposition region on the wafer, and simultaneously depositing the buffer layer onto the third wafer in the first deposition region; and % a gallium arsenide active layer onto the first positive circle in the fourth deposition region, simultaneously depositing the passivation layer onto the first wafer in the third deposition region, and simultaneously depositing the sacrificial layer to the second deposition region Of the third wafer, while the buffer layer is deposited onto the wafer in a fourth region of the first deposition. For example, the method described in the scope of the patent application, further includes heating each of the wafers 63 201034055 to a predetermined temperature in a heating zone before advancing to the &quot;&quot;L product area. 3. The method of claim 2, wherein the predetermined temperature is from about 50 ° C to about 75 (TC. ' 4. The method of claim 3, wherein the predetermined temperature is about l 〇〇 ° C to about 350. (: φ 5 · The method of claim 2, further comprising transferring each of the wafers to a cooling zone after depositing the active layer of gallium arsenide 6. The method of claim 5, further comprising cooling each of the wafers in the cooling zone to about 18 〇c to about 3 〇 &lt;&gt; (: one predetermined temperature) ❹ 7. The method of claim 1, wherein the wafers pass through a heating zone before entering the first deposition zone, and the wafers exit the fourth &gt; The method of claim 7, wherein the heating zone, the first deposition zone, the second deposition zone, the third deposition zone and the fourth deposition zone, and the cooling zone Sharing a common linear path 'the wafers along the common within the deposition system The method of claim 1, wherein the method further comprises flowing at least one gas between each of the deposition regions to form a gas between each of the deposition regions. The method of claim 9, wherein the at least one gas comprises hydrogen, helium, a mixture of hydrogen and helium, gas, chlorine, or a combination thereof. The method of claim 10, wherein the at least one gas comprises a mixture of hydrogen and helium. 12. The method of claim 1 is a method of depositing a gallium-containing layer to a fifth. Depositing the active layer of gallium arsenide onto the second wafer in the fourth sinking/small area on the first wafer of the gate in the deposition area, and simultaneously depositing the Passivation layer to the 篦-., 扯 第一 first, on the third wafer in the area of the product and simultaneously deposit the sacrificial layer to the 笫 _ _ 硪 硪 — & & & & & & & & Round and simultaneously deposit the buffer The layer wir丄9 is on a fifth wafer in the first deposition region of the primary child. The gallium-containing layer 13. The method according to claim 12 contains deuterated scale gallium. The method of claim 1, wherein the wafers are 65 201034055, a gallium-plated wafer. 15. A method of forming a multilayer material during a continuous chemical vapor deposition process. The method comprises: making a plurality of wafers Continuously advancing through a deposition system, wherein the deposition system includes a heating region, a first deposition region, a second deposition region, a third deposition region, a fourth deposition region, and a cooling region; 沉積一砷化鎵緩衝層至該第一沉積區域内的一第一 晶圓上; 沉積一砷化鋁犧牲層至該第二沉積區域内的該第一 晶圓上,同時沉積該砷化鎵緩衝層至該第一沉積區域内 的一第二晶圓上; 此顸一呷化鋁鎵鈍化層至該第三沉積區域内的該第 曰曰圓上,同時沉積該坤化鋁犧牲層至該第二沉積區域 ::該第二晶圓上,且同時沉積該砷化鎵緩衝層至該第 一沉積區域内的一第三晶圓上; 沉積一坤化鎵主動層至該第四沉積區域内的該第一 晶圓上’㈣沉積料魅鎵鈍㈣至該第三沉積區域 内=該第二晶圓上’並同時沉積該坤化銘犧牲層至該第 —積區域内的該笛=曰蘭 衝層…=: 同時沉積該珅化嫁緩 至該第一%積區域内的一第四晶圓上。 '儿積製程期間形成多層材料的 16. 一種在連續化學氣相 方法’該方法包含: 66 201034055 使複數個晶圓連續前進通過一沉積系統,其中該沉 積系統包含一第一沉積區域、—第二沉積區域、一第三 沉積區域和一第四沉積區域; /儿積一第一材料層至該第一沉積區域内的一第一晶 * 圓上; &gt;儿積一第二材料層至該第二沉積區域内的該第一晶 圓上,同時沉積該第一材料層至該第一沉積區域内的一 赢 第二晶圓上; 響 况積第二材料層至該第三沉積區域内的該第一晶 圓上同時沉積該第二材料層至該第二沉積區域内的該 第二晶圓上,且同時沉積該第一材料層至該第一沉積區 域内的一第三晶圓上; 沉積一第四材料層至該第四沉積區域内的該第一晶 圓上,同時沉積該第三材料層至該第三沉積區域内的該 第二晶圓上,並同時沉積該第二材料層至該第二沉積區 • 域内的該第三晶圓上,且同時沉積該第一材料層至該第 一沉積區域内的一第四晶圓上。 17. 如申請專利範圍第16項所述之方法,其中該第一材 料層、該第二材料層、該第三材料層和該第四材料層具 有一相同組成。 18. 如申請專利範圍第16項所述之方法,其中該第一材 料層、該第二材料層、該第三材料層和該第四材料層之 67 201034055 各者具有一不同組成。 19. 如申請專利範圍第a項所述之方法,其中該第一材 料層、該第二材料層、該第三材料層和該第四材料層之 各者包含珅(arsenic)。 20. 如申請專利範圍第16項所述之方法,更包含沉積一 _ 第五材料層至一第五沉積區域内的該第一晶圓上,同時 沉積該第四材料層至該第四沉積區域内的該第二晶圓 上,又同時沉積該第三材料層至該第三沉積區域内的該 第三晶圓上,並同時沉積該第二材料層至該第二沉積區 域内的該第四晶圓上,且同時沉積該第一材料層至該第 一沉積區域内的一第五晶圓上。 21. 如申請專利範圍第16項所述之方法,更包含在前進 • 到該第一沉積區域内前,於一加熱區域中加熱各個該些 晶圓達一預定溫度。 , 22·如申請專利範圍帛項所述之方法,其中該預定溫 度為約50°C至約750°C。 23.如申請專利範圍第22項所述之方法,其中該預定溫 度為約100°C至約350°c。 68 201034055 24.如申請專利範圍第22項所述之方法,其中各個該些 晶圓經加熱達該預定溫度、計約2分鐘至約6分鐘之一 持續時間。 25. 如申請專利範圍第24項所述之方法,其中該持續時 間為約3分鐘至约5分鐘。 26. 如申請專利範圍第16項所述之方法,更包含在沉積 β 該第四材料層後,將各個該些晶圓傳送到一冷卻區域内。 27·如申請專利範圍第26項所述之方法,更包含於該冷 卻區域中冷卻各個該些晶圓至一預定溫度。 28. 如申請專利範圍第27項所述之方法,其中該預定溫 度為約18°C至約3(TC。 29. 如申請專利範圍第27項所述之方法,其中各個該些 晶圓經冷卻至該預定溫度、計約2分鐘至約6分鐘之一 持續時間。 其中該持續時 其中該些晶圓 30.如申請專利範圍第29項所述之方法 間為約3分鐘至約5分鐘。 31.如申請專利範圍第16項所述之方法 69 201034055 進入該第一沉積區域前,通過一加熱區域,且該些晶圓 離開該第四沉積區域後,通過一冷卻區域。 32_如申請專利範圍第31項所述之方法,其中該加熱區 -域、該第一沉積區域、該第二沉積區域、該第三沉積區 . 域與該第四沉積區域、和該冷卻區域共用一共同線性路 徑供該些晶圓沿著該沉積系統内的一方向連續且水平橫 越0Depositing a gallium arsenide buffer layer onto a first wafer in the first deposition region; depositing an sacrificial aluminum arsenide layer on the first wafer in the second deposition region while depositing the gallium arsenide a buffer layer is disposed on a second wafer in the first deposition region; the germanium-aluminum gallium passivation layer is deposited on the second circle in the third deposition region, and the sacrificial aluminum sacrificial layer is deposited Depositing a gallium arsenide buffer layer onto a third wafer in the first deposition region; depositing a gallium arsenide active layer to the fourth deposition On the first wafer in the region, the (4) deposition material is faintly fused (four) to the third deposition region = on the second wafer and simultaneously deposits the kunghuaming sacrificial layer into the first product region Flute=曰兰冲层...=: Simultaneous deposition of the deuteration graft onto a fourth wafer in the first % product area. 16. Forming a multilayer material during a process of a multi-layer process. A method of continuous chemical vapor phase. The method comprises: 66 201034055 continuously advancing a plurality of wafers through a deposition system, wherein the deposition system comprises a first deposition zone, a second deposition region, a third deposition region, and a fourth deposition region; a first material layer to a first crystal* circle in the first deposition region; &gt; a second material layer to Depositing the first material layer onto a winning second wafer in the first deposition region on the first wafer in the second deposition region; and stacking the second material layer to the third deposition region Depositing the second material layer onto the second wafer in the second deposition region simultaneously on the first wafer, and simultaneously depositing the first material layer to a third crystal in the first deposition region Depositing a fourth material layer onto the first wafer in the fourth deposition region while depositing the third material layer onto the second wafer in the third deposition region, and simultaneously depositing the Second material layer to the second On the third wafer zone • art product, while depositing the first material layer onto the wafer in a fourth deposition of the first region. 17. The method of claim 16, wherein the first material layer, the second material layer, the third material layer, and the fourth material layer have the same composition. 18. The method of claim 16, wherein the first material layer, the second material layer, the third material layer, and the fourth material layer 67 201034055 each have a different composition. 19. The method of claim a, wherein each of the first material layer, the second material layer, the third material layer, and the fourth material layer comprises an arsenic. 20. The method of claim 16, further comprising depositing a fifth material layer onto the first wafer in a fifth deposition region while depositing the fourth material layer to the fourth deposition Depositing the third material layer onto the third wafer in the third deposition region on the second wafer in the region, and simultaneously depositing the second material layer into the second deposition region Depositing the first material layer onto a fifth wafer in the first deposition region on the fourth wafer. 21. The method of claim 16, further comprising heating each of the wafers to a predetermined temperature in a heated region before advancing into the first deposition zone. The method of claim 2, wherein the predetermined temperature is from about 50 ° C to about 750 ° C. 23. The method of claim 22, wherein the predetermined temperature is from about 100 °C to about 350 °C. The method of claim 22, wherein each of the wafers is heated to the predetermined temperature for a duration of from about 2 minutes to about 6 minutes. 25. The method of claim 24, wherein the duration is from about 3 minutes to about 5 minutes. 26. The method of claim 16, further comprising transferring each of the wafers into a cooling zone after depositing the fourth material layer. 27. The method of claim 26, further comprising cooling the plurality of wafers to a predetermined temperature in the cooling zone. 28. The method of claim 27, wherein the predetermined temperature is from about 18 ° C to about 3 (TC. 29. The method of claim 27, wherein each of the wafers is Cooling to the predetermined temperature, for a duration of from about 2 minutes to about 6 minutes, wherein the wafers are 30. The method described in claim 29 is about 3 minutes to about 5 minutes. 31. The method 69, 201034055, as described in claim 16 of the patent application, passes through a heating zone before entering the first deposition zone, and the wafers pass through a cooling zone after leaving the fourth deposition zone. The method of claim 31, wherein the heating zone-domain, the first deposition zone, the second deposition zone, the third deposition zone, the fourth deposition zone, and the cooling zone share a a common linear path for the wafers to continually and horizontally traverse along a direction within the deposition system 7070
TW098134514A 2008-10-10 2009-10-12 Continuous feed chemical vapor deposition TW201034055A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10428808P 2008-10-10 2008-10-10

Publications (1)

Publication Number Publication Date
TW201034055A true TW201034055A (en) 2010-09-16

Family

ID=42101256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098134514A TW201034055A (en) 2008-10-10 2009-10-12 Continuous feed chemical vapor deposition

Country Status (6)

Country Link
US (1) US8008174B2 (en)
EP (1) EP2351069A4 (en)
KR (1) KR20110069852A (en)
CN (1) CN102246273A (en)
TW (1) TW201034055A (en)
WO (1) WO2010042927A2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212591A1 (en) * 2008-05-30 2010-08-26 Alta Devices, Inc. Reactor lid assembly for vapor deposition
US9169554B2 (en) * 2008-05-30 2015-10-27 Alta Devices, Inc. Wafer carrier track
EP2281300A4 (en) 2008-05-30 2013-07-17 Alta Devices Inc Methods and apparatus for a chemical vapor deposition reactor
US8852696B2 (en) * 2008-05-30 2014-10-07 Alta Devices, Inc. Method for vapor deposition
US20100206229A1 (en) * 2008-05-30 2010-08-19 Alta Devices, Inc. Vapor deposition reactor system
US20100209082A1 (en) * 2008-05-30 2010-08-19 Alta Devices, Inc. Heating lamp system
US8859042B2 (en) * 2008-05-30 2014-10-14 Alta Devices, Inc. Methods for heating with lamps
EP2359392A2 (en) * 2008-10-10 2011-08-24 Alta Devices, Inc. Concentric showerhead for vapor deposition
JP2012521095A (en) * 2009-03-16 2012-09-10 アルタ デバイセズ,インコーポレイテッド Heating lamp system and method
US9127364B2 (en) 2009-10-28 2015-09-08 Alta Devices, Inc. Reactor clean
US10259206B2 (en) * 2010-03-02 2019-04-16 Alta Devices, Inc. Epitaxial lift off systems and methods
US8865259B2 (en) * 2010-04-26 2014-10-21 Singulus Mocvd Gmbh I.Gr. Method and system for inline chemical vapor deposition
US20120225206A1 (en) * 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
JP2014523479A (en) * 2011-06-09 2014-09-11 シンギュラス エムオーシーヴィディー ゲーエムベーハー イー.ゲール. In-line chemical vapor deposition method and system
US20120318457A1 (en) * 2011-06-17 2012-12-20 Son Nguyen Materials and coatings for a showerhead in a processing system
US9994936B2 (en) 2011-08-15 2018-06-12 Alta Devices, Inc. Off-axis epitaxial lift off process
US9644268B2 (en) 2011-08-31 2017-05-09 Alta Devices, Inc. Thermal bridge for chemical vapor deposition reactors
US10066297B2 (en) 2011-08-31 2018-09-04 Alta Devices, Inc. Tiled showerhead for a semiconductor chemical vapor deposition reactor
US9212422B2 (en) 2011-08-31 2015-12-15 Alta Devices, Inc. CVD reactor with gas flow virtual walls
US9175393B1 (en) 2011-08-31 2015-11-03 Alta Devices, Inc. Tiled showerhead for a semiconductor chemical vapor deposition reactor
EP2839052A4 (en) * 2012-04-19 2015-06-10 Intevac Inc DOUBLE MASK ARRANGEMENT FOR MANUFACTURING SOLAR CELL
MY170824A (en) 2012-04-26 2019-09-04 Intevac Inc System architecture for vacuum processing
US10062600B2 (en) 2012-04-26 2018-08-28 Intevac, Inc. System and method for bi-facial processing of substrates
US9267205B1 (en) 2012-05-30 2016-02-23 Alta Devices, Inc. Fastener system for supporting a liner plate in a gas showerhead reactor
US9105286B2 (en) 2013-07-30 2015-08-11 HGST Netherlands B.V. Method using epitaxial transfer to integrate HAMR photonic integrated circuit (PIC) into recording head wafer
SG11201700675UA (en) 2014-08-05 2017-02-27 Intevac Inc Implant masking and alignment
JP6968701B2 (en) 2015-05-02 2021-11-17 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated A method for depositing a dielectric thin film with a low dielectric constant and a low wet etching rate.
US10932323B2 (en) 2015-08-03 2021-02-23 Alta Devices, Inc. Reflector and susceptor assembly for chemical vapor deposition reactor
JP7437186B2 (en) * 2020-02-26 2024-02-22 Jswアクティナシステム株式会社 Levitation conveyance device and laser processing device
CN113422290B (en) * 2021-08-24 2024-05-14 度亘激光技术(苏州)有限公司 Method and apparatus for passivating semiconductor structure
CN116936421B (en) * 2023-09-15 2023-12-01 上海陛通半导体能源科技股份有限公司 Wafer production equipment and wafer production process

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993533A (en) * 1975-04-09 1976-11-23 Carnegie-Mellon University Method for making semiconductors for solar cells
DE3177317T2 (en) * 1980-04-10 1999-02-25 Massachusetts Institute Of Technology, Cambridge, Mass. Process for the production of sheets of crystalline material
US4445965A (en) * 1980-12-01 1984-05-01 Carnegie-Mellon University Method for making thin film cadmium telluride and related semiconductors for solar cells
US4846931A (en) * 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
US4883561A (en) * 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
US5074736A (en) * 1988-12-20 1991-12-24 Texas Instruments Incorporated Semiconductor wafer carrier design
US5073230A (en) * 1990-04-17 1991-12-17 Arizona Board Of Regents Acting On Behalf Of Arizona State University Means and methods of lifting and relocating an epitaxial device layer
US5122852A (en) * 1990-04-23 1992-06-16 Bell Communications Research, Inc. Grafted-crystal-film integrated optics and optoelectronic devices
US5201996A (en) * 1990-04-30 1993-04-13 Bell Communications Research, Inc. Patterning method for epitaxial lift-off processing
US5124278A (en) * 1990-09-21 1992-06-23 Air Products And Chemicals, Inc. Amino replacements for arsine, antimony and phosphine
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5528397A (en) * 1991-12-03 1996-06-18 Kopin Corporation Single crystal silicon transistors for display panels
US5258325A (en) * 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
US5256562A (en) * 1990-12-31 1993-10-26 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
US5221637A (en) * 1991-05-31 1993-06-22 Interuniversitair Micro Elektronica Centrum Vzw Mesa release and deposition (MRD) method for stress relief in heteroepitaxially grown GaAs on Si
US5277749A (en) * 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
US5827751A (en) * 1991-12-06 1998-10-27 Picogiga Societe Anonyme Method of making semiconductor components, in particular on GaAs of InP, with the substrate being recovered chemically
US5286335A (en) * 1992-04-08 1994-02-15 Georgia Tech Research Corporation Processes for lift-off and deposition of thin film materials
US5465009A (en) * 1992-04-08 1995-11-07 Georgia Tech Research Corporation Processes and apparatus for lift-off and bonding of materials and devices
US5401983A (en) * 1992-04-08 1995-03-28 Georgia Tech Research Corporation Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
FR2690279B1 (en) * 1992-04-15 1997-10-03 Picogiga Sa MULTISPECTRAL PHOTOVOLTAUIC COMPONENT.
FR2690278A1 (en) * 1992-04-15 1993-10-22 Picogiga Sa Multispectral photovoltaic component with cell stack, and production method.
JP3218414B2 (en) * 1992-07-15 2001-10-15 キヤノン株式会社 Micro tip, method of manufacturing the same, probe unit and information processing apparatus using the micro tip
US5276345A (en) * 1992-10-30 1994-01-04 California Institute Of Technology Composite GaAs-on-quartz substrate for integration of millimeter-wave passive and active device circuitry
US5344517A (en) * 1993-04-22 1994-09-06 Bandgap Technology Corporation Method for lift-off of epitaxial layers and applications thereof
US5528719A (en) * 1993-10-26 1996-06-18 Sumitomo Metal Mining Company Limited Optical fiber guide structure and method of fabricating same
GB9401770D0 (en) * 1994-01-31 1994-03-23 Philips Electronics Uk Ltd Manufacture of electronic devices comprising thin-film circuits
US5411592A (en) * 1994-06-06 1995-05-02 Ovonic Battery Company, Inc. Apparatus for deposition of thin-film, solid state batteries
US5641381A (en) * 1995-03-27 1997-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preferentially etched epitaxial liftoff of InP material
DE19640594B4 (en) * 1996-10-01 2016-08-04 Osram Gmbh module
US6146979A (en) * 1997-05-12 2000-11-14 Silicon Genesis Corporation Pressurized microbubble thin film separation process using a reusable substrate
US6291313B1 (en) * 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
US6033974A (en) * 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US6548382B1 (en) * 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
DE19803013B4 (en) * 1998-01-27 2005-02-03 Robert Bosch Gmbh A method for detaching an epitaxial layer or a layer system and subsequent application to an alternative support
US6346459B1 (en) * 1999-02-05 2002-02-12 Silicon Wafer Technologies, Inc. Process for lift off and transfer of semiconductor devices onto an alien substrate
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6387829B1 (en) * 1999-06-18 2002-05-14 Silicon Wafer Technologies, Inc. Separation process for silicon-on-insulator wafer fabrication
FR2795865B1 (en) * 1999-06-30 2001-08-17 Commissariat Energie Atomique METHOD FOR MAKING A THIN FILM USING PRESSURIZATION
US6263941B1 (en) * 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
US6500732B1 (en) * 1999-08-10 2002-12-31 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
EP1939932A1 (en) * 1999-08-10 2008-07-02 Silicon Genesis Corporation A substrate comprising a stressed silicon germanium cleave layer
US6221740B1 (en) * 1999-08-10 2001-04-24 Silicon Genesis Corporation Substrate cleaving tool and method
US6214733B1 (en) * 1999-11-17 2001-04-10 Elo Technologies, Inc. Process for lift off and handling of thin film materials
US6352909B1 (en) * 2000-01-06 2002-03-05 Silicon Wafer Technologies, Inc. Process for lift-off of a layer from a substrate
JP2001274528A (en) * 2000-01-21 2001-10-05 Fujitsu Ltd Method of transferring thin film devices between substrates
US6287891B1 (en) * 2000-04-05 2001-09-11 Hrl Laboratories, Llc Method for transferring semiconductor device layers to different substrates
NL1016431C2 (en) * 2000-10-18 2002-04-22 Univ Nijmegen Method for separating a film and a substrate.
US7045878B2 (en) * 2001-05-18 2006-05-16 Reveo, Inc. Selectively bonded thin film layer and substrate layer for processing of useful devices
US7198671B2 (en) * 2001-07-11 2007-04-03 Matsushita Electric Industrial Co., Ltd. Layered substrates for epitaxial processing, and device
US7163826B2 (en) * 2001-09-12 2007-01-16 Reveo, Inc Method of fabricating multi layer devices on buried oxide layer substrates
US6953735B2 (en) * 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
JP2004047691A (en) * 2002-07-11 2004-02-12 Seiko Epson Corp Semiconductor device manufacturing method, electro-optical device, and electronic apparatus
US20060024442A1 (en) * 2003-05-19 2006-02-02 Ovshinsky Stanford R Deposition methods for the formation of polycrystalline materials on mobile substrates
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US20060073276A1 (en) * 2004-10-04 2006-04-06 Eric Antonissen Multi-zone atomic layer deposition apparatus and method
US7229901B2 (en) * 2004-12-16 2007-06-12 Wisconsin Alumni Research Foundation Fabrication of strained heterojunction structures
WO2006131316A1 (en) 2005-06-08 2006-12-14 Firecomms Limited Surface emitting optical devices
US7531470B2 (en) * 2005-09-27 2009-05-12 Advantech Global, Ltd Method and apparatus for electronic device manufacture using shadow masks
US7638410B2 (en) * 2005-10-03 2009-12-29 Los Alamos National Security, Llc Method of transferring strained semiconductor structure
US7153761B1 (en) * 2005-10-03 2006-12-26 Los Alamos National Security, Llc Method of transferring a thin crystalline semiconductor layer
EP2281300A4 (en) * 2008-05-30 2013-07-17 Alta Devices Inc Methods and apparatus for a chemical vapor deposition reactor
US9070764B2 (en) * 2008-05-30 2015-06-30 Alta Devices, Inc. Epitaxial lift off stack having a pre-curved handle and methods thereof

Also Published As

Publication number Publication date
US8008174B2 (en) 2011-08-30
CN102246273A (en) 2011-11-16
US20100120233A1 (en) 2010-05-13
KR20110069852A (en) 2011-06-23
WO2010042927A2 (en) 2010-04-15
EP2351069A2 (en) 2011-08-03
WO2010042927A3 (en) 2010-07-22
EP2351069A4 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
TW201034055A (en) Continuous feed chemical vapor deposition
TW201030178A (en) Concentric showerhead for vapor deposition
TWI476295B (en) Method and apparatus for a chemical vapor deposition reactor
JP5209022B2 (en) Method and apparatus for controlling deposit formation in a deposition system, and deposition system and method including them
TW201043727A (en) Wafer carrier track
TW201137160A (en) Heating lamp system and method of use
TW201145435A (en) Wafer carrier track
TW201247933A (en) Apparatus for deposition of materials on a substrate
TW201137946A (en) Vapor deposition reactor system
JP2004281836A (en) Semiconductor manufacturing equipment
US20110308463A1 (en) Chemical vapor deposition reactor with isolated sequential processing zones
EP1533834A1 (en) Vapor phase epitaxial apparatus and vapor phase epitaxial method
EP1533833A1 (en) Vapor phase epitaxy device
Luke et al. Lateral diffusion epitaxy (LDE) of single crystal silicon with downward facing substrate