TW201033983A - Temperature compensation method and driving method for liquid crystal display - Google Patents
Temperature compensation method and driving method for liquid crystal display Download PDFInfo
- Publication number
- TW201033983A TW201033983A TW98108037A TW98108037A TW201033983A TW 201033983 A TW201033983 A TW 201033983A TW 98108037 A TW98108037 A TW 98108037A TW 98108037 A TW98108037 A TW 98108037A TW 201033983 A TW201033983 A TW 201033983A
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- voltage
- display
- setting
- temperatures
- Prior art date
Links
Landscapes
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
Abstract
Description
201033983 . * 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種降低液晶顯示器閃爍的方法。本 發明特別是有關於一種對電壓進行溫度補償以降低液晶 顯示器閃爍的方法。 【先前技術】 液晶顯示器(LCD)具有低幅射、低耗量等優點,已逐 漸成為顯示器的主流。然而’因為操作特性,在液晶顯示 ❹ 器内部會有貫穿電壓(feedback voltage,下文以符號AVP 代表)的問題,導致畫面會閃爍(fllcker)。 第1A圖顯示現有液晶顯示器的一個畫素(pixe|)的架 構示意圖。第1B圖顯示第1A圖之波形圖。如第1A圖所 不,晝素100原則上包括:TFT電晶體Μ,液晶電容CLC 與儲存電容cs。此外,畫素100内尚有寄生電容Cgd。 基本上來說,貫穿電壓△ Vp是因為寄生電容所造成。Vg 代表施加至電晶體Μ的閘極電壓(也就是掃描信號),Vs ❹代表施加至電晶體Μ的源極_(也就是㈣信號),而Vd 代表電晶體Μ的没極電壓(也就是畫素電極的電屋)。 當閘極電壓Vg由高電位(Vgh)轉態為低電位_) 時’此電壓轉態會透過寄生電容Vgd而影響到汲極電壓 Vd,導致貫穿電壓Δνρ的產生。 如果共同電壓Vc〇m有變動時,亦會透過液晶電容 與/或儲存電容CS㈣響到祕電壓Vd致 電壓z\VP的產生。 如果在正半周期Τ+與負半周期丁_内的貫穿電壓 3 201033983 ,. l vv r\ △ VP有相同值,則閃爍比較不明顯。所以,在設計時, 通常會針對某一既定溫度(如室溫25°c〜35°c),來調整參 數,使得正半周期T+與負半周期T-内的貫穿電壓ΔνΡ 有相同值,以降低閃爍效應。 可是,發明人發現,貫穿電壓ΔνΡ與溫度有關。亦 即,如果溫度上升(或下降)時,貫穿電壓ΔνΡ也會隨之 上升(或下降)。所以,當溫度上升(或下降)時,將造成正半 周期Τ-與負半周期Τ-内的貫穿電壓ΔνΡ彼此不同,使得 閃爍效應更加嚴重。 故而,發明人針對此點,提出一種能補償閃爍效應的 方法,以降低因為溫度變動所導致的閃爍效應。 【發明内容】 本發明有關於一種顯示器的溫度補償方法,其能對共 同電壓或源極電壓進行溫度補償,以降低閃爍效應。 本發明有關於一種顯示器的驅動方法,其以經過溫度 補償後的共同電壓或源極電壓對顯示器驅動,以降低閃爍 效應。 根據本發明的一例提出一種顯示器的溫度補償方 法,包括:找出複數個溫度下的各別最佳溫度相關電壓; 找出該些最佳溫度相關電壓的一溫度變化趨勢;根據一既 定溫度,選出該些最佳溫度相關電壓之一為一基準點;以 及根據該溫度變化趨勢與該基準點,設定一溫度補償值, 以得到在其他溫度下的補償後溫度相關電壓。 根據本發明的另一例提出一種顯示器的驅動方法,包 括:找出複數個溫度下的各別最佳溫度相關電壓;找出該 201033983、 些最佳溫度相關電壓的一溫度變化趨勢;根據一既定溫 度’選出該些最佳溫度相關電壓之一為一基準點;根據該 溫度變化趨勢與該基準點,設定一溫度補償值,以得到在 其他溫度下的補償後溫度相關電壓;以及根據該補償後溫 度相關電壓’驅動該顯示器。 為讓本發明之上述内容能更明顯易懂,下文特舉實施 例,並配合所附圖式,作詳細說明如下: 【實施方式】 β 為補償因溫度變動所導致的閃爍效應,發明人首先找 出,在不同溫度下的各別最佳共同電壓Vcom。為此,發 明人經由實驗得到,在幾種溫度(25。〇、3(rc、35它、4〇 C、65C)下,不同的共同電壓值Vc〇m(〇 56V、〇 58V、 0.60V、0.62V、0.64V、〇 66v、〇 68V、〇 7〇ν、〇 72V、 〇_74V' 〇·76ν、0_78V、〇 8〇ν、〇 82ν)所對應的貫穿電壓 △Vp(以db值表示之)。此關係如下表1所示。 ---表1 Vcom 25〇C 30°C 35t 40°C 65〇C 0.56V -17.37db -18-8ldb _13_7db -11.53db -10.78db 0.58V -20.69db -2〇.82db -16.59db -13.19db -12.55db 0.60V -20.69db -22_25db --__ -18.65db -16.75db -16.03db 0.62V -24.92db -25.38db -20.70db -18.51db -17_71db 0.64V -27.50db -29.4Odb^ -23.11db -20.75db -19.80db 0.66V -27.50db -3〇.64db -26.09db -23.72db -25.90db 0.68V -32.55db -34.38db -29.64db -34.85db -22.60db 5 201033983 1 WHOH^tr/A. 0.70V -37.77db -36.43db -38.87db -38.61db -19.38db 0.72V -43.16db -43.78db -43.86db -38_46db -16.43db 0.74V -47.84db -48.20db -33.38db -32.45db -14.55db 0.76V -41.30db -40.56db -29.45db -28.14db -13.25db 0.78V -36.33db -34.86db -26.01db -24.51db -11_75db 0.80V -31.15db -31.39db -22.53db -21.43db -13.25db 0.82V -28.55db -28.71db -20.78db -20.12db -11.75db 由表1可看出,在不同溫度下,最佳共同電壓 Vcom(其對應到最小貫穿電壓AVP)可能不同,而且最佳共 同電壓Vcom向同一個方向偏移。也就是說,當溫度上升 時,最小貫穿電壓ΔνΡ有變大的趨勢,而最佳共同電壓 Vcom則有變小的趨勢;反之亦然。 在表1中,在溫度25°C下,最佳共同電壓Vcom為 0.74V,因其對應到最小貫穿電壓ΔνΡ(-47.84(^,以粗體 斜字加底線為標示);在溫度30°C下,最佳共同電壓Vcom 為0.74V,因其對應到最小貫穿電壓ΔνΡ(-48·2€Π3);在溫 度35°C下,最佳共同電壓Vcom為0.72V,因其對應到最 小貫穿電壓△VpH^Aedb);在溫度40°C下,最佳共同電 壓Vcom為0.70V,因其對應到最小貫穿電壓 △VP(-38.61db);在溫度65°C下,最佳共同電壓Vcom為 0.66V,因其對應到最小貫穿電壓ΔνΡ(-25.90ο1ΐ3)。 在找出最佳共同電壓Vcom的變化趨勢後,可以根據 此趨勢來設定對共同電壓Vcom的補償值。亦即,當找出 最佳共同電壓Vcom的變化趨勢後,可以先選定某一溫产 下的最佳共同電壓Vcom為基準點。接著,針對此基準點 進行補償,以得到在其他溫度下的補償後共同電麼 Vcom。接著’將補償後的共同電壓vcom施加至畫素, 以降低因溫度變動所導致的閃爍效應。 在本實施例中’對共同電壓Vcom的補償方式例如有 (1)利用驅動電路對共同電壓Vcom補償,以及(2)利用分 壓電路的方式對共同電壓Vcom補償值。當然,對共同電 ❹ 壓Vcom的補償方式並不只有這些’而且,本發明也不受 限於此。底下分別詳細描述之。 (1)利用驅動電路對共同電壓Vcom補償: 當利用驅動電路對共同電壓Vcom補償時,可預先找出多 條的溫度-電壓(V-T)曲線,以進行補償。第2圖顯示多條 的溫度-電壓(V-T)曲線,其中,橫轴是溫度(。〇而縱軸則是 共同電壓Vcom。 亦即’根據所找到的趨勢,可設定在不同溫度下的各 ® 別溫度_電壓(V-T)曲線的適當斜率。之後,根據此斜率來 補償共同電壓Vcom。比如,斜率包括:_imV/°C、-1.5mV/ °C ' -2mV/°c ' -2.5mV/〇c.....+1 mV/°C、+1.5mV/°C、 +2mV/°C、+2.5mV/°C、···。 通常來說,將常溫(如25。(:~35。〇下的最佳共同電壓 Vcom設為基準點,會得到比較好的補償效果。以溫度35 C為例’發明人認為,將斜率設為_彳mv/°c,即可改善因 為溫度變動所造成的閃爍效應。也就是,當斜率為_1mv/ C時,溫度每上升一度,共同電壓Vc〇m即會下降1mV ; 7 201033983 1 w明糾r/\ · 反之亦然。 以表1為例’由於在溫度35〇c下,最佳共同電壓Ve。巾 為0.72V。所以’在斜率為_1(11乂/。(:下’當溫度上升為36 °(:時,補償後的共同電壓vcom為 (0.72V+(-1mV)*1)=〇.719V。同理,在斜率為-ImV/t 下, 當溫度下降為34。(:時,補償後的共同電壓Vcom為 (0.72V+(-1mV)*-1)=〇.72lV。 計算補償後的共同電壓VC〇m的方式可利用韌體來 達成。或者是,可利用上述方式來計算出各溫度下的適當 補償後共同電壓Vcom,之後,將所得到的所有補償後共 同電壓Vcom填入LUT(查表)單元中。當偵測出[CD的目 前内部溫度後’利用此查表單元即可得到在此内部溫度下 的適當補償後共同電壓VeQm。 (2)利用分壓電路對共同電壓Vc〇m補償 如上述’在本實施例中,可以找出最佳共同電壓Vcom 相關於溫度變動的變化趨勢。所以,可以根據此趨勢,以 熱感應元件所組成的分壓電路來進行對共同電壓Vcom的 補償。熱感應兀件比如但不受限於’熱敏電阻(正溫度係數 電阻、負溫度係數電阻)、熱感應電晶體、熱感應感知器等。 由於溫度變化時,熱感應元件的阻抗值也會隨之改變,所 以可用於補償因溫度變動所導致的閃爍效應。透過適當設 计熱感應7G件的P且抗值變化與各熱感應元件的阻抗值比 例,利用熱感應兀件所級成的分壓電路可以模擬出上述的 斜率。如此-來’補償後的共同電壓v_也會相關於溫 度的變動。 以具體實施來說,當應用正溫度係數電阻與負溫度係 數電阻來組成分壓電路時,可將正溫度係數電阻串接於參 考電壓源(或是共同電壓Vcom)與輸出節點之間,而負溫 度係數電阻則串接於輸出節點與接地端之間。如此,由輸 出節點所輸出的電壓即是一個溫度相關電壓,此電壓可用 於補償共同電壓Vcom。 第3圖顯示根據本發明實施例的補償共同電壓的流 程圖。如第3圖所示,在步驟310中,找出各溫度下的最 ❹ 佳共同電壓Vcom。其細節可以參考上述說明,於此不重 述。 接著,在步驟320中,找出最佳共同電壓Vcom的溫 度變化趨勢。其細節可以參考上述說明,於此不重述。 接著,在步驟330中,選定某一既定溫度下的最佳共 同電壓Vcom為基準點。其細節可以參考上述說明,於此 不重述。 接著,在步驟340中,根據溫度變化趨勢與基準點, ❿ 設定溫度補償值,以補償共同電壓Vcom。其細節可以參 考上述說明,於此不重述。 據此,即可完成對共同電壓Vcom的補償。 此外,本實施例亦可用以補償源極電壓Vs。也就是 說,依上述方式來補償源極電壓Vs,使其與溫度相關。而 當補償源極電壓Vs時,可不補償共同電壓Vcom。或者 是,亦可補償源極電壓Vs與共同電壓Vcom,此皆在本發 明精神與範圍内。 綜上所述,雖然本發明已以實施例揭露如上,然其並 9 201033983 非用以限定本發明。本發明所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍内,當可作各種之更動 與潤飾。因此,本發明之保護範圍當視後附之申請專利範 圍所界定者為準。 【圖式簡單說明】 第1A圖顯示現有液晶顯示器的一個晝素(pixel)的架 構不意圖。 第1B圖顯示第1A圖之波形圖。 第2圖顯示根據本發明實施例的的溫度-電壓(V-T)曲 線圖。 第3圖顯示根據本發明實施例的補償共同電壓的流程 圖。 【主要元件符號說明】 100 :晝素 M : TFT電晶體201033983 . * VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of reducing flicker of a liquid crystal display. More particularly, the present invention relates to a method of temperature compensation of a voltage to reduce flicker of a liquid crystal display. [Prior Art] Liquid crystal displays (LCDs) have the advantages of low radiation, low consumption, and the like, and have gradually become the mainstream of displays. However, due to the operational characteristics, there is a problem that a feed voltage (represented by the symbol AVP) inside the liquid crystal display device causes the screen to flicker (fllcker). Fig. 1A is a view showing the structure of a pixel (pixe|) of the conventional liquid crystal display. Fig. 1B shows a waveform diagram of Fig. 1A. As shown in Fig. 1A, the halogen 100 includes, in principle, a TFT transistor, a liquid crystal capacitor CLC, and a storage capacitor cs. In addition, there is a parasitic capacitance Cgd in the pixel 100. Basically, the through voltage ΔVp is caused by parasitic capacitance. Vg represents the gate voltage applied to the transistor (ie, the scan signal), Vs ❹ represents the source applied to the transistor _ (ie, the (four) signal), and Vd represents the gate voltage of the transistor ( (ie, The electric house of the pixel electrode). When the gate voltage Vg transitions from a high potential (Vgh) to a low potential _), this voltage transition affects the drain voltage Vd through the parasitic capacitance Vgd, resulting in the generation of the through voltage Δνρ. If the common voltage Vc〇m changes, the liquid crystal capacitor and/or the storage capacitor CS (4) will also generate the voltage z\VP due to the secret voltage Vd. If the through voltages 3 201033983, .l vv r\ Δ VP in the positive half cycle Τ+ and the negative half cycle 有_ have the same value, the flicker is less obvious. Therefore, in design, the parameters are usually adjusted for a given temperature (such as room temperature 25 ° c ~ 35 ° c), so that the positive half cycle T + and the negative half cycle T - within the penetration voltage Δν Ρ have the same value, To reduce the flicker effect. However, the inventors have found that the through voltage ΔνΡ is related to temperature. That is, if the temperature rises (or falls), the through voltage ΔνΡ also rises (or falls). Therefore, when the temperature rises (or falls), the through-voltage ΔνΡ in the positive half cycle Τ- and the negative half cycle Τ- is different from each other, so that the flicker effect is more serious. Therefore, the inventors have proposed a method for compensating for the flicker effect in order to reduce the flicker effect due to temperature fluctuations. SUMMARY OF THE INVENTION The present invention is directed to a temperature compensation method for a display that is capable of temperature compensation of a common voltage or source voltage to reduce flicker effects. The present invention relates to a display driving method for driving a display with a temperature-compensated common voltage or source voltage to reduce a flicker effect. According to an example of the present invention, a temperature compensation method for a display includes: finding respective optimal temperature-related voltages at a plurality of temperatures; and finding a temperature change trend of the optimal temperature-related voltages; according to a predetermined temperature, One of the optimal temperature-related voltages is selected as a reference point; and a temperature compensation value is set according to the temperature change trend and the reference point to obtain a compensated temperature-dependent voltage at other temperatures. According to another example of the present invention, a driving method for a display includes: finding a respective optimal temperature-dependent voltage at a plurality of temperatures; and finding a temperature change trend of the optimal temperature-related voltage of the 201033983; Temperature 'select one of the optimal temperature-related voltages as a reference point; according to the temperature change trend and the reference point, set a temperature compensation value to obtain a compensated temperature-dependent voltage at other temperatures; and according to the compensation The post-temperature dependent voltage 'drives the display. In order to make the above-mentioned contents of the present invention more comprehensible, the following specific embodiments will be described in detail below with reference to the accompanying drawings: [Embodiment] β is to compensate for the flicker effect caused by temperature fluctuation, the inventor first Find out the best common voltage Vcom at different temperatures. To this end, the inventors obtained experimentally, at several temperatures (25. 〇, 3 (rc, 35 it, 4 〇 C, 65 C), different common voltage values Vc 〇 m (〇56V, 〇58V, 0.60V) Through-voltage ΔVp (in db value) corresponding to 0.62V, 0.64V, 〇66v, 〇68V, 〇7〇ν, 〇72V, 〇_74V' 〇·76ν, 0_78V, 〇8〇ν, 〇82ν) This relationship is shown in Table 1. --- Table 1 Vcom 25〇C 30°C 35t 40°C 65〇C 0.56V -17.37db -18-8ldb _13_7db -11.53db -10.78db 0.58V - 20.69db -2〇.82db -16.59db -13.19db -12.55db 0.60V -20.69db -22_25db --__ -18.65db -16.75db -16.03db 0.62V -24.92db -25.38db -20.70db -18.51db - 17_71db 0.64V -27.50db -29.4Odb^ -23.11db -20.75db -19.80db 0.66V -27.50db -3〇.64db -26.09db -23.72db -25.90db 0.68V -32.55db -34.38db -29.64db - 34.85db -22.60db 5 201033983 1 WHOH^tr/A. 0.70V -37.77db -36.43db -38.87db -38.61db -19.38db 0.72V -43.16db -43.78db -43.86db -38_46db -16.43db 0.74V - 47.84db -48.20db -33.38db -32.45db -14.55db 0.76V -41.30db -40.56db -29.45db -28.14db -13.2 5db 0.78V -36.33db -34.86db -26.01db -24.51db -11_75db 0.80V -31.15db -31.39db -22.53db -21.43db -13.25db 0.82V -28.55db -28.71db -20.78db -20.12db -11.75 As can be seen from Table 1, at the different temperatures, the optimum common voltage Vcom (which corresponds to the minimum through voltage AVP) may be different, and the optimum common voltage Vcom is shifted in the same direction. That is to say, when the temperature rises, the minimum through voltage ΔνΡ tends to become larger, and the optimum common voltage Vcom tends to become smaller; and vice versa. In Table 1, at a temperature of 25 ° C, the optimum common voltage Vcom is 0.74 V, which corresponds to the minimum through voltage Δν Ρ (-47.84 (^, indicated by the bold slanting and bottom line); at a temperature of 30 ° Under C, the best common voltage Vcom is 0.74V, which corresponds to the minimum through voltage ΔνΡ(-48·2€3); at 35°C, the optimal common voltage Vcom is 0.72V, which corresponds to the minimum Through voltage △VpH^Aedb); at a temperature of 40 ° C, the optimum common voltage Vcom is 0.70V, because it corresponds to the minimum through voltage ΔVP (-38.61db); at a temperature of 65 ° C, the best common voltage Vcom is 0.66V because it corresponds to the minimum through voltage ΔνΡ (-25.90ο1ΐ3). After finding the trend of the optimum common voltage Vcom, the compensation value for the common voltage Vcom can be set according to this trend. That is, after finding the trend of the best common voltage Vcom, the best common voltage Vcom of a certain temperature can be selected as the reference point. Next, compensate for this reference point to get the common power Vcom after compensation at other temperatures. Then, the compensated common voltage vcom is applied to the pixels to reduce the flicker effect caused by the temperature fluctuation. In the present embodiment, the compensation method for the common voltage Vcom is, for example, (1) compensating the common voltage Vcom by the drive circuit, and (2) compensating the common voltage Vcom by means of the voltage dividing circuit. Of course, the compensation for the common electric power Vcom is not limited to these. Moreover, the present invention is not limited thereto. They are described in detail below. (1) Compensation of the common voltage Vcom by the drive circuit: When the common circuit Vcom is compensated by the drive circuit, a plurality of temperature-voltage (V-T) curves can be found in advance to compensate. Figure 2 shows a number of temperature-voltage (VT) curves, where the horizontal axis is the temperature (. 〇 and the vertical axis is the common voltage Vcom. That is, according to the trend found, each can be set at different temperatures. ® The appropriate slope of the temperature_voltage (VT) curve. After that, the common voltage Vcom is compensated according to this slope. For example, the slope includes: _imV/°C, -1.5mV/ °C ' -2mV/°c ' -2.5mV /〇c.....+1 mV/°C, +1.5mV/°C, +2mV/°C, +2.5mV/°C,···. Normally, it will be at room temperature (such as 25.) :~35. The best common voltage Vcom under the arm is set as the reference point, and a better compensation effect will be obtained. Taking the temperature 35 C as an example, the inventor believes that the slope is set to _彳mv/°c, which can be improved. Because of the flicker effect caused by temperature fluctuations, that is, when the slope is _1mv / C, the common voltage Vc 〇 m will drop by 1mV for every degree of temperature rise; 7 201033983 1 w Ming r r / \ · vice versa. Take Table 1 as an example 'Because the temperature is 35〇c, the best common voltage Ve. The towel is 0.72V. So 'the slope is _1 (11乂 /. (: lower ' when the temperature rises to 36 ° (: After compensation The voltage vcom is (0.72V+(-1mV)*1)=〇.719V. Similarly, when the slope is -ImV/t, when the temperature drops to 34. (:, the compensated common voltage Vcom is (0.72V+) (-1mV)*-1)=〇.72lV. The method of calculating the compensated common voltage VC〇m can be achieved by using a firmware. Alternatively, the above-mentioned method can be used to calculate the appropriate compensated common voltage at each temperature. Vcom, after that, all the compensated common voltage Vcom obtained is filled into the LUT (Check Table) unit. When the [the current internal temperature of the CD is detected], the internal unit temperature can be obtained by using the look-up unit. The compensation common voltage VeQm is appropriately compensated. (2) The common voltage Vc〇m is compensated by the voltage dividing circuit as described above. In the present embodiment, the trend of the optimum common voltage Vcom related to the temperature fluctuation can be found. According to this trend, the common voltage Vcom is compensated by a voltage dividing circuit composed of a heat-sensitive element. The heat-sensitive element is, for example but not limited to, a thermistor (positive temperature coefficient resistance, negative temperature coefficient resistance), Thermal induction transistors, thermal sensing sensors, etc. due to temperature changes When the voltage is changed, the impedance value of the heat-sensitive element changes accordingly, so it can be used to compensate for the flicker effect caused by temperature fluctuations. By properly designing the P of the thermally induced 7G piece and the value of the resistance and the impedance value of each heat-sensitive element Proportion, the voltage divider circuit formed by the thermal sensing element can simulate the above slope. So - the 'common voltage v_ after compensation is also related to the temperature variation. In the specific implementation, when the application is positive When the temperature coefficient resistor and the negative temperature coefficient resistor are used to form the voltage dividing circuit, the positive temperature coefficient resistor can be connected in series between the reference voltage source (or the common voltage Vcom) and the output node, and the negative temperature coefficient resistor is connected in series. Between the output node and the ground. Thus, the voltage output by the output node is a temperature dependent voltage that can be used to compensate for the common voltage Vcom. Figure 3 shows a flow chart for compensating a common voltage in accordance with an embodiment of the present invention. As shown in Fig. 3, in step 310, the best common voltage Vcom at each temperature is found. The details can be referred to the above description, and will not be repeated here. Next, in step 320, a temperature change tendency of the optimum common voltage Vcom is found. The details can be referred to the above description, and will not be repeated here. Next, in step 330, the optimum common voltage Vcom at a predetermined temperature is selected as a reference point. The details can be referred to the above description, and will not be repeated here. Next, in step 340, the temperature compensation value is set according to the temperature change trend and the reference point, 以 to compensate the common voltage Vcom. The details can be referred to the above description and will not be repeated here. According to this, the compensation of the common voltage Vcom can be completed. In addition, this embodiment can also be used to compensate the source voltage Vs. That is, the source voltage Vs is compensated in the above manner to make it temperature dependent. When the source voltage Vs is compensated, the common voltage Vcom may not be compensated. Alternatively, the source voltage Vs and the common voltage Vcom may be compensated, which are within the spirit and scope of the present invention. In summary, although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Simple description of the drawing] Fig. 1A shows a structure of a pixel of the conventional liquid crystal display. Fig. 1B shows a waveform diagram of Fig. 1A. Fig. 2 shows a temperature-voltage (V-T) graph according to an embodiment of the present invention. Figure 3 is a flow chart showing the compensation of a common voltage in accordance with an embodiment of the present invention. [Main component symbol description] 100 : Alizarin M : TFT transistor
Clc ·液晶電容 cs:儲存電容Clc ·Liquid Crystal Capacitor cs: Storage Capacitor
Cgd :儲存電容 △VP :貫穿電壓Cgd : storage capacitor △ VP : through voltage
Vg :閘極電壓Vg: gate voltage
Vs :源極電壓Vs : source voltage
Vd :汲極電壓Vd: bungee voltage
Vcom :共同電壓Vcom: common voltage
Vgh :閘極電壓的高電位Vgh: high potential of the gate voltage
Vgl :閘極電壓的低電位 201033983 τ+ :正半周期 Τ-:負半周期 310〜340 :步驟Vgl: low potential of the gate voltage 201033983 τ+ : positive half cycle Τ-: negative half cycle 310~340 : steps
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98108037A TWI416483B (en) | 2009-03-12 | 2009-03-12 | Temperature compensation method and driving method for liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98108037A TWI416483B (en) | 2009-03-12 | 2009-03-12 | Temperature compensation method and driving method for liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201033983A true TW201033983A (en) | 2010-09-16 |
TWI416483B TWI416483B (en) | 2013-11-21 |
Family
ID=44855374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98108037A TWI416483B (en) | 2009-03-12 | 2009-03-12 | Temperature compensation method and driving method for liquid crystal display |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI416483B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI336876B (en) * | 2004-11-10 | 2011-02-01 | Himax Tech Inc | Data driving system and display having adjustable common voltage |
JP2007017577A (en) * | 2005-07-06 | 2007-01-25 | Sanyo Electric Co Ltd | Liquid crystal display device |
CN1963907A (en) * | 2005-11-10 | 2007-05-16 | 昆达电脑科技(昆山)有限公司 | Temperature compensating circuit of LCD element |
JP2009025548A (en) * | 2007-07-19 | 2009-02-05 | Sharp Corp | Liquid crystal display device |
US20090040167A1 (en) * | 2007-08-06 | 2009-02-12 | Wein-Town Sun | Programmable nonvolatile memory embedded in a timing controller for storing lookup tables |
-
2009
- 2009-03-12 TW TW98108037A patent/TWI416483B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI416483B (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4069648B2 (en) | Semiconductor device and display driving device | |
CN107799049B (en) | display device | |
US8248398B2 (en) | Device and method for driving liquid crystal display device | |
CN103794183B (en) | For driving equipment and the method for liquid crystal indicator | |
CN105590595B (en) | Display device and method of driving display device | |
JP4346636B2 (en) | Liquid crystal display | |
US8847869B2 (en) | Liquid crystal display device and method for driving the same | |
WO2013181907A1 (en) | Active matrix display panel driving method and apparatus, and display | |
CN109949757B (en) | Scanning signal compensation method, scanning signal compensation circuit and display | |
JP2000147460A (en) | Liquid crystal display device having common voltages different from each other | |
TWI433088B (en) | Display and driving method | |
CN102201212A (en) | Liquid crystal display device | |
CN109949758B (en) | Scanning signal compensation method and device based on grid drive circuit | |
JP2009025804A (en) | Display device and its driving method | |
CN105304049B (en) | A kind of liquid crystal display device and its crosstalk defect control method | |
JP3068465B2 (en) | Liquid crystal display | |
CN101377914A (en) | Display apparatus and display method | |
US9934753B2 (en) | Display device including voltage limiter and driving method thereof | |
WO2018149124A1 (en) | Temperature sensor, array substrate, display device, and voltage adjustment method | |
KR20100074858A (en) | Liquid crystal display device | |
TW201033983A (en) | Temperature compensation method and driving method for liquid crystal display | |
CN202217488U (en) | Temperature compensation circuit for voltage of common electrode and display device applying same | |
TWI342004B (en) | Active matrix liquid crystal display devices | |
KR20160083347A (en) | Power supply circuit and liquid crystal display comprising the same | |
JP2009025548A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |