[go: up one dir, main page]

TW201033983A - Temperature compensation method and driving method for liquid crystal display - Google Patents

Temperature compensation method and driving method for liquid crystal display Download PDF

Info

Publication number
TW201033983A
TW201033983A TW98108037A TW98108037A TW201033983A TW 201033983 A TW201033983 A TW 201033983A TW 98108037 A TW98108037 A TW 98108037A TW 98108037 A TW98108037 A TW 98108037A TW 201033983 A TW201033983 A TW 201033983A
Authority
TW
Taiwan
Prior art keywords
temperature
voltage
display
setting
temperatures
Prior art date
Application number
TW98108037A
Other languages
Chinese (zh)
Other versions
TWI416483B (en
Inventor
Lin Lin
Wen-Hung Wang
Kun-Feng Tsou
Original Assignee
Wintek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintek Corp filed Critical Wintek Corp
Priority to TW98108037A priority Critical patent/TWI416483B/en
Publication of TW201033983A publication Critical patent/TW201033983A/en
Application granted granted Critical
Publication of TWI416483B publication Critical patent/TWI416483B/en

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

In methods according to the invention, for reducing flicker of a display apparatus, respective best temperature-related voltages under several temperatures are found. Then, a temperature variation trend for the best temperature-related voltages is determined. Then, one of the best temperature-related voltages is chosen as a reference. Based on the temperature variation trend and the reference, a temperature compensation value is set to obtain compensated temperature-related voltages under other temperatures. Further, the display apparatus is driven based on the compensated temperature-related voltages.

Description

201033983 . * 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種降低液晶顯示器閃爍的方法。本 發明特別是有關於一種對電壓進行溫度補償以降低液晶 顯示器閃爍的方法。 【先前技術】 液晶顯示器(LCD)具有低幅射、低耗量等優點,已逐 漸成為顯示器的主流。然而’因為操作特性,在液晶顯示 ❹ 器内部會有貫穿電壓(feedback voltage,下文以符號AVP 代表)的問題,導致畫面會閃爍(fllcker)。 第1A圖顯示現有液晶顯示器的一個畫素(pixe|)的架 構示意圖。第1B圖顯示第1A圖之波形圖。如第1A圖所 不,晝素100原則上包括:TFT電晶體Μ,液晶電容CLC 與儲存電容cs。此外,畫素100内尚有寄生電容Cgd。 基本上來說,貫穿電壓△ Vp是因為寄生電容所造成。Vg 代表施加至電晶體Μ的閘極電壓(也就是掃描信號),Vs ❹代表施加至電晶體Μ的源極_(也就是㈣信號),而Vd 代表電晶體Μ的没極電壓(也就是畫素電極的電屋)。 當閘極電壓Vg由高電位(Vgh)轉態為低電位_) 時’此電壓轉態會透過寄生電容Vgd而影響到汲極電壓 Vd,導致貫穿電壓Δνρ的產生。 如果共同電壓Vc〇m有變動時,亦會透過液晶電容 與/或儲存電容CS㈣響到祕電壓Vd致 電壓z\VP的產生。 如果在正半周期Τ+與負半周期丁_内的貫穿電壓 3 201033983 ,. l vv r\ △ VP有相同值,則閃爍比較不明顯。所以,在設計時, 通常會針對某一既定溫度(如室溫25°c〜35°c),來調整參 數,使得正半周期T+與負半周期T-内的貫穿電壓ΔνΡ 有相同值,以降低閃爍效應。 可是,發明人發現,貫穿電壓ΔνΡ與溫度有關。亦 即,如果溫度上升(或下降)時,貫穿電壓ΔνΡ也會隨之 上升(或下降)。所以,當溫度上升(或下降)時,將造成正半 周期Τ-與負半周期Τ-内的貫穿電壓ΔνΡ彼此不同,使得 閃爍效應更加嚴重。 故而,發明人針對此點,提出一種能補償閃爍效應的 方法,以降低因為溫度變動所導致的閃爍效應。 【發明内容】 本發明有關於一種顯示器的溫度補償方法,其能對共 同電壓或源極電壓進行溫度補償,以降低閃爍效應。 本發明有關於一種顯示器的驅動方法,其以經過溫度 補償後的共同電壓或源極電壓對顯示器驅動,以降低閃爍 效應。 根據本發明的一例提出一種顯示器的溫度補償方 法,包括:找出複數個溫度下的各別最佳溫度相關電壓; 找出該些最佳溫度相關電壓的一溫度變化趨勢;根據一既 定溫度,選出該些最佳溫度相關電壓之一為一基準點;以 及根據該溫度變化趨勢與該基準點,設定一溫度補償值, 以得到在其他溫度下的補償後溫度相關電壓。 根據本發明的另一例提出一種顯示器的驅動方法,包 括:找出複數個溫度下的各別最佳溫度相關電壓;找出該 201033983、 些最佳溫度相關電壓的一溫度變化趨勢;根據一既定溫 度’選出該些最佳溫度相關電壓之一為一基準點;根據該 溫度變化趨勢與該基準點,設定一溫度補償值,以得到在 其他溫度下的補償後溫度相關電壓;以及根據該補償後溫 度相關電壓’驅動該顯示器。 為讓本發明之上述内容能更明顯易懂,下文特舉實施 例,並配合所附圖式,作詳細說明如下: 【實施方式】 β 為補償因溫度變動所導致的閃爍效應,發明人首先找 出,在不同溫度下的各別最佳共同電壓Vcom。為此,發 明人經由實驗得到,在幾種溫度(25。〇、3(rc、35它、4〇 C、65C)下,不同的共同電壓值Vc〇m(〇 56V、〇 58V、 0.60V、0.62V、0.64V、〇 66v、〇 68V、〇 7〇ν、〇 72V、 〇_74V' 〇·76ν、0_78V、〇 8〇ν、〇 82ν)所對應的貫穿電壓 △Vp(以db值表示之)。此關係如下表1所示。 ---表1 Vcom 25〇C 30°C 35t 40°C 65〇C 0.56V -17.37db -18-8ldb _13_7db -11.53db -10.78db 0.58V -20.69db -2〇.82db -16.59db -13.19db -12.55db 0.60V -20.69db -22_25db --__ -18.65db -16.75db -16.03db 0.62V -24.92db -25.38db -20.70db -18.51db -17_71db 0.64V -27.50db -29.4Odb^ -23.11db -20.75db -19.80db 0.66V -27.50db -3〇.64db -26.09db -23.72db -25.90db 0.68V -32.55db -34.38db -29.64db -34.85db -22.60db 5 201033983 1 WHOH^tr/A. 0.70V -37.77db -36.43db -38.87db -38.61db -19.38db 0.72V -43.16db -43.78db -43.86db -38_46db -16.43db 0.74V -47.84db -48.20db -33.38db -32.45db -14.55db 0.76V -41.30db -40.56db -29.45db -28.14db -13.25db 0.78V -36.33db -34.86db -26.01db -24.51db -11_75db 0.80V -31.15db -31.39db -22.53db -21.43db -13.25db 0.82V -28.55db -28.71db -20.78db -20.12db -11.75db 由表1可看出,在不同溫度下,最佳共同電壓 Vcom(其對應到最小貫穿電壓AVP)可能不同,而且最佳共 同電壓Vcom向同一個方向偏移。也就是說,當溫度上升 時,最小貫穿電壓ΔνΡ有變大的趨勢,而最佳共同電壓 Vcom則有變小的趨勢;反之亦然。 在表1中,在溫度25°C下,最佳共同電壓Vcom為 0.74V,因其對應到最小貫穿電壓ΔνΡ(-47.84(^,以粗體 斜字加底線為標示);在溫度30°C下,最佳共同電壓Vcom 為0.74V,因其對應到最小貫穿電壓ΔνΡ(-48·2€Π3);在溫 度35°C下,最佳共同電壓Vcom為0.72V,因其對應到最 小貫穿電壓△VpH^Aedb);在溫度40°C下,最佳共同電 壓Vcom為0.70V,因其對應到最小貫穿電壓 △VP(-38.61db);在溫度65°C下,最佳共同電壓Vcom為 0.66V,因其對應到最小貫穿電壓ΔνΡ(-25.90ο1ΐ3)。 在找出最佳共同電壓Vcom的變化趨勢後,可以根據 此趨勢來設定對共同電壓Vcom的補償值。亦即,當找出 最佳共同電壓Vcom的變化趨勢後,可以先選定某一溫产 下的最佳共同電壓Vcom為基準點。接著,針對此基準點 進行補償,以得到在其他溫度下的補償後共同電麼 Vcom。接著’將補償後的共同電壓vcom施加至畫素, 以降低因溫度變動所導致的閃爍效應。 在本實施例中’對共同電壓Vcom的補償方式例如有 (1)利用驅動電路對共同電壓Vcom補償,以及(2)利用分 壓電路的方式對共同電壓Vcom補償值。當然,對共同電 ❹ 壓Vcom的補償方式並不只有這些’而且,本發明也不受 限於此。底下分別詳細描述之。 (1)利用驅動電路對共同電壓Vcom補償: 當利用驅動電路對共同電壓Vcom補償時,可預先找出多 條的溫度-電壓(V-T)曲線,以進行補償。第2圖顯示多條 的溫度-電壓(V-T)曲線,其中,橫轴是溫度(。〇而縱軸則是 共同電壓Vcom。 亦即’根據所找到的趨勢,可設定在不同溫度下的各 ® 別溫度_電壓(V-T)曲線的適當斜率。之後,根據此斜率來 補償共同電壓Vcom。比如,斜率包括:_imV/°C、-1.5mV/ °C ' -2mV/°c ' -2.5mV/〇c.....+1 mV/°C、+1.5mV/°C、 +2mV/°C、+2.5mV/°C、···。 通常來說,將常溫(如25。(:~35。〇下的最佳共同電壓 Vcom設為基準點,會得到比較好的補償效果。以溫度35 C為例’發明人認為,將斜率設為_彳mv/°c,即可改善因 為溫度變動所造成的閃爍效應。也就是,當斜率為_1mv/ C時,溫度每上升一度,共同電壓Vc〇m即會下降1mV ; 7 201033983 1 w明糾r/\ · 反之亦然。 以表1為例’由於在溫度35〇c下,最佳共同電壓Ve。巾 為0.72V。所以’在斜率為_1(11乂/。(:下’當溫度上升為36 °(:時,補償後的共同電壓vcom為 (0.72V+(-1mV)*1)=〇.719V。同理,在斜率為-ImV/t 下, 當溫度下降為34。(:時,補償後的共同電壓Vcom為 (0.72V+(-1mV)*-1)=〇.72lV。 計算補償後的共同電壓VC〇m的方式可利用韌體來 達成。或者是,可利用上述方式來計算出各溫度下的適當 補償後共同電壓Vcom,之後,將所得到的所有補償後共 同電壓Vcom填入LUT(查表)單元中。當偵測出[CD的目 前内部溫度後’利用此查表單元即可得到在此内部溫度下 的適當補償後共同電壓VeQm。 (2)利用分壓電路對共同電壓Vc〇m補償 如上述’在本實施例中,可以找出最佳共同電壓Vcom 相關於溫度變動的變化趨勢。所以,可以根據此趨勢,以 熱感應元件所組成的分壓電路來進行對共同電壓Vcom的 補償。熱感應兀件比如但不受限於’熱敏電阻(正溫度係數 電阻、負溫度係數電阻)、熱感應電晶體、熱感應感知器等。 由於溫度變化時,熱感應元件的阻抗值也會隨之改變,所 以可用於補償因溫度變動所導致的閃爍效應。透過適當設 计熱感應7G件的P且抗值變化與各熱感應元件的阻抗值比 例,利用熱感應兀件所級成的分壓電路可以模擬出上述的 斜率。如此-來’補償後的共同電壓v_也會相關於溫 度的變動。 以具體實施來說,當應用正溫度係數電阻與負溫度係 數電阻來組成分壓電路時,可將正溫度係數電阻串接於參 考電壓源(或是共同電壓Vcom)與輸出節點之間,而負溫 度係數電阻則串接於輸出節點與接地端之間。如此,由輸 出節點所輸出的電壓即是一個溫度相關電壓,此電壓可用 於補償共同電壓Vcom。 第3圖顯示根據本發明實施例的補償共同電壓的流 程圖。如第3圖所示,在步驟310中,找出各溫度下的最 ❹ 佳共同電壓Vcom。其細節可以參考上述說明,於此不重 述。 接著,在步驟320中,找出最佳共同電壓Vcom的溫 度變化趨勢。其細節可以參考上述說明,於此不重述。 接著,在步驟330中,選定某一既定溫度下的最佳共 同電壓Vcom為基準點。其細節可以參考上述說明,於此 不重述。 接著,在步驟340中,根據溫度變化趨勢與基準點, ❿ 設定溫度補償值,以補償共同電壓Vcom。其細節可以參 考上述說明,於此不重述。 據此,即可完成對共同電壓Vcom的補償。 此外,本實施例亦可用以補償源極電壓Vs。也就是 說,依上述方式來補償源極電壓Vs,使其與溫度相關。而 當補償源極電壓Vs時,可不補償共同電壓Vcom。或者 是,亦可補償源極電壓Vs與共同電壓Vcom,此皆在本發 明精神與範圍内。 綜上所述,雖然本發明已以實施例揭露如上,然其並 9 201033983 非用以限定本發明。本發明所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍内,當可作各種之更動 與潤飾。因此,本發明之保護範圍當視後附之申請專利範 圍所界定者為準。 【圖式簡單說明】 第1A圖顯示現有液晶顯示器的一個晝素(pixel)的架 構不意圖。 第1B圖顯示第1A圖之波形圖。 第2圖顯示根據本發明實施例的的溫度-電壓(V-T)曲 線圖。 第3圖顯示根據本發明實施例的補償共同電壓的流程 圖。 【主要元件符號說明】 100 :晝素 M : TFT電晶體201033983 . * VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of reducing flicker of a liquid crystal display. More particularly, the present invention relates to a method of temperature compensation of a voltage to reduce flicker of a liquid crystal display. [Prior Art] Liquid crystal displays (LCDs) have the advantages of low radiation, low consumption, and the like, and have gradually become the mainstream of displays. However, due to the operational characteristics, there is a problem that a feed voltage (represented by the symbol AVP) inside the liquid crystal display device causes the screen to flicker (fllcker). Fig. 1A is a view showing the structure of a pixel (pixe|) of the conventional liquid crystal display. Fig. 1B shows a waveform diagram of Fig. 1A. As shown in Fig. 1A, the halogen 100 includes, in principle, a TFT transistor, a liquid crystal capacitor CLC, and a storage capacitor cs. In addition, there is a parasitic capacitance Cgd in the pixel 100. Basically, the through voltage ΔVp is caused by parasitic capacitance. Vg represents the gate voltage applied to the transistor (ie, the scan signal), Vs ❹ represents the source applied to the transistor _ (ie, the (four) signal), and Vd represents the gate voltage of the transistor ( (ie, The electric house of the pixel electrode). When the gate voltage Vg transitions from a high potential (Vgh) to a low potential _), this voltage transition affects the drain voltage Vd through the parasitic capacitance Vgd, resulting in the generation of the through voltage Δνρ. If the common voltage Vc〇m changes, the liquid crystal capacitor and/or the storage capacitor CS (4) will also generate the voltage z\VP due to the secret voltage Vd. If the through voltages 3 201033983, .l vv r\ Δ VP in the positive half cycle Τ+ and the negative half cycle 有_ have the same value, the flicker is less obvious. Therefore, in design, the parameters are usually adjusted for a given temperature (such as room temperature 25 ° c ~ 35 ° c), so that the positive half cycle T + and the negative half cycle T - within the penetration voltage Δν Ρ have the same value, To reduce the flicker effect. However, the inventors have found that the through voltage ΔνΡ is related to temperature. That is, if the temperature rises (or falls), the through voltage ΔνΡ also rises (or falls). Therefore, when the temperature rises (or falls), the through-voltage ΔνΡ in the positive half cycle Τ- and the negative half cycle Τ- is different from each other, so that the flicker effect is more serious. Therefore, the inventors have proposed a method for compensating for the flicker effect in order to reduce the flicker effect due to temperature fluctuations. SUMMARY OF THE INVENTION The present invention is directed to a temperature compensation method for a display that is capable of temperature compensation of a common voltage or source voltage to reduce flicker effects. The present invention relates to a display driving method for driving a display with a temperature-compensated common voltage or source voltage to reduce a flicker effect. According to an example of the present invention, a temperature compensation method for a display includes: finding respective optimal temperature-related voltages at a plurality of temperatures; and finding a temperature change trend of the optimal temperature-related voltages; according to a predetermined temperature, One of the optimal temperature-related voltages is selected as a reference point; and a temperature compensation value is set according to the temperature change trend and the reference point to obtain a compensated temperature-dependent voltage at other temperatures. According to another example of the present invention, a driving method for a display includes: finding a respective optimal temperature-dependent voltage at a plurality of temperatures; and finding a temperature change trend of the optimal temperature-related voltage of the 201033983; Temperature 'select one of the optimal temperature-related voltages as a reference point; according to the temperature change trend and the reference point, set a temperature compensation value to obtain a compensated temperature-dependent voltage at other temperatures; and according to the compensation The post-temperature dependent voltage 'drives the display. In order to make the above-mentioned contents of the present invention more comprehensible, the following specific embodiments will be described in detail below with reference to the accompanying drawings: [Embodiment] β is to compensate for the flicker effect caused by temperature fluctuation, the inventor first Find out the best common voltage Vcom at different temperatures. To this end, the inventors obtained experimentally, at several temperatures (25. 〇, 3 (rc, 35 it, 4 〇 C, 65 C), different common voltage values Vc 〇 m (〇56V, 〇58V, 0.60V) Through-voltage ΔVp (in db value) corresponding to 0.62V, 0.64V, 〇66v, 〇68V, 〇7〇ν, 〇72V, 〇_74V' 〇·76ν, 0_78V, 〇8〇ν, 〇82ν) This relationship is shown in Table 1. --- Table 1 Vcom 25〇C 30°C 35t 40°C 65〇C 0.56V -17.37db -18-8ldb _13_7db -11.53db -10.78db 0.58V - 20.69db -2〇.82db -16.59db -13.19db -12.55db 0.60V -20.69db -22_25db --__ -18.65db -16.75db -16.03db 0.62V -24.92db -25.38db -20.70db -18.51db - 17_71db 0.64V -27.50db -29.4Odb^ -23.11db -20.75db -19.80db 0.66V -27.50db -3〇.64db -26.09db -23.72db -25.90db 0.68V -32.55db -34.38db -29.64db - 34.85db -22.60db 5 201033983 1 WHOH^tr/A. 0.70V -37.77db -36.43db -38.87db -38.61db -19.38db 0.72V -43.16db -43.78db -43.86db -38_46db -16.43db 0.74V - 47.84db -48.20db -33.38db -32.45db -14.55db 0.76V -41.30db -40.56db -29.45db -28.14db -13.2 5db 0.78V -36.33db -34.86db -26.01db -24.51db -11_75db 0.80V -31.15db -31.39db -22.53db -21.43db -13.25db 0.82V -28.55db -28.71db -20.78db -20.12db -11.75 As can be seen from Table 1, at the different temperatures, the optimum common voltage Vcom (which corresponds to the minimum through voltage AVP) may be different, and the optimum common voltage Vcom is shifted in the same direction. That is to say, when the temperature rises, the minimum through voltage ΔνΡ tends to become larger, and the optimum common voltage Vcom tends to become smaller; and vice versa. In Table 1, at a temperature of 25 ° C, the optimum common voltage Vcom is 0.74 V, which corresponds to the minimum through voltage Δν Ρ (-47.84 (^, indicated by the bold slanting and bottom line); at a temperature of 30 ° Under C, the best common voltage Vcom is 0.74V, which corresponds to the minimum through voltage ΔνΡ(-48·2€3); at 35°C, the optimal common voltage Vcom is 0.72V, which corresponds to the minimum Through voltage △VpH^Aedb); at a temperature of 40 ° C, the optimum common voltage Vcom is 0.70V, because it corresponds to the minimum through voltage ΔVP (-38.61db); at a temperature of 65 ° C, the best common voltage Vcom is 0.66V because it corresponds to the minimum through voltage ΔνΡ (-25.90ο1ΐ3). After finding the trend of the optimum common voltage Vcom, the compensation value for the common voltage Vcom can be set according to this trend. That is, after finding the trend of the best common voltage Vcom, the best common voltage Vcom of a certain temperature can be selected as the reference point. Next, compensate for this reference point to get the common power Vcom after compensation at other temperatures. Then, the compensated common voltage vcom is applied to the pixels to reduce the flicker effect caused by the temperature fluctuation. In the present embodiment, the compensation method for the common voltage Vcom is, for example, (1) compensating the common voltage Vcom by the drive circuit, and (2) compensating the common voltage Vcom by means of the voltage dividing circuit. Of course, the compensation for the common electric power Vcom is not limited to these. Moreover, the present invention is not limited thereto. They are described in detail below. (1) Compensation of the common voltage Vcom by the drive circuit: When the common circuit Vcom is compensated by the drive circuit, a plurality of temperature-voltage (V-T) curves can be found in advance to compensate. Figure 2 shows a number of temperature-voltage (VT) curves, where the horizontal axis is the temperature (. 〇 and the vertical axis is the common voltage Vcom. That is, according to the trend found, each can be set at different temperatures. ® The appropriate slope of the temperature_voltage (VT) curve. After that, the common voltage Vcom is compensated according to this slope. For example, the slope includes: _imV/°C, -1.5mV/ °C ' -2mV/°c ' -2.5mV /〇c.....+1 mV/°C, +1.5mV/°C, +2mV/°C, +2.5mV/°C,···. Normally, it will be at room temperature (such as 25.) :~35. The best common voltage Vcom under the arm is set as the reference point, and a better compensation effect will be obtained. Taking the temperature 35 C as an example, the inventor believes that the slope is set to _彳mv/°c, which can be improved. Because of the flicker effect caused by temperature fluctuations, that is, when the slope is _1mv / C, the common voltage Vc 〇 m will drop by 1mV for every degree of temperature rise; 7 201033983 1 w Ming r r / \ · vice versa. Take Table 1 as an example 'Because the temperature is 35〇c, the best common voltage Ve. The towel is 0.72V. So 'the slope is _1 (11乂 /. (: lower ' when the temperature rises to 36 ° (: After compensation The voltage vcom is (0.72V+(-1mV)*1)=〇.719V. Similarly, when the slope is -ImV/t, when the temperature drops to 34. (:, the compensated common voltage Vcom is (0.72V+) (-1mV)*-1)=〇.72lV. The method of calculating the compensated common voltage VC〇m can be achieved by using a firmware. Alternatively, the above-mentioned method can be used to calculate the appropriate compensated common voltage at each temperature. Vcom, after that, all the compensated common voltage Vcom obtained is filled into the LUT (Check Table) unit. When the [the current internal temperature of the CD is detected], the internal unit temperature can be obtained by using the look-up unit. The compensation common voltage VeQm is appropriately compensated. (2) The common voltage Vc〇m is compensated by the voltage dividing circuit as described above. In the present embodiment, the trend of the optimum common voltage Vcom related to the temperature fluctuation can be found. According to this trend, the common voltage Vcom is compensated by a voltage dividing circuit composed of a heat-sensitive element. The heat-sensitive element is, for example but not limited to, a thermistor (positive temperature coefficient resistance, negative temperature coefficient resistance), Thermal induction transistors, thermal sensing sensors, etc. due to temperature changes When the voltage is changed, the impedance value of the heat-sensitive element changes accordingly, so it can be used to compensate for the flicker effect caused by temperature fluctuations. By properly designing the P of the thermally induced 7G piece and the value of the resistance and the impedance value of each heat-sensitive element Proportion, the voltage divider circuit formed by the thermal sensing element can simulate the above slope. So - the 'common voltage v_ after compensation is also related to the temperature variation. In the specific implementation, when the application is positive When the temperature coefficient resistor and the negative temperature coefficient resistor are used to form the voltage dividing circuit, the positive temperature coefficient resistor can be connected in series between the reference voltage source (or the common voltage Vcom) and the output node, and the negative temperature coefficient resistor is connected in series. Between the output node and the ground. Thus, the voltage output by the output node is a temperature dependent voltage that can be used to compensate for the common voltage Vcom. Figure 3 shows a flow chart for compensating a common voltage in accordance with an embodiment of the present invention. As shown in Fig. 3, in step 310, the best common voltage Vcom at each temperature is found. The details can be referred to the above description, and will not be repeated here. Next, in step 320, a temperature change tendency of the optimum common voltage Vcom is found. The details can be referred to the above description, and will not be repeated here. Next, in step 330, the optimum common voltage Vcom at a predetermined temperature is selected as a reference point. The details can be referred to the above description, and will not be repeated here. Next, in step 340, the temperature compensation value is set according to the temperature change trend and the reference point, 以 to compensate the common voltage Vcom. The details can be referred to the above description and will not be repeated here. According to this, the compensation of the common voltage Vcom can be completed. In addition, this embodiment can also be used to compensate the source voltage Vs. That is, the source voltage Vs is compensated in the above manner to make it temperature dependent. When the source voltage Vs is compensated, the common voltage Vcom may not be compensated. Alternatively, the source voltage Vs and the common voltage Vcom may be compensated, which are within the spirit and scope of the present invention. In summary, although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Simple description of the drawing] Fig. 1A shows a structure of a pixel of the conventional liquid crystal display. Fig. 1B shows a waveform diagram of Fig. 1A. Fig. 2 shows a temperature-voltage (V-T) graph according to an embodiment of the present invention. Figure 3 is a flow chart showing the compensation of a common voltage in accordance with an embodiment of the present invention. [Main component symbol description] 100 : Alizarin M : TFT transistor

Clc ·液晶電容 cs:儲存電容Clc ·Liquid Crystal Capacitor cs: Storage Capacitor

Cgd :儲存電容 △VP :貫穿電壓Cgd : storage capacitor △ VP : through voltage

Vg :閘極電壓Vg: gate voltage

Vs :源極電壓Vs : source voltage

Vd :汲極電壓Vd: bungee voltage

Vcom :共同電壓Vcom: common voltage

Vgh :閘極電壓的高電位Vgh: high potential of the gate voltage

Vgl :閘極電壓的低電位 201033983 τ+ :正半周期 Τ-:負半周期 310〜340 :步驟Vgl: low potential of the gate voltage 201033983 τ+ : positive half cycle Τ-: negative half cycle 310~340 : steps

Claims (1)

201033983 I W4544^A 七、申請專利範圍: 1·—種顯示器的溫度補償方法,包括: 找出複數個溫度下的各別最佳溫度相關電壓; 找出該些最佳溫度相關電壓的一溫度變化趨勢; 根據一既定溫度,選出該些最佳溫度相關電壓之一為 一基準點;以及 根據該溫度變化趨勢與該基準點,設定一溫度補償 值,以得到在其他溫度下的補償後溫度相關電壓; 其中該最佳溫度相關電壓包括一共同電壓與一源極 電壓之至少一者。 _ 、2.如申請專利範圍第彳項所示之顯示器的溫度補償 方法,其中,該溫度變化趨勢為,當溫度上升時,一最小 貫穿電壓會變大,而該最佳溫度相關電壓會變小。 如申請專利範圍第1項所示之顯示器的溫度補償 法,其中,該溫度變化趨勢為,當溫度下降時,一最小 貫穿電壓會變小,而該最佳溫度相關電壓會變大。 方、4.如申凊專利範圍第1項所示之顯示器的溫度補償 ❿ 法,其中,設定該溫度補償值之該步驟包括: 找出複數條溫度-電壓曲線; H根據該溫度變化趨勢,設定在各別溫度下的各別溫度 壓曲線的各別斜率;以及 根據該些斜率之一來設定該溫度補償值。 方法5如申請專利範圍第1項所示之顯示器的溫度補償 其中,設定該溫度補償值之該步驟包括: 預先找出多條的溫度-電壓曲線; 12 201033983 根據該溫度變化趨勢’設定在各別溫度下的各別溫度 -電壓曲線的各別斜率; 根據該些斜率’找出在各別溫度下的之各別補償後溫 度相關電壓,並填入一查表單元;以及 根據該顯示器的的一目前内部溫度,利用該查表單元 來得到在此内部溫度下的該補償後溫度相關電壓。 6·如申請專利範圍第彳項所示之顯示器的溫度補償 方法,其中,設定該溫度補償值之該步驟包括: 利用以複數個正溫度係數電阻與複數個負溫度係數 電阻所組成的一分壓電路來進行補償。 7· —種顯示器的驅動方法,包括·· 找出複數個溫度下的各別最佳溫度相關電壓; 找出該些最佳溫度相關電壓的一溫度變化趨勢; 根據一既定溫度,選出該些最佳溫度相關電壓之一為 一基準點; 根據該溫度變化趨勢與該基準點,設定一溫度補償 值以得到在其他溫度下的補償後溫度相關電壓;以及 根據該補償後溫度相關電壓,驅動該顯示器; 蕾厭、中該最佳溫度相關電壓包括—共同電壓與一源極 電壓之至少一者。 法,8.如申請專利範圍第7項所示之顯示器的驅動方 空费Ϊ中,該溫度變化趨勢為,當溫度上升時,一最小貫 壓會變大,而該最佳溫度相關電壓會變小。 =如申請專利範圍第7項所示之顯示器的驅動方 中,該溫度變化趨勢為,當溫度下降時一最小貫 13 201033983 1 穿電壓會變小,而該最佳溫度相關電壓會變大。 10.如申請專利範圍第7項所示之顯示器的驅動方 法,其中,設定該溫度補償值之該步驟包括·· 找出複數條溫度-電壓曲線; 根據該溫度變化趨勢,設定在各別溫度下的各別溫度 -電壓曲線的各別斜率;以及 根據該些斜率之一來設定該溫度補償值。 11.如申請專利範圍第7項所示之顯示器的驅動方 法,其中,設定該溫度補償值之該步驟包括: 預先找出多條的溫度-電壓曲線; 根據該溫度變化趨勢’設定在各靠度下的各別溫度 -電壓曲線的各別斜率; 的之各別補償後溫 根據該些斜率,找出在各別溫度下 度相關電壓,並填入一查表單元;以及 根據該顯示11的的—目前内部溫度,利用該查表單元 來得到在此内部溫度下的該補償後溫度相關電壓。 12·如申請專利範圍第7項所示之顯示器的驅動方 法’其中,設定該溫度補償值之該步驟包括.的動方 電:::數=:=:複_溫度-201033983 I W4544^A VII. Patent application scope: 1. The temperature compensation method of the display includes: finding the respective optimal temperature-related voltages at a plurality of temperatures; finding a temperature of the optimal temperature-related voltages Changing trend; selecting one of the optimal temperature-related voltages as a reference point according to a predetermined temperature; and setting a temperature compensation value according to the temperature change trend and the reference point to obtain a compensated temperature at other temperatures a correlation voltage; wherein the optimal temperature-dependent voltage comprises at least one of a common voltage and a source voltage. _, 2. The temperature compensation method of the display as shown in the scope of the patent application, wherein the temperature change trend is that when the temperature rises, a minimum penetration voltage becomes larger, and the optimal temperature-dependent voltage changes. small. The temperature compensation method of the display as shown in the first aspect of the patent application, wherein the temperature change trend is such that when the temperature is lowered, a minimum penetration voltage becomes small, and the optimum temperature-dependent voltage becomes large. The temperature compensation method of the display as shown in item 1 of the patent application scope, wherein the step of setting the temperature compensation value comprises: finding a plurality of temperature-voltage curves; H according to the temperature change trend, Setting respective slopes of respective temperature and pressure curves at respective temperatures; and setting the temperature compensation value according to one of the slopes. Method 5: The temperature compensation of the display as shown in item 1 of the patent application scope, wherein the step of setting the temperature compensation value comprises: pre-discovering a plurality of temperature-voltage curves; 12 201033983 according to the temperature change trend 'set in each The respective slopes of the respective temperature-voltage curves at different temperatures; finding the respective temperature-dependent voltages at the respective temperatures according to the slopes, and filling in a look-up unit; and according to the display The current internal temperature is utilized by the look-up unit to obtain the compensated temperature-dependent voltage at the internal temperature. 6) The method for temperature compensation of a display as shown in the scope of the patent application, wherein the step of setting the temperature compensation value comprises: using a component consisting of a plurality of positive temperature coefficient resistors and a plurality of negative temperature coefficient resistors Press the circuit to compensate. 7. The driving method of the display, comprising: finding the respective optimal temperature-related voltages at a plurality of temperatures; finding a temperature change trend of the optimal temperature-related voltages; selecting the ones according to a predetermined temperature One of the optimal temperature-related voltages is a reference point; according to the temperature change trend and the reference point, a temperature compensation value is set to obtain a compensated temperature-dependent voltage at other temperatures; and the temperature-dependent voltage is driven according to the compensation The display; the optimum temperature-dependent voltage includes at least one of a common voltage and a source voltage. Method 8. In the driving space fee of the display shown in item 7 of the patent application scope, the temperature change trend is that when the temperature rises, a minimum pressure will become larger, and the optimal temperature related voltage will Become smaller. = In the driver of the display shown in item 7 of the patent application, the temperature change trend is such that when the temperature drops, a minimum voltage of 13 201033983 1 becomes smaller, and the optimum temperature-dependent voltage becomes larger. 10. The driving method of a display as shown in claim 7, wherein the step of setting the temperature compensation value comprises: finding a plurality of temperature-voltage curves; setting the temperature at each temperature according to the temperature change trend The respective slopes of the respective temperature-voltage curves; and the temperature compensation values are set according to one of the slopes. 11. The driving method of a display according to claim 7, wherein the step of setting the temperature compensation value comprises: finding a plurality of temperature-voltage curves in advance; setting the The respective slopes of the respective temperature-voltage curves; the respective compensated post-temperatures are used to find the relevant voltages at the respective temperatures according to the slopes, and fill in a look-up unit; and according to the display 11 The current internal temperature is utilized by the look-up unit to obtain the compensated temperature-dependent voltage at this internal temperature. 12. The driving method of the display as shown in claim 7 of the patent application, wherein the step of setting the temperature compensation value includes: the moving power::: number=:=: complex_temperature-
TW98108037A 2009-03-12 2009-03-12 Temperature compensation method and driving method for liquid crystal display TWI416483B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98108037A TWI416483B (en) 2009-03-12 2009-03-12 Temperature compensation method and driving method for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98108037A TWI416483B (en) 2009-03-12 2009-03-12 Temperature compensation method and driving method for liquid crystal display

Publications (2)

Publication Number Publication Date
TW201033983A true TW201033983A (en) 2010-09-16
TWI416483B TWI416483B (en) 2013-11-21

Family

ID=44855374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98108037A TWI416483B (en) 2009-03-12 2009-03-12 Temperature compensation method and driving method for liquid crystal display

Country Status (1)

Country Link
TW (1) TWI416483B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI336876B (en) * 2004-11-10 2011-02-01 Himax Tech Inc Data driving system and display having adjustable common voltage
JP2007017577A (en) * 2005-07-06 2007-01-25 Sanyo Electric Co Ltd Liquid crystal display device
CN1963907A (en) * 2005-11-10 2007-05-16 昆达电脑科技(昆山)有限公司 Temperature compensating circuit of LCD element
JP2009025548A (en) * 2007-07-19 2009-02-05 Sharp Corp Liquid crystal display device
US20090040167A1 (en) * 2007-08-06 2009-02-12 Wein-Town Sun Programmable nonvolatile memory embedded in a timing controller for storing lookup tables

Also Published As

Publication number Publication date
TWI416483B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP4069648B2 (en) Semiconductor device and display driving device
CN107799049B (en) display device
US8248398B2 (en) Device and method for driving liquid crystal display device
CN103794183B (en) For driving equipment and the method for liquid crystal indicator
CN105590595B (en) Display device and method of driving display device
JP4346636B2 (en) Liquid crystal display
US8847869B2 (en) Liquid crystal display device and method for driving the same
WO2013181907A1 (en) Active matrix display panel driving method and apparatus, and display
CN109949757B (en) Scanning signal compensation method, scanning signal compensation circuit and display
JP2000147460A (en) Liquid crystal display device having common voltages different from each other
TWI433088B (en) Display and driving method
CN102201212A (en) Liquid crystal display device
CN109949758B (en) Scanning signal compensation method and device based on grid drive circuit
JP2009025804A (en) Display device and its driving method
CN105304049B (en) A kind of liquid crystal display device and its crosstalk defect control method
JP3068465B2 (en) Liquid crystal display
CN101377914A (en) Display apparatus and display method
US9934753B2 (en) Display device including voltage limiter and driving method thereof
WO2018149124A1 (en) Temperature sensor, array substrate, display device, and voltage adjustment method
KR20100074858A (en) Liquid crystal display device
TW201033983A (en) Temperature compensation method and driving method for liquid crystal display
CN202217488U (en) Temperature compensation circuit for voltage of common electrode and display device applying same
TWI342004B (en) Active matrix liquid crystal display devices
KR20160083347A (en) Power supply circuit and liquid crystal display comprising the same
JP2009025548A (en) Liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees