201030992 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種電池,且特別是有關於一種可提升 光電轉換效能之太陽能電池。 【先前技術】 。請同時參照圖1A與圖1B所示,圖1人係為習知太陽能 電池正面之示意圖;圖1B係為習知太陽能電池背面之示意 魯圖。 , 習知太陽能電池10之結構正面如圖1A所示,具有複 '數支流電極100(finger),其中這些複數支流電極100,可 將太陽能電池10經過光電轉換後之電能,匯集於第一電極 挪11〇(busbar)與第二電極排120上。之後再透過分別與此 f電極排110與第二電極排12〇電性連接,且位於此太 =月t*電池10月面’如周1B所示之第三電極排⑽與第四 ^極排14G ’使得太陽能電池難夠提供電能至—負載裝 置(圖未示)’以供負載裝置使用。 〜然而’此種具有狀似H型圖案的電極排設計由於第 正電極排110與第二電極排12〇直接設置於太陽能電池1〇 ’因此’第1極排11G與第二電極排⑽於太陽能 •池10正面所佔據之面積相對地較大 ,致使太陽能電池 」表面之受光面積減少’換言之,這也表示太陽能電池10 光電轉換之效率受到限制。 再者由於支流電極1〇〇係由摻雜有化合物之金屬材 201030992 質所製成,因此傳導電阻較高,而降低太陽能電池1〇光電 轉換效率’且支流電極100也限制了接觸電阻的可設計 性,加上支流電極10G採用銀膠所製成,因此也増加生產 成本。 % 以及’由於受到太陽能電池1G正面_圖案及背面的 電極排設計所限制,因此’太陽能電池1()欲串接成為太陽 能電池模組時,於太陽能電池1G正負極性之製程上,需要 将太陽能電池H)正面之第一電極排11〇與第二電極排12〇 翻轉至背面’而與位置分別相對應於第—電極排ιι〇與第 ^極排12G的第三電極排13G及第四電極排⑽電性連 趣,因此,於正負極性的製程作業上 .財::::間太陽能電池—之二上,仍 【發明内容】 魯 陽能電池,以解決上述之問題 種可提升光電轉換效能 之太 為解決上述之問題,本發 含光電轉換件、至少—電=广種太陽能電池’包 電極排―)以及14=二導線、至少一第一 表面盘m〜 排。光電轉換件具有第一 衣面與第—表面。電極單元體呈點狀 教以矩陣狀排列或蜂巢狀排列而配置於第一π 金屬材質且電性連接電極單元體。第 導線為 面之邊緣處。第二電極排分開 位於第二表 第二雷置於光電轉換件旁,此 -電極排⑽導線而與電極單讀電性連接。 201030992 由上述可知,本發明具有如下之功效 之第一電極排配置於光電轉換件第二 將太陽能電池 排分開地設置於光電轉換件旁,加 以及第二電極 線狀而配置於光電轉換件之第一表 皁70體呈點狀或 轉換件第-表面之受光面積,以增加光電^ ’可增加光電 可解決習知太陽能電池將第一電極排以及第:如此-來, 於太陽能電池表面,致使太陽能電 厂電極排設置 光電轉換效能不佳之問題。以表面Μ面積減少而201030992 VI. Description of the Invention: [Technical Field] The present invention relates to a battery, and more particularly to a solar cell capable of improving photoelectric conversion efficiency. [Prior Art]. Referring to FIG. 1A and FIG. 1B simultaneously, FIG. 1 is a schematic view of a front surface of a conventional solar cell; FIG. 1B is a schematic diagram of a back surface of a conventional solar cell. The structure of the conventional solar cell 10 is as shown in FIG. 1A, and has a complex number of branch electrodes 100, wherein the plurality of branch electrodes 100 can pass the photoelectrically converted solar energy to the first electrode. Move the busbar to the second electrode row 120. Then, it is electrically connected to the f electrode row 110 and the second electrode row 12 respectively, and is located at the third electrode row (10) and the fourth electrode as shown in the week 1B. Row 14G' makes it difficult for the solar cell to supply electrical energy to a load device (not shown) for use by the load device. ~ However, such an electrode row design having an H-like pattern is provided because the first positive electrode row 110 and the second electrode row 12 are directly disposed on the solar cell 1', so the 'first pole row 11G and the second electrode row (10) are The area occupied by the front side of the solar cell 10 is relatively large, resulting in a reduction in the light-receiving area of the surface of the solar cell. In other words, this also means that the efficiency of photoelectric conversion of the solar cell 10 is limited. Furthermore, since the branch electrode 1 is made of a metal material doped with a compound 201030992, the conduction resistance is high, and the photoelectric conversion efficiency of the solar cell is lowered, and the branch electrode 100 also limits the contact resistance. The design, plus the branch electrode 10G is made of silver glue, so it also increases the production cost. % and 'Because of the limitation of the solar cell 1G front _ pattern and the back electrode row design, when the solar cell 1 () is to be connected in series to become a solar cell module, solar energy needs to be applied to the solar cell 1G positive and negative polarity process. The first electrode row 11〇 and the second electrode row 12〇 of the front surface of the battery H) are turned over to the back side and correspond to the third electrode row 13G and the fourth electrode row of the first electrode row 12G and the fourth electrode row 12G respectively. The electrode row (10) is electrically interesting. Therefore, in the process of positive and negative polarity, the::::: solar cell - the second, still [invention] Luyang energy battery, to solve the above problems can enhance the photoelectric The conversion performance is too much to solve the above problems, the present invention includes a photoelectric conversion member, at least - electric = wide-type solar cell 'package electrode row -) and 14 = two wires, at least one first surface plate m ~ row. The photoelectric conversion member has a first clothing surface and a first surface. The electrode unit body is arranged in a matrix or in a honeycomb shape, and is disposed on the first π metal material and electrically connected to the electrode unit body. The first wire is at the edge of the face. The second electrode row is separated from the second table. The second column is placed next to the photoelectric conversion member, and the electrode row (10) is electrically connected to the electrode single read. 201030992 It can be seen from the above that the first electrode row having the following effects is disposed on the photoelectric conversion device. The solar cell row is separately disposed adjacent to the photoelectric conversion device, and the second electrode is linearly arranged and disposed on the photoelectric conversion device. The first surface soap 70 body is in the shape of a spot or a light-receiving area of the first surface of the conversion member, so as to increase the photoelectricity, the photoelectricity can be solved by conventional solar cells to be the first electrode row and the first: so-to, on the surface of the solar cell, The solar power plant electrode row is set to have poor photoelectric conversion performance. Reduced surface area
Ο 【實施方式】 為讓本發明之上述目的、特徵和特點能更明 配合圖式將本發明相關實施例詳細說明如下。*、 請參=圖2所示,圖2係為本發明第―實施例太陽能 電池之不%、圖。由圖可知,太陽能電池2〇包含一光電 件210、多數個電極單元體220、至少一導線23〇、—、 電極排240(first busbar)以及-第:電極排25〇(sec第— busbar) 〇 光電轉換件210晶片式(wafer base)具有一第—表面 212與一第二表面214。光電轉換件210之材料可如半導體 中常見的材料,例如單晶破(single crystalline siiicon)、多曰 石夕(multi-crystalline silicon)、皿-V 族中的神化鎵(GaAs) 晶片、磊晶片所製成。於本實施例中,以具有矽材料所製 成的矽晶片當作太陽能電池的光電轉換件210為例,並非 用以限制本發明。 201030992 電極單元體220於本實施例中,係呈點狀並以矩陣狀 排列而配置於第一表面212上’當然,此電極單元體220 亦可為線狀或其他形狀配合不同的排列方式,而配置於第 一表面212。所述電極單元體220可由點膠、網印或噴墨 技術所製成,且每一點狀電極單元體220之直徑介於20" m(檄米;MOOOvm(微米)。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to make the above-mentioned objects, features and characteristics of the present invention more apparent, the embodiments of the present invention are described in detail below. *, please refer to Fig. 2, and Fig. 2 is a diagram showing the percentage of solar cells of the first embodiment of the present invention. As can be seen from the figure, the solar cell 2A includes a photovoltaic element 210, a plurality of electrode unit bodies 220, at least one wire 23〇, —, an electrode bus 240 (first busbar), and a: electrode row 25〇 (sec-busbar). The wafer base 210 has a first surface 212 and a second surface 214. The material of the photoelectric conversion member 210 can be a material commonly used in semiconductors, such as single crystal siiicon, multi-crystalline silicon, deuterated gallium (GaAs) wafer in the dish-V family, and epitaxial wafer. Made. In the present embodiment, the tantalum wafer made of the tantalum material is taken as the photoelectric conversion member 210 of the solar cell, and is not intended to limit the present invention. In the present embodiment, the electrode unit body 220 is arranged in a dot shape and arranged in a matrix on the first surface 212. Of course, the electrode unit body 220 may be linear or other shapes and arranged in different ways. And disposed on the first surface 212. The electrode unit body 220 may be made by dispensing, screen printing or ink jet technology, and each of the dot electrode unit bodies 220 has a diameter of 20 " m (millimeter; MOOOvm (micrometer).
❹ 導線230為低電阻金屬材質所製成,於本實施例中以 銅為例。導線230之直徑介於2〇#m(微米)〜500 /zm(微 米),用以電性連接電極單元體220,其中導線230連接此 些電極單元體220後,在分別匯集並與設置於光電轉換件 210旁的第二電極排250電性連接,所述第二電極排25〇 為合金材質所製成的焊條(ribbon)。 續請同時參閱圖3,圖3係為本發明圖2光電轉換元 件第二表面之示意圖。如圖3所示,光電轉換件21〇之第 二表面214由鋁膠(A1_paste)所構成,而第一電極排可 為銀膠或者為銀鋁金屬材質所製成,此第—電極排設 置於第二表面214之邊緣處。如此,可增加光電轉換件21〇 第一表面214链膝之面積。 由上述可知,由於將太陽能電池20第一電極排24〇 _ 置於光電轉換件21Q之第二表面214,以及將第二電極: 250分開地設置於光電轉換件21◦旁,配合點狀電峰 體220與低電阻導線230設置於光電轉換件21〇之第一 面212上’使得第—表面212比起f知太陽能電池而 201030992 光電轉換件210之笛 主;& * ▲ 之第一表面212有更大的接受太陽光面 積換°之’光電轉換件210能夠接收更多的太陽光(如圖 2中的雙斜㈣頭所示),讀升光電轉換效率,而獲得更 多的電能。 田光電轉換件21〇將光能轉換成電能後,即可藉由第 -,極排25G與位於光電轉換件21Q第二表面214邊緣處 的第電極排240 ’電性連接一負載裝置3〇,以形成一電 ⑩路,供負载裂置3〇使用。 續明參照圖4所示,圖4係為本發明第二實施例太陽 月匕電池串接之示意圖。 所示太知施電池模組40(solar cell module)具 第太陽能電池42與第二太陽能電池44 ^第一太陽能 電池42盘筮-士阻处恭 ”弟一太%此電池44之連接方式,主要將用以串 第太陽能電池42每一電極單元體42〇之導線43〇 ,電 十生iM z; 哲 第二太陽能電池44第二表面442邊緣處之第一電 ® 極排 444 gi7 ~r &丄 池 ^可。其中於本實施例中,雖然以兩個太陽能電 έ接’當然,隨著設計所需之電能不同,太陽能電池模 、、且亦可由連續串接多個太陽能電池所組成。 上如此一來,太陽能電池模組4〇於正負極性連接之製程 更各易將每一太陽能電池作連接,因此於製造時’更 加省時便利而可提升產能。 續清參閱圖5,圖5係為本發明第三實施例電極單元 呈蜂巢狀排列方式之示意圖。 201030992 如圖5所示’太陽能電池50 a電轉換件51〇第一表面 512之電極單元體514除了可呈上述陣列式之排列外,亦 可如本實施例中’由複數導線516串接,而呈現蜂巢狀之 排列。 續請參閱圖6’圖6係為本發明第四實施例電極單元 體呈線狀之示意圖,圖6所示,太陽能電池6()光電轉換 件_第〆表面612之電極單元體614,亦可如本實施例 所示 排650 ❹ 鲁 ’設計成線狀’並藉由導線63()電性連接至第二電極 〇 〇 續請參閱圖7’圖7係為本發明第五實施例電極單元 體呈星形狀之示意圖。如圖7所示,太陽能電池7()光電轉 換件710第〆表面712之電極單元體714,亦可如本實施 例中’設計成星雜,並藉由導線73Q魏連接至第二電 極排750。 由此可知,隨著設計的不同,雷极m ^ Ν電極早元體亦可設計成 =!、方形、ί邊形或任何幾何形狀,並搭配不 冋的排列方式而配置於光電轉換件第1面, 導線連接至外部的第二電極排。 綜上可知,本發明所述之太陽能電池具有下列之特點· 1.將太陽能電池之第-電極排配置於光電轉換件第二表 面,以及將第二電極排分開地設置於光電轉換件旁 上電極單s體呈點狀、線狀或其他形狀而配置於光 換件之第-表面,使得光電轉換件第,表面有更大的接 201030992 受太陽光面積,換令 陽光,而提升’光電轉換件關魏更多的太 轉換之效率,以獲得此。 2·有別於習知太陽能雷 多的電月b , 墙 電池模組於製程時,需要將女陽能電 池正面之第一電極排 町$要將太險月“ 置分別相對應於此第 電極排翻轉至背面,在與位 排及第四電極排極排與第二電極排的第三電極 太陽能電池第二表面f北接’、本發明由於將電極排設置於 由導線連接,如此^面)之邊緣處’因此’可直接藉 接之製程上,更h i ~能電池模紐於正負極性連 易將每一太陽能電池作串接,因此於 製造時,更加省時便利而可提升產能。 3·本發明藉由金屬導線取代習知具有化合物之金屬銀朦所 t成的支電極’如此’可降低傳導電阻,提高光電轉 換效能。 4. 本發明所述之太陽能電池,由於電極單元體單位面積增 大,因此改善接觸‘點電極(metal_emiUerinterface)設計的 範圍(wind〇W),如選擇性發射極技術(selective emitter) 的應用’降低了對位的困難度。 5. 由於光電轉換件第二表面僅於邊緣處設置有第一電極 排,因此,本發明可增加光電轉換件第二表面鋁膠之面 積。 综上所述,本發明已具有產業利用性、新穎性與進步 性,符合發明專利要件,且以上所述者,僅為本發明所舉 出之—較佳實施例而已,並非用以限定本發明實施之範圍。 - .......-............-. 201030992 即凡依本發明申請專利範圍所做的均等變化與修飾,皆為 本發明專利範圍所涵蓋。 【圖式簡單說明】 圖1A係為習知太陽能電池正面之示意圖; 圖1B係為習知太陽能電池背面之示意圖; 圖2係為本發明第一實施例太陽能電池之示意圖; 圖3係為本發明圖2光電轉換元件第二表面之示意圖; 圖4係為本發明第二實施例太陽能電池串接之示意圖; ❹ 圖5係為本發明第三實施例電極單元體呈蜂巢狀排列方式 之示意圖; 圖6係為本發明第四實施例電極單元體呈線狀之示意圖; 以及 圖7係為本發明第五實施例電極單元體呈星形狀之示意 圖。 【主要元件符號說明】 [先前技術部分] 10 太陽能電池 100 支流電極 110 第一電極排 120 第二電極排 130 第三電極排 140 第四電極排 [本發明部分] 20 , 50 , 60 , 70 太陽能電池 201030992导线 The wire 230 is made of a low-resistance metal material, and copper is exemplified in this embodiment. The wire 230 has a diameter of 2 〇#m (micrometer) 〜500 /zm (micrometer) for electrically connecting the electrode unit body 220, wherein the wire 230 is connected to the electrode unit body 220, and is separately assembled and disposed The second electrode row 250 adjacent to the photoelectric conversion member 210 is electrically connected, and the second electrode row 25 is a ribbon made of an alloy material. Please refer to FIG. 3 at the same time. FIG. 3 is a schematic view of the second surface of the photoelectric conversion element of FIG. 2 of the present invention. As shown in FIG. 3, the second surface 214 of the photoelectric conversion member 21 is made of aluminum glue (A1_paste), and the first electrode row can be made of silver glue or made of silver-aluminum metal. At the edge of the second surface 214. Thus, the area of the knee of the first surface 214 of the photoelectric conversion member 21 can be increased. It can be seen from the above that since the first electrode row 24〇 of the solar cell 20 is placed on the second surface 214 of the photoelectric conversion member 21Q, and the second electrode: 250 is separately disposed beside the photoelectric conversion member 21◦, the point-shaped electricity is matched. The peak body 220 and the low-resistance wire 230 are disposed on the first face 212 of the photoelectric conversion member 21' such that the first surface 212 is compared with the photocell of the 201030992 photoelectric conversion member 210; the first of the & * ▲ The surface 212 has a larger acceptance of the solar area. The photoelectric conversion element 210 can receive more sunlight (as shown by the double oblique (four) head in FIG. 2), and read the photoelectric conversion efficiency to obtain more. Electrical energy. After converting the light energy into electrical energy, the field photoelectric conversion device 21 can be electrically connected to the load device 3 by the first, second row 25G and the first electrode row 240' located at the edge of the second surface 214 of the photoelectric conversion member 21Q. To form an electric 10 way for the load to be used for 3 裂. Referring to FIG. 4, FIG. 4 is a schematic view showing the solar cell battery serial connection according to the second embodiment of the present invention. The solar cell module 40 has a solar cell 42 and a second solar cell 44. The first solar cell 42 is 筮 筮 士 士 ” ” ” ” ” ” 弟 太 太 太 太 太 太 此Mainly used to string the lead wire 43 of each electrode unit 42 of the solar cell 42, the electric power is iM z; the first electric pole row 444 gi7 ~r at the edge of the second surface 442 of the second solar cell 44 In the present embodiment, although two solar powers are connected, of course, as the electrical energy required for the design is different, the solar cell module may be connected in series by a plurality of solar cells. In this way, the solar cell module 4 is more convenient to connect each solar cell in the process of connecting the positive and negative polarity, so that the manufacturing process is more convenient and time-saving, and the productivity can be improved. See Figure 5 for the continuation. 5 is a schematic view showing a manner in which the electrode unit is arranged in a honeycomb manner according to the third embodiment of the present invention. 201030992 As shown in FIG. 5, the electrode unit body 514 of the first surface 512 of the solar cell 50 a electrical conversion member 51 can be in the above array. Row In addition, as shown in the present embodiment, the arrangement of the plurality of wires 516 is in a honeycomb shape. Referring to FIG. 6 FIG. 6 is a schematic view showing the electrode unit body in a line shape according to the fourth embodiment of the present invention. As shown in FIG. 6, the electrode unit 614 of the solar cell 6 () photoelectric conversion member _ the second surface 612 can also be designed as a line 650 as shown in this embodiment and is electrically connected by a wire 63 (). Please refer to FIG. 7'. FIG. 7 is a schematic view showing the electrode unit body in a star shape according to the fifth embodiment of the present invention. As shown in FIG. 7, the solar cell 7 () photoelectric conversion member 710 is 〆 The electrode unit body 714 of the surface 712 can also be designed as a star-like structure in the present embodiment, and is connected to the second electrode row 750 by a wire 73Q. It can be seen that, depending on the design, the lightning pole m ^ Ν The electrode early element body can also be designed as =!, square, 边 edge or any geometric shape, and arranged on the first side of the photoelectric conversion member with the arrangement of the wires, and the wire is connected to the external second electrode row. It can be seen that the solar cell of the present invention has the following characteristics: 1. The first electrode row of the solar cell is disposed on the second surface of the photoelectric conversion member, and the second electrode row is separately disposed on the side of the photoelectric conversion member. The electrode single s body is arranged in a dot shape, a line shape or the like and is disposed on the optical replacement member. The first-surface, so that the photoelectric conversion part, the surface has a larger connection 201030992 by the sunlight area, change the sunlight, and enhance the 'photoelectric conversion part to close the efficiency of more conversion to get this. 2 · Yes Unlike the conventional solar-powered red moon b, the wall battery module in the process, the first electrode of the front side of the female solar battery needs to be replaced by the first electrode row. To the back side, the second surface of the third electrode solar cell f is connected to the second row and the fourth electrode row and the second electrode row, and the present invention is provided by the electrode row being connected to the wire. At the edge of the 'so-' can be directly borrowed from the process, more hi ~ battery module can be connected to each solar cell in the positive and negative polarity, so it is more convenient and can increase production capacity during manufacturing. 3. The present invention reduces the conduction resistance and improves the photoelectric conversion efficiency by replacing the branch electrode of the conventional metal ruthenium with a compound by a metal wire. 4. In the solar cell of the present invention, since the unit area of the electrode unit body is increased, the range of the contact 'metal electrode' (metal_emiUerinterface) design (wind〇W), such as the application of selective emitter technology, is improved. Reduced the difficulty of alignment. 5. Since the second surface of the photoelectric conversion member is provided with only the first electrode row at the edge, the present invention can increase the area of the aluminum rubber of the second surface of the photoelectric conversion member. In summary, the present invention has industrial applicability, novelty, and progressiveness, and meets the requirements of the invention patent, and the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. The scope of the invention. - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view of a front side of a conventional solar cell; FIG. 1B is a schematic view of a back surface of a conventional solar cell; FIG. 2 is a schematic view of a solar cell according to a first embodiment of the present invention; 2 is a schematic view of the second surface of the photoelectric conversion element; FIG. 4 is a schematic view showing the solar cell serial connection according to the second embodiment of the present invention; FIG. 5 is a schematic view showing the arrangement of the electrode unit body in a honeycomb shape according to the third embodiment of the present invention; Figure 6 is a schematic view showing the electrode unit body in a line shape according to a fourth embodiment of the present invention; and Figure 7 is a schematic view showing the electrode unit body in a star shape according to the fifth embodiment of the present invention. [Description of main component symbols] [Prior Art section] 10 Solar cell 100 Branch electrode 110 First electrode row 120 Second electrode row 130 Third electrode row 140 Fourth electrode row [Part of the invention] 20, 50, 60, 70 Solar energy Battery 201030992
210 , 510 , 610 , 710 光電轉換件 212 , 512 , 612 , 712 第一表面 214 , 442 第二表面 220 , 420 , 514 , 614 , 714 電極單元體 230 , 430 , 516 , 630 , 730 導線 240 , 444 第一電極排 250 , 650 , 750 第二電極排 30 負載裝置 40 太陽能電池模組 42 第一太陽能電池 44 第二太陽能電池 11210, 510, 610, 710 photoelectric conversion members 212, 512, 612, 712 first surface 214, 442 second surface 220, 420, 514, 614, 714 electrode unit body 230, 430, 516, 630, 730 wire 240, 444 first electrode row 250, 650, 750 second electrode row 30 load device 40 solar cell module 42 first solar cell 44 second solar cell 11