[go: up one dir, main page]

TW201027790A - Light-emitting diode device, and package structure and manufacturing method thereof - Google Patents

Light-emitting diode device, and package structure and manufacturing method thereof Download PDF

Info

Publication number
TW201027790A
TW201027790A TW98100536A TW98100536A TW201027790A TW 201027790 A TW201027790 A TW 201027790A TW 98100536 A TW98100536 A TW 98100536A TW 98100536 A TW98100536 A TW 98100536A TW 201027790 A TW201027790 A TW 201027790A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
layer
electrode
alloy
Prior art date
Application number
TW98100536A
Other languages
Chinese (zh)
Other versions
TWI397200B (en
Inventor
Chang-Hsin Chu
Kuan-Qun Chen
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW98100536A priority Critical patent/TWI397200B/en
Publication of TW201027790A publication Critical patent/TW201027790A/en
Application granted granted Critical
Publication of TWI397200B publication Critical patent/TWI397200B/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A light-emitting diode device, and a package structure and a manufacturing method thereof are described. The light-emitting diode device comprises: a heat conductive metal layer including a first surface and a second surface on opposite sides, and the first surface of the heat conductive metal layer comprises an indentation; a eutectic material layer disposed on the second surface of the heat conductive metal layer; an electric conductive layer covering the first surface of the heat conductive metal layer; and a light-emitting diode chip embedded in the electric conductive layer in the indentation of the heat conductive metal layer, wherein the light-emitting diode chip comprises a first electrode and a second electrode of different conductivity types.

Description

201027790 . 六、發明說明: 、 【發明所屬之技術領域】 本發明是有關於一種發光元件,且特別是有關於一種發光二 極體(LED)元件及其封裝結構與製造方法。 【先前技術】 隨著發光二極體在日常照明與汽車頭燈等高亮度產品之應用 上的大幅增加,發光二極體晶片之操作功率也隨之提高。然而, ® 一般而言,發光二極體晶片之輸入功率只有約20%可轉為光能, 而約80%的部分則會轉為熱能。因此,隨著發光二極體晶片之操 作功率的日益提升,發光二極體晶片運作時所產生之熱也隨之增 加,故發光二極體晶片對於散熱的需求也愈來愈高。 目前,一種常應用於發光二極體晶片之封裝程序上的散熱技 術為利用銀膠來將發光二極體晶片固定在具有散熱功能的封裝體 上。如此一來,可透過封裝體來幫助發光二極體晶片散熱。然而, 接合在發光二極體晶片與封裝體之間的銀膠的熱阻過大,而導致 ® 封裝體之散熱效能無法有效發揮,嚴重浪費了封裝體之散熱效能。 另一種應用於發光二極體晶片之封裝程序上的散熱技術為利 用耐酸鹼膠帶的輔助,直接在發光二極體晶片之底部電鍍金屬散 熱基座。因此,發光二極體晶片可不需透過銀膠,即可直接與金 屬散熱基座接合,故整個發光二極體元件具有較大之散熱能力。 然而,在此種散熱技術中,於金屬散熱基座電鍍後移除膠帶時, 膠帶之殘膠會大量殘留在發光二極體晶片之正面上,這些殘膠無 法有效去除,因而造成發光二極體晶片受損。其次,膠帶無法在 後續金屬散熱基座的製作過程中有效保護發光二極體晶片之發光 201027790 • 結構與電極,如此一來散熱金屬會鍍覆在發光二極體晶片之側面 、 與正面,而造成發光二極體晶片的損毀,導致製程良率不佳,不 符生產效益。而且,膠帶的運用並無法有效控制發光二極體晶片 嵌入散熱金屬基座的深度,因此當發光二極體晶片嵌入散熱金屬 基座的深度過大時,將導致發光二極體晶片之側光無法順利導 出。雖然,可先在發光二極體晶片之側面鑛上反射鏡,再設置散 熱金屬基座,但發光二極體晶片之側光經反射鏡導出後只能轉為 正面軸向光,因而無法滿足需側邊發光之產品的應用。此外,耐 籲酸驗膠帶的價格非常昂貴,約為目前製程中廣泛使用之藍膜(版 Tape)的十倍以上,而會導致製程成本大幅增加。再者,此種發光 二極體元件的熱電分離設計不同於現有之發光二極體封裝模組, 因此無法將此發光二極體元件直接套入現有之發光二極體封裝模 組中,而需重新針對各種發光二極體產品來開發新的模組,如此 將造成大量生產與應用上的困難。 【發明内容】 ® 因此,本發明之目的就是在提供一種發光二極體元件及其製 造方法,其無需使用銀膠,也無需採用耐酸鹼膠帶,即可使發光 二極體晶片與散熱金屬層接合,故不僅可大幅提升發光二極體元 件之散熱效能,更可有效降低製程成本。 本發明之另一目的是在提供—種發光二極體元件及其製造方 法’其在製作過程中所採用之光阻層不僅可有效保護發光二極體 晶片之發光結構與電極,且有助於控制發光二極體晶片嵌入散熱 金屬層之深度’因此可避免發光二極體晶片在後續金屬鑛膜的製 程中受損’而可大幅提高製程良率,且可滿賴紐光二極體產 201027790 # 品的應用。 • 本發明之又—目的是在提供―種發光二極體元件之封裝結構 及其製造方法’其發光二極體元件之底部設有共晶材料層,因此 元件底部之散熱金屬層可洲共晶材料層而透過紅外線等低溫加 熱方式固定在封裝基座上,故可避免傳統接合元件與封裝基座之 膠趙的長時間高溫固化程序而造成發光二極體晶片的熱損壞,且 共晶材料層也可降減阻而可提升散熱效果,更可滿足於現有封 裝基座而無需更動封裝基座之熱電設計,有利於大量生產與應用。 〇 根據本發明之上述目的’提出-種發光二極體元件及其封裝 結構。發光二極體元件至少包含:—導熱金屬層具有相對之第二 表面與第二表面,且導熱金屬層之第_表面包含一凹陷部;—共 晶材料層設於導熱金屬層之第二表面;—導電層覆蓋在導熱金屬 層之第一表面上;以及—發光二極體晶片嵌設在導熱金屬層之凹 陷邛中的導電層上,其中發光二極體晶片包含具不同電性之第— 電極與第二電極。此外,發光二極體元件之封裝結構至少包含: 一封裝基座具有一凹槽;上述之發光二極體元件設於凹槽中;一 〇 第一外部電極與第一電極電性連接;以及一第二外部電極與第二 電極電性連接。 依照本發明一較佳實施例,上述之共晶材料層之材料包含金 (Au)、踢(Sn)、鎳⑽、鉻(Cr)、鈦(τ〇、组(Ta)、銘㈧)、鋼⑽、 或其合金其中之一。 ,根據本發明之目的,提出一種發光二極體元件及其封裝結構 之衣造方法。發光二極體元件之製造方法至少包含:設置至少一 發光二極體晶片於—藍膜上’而使發光二極體晶片之一表面黏附 在藍膜上;提供一透明暫時基板,其中透明暫時基板具有相對之 201027790 - 第—表面與第二表面·艰士 , 面;將發光二== 層覆蓋透明暫時基板之第一表 .含-發光〜 設於光阻層中,其令發光二極體晶片包 ϋ-第—電錄於發光結構上構 一電極埋設在光阻層_ m’u 光二搞 移除藍膜’其中部分之光阻層殘留在發 的^^ 面上’·從透明暫時基板之第二表面朝第一表面 中=:一曝光步驟’其中光阻層之殘留部分並未在曝光步驟 曰=^光·;移除光阻層之殘留部分,而完全暴露出發光二極體 日日之面,形成-導電層覆蓋於光阻層與發光二極體晶片之表 ©:上’電鑛一導熱金屬層於導電層上;形成-共晶材料層於導熱 屬層之-表面上,·以及移除光阻層與透明暫時基板。而發光二 .極體元件之封裝結構之製造方法更至少包含··提供—封裝基座, 其中封t基座具有-凹槽;將上述之發光二極體晶片設置於凹槽 中’並使共晶材料層與凹槽之底面直接接合;以及電性連接第一 電極與-第—外部電極、以及發光二極體元件之第二電極與一第 一外部電極。 依照本發明一較佳實施例,上述之光阻層的材料為負型光 Q 阻’且光阻層之厚度較佳係大於ΙΟμπι。 【實施方式】 請參照第1圖至第11A圖,其係繪示依照本發明一較佳實施 例的一種發光二極體元件之製程刮面圖。在一示範實施例中,先 提供藍膜100,其中藍膜100之材料為高分子聚合物,且此藍膜 1 00可具有單面黏著特性或雙面黏著特性。在本發明中,藍膜100 可取代一般價格昂貴之耐酸驗膠帶,因此可大幅降低製程成本。 接著,設置一或多個發光二極體晶片,例如垂直電極式之發光二 201027790 極體晶片102a與平行電極式之發光二極體晶片102b,於藍膜1〇〇 上’並使發光二極體晶片102a之表面i〇4a與發光二極體晶片1〇2b 之表面104b黏附在藍膜1〇〇上。201027790 . VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element, and more particularly to a light-emitting diode (LED) element, a package structure and a method of fabricating the same. [Prior Art] With the significant increase in the application of the light-emitting diode in high-brightness products such as daily lighting and automobile headlights, the operating power of the LED chip is also increased. However, ® In general, only about 20% of the input power of a light-emitting diode chip can be converted to light energy, and about 80% of the light is converted to heat. Therefore, as the operating power of the LED chip is increased, the heat generated by the operation of the LED chip is also increased, so that the demand for heat dissipation of the LED chip is also increasing. At present, a heat dissipating technique commonly applied to a package process of a light-emitting diode wafer is to use silver paste to fix a light-emitting diode wafer on a package having a heat dissipation function. In this way, the package can be used to help dissipate heat from the LED chip. However, the thermal resistance of the silver paste bonded between the LED chip and the package is too large, so that the heat dissipation performance of the ® package cannot be effectively performed, which seriously wastes the heat dissipation performance of the package. Another heat sinking technique applied to the package of a light-emitting diode wafer is to directly plate a metal heat sink on the bottom of the light-emitting diode wafer with the aid of an acid-resistant tape. Therefore, the light-emitting diode chip can be directly bonded to the metal heat sink base without passing through the silver paste, so that the entire light-emitting diode element has a large heat dissipation capability. However, in this heat dissipation technology, when the metal heat sink base is removed after plating, the adhesive residue of the tape remains on the front surface of the light emitting diode chip, and the residual glue cannot be effectively removed, thereby causing the light emitting diode. The body wafer is damaged. Secondly, the tape cannot effectively protect the light-emitting diode wafer in the process of manufacturing the subsequent metal heat-dissipating pedestal 201027790. The structure and the electrode, so that the heat-dissipating metal is plated on the side and the front side of the light-emitting diode chip. The damage of the LED chip is caused, resulting in poor process yield and inconsistent production efficiency. Moreover, the use of the tape does not effectively control the depth of the light-emitting diode chip embedded in the heat-dissipating metal base. Therefore, when the depth of the light-emitting diode chip embedded in the heat-dissipating metal base is too large, the side light of the light-emitting diode chip cannot be caused. Smooth export. Although the mirror can be placed on the side of the LED chip and the heat sink metal base is disposed, the side light of the LED chip can only be converted into front axial light after being led out by the mirror, and thus cannot be satisfied. The application of products that require side lighting. In addition, the price of the acid-resistant adhesive tape is very expensive, which is about ten times higher than the blue film (printed tape) widely used in the current process, and the process cost is greatly increased. Furthermore, the thermoelectric separation design of the LED component is different from the existing LED package module, so that the LED component cannot be directly inserted into the existing LED package module. It is necessary to re-develop new modules for various light-emitting diode products, which will cause a lot of production and application difficulties. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light-emitting diode element and a method of fabricating the same that can be used to form a light-emitting diode wafer and a heat-dissipating metal without using silver paste or acid-base resistant tape. The bonding of the layers not only greatly improves the heat dissipation performance of the LED components, but also effectively reduces the process cost. Another object of the present invention is to provide a light-emitting diode element and a method for fabricating the same that the photoresist layer used in the manufacturing process can not only effectively protect the light-emitting structure and the electrode of the light-emitting diode chip, but also help In order to control the depth of the light-emitting diode layer embedded in the heat-dissipating metal layer, the light-emitting diode chip can be prevented from being damaged in the subsequent process of the metal ore film, and the process yield can be greatly improved, and the light-emitting diode can be produced. 201027790 # Product application. A further object of the present invention is to provide a package structure of a light-emitting diode element and a method of manufacturing the same, in which a eutectic material layer is provided at the bottom of the light-emitting diode element, so that the heat-dissipating metal layer at the bottom of the element can be The crystal material layer is fixed on the package base through low-temperature heating such as infrared rays, so that the long-term high-temperature curing process of the conventional bonding element and the package base can be avoided to cause thermal damage of the LED chip, and the eutectic The material layer can also reduce the resistance and improve the heat dissipation effect, and can satisfy the existing package base without the thermoelectric design of the package base, which is beneficial to mass production and application. 〇 A light-emitting diode element and its package structure are proposed in accordance with the above object of the present invention. The light emitting diode element comprises at least: the heat conductive metal layer has opposite second and second surfaces, and the first surface of the heat conductive metal layer comprises a recess; the eutectic material layer is disposed on the second surface of the heat conductive metal layer The conductive layer covers the first surface of the thermally conductive metal layer; and the light emitting diode chip is embedded on the conductive layer in the recessed layer of the thermally conductive metal layer, wherein the light emitting diode chip comprises a different electrical property — Electrode and second electrode. In addition, the package structure of the LED component at least includes: a package base having a recess; the LED component is disposed in the recess; and the first external electrode is electrically connected to the first electrode; A second external electrode is electrically connected to the second electrode. According to a preferred embodiment of the present invention, the material of the eutectic material layer comprises gold (Au), kick (Sn), nickel (10), chromium (Cr), titanium (τ〇, group (Ta), Ming (eight)), One of steel (10), or an alloy thereof. According to the purpose of the present invention, a method of fabricating a light-emitting diode element and a package structure thereof is proposed. The method for manufacturing a light emitting diode device includes at least: disposing at least one light emitting diode chip on the blue film to adhere a surface of the light emitting diode chip to the blue film; providing a transparent temporary substrate, wherein the transparent temporary The substrate has a relative surface of the 201027790 - the first surface and the second surface, the hard surface, the first surface of the transparent temporary substrate is covered by the light emitting layer == layer. The light-emitting layer is disposed in the photoresist layer, which makes the light emitting diode The body wafer package - the first recording on the light-emitting structure, an electrode is buried in the photoresist layer _ m'u light two to remove the blue film 'part of the photoresist layer remains on the surface of the hair' · from transparent The second surface of the temporary substrate faces the first surface =: an exposure step 'where the residual portion of the photoresist layer is not exposed in the exposure step; the residual portion of the photoresist layer is removed, and the light emitting diode is completely exposed On the surface of the body, a conductive layer is formed on the surface of the photoresist layer and the light-emitting diode wafer ©: 'Electrical-mineral-thermal conductive metal layer on the conductive layer; forming a layer of eutectic material in the heat-conductive layer- On the surface, and remove the photoresist layer and the transparent temporary base . The manufacturing method of the package structure of the light-emitting diode element further comprises at least providing a package base, wherein the packaged base has a groove; and the above-mentioned light-emitting diode chip is disposed in the groove The eutectic material layer is directly bonded to the bottom surface of the recess; and the first electrode and the -first external electrode, and the second electrode of the LED component and a first external electrode are electrically connected. According to a preferred embodiment of the present invention, the material of the photoresist layer is a negative photo-resistance and the thickness of the photoresist layer is preferably greater than ΙΟμπι. [Embodiment] Referring to Figures 1 to 11A, there is shown a process plan view of a light-emitting diode element in accordance with a preferred embodiment of the present invention. In an exemplary embodiment, a blue film 100 is provided, wherein the material of the blue film 100 is a high molecular polymer, and the blue film 100 may have a single-sided adhesive property or a double-sided adhesive property. In the present invention, the blue film 100 can replace the generally expensive acid-resistant test tape, thereby greatly reducing the process cost. Next, one or more light emitting diode chips are disposed, for example, a vertical electrode type light emitting diode 201027790 polar body wafer 102a and a parallel electrode type light emitting diode wafer 102b, on the blue film 1 'and the light emitting diode The surface i〇4a of the bulk wafer 102a and the surface 104b of the light-emitting diode wafer 1〇2b are adhered to the blue film 1〇〇.

在一實施例中’發光二極體晶片102a主要包含第二電極 112a、導電基板106a、發光結構l〇8a與第一電極U〇a,其甲第一 電極110a與第二電極112a具有不同電性,例如其中之—電極為p 型、另一電極為N型。如第1圖所示,在發光二極體晶片1〇2a中, 導電基板l〇6a疊設在第二電極112a上,發光結構108&則例如可 .利用遙晶成長方式形成於導電基板106a上’第一電極11 〇a設於 部分之發光結構l〇8a上。發光二極體晶片l〇2a在後續製程中, 具有需受到保護的部分,例如從第一電極ll〇a向下延伸至發光結 構108a,此需受到保護的部分具有厚度116a。另一方面,發光二 極體晶片102b則例如可包含基板106b、發光結構1〇8b、第一電 極110b、第二電極112b與選擇性設置之第一反射層114,其中第 一電極110b與第二電極112b具有不同電性,例如其中之一電極 為P型、另一電極為N型,第一反射層114可例如為布拉格反射 鏡(Distributed Bragg Reflector ; DBR)。如第 1 圖所示,在發光二 極體晶片102b中,基板106b疊設在第一反射層114上,發光結 構108b則例如可利用蟲晶成長方式、並配合例如微影餘刻等圖案 化技術,而形成於基板106b之表面118的一部分上,第二電極n2b 則設於基板106b之表面118的另一部分上,第一電極u〇b設於 部分之發光結構108b上。發光二極體晶片l〇2b在後續製程中, 具有需受到保護的部分,例如從第一電極1 1 〇b向下延伸至發光結 構108b’此需受到保護的部分具有厚度i 16^發光二極體晶片i〇2a 與102b之材料例如可採用氮化鎵(GaN)系列、磷化鋁鎵銦(AiGainp) 201027790 . 系列、硫化鉛(PbS)系列、碳化矽(SiC)系列、矽(Si)系列或砷化鎵 (GaAs)系歹ij 。In an embodiment, the LED body 102a mainly includes a second electrode 112a, a conductive substrate 106a, a light emitting structure 10a and a first electrode U〇a, and the first electrode 110a and the second electrode 112a have different electric power. Properties, such as those in which the electrode is p-type and the other electrode is N-type. As shown in FIG. 1, in the light-emitting diode wafer 1〇2a, the conductive substrate 106a is stacked on the second electrode 112a, and the light-emitting structure 108& can be formed on the conductive substrate 106a by, for example, a crystal growth method. The upper first electrode 11 〇a is disposed on a portion of the light emitting structure 10a. The light-emitting diode wafer 10a has a portion to be protected in a subsequent process, for example, extending from the first electrode 11a to the light-emitting structure 108a, and the portion to be protected has a thickness 116a. On the other hand, the LED wafer 102b may include, for example, a substrate 106b, a light emitting structure 1〇8b, a first electrode 110b, a second electrode 112b, and a selectively disposed first reflective layer 114, wherein the first electrode 110b and the first electrode 110b The two electrodes 112b have different electrical properties, for example, one of the electrodes is P-type and the other electrode is N-type, and the first reflective layer 114 can be, for example, a Bragg Reflector (DBR). As shown in FIG. 1, in the light-emitting diode wafer 102b, the substrate 106b is stacked on the first reflective layer 114, and the light-emitting structure 108b can be patterned by, for example, a crystal growth method and blending with, for example, lithography. The technique is formed on a portion of the surface 118 of the substrate 106b, the second electrode n2b is disposed on another portion of the surface 118 of the substrate 106b, and the first electrode u〇b is disposed on a portion of the light emitting structure 108b. The light-emitting diode wafer 10b has a portion to be protected in a subsequent process, for example, extending from the first electrode 1 1 〇b to the light-emitting structure 108b'. The portion to be protected has a thickness i 16^ The material of the polar body wafers i〇2a and 102b may be, for example, a gallium nitride (GaN) series, an aluminum gallium indium phosphide (AiGainp) 201027790 series, a lead sulfide (PbS) series, a tantalum carbide (SiC) series, or a tantalum (Si). Series or gallium arsenide (GaAs) system 歹 ij.

•T 接著,如第2圖所示,提供透明暫時基板120,其中此透明暫 時基板120具有相對之表面122與124。透明暫時基板120較佳係 選用可讓微影製程之曝光光源的光順利穿透的材料,例如可讓紫 外光穿透之材料。接下來,利用例如塗布方式形成光阻層126均 勻覆蓋在透明暫時基板120之表面122上。在一示範實施例中, 光阻層126之材料例如可選用負型光阻。光阻層126應具有一定 A 厚度,例如光阻層126之厚度128可大於發光二極體晶片102a之 需受到保護之厚度116a與發光二極體晶片102b之需受到保護之 厚度116b至少10/zm以上。在一實施例中,光阻層126之厚度例 . 如可大於10 β m。 接下來,如第2圖所示,利用藍膜100之承載,將發光二極 體晶片102a與102b予以倒轉,而使發光二極體晶片102a與102b 與透明暫時基板120上之光阻層126相對。接著,如第3圖所示, 將發光二極體晶片102a與102b壓設於光阻層126中,並控制這 q 些發光二極體晶片102a與102b壓入光阻層126之深度130,其中 ,此深度130需大於發光二極體晶片102a與102b之需受到保護之 厚度116a與116b。在一實施例中,壓入之深度130例如可介於實 質10# m與實質100# m之間。發光二極體晶片102a在壓入光阻 層126後,發光二極體晶片102a之第一電極110a與發光結構108a 完全埋設在光阻層126中。另外,發光二極體晶片102b在壓入光 阻層126後,發光二極體晶片102b之第一電極110b、發光結構 108b與第二電極112b完全埋設在光阻層126中。 接著,將藍膜100撕除,並可依製程需求而選擇性對光阻層 9 201027790 . 126進行烘烤,以利固定發光二極體晶片102a與102b。在撕除藍 膜100時,藍膜100可能會帶起光阻層126部分表面區域,因此 * 有一部分光阻層126之殘餘部分132會殘留在發光二極體晶片 102a之表面104a與發光二極體晶片102b之表面104b上,如第4 圖所示。在一示範實施例中,為避免這些光阻層126之殘餘部分 132的存在造成發光二極體晶片102a和102b與後續形成在其表面 104a和104b上的材料層之間的附著力下降,而將殘留在發光二極 體晶片102a與102b之表面104a與104b上的光阻層126之殘餘 _ 部分132予以移除。因此,如第5圖所示,先進行背面曝光步驟, 以從透明暫時基板120之表面124朝相對之表面122的方向進行 ^ 曝光步驟。在此曝光步驟中,光阻層126之殘留部分132受到發 . 光二極體晶片l〇2a與102b的遮蔽,因此並未在受到曝光。接著, 進行顯影步驟,此時由於光阻層126殘餘在發光二極體晶片102a 與102b之表面104a與104b上的部分132並未受到曝光,因此可 為顯影液順利移除,而完全暴露出發光二極體晶片102a與102b 之表面104a與104b,如第6圖所示。在一實施例中,於顯影步驟 ^ 後,可選擇性地進行清潔與烘烤程序,以去除殘餘之光阻微粒與 ❿ 污垢。 接著,如第7圖所示,在一示範實施例中,例如可利用蒸鍍 (Evaporation)法、滅渡(Sputtering)法或無電鍵(Electroless Plating) 法,形成導電層134覆蓋於光阻層126與發光二極體晶片102a與 102b之表面104a與104b上。導電層134之製作可採共形(conformal) 沉積方式。導電層134可為由至少二材料層所堆疊而成之複合結 構層,或者可為一合金層。導電層13 4之材料例如可為氧化銦錫_ (ΠΌ)、金、銀、始(Pt)、ΐε、鎳、鉻、欽、组、銘、銦、鶴、銅、 201027790 . 含鎳之合金、含鉻之合金、含鈦之合金、含鈕之合金、含鋁之合 金、含銦之合金、含鎢之合金、或含銅之合金。在一實施例中,• T Next, as shown in Fig. 2, a transparent temporary substrate 120 is provided, wherein the transparent temporary substrate 120 has opposing surfaces 122 and 124. The transparent temporary substrate 120 is preferably made of a material that allows the light of the exposure light source of the lithography process to penetrate smoothly, such as a material that allows ultraviolet light to penetrate. Next, the photoresist layer 126 is formed uniformly on the surface 122 of the transparent temporary substrate 120 by, for example, a coating method. In an exemplary embodiment, the material of the photoresist layer 126 may be, for example, a negative photoresist. The photoresist layer 126 should have a certain thickness A. For example, the thickness 128 of the photoresist layer 126 can be greater than the thickness 116a of the light-emitting diode wafer 102a to be protected and the thickness 116b of the light-emitting diode wafer 102b to be protected at least 10/. More than zm. In one embodiment, the thickness of the photoresist layer 126 is, for example, greater than 10 β m. Next, as shown in FIG. 2, the LED chips 102a and 102b are reversed by the carrying of the blue film 100, and the light-emitting diode wafers 102a and 102b and the photoresist layer 126 on the transparent temporary substrate 120 are turned on. relatively. Next, as shown in FIG. 3, the LED chips 102a and 102b are pressed into the photoresist layer 126, and the depths 130 of the photoresist diodes 102a and 102b are pressed into the photoresist layer 126. The depth 130 is greater than the thicknesses 116a and 116b of the LED chips 102a and 102b to be protected. In one embodiment, the depth 130 of the press-in can be, for example, between the solid 10#m and the substantial 100#m. After the light-emitting diode wafer 102a is pressed into the photoresist layer 126, the first electrode 110a of the light-emitting diode wafer 102a and the light-emitting structure 108a are completely buried in the photoresist layer 126. Further, after the light-emitting diode wafer 102b is pressed into the photoresist layer 126, the first electrode 110b, the light-emitting structure 108b, and the second electrode 112b of the light-emitting diode wafer 102b are completely buried in the photoresist layer 126. Next, the blue film 100 is torn off, and the photoresist layer 9 201027790 . 126 can be selectively baked according to the process requirements to facilitate the fixing of the LED chips 102a and 102b. When the blue film 100 is torn off, the blue film 100 may bring up a part of the surface area of the photoresist layer 126, so that a portion of the photoresist portion 126 remaining on the surface 104a and the light-emitting diode 102a may remain on the surface 104a of the light-emitting diode wafer 102a. The surface 104b of the polar body wafer 102b is as shown in Fig. 4. In an exemplary embodiment, to avoid the presence of residual portions 132 of the photoresist layer 126, the adhesion between the LED arrays 102a and 102b and the subsequently formed material layers on the surfaces 104a and 104b is reduced. The residual portion 132 of the photoresist layer 126 remaining on the surfaces 104a and 104b of the LED chips 102a and 102b is removed. Therefore, as shown in Fig. 5, the back exposure step is first performed to perform the exposure step from the surface 124 of the transparent temporary substrate 120 toward the opposite surface 122. In this exposure step, the residual portion 132 of the photoresist layer 126 is shielded by the photodiode wafers 102a and 102b, and thus is not exposed. Next, a developing step is performed in which the portion 132 remaining on the surfaces 104a and 104b of the LED wafers 102a and 102b by the photoresist layer 126 is not exposed, so that the developer can be smoothly removed and completely exposed. The surfaces 104a and 104b of the photodiode wafers 102a and 102b are as shown in Fig. 6. In one embodiment, after the development step ^, a cleaning and baking process can be selectively performed to remove residual photoresist particles and smudging. Next, as shown in FIG. 7, in an exemplary embodiment, the conductive layer 134 may be formed over the photoresist layer by, for example, an evaporation method, a sputtering method, or an electroless plating method. 126 and the surfaces 104a and 104b of the LED chips 102a and 102b. The conductive layer 134 can be fabricated in a conformal deposition manner. The conductive layer 134 may be a composite structural layer formed by stacking at least two material layers, or may be an alloy layer. The material of the conductive layer 13 4 can be, for example, indium tin oxide (ΠΌ), gold, silver, Pt, ΐ ε, nickel, chrome, chin, group, indium, indium, crane, copper, 201027790. alloy containing nickel , chromium-containing alloys, titanium-containing alloys, alloys containing buttons, alloys containing aluminum, alloys containing indium, alloys containing tungsten, or alloys containing copper. In an embodiment,

Ik 導電層134之厚度例如可小於實質3//m。在一些實施例中,於光 阻層126之殘留部分132移除後,但尚未形成導電層134前,可 選擇性地先形成緩衝層(未繪示)覆蓋在光阻層126和發光二極體 晶片102a與102b之表面104a與104b上,而後才形成導電層134, 以增進導電層134與發光二極體晶片102a和102b之間的黏附力。 此緩衝層之材料例如可為氮化鈦或氮化銘。 φ 接下來,如第8圖所示,利用電鍍方式形成導熱金屬層136 於導電層134上,其中此導熱金屬層136較佳係具有相當之厚度, 以利發光二極體晶片l〇2a與102b之散熱。在一示範實施例中, 導熱金屬層136之厚度例如可介於實質50/zm與實質500//m之 間。導熱金屬層136之材料例如可為銅、銅合金、鐵錄合金(Fe/Ni)、 錄、鶴(W)、翻(Mo)、或上述金屬之.任二種或任二種以上的合金。 此導熱金屬層136具有相對之表面138與140,其中受到發光二極 體晶片102a與102b突出於光阻層126表面的影響,與導電層134 q 接合之表面138具有凹陷部142,而發光二極體晶片102a與102b 即嵌設在導熱金屬層136之凹陷部142中的導電層134上。在一 實施例中,完成導熱金屬層136之電鍍後,可依實際製程需求, 而對導熱金屬層136之表面138額外進行研磨步驟,以降低導熱 金屬層136之表面138的粗糙度,以利後續形成之材料層順利設 置在此表面138上。在一實施例中,經研磨步驟後,導熱金屬層 136之表面138的粗糙度例如可介於實質80A與實質1/zm之間。 接著,如第9圖所示,利用例如蒸鍍法、濺渡法、無電鍍法 或電鍍法,形成共晶材料層144於導熱金屬層136之表面138上, 11 201027790 其中共晶材料層 144之表面146 具有相對之表面146與148 ’而共晶材料層 層144例如導熱金屬層136之表面138直接接合。共晶材料 為合金層。it曰由至少一材料層所堆疊而成之複合結構層、或可 组、紹^ 材料層144之材料例如可包含金、錫、錄、鉻、 層H4之歷* 、或其合金其中之—。在一實施例中,共晶材料 厚度例如可小於實質6_。 接下來,如第 一 由古攙υ圖所示’可利用例如剝離(Lift-off)法,而藉 由有機溶劑來溶解The thickness of the Ik conductive layer 134 can be, for example, less than substantially 3/m. In some embodiments, after the residual portion 132 of the photoresist layer 126 is removed, but before the conductive layer 134 is formed, a buffer layer (not shown) may be selectively formed to cover the photoresist layer 126 and the light emitting diode. The surfaces 104a and 104b of the bulk wafers 102a and 102b are then formed with a conductive layer 134 to enhance the adhesion between the conductive layer 134 and the LED wafers 102a and 102b. The material of the buffer layer may be, for example, titanium nitride or nitride. φ Next, as shown in FIG. 8, a thermally conductive metal layer 136 is formed on the conductive layer 134 by electroplating, wherein the thermally conductive metal layer 136 is preferably of a thickness to facilitate the light-emitting diode wafer 10a and The heat dissipation of 102b. In an exemplary embodiment, the thickness of the thermally conductive metal layer 136 can be, for example, between substantially 50/zm and substantially 500//m. The material of the heat conductive metal layer 136 may be, for example, copper, copper alloy, iron alloy (Fe/Ni), recorded, crane (W), turned (Mo), or the above metal. Any two or more alloys . The thermally conductive metal layer 136 has opposing surfaces 138 and 140, wherein the surface of the photoresist layer 102a and 102b protrudes from the surface of the photoresist layer 126, and the surface 138 bonded to the conductive layer 134q has a recess 142. The polar body wafers 102a and 102b are embedded on the conductive layer 134 in the recess 142 of the thermally conductive metal layer 136. In an embodiment, after the electroplating of the thermally conductive metal layer 136 is completed, the surface 138 of the thermally conductive metal layer 136 may be additionally subjected to a grinding step according to actual process requirements to reduce the roughness of the surface 138 of the thermally conductive metal layer 136. Subsequently formed material layers are smoothly disposed on this surface 138. In one embodiment, after the grinding step, the roughness of the surface 138 of the thermally conductive metal layer 136 can be, for example, between substantially 80A and substantially 1/zm. Next, as shown in FIG. 9, a eutectic material layer 144 is formed on the surface 138 of the thermally conductive metal layer 136 by, for example, an evaporation method, a sputtering method, an electroless plating method, or an electroplating method, 11 201027790 wherein the eutectic material layer 144 The surface 146 has opposing surfaces 146 and 148' and the eutectic material layer 144, such as the surface 138 of the thermally conductive metal layer 136, is directly joined. The eutectic material is an alloy layer. The composite structural layer formed by stacking at least one material layer, or the material of the material layer 144, for example, may comprise gold, tin, chrome, chrome, layer H4, or an alloy thereof. . In one embodiment, the thickness of the eutectic material can be, for example, less than substantially 6 mm. Next, as shown in the first figure, it can be dissolved by an organic solvent, for example, by a lift-off method.

之读日尤限層126’來一併移除光阻層126及與其接合 之透明暫時基板 _與發絲而暴露出發光二極體晶片1〇2a之第一電極 第二電極112° 108a、發光二極體晶片i〇2b之第一電極110b、 b與發光結構108b、以及部分之導電層134。接著, 可進仃晶粒之切甸 二—上 而將發光二極體晶片102a與102b予以分開, 而元成如第11八圖所_ 所不之發光二極體元件150a與第11B圖所示之 發光二_元件15%的製作。 _ 即可進行發光二極體元件150a與150b之封裝程序。 在一示範實施例中,1姑 T 如第12Α圖所示,進行發光二極體元件150a 之封襞程序時,可楹也 J &供封裝基座152,其中封裝基座152可由絕緣 材料所組成。封襄基座152可包含凹槽158。在-實施例中,封裝 基座152之凹槽158的側面可選擇性地設有第二反射層17〇,以將 發光二極體元件15〇a所發出之側向光往發光二極體元件150a的 正向反射。接著,將發光二極體元件15如設置於封裝基座152之 凹槽158中,並使共晶材料層144之表面148與凹槽158之底面 160直接接合。再使發光二極體晶片1〇2a之第一電極11〇a和第二 電極112a分別與第一外部電極156a和第二外部電極154a電性連 接。在一示範實施例中,第一外部電極156a與第二外部電極154a 12 201027790The reading day limit layer 126' further removes the photoresist layer 126 and the transparent temporary substrate bonded thereto _ with the hairline to expose the first electrode of the light-emitting diode wafer 1〇2a, the second electrode 112° 108a, and emits light The first electrodes 110b, b of the diode wafer i 〇 2b and the light emitting structure 108b, and a portion of the conductive layer 134. Then, the light-emitting diode chips 102a and 102b can be separated by the cutting of the die, and the light-emitting diode elements 150a and 11B are as shown in FIG. 15% of the production of the light-emitting two-component. _ The packaging process of the LED components 150a and 150b can be performed. In an exemplary embodiment, as shown in FIG. 12, when the sealing process of the light-emitting diode element 150a is performed, the package base 152 may be provided for the package base 152, wherein the package base 152 may be made of an insulating material. Composed of. The sealing base 152 can include a recess 158. In an embodiment, the side of the recess 158 of the package base 152 may be selectively provided with a second reflective layer 17〇 to illuminate the lateral light emitted by the LED component 15〇a toward the LED. Forward reflection of element 150a. Next, the light emitting diode element 15 is disposed in the recess 158 of the package base 152 such that the surface 148 of the eutectic material layer 144 is directly bonded to the bottom surface 160 of the recess 158. Further, the first electrode 11a and the second electrode 112a of the light-emitting diode wafer 1A2a are electrically connected to the first and second external electrodes 156a, 154a, respectively. In an exemplary embodiment, the first outer electrode 156a and the second outer electrode 154a 12 201027790

可例如嵌設於封裝基座152中,並延伸於封裝基座152之外側, 其中部分之第一外部電極156a與部分之第二外部電極154a可延 伸而暴露於凹槽158之底面160中。因此,將發光二極體元件150a 設置於封裝基座152之凹槽158中時,可將發光二極體元件150a 置於凹槽158之底面160中第二外部電極154a的暴露部分上,並 利用紅外線加熱法、爐管加熱法或快速熱退火法使共晶材料層144 之表面148與第二外部電極154a的暴露部分直接共晶接合,形成 一共晶層(eutectic layer) 144a,藉以使發光二極體晶片102a之第二 電極112a經由下方之導電層134、導熱金屬層136與共晶層144a 而與第二外部電極154a形成電性連接。其中,共晶層144a之材 料例如可包含金、錫、錄、絡、鈦、組、铭、钢、或其合金其中 之一,共晶層144a之厚度例如可小於實質6/zm。另一方面,電 性連接發光二極體晶片l〇2a之第一電極110a與第一外部電極 156a時,則可以導線接合(Wire Bonding)方式而利用導線162來加 以電性連接。然後,可形成封裝膠體168填入封裝基座152之凹 槽158内,並使封裝膠體168覆蓋住凹槽158内之發光二極體元 件150a、導線162、第一外部電極156a與第二外部電極154a,而 完成發光二極體元件150a之封裝結構172a。 在另一示範實施例中,如第12B圖所示,進行發光二極體元 件150b之封裝程序時,同樣可提供包含凹槽158之封裝基座152。 在一實施例中,封裝基座152之凹槽158的側面同樣可選擇性地 設有第二反射層170,以利將側向光往發光二極體元件150b的正 向反射。接著,將發光二極體元件150b設置於封裝基座152之凹 槽158中,並使共晶材料層144之表面148與凹槽158之底面160 直接接合。再以導線接合方式,而利用二導線164與166來分別 13 201027790 電性連接發光二極體晶片l〇2b之第一電極11 Ob和第二電極112b 與第一外部電極156b和第二外部電極154b。在一示範實施例中, 第一外部電極156b與第二外部電極154b可例如嵌設於封裝基座 152中,並延伸於封裝基座152之外側,其中部分之第一外部電極 156b與部分之第二外部電極154b可延伸而暴露於凹槽158之底面 160中。因此,將發光二極體元件150b設置於封裝基座152之凹 槽158中時,可將發光二極體元件150b置於凹槽158之底面160 中第一外部電極156b的暴露部分上,並利用紅外線加熱法、爐管 加熱法或快速熱退火法使共晶材料層144之表面148與第一外部 電極156b的暴露部分直接共晶接合,形成一共晶層144a,以增強 發光二極體元件150b與封裝基座152之間的接合力,並提高發光 二極體元件150b之散熱效率。然後,可形成封裝膠體168填入封 裝基座152之凹槽158内,並使封裝膠體168覆蓋住凹槽158内 之發光二極體元件150b、導線164與166、第一外部電極156b與 第二外部電極154b,而完成發光二極體元件150b之封裝結構 172b。 由上述本發明之實施例可知,本發明之一優點就是因為在本 發明之發光二極體元件及其製造方法中,無需使用銀膠,也無需 採用耐酸鹼膠帶,即可使發光二極體晶片與散熱金屬層接合,因 此不僅可大幅提升發光二極體元件之散熱效能,更可有效降低製 程成本。 由上述本發明之實施例可知,本發明之另一優點就是因為在 本發明之發光二極體元件及其製造方法中,其製作過程中所採用 之光阻層不僅可有效保護發光二極體晶片之發光結構與電極,且 有助於控制發光二極體晶片嵌入散熱金屬層之深度,因此可避免 14 201027790 . 發光二極體晶片在後續金屬鍍膜的製程中受損,而可大幅提高製 程良率,且可滿足側光發光二極體產品的應用。 由上述本發明之實施例可知,本發明之又一優點就是因為在 本發明之發光二極體元件之封裝結構及其製造方法中,其發光二 極體元件之底部設有共晶材料層,因此元件底部之散熱金屬層可 利用共晶材料層而透過紅外線等低温加熱方式形成共晶層固定在 封裝基座上。故,可避免傳統接合元件與封裝基座之膠體的長時 間高溫固化程序而造成發光二極體晶片的熱損壞,且共晶材料層 Φ 也可降低熱阻而可提升散熱效果,更可滿足於現有封裝基座而無 需更動封裝基座之熱電設計,有利於大量生產與應用。 雖然本發明已以一較佳實施例揭露如上,然其並非用以限定 本發明,任何在此技術領域中具有通常知識者,在不脫離本發明 之精神和範圍内,當可作各種之粟動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 φ 第1圖至第11A圖係繪示依照本發明一較佳實施例的一種發 光二極體元件之製程剖面圖。 第11B圖係繪示依照本發明之另一較佳實施例的一種發光二 極體元件之剖面圖。 第12A圖係繪示依照本發明一較佳實施例的一種發光二極體 元件之封裝結構的剖面圖。 第12B圖係繪示依照本發明之另一較佳實施例的一種發光二 極體元件之封裝結構的剖面圖。 15 201027790 【主要元件符號說明】For example, it may be embedded in the package base 152 and extend on the outer side of the package base 152. A portion of the first outer electrode 156a and a portion of the second outer electrode 154a may extend to be exposed in the bottom surface 160 of the recess 158. Therefore, when the light emitting diode element 150a is disposed in the recess 158 of the package base 152, the light emitting diode element 150a can be placed on the exposed portion of the second outer electrode 154a in the bottom surface 160 of the recess 158, and The surface 148 of the eutectic material layer 144 and the exposed portion of the second external electrode 154a are directly eutectic bonded by infrared heating, furnace tube heating or rapid thermal annealing to form a eutectic layer 144a, thereby causing luminescence. The second electrode 112a of the diode wafer 102a is electrically connected to the second external electrode 154a via the underlying conductive layer 134, the thermally conductive metal layer 136, and the eutectic layer 144a. The material of the eutectic layer 144a may, for example, comprise one of gold, tin, magnet, titanium, group, indium, steel, or an alloy thereof, and the thickness of the eutectic layer 144a may be, for example, less than substantially 6/zm. On the other hand, when the first electrode 110a of the light-emitting diode wafer 102a and the first external electrode 156a are electrically connected, the wire 162 can be electrically connected by wire bonding. Then, the encapsulant 168 can be formed to fill the recess 158 of the package base 152, and the encapsulant 168 covers the LED body 150a, the wire 162, the first external electrode 156a and the second external portion in the recess 158. The electrode 154a completes the package structure 172a of the light-emitting diode element 150a. In another exemplary embodiment, as shown in Fig. 12B, when the package process of the light emitting diode device 150b is performed, the package base 152 including the recess 158 can also be provided. In one embodiment, the side of the recess 158 of the package base 152 is also selectively provided with a second reflective layer 170 to facilitate lateral reflection of the lateral light toward the LED component 150b. Next, the LED component 150b is disposed in the recess 158 of the package base 152 such that the surface 148 of the eutectic material layer 144 is directly bonded to the bottom surface 160 of the recess 158. Then, in the wire bonding manner, the first electrode 11 Ob and the second electrode 112b of the light-emitting diode wafer 10b are electrically connected to the first external electrode 156b and the second external electrode by using two wires 164 and 166, respectively, 13 201027790 154b. In an exemplary embodiment, the first external electrode 156b and the second external electrode 154b may be embedded in the package base 152, for example, and extend outside the package base 152, and a portion of the first external electrode 156b and a portion thereof The second outer electrode 154b can extend to be exposed in the bottom surface 160 of the recess 158. Therefore, when the light emitting diode element 150b is disposed in the recess 158 of the package base 152, the light emitting diode element 150b can be placed on the exposed portion of the first outer electrode 156b in the bottom surface 160 of the recess 158, and The surface 148 of the eutectic material layer 144 is directly eutectic bonded to the exposed portion of the first external electrode 156b by infrared heating, furnace tube heating or rapid thermal annealing to form a eutectic layer 144a to enhance the light emitting diode element. The bonding force between the 150b and the package base 152 increases the heat dissipation efficiency of the light emitting diode element 150b. Then, the encapsulant 168 can be formed to fill the recess 158 of the package base 152, and the encapsulant 168 covers the LED component 150b, the wires 164 and 166, the first external electrode 156b and the first in the recess 158. The outer electrode 154b completes the package structure 172b of the light emitting diode element 150b. It can be seen from the above embodiments of the present invention that one of the advantages of the present invention is that in the light-emitting diode element of the present invention and the method of manufacturing the same, it is possible to make the light-emitting diode without using silver glue or using an acid-resistant tape. The body wafer is bonded to the heat dissipation metal layer, so that the heat dissipation performance of the light emitting diode component can be greatly improved, and the process cost can be effectively reduced. It can be seen from the above embodiments of the present invention that another advantage of the present invention is that in the light-emitting diode element of the present invention and the method of manufacturing the same, the photoresist layer used in the manufacturing process can not only effectively protect the light-emitting diode The light-emitting structure of the chip and the electrode, and help to control the depth of the light-emitting diode chip embedded in the heat-dissipating metal layer, thereby avoiding 14 201027790. The light-emitting diode chip is damaged in the subsequent metal plating process, and the process can be greatly improved. Yield, and can meet the application of side light emitting diode products. According to the embodiment of the present invention, another advantage of the present invention is that, in the package structure of the light-emitting diode element of the present invention and the manufacturing method thereof, the bottom of the light-emitting diode element is provided with a eutectic material layer. Therefore, the heat dissipation metal layer at the bottom of the element can be fixed to the package base by using a eutectic material layer and forming a eutectic layer by low-temperature heating such as infrared rays. Therefore, the long-term high-temperature curing process of the conventional bonding element and the colloid of the package base can be avoided to cause thermal damage of the LED film, and the eutectic material layer Φ can also reduce the thermal resistance and improve the heat dissipation effect, and can satisfy the heat dissipation effect. The existing package base does not require a thermoelectric design to change the package base, which is advantageous for mass production and application. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and any one of ordinary skill in the art can be used in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 11A are cross-sectional views showing a process of a light-emitting diode element in accordance with a preferred embodiment of the present invention. Figure 11B is a cross-sectional view showing a light emitting diode element in accordance with another preferred embodiment of the present invention. Figure 12A is a cross-sectional view showing a package structure of a light emitting diode device in accordance with a preferred embodiment of the present invention. Figure 12B is a cross-sectional view showing a package structure of a light emitting diode element in accordance with another preferred embodiment of the present invention. 15 201027790 [Main component symbol description]

100 :藍膜 102a 102b :發光二極體晶片 104a 104b :表面 106a 106b :基板 108a 108b :發光結構 110a 110b :第一電極 112a 112b :第二電極 114 : 116a :厚度 116b 118 :表面 120 : 122 :表面 124 : 126 :光阻層 128 : 130 :深度 132 : 134 :導電層 136 : 138 :表面 140 : 142 :凹陷部 144 : 144a :共晶層 146 : 148 :表面 150a 150b :發光二極體元件 152 : 154a :第二外部電極 154b 156a :第一外部電極 156b 158 :凹槽 160 : :發光二極體晶片 :表面 :導電基板 :發光結構 :第一電極 :第二電極 第一反射層 :厚度 透明暫時基板 表面 厚度 部分 導熱金屬層 表面 共晶材料層 表面 :發光二極體元件 封裝基座 :第二外部電極 :第一外部電極 底面 16 201027790 162 :導線 164 : 166 :導線 168 : 170 :第二反射層 172a 172b :封裝結構 導線 封裝膠體 :封裝結構100: blue film 102a 102b: light emitting diode wafer 104a 104b: surface 106a 106b: substrate 108a 108b: light emitting structure 110a 110b: first electrode 112a 112b: second electrode 114: 116a: thickness 116b 118: surface 120: 122: Surface 124: 126: photoresist layer 128: 130: depth 132: 134: conductive layer 136: 138: surface 140: 142: recess 144: 144a: eutectic layer 146: 148: surface 150a 150b: light emitting diode element 152: 154a: second outer electrode 154b 156a: first outer electrode 156b 158: groove 160: : light emitting diode wafer: surface: conductive substrate: light emitting structure: first electrode: second electrode first reflective layer: thickness Transparent temporary substrate surface thickness part heat conductive metal layer surface eutectic material layer surface: light emitting diode element package pedestal: second external electrode: first external electrode bottom surface 16 201027790 162 : wire 164 : 166 : wire 168 : 170 : Two reflective layer 172a 172b: package structure wire encapsulation colloid: package structure

1717

Claims (1)

201027790 七、申請專利範圍: 1. 一種發光二極體元件,至少包含: 一導熱金屬層,具有相對之一第一表面與一第二表面,且該 導熱金屬層之該第一表面包含一凹陷部; 一共晶材料層’設於該導熱金屬層之該第二表面; 一導電層’覆蓋在該導熱金屬層之該第一表面上;以及 一發光二極體晶片,嵌設在該導熱金屬層之該凹陷部中的該 導電層上’其中該發光二極體晶片包含具不同電性之一第一電極 ❹ 與一第二電極。 2·如申請專利範圍第1項所述之發光二極體元件,其中該發 光二極體晶片更包含: 一基板;以及 一發光結構,設於該基板之一表面之一第一部分上,其中該 第一電極設於部分之該發光結構上,且該第二電極設於該基板之 該表面之一第二部分上。 ❿ 3. 如申請專利範圍第丨項所述之發光二極體元件,其中該發 光·一極體晶片更包含: 一導電基板,設於該第二電極上;以及 一發光結構,設於該導電基板上,其中該第—電極設於部分 之該發光結構上。 4. 如申請專利範圍第丨項所述之發光二極體元件,更包含一 18 201027790 緩衝層介於該導電層與該發光二極體晶片之間。 5·如申請專利範圍第4項所述之發光二極體元件,其中該緩 衝層之材料為氮化鈦或氮化鋁。 、 6.如申請專利範圍第】項所述之發光二極體^件,其中該共 晶層之材料為一複合結構層或一合金層。 曰7.如申請專利範圍第i項所述之發光二極體元件,其中該共 晶材料層之材料包含金(Au)、錫(Sn)、錄(Ni)、絡⑼、鈦㈤、组 (Ta)、銘(Ai)、銦(In)、或其合金其中之一。 晶 材料層之厚度小ί實圍Hi所述之發光—極體讀,其中該共 瘳 9.如申請專利範圍第1項所述之發光二極體元件,其中該導 …金屬層之材料為銅、銅合金、鐵錄合金(Fe/Ni)、錄、鎢翻 (Mo)、或其合金。 熱金Γ屉^請專利範圍第1項所述之發光二極體元件,其中該導 、、、 厚度介於實質50"m與實質500/zm之間。 熱金範圍第1項所述之發光二極體元件’其令該導 Μ第—表面的粗糙度介於實質80A與實質1以m之間。 19 201027790 12.如申請專利範圍第!項所述之發光二極體元件,其中該導 電層為一複合結構層或一合金層。 ❹ 合金 13·如申請專利範圍第丨項所述之發光二極體元件,其中該導 電層之材料為氧化銦錫(IT〇)、金、銀、鉑(pt)、鈀、鎳、鉻、鈦、 组、I呂、銦、鶏、銅、含錄之合金、含絡之合金、含欽之合金、 含鈕之合金、含鋁之合金、含銦之合金、含鎢之合金、或含銅之 14.如申請專利範圍帛i項所述之發光二極體元件,其中該 電層之厚度小於實質3#m。 .裡發光二極體元件之封裝結構,至少包含: 一封裝基座,具有一凹槽; 〇 —發光二極體料,設於該凹槽中,其中該發光二極體元令 包含: 1 _導熱金屬層’具有相對之一第—表面與一第二表面,且驾 導熱金屬層之該第一表面包含一凹陷部; 一共晶層,設於該導熱金屬層之該第二表面, -底面直接接合; 興亥凹槽之 一導電層’覆蓋在該導熱金屬層之該第一表面上;以及 U發光二極體晶片,嵌設在科熱金制之該 導電層上,其中該發光二極體晶片包含具不同電性之 = 20 201027790 • 與一第二電極; • 一第一外部電極,與該苐一電極電性連接;以及 一第二外部電極’與該第二電極電性連接。 16.如申請專利範圍第15項所述之發光二極體元件之封裝結 構’其中該發光二極體晶片更包含: 一基板;以及 發光結構,設於該基板之一表面之一第一部分上,其中該 ❹第-電極設於部分之該發光結構上’且該第二電極設於該基板二 該表面之一第二部分上。 17.如申請專利範圍第16項所述之發光二極體元件之封裝結 構’更至少包括二導線分別連接該第一電極與該第一外部電極、口 以及該第二電極與該第二外部電極。 〇 18.如申請專利範圍第15項所述之發光二極體元件之妹 構,其中該發光二極體晶片更包含: 導電基板,設於該第二電極上;以及 —發光結構’設於該導電基板上,其中該第-電極設於部分 之該發光結構上。 刀 •如U利範圍第18項所述之發光二極體元件之封裝結 . 構更至少包括一導線連接該第一電極與該第一外部冑極,其令 4第—外部電極位於該凹槽之該底面,且該共晶材料層直接接合 21 201027790 在該第二外部電極上。 之封裝結 層與該發 20.如申請專利範圍第15項所述之發光二極體元件 構,其中該發光二極體元件更包含一緩衝層介於該導電 光二極體晶片之間。 結 結 參 21.如申凊專利範圍帛2〇項所述之發光二極體元件之 構’其中該緩衝層之材料為氮化鈦或氮化鋁。 " 22·如中請專利_第15項所述之發光三極體元件 構’、中該共晶層之材料為一複合結構層或一合金層。 23.如申δ月專利乾圍第15項所述之發光二極體元件之 ,其中該共晶層之材料包含金、錫、鎳、鉻、鈦 : 或其合金其中之一。 銘、鋼 結 24·如中請專利範圍fi5項所述之發光二極體元件之 其中該共晶層之厚度小於實質6# m。 =·如巾請專利範圍第15項所収發光m件 構,其中該導熱金屬層之材 封骏'彳 $ θ &柯科為鋼、銅合金、鐵鎳合金、 銷、或其合金。 辣鎢 26.如申請專利範 圍第15項所述之發光二極體元件之封裝結 22 201027790 m與實質5〇〇 構,其中該導熱金屬層之厚度介於實質5〇# 間。 如U利範圍第15項所述之發光二極體元件之封社 構〃中該導熱金屬層之該第二表面的粗縫度介於實質 質1/zm之閔。 八興實 28. 如申請專利範圍第15項所述之發光二極體元件之 _構,其中該導電層為一複合結構層或一合金層。 裝、, 29. 如申δ月專利範圍第15項所述之發光二極體元件之 構’其中該導電層之材料為氧化銦錫、金、銀、銘、把、錄= 鈦鉸銘、銦、鎢、銅、含鎳之合金、含絡之合金 '含人 金、含鈕之合金、含鋁之合金、含銦之合金、含鎢 二 銅之合金》 或3 Φ 3〇·如申凊專利範圍第15項所述之發光二極體元件之蜂 構,其中該導電層之厚度小於實質3 // m。 結 31.如申請專利範圍第15項所述之發光二極體元件之封裳巧 構更包含—封裝膠體填入該封裝基座之該凹槽,並覆蓋j 光二極體元件。 32.如申請專利範圍第15項所述之發光二極體元件之封穿垆 23 201027790 構’其中該第-外部電極與該第二外部電極嵌設在該封I基座之 中0 33.種發光一極體元件之製造方法,至少_包含: 設置至少一發光二極體晶片於一藍膜上,而使該發光二極體 晶片之一表面黏附在該藍膜上; 第 提供-透明暫時基板,其中該透明暫時基板具有相對之一 一表面與一第二表面; 參 形成一光阻層覆蓋該透明暫時基板之該第一表面; 曰將該發光二極體晶片壓設於該光阻層中,其中該發光二極體 曰曰片包含-發光結構、與—第—電極位於該發光結構上,且該發 光結構與該第一電極埋設在該光阻層中; 移除該藍膜,其巾部分之該光阻層殘留在該發光二極體晶片 之該表面上; “從該透明暫時基板之該第二表面朝該第—表面的方向進行一 參曝光步冑#中該光阻層之該殘留部分並未在該曝光步驟♦受到 曝光; 移除該光阻層之該殘留部分,而完全暴露出該發光二極體晶 片之該表面; 开/成冑電層覆蓋於該光阻層與該發光二極體晶片之該表面 電鍍一導熱金屬層於該導電層上; 形成-共晶材料層於該導熱金屬層之一表面上;以及 移除該光阻層與該透明暫時基板。 24 201027790 34.如中請專利範圍第%項所述之發光二極體元件之製造方 法,其中該光阻層之材料為負型光阻。 35·如申請專利範圍第33項所述之發光二極體元件之製造方 法’其中該光阻層之厚度大於10/zm。 參 力中1專利範圍第33項所述之發光二極體元件之製造方 ⑧其中該發光二極體晶片壓人該光阻層之深度介於實 瓜 與實質l〇〇#m之間。 、、37·如中請專利範圍第33項所述之發光二極體元件之製造方 法,其中該發光二極體晶片更包含: 基板,其中該發光結構設於該基板之一表面之一第一部分 上;以及 Q —第二電極,設於該基板之該表面之一第二部分上,其中該 第一電極與該第一電極具不同電性。 、、μ.如中請專利範圍第37項所述之發光二極體元件之製造方 法’其中將該發光二極體晶片壓設於該光阻層中的步驟更包含使 該第二電極埋設於該光阻層中。 、39.如申請專利範圍第33項所述之發光二極體元件之製造方 法,其中該發光二極體晶片更包含: 25 201027790 , 一第二電極,其中該第二電極與該第一電極具不同電性;以 及 * 一導電基板,設於該第二電極上,其中該發光結構設於該導 電基板上。 40. 如申請專利範圍第33項所述之發光二極體元件之製造方 法,於移除該光阻層之該殘留部分之步驟與形成該導電層之步驟 之間,更包含形成一緩衝層覆蓋於該光阻層與該發光二極體晶片 φ 之該表面上。 41. 如申請專利範圍第40項所述之發光二極體元件之製造方 法,其中該緩衝層之材料為氮化鈦或氮化鋁。 42. 如申請專利範圍第33項所述之發光二極體元件之製造方 法,其中形成該導電層之步驟係利用一蒸鍍法、一濺渡法、或一 無電鍍法。 43. 如申請專利範圍第33項所述之發光二極體元件之製造方 法,其中該導電層為一複合結構層或一合金層。 44. 如申請專利範圍第33項所述之發光二極體元件之製造方 法,其中該導電層之材料為氧化銦錫、金、銀、鉑、鈀、鎳、鉻、 鈦、钽、鋁、銦、鎢、銅、含鎳之合金、含鉻之合金、含鈦之合 ‘金、含钽之合金、含鋁之合金、含銦之合金、含鎢之合金、或含 •銅之合金。 26 201027790 * 45.如申請專利範圍第33項所述之發光二極體元件之製造方 法,其中該導電層之厚度小於實質3# m。 46·如申請專利範圍第33項所述之發光二極體元件之製造方 法,其中該導熱金屬層之材料為銅、銅合金、鐵鎳合金、鎳、鎢、 翻、或其合金。 47. 如申請專利範圍第33項所述之發光二極體元件之製造方 法’其中該導熱金屬層之厚度介於實質50#m與實質500ym之 間。 48. 如申請專利範圍第33項所述之發光二極體元件之製造方 法’於電錢該導熱金屬層之步驟與形成該共晶材料層之步驟之 間,更至少包括對該導熱金屬層之該表面進行一研磨步驟。 參 、49.如申請專利範圍第48項所述之發光二極體元件之製造方 法,其中經該研磨步驟後,該導熱金屬層之該表面的粗糙度介於 實質80A與實質1/(im之間。 、5〇.如申請專利範圍第33項所述之發光二極體元件之製造方 、、其中形成該共晶材料層之步驟係利用一蒸鍍法、一濺渡法、 無電錢法、或一電鏡法。 27 201027790 51,如申請專利範圍第 法,其中§亥共晶材料層為一 33項所述之發光二極體元件之製造方 複合結構層或一合金層。 法,…圍第33項所述之發光二極體元件之製造方 一材料層之材料包含金、錫、銻、 銦、或其合金其中之一。 ^ 53.如申請專利範圍第33 ^ ^ # ^ 項所述之發光二極體元件之製造方 參法’ /、中該共晶材料層之厚度小於實質6/zm。 54·如中請專利範圍第33項所述之發光二極體㈣之製造方 /、中移除該光阻層與該透明暫時基板之步 (Lift-off)法。 刊胡201027790 VII. Patent application scope: 1. A light-emitting diode component comprising at least: a thermally conductive metal layer having a first surface and a second surface, and the first surface of the thermally conductive metal layer comprises a recess a eutectic material layer 'on the second surface of the thermally conductive metal layer; a conductive layer 'overlying the first surface of the thermally conductive metal layer; and a light emitting diode wafer embedded in the thermally conductive metal The conductive layer on the recessed portion of the layer, wherein the light emitting diode chip comprises a first electrode ❹ and a second electrode having different electrical properties. 2. The light-emitting diode device of claim 1, wherein the light-emitting diode chip further comprises: a substrate; and a light-emitting structure disposed on a first portion of one of the surfaces of the substrate, wherein The first electrode is disposed on a portion of the light emitting structure, and the second electrode is disposed on a second portion of the surface of the substrate. 3. The light-emitting diode device of claim 2, wherein the light-emitting diode further comprises: a conductive substrate disposed on the second electrode; and a light-emitting structure disposed on the light-emitting diode On the conductive substrate, the first electrode is disposed on the portion of the light emitting structure. 4. The light-emitting diode component of claim 2, further comprising a 18 201027790 buffer layer interposed between the conductive layer and the light-emitting diode wafer. 5. The light-emitting diode component of claim 4, wherein the material of the buffer layer is titanium nitride or aluminum nitride. 6. The light-emitting diode according to the invention of claim 1, wherein the material of the eutectic layer is a composite structural layer or an alloy layer. The light-emitting diode element according to claim i, wherein the material of the eutectic material layer comprises gold (Au), tin (Sn), recorded (Ni), complex (9), titanium (five), group One of (Ta), Ming (Ai), indium (In), or an alloy thereof. The thickness of the layer of the crystalline material is small. The illuminating diode of the first embodiment of the invention, wherein the material of the metal layer is Copper, copper alloy, iron alloy (Fe/Ni), recorded, tungsten (Mo), or alloys thereof. The invention relates to a light-emitting diode component according to the first aspect of the invention, wherein the thickness of the guide, and the thickness is between 50"m and substantially 500/zm. The illuminating diode element described in the item 1 of the hot gold range is such that the roughness of the first surface of the guide is between substantially 80 A and substantially 1 m. 19 201027790 12. If you apply for a patent scope! The light-emitting diode component of the invention, wherein the conductive layer is a composite structural layer or an alloy layer. The illuminating diode component of the ninth aspect of the invention, wherein the material of the conductive layer is indium tin oxide (IT〇), gold, silver, platinum (pt), palladium, nickel, chromium, Titanium, group, Ilu, indium, niobium, copper, alloy containing alloy, alloy containing complex, alloy containing chin, alloy containing nibble, alloy containing aluminum, alloy containing indium, alloy containing tungsten, or 14. The luminescent diode component of claim 2, wherein the thickness of the electrical layer is less than substantially 3 #m. The package structure of the LED component includes at least: a package base having a recess; and a light-emitting diode material disposed in the recess, wherein the LED component comprises: The thermally conductive metal layer has a first surface and a second surface, and the first surface of the thermally conductive metal layer comprises a recess; a eutectic layer is disposed on the second surface of the thermally conductive metal layer, The bottom surface is directly bonded; one conductive layer of the Xinghai groove is covered on the first surface of the heat conductive metal layer; and a U light emitting diode chip is embedded on the conductive layer made of Kogel, wherein the light is emitted The diode wafer contains different electrical properties = 20 201027790 • with a second electrode; • a first external electrode electrically connected to the first electrode; and a second external electrode 'and the second electrode electrical connection. The package structure of the light-emitting diode device of claim 15, wherein the light-emitting diode chip further comprises: a substrate; and a light-emitting structure disposed on the first portion of one of the surfaces of the substrate Wherein the first electrode is disposed on a portion of the light emitting structure and the second electrode is disposed on a second portion of the substrate. 17. The package structure of the light emitting diode device of claim 16, further comprising at least two wires respectively connecting the first electrode and the first external electrode, the port, and the second electrode and the second external portion electrode. The light-emitting diode device of claim 15, wherein the light-emitting diode chip further comprises: a conductive substrate disposed on the second electrode; and the light-emitting structure is disposed on On the conductive substrate, the first electrode is disposed on a portion of the light emitting structure. The package of the LED component of claim 18, further comprising a wire connecting the first electrode and the first external drain, wherein the fourth outer electrode is located in the concave The bottom surface of the trench, and the eutectic material layer directly bonds 21 201027790 on the second external electrode. The packaged junction layer and the light-emitting diode device of claim 15, wherein the light-emitting diode element further comprises a buffer layer interposed between the conductive photodiode wafers. The structure of the light-emitting diode element as described in claim 2, wherein the material of the buffer layer is titanium nitride or aluminum nitride. < 22. The illuminating triode element structure according to the above-mentioned patent _15, wherein the material of the eutectic layer is a composite structural layer or an alloy layer. 23. The light-emitting diode component of claim 15, wherein the material of the eutectic layer comprises one of gold, tin, nickel, chromium, titanium: or an alloy thereof. In the case of the light-emitting diode element described in the patent scope fi5, wherein the thickness of the eutectic layer is less than substantially 6# m. =· For example, please contact the illuminating m part of the patent scope, in which the material of the thermal conductive metal layer is sealed by 骏 $ θ & Coco is steel, copper alloy, iron-nickel alloy, pin, or alloy thereof. Sintered tungsten 26. The package junction 22 of the light-emitting diode element described in claim 15 of the patent application, wherein the thickness of the thermally conductive metal layer is between substantially 5 〇 #. For example, in the sealing member of the light-emitting diode element according to Item 15, the rough surface of the second surface of the thermally conductive metal layer is substantially 1/zm. 8. The structure of the light-emitting diode element according to claim 15, wherein the conductive layer is a composite structural layer or an alloy layer. 29. The structure of the light-emitting diode element as described in item 15 of the patent scope of the application of the invention is in which the material of the conductive layer is indium tin oxide, gold, silver, inscription, handle, record = titanium hinge, Indium, tungsten, copper, alloys containing nickel, alloys containing complexes - containing human gold, alloys containing buttons, alloys containing aluminum, alloys containing indium, alloys containing tungsten and copper. or 3 Φ 3〇·如申The bee structure of the light-emitting diode element according to the fifteenth aspect of the invention, wherein the thickness of the conductive layer is less than substantially 3 // m. The closure of the LED component of claim 15 further comprises encapsulating the recess in the recess of the package base and covering the j-diode component. 32. The light-emitting diode element according to claim 15, wherein the first external electrode and the second external electrode are embedded in the I-base. The method for manufacturing a light-emitting diode element, at least, includes: disposing at least one light-emitting diode chip on a blue film, and adhering one surface of the light-emitting diode wafer to the blue film; a temporary substrate, wherein the transparent temporary substrate has a surface opposite to a second surface; a photoresist layer is formed to cover the first surface of the transparent temporary substrate; and the light emitting diode wafer is pressed against the light In the resistive layer, the light emitting diode chip comprises a light emitting structure, and the first electrode is located on the light emitting structure, and the light emitting structure and the first electrode are embedded in the photoresist layer; removing the blue a film, the photoresist layer of the towel portion remaining on the surface of the light-emitting diode wafer; "from the second surface of the transparent temporary substrate toward the first surface, a reference exposure step # Residual portion of the photoresist layer The portion is not exposed to the exposure step ♦ removing the remaining portion of the photoresist layer to completely expose the surface of the LED chip; the opening/stacking layer covers the photoresist layer and the portion The surface of the LED chip is plated with a thermally conductive metal layer on the conductive layer; a layer of eutectic material is formed on one surface of the thermally conductive metal layer; and the photoresist layer and the transparent temporary substrate are removed. 24 201027790 The method for manufacturing a light-emitting diode element according to the invention of claim 5, wherein the material of the photoresist layer is a negative photoresist. 35. The light-emitting diode according to claim 33 The manufacturing method of the body element, wherein the thickness of the photoresist layer is greater than 10/zm. The manufacturing method of the light-emitting diode element according to Item 33 of the Patent Application No. 33, wherein the light-emitting diode chip presses the light The method of manufacturing the light-emitting diode element according to the third aspect of the patent, wherein the light-emitting diode chip is further The method comprises: a substrate, wherein the light emitting structure is provided a first portion of the surface of the substrate; and a second electrode disposed on the second portion of the surface of the substrate, wherein the first electrode and the first electrode have different electrical properties. The method for manufacturing a light-emitting diode element according to claim 37, wherein the step of pressing the light-emitting diode wafer in the photoresist layer further comprises embedding the second electrode in the light. The method of manufacturing the illuminating diode device of claim 33, wherein the illuminating diode chip further comprises: 25 201027790, a second electrode, wherein the second electrode The first electrode has different electrical properties; and a conductive substrate is disposed on the second electrode, wherein the light emitting structure is disposed on the conductive substrate. 40. The method of fabricating a light-emitting diode device according to claim 33, further comprising: forming a buffer layer between the step of removing the residual portion of the photoresist layer and the step of forming the conductive layer Covering the photoresist layer and the surface of the light-emitting diode wafer φ. The method of fabricating a light-emitting diode element according to claim 40, wherein the material of the buffer layer is titanium nitride or aluminum nitride. The method of producing a light-emitting diode element according to claim 33, wherein the step of forming the conductive layer is performed by an evaporation method, a sputtering method, or an electroless plating method. 43. A method of fabricating a light emitting diode device according to claim 33, wherein the conductive layer is a composite structural layer or an alloy layer. The method for manufacturing a light-emitting diode element according to claim 33, wherein the conductive layer is made of indium tin oxide, gold, silver, platinum, palladium, nickel, chromium, titanium, tantalum, aluminum, Indium, tungsten, copper, alloys containing nickel, alloys containing chromium, alloys containing titanium, alloys containing niobium, alloys containing aluminum, alloys containing indium, alloys containing tungsten, or alloys containing copper. The manufacturing method of the light-emitting diode element according to claim 33, wherein the thickness of the conductive layer is less than substantially 3# m. The method of manufacturing a light-emitting diode element according to claim 33, wherein the material of the heat conductive metal layer is copper, a copper alloy, an iron-nickel alloy, nickel, tungsten, turn, or an alloy thereof. 47. The method of fabricating a light-emitting diode element according to claim 33, wherein the thickness of the thermally conductive metal layer is between substantially 50#m and substantially 500ym. 48. The method of manufacturing a light-emitting diode element according to claim 33, wherein the step of forming the thermally conductive metal layer and the step of forming the layer of the eutectic material further comprises at least the thermally conductive metal layer The surface is subjected to a grinding step. The method for manufacturing a light-emitting diode element according to claim 48, wherein after the grinding step, the surface roughness of the thermally conductive metal layer is substantially 80A and substantially 1/(im) The manufacturing method of the light-emitting diode element described in claim 33, wherein the step of forming the eutectic material layer utilizes an evaporation method, a splash method, and no electricity. Method, or an electron microscopy method. 27 201027790 51, as claimed in the patent application, wherein the layer of § eutectic material is a fabricated composite layer or an alloy layer of a light-emitting diode element as described in claim 33. The material of the material layer of the light-emitting diode element described in Item 33 contains one of gold, tin, antimony, indium, or an alloy thereof. ^ 53. If the patent application scope is 33 ^ ^ # ^ The method for producing a light-emitting diode element according to the item ' /, wherein the thickness of the layer of the eutectic material is less than substantially 6/zm. 54. The light-emitting diode according to item 33 of the patent scope (four) Step of removing the photoresist layer from the transparent temporary substrate (Lift-off) method. 55· -種發光二極體元件之封裝結構之製造方法,至少包含 形成一發光二極體元件,至少包括: 藍膜上,而使該發光二極體 設置至少一發光二極體晶片於 之一表面黏附在該藍膜上; 提供-透明暫時基板’其中該透明暫時基板具有相對之一第 一表面與一第二表面; 形成一光阻層覆蓋該透明暫時基板之該第一表面; 將該發光二極體晶片壓設於該光阻層中,其中該發光二極體 晶片包含-發光結構、—第—電極位於該發光結構上、與一第二 電極’該第二電極與該第—電極具不同電性,且該發光結構與該 28 201027790 - 第一電極埋設在該光阻層中; > 移除該藍膜,其中部分之該光阻層殘留在該發光二極體晶片 之該表面上; 從該透明暫時基板之該第二表面朝該第一表面的方向進行一 曝光步驟,其中該光阻層之該殘留部分並未在該曝光步驟中受到 曝光; 移除該光阻層之該殘留部分,而完全暴露出該發光二極體晶 片之該表面; φ 形成一導電層覆蓋於該光阻層與該發光二極體晶片之該表面 上; 電鍍一導熱金屬層於該導電層上; 形成一共晶材料層於該導熱金屬層之一表面上,以及 移除該光阻層與該透明暫時基板; 提供一封裝基座,其中該封裝基座具有一凹槽; 將該發光二極體晶片設置於該凹槽中,並使該共晶材料層與 該凹槽之一底面直接接合;以及 電性連接該第一電極與一第一外部電極、以及該第二電極與 一第二外部電極。 56. 如申請專利範圍第55項所述之發光二極體元件之封裝結 構之製造方法,其中該光阻層之材料為負型光阻。 57. 如申請專利範圍第55項所述之發光二極體元件之封裝結 構之製造方法,其中該光阻層之厚度大於l〇//m。 29 201027790 58.如申請專利範圍第55項所述之發光二極體元件之封裝結 構之製造方法,其中該發光二極體晶片壓人該光阻層 = 實質lOyrn與實質100gm之間。 又介於 59·如申請專利範圍第55項所述之發光二極體元件之封裝結 構之製造方法,其中該發光二極體晶片更包含: ° 一反射層;以及 一基板,設於該反射層上,其中該發光結構設於該基板之一 表面之一第一部分上,且該第二電極設於該基板之該表面 二部分上。 弟 60. 如申請專利範圍第59項所述之發光二極體元件之封裝結 構之製1¾方法’其中將該發光二極體晶片壓S於該光阻層中的步 驟更包含使該第二電極埋設於該光阻層中。 , 61. 如申請專利範圍第59項所述之發光二極體元件之封裝結 構之製造方法,其中電性連接該第—電極與—第—外部電極、'^ 及該第二電極與一第二外部電極之步驟係利用二導線。 62·如申請專利範圍第55項所述之發光二極體元件之封裝結 構之製造方法,其中該發光二極體晶片更包含: 一導電基板,設於該第二電極上;以及 一發光結構,設於該導電基板上,其中該第一電極設於部分 201027790 之該發光結構上。 63.如申請專利範圍第62項所述之發光二極體元件之封裝結 構之製造方法’其中電性連接該第__電極與_第—外部電極時係 利用一導線,且該第二外部電極位於該凹槽之該底面,該共晶材 料層與該第二外部電極直接接合。 以曰曰 64.如申請專利範圍第63項所述之發光二極體元件之封裝結 ©構之製造方法,其中該共晶材料層與該第二外部電極之接合係= 用紅外線加熱法、一爐管加熱法或一快速熱退火法。 構之:二申請專利範圍第55項所述之發光二極體元件之封敦結 其中於移除該光阻層之該殘留部分之步驟與形成 ^電層之步驟之間,形成該發光二極體元件之步驟更包人 一緩衝層覆蓋於該光阻層與該發光二極體晶片之該表面上。/55. A method for fabricating a package structure of a light-emitting diode element, comprising at least forming a light-emitting diode element, comprising at least: a blue film, wherein the light-emitting diode is provided with at least one light-emitting diode chip a surface is adhered to the blue film; a transparent temporary substrate is provided, wherein the transparent temporary substrate has a first surface and a second surface; and a photoresist layer is formed to cover the first surface of the transparent temporary substrate; The light emitting diode chip is press-fitted in the photoresist layer, wherein the light emitting diode chip comprises a light emitting structure, wherein the first electrode is located on the light emitting structure, and the second electrode is the second electrode and the second electrode The electrode has different electrical properties, and the light emitting structure and the 28 201027790 - the first electrode is embedded in the photoresist layer; > removing the blue film, wherein part of the photoresist layer remains on the light emitting diode chip On the surface; an exposure step is performed from the second surface of the transparent temporary substrate toward the first surface, wherein the residual portion of the photoresist layer is not exposed in the exposure step Removing the remaining portion of the photoresist layer to completely expose the surface of the LED wafer; φ forming a conductive layer overlying the photoresist layer and the surface of the LED wafer; a thermally conductive metal layer on the conductive layer; forming a eutectic material layer on a surface of the thermally conductive metal layer, and removing the photoresist layer and the transparent temporary substrate; providing a package base, wherein the package base has a light-emitting diode chip is disposed in the recess, and the eutectic material layer is directly bonded to a bottom surface of the recess; and electrically connecting the first electrode and a first external electrode, And the second electrode and a second external electrode. 56. A method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the material of the photoresist layer is a negative photoresist. 57. A method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the photoresist layer has a thickness greater than 10 Å/m. The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the light-emitting diode wafer is pressed between the photoresist layer = substantially 10 μm and substantially 100 gm. The manufacturing method of the package structure of the light-emitting diode element according to claim 55, wherein the light-emitting diode chip further comprises: a reflective layer; and a substrate disposed on the reflection On the layer, the light emitting structure is disposed on a first portion of one surface of the substrate, and the second electrode is disposed on the surface of the substrate. 60. The method of manufacturing a package structure of a light-emitting diode element according to claim 59, wherein the step of pressing the light-emitting diode wafer into the photoresist layer further comprises: The electrode is buried in the photoresist layer. The method for manufacturing a package structure of a light-emitting diode element according to claim 59, wherein the first electrode and the first electrode, the second electrode and the second electrode are electrically connected The second external electrode step utilizes two wires. The method of manufacturing a package structure for a light-emitting diode device according to claim 55, wherein the light-emitting diode chip further comprises: a conductive substrate disposed on the second electrode; and a light-emitting structure And disposed on the conductive substrate, wherein the first electrode is disposed on the light emitting structure of the portion 201027790. 63. The method of fabricating a package structure for a light-emitting diode device according to claim 62, wherein a conductive wire is electrically connected to the first electrode and the first electrode, and the second outer portion is used An electrode is located on the bottom surface of the recess, and the layer of eutectic material is directly bonded to the second external electrode. The method of manufacturing a package structure of a light-emitting diode element according to claim 63, wherein the bonding of the eutectic material layer and the second external electrode is performed by infrared heating, A furnace tube heating method or a rapid thermal annealing method. The sealing junction of the light-emitting diode element described in claim 55, wherein the step of removing the residual portion of the photoresist layer and the step of forming the electro-chemical layer form the light-emitting diode The step of the polar body component further covers a buffer layer over the surface of the photoresist layer and the light emitting diode chip. / 67.、如中凊專利範圍第55項所述之發光二極體元件择 、之製造方法’其中形成該導電層之步驟係利用—蒸鍍法、'二 渡法、或—無電鍍法。 、〜、一濺 如申明專利範圍第55項所述之發光二極體元件之封带結 31 201027790 構之製造方法,其中該導電層為_複合結構層或一 合金層 6:.如申請專利範圍第55項所述之發光二極體元件之封裝社 冓之製造方法,其中該導電層之材料為氧化銦錫金銀、麵、 鎮、銅、含錄之合金、含絡之合 之人金鈦t合金、含钽之合金、含铭之合金、含銦之合金、含鑛 之σ金、或含銅之合金。 β m 71.如申請專利範圍第55項所述之發光二 構之製造方法,其中該導熱金屬層之材料為銅 金、鎳、鎢、鉬、或其合金。 極體元件之封裝結 、銅合金、鐵鎳合 72·如申請專利範圍第%項所述之發光 一 —〜γ/;ι α〜ύ;Γ7ϊ;(一拽骽元件之封裝矣 構之製造方法,其中該導熱金屬層之厚度介於實質 實^ 5〇〇//m之間。 丹耳5 73.如申請專利範圍第55項所述之發光二極體元件之封裳結 構之製造方法’其+於電㈣導熱金屬層之㈣與形成該共晶^ 料層之步驟之間,形成該發光二極體元件之步驟更至少包括對咳 導熱金屬層之該表面進行一研磨步驟。 32 201027790 . 74.如切專利範圍第Μ項所述之發光二極 構之製造方法,土 镀兀件之封裝結 * 其中經該研磨步驟後,該導熱金屬層之兮 粗鏠度介於實質80A與實質一之間。 "表面的 75.如申請專利範圍第55 構之製造方法,其中mi s ㈣7°件之封裝結 、中 共曰曰材料層之步驟係利用-蒸鍍法、 濺渡法、一無電鍍法、或—電鍍法。 結 ❹ 76.如中請專利範圍第55項所述之發光m彼 構之盤造太、土 〇 e an尤一極體兀件之封裝 法,其中該共晶材料層為一複合結構層或一合金層 77.如申請專利範圍第55 構之製造方法,……: 極體疋件之封裝結 其中該共晶材料層之材料包含金、錫、鎮、饮 —— 〇 鈦、钽、鋁、銦、或其合金其中之 ’、、 ❹構之7二:申請專利範圍第55項所述之發光二極體元件之封農結 &法’其中該共晶材料層之厚度小於實質、 構之7製9造=請圍第Μ項所述之發光二極體元件之封裝結 用一 除該光阻層與該透明暫時基板之步驟係利 ^如中請專利範圍第55項所述之發光二極體元件之封裝社 方法’於電性連接該第―電極與-第-外部電極、以^ 33 201027790 .該第二電極與一第二外部電極之步驟後,更包含形成—封筆 填入該封裘基座之該凹槽,並覆蓋住該發光二極體元件。 乂 81.如申請專利範圍第 構之製造方法,其中該第— 封裝基座之中。 Μ項所述之發光二極體元件之封裳結 外部電極與該第二外部電極嵌設在』67. A method of fabricating a light-emitting diode according to claim 55, wherein the step of forming the conductive layer is performed by an evaporation method, a 'diode method, or an electroless plating method. a method for manufacturing a light-emitting diode element according to claim 55, wherein the conductive layer is a composite layer or an alloy layer 6: The method for manufacturing a light-emitting diode device according to the item 55, wherein the material of the conductive layer is indium tin hydride, silver, silver, surface, town, copper, alloy containing the alloy, and gold containing the complex. Titanium t alloy, alloy containing niobium, alloy containing Ming, alloy containing indium, σ gold containing ore, or alloy containing copper. The method for producing a light-emitting structure according to claim 55, wherein the material of the heat conductive metal layer is copper, nickel, tungsten, molybdenum, or an alloy thereof. Package of the polar body component, copper alloy, iron-nickel 72. The light-emitting one as described in item 5% of the patent application - γ γ; ι α ύ Γ ϊ ϊ ϊ ( ( ( ( ( ( ( ( ( ( The method, wherein the thickness of the thermally conductive metal layer is between substantially 5 〇〇 / / m. Dane 5 73. The manufacturing method of the luminescent structure of the luminescent diode element according to claim 55 The step of forming the light-emitting diode element between the steps of (4) and the step of forming the eutectic layer further includes at least a step of grinding the surface of the heat-conductive metal layer. 201027790 . 74. The method for manufacturing a light-emitting diode according to the scope of the invention, the package of the earth-plated element*, wherein the heat-transfer metal layer has a thickness of 80A after the grinding step "Surface 75. The manufacturing method of the 55th application of the patent scope, wherein the step of encapsulating the mi s (four) 7° piece, the step of the eutectic ruthenium material layer is using the vapor deposition method, the sputtering method , an electroless plating method, or - electroplating method. The encapsulation method of the illuminating m, the eutectic material layer is a composite structural layer or an alloy layer 77. For example, the manufacturing method of the patent application scope 55, ...: the package of the polar body element, wherein the material of the eutectic material layer comprises gold, tin, town, drink - titanium, tantalum, aluminum, indium, or The alloy of the ', ❹ 之 7 : : : : : : : : : : : : : : : : : : : : : 发光 发光 发光 发光 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中The method of encapsulating the light-emitting diode component described in the above item is a step of removing the photoresist layer and the transparent temporary substrate, and the light-emitting diode according to claim 55 The package method of the component is electrically connected to the first electrode and the -first external electrode, to the step of the second electrode and the second external electrode, and further comprises forming a seal to fill the package The groove of the base covers the light emitting diode element. 乂81. The manufacturing method of the patented scope, wherein the first package base is included in the first embodiment of the light-emitting diode component, and the external electrode and the second external electrode are embedded in the 3434
TW98100536A 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof TWI397200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98100536A TWI397200B (en) 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98100536A TWI397200B (en) 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201027790A true TW201027790A (en) 2010-07-16
TWI397200B TWI397200B (en) 2013-05-21

Family

ID=44853301

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98100536A TWI397200B (en) 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI397200B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422079B (en) * 2010-09-07 2014-01-01 Univ Kun Shan Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device
CN103579469A (en) * 2012-07-18 2014-02-12 华夏光股份有限公司 Semiconductor light-emitting device and manufacturing method thereof
TWI488342B (en) * 2012-07-18 2015-06-11 華夏光股份有限公司 Semiconductor light emitting device and manufacturing method thereof
CN109798993A (en) * 2017-11-17 2019-05-24 泰科电子(上海)有限公司 Heat-conductive assembly and temperature measuring equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715422B2 (en) * 2005-09-27 2011-07-06 日亜化学工業株式会社 Light emitting device
TW200729539A (en) * 2006-01-26 2007-08-01 Litmx Inc Making method for the circuit board of separated light emitting diode
TWM342620U (en) * 2008-04-11 2008-10-11 Int Semiconductor Tech Ltd Light emitting diode package structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422079B (en) * 2010-09-07 2014-01-01 Univ Kun Shan Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device
CN103579469A (en) * 2012-07-18 2014-02-12 华夏光股份有限公司 Semiconductor light-emitting device and manufacturing method thereof
TWI488342B (en) * 2012-07-18 2015-06-11 華夏光股份有限公司 Semiconductor light emitting device and manufacturing method thereof
CN109798993A (en) * 2017-11-17 2019-05-24 泰科电子(上海)有限公司 Heat-conductive assembly and temperature measuring equipment

Also Published As

Publication number Publication date
TWI397200B (en) 2013-05-21

Similar Documents

Publication Publication Date Title
JP5864126B2 (en) Light emitting device package
CN102237473B (en) Light emitting diode and manufacturing method thereof
CN101140977B (en) Nitride semiconductor light-emitting element and manufacturing method thereof
TWI297537B (en) Embedded metal heat sink for semiconductor device and method for manufacturing the same
TW201123539A (en) Light-emitting device and the manufacturing method thereof
TW201228489A (en) Flexible LED device for thermal management and method of making
TW201123410A (en) LED light-emitting module and its manufacturing method thereof.
TW200921933A (en) Light-emitting diode chip component with thermal substrate and manufacturing method thereof
TW200828611A (en) Electroluminescent device, and fabrication method thereof
US7777246B2 (en) Light emitting diode with inorganic bonding material formed within
CN105742469A (en) Semiconductor light emitting chip
CN104081547A (en) Light emitting apparatus and method for manufacturing same
JP2011187556A (en) Semiconductor light-emitting element, semiconductor light-emitting device, and method for manufacturing the same
JP6519407B2 (en) Light emitting device and method of manufacturing light emitting device
TWI270991B (en) Organic adhesive light-emitting device with ohmic metal contact
TWI307915B (en) Method for manufacturing heat sink of semiconductor device
TW201027790A (en) Light-emitting diode device, and package structure and manufacturing method thereof
CN102054905A (en) Light emitting diode chip with heat conducting layers
TW201145609A (en) Light-emitting diode package
TW201032352A (en) Light-emitting diode package structure
TW200534512A (en) Fabrication of reflective layer on semiconductor light emitting diodes
CN105226140B (en) Flip LED chips preparation method
TW201133933A (en) Light emitting diode chip and making method thereof
TWI312564B (en) Method for manufacturing semiconductor device
TWI237411B (en) Process and structure for packaging LED's

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees