201027790 . 六、發明說明: 、 【發明所屬之技術領域】 本發明是有關於一種發光元件,且特別是有關於一種發光二 極體(LED)元件及其封裝結構與製造方法。 【先前技術】 隨著發光二極體在日常照明與汽車頭燈等高亮度產品之應用 上的大幅增加,發光二極體晶片之操作功率也隨之提高。然而, ® 一般而言,發光二極體晶片之輸入功率只有約20%可轉為光能, 而約80%的部分則會轉為熱能。因此,隨著發光二極體晶片之操 作功率的日益提升,發光二極體晶片運作時所產生之熱也隨之增 加,故發光二極體晶片對於散熱的需求也愈來愈高。 目前,一種常應用於發光二極體晶片之封裝程序上的散熱技 術為利用銀膠來將發光二極體晶片固定在具有散熱功能的封裝體 上。如此一來,可透過封裝體來幫助發光二極體晶片散熱。然而, 接合在發光二極體晶片與封裝體之間的銀膠的熱阻過大,而導致 ® 封裝體之散熱效能無法有效發揮,嚴重浪費了封裝體之散熱效能。 另一種應用於發光二極體晶片之封裝程序上的散熱技術為利 用耐酸鹼膠帶的輔助,直接在發光二極體晶片之底部電鍍金屬散 熱基座。因此,發光二極體晶片可不需透過銀膠,即可直接與金 屬散熱基座接合,故整個發光二極體元件具有較大之散熱能力。 然而,在此種散熱技術中,於金屬散熱基座電鍍後移除膠帶時, 膠帶之殘膠會大量殘留在發光二極體晶片之正面上,這些殘膠無 法有效去除,因而造成發光二極體晶片受損。其次,膠帶無法在 後續金屬散熱基座的製作過程中有效保護發光二極體晶片之發光 201027790 • 結構與電極,如此一來散熱金屬會鍍覆在發光二極體晶片之側面 、 與正面,而造成發光二極體晶片的損毀,導致製程良率不佳,不 符生產效益。而且,膠帶的運用並無法有效控制發光二極體晶片 嵌入散熱金屬基座的深度,因此當發光二極體晶片嵌入散熱金屬 基座的深度過大時,將導致發光二極體晶片之側光無法順利導 出。雖然,可先在發光二極體晶片之側面鑛上反射鏡,再設置散 熱金屬基座,但發光二極體晶片之側光經反射鏡導出後只能轉為 正面軸向光,因而無法滿足需側邊發光之產品的應用。此外,耐 籲酸驗膠帶的價格非常昂貴,約為目前製程中廣泛使用之藍膜(版 Tape)的十倍以上,而會導致製程成本大幅增加。再者,此種發光 二極體元件的熱電分離設計不同於現有之發光二極體封裝模組, 因此無法將此發光二極體元件直接套入現有之發光二極體封裝模 組中,而需重新針對各種發光二極體產品來開發新的模組,如此 將造成大量生產與應用上的困難。 【發明内容】 ® 因此,本發明之目的就是在提供一種發光二極體元件及其製 造方法,其無需使用銀膠,也無需採用耐酸鹼膠帶,即可使發光 二極體晶片與散熱金屬層接合,故不僅可大幅提升發光二極體元 件之散熱效能,更可有效降低製程成本。 本發明之另一目的是在提供—種發光二極體元件及其製造方 法’其在製作過程中所採用之光阻層不僅可有效保護發光二極體 晶片之發光結構與電極,且有助於控制發光二極體晶片嵌入散熱 金屬層之深度’因此可避免發光二極體晶片在後續金屬鑛膜的製 程中受損’而可大幅提高製程良率,且可滿賴紐光二極體產 201027790 # 品的應用。 • 本發明之又—目的是在提供―種發光二極體元件之封裝結構 及其製造方法’其發光二極體元件之底部設有共晶材料層,因此 元件底部之散熱金屬層可洲共晶材料層而透過紅外線等低溫加 熱方式固定在封裝基座上,故可避免傳統接合元件與封裝基座之 膠趙的長時間高溫固化程序而造成發光二極體晶片的熱損壞,且 共晶材料層也可降減阻而可提升散熱效果,更可滿足於現有封 裝基座而無需更動封裝基座之熱電設計,有利於大量生產與應用。 〇 根據本發明之上述目的’提出-種發光二極體元件及其封裝 結構。發光二極體元件至少包含:—導熱金屬層具有相對之第二 表面與第二表面,且導熱金屬層之第_表面包含一凹陷部;—共 晶材料層設於導熱金屬層之第二表面;—導電層覆蓋在導熱金屬 層之第一表面上;以及—發光二極體晶片嵌設在導熱金屬層之凹 陷邛中的導電層上,其中發光二極體晶片包含具不同電性之第— 電極與第二電極。此外,發光二極體元件之封裝結構至少包含: 一封裝基座具有一凹槽;上述之發光二極體元件設於凹槽中;一 〇 第一外部電極與第一電極電性連接;以及一第二外部電極與第二 電極電性連接。 依照本發明一較佳實施例,上述之共晶材料層之材料包含金 (Au)、踢(Sn)、鎳⑽、鉻(Cr)、鈦(τ〇、组(Ta)、銘㈧)、鋼⑽、 或其合金其中之一。 ,根據本發明之目的,提出一種發光二極體元件及其封裝結構 之衣造方法。發光二極體元件之製造方法至少包含:設置至少一 發光二極體晶片於—藍膜上’而使發光二極體晶片之一表面黏附 在藍膜上;提供一透明暫時基板,其中透明暫時基板具有相對之 201027790 - 第—表面與第二表面·艰士 , 面;將發光二== 層覆蓋透明暫時基板之第一表 .含-發光〜 設於光阻層中,其令發光二極體晶片包 ϋ-第—電錄於發光結構上構 一電極埋設在光阻層_ m’u 光二搞 移除藍膜’其中部分之光阻層殘留在發 的^^ 面上’·從透明暫時基板之第二表面朝第一表面 中=:一曝光步驟’其中光阻層之殘留部分並未在曝光步驟 曰=^光·;移除光阻層之殘留部分,而完全暴露出發光二極體 日日之面,形成-導電層覆蓋於光阻層與發光二極體晶片之表 ©:上’電鑛一導熱金屬層於導電層上;形成-共晶材料層於導熱 屬層之-表面上,·以及移除光阻層與透明暫時基板。而發光二 .極體元件之封裝結構之製造方法更至少包含··提供—封裝基座, 其中封t基座具有-凹槽;將上述之發光二極體晶片設置於凹槽 中’並使共晶材料層與凹槽之底面直接接合;以及電性連接第一 電極與-第—外部電極、以及發光二極體元件之第二電極與一第 一外部電極。 依照本發明一較佳實施例,上述之光阻層的材料為負型光 Q 阻’且光阻層之厚度較佳係大於ΙΟμπι。 【實施方式】 請參照第1圖至第11A圖,其係繪示依照本發明一較佳實施 例的一種發光二極體元件之製程刮面圖。在一示範實施例中,先 提供藍膜100,其中藍膜100之材料為高分子聚合物,且此藍膜 1 00可具有單面黏著特性或雙面黏著特性。在本發明中,藍膜100 可取代一般價格昂貴之耐酸驗膠帶,因此可大幅降低製程成本。 接著,設置一或多個發光二極體晶片,例如垂直電極式之發光二 201027790 極體晶片102a與平行電極式之發光二極體晶片102b,於藍膜1〇〇 上’並使發光二極體晶片102a之表面i〇4a與發光二極體晶片1〇2b 之表面104b黏附在藍膜1〇〇上。201027790 . VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element, and more particularly to a light-emitting diode (LED) element, a package structure and a method of fabricating the same. [Prior Art] With the significant increase in the application of the light-emitting diode in high-brightness products such as daily lighting and automobile headlights, the operating power of the LED chip is also increased. However, ® In general, only about 20% of the input power of a light-emitting diode chip can be converted to light energy, and about 80% of the light is converted to heat. Therefore, as the operating power of the LED chip is increased, the heat generated by the operation of the LED chip is also increased, so that the demand for heat dissipation of the LED chip is also increasing. At present, a heat dissipating technique commonly applied to a package process of a light-emitting diode wafer is to use silver paste to fix a light-emitting diode wafer on a package having a heat dissipation function. In this way, the package can be used to help dissipate heat from the LED chip. However, the thermal resistance of the silver paste bonded between the LED chip and the package is too large, so that the heat dissipation performance of the ® package cannot be effectively performed, which seriously wastes the heat dissipation performance of the package. Another heat sinking technique applied to the package of a light-emitting diode wafer is to directly plate a metal heat sink on the bottom of the light-emitting diode wafer with the aid of an acid-resistant tape. Therefore, the light-emitting diode chip can be directly bonded to the metal heat sink base without passing through the silver paste, so that the entire light-emitting diode element has a large heat dissipation capability. However, in this heat dissipation technology, when the metal heat sink base is removed after plating, the adhesive residue of the tape remains on the front surface of the light emitting diode chip, and the residual glue cannot be effectively removed, thereby causing the light emitting diode. The body wafer is damaged. Secondly, the tape cannot effectively protect the light-emitting diode wafer in the process of manufacturing the subsequent metal heat-dissipating pedestal 201027790. The structure and the electrode, so that the heat-dissipating metal is plated on the side and the front side of the light-emitting diode chip. The damage of the LED chip is caused, resulting in poor process yield and inconsistent production efficiency. Moreover, the use of the tape does not effectively control the depth of the light-emitting diode chip embedded in the heat-dissipating metal base. Therefore, when the depth of the light-emitting diode chip embedded in the heat-dissipating metal base is too large, the side light of the light-emitting diode chip cannot be caused. Smooth export. Although the mirror can be placed on the side of the LED chip and the heat sink metal base is disposed, the side light of the LED chip can only be converted into front axial light after being led out by the mirror, and thus cannot be satisfied. The application of products that require side lighting. In addition, the price of the acid-resistant adhesive tape is very expensive, which is about ten times higher than the blue film (printed tape) widely used in the current process, and the process cost is greatly increased. Furthermore, the thermoelectric separation design of the LED component is different from the existing LED package module, so that the LED component cannot be directly inserted into the existing LED package module. It is necessary to re-develop new modules for various light-emitting diode products, which will cause a lot of production and application difficulties. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light-emitting diode element and a method of fabricating the same that can be used to form a light-emitting diode wafer and a heat-dissipating metal without using silver paste or acid-base resistant tape. The bonding of the layers not only greatly improves the heat dissipation performance of the LED components, but also effectively reduces the process cost. Another object of the present invention is to provide a light-emitting diode element and a method for fabricating the same that the photoresist layer used in the manufacturing process can not only effectively protect the light-emitting structure and the electrode of the light-emitting diode chip, but also help In order to control the depth of the light-emitting diode layer embedded in the heat-dissipating metal layer, the light-emitting diode chip can be prevented from being damaged in the subsequent process of the metal ore film, and the process yield can be greatly improved, and the light-emitting diode can be produced. 201027790 # Product application. A further object of the present invention is to provide a package structure of a light-emitting diode element and a method of manufacturing the same, in which a eutectic material layer is provided at the bottom of the light-emitting diode element, so that the heat-dissipating metal layer at the bottom of the element can be The crystal material layer is fixed on the package base through low-temperature heating such as infrared rays, so that the long-term high-temperature curing process of the conventional bonding element and the package base can be avoided to cause thermal damage of the LED chip, and the eutectic The material layer can also reduce the resistance and improve the heat dissipation effect, and can satisfy the existing package base without the thermoelectric design of the package base, which is beneficial to mass production and application. 〇 A light-emitting diode element and its package structure are proposed in accordance with the above object of the present invention. The light emitting diode element comprises at least: the heat conductive metal layer has opposite second and second surfaces, and the first surface of the heat conductive metal layer comprises a recess; the eutectic material layer is disposed on the second surface of the heat conductive metal layer The conductive layer covers the first surface of the thermally conductive metal layer; and the light emitting diode chip is embedded on the conductive layer in the recessed layer of the thermally conductive metal layer, wherein the light emitting diode chip comprises a different electrical property — Electrode and second electrode. In addition, the package structure of the LED component at least includes: a package base having a recess; the LED component is disposed in the recess; and the first external electrode is electrically connected to the first electrode; A second external electrode is electrically connected to the second electrode. According to a preferred embodiment of the present invention, the material of the eutectic material layer comprises gold (Au), kick (Sn), nickel (10), chromium (Cr), titanium (τ〇, group (Ta), Ming (eight)), One of steel (10), or an alloy thereof. According to the purpose of the present invention, a method of fabricating a light-emitting diode element and a package structure thereof is proposed. The method for manufacturing a light emitting diode device includes at least: disposing at least one light emitting diode chip on the blue film to adhere a surface of the light emitting diode chip to the blue film; providing a transparent temporary substrate, wherein the transparent temporary The substrate has a relative surface of the 201027790 - the first surface and the second surface, the hard surface, the first surface of the transparent temporary substrate is covered by the light emitting layer == layer. The light-emitting layer is disposed in the photoresist layer, which makes the light emitting diode The body wafer package - the first recording on the light-emitting structure, an electrode is buried in the photoresist layer _ m'u light two to remove the blue film 'part of the photoresist layer remains on the surface of the hair' · from transparent The second surface of the temporary substrate faces the first surface =: an exposure step 'where the residual portion of the photoresist layer is not exposed in the exposure step; the residual portion of the photoresist layer is removed, and the light emitting diode is completely exposed On the surface of the body, a conductive layer is formed on the surface of the photoresist layer and the light-emitting diode wafer ©: 'Electrical-mineral-thermal conductive metal layer on the conductive layer; forming a layer of eutectic material in the heat-conductive layer- On the surface, and remove the photoresist layer and the transparent temporary base . The manufacturing method of the package structure of the light-emitting diode element further comprises at least providing a package base, wherein the packaged base has a groove; and the above-mentioned light-emitting diode chip is disposed in the groove The eutectic material layer is directly bonded to the bottom surface of the recess; and the first electrode and the -first external electrode, and the second electrode of the LED component and a first external electrode are electrically connected. According to a preferred embodiment of the present invention, the material of the photoresist layer is a negative photo-resistance and the thickness of the photoresist layer is preferably greater than ΙΟμπι. [Embodiment] Referring to Figures 1 to 11A, there is shown a process plan view of a light-emitting diode element in accordance with a preferred embodiment of the present invention. In an exemplary embodiment, a blue film 100 is provided, wherein the material of the blue film 100 is a high molecular polymer, and the blue film 100 may have a single-sided adhesive property or a double-sided adhesive property. In the present invention, the blue film 100 can replace the generally expensive acid-resistant test tape, thereby greatly reducing the process cost. Next, one or more light emitting diode chips are disposed, for example, a vertical electrode type light emitting diode 201027790 polar body wafer 102a and a parallel electrode type light emitting diode wafer 102b, on the blue film 1 'and the light emitting diode The surface i〇4a of the bulk wafer 102a and the surface 104b of the light-emitting diode wafer 1〇2b are adhered to the blue film 1〇〇.
在一實施例中’發光二極體晶片102a主要包含第二電極 112a、導電基板106a、發光結構l〇8a與第一電極U〇a,其甲第一 電極110a與第二電極112a具有不同電性,例如其中之—電極為p 型、另一電極為N型。如第1圖所示,在發光二極體晶片1〇2a中, 導電基板l〇6a疊設在第二電極112a上,發光結構108&則例如可 .利用遙晶成長方式形成於導電基板106a上’第一電極11 〇a設於 部分之發光結構l〇8a上。發光二極體晶片l〇2a在後續製程中, 具有需受到保護的部分,例如從第一電極ll〇a向下延伸至發光結 構108a,此需受到保護的部分具有厚度116a。另一方面,發光二 極體晶片102b則例如可包含基板106b、發光結構1〇8b、第一電 極110b、第二電極112b與選擇性設置之第一反射層114,其中第 一電極110b與第二電極112b具有不同電性,例如其中之一電極 為P型、另一電極為N型,第一反射層114可例如為布拉格反射 鏡(Distributed Bragg Reflector ; DBR)。如第 1 圖所示,在發光二 極體晶片102b中,基板106b疊設在第一反射層114上,發光結 構108b則例如可利用蟲晶成長方式、並配合例如微影餘刻等圖案 化技術,而形成於基板106b之表面118的一部分上,第二電極n2b 則設於基板106b之表面118的另一部分上,第一電極u〇b設於 部分之發光結構108b上。發光二極體晶片l〇2b在後續製程中, 具有需受到保護的部分,例如從第一電極1 1 〇b向下延伸至發光結 構108b’此需受到保護的部分具有厚度i 16^發光二極體晶片i〇2a 與102b之材料例如可採用氮化鎵(GaN)系列、磷化鋁鎵銦(AiGainp) 201027790 . 系列、硫化鉛(PbS)系列、碳化矽(SiC)系列、矽(Si)系列或砷化鎵 (GaAs)系歹ij 。In an embodiment, the LED body 102a mainly includes a second electrode 112a, a conductive substrate 106a, a light emitting structure 10a and a first electrode U〇a, and the first electrode 110a and the second electrode 112a have different electric power. Properties, such as those in which the electrode is p-type and the other electrode is N-type. As shown in FIG. 1, in the light-emitting diode wafer 1〇2a, the conductive substrate 106a is stacked on the second electrode 112a, and the light-emitting structure 108& can be formed on the conductive substrate 106a by, for example, a crystal growth method. The upper first electrode 11 〇a is disposed on a portion of the light emitting structure 10a. The light-emitting diode wafer 10a has a portion to be protected in a subsequent process, for example, extending from the first electrode 11a to the light-emitting structure 108a, and the portion to be protected has a thickness 116a. On the other hand, the LED wafer 102b may include, for example, a substrate 106b, a light emitting structure 1〇8b, a first electrode 110b, a second electrode 112b, and a selectively disposed first reflective layer 114, wherein the first electrode 110b and the first electrode 110b The two electrodes 112b have different electrical properties, for example, one of the electrodes is P-type and the other electrode is N-type, and the first reflective layer 114 can be, for example, a Bragg Reflector (DBR). As shown in FIG. 1, in the light-emitting diode wafer 102b, the substrate 106b is stacked on the first reflective layer 114, and the light-emitting structure 108b can be patterned by, for example, a crystal growth method and blending with, for example, lithography. The technique is formed on a portion of the surface 118 of the substrate 106b, the second electrode n2b is disposed on another portion of the surface 118 of the substrate 106b, and the first electrode u〇b is disposed on a portion of the light emitting structure 108b. The light-emitting diode wafer 10b has a portion to be protected in a subsequent process, for example, extending from the first electrode 1 1 〇b to the light-emitting structure 108b'. The portion to be protected has a thickness i 16^ The material of the polar body wafers i〇2a and 102b may be, for example, a gallium nitride (GaN) series, an aluminum gallium indium phosphide (AiGainp) 201027790 series, a lead sulfide (PbS) series, a tantalum carbide (SiC) series, or a tantalum (Si). Series or gallium arsenide (GaAs) system 歹 ij.
•T 接著,如第2圖所示,提供透明暫時基板120,其中此透明暫 時基板120具有相對之表面122與124。透明暫時基板120較佳係 選用可讓微影製程之曝光光源的光順利穿透的材料,例如可讓紫 外光穿透之材料。接下來,利用例如塗布方式形成光阻層126均 勻覆蓋在透明暫時基板120之表面122上。在一示範實施例中, 光阻層126之材料例如可選用負型光阻。光阻層126應具有一定 A 厚度,例如光阻層126之厚度128可大於發光二極體晶片102a之 需受到保護之厚度116a與發光二極體晶片102b之需受到保護之 厚度116b至少10/zm以上。在一實施例中,光阻層126之厚度例 . 如可大於10 β m。 接下來,如第2圖所示,利用藍膜100之承載,將發光二極 體晶片102a與102b予以倒轉,而使發光二極體晶片102a與102b 與透明暫時基板120上之光阻層126相對。接著,如第3圖所示, 將發光二極體晶片102a與102b壓設於光阻層126中,並控制這 q 些發光二極體晶片102a與102b壓入光阻層126之深度130,其中 ,此深度130需大於發光二極體晶片102a與102b之需受到保護之 厚度116a與116b。在一實施例中,壓入之深度130例如可介於實 質10# m與實質100# m之間。發光二極體晶片102a在壓入光阻 層126後,發光二極體晶片102a之第一電極110a與發光結構108a 完全埋設在光阻層126中。另外,發光二極體晶片102b在壓入光 阻層126後,發光二極體晶片102b之第一電極110b、發光結構 108b與第二電極112b完全埋設在光阻層126中。 接著,將藍膜100撕除,並可依製程需求而選擇性對光阻層 9 201027790 . 126進行烘烤,以利固定發光二極體晶片102a與102b。在撕除藍 膜100時,藍膜100可能會帶起光阻層126部分表面區域,因此 * 有一部分光阻層126之殘餘部分132會殘留在發光二極體晶片 102a之表面104a與發光二極體晶片102b之表面104b上,如第4 圖所示。在一示範實施例中,為避免這些光阻層126之殘餘部分 132的存在造成發光二極體晶片102a和102b與後續形成在其表面 104a和104b上的材料層之間的附著力下降,而將殘留在發光二極 體晶片102a與102b之表面104a與104b上的光阻層126之殘餘 _ 部分132予以移除。因此,如第5圖所示,先進行背面曝光步驟, 以從透明暫時基板120之表面124朝相對之表面122的方向進行 ^ 曝光步驟。在此曝光步驟中,光阻層126之殘留部分132受到發 . 光二極體晶片l〇2a與102b的遮蔽,因此並未在受到曝光。接著, 進行顯影步驟,此時由於光阻層126殘餘在發光二極體晶片102a 與102b之表面104a與104b上的部分132並未受到曝光,因此可 為顯影液順利移除,而完全暴露出發光二極體晶片102a與102b 之表面104a與104b,如第6圖所示。在一實施例中,於顯影步驟 ^ 後,可選擇性地進行清潔與烘烤程序,以去除殘餘之光阻微粒與 ❿ 污垢。 接著,如第7圖所示,在一示範實施例中,例如可利用蒸鍍 (Evaporation)法、滅渡(Sputtering)法或無電鍵(Electroless Plating) 法,形成導電層134覆蓋於光阻層126與發光二極體晶片102a與 102b之表面104a與104b上。導電層134之製作可採共形(conformal) 沉積方式。導電層134可為由至少二材料層所堆疊而成之複合結 構層,或者可為一合金層。導電層13 4之材料例如可為氧化銦錫_ (ΠΌ)、金、銀、始(Pt)、ΐε、鎳、鉻、欽、组、銘、銦、鶴、銅、 201027790 . 含鎳之合金、含鉻之合金、含鈦之合金、含鈕之合金、含鋁之合 金、含銦之合金、含鎢之合金、或含銅之合金。在一實施例中,• T Next, as shown in Fig. 2, a transparent temporary substrate 120 is provided, wherein the transparent temporary substrate 120 has opposing surfaces 122 and 124. The transparent temporary substrate 120 is preferably made of a material that allows the light of the exposure light source of the lithography process to penetrate smoothly, such as a material that allows ultraviolet light to penetrate. Next, the photoresist layer 126 is formed uniformly on the surface 122 of the transparent temporary substrate 120 by, for example, a coating method. In an exemplary embodiment, the material of the photoresist layer 126 may be, for example, a negative photoresist. The photoresist layer 126 should have a certain thickness A. For example, the thickness 128 of the photoresist layer 126 can be greater than the thickness 116a of the light-emitting diode wafer 102a to be protected and the thickness 116b of the light-emitting diode wafer 102b to be protected at least 10/. More than zm. In one embodiment, the thickness of the photoresist layer 126 is, for example, greater than 10 β m. Next, as shown in FIG. 2, the LED chips 102a and 102b are reversed by the carrying of the blue film 100, and the light-emitting diode wafers 102a and 102b and the photoresist layer 126 on the transparent temporary substrate 120 are turned on. relatively. Next, as shown in FIG. 3, the LED chips 102a and 102b are pressed into the photoresist layer 126, and the depths 130 of the photoresist diodes 102a and 102b are pressed into the photoresist layer 126. The depth 130 is greater than the thicknesses 116a and 116b of the LED chips 102a and 102b to be protected. In one embodiment, the depth 130 of the press-in can be, for example, between the solid 10#m and the substantial 100#m. After the light-emitting diode wafer 102a is pressed into the photoresist layer 126, the first electrode 110a of the light-emitting diode wafer 102a and the light-emitting structure 108a are completely buried in the photoresist layer 126. Further, after the light-emitting diode wafer 102b is pressed into the photoresist layer 126, the first electrode 110b, the light-emitting structure 108b, and the second electrode 112b of the light-emitting diode wafer 102b are completely buried in the photoresist layer 126. Next, the blue film 100 is torn off, and the photoresist layer 9 201027790 . 126 can be selectively baked according to the process requirements to facilitate the fixing of the LED chips 102a and 102b. When the blue film 100 is torn off, the blue film 100 may bring up a part of the surface area of the photoresist layer 126, so that a portion of the photoresist portion 126 remaining on the surface 104a and the light-emitting diode 102a may remain on the surface 104a of the light-emitting diode wafer 102a. The surface 104b of the polar body wafer 102b is as shown in Fig. 4. In an exemplary embodiment, to avoid the presence of residual portions 132 of the photoresist layer 126, the adhesion between the LED arrays 102a and 102b and the subsequently formed material layers on the surfaces 104a and 104b is reduced. The residual portion 132 of the photoresist layer 126 remaining on the surfaces 104a and 104b of the LED chips 102a and 102b is removed. Therefore, as shown in Fig. 5, the back exposure step is first performed to perform the exposure step from the surface 124 of the transparent temporary substrate 120 toward the opposite surface 122. In this exposure step, the residual portion 132 of the photoresist layer 126 is shielded by the photodiode wafers 102a and 102b, and thus is not exposed. Next, a developing step is performed in which the portion 132 remaining on the surfaces 104a and 104b of the LED wafers 102a and 102b by the photoresist layer 126 is not exposed, so that the developer can be smoothly removed and completely exposed. The surfaces 104a and 104b of the photodiode wafers 102a and 102b are as shown in Fig. 6. In one embodiment, after the development step ^, a cleaning and baking process can be selectively performed to remove residual photoresist particles and smudging. Next, as shown in FIG. 7, in an exemplary embodiment, the conductive layer 134 may be formed over the photoresist layer by, for example, an evaporation method, a sputtering method, or an electroless plating method. 126 and the surfaces 104a and 104b of the LED chips 102a and 102b. The conductive layer 134 can be fabricated in a conformal deposition manner. The conductive layer 134 may be a composite structural layer formed by stacking at least two material layers, or may be an alloy layer. The material of the conductive layer 13 4 can be, for example, indium tin oxide (ΠΌ), gold, silver, Pt, ΐ ε, nickel, chrome, chin, group, indium, indium, crane, copper, 201027790. alloy containing nickel , chromium-containing alloys, titanium-containing alloys, alloys containing buttons, alloys containing aluminum, alloys containing indium, alloys containing tungsten, or alloys containing copper. In an embodiment,
Ik 導電層134之厚度例如可小於實質3//m。在一些實施例中,於光 阻層126之殘留部分132移除後,但尚未形成導電層134前,可 選擇性地先形成緩衝層(未繪示)覆蓋在光阻層126和發光二極體 晶片102a與102b之表面104a與104b上,而後才形成導電層134, 以增進導電層134與發光二極體晶片102a和102b之間的黏附力。 此緩衝層之材料例如可為氮化鈦或氮化銘。 φ 接下來,如第8圖所示,利用電鍍方式形成導熱金屬層136 於導電層134上,其中此導熱金屬層136較佳係具有相當之厚度, 以利發光二極體晶片l〇2a與102b之散熱。在一示範實施例中, 導熱金屬層136之厚度例如可介於實質50/zm與實質500//m之 間。導熱金屬層136之材料例如可為銅、銅合金、鐵錄合金(Fe/Ni)、 錄、鶴(W)、翻(Mo)、或上述金屬之.任二種或任二種以上的合金。 此導熱金屬層136具有相對之表面138與140,其中受到發光二極 體晶片102a與102b突出於光阻層126表面的影響,與導電層134 q 接合之表面138具有凹陷部142,而發光二極體晶片102a與102b 即嵌設在導熱金屬層136之凹陷部142中的導電層134上。在一 實施例中,完成導熱金屬層136之電鍍後,可依實際製程需求, 而對導熱金屬層136之表面138額外進行研磨步驟,以降低導熱 金屬層136之表面138的粗糙度,以利後續形成之材料層順利設 置在此表面138上。在一實施例中,經研磨步驟後,導熱金屬層 136之表面138的粗糙度例如可介於實質80A與實質1/zm之間。 接著,如第9圖所示,利用例如蒸鍍法、濺渡法、無電鍍法 或電鍍法,形成共晶材料層144於導熱金屬層136之表面138上, 11 201027790 其中共晶材料層 144之表面146 具有相對之表面146與148 ’而共晶材料層 層144例如導熱金屬層136之表面138直接接合。共晶材料 為合金層。it曰由至少一材料層所堆疊而成之複合結構層、或可 组、紹^ 材料層144之材料例如可包含金、錫、錄、鉻、 層H4之歷* 、或其合金其中之—。在一實施例中,共晶材料 厚度例如可小於實質6_。 接下來,如第 一 由古攙υ圖所示’可利用例如剝離(Lift-off)法,而藉 由有機溶劑來溶解The thickness of the Ik conductive layer 134 can be, for example, less than substantially 3/m. In some embodiments, after the residual portion 132 of the photoresist layer 126 is removed, but before the conductive layer 134 is formed, a buffer layer (not shown) may be selectively formed to cover the photoresist layer 126 and the light emitting diode. The surfaces 104a and 104b of the bulk wafers 102a and 102b are then formed with a conductive layer 134 to enhance the adhesion between the conductive layer 134 and the LED wafers 102a and 102b. The material of the buffer layer may be, for example, titanium nitride or nitride. φ Next, as shown in FIG. 8, a thermally conductive metal layer 136 is formed on the conductive layer 134 by electroplating, wherein the thermally conductive metal layer 136 is preferably of a thickness to facilitate the light-emitting diode wafer 10a and The heat dissipation of 102b. In an exemplary embodiment, the thickness of the thermally conductive metal layer 136 can be, for example, between substantially 50/zm and substantially 500//m. The material of the heat conductive metal layer 136 may be, for example, copper, copper alloy, iron alloy (Fe/Ni), recorded, crane (W), turned (Mo), or the above metal. Any two or more alloys . The thermally conductive metal layer 136 has opposing surfaces 138 and 140, wherein the surface of the photoresist layer 102a and 102b protrudes from the surface of the photoresist layer 126, and the surface 138 bonded to the conductive layer 134q has a recess 142. The polar body wafers 102a and 102b are embedded on the conductive layer 134 in the recess 142 of the thermally conductive metal layer 136. In an embodiment, after the electroplating of the thermally conductive metal layer 136 is completed, the surface 138 of the thermally conductive metal layer 136 may be additionally subjected to a grinding step according to actual process requirements to reduce the roughness of the surface 138 of the thermally conductive metal layer 136. Subsequently formed material layers are smoothly disposed on this surface 138. In one embodiment, after the grinding step, the roughness of the surface 138 of the thermally conductive metal layer 136 can be, for example, between substantially 80A and substantially 1/zm. Next, as shown in FIG. 9, a eutectic material layer 144 is formed on the surface 138 of the thermally conductive metal layer 136 by, for example, an evaporation method, a sputtering method, an electroless plating method, or an electroplating method, 11 201027790 wherein the eutectic material layer 144 The surface 146 has opposing surfaces 146 and 148' and the eutectic material layer 144, such as the surface 138 of the thermally conductive metal layer 136, is directly joined. The eutectic material is an alloy layer. The composite structural layer formed by stacking at least one material layer, or the material of the material layer 144, for example, may comprise gold, tin, chrome, chrome, layer H4, or an alloy thereof. . In one embodiment, the thickness of the eutectic material can be, for example, less than substantially 6 mm. Next, as shown in the first figure, it can be dissolved by an organic solvent, for example, by a lift-off method.
之读日尤限層126’來一併移除光阻層126及與其接合 之透明暫時基板 _與發絲而暴露出發光二極體晶片1〇2a之第一電極 第二電極112° 108a、發光二極體晶片i〇2b之第一電極110b、 b與發光結構108b、以及部分之導電層134。接著, 可進仃晶粒之切甸 二—上 而將發光二極體晶片102a與102b予以分開, 而元成如第11八圖所_ 所不之發光二極體元件150a與第11B圖所示之 發光二_元件15%的製作。 _ 即可進行發光二極體元件150a與150b之封裝程序。 在一示範實施例中,1姑 T 如第12Α圖所示,進行發光二極體元件150a 之封襞程序時,可楹也 J &供封裝基座152,其中封裝基座152可由絕緣 材料所組成。封襄基座152可包含凹槽158。在-實施例中,封裝 基座152之凹槽158的側面可選擇性地設有第二反射層17〇,以將 發光二極體元件15〇a所發出之側向光往發光二極體元件150a的 正向反射。接著,將發光二極體元件15如設置於封裝基座152之 凹槽158中,並使共晶材料層144之表面148與凹槽158之底面 160直接接合。再使發光二極體晶片1〇2a之第一電極11〇a和第二 電極112a分別與第一外部電極156a和第二外部電極154a電性連 接。在一示範實施例中,第一外部電極156a與第二外部電極154a 12 201027790The reading day limit layer 126' further removes the photoresist layer 126 and the transparent temporary substrate bonded thereto _ with the hairline to expose the first electrode of the light-emitting diode wafer 1〇2a, the second electrode 112° 108a, and emits light The first electrodes 110b, b of the diode wafer i 〇 2b and the light emitting structure 108b, and a portion of the conductive layer 134. Then, the light-emitting diode chips 102a and 102b can be separated by the cutting of the die, and the light-emitting diode elements 150a and 11B are as shown in FIG. 15% of the production of the light-emitting two-component. _ The packaging process of the LED components 150a and 150b can be performed. In an exemplary embodiment, as shown in FIG. 12, when the sealing process of the light-emitting diode element 150a is performed, the package base 152 may be provided for the package base 152, wherein the package base 152 may be made of an insulating material. Composed of. The sealing base 152 can include a recess 158. In an embodiment, the side of the recess 158 of the package base 152 may be selectively provided with a second reflective layer 17〇 to illuminate the lateral light emitted by the LED component 15〇a toward the LED. Forward reflection of element 150a. Next, the light emitting diode element 15 is disposed in the recess 158 of the package base 152 such that the surface 148 of the eutectic material layer 144 is directly bonded to the bottom surface 160 of the recess 158. Further, the first electrode 11a and the second electrode 112a of the light-emitting diode wafer 1A2a are electrically connected to the first and second external electrodes 156a, 154a, respectively. In an exemplary embodiment, the first outer electrode 156a and the second outer electrode 154a 12 201027790
可例如嵌設於封裝基座152中,並延伸於封裝基座152之外側, 其中部分之第一外部電極156a與部分之第二外部電極154a可延 伸而暴露於凹槽158之底面160中。因此,將發光二極體元件150a 設置於封裝基座152之凹槽158中時,可將發光二極體元件150a 置於凹槽158之底面160中第二外部電極154a的暴露部分上,並 利用紅外線加熱法、爐管加熱法或快速熱退火法使共晶材料層144 之表面148與第二外部電極154a的暴露部分直接共晶接合,形成 一共晶層(eutectic layer) 144a,藉以使發光二極體晶片102a之第二 電極112a經由下方之導電層134、導熱金屬層136與共晶層144a 而與第二外部電極154a形成電性連接。其中,共晶層144a之材 料例如可包含金、錫、錄、絡、鈦、組、铭、钢、或其合金其中 之一,共晶層144a之厚度例如可小於實質6/zm。另一方面,電 性連接發光二極體晶片l〇2a之第一電極110a與第一外部電極 156a時,則可以導線接合(Wire Bonding)方式而利用導線162來加 以電性連接。然後,可形成封裝膠體168填入封裝基座152之凹 槽158内,並使封裝膠體168覆蓋住凹槽158内之發光二極體元 件150a、導線162、第一外部電極156a與第二外部電極154a,而 完成發光二極體元件150a之封裝結構172a。 在另一示範實施例中,如第12B圖所示,進行發光二極體元 件150b之封裝程序時,同樣可提供包含凹槽158之封裝基座152。 在一實施例中,封裝基座152之凹槽158的側面同樣可選擇性地 設有第二反射層170,以利將側向光往發光二極體元件150b的正 向反射。接著,將發光二極體元件150b設置於封裝基座152之凹 槽158中,並使共晶材料層144之表面148與凹槽158之底面160 直接接合。再以導線接合方式,而利用二導線164與166來分別 13 201027790 電性連接發光二極體晶片l〇2b之第一電極11 Ob和第二電極112b 與第一外部電極156b和第二外部電極154b。在一示範實施例中, 第一外部電極156b與第二外部電極154b可例如嵌設於封裝基座 152中,並延伸於封裝基座152之外側,其中部分之第一外部電極 156b與部分之第二外部電極154b可延伸而暴露於凹槽158之底面 160中。因此,將發光二極體元件150b設置於封裝基座152之凹 槽158中時,可將發光二極體元件150b置於凹槽158之底面160 中第一外部電極156b的暴露部分上,並利用紅外線加熱法、爐管 加熱法或快速熱退火法使共晶材料層144之表面148與第一外部 電極156b的暴露部分直接共晶接合,形成一共晶層144a,以增強 發光二極體元件150b與封裝基座152之間的接合力,並提高發光 二極體元件150b之散熱效率。然後,可形成封裝膠體168填入封 裝基座152之凹槽158内,並使封裝膠體168覆蓋住凹槽158内 之發光二極體元件150b、導線164與166、第一外部電極156b與 第二外部電極154b,而完成發光二極體元件150b之封裝結構 172b。 由上述本發明之實施例可知,本發明之一優點就是因為在本 發明之發光二極體元件及其製造方法中,無需使用銀膠,也無需 採用耐酸鹼膠帶,即可使發光二極體晶片與散熱金屬層接合,因 此不僅可大幅提升發光二極體元件之散熱效能,更可有效降低製 程成本。 由上述本發明之實施例可知,本發明之另一優點就是因為在 本發明之發光二極體元件及其製造方法中,其製作過程中所採用 之光阻層不僅可有效保護發光二極體晶片之發光結構與電極,且 有助於控制發光二極體晶片嵌入散熱金屬層之深度,因此可避免 14 201027790 . 發光二極體晶片在後續金屬鍍膜的製程中受損,而可大幅提高製 程良率,且可滿足側光發光二極體產品的應用。 由上述本發明之實施例可知,本發明之又一優點就是因為在 本發明之發光二極體元件之封裝結構及其製造方法中,其發光二 極體元件之底部設有共晶材料層,因此元件底部之散熱金屬層可 利用共晶材料層而透過紅外線等低温加熱方式形成共晶層固定在 封裝基座上。故,可避免傳統接合元件與封裝基座之膠體的長時 間高溫固化程序而造成發光二極體晶片的熱損壞,且共晶材料層 Φ 也可降低熱阻而可提升散熱效果,更可滿足於現有封裝基座而無 需更動封裝基座之熱電設計,有利於大量生產與應用。 雖然本發明已以一較佳實施例揭露如上,然其並非用以限定 本發明,任何在此技術領域中具有通常知識者,在不脫離本發明 之精神和範圍内,當可作各種之粟動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 φ 第1圖至第11A圖係繪示依照本發明一較佳實施例的一種發 光二極體元件之製程剖面圖。 第11B圖係繪示依照本發明之另一較佳實施例的一種發光二 極體元件之剖面圖。 第12A圖係繪示依照本發明一較佳實施例的一種發光二極體 元件之封裝結構的剖面圖。 第12B圖係繪示依照本發明之另一較佳實施例的一種發光二 極體元件之封裝結構的剖面圖。 15 201027790 【主要元件符號說明】For example, it may be embedded in the package base 152 and extend on the outer side of the package base 152. A portion of the first outer electrode 156a and a portion of the second outer electrode 154a may extend to be exposed in the bottom surface 160 of the recess 158. Therefore, when the light emitting diode element 150a is disposed in the recess 158 of the package base 152, the light emitting diode element 150a can be placed on the exposed portion of the second outer electrode 154a in the bottom surface 160 of the recess 158, and The surface 148 of the eutectic material layer 144 and the exposed portion of the second external electrode 154a are directly eutectic bonded by infrared heating, furnace tube heating or rapid thermal annealing to form a eutectic layer 144a, thereby causing luminescence. The second electrode 112a of the diode wafer 102a is electrically connected to the second external electrode 154a via the underlying conductive layer 134, the thermally conductive metal layer 136, and the eutectic layer 144a. The material of the eutectic layer 144a may, for example, comprise one of gold, tin, magnet, titanium, group, indium, steel, or an alloy thereof, and the thickness of the eutectic layer 144a may be, for example, less than substantially 6/zm. On the other hand, when the first electrode 110a of the light-emitting diode wafer 102a and the first external electrode 156a are electrically connected, the wire 162 can be electrically connected by wire bonding. Then, the encapsulant 168 can be formed to fill the recess 158 of the package base 152, and the encapsulant 168 covers the LED body 150a, the wire 162, the first external electrode 156a and the second external portion in the recess 158. The electrode 154a completes the package structure 172a of the light-emitting diode element 150a. In another exemplary embodiment, as shown in Fig. 12B, when the package process of the light emitting diode device 150b is performed, the package base 152 including the recess 158 can also be provided. In one embodiment, the side of the recess 158 of the package base 152 is also selectively provided with a second reflective layer 170 to facilitate lateral reflection of the lateral light toward the LED component 150b. Next, the LED component 150b is disposed in the recess 158 of the package base 152 such that the surface 148 of the eutectic material layer 144 is directly bonded to the bottom surface 160 of the recess 158. Then, in the wire bonding manner, the first electrode 11 Ob and the second electrode 112b of the light-emitting diode wafer 10b are electrically connected to the first external electrode 156b and the second external electrode by using two wires 164 and 166, respectively, 13 201027790 154b. In an exemplary embodiment, the first external electrode 156b and the second external electrode 154b may be embedded in the package base 152, for example, and extend outside the package base 152, and a portion of the first external electrode 156b and a portion thereof The second outer electrode 154b can extend to be exposed in the bottom surface 160 of the recess 158. Therefore, when the light emitting diode element 150b is disposed in the recess 158 of the package base 152, the light emitting diode element 150b can be placed on the exposed portion of the first outer electrode 156b in the bottom surface 160 of the recess 158, and The surface 148 of the eutectic material layer 144 is directly eutectic bonded to the exposed portion of the first external electrode 156b by infrared heating, furnace tube heating or rapid thermal annealing to form a eutectic layer 144a to enhance the light emitting diode element. The bonding force between the 150b and the package base 152 increases the heat dissipation efficiency of the light emitting diode element 150b. Then, the encapsulant 168 can be formed to fill the recess 158 of the package base 152, and the encapsulant 168 covers the LED component 150b, the wires 164 and 166, the first external electrode 156b and the first in the recess 158. The outer electrode 154b completes the package structure 172b of the light emitting diode element 150b. It can be seen from the above embodiments of the present invention that one of the advantages of the present invention is that in the light-emitting diode element of the present invention and the method of manufacturing the same, it is possible to make the light-emitting diode without using silver glue or using an acid-resistant tape. The body wafer is bonded to the heat dissipation metal layer, so that the heat dissipation performance of the light emitting diode component can be greatly improved, and the process cost can be effectively reduced. It can be seen from the above embodiments of the present invention that another advantage of the present invention is that in the light-emitting diode element of the present invention and the method of manufacturing the same, the photoresist layer used in the manufacturing process can not only effectively protect the light-emitting diode The light-emitting structure of the chip and the electrode, and help to control the depth of the light-emitting diode chip embedded in the heat-dissipating metal layer, thereby avoiding 14 201027790. The light-emitting diode chip is damaged in the subsequent metal plating process, and the process can be greatly improved. Yield, and can meet the application of side light emitting diode products. According to the embodiment of the present invention, another advantage of the present invention is that, in the package structure of the light-emitting diode element of the present invention and the manufacturing method thereof, the bottom of the light-emitting diode element is provided with a eutectic material layer. Therefore, the heat dissipation metal layer at the bottom of the element can be fixed to the package base by using a eutectic material layer and forming a eutectic layer by low-temperature heating such as infrared rays. Therefore, the long-term high-temperature curing process of the conventional bonding element and the colloid of the package base can be avoided to cause thermal damage of the LED film, and the eutectic material layer Φ can also reduce the thermal resistance and improve the heat dissipation effect, and can satisfy the heat dissipation effect. The existing package base does not require a thermoelectric design to change the package base, which is advantageous for mass production and application. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and any one of ordinary skill in the art can be used in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 11A are cross-sectional views showing a process of a light-emitting diode element in accordance with a preferred embodiment of the present invention. Figure 11B is a cross-sectional view showing a light emitting diode element in accordance with another preferred embodiment of the present invention. Figure 12A is a cross-sectional view showing a package structure of a light emitting diode device in accordance with a preferred embodiment of the present invention. Figure 12B is a cross-sectional view showing a package structure of a light emitting diode element in accordance with another preferred embodiment of the present invention. 15 201027790 [Main component symbol description]
100 :藍膜 102a 102b :發光二極體晶片 104a 104b :表面 106a 106b :基板 108a 108b :發光結構 110a 110b :第一電極 112a 112b :第二電極 114 : 116a :厚度 116b 118 :表面 120 : 122 :表面 124 : 126 :光阻層 128 : 130 :深度 132 : 134 :導電層 136 : 138 :表面 140 : 142 :凹陷部 144 : 144a :共晶層 146 : 148 :表面 150a 150b :發光二極體元件 152 : 154a :第二外部電極 154b 156a :第一外部電極 156b 158 :凹槽 160 : :發光二極體晶片 :表面 :導電基板 :發光結構 :第一電極 :第二電極 第一反射層 :厚度 透明暫時基板 表面 厚度 部分 導熱金屬層 表面 共晶材料層 表面 :發光二極體元件 封裝基座 :第二外部電極 :第一外部電極 底面 16 201027790 162 :導線 164 : 166 :導線 168 : 170 :第二反射層 172a 172b :封裝結構 導線 封裝膠體 :封裝結構100: blue film 102a 102b: light emitting diode wafer 104a 104b: surface 106a 106b: substrate 108a 108b: light emitting structure 110a 110b: first electrode 112a 112b: second electrode 114: 116a: thickness 116b 118: surface 120: 122: Surface 124: 126: photoresist layer 128: 130: depth 132: 134: conductive layer 136: 138: surface 140: 142: recess 144: 144a: eutectic layer 146: 148: surface 150a 150b: light emitting diode element 152: 154a: second outer electrode 154b 156a: first outer electrode 156b 158: groove 160: : light emitting diode wafer: surface: conductive substrate: light emitting structure: first electrode: second electrode first reflective layer: thickness Transparent temporary substrate surface thickness part heat conductive metal layer surface eutectic material layer surface: light emitting diode element package pedestal: second external electrode: first external electrode bottom surface 16 201027790 162 : wire 164 : 166 : wire 168 : 170 : Two reflective layer 172a 172b: package structure wire encapsulation colloid: package structure
1717