TW201023677A - White organic light emitting device and method for manufacturing the same - Google Patents
White organic light emitting device and method for manufacturing the same Download PDFInfo
- Publication number
- TW201023677A TW201023677A TW098131261A TW98131261A TW201023677A TW 201023677 A TW201023677 A TW 201023677A TW 098131261 A TW098131261 A TW 098131261A TW 98131261 A TW98131261 A TW 98131261A TW 201023677 A TW201023677 A TW 201023677A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- light
- transport layer
- emitting
- hole transport
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims abstract description 9
- 230000005525 hole transport Effects 0.000 claims abstract description 73
- 239000002019 doping agent Substances 0.000 claims abstract description 63
- 230000005281 excited state Effects 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 37
- 238000012546 transfer Methods 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 8
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims 4
- 241000282320 Panthera leo Species 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract description 11
- 230000002708 enhancing effect Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 277
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000032683 aging Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/32—Stacked devices having two or more layers, each emitting at different wavelengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/20—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
- H10K50/131—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
201023677 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種有機發光裝置’特別是一種白色有機發光 裝置及其製造方法,其中電洞傳送層之能階比鄰接電洞傳送層之 磷光發光層之受激態能階高,用於增強電洞傳送層之發光效率, 且無須額外的激子阻擔層(exciton blocking layer ),並且峨光發光 層中的摻雜含量(dopant content)被調整以避免出現色移(c〇1〇r shift) 〇 【先前技術】 目前’資訊導向時代已經完全來臨’視覺上呈現電資訊訊號 之顯示器領域已經得到高速發展,為了滿足此發展,已經發展的 具有輕薄且低功率消耗之優良特性之各種平面顯示裝置正快速地 替代目前的陰極射線管CRT。 至於平面顯示裝置之特別例子,有液晶顯示裝置LCD、電漿 顯不裝置PDP、場發射顯示裝置FED以及有機發光裝置〇LEIh 平面顯示裝置中’因為有機發光裝置〇LED不需要分離的光 源,容易使得裝置緊湊,並且可清楚地顯示顏色,因此被視為具 有競爭力之應用。 有機發光裝置OLED需要有機發光層,在習知技術中本質上 透過沉積陰影遮罩而形成。 然而,如果陰影遮罩較大,由於重力原因,此陰影遮罩凹陷, 201023677 難以多-入使用,並且在有機發光層形成中出現缺陷,因此需要其 他方法。 白色有機發光裝置作為用於替代陰影遮罩所建議的很多方法 其中之一。 現在將描述白色有機發光裝置。 白色有機發光裝置在沉積的陽極與陰極之間包含若干複數 層,在發光二極體之形成過程中沒有遮罩,其中包含有機發光層 之有機膜使用彼此不同的材料在真空中連續被沉積。 白色有機發光裝置有很多應用之處,例如薄型光源、液晶顯 示裝置中的背光單元或者應用彩色濾光片之全彩顯示裝置等。 白色有機發光裝置包含複數個發光層,透過分別應用不同顏 色的摻雜物至發光層,彼此包含不同的顏色。然而,由於摻雜物 本身的特性原因,發光層中包含的摻雜物的組成存在限制,並且 因為發光層之混合物之重點在於產生白光,以在紅、綠與藍光波 長區域以外的白光波長區域處具有均勻峰值之白色波長特性,當 白色有機發光裝置包含彩色濾光片時,色彩重現比變差。此外, 因為摻雜物的材料彼此不同,如果連續地使用白色有機發光裝 置,則出現色移。 此外,因為電洞傳送層與發光層之能階在其介面處類似,三 態激子(tripletexciton)通過介面以遷移至電洞傳送層,受激態之 發光效率下降,如果提供激子阻擋層EBL以避免出現這種情況, 201023677 則驅動電麼上升’製程步驟增加且壽命縮短,為產生最佳效率之 白色有機發光裝置施加許多障礙。 【發明内容】 因此,本發明提供-種白色有機發光裝置及其製造方法。 本發明之目的在於提供-種白色有機發光裝置及其髮造方 法,其中電洞傳送層之能階比鄰接電洞傳送層之鱗光發光層之受 激態能階高,以增強㈣傳送層之發光效率,無須額外的激 子阻擋層,並麟光發光層巾_雜含量_整以避免出現色移。 本發明其他的優點、目的和繼將在如下的_書中部分地 加以闌述,並且本發明其他的優點、目的和槪對於本領域的普 通技術人員來說,可以透過本發明如下的說明得以部分地理解或 者可以從本發明的實踐中得出。本發明的目的和其它優點可以透 過本發明所記載的說明書和申請專利範圍中特別指明的結構並結 合圖式部份,得以實現和獲得。 為了獲得本發明的這些目的和其他優點,現對本發明作具體 化和概括性的描述’本發明之一種白色有機發光裝置包含:陽極 與陰極,彼此相對放置於基板上;電荷產生層,形成於陽極與陰 極之間;第一堆疊層,位於陽極與電荷產生層間,包含第一電洞 傳送層、用於發射藍光之第一發光層以及第一電子傳送層;以及 第二堆疊層,位於電荷產生層與陰極之間,包含第二電洞傳送層、 包含共同摻雜有磷光紅光與綠光摻雜物之主體之第二發光層以及 7 201023677 其中第—電洞傳送層包含之能階被設定為比第 二發光層之三態受激態能階高。 態受激態能階高 0.01 第二傳送層包含之能階比第二發光層之 〇·4電子伏特。 例如,第二電洞傳送騎由以下化學式所示之包含非對稱結 構之化合物形成。 化學式1201023677 VI. Description of the Invention: [Technical Field] The present invention relates to an organic light-emitting device, particularly a white organic light-emitting device and a method of fabricating the same, in which the energy transfer layer of the hole transport layer is phosphorescent to the adjacent hole transport layer The excited layer of the luminescent layer has a high energy level for enhancing the luminous efficiency of the hole transport layer, and does not require an additional exciton blocking layer, and the doping content in the luminescent layer Adjusted to avoid color shift (c〇1〇r shift) 〇 [Prior Art] At present, the 'information-oriented era has come completely'. The display field that visually presents electrical information signals has been rapidly developed, and has been developed to meet this development. Various flat display devices having excellent characteristics of light weight and low power consumption are rapidly replacing the current cathode ray tube CRT. As a specific example of the flat display device, there are a liquid crystal display device LCD, a plasma display device PDP, a field emission display device FED, and an organic light-emitting device 〇LEIh in a flat display device, because the organic light-emitting device 〇LED does not require a separate light source, and is easy. The device is compact and can clearly display color and is therefore considered a competitive application. The organic light-emitting device OLED requires an organic light-emitting layer, which is formed in the prior art by depositing a shadow mask. However, if the shadow mask is large, this shadow mask is recessed due to gravity, and 201023677 is difficult to use, and defects occur in the formation of the organic light-emitting layer, so other methods are required. White organic light-emitting devices are one of many methods suggested for replacing shadow masks. A white organic light-emitting device will now be described. The white organic light-emitting device comprises a plurality of layers between the deposited anode and the cathode, and no mask is formed during the formation of the light-emitting diode, wherein the organic film containing the organic light-emitting layer is continuously deposited in a vacuum using materials different from each other. White organic light-emitting devices have many applications, such as a thin light source, a backlight unit in a liquid crystal display device, or a full color display device using a color filter. The white organic light-emitting device comprises a plurality of light-emitting layers, which respectively apply different colors to each other by applying dopants of different colors to the light-emitting layer. However, due to the nature of the dopant itself, the composition of the dopant contained in the luminescent layer is limited, and because the mixture of luminescent layers focuses on producing white light for white light wavelength regions outside the red, green and blue wavelength regions. The white wavelength characteristic with uniform peaks, when the white organic light-emitting device includes a color filter, the color reproduction ratio is deteriorated. Further, since the materials of the dopants are different from each other, if the white organic light-emitting device is continuously used, a color shift occurs. In addition, since the energy transfer layer and the light-emitting layer have similar energy levels at their interfaces, triplet excitons migrate through the interface to the hole transport layer, and the luminous efficiency of the excited state is lowered if an exciton blocking layer is provided. EBL to avoid this, 201023677 is driving the rise? The process steps are increased and the life is shortened, which imposes many obstacles for the white organic light-emitting device that produces the best efficiency. SUMMARY OF THE INVENTION Accordingly, the present invention provides a white organic light-emitting device and a method of fabricating the same. The object of the present invention is to provide a white organic light-emitting device and a method for fabricating the same, wherein the energy level of the hole transport layer is higher than that of the scale light-emitting layer adjacent to the hole transport layer to enhance (4) the transport layer The luminous efficiency does not require an additional exciton blocking layer, and the lining of the luminescent layer is to avoid color shift. Other advantages, objects, and advantages of the present invention will be described in part in the following, and other advantages, objects, and advantages of the present invention will be apparent to those skilled in the art Partially understood or can be derived from the practice of the invention. The object and other advantages of the invention will be realized and attained by the <RTIgt; In order to achieve the objects and other advantages of the present invention, the present invention is embodied and described in detail. A white organic light-emitting device of the present invention comprises: an anode and a cathode disposed opposite each other on a substrate; and a charge generating layer formed on Between the anode and the cathode; a first stacked layer between the anode and the charge generating layer, comprising a first hole transport layer, a first light emitting layer for emitting blue light and a first electron transport layer; and a second stacked layer, located at the charge Between the generation layer and the cathode, comprising a second hole transport layer, a second luminescent layer comprising a body doped with phosphorescent red and green dopants, and 7 201023677 wherein the first hole transport layer comprises an energy level It is set to be higher than the three-state excited state energy level of the second light-emitting layer. The excited state energy level is 0.01. The second transport layer contains an energy level of 〇4 electron volts than the second light-emitting layer. For example, the second hole transport ride is formed by a compound containing an asymmetric structure as shown by the following chemical formula. Chemical formula 1
其中R1係選自取代或非取代芳香基或雜環基。 詳細來說,R1係選自取代或非取代笨基、喊、茶、料 以及味唾其中之一。 第-發光層之主體係選自具有至綠光摻雜物之高能量轉移比 之複數種材料’紅緖雜物係選自具有從綠光摻雜物之高能量轉 移比並且具有_祕雜相似壽命之複數種材料這樣即使時 間流逝’整個波長之亮度降低至相同位準,沒有色調變化,從而 適合顯示白光。 本發明之另一方面,一種白色有機發光裝置之製造方法包含 以下步驟:形成陽極於基板上;透過連續堆疊第一電洞傳送層、 用於發射藍光之第一發光層以及第一電子傳送層於包含陽極之基 板上,形成第一堆疊層;形成電荷產生層於第一堆疊層上;透過 201023677 連續地堆疊第二電洞傳送層、包含共同摻雜有磷光紅色與綠光摻 雜物之主鱧之第一發光層以及第二電子傳送層於電荷產生層上, 形成第二堆疊層;以及形成陰極於第二堆疊層之上,其中第二電 洞傳送層包含能階’被設定為比第二發光層之三態受激態能階高。 可以理解的是,如上所述的本發明之概括說明和隨後所述的 本發明之詳細說明均是具有代表性和解釋性的說明,並且是為了 進一步揭示本發明之申請專利範圍。 【實施方式】 現在將結合附圖對本發明的特定實施方式作詳細說明。其中 附圖中所使用的相同的參考標號代表相同或同類部件。 「第1圖」所示係為本發明較佳實施例之白色有機發光裝置 之剖面示意圖。 請參考「第1圖」,白色有機發光裝置包含:位於基板丨⑻上 相對的陽極101與陰極140;位於陽極101與陰極140之間的第一 堆疊層210 ;電荷產生層120以及第二堆疊層220。 陽極101係由透明電極例如氧化銦錫(Indium Tin Oxide;ITO) 形成,陰極140係由反射材料例如鋁形成。由於上述方式排列之 第一堆疊層210與第二堆疊層220各自發射的光線,影像被傳送 至圖式之底侧。 第一堆疊層210包含第一電洞轉移層(HIL) 103、第一電洞 傳送層(HTL) 105、第一發光層110、第一電子傳送層(ETL ) 9 201023677 111以及第一電子注入層(EIL) 113,連續堆疊於陽極1〇1上側與 電荷產生層120之間,第二堆疊層220包含第二電洞轉移層123、 第二電洞傳送層125、第二發光層13〇、第二電子傳送層133以及 第二電子注入層135,連續堆疊於電荷產生層12〇與陰極14〇之間。 第一發光層110係為具有藍光主體之發光層,包含具有藍色 螢光組分或磷光組分之摻雜物,第二發光層13〇係為包含主體之 單發光層’摻雜有碟光綠光與碟光紅光之換雜物。 此實例中,當白光有機發光裝置被驅動時,第一發光層11〇 與第二發光層130所發射的光線之混合效果可產生白色。 此情況下,第二電洞傳送層125被設定以具有比第二發光層 13〇之二態激子之受激態之能階更南之能階。此實例中,第二電洞 傳送層125被設定以具有比第二發光層130之三態激子之受激離 之能階高0.01〜0·4電子伏特之能階。此情況下,因為第二電洞傳 送層125包含之能階比第二發光層no之能階高,可避免第二發 光層130之三態激子轉變至第二電洞傳送層125,從而使發光效率 下降。就是說,此情況下,第二電洞傳送層丨25用於傳送來自第 一發光層130之電洞以及作為激子阻擔層,係為第二發光層 之獨特功能,激子阻擋層用於阻止三態激子到達。 參考「第1圖」描述本發明較佳實施例之白色有機發光裝置 之製造方法。 請參考「第1圖」’在白色有機發光裝置之製造方法中,陽極 201023677 形成於基板100之上。 然後,第一電洞轉移層103、第一電洞傳送層105、用於發射 藍色之第一發光層110、第一電子傳送層111以及第一電子注入層 113被連續堆疊於包含陽極101之基板上,以形成第一堆疊層210。 然後,電荷產生層120形成於第一堆疊層210上。 然後,第二電洞轉移層123、第二電洞傳送層125、包含被摻 雜磷光綠光與磷光紅光摻雜物之一個主體之第二發光層130、第二 電子傳送層133以及第二電子注入層135被連續堆疊於電荷產生 層120上以形成第二堆疊層220。 然後,陰極140形成於第二堆疊層220上。 此情況下,第二電洞傳送層125之三態能階被設定比第二發 光層130之受激態之能階高。 現在描述本發明之白色有機發光裝置之能量轉移機製。 「第2A圖」與「第2B圖」所示分別係為本發明與比較結構 之白色有機發光裝置之第二堆疊層之各層能量偏移之示意圖。 「第2A圖」所示係為與「第1圖」之第二堆昼層同樣之第二 電洞傳送層125之能階比第二發光層130之三態激子之受激態能 階高之示意圖,「第2B圖」所示係為其中增加三態阻檔層(出讲过 blocking layer ; TBL)之結構示意囷,當發光層23〇與鄰接的電洞 傳送層225之能階與發光層230之三態激子之受激態能階類似 時,二態阻播層用於避免激子從發光層被引入電洞傳送層。 201023677 與本發明之結構相同’在「第2B圖」中,電子傳送層233與 電子注入層235形成於發光層230與陰極之間。本文中,「第2B 圖」中還包含陽極201與陰極240。· 與「第2B圖」相比,在「第2A圖」中,省略第一堆疊層與 電荷產生層CGL120。 「第3A圖」、「第3B圖」以及「第3C圖」所示分別係為本 發明白色有機發光裝置之第二堆疊層之能量轉移機製與比較結構 之能量轉移機製之示意圖。 © 「第3A圖」所示係為與「第2A圖」對應之本發明第二堆疊 層之結構實例,「第3B圖」所示係為發光層之受激態能階與鄰接 發光層之電洞傳送層之能階類似之實例,「第3C圖」所示係為與 「第2A圖」對應之結構實例中發光層與電洞傳送層之間的能量機 製。 請參考「第3A圖」,第二發光層係為包含磷光主體材料13〇&Wherein R1 is selected from a substituted or unsubstituted aryl or heterocyclic group. In detail, R1 is selected from one of substituted or unsubstituted stupid, shout, tea, and taste. The main system of the first light-emitting layer is selected from a plurality of materials having a high energy transfer ratio to the green light dopant. The red thread is selected from the group having a high energy transfer ratio from the green light dopant and has a _ A plurality of materials of similar lifetime such that even if the time passes, the brightness of the entire wavelength is lowered to the same level, there is no hue change, and thus it is suitable for displaying white light. In another aspect of the invention, a method of fabricating a white organic light-emitting device includes the steps of: forming an anode on a substrate; transmitting a first hole transport layer through a continuous stack, a first light-emitting layer for emitting blue light, and a first electron transport layer Forming a first stacked layer on the substrate including the anode; forming a charge generating layer on the first stacked layer; continuously stacking the second hole transport layer through the 201023677, comprising the phosphorescent red and green dopant doped together a first luminescent layer and a second electron transporting layer on the charge generating layer to form a second stacked layer; and a cathode formed on the second stacked layer, wherein the second hole transport layer includes an energy level 'set to The three-state excited state energy level is higher than the second light-emitting layer. It is to be understood that the foregoing general description of the invention, [Embodiment] Specific embodiments of the present invention will now be described in detail with reference to the accompanying drawings. The same reference numbers are used in the drawings to refer to the same or like parts. Fig. 1 is a schematic cross-sectional view showing a white organic light-emitting device according to a preferred embodiment of the present invention. Please refer to "FIG. 1", the white organic light-emitting device comprises: an anode 101 and a cathode 140 opposite to each other on the substrate 8 (8); a first stacked layer 210 between the anode 101 and the cathode 140; a charge generating layer 120 and a second stack Layer 220. The anode 101 is formed of a transparent electrode such as Indium Tin Oxide (ITO), and the cathode 140 is formed of a reflective material such as aluminum. Due to the light rays respectively emitted by the first stacked layer 210 and the second stacked layer 220 arranged in the above manner, the image is transmitted to the bottom side of the drawing. The first stacked layer 210 includes a first hole transfer layer (HIL) 103, a first hole transport layer (HTL) 105, a first light emitting layer 110, a first electron transport layer (ETL) 9 201023677 111, and a first electron injection An interlayer (EIL) 113 is continuously stacked between the upper side of the anode 1〇1 and the charge generating layer 120, and the second stacked layer 220 includes the second hole transferring layer 123, the second hole transporting layer 125, and the second light emitting layer 13〇 The second electron transport layer 133 and the second electron injection layer 135 are continuously stacked between the charge generating layer 12A and the cathode 14A. The first light-emitting layer 110 is a light-emitting layer having a blue light body, and includes a dopant having a blue fluorescent component or a phosphorescent component, and the second light-emitting layer 13 is a single light-emitting layer containing a main body. Light green light and dish light red light change. In this example, when the white light organic light-emitting device is driven, the mixing effect of the light emitted by the first light-emitting layer 11 and the second light-emitting layer 130 can produce white. In this case, the second hole transport layer 125 is set to have an energy level souther than the energy level of the excited state of the dimorphic excitons of the second light-emitting layer 13A. In this example, the second hole transport layer 125 is set to have an energy level higher than the energy level of the exciton of the three-state excitons of the second light-emitting layer 130 by 0.01 to 0.4 volts. In this case, since the energy level of the second hole transport layer 125 is higher than the energy level of the second light-emitting layer no, the tri-state excitons of the second light-emitting layer 130 can be prevented from being transferred to the second hole transport layer 125, thereby The luminous efficiency is lowered. That is to say, in this case, the second hole transport layer 25 is used to transfer the holes from the first light-emitting layer 130 and serve as an exciton-resisting layer, which is a unique function of the second light-emitting layer, and the exciton blocking layer is used. To prevent the three-state excitons from reaching. A method of manufacturing a white organic light-emitting device according to a preferred embodiment of the present invention will be described with reference to "Fig. 1". Please refer to "Fig. 1". In the method of manufacturing a white organic light-emitting device, an anode 201023677 is formed on a substrate 100. Then, the first hole transfer layer 103, the first hole transport layer 105, the first light emitting layer 110 for emitting blue, the first electron transport layer 111, and the first electron injection layer 113 are continuously stacked on the anode 101. On the substrate, a first stacked layer 210 is formed. Then, the charge generating layer 120 is formed on the first stacked layer 210. Then, the second hole transfer layer 123, the second hole transport layer 125, the second light-emitting layer 130 including the one body of the doped phosphorescent green light and the phosphorescent red light dopant, the second electron transport layer 133, and the first The two electron injection layers 135 are successively stacked on the charge generation layer 120 to form a second stacked layer 220. Then, a cathode 140 is formed on the second stacked layer 220. In this case, the tri-state energy level of the second hole transport layer 125 is set higher than the energy level of the excited state of the second light-emitting layer 130. The energy transfer mechanism of the white organic light-emitting device of the present invention will now be described. Fig. 2A and Fig. 2B are schematic views showing the energy shifts of the respective layers of the second stacked layer of the white organic light-emitting device of the present invention and the comparative structure, respectively. The "Fig. 2A" shows the energy level of the second hole transport layer 125 which is the same as the second stack layer of the "Fig. 1", and the excited state energy level of the triplet excitons of the second light emitting layer 130. The high-level diagram, shown in Figure 2B, is a structural diagram in which a three-state barrier layer (TBL) is added. When the light-emitting layer 23 is adjacent to the adjacent hole transport layer 225, When the excited state energy level of the triplet excitons of the light-emitting layer 230 is similar, the two-state hindered layer is used to prevent excitons from being introduced into the hole transport layer from the light-emitting layer. 201023677 is the same as the structure of the present invention. In the "Fig. 2B", the electron transport layer 233 and the electron injection layer 235 are formed between the light-emitting layer 230 and the cathode. Herein, the "201B" also includes an anode 201 and a cathode 240. - In the "Fig. 2A", the first stacked layer and the charge generating layer CGL120 are omitted. "3A", "3B" and "3C" are schematic diagrams showing the energy transfer mechanism and the energy transfer mechanism of the comparative structure of the second stacked layer of the white organic light-emitting device of the present invention. © "Fig. 3A" is a structural example of the second stacked layer of the present invention corresponding to "Fig. 2A", and "Fig. 3B" shows the excited energy level of the light emitting layer and the adjacent light emitting layer. The energy level of the hole transport layer is similar, and the "3C figure" is the energy mechanism between the light-emitting layer and the hole transport layer in the structure example corresponding to "2A". Please refer to "3A", the second luminescent layer is composed of phosphorescent host material 13 〇 &
之層,其中包含填光綠光摻雜物(被稱為夕磷光綠光敏化劑)13〇b Q 與填光紅光摻雜物13〇c,其中如果第二發光層透過其_供應電流 而受激’則4光主體材料首先被激發,單態激子8卜三態激子τι 以及碟光綠光摻雜隱細光紅光絲物13Qe之單態激子Μ 與三態激子T1 Sg、Tg、Sr與Tr連續被激發,以發射綠光與紅光 之混合光。此情況下,因為第二電洞傳送層125之能階比碟光主 鱧材料130a之單態與三態激子高,鱗光主體材料之單態激 12 201023677 子與三態激子無法到達至第二制傳送層125,而是保留於發光層 中以助於耦合電洞與電子,從而增強發光效率。 此實例中,第二電洞傳送層125之三態能階比發光層之磷光 主體材料130a之三態激子之能階高,具有良好的電洞傳送特性, 被設定具有比第二發光層之三態受激態能階之能階高〇〇1〜〇4 電子伏特之能階。 例如,第二電洞傳送層125係由以下化學式所示之非對稱結 構之材料形成。 化學式1a layer comprising a photo-filled green dopant (referred to as a phosphorescent green photosensitizer) 13〇b Q and a filled red dopant 13〇c, wherein if the second luminescent layer passes through the _ supply current The stimulated '4 light body material is first excited, the singlet exciton 8 tri-state exciton τι and the disc-light green-doped hidden light red light filament 13Qe singlet exciton and tri-state excitons T1 Sg, Tg, Sr, and Tr are continuously excited to emit a mixture of green and red light. In this case, since the energy level of the second hole transport layer 125 is higher than that of the single-mode and three-state excitons of the disk-optic host material 130a, the single-state excimer 12 201023677 and the three-state excitons of the scale light host material cannot be reached. The second transfer layer 125 is retained in the light-emitting layer to help couple the holes and electrons, thereby enhancing luminous efficiency. In this example, the third-state energy level of the second hole transport layer 125 is higher than that of the triplet excitons of the phosphorescent host material 130a of the light-emitting layer, and has good hole transport characteristics and is set to have a second light-emitting layer. The energy level of the three-state excited state energy level is higher than the energy level of 1 to 〇4 electron volts. For example, the second hole transport layer 125 is formed of a material of an asymmetric structure shown by the following chemical formula. Chemical formula 1
其中R1係選自取代或非取代芳香基或雜環(heterocyclic)基。 詳細地,R1可以選自取代或非取代苯基、吡啶(pyridine)、 萘(naphthalene)、啥琳(qUin〇iine)以及味唾(carbaz〇ie)。 雖然「第2B圖」表示電洞傳送層225之能階比發光層之受激 態能階高,當發光層之鱗光主體材料23〇a、磷光綠光摻雜物(磷 光綠光敏化劑)230b與磷光紅光摻雜物230c被組合時,此能階表 示平均能階。如「第3B圖」與「第3C圖」所示,如果察看每一 材料之能階’可知磷光主體材料23〇a之受激態能階比電洞傳送層 225之能階高。此實例中,可知在「第3B圖」中,磷光主體材料 230a之單態激子與三態激子被轉移至電洞傳送層225,並且在此 13 201023677 實例中,用於發光之激子組分(constituent)逃逸至電洞傳送層以 後’此激子組分則不可再次返回發光層❶因此,隨著時間流逝, 發光效率變得越來越低。 為了避免「第3B圖」所示之單態激子與三態激子被注入電洞 注入層325 ’「第3C圖」中,三態阻擋層227被提供於發光層23〇 與電洞傳送層225之間,用於避免激子從發光層23〇被注入至電 洞傳送層225中。 然而’在「第3C圖」之實例中,由於三態阻擔層227之原因, 雖然可避免激子逃逸至電洞傳送層225,但是提供額外的層增加了 步驟’在發光層230之介面處人為多提供一個材料層提高了驅動 電壓。可知包含「第3A圖」所示結構之本發明白色有機發光裝置 具有第一電洞傳送層125’第二電洞傳送層125之能階比發光層之 受激態高,因此本發明之白色有機發光裝置在發光效率、節約製 程成本、避免功率消耗增加以及壽命方面有利。 第4圖」所不係為當紅、綠、藍光推雜物被增加至主體材 料時紅、綠、藍光波長特性之圖形。 請參考「第4圖」,圖中從左至右分別表示當藍、綠、紅摻雜 物被增加至主體材料時強度對波長之圖形。 從圖形可知,紅色波長之強度較低。在本發明之白色有機發 光裝置中,綠光摻雜物與紅光摻雜物一同被混合以作為第二發光 層,這樣綠光摻雜物導致受激態以發射綠光以後,因為綠光發射 201023677 之單態與三態轉移能量至紅光摻雜物材料,從而增加發光效率, 比引入早個紅光摻雜減,因騎紅賴綠光摻雜物混合時,^ 色的發光效率增加。 、 下方的表格1表示光線的驅動電遷與亮度。此實财,當驅 動電麼針對每-顏色之魏麟之财辦概枝3 6、3 9與 4.8伏特之範圍時’測量亮度、量子效率qe與沉坐標系統。、 表格1Wherein R1 is selected from a substituted or unsubstituted aryl group or a heterocyclic group. In detail, R1 may be selected from a substituted or unsubstituted phenyl group, a pyridine, a naphthalene, a qUin〇iine, and a carbaz〇ie. Although "Fig. 2B" indicates that the energy level of the hole transport layer 225 is higher than the excited state energy level of the light-emitting layer, when the light-emitting layer of the light-emitting body material 23〇a, phosphorescent green light dopant (phosphorescent green photosensitizer) When 230b is combined with the phosphorescent red dopant 230c, this energy level represents the average energy level. As shown in "3B" and "3C", if the energy level of each material is observed, it can be seen that the excited state energy level of the phosphorescent host material 23a is higher than that of the hole transport layer 225. In this example, it is understood that in "Picture 3B", the singlet excitons and the tri-state excitons of the phosphorescent host material 230a are transferred to the hole transport layer 225, and in this example of 13 201023677, the exciton for illuminating After the constituent escapes to the hole transport layer, the exciton component cannot return to the light-emitting layer again. Therefore, as time passes, the luminous efficiency becomes lower and lower. In order to prevent the singlet excitons and the triplet excitons shown in "Fig. 3B" from being injected into the hole injection layer 325' "3C", the tristate barrier layer 227 is provided in the light emitting layer 23 and the hole transmission. Between the layers 225, it is used to prevent excitons from being injected into the hole transport layer 225 from the light-emitting layer 23A. However, in the example of "3C", due to the tri-state resistive layer 227, although excitons can be avoided from escaping to the hole transport layer 225, providing an additional layer adds the step 'in the interface of the light-emitting layer 230. Providing a layer of material for the person increases the driving voltage. It can be seen that the white organic light-emitting device of the present invention including the structure shown in "FIG. 3A" has the first hole transport layer 125', and the energy level of the second hole transport layer 125 is higher than that of the light-emitting layer, so the white of the present invention Organic light-emitting devices are advantageous in terms of luminous efficiency, saving process cost, avoiding increased power consumption, and longevity. Fig. 4 is not a graph showing the wavelength characteristics of red, green and blue light when the red, green and blue light pushers are added to the main material. Please refer to "Fig. 4", which shows the intensity versus wavelength pattern when blue, green, and red dopants are added to the host material from left to right. As can be seen from the graph, the intensity of the red wavelength is low. In the white organic light-emitting device of the present invention, the green light dopant is mixed with the red light dopant as the second light-emitting layer, such that the green light dopant causes an excited state to emit green light, because green light The singlet and triplet transfer energy of 201023677 is emitted to the red light dopant material, thereby increasing the luminous efficiency, which is less than the introduction of the early red light doping, and the luminous efficiency of the color is increased when the red-light green dopant is mixed. Table 1 below shows the driving relocation and brightness of the light. This kind of real money, when driving the power for each color, Wei Lin's financial office branches 3 6 , 3 9 and 4.8 volt range 'measure brightness, quantum efficiency qe and sink coordinate system. , Table 1
第5圖」所示係為在紅光與綠光摻雜物被增加至本發明 白 色有機發光裝置之第二堆私之發光層之實例中當戦捧雜物之 含量變化時之波長特性圖形。 e 「第5圖」表示當紅光摻雜物之含量固定在〇4%且綠光摻雜 物之含量依照固定増量從5%改變至2〇%時第二堆疊層之發光效 率之圖形。此實例中,如表格2所示,當驅動電壓保持在幾乎3.6 〜3.7伏特之相同範圍時,測量亮度、量子效率與CIE坐標系統。 請參考「第5囷」與表格2,可知在綠光摻雜物含量高於15% 之實例中如果比較綠色與紅色之強度則紅光發光效率較高。此實 例中’如前所述,因為綠光之單態與三態激子轉移能量至紅光摻 雜物’因此引入綠光摻雜物不僅有助於綠光發射,還有助於紅光 發射效率。 表格2 15 201023677Figure 5 is a wavelength characteristic diagram when the content of the red and green dopants is increased to the second phosphor layer of the white organic light-emitting device of the present invention. . e "Fig. 5" shows a graph showing the luminous efficiency of the second stacked layer when the content of the red light dopant is fixed at 〇4% and the content of the green light dopant is changed from 5% to 2% by weight based on the fixed amount of ruthenium. In this example, as shown in Table 2, the luminance, quantum efficiency, and CIE coordinate system were measured while the driving voltage was maintained in the same range of almost 3.6 to 3.7 volts. Please refer to "5th 囷" and Table 2, it can be seen that in the case where the green light dopant content is higher than 15%, the red light luminescence efficiency is higher if the green and red intensity are compared. In this example, 'as mentioned above, because the singlet and tri-state exciton transfer energy of green light to red dopants', the introduction of green light dopants not only contributes to green light emission, but also contributes to red light. Emission efficiency. Form 2 15 201023677
Structure Volt (V) Cd.A G(B%)»R(CL4%) 3.6 30*0 G【10%】+RP><%】 G[15%]+R(〇4%] 3.7 3j6 32JB 27J8 3.7 31 JOStructure Volt (V) Cd.AG(B%)»R(CL4%) 3.6 30*0 G[10%]+RP><%] G[15%]+R(〇4%] 3.7 3j6 32JB 27J8 3.7 31 JO
Im-W QE|:,:) Cd?m2 ClEx —ClEy 26.3 2Θ.0 13.5% 16.3% 299B 3278 0.477 QJB07 0.504 0A7B 24.1 264 16.6% 18.9% 2776 3099 0J665 0J572 (M19 0Λ20 基於這些測試,在以下測試中,當綠光摻雜物之含量低於10% 時,採用這些實例以使得綠光與紅光之發光效率一致。 「第6圖」所示係為在綠光與紅光摻雜物被增加至本發明白 色有機發光裝置之第二堆疊層之發光層之實例中波長特性隨激子 阻擋層與紅光摻雜物含量之應用而變化之圖形。 「第6圖」表示當三態激子阻擋層TBL與紅光摻雜物之含量 之應用變化為0.1%、0.2%與0.4%而在第二堆疊層中綠光摻雜物之 含量被固定為10%時波長對強度之圖形(紅+綠光發射)。 表格3Im-W QE|:,:) Cd?m2 ClEx-ClEy 26.3 2Θ.0 13.5% 16.3% 299B 3278 0.477 QJB07 0.504 0A7B 24.1 264 16.6% 18.9% 2776 3099 0J665 0J572 (M19 0Λ20 Based on these tests, in the following test When the content of the green light dopant is less than 10%, these examples are used to make the luminous efficiency of green light and red light uniform. "Fig. 6" is shown in the green and red light dopants being added. The pattern in which the wavelength characteristics vary with the application of the exciton blocking layer and the red dopant content in the example of the light-emitting layer of the second stacked layer of the white organic light-emitting device of the present invention. "Figure 6" shows the tri-state exciton The application variation of the content of the barrier layer TBL and the red light dopant is 0.1%, 0.2%, and 0.4%, and the wavelength versus intensity pattern is fixed when the content of the green light dopant in the second stacked layer is fixed to 10% (red) +Green light launch). Table 3
Cn〇%^R|0.1%) 6(1Q%HR2L2%1 S(1Q%)+R ©Γ1〇%)+ΙΗ〇,4%) TBLQ(1〇%WMQjWfc)Cn〇%^R|0.1%) 6(1Q%HR2L2%1 S(1Q%)+R ©Γ1〇%)+ΙΗ〇, 4%) TBLQ(1〇%WMQjWfc)
________ BSSBESDIBDQIES^HESI 3.8 44JB 402 1U% 4483 i 0.411 : 0j662 48Λ 403 17Λ% 4B52 0^418 0jE66 3_4 39:9 363 16jD% 3988 〇A^ 0532 3.6 4Λ£ 397 依4% 4650 044» 0^2» 3Λ 3β3 32.1 Λ7Μ 3652 ΟΛΟΙ 6^82 3.8 »3 — 311 热 aiaa oioe 047ft 請參考「第6圖」與表格3,可注意到紅光摻雜物的含量越高, 紅色波長的強度越大,並且如果三態阻擋層被應用,則綠光發射 之強度較高。最佳實例係為綠色與紅色具有相同或類似位準之發 光強度。可注意到當大約0.2%的紅光摻雜物被引入時,綠色與紅 色具有相似位準之發光強度。 基於以上測試,可判定第二堆疊層中紅色與綠色之含量被設 定為0.2%與1〇%。 同時描述白色有機發光裝置之其他摻雜物之問題。 201023677 第7圖」所示係為具有兩個堆疊層之白色有機發光裝置中 其中分別增加綠光與橘光摻雜物之磷光發光層之發光特性之 形。 「第7圖」係為2008年國際資訊顯示顯示研討會SID期刊 中第39卷第gig頁上所示白色有機發光裝置之特性圖形,圖中表 示第-堆#層包含藍光發光層且第二堆麵包含主賭料與綠光 及橘光摻雜物之實例,其中用·指示之曲線表示第一堆疊層中使用 深藍色材料之例子,用▲指示之另一曲線表示第一堆疊層中使用 淺藍色材料之例子。可知當使用深藍色材料時,藍光波長比其他 顏色的波長更強。然而,可知無論第一堆疊層中是否使用具有一 定發光位準之藍光發光材料,每一波長頻帶中出現寬闊的光線發 射,且610奈米〜700奈米之紅光波長中發光效率較差。就是說, 可知當彩色濾光片被應用至白色有機發光裝置時,因為可看出 紅、綠與藍色波長表現明顯不同的峰值,色彩重現比在紅色波長 中相當差,且紅、綠與藍色之敏感性較差。 因為可以理解的是「第7圖」所示結構之問題在於在第二堆 養層中使用的綠光與橘光摻雜物,在本發明中,第二堆疊層中的 橘光#雜物被紅光摻雜物替代。 「第8圖」所示係為當綠光或紅光摻雜物被增加至白色有機 發光裝置之第二堆疊層之第二發光層時以下實例之亮度特性之圖 形’包含電洞傳送層具有低能階之實例、提供激子阻檔層之實例, 17 201023677 以及電洞傳送層之能階比磷光發光層之三態受激時之能階高之實 例。 「第8圖」表示第二發光層由主體材料形成且主體材料分別 · 被增加0.2%之紅光摻雜物與10%的綠光摻雜物之測試例子。就是 說’從曲線最低侧連續向上,「第8圖」之曲線表示三個實例,分 別為鄰接第二發光層之第二電洞傳送層之能階被設定為與第二發 光層之受激態能階相似之實例’三態阻檔層被增加至第二發光層 與第二電洞傳送層之介面之實例,以及第二電洞傳送層之材料被 β 改變以使得第二電洞傳送層之能階比第二發光層之受激態能階高 之實例。 請參考「第8圖」與下方之表格4,可注意到如果提供一般的 電洞傳送層,雖然驅動電壓為3.4伏特’並不非常高,但是發光數 量為39.9 Cd/A、36.8 ww、柳犯―2且發光效率為ΐό 〇%,較 低。 如果三態阻擔層被增加至一般電洞傳送層與發光層之介面, ❹ 與前述實例相比,雖然發光數量為45.5 Cd/A,妁;7 lm/W, 455〇Cd/m2 ’且發光效率為队4%,表現出上升,隨著驅動電壓上 升至3.6伏特,可預料到功率消耗增加。 與此相反’在提供第二電洞傳送層之實例中,其中包含比本 發明白色有機發光裝置之第二發光層之受激態能階高〇 電 子伏特之能階,驅動錢為3.2伏特、3.3伏特與3.0伏特,全部 18 201023677 低於以上兩個實例’並且發光效率為20.6%、19.6%、21.3%,均 表現得更高。 在全部實例中,CIE坐標系統表現出彼此相似之坐標。 表格4________ BSSBESDIBDQIES^HESI 3.8 44JB 402 1U% 4483 i 0.411 : 0j662 48Λ 403 17Λ% 4B52 0^418 0jE66 3_4 39:9 363 16jD% 3988 〇A^ 0532 3.6 4Λ£ 397 4% 4650 044» 0^2» 3Λ 3β3 32.1 Λ7Μ 3652 ΟΛΟΙ 6^82 3.8 »3 — 311 hot aiaa oioe 047ft Please refer to Figure 6 and Table 3. It can be noted that the higher the red dopant content, the greater the intensity of the red wavelength, and if When a tri-state barrier is applied, the intensity of green light emission is higher. The best example is the intensity of light having the same or similar level of green and red. It can be noted that green and red have similar levels of luminescence intensity when about 0.2% of the red dopant is introduced. Based on the above test, it was judged that the contents of red and green in the second stacked layer were set to 0.2% and 1%. The problem of other dopants of the white organic light-emitting device is also described. 201023677 Fig. 7 is a view showing the light-emitting characteristics of the phosphorescent light-emitting layers in which the green light and the orange light dopant are respectively added to the white organic light-emitting device having two stacked layers. "Picture 7" is a characteristic graph of the white organic light-emitting device shown on the gig page of the 39th volume of the SID Journal of the 2008 International Information Display and Display Seminar. The figure shows that the first-stack layer contains a blue light-emitting layer and the second The stack includes examples of primary and green and orange dopants, wherein the curve indicated by · indicates an example of using a dark blue material in the first stacked layer, and the other indicated by ▲ indicates the first stacked layer. An example of using a light blue material. It can be seen that when a dark blue material is used, the wavelength of blue light is stronger than the wavelength of other colors. However, it is understood that regardless of whether or not a blue light-emitting material having a certain light-emitting level is used in the first stacked layer, a broad light emission occurs in each wavelength band, and the light-emitting efficiency is poor in a red light wavelength of 610 nm to 700 nm. That is to say, when the color filter is applied to the white organic light-emitting device, since the red, green, and blue wavelengths can be seen to exhibit significantly different peaks, the color reproduction ratio is rather poor in the red wavelength, and red and green are Poor sensitivity to blue. It can be understood that the problem of the structure shown in "Fig. 7" lies in the green light and the orange light dopant used in the second build-up layer. In the present invention, the orange light in the second stacked layer Replaced by red dopants. "Fig. 8" shows a pattern of brightness characteristics of the following example when the green or red dopant is added to the second light-emitting layer of the second stacked layer of the white organic light-emitting device. Examples of low energy levels, examples of providing exciton blocking layers, 17 201023677 and examples of the energy level of the energy transfer layer of the hole transport layer compared to the three states of the phosphorescent light emitting layer. Fig. 8 shows a test example in which the second light-emitting layer is formed of a host material and the host material is respectively increased by 0.2% of a red light dopant and 10% of a green light dopant. That is to say, 'continuously upward from the lowest side of the curve, the curve of "Fig. 8" represents three examples, respectively, the energy level of the second hole transport layer adjacent to the second light-emitting layer is set to be stimulated with the second light-emitting layer. An example of a similar level of energy level is the example in which the tri-state barrier layer is added to the interface between the second light-emitting layer and the second hole transport layer, and the material of the second hole transport layer is changed by β to cause the second hole to be transferred. An example in which the energy level of the layer is higher than the excited state energy of the second luminescent layer. Please refer to "Fig. 8" and Table 4 below. It can be noted that if a general hole transmission layer is provided, although the driving voltage is 3.4 volts, 'not very high, but the number of illuminations is 39.9 Cd/A, 36.8 ww, and willow. The crime is -2 and the luminous efficiency is ΐό 〇%, which is low. If the tri-state resistive layer is added to the interface between the general hole transport layer and the light-emitting layer, ❹ compared with the foregoing example, although the number of light-emitting is 45.5 Cd/A, 妁; 7 lm/W, 455 〇 Cd/m2 'and The luminous efficiency is 4% for the team, which shows an increase. As the driving voltage rises to 3.6 volts, the power consumption is expected to increase. In contrast, in the example of providing the second hole transport layer, the energy level of the second light-emitting layer of the white organic light-emitting device of the present invention is higher than the electron volts, and the driving cost is 3.2 volts. 3.3 volts and 3.0 volts, all 18 201023677 is lower than the above two examples' and the luminous efficiencies are 20.6%, 19.6%, 21.3%, both perform higher. In all instances, the CIE coordinate system exhibits coordinates that are similar to each other. Form 4
N«w hfT1^6(Kn^R(D^%) 蛐·- ^Τί3一 3·3 3j6N«w hfT1^6(Kn^R(D^%) 蛐·- ^Τί3一 3·3 3j6
Cci'A 61 i) 48£Cci'A 61 i) £48
4BSO4BSO
ClEx 19j0% 2iJ3%ClEx 19j0% 2iJ3%
ClEy 9A49 <01464 〇Am 0.4¾ClEy 9A49 <01464 〇Am 0.43⁄4
「第9圖」表示當第一與第二堆疊層被提供至白色有機發光 裝置時第二傳送層之電洞傳送層包含不同能階或者激子阻擋層被 提供於鱗光發光層之介面處之實例中亮度特徵對波長之圖形。 「第9圖」所示係為當第一與第二堆疊層被提供至白色有機 發光裝置時之波長強度,表示藍光發光層被增加至參考「第8圖」 所述之以上三個實例中第一堆疊層之狀態,三個實例即為鄰接第 二發光層之第二電洞傳送層之能階被設定為與第二發光層之受激 態能階相似之實例,三態阻擋層被增加至第二發光層與第二電洞 傳送層之介面之實例,以及第二電洞傳送層之材料被改變以使得 第一電洞傳送層之能階比第二發光層之受激態能階高之實例。 請參考「第9圖」,具有與本發明白色有機發光裝置相同之第 一與第二堆疊層且第二電洞傳送層之能階比第二發光層之受激態 能階高之實例中,可注意到藍、綠與紅光波長分別包含一致強度、 清晰表現色彩之峰值以及類似的峰值。 請參考下方之表格5,還可注_本發明之白色有機發光裝置 201023677 包含比其他結構低之驅動電壓(6.4伏特),相反發光效率提高至 29.3%。此實例中,可知發光強度為7ed/A、28 〇 、 w797Cd/m2。在 CIE 坐標系統中,CI£x 為 〇 366,CIEy 為 〇 4〇2。 表格5"Fig. 9" indicates that when the first and second stacked layers are supplied to the white organic light-emitting device, the hole transport layer of the second transfer layer contains different energy levels or an exciton blocking layer is provided at the interface of the scale light-emitting layer. A graph of luminance characteristics versus wavelength in an example. "Fig. 9" shows the wavelength intensity when the first and second stacked layers are supplied to the white organic light-emitting device, indicating that the blue light-emitting layer is added to the above three examples described in "Fig. 8". The state of the first stacked layer, three examples, that is, the energy level of the second hole transport layer adjacent to the second light-emitting layer is set to be similar to the excited energy level of the second light-emitting layer, and the three-state barrier layer is An example of increasing the interface to the second light-emitting layer and the second hole transport layer, and the material of the second hole transport layer is changed such that the energy level of the first hole transport layer is higher than the excited state of the second light-emitting layer An example of a step height. Please refer to FIG. 9 for an example in which the first and second stacked layers are the same as the white organic light-emitting device of the present invention, and the energy level of the second hole transport layer is higher than the excited state energy level of the second light-emitting layer. It can be noted that the blue, green, and red wavelengths respectively include consistent intensity, sharp peaks in color, and similar peaks. Please refer to Table 5 below. It can also be noted that the white organic light-emitting device 201023677 of the present invention contains a lower driving voltage (6.4 volts) than other structures, and the luminous efficiency is increased to 29.3%. In this example, the luminous intensity was 7 ed/A, 28 〇 , and w797 Cd/m 2 . In the CIE coordinate system, CI£x is 〇 366 and CIEy is 〇 4〇2. Form 5
Struc:ur«Struc:ur«
B06<1Q%}+R(〇.2%) EWT T§LB06<1Q%}+R(〇.2%) EWT T§L
It i;V| 7.2 6.4 47.8 52 67 BBSSHqi 214 24.S% 22.7 2^0 4779 2CLS% 22« 39.3% 2797 0.362 0^63 0^86 0J366 0ΛΌ2It i;V| 7.2 6.4 47.8 52 67 BBSSHqi 214 24.S% 22.7 2^0 4779 2CLS% 22« 39.3% 2797 0.362 0^63 0^86 0J366 0ΛΌ2
「第10圖」所不係為之本發明白色有機發絲置之亮度對波 長隨老化改變之圖形。 「第10圖」從白色有機發絲置之上侧始連續至底部表示 每一波長之初始態強度之實例、老化大約為30%之實例以及老化 大約為50%之實例。 請參考第10圖」與下方之表格6,初始狀態、3〇%老化與 50%老化表示在觀顏色強度未賴降低,但是每—顏色中強度 依照一致位準逐漸地降低。這意味著即使時間流逝,強度整體上The "Fig. 10" is not a graph in which the brightness of the white organic hairline of the present invention changes with respect to the wavelength as a function of aging. Fig. 10 shows an example of the initial state intensity of each wavelength from the upper side of the white organic hairline to the bottom, an example of aging of about 30%, and an example of aging of about 50%. Please refer to Figure 10 and Table 6 below. The initial state, 3〇% aging and 50% aging indicate that the intensity of the color does not decrease, but the intensity in each color gradually decreases according to the consistent level. This means that even though time passes, the intensity as a whole
降低。例如,如果僅僅紅色波長嚴重老化,如果試圖產生白光, 除紅光以外的光線即綠光與藍光之發光效率將明顯不同,則表現 色移。 表格6 ~~I 214 | 3〇JS 1 ηΐ\ __ Atiru. 一 ^t»rL- 75reduce. For example, if only the red wavelength is severely aged, if it is attempted to produce white light, the light emission efficiency will be significantly different for the light other than red light, that is, the luminous efficiency of green light and blue light. Table 6 ~~I 214 | 3〇JS 1 ηΐ\ __ Atiru. a ^t»rL- 75
7J BBS 47T5 24.6% 15.5% 氣3 1Z2% mo CiE < CIE < ormo ••338 -aM7 •33B -0UK7 ^i|!-l£y ί:|Ε u Ju‘ CiEv' 翳圜蹋费豳 gaBSHsa 随㈣ •αοοι 4J007 因此,g第一發光層之主體係選自至綠光推雜物具有高能量 轉移比之材料,紅光摻雜物係選自從綠光摻雜物具有高能量轉移 20 201023677 比並且具有與綠光摻雜物類似之壽命之材料,本發明之白色有機 發光裝置適產生白色,這樣即使時職逝,全部波長之亮度 減少相同位準’沒有色概化。就是說,分概_色光線= 雜物之壽命_,使料樣的摻雜物,從⑽使時間流逝,僅僅 光線的整體強度被降低,當每—波長降低至_辦時能夠感 測白光’從而避免習知技術之兩個堆叠層之白色有機發光裝置中 出現的色移。 如前所述,本發明之白色有機發光裝置及其製造方法具有以 下優點。 在具有兩個堆壘層之白色有機發光裝置中,各自包含藍色發 光層以及形成於陽極與陰極之間賊色與紅色齡發光層,鄰接 綠色與紅色混合發光層之電洞傳送層之能階被設定為比受激態能 階高0.01〜0.4電子伏特,用以避免受激態激子被引入電洞傳送 層。因此,電洞傳送層完成電洞傳送功能且作為激子(單態與多 態)阻擋層,則免除激子阻擋層,白色有機發光裝置不會增加製 程步驟,並且可降低功率消耗。除此之外,發光層中保留的單態 激子與三態激子部用於連續地發光,因此可提高發光效率。 除此以外,產生白光時,透過形成一個堆疊層作為包含藍光 摻雜物之發光層以及另一堆疊層以包含適量的綠光與紅光摻雜物 之主體材料,從而能夠在每一紅、綠與藍光波長區域表現一致峰 值與不同尖峰’當應用彩色濾光片時可提高彩色重現比。 21 201023677 使用不同彩色摻雜物時使用具有相似壽命之掺雜物允許避免 某個色彩的波長強度變差,從而避免色移。 雖然本發明以前述之實施例揭露如上,然其並非用以限定本 發明。在不脫離本發明之精神和範圍内,所為之更動與潤飾,均 屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考 所附之申請專利範圍。 【圖式簡單說明】 第1圖所示係為本發明較佳實施例之白色有機發光裝置之剖 ® 面示意圖; 第2A圖與第2B圖所示分別係為本發明白色有機發光裝置之 第二堆#層與比較結構之能量偏移之示意圖; 第3A圖至第3C圖所示分別係為本發明白色有機發光裝置之 第-堆#層之能量轉移機製與比較結構之能量轉移機製之示意 Τ3Ί · 圆, 第4圖所不係為當紅、綠、藍光換雜物被增加至主體材料㈤贫 ❿ material)時紅、綠、藍光波長特性之圖形; ,第圖所示係為綠光與紅光摻雜物被增加至本發明白色有機 發光裝置之第—堆|層之發光層之實例中當綠光摻雜物之含量被 改變時的波長特性之圖形; 第6圖所示係為在綠光與紅光換雜物被增加至本發明白色有 機發光裝置之第二堆疊層之發光層之實例中波長特性隨激子阻擔 22 201023677 層與紅光摻雜物含量之應用變化之圖形; 第7圖所示係為在具有兩個堆疊層之白色有機發光裝置中分 別被增加綠光與橘光摻雜物之磷光發光層之發光特性之圖形; 第8圖所示係為當綠光或紅光摻雜物被增加至白色有機發光 裝置之第二堆疊層之第二發光層時電洞傳送層具有低能階之實 例、提供激子阻擋層之實例以及電洞傳送層包含之能階比礎光發 光層之三態受激時之能階高之實例之亮度特性圖形; 第9圖所示係為當第一與第二堆疊層被提供至白色有機發光 裝置時第二傳送層之電洞傳送層包含不同能階或者激子阻擋層被 提供至磷光發光層之介面處之實例中亮度特性對波長之圖形;以 及 第10圖所示係為本發明之白色有機發光裝置之亮度對波長 隨老化而變化之圖形。 【主要元件符號說明】 100 ..........................基板 101 ..........................陽極 103 ..........................第一電洞轉移層 105 ..........................第一電洞傳送層 110 ..........................第一發光層 第一電子傳送層 第一電子注入層 23 113 201023677 120 ..........................電荷產生層 123 ..........................第二電洞轉移層 125 ..........................第二電洞傳送層 130 ..........................第二發光層 133 ..........................第二電子傳送層 135 ..........................第二電子注入層 140 ..........................陰極 210 ..........................第一堆疊層 © 220 ..........................第二堆疊層 201 ..........................陽極 225 ..........................電洞傳送層 230 ..........................發光層 233 ..........................電子傳送層 235 ..........................電子注入層 240 ..........................陰極 © 13〇a ..........................磷光主體材料 130b ..........................磷光綠光摻雜物 130c ..........................磷光紅光摻雜物 230a ..........................磷光主體材料 · 230b ..........................磷光綠光摻雜物 230c ..........................磷光紅光摻雜物 24 201023677 325 ..........................電洞注入層 227 ..........................三態阻擋層 ❹ 257J BBS 47T5 24.6% 15.5% Gas 3 1Z2% mo CiE < CIE < ormo ••338 -aM7 •33B -0UK7 ^i|!-l£y ί:|Ε u Ju' CiEv' 翳圜蹋费豳gaBSHsa with (4) • αοοι 4J007 Therefore, the main system of the first light-emitting layer is selected from a material having a high energy transfer ratio to the green light dopant, and the red light dopant is selected from the green light dopant having a high energy transfer 20 201023677 The white organic light-emitting device of the present invention is suitable for producing white materials such that the brightness of all wavelengths is reduced by the same level 'no color generalization' even if the time lapses. That is to say, the distribution _ color ray = the life of the debris _, so that the dopant of the sample, from (10) time lapse, only the overall intensity of the light is reduced, when the wavelength is reduced to _ can detect white light 'Thus avoiding the color shift that occurs in the white organic light-emitting devices of the two stacked layers of the prior art. As described above, the white organic light-emitting device of the present invention and the method of manufacturing the same have the following advantages. In a white organic light-emitting device having two stacking layers, each comprises a blue light-emitting layer and a thief-colored and red-aged light-emitting layer formed between the anode and the cathode, and the energy of the hole transport layer adjacent to the green and red mixed light-emitting layer The order is set to be 0.01 to 0.4 eV higher than the excited state energy level to prevent the excited excitons from being introduced into the hole transport layer. Therefore, the hole transport layer completes the hole transfer function and acts as an exciton (single state and polymorphic) barrier layer, eliminating the exciton blocking layer, and the white organic light-emitting device does not increase the number of processing steps and can reduce power consumption. In addition to this, the singlet excitons and the tri-state exciton portions remaining in the light-emitting layer are used for continuous light emission, so that luminous efficiency can be improved. In addition, when white light is generated, a stacked layer is formed as a light-emitting layer containing a blue light dopant and another stacked layer is included to contain an appropriate amount of a green light and a red light dopant host material, thereby being capable of being red, The green and blue wavelength regions exhibit consistent peaks and different peaks'. When color filters are applied, the color reproduction ratio can be improved. 21 201023677 The use of dopants with similar lifetimes when using different color dopants allows to avoid the wavelength intensities of a certain color, thus avoiding color shift. Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application scope for the scope of protection defined by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a white organic light-emitting device according to a preferred embodiment of the present invention; FIGS. 2A and 2B are respectively a view of the white organic light-emitting device of the present invention. Schematic diagram of the energy offset of the two stacks and the comparative structure; Figures 3A to 3C show the energy transfer mechanism of the first-stack layer of the white organic light-emitting device of the present invention and the energy transfer mechanism of the comparative structure, respectively. Τ3Ί · circle, Figure 4 is not a pattern of red, green, and blue wavelength characteristics when the red, green, and blue light-changing materials are added to the host material (5) barren material; the figure is green light A graph showing the wavelength characteristics when the content of the green light dopant is changed in the example in which the red light dopant is added to the light-emitting layer of the first stack layer of the white organic light-emitting device of the present invention; In order to change the green light and red light inclusions to the light-emitting layer of the second stacked layer of the white organic light-emitting device of the present invention, the wavelength characteristics vary with the application of the exciton resistance 22 201023677 layer and the red light dopant content. Figure; Figure 7 The figure is a graph of the luminescent properties of the phosphorescent luminescent layer which is respectively added to the green light and the orange light dopant in the white organic light-emitting device having two stacked layers; FIG. 8 is a view when the green light or the red light is mixed When the foreign matter is added to the second light emitting layer of the second stacked layer of the white organic light emitting device, the hole transport layer has an example of a low energy level, an example of providing an exciton blocking layer, and the hole transport layer includes an energy level light emitting light The luminance characteristic pattern of the example of the energy level when the three-state of the layer is excited; FIG. 9 is the hole transport layer of the second transport layer when the first and second stacked layers are provided to the white organic light-emitting device a pattern of luminance characteristics versus wavelength in an example where an interface of different energy levels or exciton blocking layers is provided to the phosphorescent emissive layer; and FIG. 10 is a graph showing the brightness versus wavelength of the white organic light-emitting device of the present invention as a function of aging The graphic of change. [Main component symbol description] 100 ..........................substrate 101 ............... ........... anode 103 ..........................first hole transfer layer 105 .... ......................The first hole transport layer 110 ..................... ..... first light-emitting layer first electron transport layer first electron injection layer 23 113 201023677 120 ..........................charge Generate layer 123 ..........................Second hole transfer layer 125 .............. ............second hole transport layer 130.........................second light-emitting layer 133 ..........................Second electron transport layer 135.................. ........Second Electron Injection Layer 140 ..........................Cathode 210 ........ ..................The first stacking layer © 220 ......................... Second stacked layer 201 .................... anode 225 ................. ......... hole transport layer 230 .......................... luminescent layer 233 ....... ...................Electronic Transport Layer 235 ..........................Electronics Injection layer 240 .......................... cathode © 13〇a .......................... Phosphorescent host material 130b ................ ..........phosphorescent green dopant 130c.........................phosphorescent red dopant 230a ..........................phosphorescent host material · 230b ................... .......phosphorescent green dopant 230c ....................phosphorescent red dopant 24 201023677 325 . ......................... Hole injection layer 227 .................... ...three-state barrier ❹ 25
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080120626A KR101584990B1 (en) | 2008-12-01 | 2008-12-01 | White organic light-emitting device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201023677A true TW201023677A (en) | 2010-06-16 |
TWI408993B TWI408993B (en) | 2013-09-11 |
Family
ID=42221941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098131261A TWI408993B (en) | 2008-12-01 | 2009-09-16 | White organic light emitting device and method for manufacturing the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US7994498B2 (en) |
KR (1) | KR101584990B1 (en) |
CN (1) | CN101752509B (en) |
TW (1) | TWI408993B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI505524B (en) * | 2011-05-20 | 2015-10-21 | Au Optronics Corp | Organic electroluminescent light source |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG175565A1 (en) | 2006-09-29 | 2011-11-28 | Univ Florida | Method and apparatus for infrared detection and display |
KR101351410B1 (en) * | 2009-09-29 | 2014-01-14 | 엘지디스플레이 주식회사 | White Organic Light Emitting Device |
RU2012126145A (en) * | 2009-11-24 | 2013-12-27 | Юниверсити Оф Флорида Рисерч Фаундейшн, Инк. | METHOD AND DEVICE FOR PERCEPTION OF INFRARED RADIATION |
KR101135536B1 (en) * | 2010-02-05 | 2012-04-17 | 삼성모바일디스플레이주식회사 | Organic light emitting diode device |
KR101135541B1 (en) * | 2010-04-01 | 2012-04-13 | 삼성모바일디스플레이주식회사 | Organic light emitting diode device |
RU2012155849A (en) | 2010-05-24 | 2014-06-27 | Юниверсити Оф Флорида Рисерч Фаундейшн, Инк. | METHOD AND DEVICE FOR PROVIDING A LAYER LOCKING CHARGE CARRIERS IN A CONVERSION DEVICE WITH AN INCREASED INFRARED FREQUENCY |
WO2011153262A2 (en) * | 2010-06-01 | 2011-12-08 | Regents Of The University Of Minnesota | Organic light emitting devices having graded emission regions |
JP5783780B2 (en) * | 2010-06-03 | 2015-09-24 | キヤノン株式会社 | Display device |
KR20120041460A (en) | 2010-10-21 | 2012-05-02 | 엘지디스플레이 주식회사 | Organic light emitting diode device |
KR101351417B1 (en) * | 2010-10-26 | 2014-01-14 | 엘지디스플레이 주식회사 | White organic light emitting device |
KR101715857B1 (en) * | 2010-12-24 | 2017-03-13 | 엘지디스플레이 주식회사 | White Organic Emitting Device |
KR101419247B1 (en) * | 2010-12-28 | 2014-07-16 | 엘지디스플레이 주식회사 | White Organic Emitting Device and Display Device Using the Same |
JP6062636B2 (en) * | 2011-03-10 | 2017-01-18 | ローム株式会社 | Organic EL device |
CN103477714A (en) * | 2011-03-24 | 2013-12-25 | 松下电器产业株式会社 | Organic electroluminescent element |
JP6108664B2 (en) * | 2011-04-04 | 2017-04-05 | ローム株式会社 | Organic EL device |
JP6502093B2 (en) | 2011-06-30 | 2019-04-17 | ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド | Method and apparatus for detecting infrared radiation with gain |
CN103022370B (en) * | 2011-09-20 | 2016-02-03 | 乐金显示有限公司 | White organic light emitting device |
KR101451586B1 (en) * | 2011-09-20 | 2014-10-16 | 엘지디스플레이 주식회사 | White Organic Light Emitting Device |
KR101419249B1 (en) * | 2011-10-12 | 2014-07-17 | 엘지디스플레이 주식회사 | White Organic Light Emitting Device |
KR101511552B1 (en) * | 2011-11-10 | 2015-04-13 | 엘지디스플레이 주식회사 | White Organic Emitting Device and Display Device Using the Same |
CN103107288B (en) * | 2011-11-10 | 2016-02-03 | 乐金显示有限公司 | The display unit of white organic light emitting device and use white organic light emitting device |
CN102856350B (en) * | 2012-08-28 | 2016-01-06 | 江苏三月光电科技有限公司 | Full color OLED display |
CN103681760B (en) * | 2012-09-12 | 2016-08-17 | 乐金显示有限公司 | Organic light-emitting display device |
KR101941453B1 (en) * | 2012-09-28 | 2019-01-23 | 엘지디스플레이 주식회사 | Organic light emitting display device |
CN102931213A (en) * | 2012-11-26 | 2013-02-13 | 李崇 | Top-light-emission full-color organic light emitting diode (OLED) display |
CN103022365B (en) * | 2012-12-18 | 2015-08-05 | 中国科学院长春应用化学研究所 | White color organic electroluminescence device and preparation method thereof |
KR102023943B1 (en) * | 2012-12-28 | 2019-09-23 | 엘지디스플레이 주식회사 | Organic light emitting display and method of fabricating the same |
CN103915470B (en) * | 2012-12-31 | 2016-12-07 | 乐金显示有限公司 | Organic light-emitting display device |
KR102047279B1 (en) * | 2013-01-24 | 2019-11-22 | 삼성디스플레이 주식회사 | Organic light emitting display device and method of manufacturing the same |
CN104037346A (en) * | 2013-03-06 | 2014-09-10 | 海洋王照明科技股份有限公司 | Organic light emitting diode and preparation method thereof |
KR102198634B1 (en) * | 2013-05-16 | 2021-01-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting element, light-emitting device, electronic device, and lighting device |
KR102071630B1 (en) * | 2013-06-10 | 2020-01-31 | 삼성디스플레이 주식회사 | Organic light emitting diode device |
KR102098738B1 (en) * | 2013-07-09 | 2020-06-01 | 삼성디스플레이 주식회사 | Organic light emitting diode |
DE102013111552A1 (en) * | 2013-10-21 | 2015-04-23 | Osram Oled Gmbh | Organic light emitting device |
KR102060018B1 (en) * | 2013-11-26 | 2019-12-30 | 엘지디스플레이 주식회사 | Organic Light Emitting Device |
KR102101202B1 (en) * | 2013-12-30 | 2020-04-17 | 엘지디스플레이 주식회사 | Organic Light Emitting Diode And Organic Light Emitting Diode Display Device Including The Same |
JP2015231018A (en) * | 2014-06-06 | 2015-12-21 | 株式会社ジャパンディスプレイ | Organic EL display device |
CN104270847B (en) | 2014-10-30 | 2016-09-28 | 中国科学院长春应用化学研究所 | A kind of white color organic electroluminescence device and preparation method thereof |
EP3214667B1 (en) | 2014-10-30 | 2020-04-15 | Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences | Blue organic electroluminescent device and preparation method thereof |
KR20180018660A (en) | 2015-06-11 | 2018-02-21 | 유니버시티 오브 플로리다 리서치 파운데이션, 인코포레이티드 | Monodisperse, IR-absorbing nanoparticles, and related methods and apparatus |
JP2018156721A (en) * | 2015-07-14 | 2018-10-04 | 出光興産株式会社 | Organic electroluminescent element and electronic apparatus |
KR102331042B1 (en) * | 2015-08-31 | 2021-11-24 | 엘지디스플레이 주식회사 | Organic light emitting device |
KR102362839B1 (en) | 2015-10-28 | 2022-02-15 | 삼성디스플레이 주식회사 | Organic light emitting device, fabrication method of the same and organic light emitting display device including the same |
CN105576146B (en) * | 2016-03-23 | 2017-09-26 | 京东方科技集团股份有限公司 | Luminescent device and its manufacture method and display device |
CN105679956A (en) * | 2016-04-05 | 2016-06-15 | 深圳市华星光电技术有限公司 | Organic electroluminescent device and display device |
CN107204399A (en) * | 2017-04-17 | 2017-09-26 | 广东工业大学 | A kind of organic electroluminescence device of simulated solar irradiation |
CN107302058A (en) * | 2017-05-23 | 2017-10-27 | 广东工业大学 | A kind of undoped white-light emitting layer series connection organic electroluminescence device |
CN109285953B (en) * | 2017-07-21 | 2020-10-30 | 上海和辉光电股份有限公司 | Organic light-emitting display panel and electronic equipment |
CN107403872A (en) * | 2017-07-24 | 2017-11-28 | 广东工业大学 | A kind of tandem OLED |
US11056540B2 (en) * | 2019-03-12 | 2021-07-06 | Universal Display Corporation | Plasmonic PHOLED arrangement for displays |
CN113805379A (en) * | 2020-06-17 | 2021-12-17 | 北京小米移动软件有限公司 | Display screen, manufacturing method and device thereof, display method and device and medium |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100483986B1 (en) * | 2002-06-20 | 2005-04-15 | 삼성에스디아이 주식회사 | Organic polymer electroluminescent display device using phosphresecnce mixture as emiting material |
US6967062B2 (en) * | 2003-03-19 | 2005-11-22 | Eastman Kodak Company | White light-emitting OLED device having a blue light-emitting layer doped with an electron-transporting or a hole-transporting material or both |
TWI228325B (en) * | 2004-06-01 | 2005-02-21 | Lightronik Technology Inc | White organic electroluminescent instrument |
US7768194B2 (en) * | 2005-06-01 | 2010-08-03 | The Trustees Of Princeton University | Fluorescent filtered electrophosphorescence |
US20070252516A1 (en) * | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent devices including organic EIL layer |
JP2008098582A (en) * | 2006-10-16 | 2008-04-24 | Rohm Co Ltd | Organic el device |
KR101316752B1 (en) | 2007-05-31 | 2013-10-08 | 삼성디스플레이 주식회사 | White organic light emitting display |
-
2008
- 2008-12-01 KR KR1020080120626A patent/KR101584990B1/en active Active
-
2009
- 2009-09-16 TW TW098131261A patent/TWI408993B/en active
- 2009-10-21 CN CN2009102052442A patent/CN101752509B/en active Active
- 2009-11-10 US US12/615,577 patent/US7994498B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI505524B (en) * | 2011-05-20 | 2015-10-21 | Au Optronics Corp | Organic electroluminescent light source |
Also Published As
Publication number | Publication date |
---|---|
CN101752509B (en) | 2012-07-04 |
US20100133522A1 (en) | 2010-06-03 |
KR20100062169A (en) | 2010-06-10 |
US7994498B2 (en) | 2011-08-09 |
TWI408993B (en) | 2013-09-11 |
CN101752509A (en) | 2010-06-23 |
KR101584990B1 (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201023677A (en) | White organic light emitting device and method for manufacturing the same | |
KR101963089B1 (en) | Power-efficient rgbw oled display | |
KR101352116B1 (en) | White Organic Light Emitting Device | |
CN103022370B (en) | White organic light emitting device | |
CN102034934B (en) | White organic light emitting device | |
CN103915569B (en) | Organic light emitting display device and manufacturing method thereof | |
KR101786881B1 (en) | White organic light emitting device | |
KR101469484B1 (en) | White Organic Light Emitting Device | |
TWI333392B (en) | Emission layer and organic light emitting diode using thereof | |
KR101894332B1 (en) | Organic light emitting display device | |
CN104103765B (en) | Oled device | |
CN102456847A (en) | White organic light emitting device | |
CN102113146A (en) | Organic electroluminescence element and display device | |
TWI407613B (en) | Organic electroluminescent device and display element | |
TWI307250B (en) | Organic electroluminescent device | |
WO2022156313A1 (en) | Material for forming blue light-emitting layer, light-emitting device, light-emitting substrate, and light-emitting apparatus | |
TWI391467B (en) | Organic electroluminescent device and display apparatus | |
KR20140067833A (en) | Organic light emitting display | |
TWI296901B (en) | Organic electro-luminescence device | |
CN106654033A (en) | Organic light emitting display panel and electronic equipment | |
KR101777124B1 (en) | White organic light emitting device | |
CN105622618B (en) | Organic light-emitting display device | |
JP2004281087A (en) | Organic EL device and organic EL display | |
TWI293011B (en) | ||
KR20230048316A (en) | Improved light emitting device |