201020586 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光學元件,且特別是有關於一種 光束整形器(beam shaper)。 【先前技術】 一般光束的(例如雷射光束)強度(intensity )在空間 響分布上大多呈高斯分佈,即一般光束的強度都是從光軸 (optical axis)向外遞減,所以在空間分布上,光束的強 度通常不是均勻分布。 為了使光束的強度可以均勻分布,目前光學技術已發 展出一種能改變光束強度分布的光學元件.,也就是光束整 形器。光束整形器能整形光束’以使光束的強度在空間分 布上得以均勻分布,而目前的光束整形器主要都是利用折 射或繞射的方式來整形光束。 ❹ 【發明内容】 本發明提供一種光束整形器,其能整形光束。 本發明提供一種光束整形器,包括一反射元件以及多 個反射鏡。反射元件配置於入射光束的傳遞路徑上,並具 有多面反射入射光束的反射面。這些反射面能將入射先束 刀割成多條反射光束。這些反射鏡分別配置於這些反射光 束的傳遞路控上。這些反射鏡能反射這些反射光束,以使 這些反射光束的光斑重疊而形成一整形光斑。反射元件位 201020586 ,於整形光班與這些反射鏡之間。 綜上所述’本發明是利用反射元件與多個反射鏡來反 射入射光束與反射光束,以形成的整形光斑,進而整形入 射光束。 為讓本發明之上述特徵能更明顯易懂,下文特舉實施 例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖1是本發明一實施例之光束整形器的立體示意圖。 請參閱圖1’本實施例的光束整形器1〇〇可以整形強度在 空間分布上呈高斯分佈的光束,以產生在空間分布上強度 為均勻分布的光束。 具體而言,光束整形器100能整形一入射光束L1,其 中入射光束L1的強度在空間分布上是呈現高斯分佈,而入 射光束L1例如是雷射光束(laser beam )。此外,入射光束 ❾L1可具有圓形光斑(circuiar Hght Sp〇t )si (如圖1所示) 或橢圓形光斑。 光束整形器100包括一反射元件110以及多個反射鏡 12〇。反射元件110配置於入射光束L1的傳遞路徑上,並 且具有多面反射面112。這些反射面112能.反射入射光束 L1 ’並可將入射光束L1分割成多條反射光束L2。 詳細而言,入射光東L1皆會照射到每面反射面il2, 而每面反射面112被入射光束L1所照射到的部分會反射部 分入射光束L1。如此,入射光束L1得以被這些反射面112 201020586 分割成這些反射光束L2。 這些反射鏡120分別配置於這些反射光束乙2的傳遞路 徑上,並且能反射這些反射光東L2,以使這些反射光束 L2的光斑(light spot)可以重疊而形成一整形光斑S2。此 外,反射元件110位於整形光斑S2與這些反射鏡12〇之 間,如圖1所不。 詳細而言’這些反射鏡120分別對應這些反射面丨〗2, 以接收從反射元件110而來的反射光束L2,進而反射這此 ❿反射光束L2。這些反射鏡120不僅可以反射這些反射光束 L2,同時還可以集中這些反射光束L2 ’讓這些反射光束 L2可以匯聚在一起。如此,這些反射光束L2的光斑可以 重疊,進而形成整形光斑S2。 更詳細地說,這些反射光束L2在一聚焦點113聚焦後 再發散,而整形光斑S2為在聚焦點113聚焦之後成型,整 形光斑S2可為加工件之表面位置,例如一加工件須鑽孔, 在本實施例即可鑽成為四方形孔’如用高斯即無法成四方 ❷形孔。在本實施例中,反射元件11〇的形狀實質上可以是 金字塔形,而這些反射面112的形狀為三角形。也就是說, 反射面112的數量為四個,且這些反射面112可以構成金 字塔的頂端。因此,反射元件可以將入射光束L1分割 成四條反射光束L2。 承上述,為了讓這些反射鏡120能個別反射這些反射 光束L2,反射鏡120的數量可以等於反射面112的數量, 例如反射鏡120的數量可以是四個。這樣每一條反射光束 L2皆能被其中一個反射鏡120反射。 201020586 其次,當反射元件110的形狀實質上為金字塔形時’ 這些反射鏡120可以呈環狀分布排列,並且分布於反射元 件110的周圍。如此,這些反射鏡120得以分別對應這些 反射面112,以反射這些反射光束L2。 另外,光束整形器100可以更包括一基座130,而反 射元件110固設於基座130上,其中基座130的形狀可以 是板狀體(如圖1所示)或柱狀體,且基座130與反射元 件110可以是一體成型。 ❹ 圖2是圖1中反射光束的光斑示意圖,其中圖2所示 的這些扇形光斑S3是這些反射光束L2投射至圖1所示的 參考平面P1而形成。請參閱圖1與圖2,由於入射光束L1 可以被分割成四條反射光束L2,因此入射光束L1所具有 的圓形光斑S1亦會被分割成四個扇形光斑S3。也就是說, 每條反射光束L2的光斑為扇形光斑S3。 •此外,在本實施例中,圓形光斑S1更可以被等角度地 分割成四個扇形光斑S3。也就是說,這些扇形光斑S3的 參弧度實質上皆為90度,即這些扇形光斑S3的弧線A所對 應的角度皆為90度。 圖3是圖1中整形光斑的示意圖。請參閱圖2_與圖3, 透過這些反射鏡120’這些扇形光斑S3可以重疊而形成整 形光斑S2 ’其中整形光斑δ2的形狀實質上可以是矩形。 詳細而言,每個扇形光斑S3具有一對直線邊緣Ei以及一 連接於這些直線邊緣E1的交角(corner) C。在同一個扇 形光斑S3中’這些直線邊緣E1實質上彼此垂直。 由於入射光束L1的強度在空間分布上是呈現高斯分 201020586 佈,因此在同一個扇形光斑S3中,強度是從交角c朝向 弧線A遞減,所以扇形光斑S3的強度在交角c最大,在 旅線A最小。 當這些扇形光斑S3重疊時,這些直線邊緣£1會成為 整形光斑S2的邊緣,這些狐線A會位在整形光斑S2内並 且彼此重疊,而這些交角c則會位在整形光斑S2的角落。 其次’在圖1可知,在聚焦點113再發散,故交角c會成 形在四個角落上,能均勻分布能量。如此,整形光斑S2在 ❿其邊緣處、中央位置或角落處等任意位置的強度大致上相 近,即整形光斑S2在空間分布上的強度為均勻分布。 圖4是圖1中線的剖面示意圖。在本實施例中,這 些反射鏡120與反射元件110之間的距離實質上皆可以彼 此相等,而這些反射鏡丨20可以是啁啾反射鏡(chirp mirror ),其中啁啾反射鏡可以縮短雷射光束的脈衝寬度 (pulse width)。舉例而言,當入射光束L1為雷射光束時, 啁嗽反射鏡每反射一次反射光束L2’即可縮短一次反射光 ❹束L2的脈衝寬度。 在本實施例中,這些反射光束L2更可以在這些反射鏡 120與這些反射面112之間來回傳遞。也就是說,這些反 射光束L2可以來回反射於這些反射鏡120與這些反射面 112之間,直到整形光斑S2形成。因此,當這些反射鏡120 為喝啾反射鏡時,這些啁啾反射鏡可以多次反射這些反射 光束L2,進而大幅縮短這些反射光束L2的脈衝寬度。 此外,這些反射鏡120的角度可以被調整,以改變光 束整形器100的工作距離,也就是改變整形光斑S2與反射 201020586 元件110之間的距離。詳細而言’各個反射鏡120具有一 反射鏡面122,而當這些反射鏡120的角度被調整時,反 射鏡面122的法線N1與反射面112的法線N2之間的夾角 B可以被改變,以至於這些反射光束L2的傳遞路徑亦會改 變。如此’整形光斑S2與反射元件110之間的距離亦可以 被改變,即光束整形器100的工作距離可以被改變。 綜上所述,本發明是利用反射元件所具有的多面反射 面來將入射光束分割成多條反射光束,並利用多個反射鏡 ❹來集中這些反射光束,進而讓這些反射光束的光斑重疊。 由此可知’本發明是利用反射的方式來形成強度均勾分布 的整形光斑。 其次’本發明的光束整形器可以整形具有圓形光斑或 橢圓形光斑的入射光束’以形成矩形形狀的整形光束。因 此’本發明的光束整㈣具有可魏變人^束的光斑之 _本發明以前述實施例揭露如上,然其並非用以限 醫定本發明,任何熟習相像技藝者,在不脫離本發明 和範圍内,所作更動與潤飾之等效替換,仍 利保護範圍内。 辱 201020586 【圖式簡單說明】 圖1是本發明一實施例之光束整形器的立體示意圖。 圖2是圖1中反射光束的光斑示意圖。 圖3是圖1中整形光斑的示意圖。 圖4是圖1中線I-Ι的剖面示意圖。 【主要元件符號說明】201020586 VI. Description of the Invention: [Technical Field] The present invention relates to an optical element, and more particularly to a beam shaper. [Prior Art] Generally, the intensity of the beam (for example, a laser beam) is Gaussian in the spatial distribution, that is, the intensity of the general beam is decreasing outward from the optical axis, so the spatial distribution is The intensity of the beam is usually not evenly distributed. In order to make the intensity of the beam evenly distributed, optical technology has now developed an optical component that can change the intensity distribution of the beam, that is, the beam shaper. The beam shaper can shape the beam 'to make the intensity of the beam evenly distributed over the spatial distribution. The current beam shaper mainly uses a method of refracting or diffracting to shape the beam. SUMMARY OF THE INVENTION The present invention provides a beam shaper that is capable of shaping a light beam. The present invention provides a beam shaper comprising a reflective element and a plurality of mirrors. The reflective element is disposed on the transmission path of the incident beam and has a reflective surface that reflects the incident beam in multiple directions. These reflective surfaces cut the incident beam to a plurality of reflected beams. These mirrors are respectively disposed on the transmission path of these reflected beams. These mirrors reflect these reflected beams such that the spots of the reflected beams overlap to form a shaped spot. Reflective component bit 201020586, between the shaping light class and these mirrors. In summary, the present invention utilizes a reflective element and a plurality of mirrors to reflect an incident beam and a reflected beam to form a shaped spot, thereby shaping the incident beam. In order to make the above-described features of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings are set forth below. Embodiments Fig. 1 is a perspective view of a beam shaper according to an embodiment of the present invention. Referring to Fig. 1', the beam shaper 1 of the present embodiment can shape a beam having a Gaussian distribution of intensity in a spatial distribution to produce a beam having a uniform intensity distribution in spatial distribution. Specifically, the beam shaper 100 can shape an incident beam L1 in which the intensity of the incident beam L1 exhibits a Gaussian distribution in spatial distribution, and the incident beam L1 is, for example, a laser beam. Further, the incident beam ❾L1 may have a circular spot (circuiar Hght Sp〇t) si (as shown in Fig. 1) or an elliptical spot. The beam shaper 100 includes a reflective element 110 and a plurality of mirrors 12A. The reflective element 110 is disposed on the transmission path of the incident light beam L1 and has a multi-faceted reflecting surface 112. These reflecting surfaces 112 can reflect the incident light beam L1' and can divide the incident light beam L1 into a plurality of reflected light beams L2. In detail, the incident light east L1 is irradiated to each of the reflecting surfaces il2, and the portion of the reflecting surface 112 that is irradiated by the incident light beam L1 reflects the incident light beam L1. Thus, the incident light beam L1 is divided into these reflected light beams L2 by these reflecting surfaces 112 201020586. The mirrors 120 are respectively disposed on the transmission paths of the reflected beams B2, and can reflect the reflected lights L2 so that the light spots of the reflected beams L2 can overlap to form a shaped spot S2. In addition, reflective element 110 is located between shaping spot S2 and these mirrors 12'', as shown in Figure 1. In detail, these mirrors 120 respectively correspond to the reflecting surfaces 2 to receive the reflected light beam L2 from the reflecting element 110, and further reflect the reflected light beam L2. These mirrors 120 can not only reflect these reflected light beams L2, but also concentrate these reflected light beams L2' so that the reflected light beams L2 can be brought together. Thus, the spots of the reflected light beams L2 can overlap, thereby forming the shaped spot S2. In more detail, the reflected light beams L2 are diverged after being focused at a focus point 113, and the shaped spot S2 is formed after focusing at the focus point 113. The shaped spot S2 can be the surface position of the workpiece, for example, a workpiece must be drilled. In this embodiment, it can be drilled into a square hole. If the Gauss is used, it cannot be a square hole. In the present embodiment, the shape of the reflective member 11A may be substantially pyramidal, and the shape of the reflective surface 112 is triangular. That is, the number of reflecting faces 112 is four, and these reflecting faces 112 may constitute the top end of the pyramid. Therefore, the reflecting element can divide the incident light beam L1 into four reflected light beams L2. In view of the above, in order for the mirrors 120 to individually reflect the reflected light beams L2, the number of the mirrors 120 may be equal to the number of the reflecting surfaces 112, for example, the number of the mirrors 120 may be four. Thus each of the reflected beams L2 can be reflected by one of the mirrors 120. 201020586 Secondly, when the shape of the reflective element 110 is substantially pyramidal, these mirrors 120 may be arranged in an annular distribution and distributed around the reflective element 110. Thus, the mirrors 120 are respectively adapted to the reflecting surfaces 112 to reflect the reflected beams L2. In addition, the beam shaper 100 may further include a base 130, and the reflective element 110 is fixed on the base 130, wherein the shape of the base 130 may be a plate body (as shown in FIG. 1) or a columnar body, and The base 130 and the reflective element 110 may be integrally formed. Figure 2 is a schematic view of the spot of the reflected beam of Figure 1, wherein the fan-shaped spot S3 shown in Figure 2 is formed by projecting the reflected beam L2 onto the reference plane P1 shown in Figure 1. Referring to Figures 1 and 2, since the incident beam L1 can be divided into four reflected beams L2, the circular spot S1 of the incident beam L1 is also divided into four fan-shaped spots S3. That is, the spot of each of the reflected light beams L2 is a fan spot S3. • Further, in the present embodiment, the circular spot S1 can be more equally divided into four fan-shaped spots S3. That is to say, the arcing angles of these fan-shaped spots S3 are substantially 90 degrees, that is, the angles corresponding to the arcs A of the fan-shaped spots S3 are all 90 degrees. Figure 3 is a schematic illustration of the shaped spot in Figure 1. Referring to Figures 2 and 3, the fan-shaped spots S3 may be superimposed through the mirrors 120' to form a shaped spot S2' wherein the shape of the shaped spot δ2 may be substantially rectangular. In detail, each of the sector spots S3 has a pair of straight edges Ei and a corner C connected to the straight edges E1. These straight line edges E1 are substantially perpendicular to each other in the same fan spot S3. Since the intensity of the incident beam L1 is Gaussian 201020586 in spatial distribution, in the same fan spot S3, the intensity is decreasing from the intersection angle c toward the arc A, so the intensity of the fan spot S3 is the largest at the intersection angle c, in the travel line A is the smallest. When these fan-shaped spots S3 overlap, these straight-line edges £1 become the edges of the shaped spot S2, which are positioned in the shaped spot S2 and overlap each other, and these intersection angles c are located at the corners of the shaped spot S2. Secondly, it can be seen from Fig. 1 that the focus point 113 is diverged again, so that the intersection angle c is formed on the four corners to uniformly distribute the energy. Thus, the intensity of the shaped spot S2 at any position such as the edge, the central position or the corner of the ridge is substantially similar, that is, the intensity of the shaped spot S2 in the spatial distribution is uniformly distributed. Figure 4 is a cross-sectional view of the line of Figure 1. In this embodiment, the distance between the mirrors 120 and the reflective elements 110 can be substantially equal to each other, and the mirrors 20 can be chirp mirrors, wherein the mirrors can shorten the lightning The pulse width of the beam. For example, when the incident light beam L1 is a laser beam, the pulse width of the reflected light beam L2 can be shortened each time the mirror reflects the reflected light beam L2'. In the present embodiment, these reflected light beams L2 are more likely to pass back and forth between these mirrors 120 and the reflecting surfaces 112. That is, these reflected light beams L2 can be reflected back and forth between these mirrors 120 and these reflecting surfaces 112 until the shaping spot S2 is formed. Therefore, when the mirrors 120 are drinking mirrors, the pupil mirrors can reflect the reflected light beams L2 a plurality of times, thereby greatly shortening the pulse width of the reflected light beams L2. Moreover, the angle of these mirrors 120 can be adjusted to vary the working distance of the beam shaper 100, i.e., to change the distance between the shaped spot S2 and the reflected 201020586 element 110. In detail, each of the mirrors 120 has a mirror surface 122, and when the angles of the mirrors 120 are adjusted, the angle B between the normal N1 of the mirror surface 122 and the normal line N2 of the reflecting surface 112 can be changed. Therefore, the transmission path of these reflected light beams L2 also changes. Thus, the distance between the shaped spot S2 and the reflective element 110 can also be changed, i.e., the working distance of the beam shaper 100 can be changed. In summary, the present invention utilizes a multi-faceted reflecting surface of a reflecting element to divide an incident beam into a plurality of reflected beams, and uses a plurality of mirrors to concentrate the reflected beams, thereby allowing the spots of the reflected beams to overlap. From this, it can be seen that the present invention uses a reflection method to form a shaped spot of intensity-hook distribution. Next, the beam shaper of the present invention can shape an incident beam having a circular spot or an elliptical spot to form a rectangular shaped shaped beam. Therefore, the beam of the present invention has a spot that can be changed. The present invention has been disclosed above in the foregoing embodiments, but it is not intended to limit the invention, and any skilled artisan will not depart from the invention. Within the scope, the equivalent replacement of the modifiers and retouchings is still within the scope of protection. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a beam shaper according to an embodiment of the present invention. 2 is a schematic view of a spot of the reflected beam of FIG. 1. Figure 3 is a schematic illustration of the shaped spot in Figure 1. Figure 4 is a cross-sectional view of the line I-Ι of Figure 1. [Main component symbol description]
100 光束整形器 110 反射元件 112 反射面 113 聚焦點 120 反射鏡 122 反射鏡面 130 基座 A 弧線 B 夾角 C 交角 El 直線邊緣 LI 入射光束 L2 反射光束 m、N2 法線 PI 參考平面 SI 圓形光斑 201020586 52 53 整形光斑 扇形光斑100 Beam shaper 110 Reflective element 112 Reflecting surface 113 Focus point 120 Mirror 122 Mirror surface 130 Base A Arc B Angle C Angle of intersection El Line edge LI Incident beam L2 Reflected beam m, N2 Normal line PI Reference plane SI Spot spot 201020586 52 53 Plastic spotted fan spot