[go: up one dir, main page]

TW201018925A - Frequency spectrum analysis system and method - Google Patents

Frequency spectrum analysis system and method Download PDF

Info

Publication number
TW201018925A
TW201018925A TW97143101A TW97143101A TW201018925A TW 201018925 A TW201018925 A TW 201018925A TW 97143101 A TW97143101 A TW 97143101A TW 97143101 A TW97143101 A TW 97143101A TW 201018925 A TW201018925 A TW 201018925A
Authority
TW
Taiwan
Prior art keywords
signal
output signal
control
servo system
input signal
Prior art date
Application number
TW97143101A
Other languages
Chinese (zh)
Inventor
shen-an Chen
You-Ren Lin
Rong-Cong Hung
Shih-Chang Chen
Rong-Hwang Horng
Yaw-Shen Lai
Original Assignee
Foxnum Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxnum Technology Co Ltd filed Critical Foxnum Technology Co Ltd
Priority to TW97143101A priority Critical patent/TW201018925A/en
Publication of TW201018925A publication Critical patent/TW201018925A/en

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

A frequency spectrum analysis system includes a control platform, a driver, and a controlled system. The control platform includes a first transmission device. The driver includes a second transmission device, a signal source, and a data logger. The first transmission device is connected to the second transmission device. The second transmission device is connected to the signal source. The signal source is connected to the data logger and the controlled system. The data logger is connected to the controlled system and the first transmission device. A frequency spectrum analysis method is also provided.

Description

201018925 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種頻譜分析系統及方法,尤其係關 於應用於伺服系統之頻譜分析系統及方法。 -【先前技術】 參 ❹ 所謂頻譜分析,係指將訊號源發出之訊號強度按其頻 率順序展開’使其成為頻率之函數,並考察其變化規律, 即將時域訊號轉換為頻域訊號以對訊號進行分析之方法。’ 、在工業應用場合中’加卫機台性能之優劣,除了取 決於驅動器、馬達以及機構本身之性能與特性外,還取決 =控制參數之最優化等。如何根據不同之工業應用調整出 最佳之控制參數對於伺服系統來說極其重要。當舰系統 取得最佳控制參數時,可在紐系統穩定之前提下使馬達 ,輸出訊號之頻率範圍最大,此時輸出訊號之頻率範圍為 Π系統之頻寬。目前’工業上驅動器之頻譜分析-般係 泡】服系統之仿真模型’而並非由實際操作之飼服系統 賜i,故*仿真得到之控制參數應用在實際操作之飼 服系統中時,系統不能取得最佳效果。 【發明内容】 鑒於以上内谷,有必要提供一種頻譜分析系統及方 用於得到一幅頻特性曲線。另 ==中進行控制參數調整從而確定該飼服 該控台"服系統; ’ S亥飼服糸統包括一 201018925 驅動裝置及-受控系統;該驅動裝置包括一第二通訊傳輸 裝置、一訊號源以及一資料記錄器;該第一通訊傳輸裝置 與該第二通訊傳輪裝置相連,該第二通訊傳輸I置與該訊 -號源相連,該訊號源與該資料記錄器以及該受控系統相 連,該資料記錄器與該受控系統及該第一通訊傳輸裝置相 連。;該控制平台透過該第一通訊裝置及第二通訊裝置向該 訊號源發送一觸發命令以觸發該訊號源產生一頻率回應觸 發成號,並作為該伺服系統之一控制迴路之輸入訊號傳送 ❹給該受控系統,該受控系統收到該輸入訊號後輸出一輸出 訊號,該資料記錄器將該輸入訊號及輸出訊號記錄下來並 ,回傳給該控制平1該控制平台將該輸人訊號、輸出訊號 從時域訊號轉換為頻域訊號以得到轉換後之輸入訊號及輸 出訊號之幅頻特性關係,並控制該輸出訊號之衰減值為某 β又定值,從而得到該伺服系統之控制迴路之輸出訊號之 頻率範圍。 一種頻譜分析方法,包括以下步驟: © 彡過_控制平台對—伺服系統之-控制迴路進行頻率 回應條件設定,該伺服系統包括一驅動裝置及一受控 統; 工’、 該控制平台發送一觸發命令,透過該控制平台内部之 一第一通訊傳輸裝置及該驅動裝置内部之一第二通訊傳輸 裝置將該觸發命令傳送給該驅動裝置内部之一訊號源; 該訊號源產生一頻率響應觸發訊號,並將該頻率回應 觸發訊號作為該伺服系統之控制迴路之輸入訊號傳送給該 受控系統及驅動裝置内部之一資料記錄器; 201018925 該受控系統收到輸入訊號後輸出一輸出訊號,該資料 記錄器將該受控系統之輸入訊號以及輸出訊號回傳給該控 制平台; • 該控制平台存儲該資料記錄器回饋之受控系統之輸入 •訊號以及輸出訊號; 該控制平台將該輸入訊號及輸出訊號從時域訊號轉換 為頻域訊號; 該控制平台對轉換後之輸入訊號及輸出訊號進行處理 ❹以得到轉換後之輸入訊號及輸出訊號之幅頻特性關係,並 控制該輸出訊號之衰減值為某一設定值,從而得到該祠服 系統之控制迴路之輸出訊號之頻率範圍。 前述頻譜分析系統及方法透過對伺服系統之一控制 迴路之輸入訊號及輸出訊號進行轉換,並對轉換後之輸入 訊號及輸出訊说進行處理以得到飼服系統之輸入訊號及輸 出訊號之幅頻特性關係,之後控制該輸出訊號之衰減值為 某一設定值,從而得到該伺服系統之控制迴路之輸出訊號 © 之頻率範圍。 ° 【實施方式】 請參閱圖1,本發明頻譜分析系統之較佳實施方式包 括一伺服系統400及一控制平台100如一電腦。該伺^ ^ 統400包括一驅動裝置200(如一驅動器)及一受控系統 3〇〇(如一馬達)。本實施例透過頻譜分析調整該伺ς系統 400之控制迴路之比例積分增益以獲得其控制迴路之頻、 (即該伺服系統400輸出訊號之最大頻率範圍)。’ 例採用伺服系統400之電流環及速度環兩控制迴路為^施 201018925 該控制平台100包括一通訊傳輸裝置102,該驅動裝 置200包括一通訊傳輸裝置202、一訊號源204以及一資 料記錄器(data logger) 206。該控制平台100之通訊傳 •輸裝置102與該驅動裝置200之通訊傳輸裝置202相連。 -該驅動裝置200之通訊傳輸裝置202與該訊號源204相 連。該訊號源204與該資料記錄器206以及受控系統300 相連。該資料記錄器206與該受控系統300以及該通訊傳 輸裝置202相連。該訊號源204為一可提供複數頻率訊號 ❹成分之訊號源,如一線性調頻(Chirp )訊號源。本實施 例中,該受控系統300之輸出訊號之衰減值控制為3dB, 即在該受控系統300之輸出訊號之強度為輸入訊號之 0.707倍時,透過伺服系統400之輸入訊號與輸出訊號之 幅頻特性關係得到伺服系統400輸出訊號之頻率範圍。之 後,在保證該伺服系統400穩定之前提下調整伺服系統 400之控制迴路之比例積分增益從而獲得伺服系統400之 控制迴路之頻寬,從而確定伺服系統400之速度環或電流 © 環之比例積分增益。 請一併參閱圖2,本發明頻譜分析方法之較佳實施方 式包括以下步驟: S1:透過該控制平台100對伺服系統400之一控制迴 路進行頻率回應條件設定,即設定伺服系統400之控制迴 路之輸入訊號之偏移量、振幅及取樣時間; S2:該控制平台100發送一觸發命令,並透過其内部 之通訊傳輸裝置102及該驅動裝置200内部之通訊傳輸裝 置202將該觸發命令傳送給該訊號源204 ; 201018925 S3:該訊號源204根據所接收之觸發命令產生一頻率 回應觸發訊號,並將該頻率回應觸發訊號作為該伺服系統 400之控制迴路之輸入訊號傳送給該受控系統300及資料 •記錄器206 ; ' S4:該受控系統300收到該輸入訊號後輸出一輸出訊 號給該資料記錄器206,該驅動裝置200内之資料記錄器 206將該受控系統300之輸入訊號以及輸出訊號以一定之 取樣頻率記錄下來,並透過通訊傳輸裝置202、102回傳 ® 給該控制平台100 ; S5:該控制平台100存儲該資料記錄器206回饋之受 控系統300之輸入訊號以及輸出訊號; S6:該控制平台100對該受控系統300之輸入訊號以 及輸出訊號進行快速傅立葉轉換; S7:該控制平台100對透過快速傅立葉轉換後之輸入 訊號及輸出訊號進行處理並繪製該伺服系統400之控制迴 路之幅(Magnitude )頻(Frequency )特性曲線,並控制 ❹該輸出訊號之衰減值為某一設定值,從而得到該伺服系統 400之控制迴路之輸出訊號之频率範圍。 此時,操作者根據伺服系統400之工作狀態,比如根 據伺服系統400之穩態性能,判斷此時該伺服系統400之 控制迴路之輸出訊號之頻率範圍是否為該伺服系統4 0 0之 控制迴路之頻寬,並根據實際需要,調整該伺服系統400 之控制迴路之比例積分增益,來達到該伺服系統400之控 制迴路之頻寬。下面以伺服系統400之速度環與電流環兩 控制迴路為例進行詳細說明。 11 201018925 圖3為該伺服系統400之速度環之輸入、輸出訊號在 時域上之曲線圖,本實施例中,頻譜分析系統速度環之條 件設定為:轉速偏移量S1=300rpm,轉速振幅 Ml=20〇rpm,取樣時間tl = lms。該控制平台1〇〇根據以 上條件進行設定後,該訊號源2〇4為該受控系統3〇〇提供 一輸入訊號vi,該受控系統300在獲得輸入訊號νι之 後輸出一輸出訊號V2,該輸入訊號VI及輸出訊號乂2在 時域上之圖形如圖3所示。該控制平台1〇〇存儲該輸入訊 號VI及輸出訊號V2,並分別對其進行快速傅立葉轉 換,之後繪製速度環之幅頻特性曲線,如圖4所示。根據 圖4可得知,當該受控系統3〇〇之輸出訊號V2之衰減值 ^ 3dB時,該伺服系統4〇〇速度環之輸出訊號V2之頻率 範圍為130Hz。若判斷此時該伺服系統4〇〇仍然穩定即 該爻控系統300之噪音及振動等因素在容許範圍内,則表 Ο Ο 示此時該伺服系統400速度環之頻率範圍可能小於其頻 寬,此時操作者可透過增大速度環之比例積分増益來增大 該伺服系統400之速度環之頻率範圍以獲得速度環之頻 寬。增大該伺服系統400之比例積分增益可増大其輸出訊 號V2之頻率範圍,然,系統之穩定性亦會受到影響。若 判斷此時該伺服系統400之穩定性不符合要求,即該受控 系統300之嗓音及振動等因素超過容許範圍,則表示此時 該伺服系統400之速度環之頻率範圍大於其頻寬,此時操 作者可透過減小速度環之比例積分增益來減小該伺服系統 4〇〇之速度環之頻率範圍以獲得速度環之頻寬。當該伺服 系統400之速度環之頻寬確定之後,其速度環之比例積分 12 201018925 增益之值亦確定。 圖5為該伺服系統400之電流環之輸入、輸出訊號在 時域上之曲線圖,本實施例中,伺服系統400之電流環之 •條件設定為:電流偏移量:S2=0mA,電流振幅: -M2=1500mA,取樣時間t2=0.05ms ;該控制平台100根據 以上條件進行設定後,該訊號源204為該受控系統300提 供一輸入訊號II,該受控系統300在獲得輸入訊號II之 後輸出一輸出訊號12,該輸入訊號II及輸出訊號12在時 ❹域上之圖形如圖5所示。該控制平台100對該輸入訊號 II及輸出訊號12進行快速傅立葉轉換,之後繪製電流環 之幅頻特性曲線,如圖6所示。根據圖6可得知,當該受 控系統300之輸出訊號12之衰減值為3dB時,該伺服系 統400之電流環之輸出訊號12之頻率範圍為1400Hz。若 此時該伺服系統400仍然穩定,則表示此時該伺服系統 400之電流環之頻率範圍可能小於其頻寬,此時操作者可 透過增大電流環之比例積分增益來增大該伺服系統400之 〇 電流環之頻率範圍以獲得電流環之頻寬。若此時該伺服系 統400之穩定性不符合要求,則表示此時該伺服系統400 之電流環之頻率範圍可能大於其頻寬,此時操作者可透過 減小電流環之比例積分增益來減小該伺服系統400之電流 環之頻率範圍以獲得電流環之頻寬。當該伺服系統400之 電流環之頻寬確定之後,其電流環之比例積分增益之值亦 確定。 本實施例針對伺服系統400之電流環及速度環兩控制 迴路進行頻譜分析以確定其最佳控制參數。在其他實施例 13 201018925 中,亦可對伺服系統400之其他控制迴路按照前述方法進 行頻譜分析以確定其最佳控制參數,比如對伺服系統4〇〇 之壓力環進行頻譜分析以確定其壓力環之比例積分增益。 前述頻譜分析系統及方法透過對馬達3〇〇之輸入訊 號及輸出訊號進行快速傅立葉轉換並繪製幅頻特性曲線, 得到該伺服系統400之電流環及速度環之輸出訊號之頻率 $色圍’並根據此時該伺服系統4〇〇之工作狀態來調整該飼 服系統400之速度環以及電流環之比例積分增益,從而獲 ❹得該伺服系統400之電流環及速度環之頻寬,最終確定其 速度環以及電流環之比例積分增益以確定該伺服系統4〇〇 之最佳控制參數。 综上所述,本發明符合發明專利要件,爰依法提出專 利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾 或變化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 ❹圖1係本發明頻譜分析系統之較佳實施方式之 圖。 瓜 圖2係本發明頻譜分析方法之較佳實施方式之流程 圖。 圖3係圖ί中伺服系統之速度環之輸入、輸出訊號在 時域上之曲線圖。 圖4係圖1中伺服系統之速度環頻率回應之幅頻特性 曲線圖。 圖5係圖1中飼服系統之電流環之輸入、輸出訊號在 14 201018925 時域上之曲線圖。 圖6係圖1中伺服系統之流環頻率回應之幅頻特性 曲線圖。 •【主要元件符號說明】 控制平台 100 第一通訊裝置 102 驅動裝置 200 第二通訊裝置 202 訊號源 204 資料記錄器 206 馬達 300 伺服系統 400201018925 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to a spectrum analysis system and method, and more particularly to a spectrum analysis system and method for use in a servo system. - [Prior Art] 频谱 ❹ 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱 频谱Signal analysis method. In addition to the performance and characteristics of the drive, motor and mechanism itself, it depends on the optimization of control parameters. How to adjust the optimal control parameters for different industrial applications is extremely important for servo systems. When the ship system obtains the best control parameters, the frequency range of the motor and the output signal can be maximized before the system is stabilized. At this time, the frequency range of the output signal is the bandwidth of the system. At present, 'the spectrum analysis of the industrial drive-like bubble system】the simulation model of the service system' is not given by the actual operation of the feeding system, so when the simulation control parameters are applied in the actual operation of the feeding system, the system Can't get the best results. SUMMARY OF THE INVENTION In view of the above inner valleys, it is necessary to provide a spectrum analysis system and a method for obtaining a frequency characteristic curve. In addition, the control parameter is adjusted to determine the feeding station and the service system; the 'Shai feeding system includes a 201018925 driving device and a controlled system; the driving device includes a second communication transmission device, a signal source and a data logger; the first communication transmission device is connected to the second communication transmission device, and the second communication transmission I is connected to the signal source, the signal source and the data logger and the The controlled system is connected, and the data logger is connected to the controlled system and the first communication transmission device. The control platform sends a trigger command to the signal source through the first communication device and the second communication device to trigger the signal source to generate a frequency response trigger number, and is used as an input signal transmission of the control loop of the servo system. Receiving the output signal, the controlled system outputs an output signal, and the data recorder records the input signal and the output signal, and returns the control signal to the control platform. The signal and the output signal are converted from the time domain signal to the frequency domain signal to obtain the amplitude-frequency characteristic relationship between the converted input signal and the output signal, and the attenuation value of the output signal is controlled to be a certain value of β, thereby obtaining the servo system. The frequency range of the output signal of the control loop. A spectrum analysis method includes the following steps: © _ _ control platform pair - servo system - control loop frequency response condition setting, the servo system includes a driving device and a controlled system; the worker's, the control platform sends a Triggering a command to transmit a trigger command to a signal source inside the driving device through one of the first communication transmission device and one of the second communication transmission device inside the control device; the signal source generates a frequency response trigger a signal, and the frequency response trigger signal is transmitted as an input signal of the control loop of the servo system to the data recorder of the controlled system and the driving device; 201018925 The controlled system outputs an input signal after receiving the input signal, The data logger returns the input signal and the output signal of the controlled system to the control platform; • the control platform stores the input signal and the output signal of the controlled system fed back by the data logger; the control platform inputs the input Signal and output signals are converted from time domain signals to frequency domain signals; The platform processes the converted input signal and the output signal to obtain the amplitude-frequency characteristic relationship between the converted input signal and the output signal, and controls the attenuation value of the output signal to a certain set value, thereby obtaining the service system. The frequency range of the output signal of the control loop. The spectrum analysis system and method converts the input signal and the output signal of one of the control loops of the servo system, and processes the converted input signal and the output signal to obtain the input signal of the feeding system and the amplitude of the output signal. The characteristic relationship is then controlled to control the attenuation value of the output signal to a certain set value, thereby obtaining the frequency range of the output signal © of the control loop of the servo system. [Embodiment] Referring to Figure 1, a preferred embodiment of the spectrum analysis system of the present invention includes a servo system 400 and a control platform 100 such as a computer. The servo system 400 includes a drive unit 200 (e.g., a drive) and a controlled system 3 (e.g., a motor). In this embodiment, the proportional integral gain of the control loop of the servo system 400 is adjusted by spectrum analysis to obtain the frequency of the control loop (i.e., the maximum frequency range of the output signal of the servo system 400). The example uses the current loop and the speed loop of the servo system 400. The control platform 100 includes a communication transmission device 102. The driving device 200 includes a communication transmission device 202, a signal source 204, and a data recorder. (data logger) 206. The communication transmission device 102 of the control platform 100 is coupled to the communication transmission device 202 of the drive device 200. - The communication transmission device 202 of the drive device 200 is connected to the signal source 204. The signal source 204 is coupled to the data logger 206 and the controlled system 300. The data logger 206 is coupled to the controlled system 300 and the communication transmission device 202. The signal source 204 is a signal source that provides a complex frequency signal, such as a Chirp signal source. In this embodiment, the attenuation value of the output signal of the controlled system 300 is controlled to be 3 dB, that is, when the intensity of the output signal of the controlled system 300 is 0.707 times of the input signal, the input signal and the output signal transmitted through the servo system 400. The amplitude-frequency characteristic relationship is obtained by the frequency range of the output signal of the servo system 400. Thereafter, before the servo system 400 is stabilized, the proportional integral gain of the control loop of the servo system 400 is adjusted to obtain the bandwidth of the control loop of the servo system 400, thereby determining the proportional integral of the speed loop or current © loop of the servo system 400. Gain. Referring to FIG. 2, a preferred embodiment of the spectrum analysis method of the present invention includes the following steps: S1: Perform frequency response condition setting on a control loop of one of the servo systems 400 through the control platform 100, that is, set a control loop of the servo system 400. The offset, amplitude and sampling time of the input signal; S2: the control platform 100 sends a trigger command, and transmits the trigger command to the internal communication transmission device 102 and the communication transmission device 202 inside the driving device 200 The signal source 204; 201018925 S3: the signal source 204 generates a frequency response trigger signal according to the received trigger command, and transmits the frequency response trigger signal to the controlled system 300 as an input signal of the control loop of the servo system 400. And the data record logger 206; 'S4: the controlled system 300 receives an input signal and outputs an output signal to the data logger 206. The data logger 206 in the drive device 200 inputs the controlled system 300. The signal and the output signal are recorded at a certain sampling frequency, and are transmitted back to the control through the communication transmission devices 202 and 102. The control platform 100 stores the input signal and the output signal of the controlled system 300 fed back by the data logger 206; S6: The control platform 100 performs fast Fourier transform on the input signal and the output signal of the controlled system 300. S7: The control platform 100 processes the input signal and the output signal after the fast Fourier transform and plots the Magnitude frequency characteristic curve of the control loop of the servo system 400, and controls the attenuation of the output signal. The value is a set value, thereby obtaining the frequency range of the output signal of the control loop of the servo system 400. At this time, the operator determines whether the frequency range of the output signal of the control loop of the servo system 400 is the control loop of the servo system 400 according to the working state of the servo system 400, for example, according to the steady state performance of the servo system 400. The bandwidth is adjusted, and the proportional integral gain of the control loop of the servo system 400 is adjusted according to actual needs to achieve the bandwidth of the control loop of the servo system 400. The following is an example of the speed loop and current loop control loops of the servo system 400 as an example. 11 201018925 FIG. 3 is a graph of the input and output signals of the speed loop of the servo system 400 in the time domain. In this embodiment, the condition of the speed loop of the spectrum analysis system is set as: the speed offset S1=300 rpm, the speed amplitude Ml = 20 rpm, sampling time tl = lms. After the control platform 1 is set according to the above conditions, the signal source 2〇4 provides an input signal vi to the controlled system 3〇〇, and the controlled system 300 outputs an output signal V2 after obtaining the input signal νι, The graph of the input signal VI and the output signal 乂2 in the time domain is as shown in FIG. 3. The control platform 1 〇〇 stores the input signal VI and the output signal V2, and performs fast Fourier transform on them respectively, and then plots the amplitude-frequency characteristic curve of the speed loop, as shown in FIG. 4 . According to FIG. 4, when the attenuation value of the output signal V2 of the controlled system 3 is ^3 dB, the frequency range of the output signal V2 of the servo system 4〇〇 speed loop is 130 Hz. If it is determined that the servo system 4 is still stable at this time, that is, the noise and vibration of the monitoring system 300 are within the allowable range, then the indication is that the frequency range of the speed loop of the servo system 400 may be less than the bandwidth thereof. At this time, the operator can increase the frequency range of the speed loop of the servo system 400 by increasing the proportional integral gain of the speed loop to obtain the bandwidth of the speed loop. Increasing the proportional integral gain of the servo system 400 can increase the frequency range of the output signal V2, but the stability of the system is also affected. If it is determined that the stability of the servo system 400 does not meet the requirements at this time, that is, the noise and vibration of the controlled system 300 exceed the allowable range, it means that the frequency range of the speed loop of the servo system 400 is greater than the bandwidth thereof. At this time, the operator can reduce the frequency range of the speed loop of the servo system by reducing the proportional integral gain of the speed loop to obtain the bandwidth of the speed loop. When the bandwidth of the speed loop of the servo system 400 is determined, the proportional integral of the speed loop 12 201018925 is also determined. FIG. 5 is a graph of the input and output signals of the current loop of the servo system 400 in the time domain. In this embodiment, the condition of the current loop of the servo system 400 is set as: current offset: S2=0 mA, current Amplitude: -M2 = 1500 mA, sampling time t2 = 0.05 ms; after the control platform 100 is set according to the above conditions, the signal source 204 provides an input signal II to the controlled system 300, and the controlled system 300 obtains an input signal. After outputting an output signal 12, the pattern of the input signal II and the output signal 12 in the time domain is as shown in FIG. 5. The control platform 100 performs fast Fourier transform on the input signal II and the output signal 12, and then plots the amplitude-frequency characteristic curve of the current loop, as shown in FIG. 6. According to FIG. 6, when the attenuation value of the output signal 12 of the controlled system 300 is 3 dB, the frequency range of the output signal 12 of the current loop of the servo system 400 is 1400 Hz. If the servo system 400 is still stable at this time, it indicates that the frequency range of the current loop of the servo system 400 may be less than the bandwidth thereof, and the operator can increase the servo system by increasing the proportional integral gain of the current loop. The frequency range of the current loop between 400 is obtained to obtain the bandwidth of the current loop. If the stability of the servo system 400 does not meet the requirements at this time, it indicates that the frequency range of the current loop of the servo system 400 may be greater than the bandwidth thereof. At this time, the operator can reduce the proportional integral gain of the current loop. The frequency range of the current loop of the servo system 400 is small to obtain the bandwidth of the current loop. When the bandwidth of the current loop of the servo system 400 is determined, the value of the proportional integral gain of the current loop is also determined. This embodiment performs spectrum analysis on the current loop and the speed loop control loop of the servo system 400 to determine the optimal control parameters. In other embodiments 13 201018925, the other control loops of the servo system 400 may also be subjected to spectrum analysis according to the foregoing method to determine the optimal control parameters, such as performing spectrum analysis on the pressure loop of the servo system 4 to determine the pressure loop thereof. Proportional integral gain. The spectrum analysis system and method perform fast Fourier transform on the input signal and the output signal of the motor 3 and draw the amplitude-frequency characteristic curve to obtain the frequency of the output signal of the current loop and the speed loop of the servo system 400 and According to the working state of the servo system 4 at this time, the speed loop of the feeding system 400 and the proportional integral gain of the current loop are adjusted, thereby obtaining the bandwidth of the current loop and the speed loop of the servo system 400, and finally determining Its velocity loop and the proportional integral gain of the current loop determine the optimal control parameters for the servo system. In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagram of a preferred embodiment of the spectrum analysis system of the present invention. Fig. 2 is a flow chart showing a preferred embodiment of the spectrum analysis method of the present invention. Figure 3 is a graph of the input and output signals of the speed loop of the servo system in the time domain. Figure 4 is a graph showing the amplitude-frequency characteristics of the speed loop frequency response of the servo system of Figure 1. Figure 5 is a graph of the input and output signals of the current loop of the feeding system of Figure 1 in the time domain of 14 201018925. Figure 6 is a graph showing the amplitude-frequency characteristics of the loop frequency response of the servo system of Figure 1. • [Main component symbol description] Control platform 100 First communication device 102 Drive device 200 Second communication device 202 Signal source 204 Data logger 206 Motor 300 Servo system 400

1515

Claims (1)

201018925 十、申請專利範圍 工·一種頻譜分析系統’包括一控制平台及一伺服系統;該 控制平台包括一第一通訊傳輸裝置,該伺服系統包括一驅 動裝置及一受控系統;該驅動裝置包括一第二通訊傳輸裝 置、一訊號源以及一資料記錄器;該第一通訊傳輸裝置與 該第二通訊傳輪裝置相連,該第二通訊傳輸裝置與該訊號 源相連’該訊號源與該資料記錄器以及該受控系統相連, 該資料記錄器與該受控系統及該第一通訊傳輸裝置相連; 〇該控制平台透過該第一通訊裝置及第二通訊裝置向該訊號 源發送一觸發命令以觸發該訊號源產生一頻率回應觸發訊 號’並作為該伺服系統之一控制迴路之輸入訊號傳送給該 受控系統,該受控系統收到該輸入訊號後輸出一輸出訊 號’該資料記錄器將該輸入訊號及輸出訊號記錄下來並回 傳給該控制平台,該控制平台將該輸入訊號、輸出訊號從 時域訊號轉換為頻域訊號,並對透過轉換後之輸入訊號及 輸出訊號進行處理以得到轉換後之輸入訊號及輸出訊號之 ❹幅頻特性關係,並控制該輸出訊號之衰減值為某一設定 值’從而得到該伺服系統之控制迴路之輸出訊號之頻率範 圍。 2. 如申請專利範圍第i項所述之頻譜分析系統,其中該控 制平台透過快速傅立葉轉換將該輸入訊號、輸出訊號從時 域訊號轉換為頻域訊號。 3. 如申請專利範圍第1項所述之頻譜分析系統,其中該伺 服系統之控制迴路為該伺服系統之一電流環。 4·如申請專利範圍第1項所述之頻譜分析系統,其中該伺 16 201018925 服系統之控制迴路為該伺服系統之一速度環。 5·如申請專利範圍第1項所述之頻譜分析系統,其中該輸 出訊號之衰減值為3dB。 • 6.—種頻譜分析方法,包括以下步驟: 透過一控制平台對一伺服系統之一控制迴路進行頻率 回應條件設定,該伺服系統包括一驅動裝置及一受控系 統; 該控制平台發送一觸發命令,透過該控制平台内部之 ❹一第一通訊傳輸裝置及該驅動裝置内部之一第二通訊傳輸 裝置將該觸發命令傳送給該驅動裝置内部之一訊號源; 該訊號源產生一頻率響應觸發訊號,並將該頻率回應 觸發訊號作為該伺服系統之控制迴路之輸入訊號傳送給^ 受控系統及驅動裝置内部之一資料記錄器; 該受控系統收到輸入訊號後輸出一輸出訊號,該資料 記錄器將該受控系統之輸入訊號以及輸出訊號回傳給該控 制平台; ❹ 該控制平台存儲該資料記錄器回饋之受控系統之輸入 訊號以及輸出訊號; 該控制平台將該輸入訊號及輸出訊號從時域訊號轉換 為頻域訊號; /該控制平台對轉換後之輸入訊號及輸出訊號進行處理 以得到轉換後之輸入訊號及輸出訊號之幅頻特性關係,並 控请亥輸出訊號之哀減值為某一設定值,從而得到該伺服 系統之控制迴路之輸出訊號之頻率範圍。 7.如申請專利範圍第6項所述之頻譜分析方法,其中該控 17 201018925 號、輸出訊號從時 制平台透過快速傅立葉轉換將該輸入訊 域訊號轉換為頻域訊號。 =申請專利範圍第6項所述之頻譜分析方法, 服系統之控制迴路為該伺服系統之一電流環。/、 9. 如申請專利範圍第6項所述之頻譜二二二 服系統之控制迴路為該健錢之—速度環’。’其中該祠 10. 如申請專利範圍第6項所述之頻碰分 輸出訊號之衰減值為3dB。 曰τ万法’其中該 Ο 18201018925 X. Patent Application Scope A spectrum analysis system includes a control platform and a servo system; the control platform includes a first communication transmission device, the servo system includes a driving device and a controlled system; the driving device includes a second communication transmission device, a signal source and a data recorder; the first communication transmission device is connected to the second communication transmission device, and the second communication transmission device is connected to the signal source 'the signal source and the data The recorder is connected to the controlled system, and the data recorder is connected to the controlled system and the first communication transmission device; the control platform sends a trigger command to the signal source through the first communication device and the second communication device Transmitting the signal source to generate a frequency response trigger signal 'and transmitting the input signal to the control loop as one of the servo systems to the controlled system, the controlled system receiving the input signal and outputting an output signal 'the data recorder Recording the input signal and the output signal and transmitting it back to the control platform, the control is flat Converting the input signal and the output signal from the time domain signal to the frequency domain signal, and processing the converted input signal and the output signal to obtain the amplitude-frequency characteristic relationship between the converted input signal and the output signal, and controlling the The attenuation value of the output signal is a certain set value' to obtain the frequency range of the output signal of the control loop of the servo system. 2. The spectrum analysis system of claim i, wherein the control platform converts the input signal and the output signal from the time domain signal to the frequency domain signal through fast Fourier transform. 3. The spectrum analysis system of claim 1, wherein the control loop of the servo system is a current loop of the servo system. 4. The spectrum analysis system of claim 1, wherein the control loop of the servo system is a speed loop of the servo system. 5. The spectrum analysis system of claim 1, wherein the attenuation value of the output signal is 3 dB. 6. A method for spectrum analysis, comprising the steps of: setting a frequency response condition for a control loop of a servo system through a control platform, the servo system comprising a driving device and a controlled system; the control platform transmitting a trigger Commanding, by using a first communication transmission device inside the control platform and a second communication transmission device inside the control device, transmitting the trigger command to a signal source inside the driving device; the signal source generates a frequency response trigger a signal, and transmitting the frequency response trigger signal as an input signal of the control loop of the servo system to a controlled data system and a data recorder inside the driving device; the controlled system receives an input signal and outputs an output signal, The data logger returns the input signal and the output signal of the controlled system to the control platform; ❹ the control platform stores the input signal and the output signal of the controlled system fed back by the data logger; the control platform inputs the input signal and The output signal is converted from a time domain signal to a frequency domain signal; / the control The station processes the converted input signal and the output signal to obtain the amplitude-frequency characteristic relationship between the converted input signal and the output signal, and controls the output value of the output signal to be a certain set value, thereby obtaining the servo system. The frequency range of the output signal of the control loop. 7. The method of spectrum analysis according to claim 6 wherein the control signal is output from the time platform to the frequency domain signal through fast Fourier transform. = The spectrum analysis method described in claim 6 of the patent scope, the control loop of the service system is a current loop of the servo system. /, 9. The control loop of the spectrum 222 service system described in claim 6 is the money-speed loop. </ br /> 10. The attenuation value of the frequency-collision output signal as described in item 6 of the patent application scope is 3 dB.曰τ万法’ where the Ο 18
TW97143101A 2008-11-07 2008-11-07 Frequency spectrum analysis system and method TW201018925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143101A TW201018925A (en) 2008-11-07 2008-11-07 Frequency spectrum analysis system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143101A TW201018925A (en) 2008-11-07 2008-11-07 Frequency spectrum analysis system and method

Publications (1)

Publication Number Publication Date
TW201018925A true TW201018925A (en) 2010-05-16

Family

ID=44831498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143101A TW201018925A (en) 2008-11-07 2008-11-07 Frequency spectrum analysis system and method

Country Status (1)

Country Link
TW (1) TW201018925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551028B (en) * 2015-12-01 2016-09-21 Shihlin Electric & Eng Corp Servo drive system bandwidth and phase verification of the measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551028B (en) * 2015-12-01 2016-09-21 Shihlin Electric & Eng Corp Servo drive system bandwidth and phase verification of the measurement device

Similar Documents

Publication Publication Date Title
EP3367378B1 (en) Active noise control using variable step-size adaptation
US8306240B2 (en) Active noise reduction adaptive filter adaptation rate adjusting
US10817001B2 (en) Unmanned aerial vehicle and method for detecting flight state thereof, and wearable device
US20100098263A1 (en) Active noise reduction adaptive filter leakage adjusting
CN101493142A (en) Gearbox noise reduction by electrical drive control
EP2110523A1 (en) A device and method for active noise cancellation in an exhaust gas channel of a combustion engine
CN105298933A (en) Active noise control device for axial fan
US20100109639A1 (en) Frequency spectrum analysis system and method
JP2016201805A (en) Impedance matching device and method
US10380990B2 (en) Active noise control simulated noise audio output for active noise control testing
TW201018925A (en) Frequency spectrum analysis system and method
CN107102658B (en) Method and device for identifying off-line secondary channel
EP3036593B1 (en) Sound feedback system for vehicles
EP3036653B1 (en) Sound feedback system for vehicles
US20130163773A1 (en) Closed-loop active noise reduction system, such as for a thermal printer
KR101064054B1 (en) Apparatus and method for tracking asset locations in an asset tracking system
JP2003288101A5 (en)
CN101887718B (en) Improvement method for feeding back water bed effect of active noise control system
CN112866877B (en) Speaker control method, speaker control device, electronic apparatus, and storage medium
KR102081385B1 (en) Gaussian and sfol pulse dual mode dme ground transponder and its control method
CN207795416U (en) A kind of automobile engine Active noise control system
CN108880401B (en) Equipment control method, device and storage medium
US6393383B1 (en) Setting apparatus and method for identification signal
KR101816265B1 (en) Apparatus for driving ultrasonic sensor and system driving ultrasonic sensor including the same and method for driving ultrasonic sensor
JPH04130286A (en) Transmission wave level control system