TW201015928A - Optimal weights for MMSE space-time equalizer of multicode CDMA system - Google Patents
Optimal weights for MMSE space-time equalizer of multicode CDMA system Download PDFInfo
- Publication number
- TW201015928A TW201015928A TW098143726A TW98143726A TW201015928A TW 201015928 A TW201015928 A TW 201015928A TW 098143726 A TW098143726 A TW 098143726A TW 98143726 A TW98143726 A TW 98143726A TW 201015928 A TW201015928 A TW 201015928A
- Authority
- TW
- Taiwan
- Prior art keywords
- receiver
- equalizer
- antennas
- code
- mmse
- Prior art date
Links
- 239000013598 vector Substances 0.000 claims abstract description 46
- 230000007480 spreading Effects 0.000 claims abstract description 36
- 230000005540 biological transmission Effects 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 30
- 108010003272 Hyaluronate lyase Proteins 0.000 claims description 22
- 238000004891 communication Methods 0.000 claims description 15
- 238000001228 spectrum Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 9
- 239000004744 fabric Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 208000011580 syndromic disease Diseases 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 235000012431 wafers Nutrition 0.000 description 38
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 238000005562 fading Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/005—Control of transmission; Equalising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/0848—Joint weighting
- H04B7/0854—Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0891—Space-time diversity
- H04B7/0897—Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
201015928 六、發明說明: 【發明所屬之技術領域】 本發明大體係關於劃碼多重近接(ce>MA)通信系統,且 更特定而言’係關於用於多輸入多輸出(MIM〇)多重碼 CDMA系統之線性最小均方誤差(mmSE)空間時間等化 器。 【先前技術】 在無線通信系統中’若干使用者共用在一共同頻譜内之 一通道。為避免由於若干使用者同時在該通信通道上傳輸 資訊所引起的衝突,需要有關於向使用者分配可用通道容 量之一些規則。已藉由各種形式之多向近接協定達成了使 用者對通信通道進行存取的規則。一種形式之協定稱作劃 碼多重近接(CDMA)。除了提供對有限容量之通道的多向 近接分配外’一協定亦可提供其他功能。舉例而言,一協 定可提供使用者彼此間的隔離、限制使用者間之干擾,及 藉由增加非預期性接收器之截取與解碼之難度來提供安全 性(亦稱作低截取可能性)。 在CDMA系統中,藉由編碼信號使每一信號與其他使用 者的仏说隔離。將資訊彳§號專門編碼成一傳輸信號。知道 使用者之編碼序列的預期接收器可解碼該傳輸信號以接收 資訊。由編碼來展開資訊信號頻譜,致使經編竭之傳輸作 號的頻寬遠大於該資訊信號的原始頻寬。為此,CDMA# 一種"展頻"編碼。跨通道頻寬展開每一使用者之信號的能 量’致使每一使用者之信號對於其他使用者表現為雜訊。 145325.doc 201015928 只要解碼程序能夠達成足夠的信號雜訊比,則可恢復該信 號中的資訊’(預期使用者的信號與其他使用者信號之"雜 訊’’的隔離)。影響使用者之信號的資訊恢復的其他因素在 此環境中對於每一用戶為不同情形,諸如,衰落、遮蔽, 及多路徑。遮蔽為中斷傳輸器與接收器間之信號傳輸路徑 的實體對象所導致的干擾,實體對象例如較大的建築物。 多路徑為信號失真,其發生係起因於信號跨越不同長度之 多條路徑且在不同時間到達接收器。多路徑亦稱作通信通 道的"時間分散"。同相接收之信號彼此加強,且在接收器 處產生較強的信號,而異相接收之信號產生較弱或衰落信 號。多路徑衰落亦可隨時間改變。舉例而言,在移動車輛 載運之通裝置中,多路徑衰落之量可急速改變。 為提供防止有害路徑效應之分集及改良效能,可使用多 重傳輸與接收天線。若傳輸與接收天線間的傳輸路徑為線 性獨立的(意即,在一路徑上之傳輸並未形成為在其他路 徑上之該等傳輸的線性組合,在某種程度上其一般為真實 情況),則當天線之數目增加時,正確接收傳輸信號的可 能性亦增加。一般地,當傳輸與接收天線之數目增加時, 分集增加且效能改良。在多輸入多輸出(mim〇)系統中使 用在傳輸器與接收器處之多重天線的用法。 若在傳輸器或接收器處可用多重天線,則可使用諸如空 間多工及編碼重複使用之技術來增加峰值流量。藉由編碼 重複使用’經分配而用於傳輸之每一通道可調變至高達Μ 個獨立資料流,其中Μ為傳輸天線的數目。共用相同編碼 145325.doc 201015928 之資料流基於其空間特徵加以區別,此需要具有至少Μ個 天線的接收器。原則上,使用編碼重複使用之峰值流量為 藉由單個天線可達成之速率的Μ倍。 在ΜΙΜΟ多重碼CDMA系統中,若空間時間等化器使用 最小化等化器輸出晶片序列之均方誤差的最小均方誤差 (MMSE)加權向量,則在不同傳輸天線中之相同展頻碼的 重複使用會降級等化效能。不同於多路徑干擾及背景雜訊 成分,CDMA解展頻器使流間干擾成分失真。如此會降級 先前技術ΜΙΜΟ系統的效能。 因此,在此項技術中需要用於多輸入多輸出(ΜΙΜ〇)多 重碼CDMA系統之增強型晶片級線性空間時間等化器,在 該CDMA系統中可在不同傳輸天線中重複使用展頻碼。 【發明内容】 在一態樣中’ CDMA接收器包含一空間時間等化器,其 可經操作連接至接收天線,其中該空間時間等化器應用一 加權向量’該加權向量包含為一展頻因子之一函數的係 數。 在另一態樣中,CDMA接收器包含一具有等化係數之空 間時間等化器及一解展頻器,其中該等等化係數至少部分 地為一展頻因子之一函數。 在又一態樣中’一方法包含經由複數個接收天線接收複 數個信號,其中來自每一接收天線之該所接收的信號包含 傳輸自一傳輸裝置之一或多個信號的組合;及藉由一具有 係數之加權向量來處理該信號,以產生複數個位元流,其 145325.doc 201015928 中遠等係數至少部分地為展頻碼重複使用之—函數。 在進一步之態樣中,CDMA接收器包含等化構件,其經 钿作連接至接收天線,#中該等化構件應用—加權向量, 該加權向量包含為-展頻因子之—函數的係數;及解展頻 構件’其經操作連接至該等化構件,其中該解展頻構件將 等化度量序列分成複數個調變符號序列。 【實施方式】 本文使用詞語"例示性”來表示,,用作一實例、例子或說 明"。本文描述為"例示性"之任何實施例未必解釋為比其 他實施例更佳或有利。 圖1A為通信系統10的圖,通信系統10支持許多使用者且 能夠實施本發明之至少若干態樣及實施例。系統10為各自 受到對應基地台4服務之諸多單元2a至2g提供通信。該等 單元以達成覆蓋預期區域之方式來組織。例如,該覆蓋區 域可界定為終端機6之使用者可達成特定服務級(G〇s)之區 域。覆蓋區域中的終端機6可為固定的或活動的,且一般 由一主基地台提供服務。對於每一活動的終端機,來自其 他基地台及終端機之傳輸代表潛在干擾。 如圖1A中之所示,各種終端機6分散於整個系統中。終 端機6包含一處理裝置8。處理裝置8的實例包括(但不僅限 於)處理器、程式邏輯,或代表資料及指令的其他基層組 態。在其他實施例中,該等處理器可包含控制器電路、處 理器電路、處理器、通用單晶片或多晶片微處理器、數位 信號處理器、嵌入式微處理器、微控制器等。 145325.doc 201015928 在任何特定時刻,在下行鏈路及上行鏈路上每一終端機 6與至少一個且可能為多個基地台4通信,其視(例如)是否 採用”軟交遞”或該終端機是否經設計及經操作以同時或按 序自多個基地台接收多傳輸而定。下行鏈路表示自基地台 至終端機之傳輸,且上行鏈路表示自終端機至基地台之傳 輸。 在圖1A中,基地台4a在下行鏈路上將資料傳輸至終端機 6a及6j,基地台4b將資料傳輸至終端機6b及6j,基地台4c 將資料傳輸至終端機6c等。在圖1A中,具有箭頭的實線指 示自基地台至終端機的資料傳輸。具有箭頭的虛線指示終 端機正自基地台接收導頻信號,但並無資料傳輸。為簡潔 起見,圖1A中未展示上行鏈路通信。 可基於美國專利申請案序列號09/532,492中揭示之題為 "HIGH EFFICIENCY, HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI- CARRIER MODULATION" (2000年3月22曰申請)的通信系統;或美國專利申請案序列 號 08/963,386 中揭示之題為"METHOD AND APPARATUS FOR HIGH RATE PACKET DATA TRANSMISSION"的系統 來設計系統10,該等專利申請案均已讓與本發明之受讓 人,且以引用的方式併入本文中。亦可將系統10設計為支 持一或多個CDMA標準(諸如,IS-95標準、寬頻CDMA(W-CDMA)標準、其他標準,或其組合)的CDMA系統。 在系統10中,許多終端機共用一共同資源,即,總操作 頻寬W。為在特定終端機處達成預期的效能等級,需要將 145325.doc 201015928 來自其他傳輸的干擾降低至—可接受的等級。同樣,為在 特定操作頻寬下以高資料速率進行可靠的傳輸,需要在特 定的載波對雜訊加干擾比(C/I)等級或高於該等級進行操 ϋι習知地,藉由將可用總資源劃分成各自被分配至一特 定單.元之小部分,來達成干擾降低及所需C/I達成。 ❿201015928 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a coded multiple proximity (ce > MA) communication system, and more particularly to a multi-input multiple-output (MIM) multiple code. Linear minimum mean square error (mmSE) spatial time equalizer for CDMA systems. [Prior Art] In a wireless communication system, a number of users share a channel within a common spectrum. In order to avoid conflicts caused by the simultaneous transmission of information by several users on the communication channel, some rules regarding the allocation of available channel capacity to the user are required. The rules for users to access communication channels have been reached by various forms of multi-directional proximity protocols. One form of agreement is called coded multiple proximity (CDMA). In addition to providing multi-directional proximity assignments to channels of limited capacity, an agreement may provide additional functionality. For example, an agreement can provide user isolation, limit user interference, and provide security (also known as low intercept probability) by increasing the difficulty of intercepting and decoding the unintended receiver. . In CDMA systems, each signal is isolated from the utterances of other users by the encoded signal. The information 彳§ number is specifically encoded into a transmission signal. The intended receiver that knows the user's code sequence can decode the transmitted signal to receive the information. The spectrum of the information signal is spread by the encoding such that the bandwidth of the encoded transmission signal is much larger than the original bandwidth of the information signal. To this end, CDMA# is a " Spreading " encoding. The energy of each user's signal is spread across the channel bandwidth, causing each user's signal to behave as a noise to other users. 145325.doc 201015928 As long as the decoding program can achieve a sufficient signal-to-noise ratio, the information in the signal can be restored (the isolation of the user's signal from the "noise' of other user signals). Other factors that affect the recovery of information about the user's signals are different situations for each user in this environment, such as fading, shadowing, and multipathing. Masking is caused by physical objects that interrupt the signal transmission path between the transmitter and the receiver, such as larger buildings. Multipath is signal distortion, which occurs because the signal spans multiple paths of different lengths and arrives at the receiver at different times. Multipathing is also known as the "time dispersion" of communication channels. The signals received in phase are enhanced with each other and produce a stronger signal at the receiver, while the signal received out of phase produces a weaker or fading signal. Multipath fading can also change over time. For example, in a mobile vehicle-borne device, the amount of multipath fading can change rapidly. To provide diversity and improved performance against harmful path effects, multiple transmit and receive antennas can be used. If the transmission path between the transmission and reception antennas is linearly independent (ie, the transmission on one path does not form a linear combination of the transmissions on other paths, to some extent it is generally true) When the number of antennas increases, the probability of correctly receiving the transmitted signal also increases. In general, as the number of transmit and receive antennas increases, diversity increases and performance improves. The use of multiple antennas at the transmitter and receiver in multiple input multiple output (mim〇) systems. If multiple antennas are available at the transmitter or receiver, techniques such as spatial multiplexing and code reuse can be used to increase peak traffic. Each channel used for transmission by code reuse is allocated up to Μ independent data streams, where Μ is the number of transmit antennas. Data streams sharing the same code 145325.doc 201015928 are differentiated based on their spatial characteristics, which requires a receiver with at least one antenna. In principle, the peak traffic using code reuse is twice the rate achievable by a single antenna. In a multi-code CDMA system, if the spatial time equalizer uses a minimum mean square error (MMSE) weighting vector that minimizes the mean square error of the wafer sequence, the same spreading code in the different transmission antennas Reuse will downgrade the equalization performance. Unlike multipath interference and background noise components, the CDMA despreader distorts the inter-stream interference components. This will degrade the performance of the prior art system. Therefore, there is a need in the art for an enhanced wafer level linear space time equalizer for a multiple input multiple output (MIMO) multiple code CDMA system in which the spread spectrum code can be reused in different transmit antennas. . SUMMARY OF THE INVENTION In one aspect, a CDMA receiver includes a spatial time equalizer operatively coupled to a receive antenna, wherein the spatial time equalizer applies a weight vector 'the spread vector is included as a spread spectrum The coefficient of a function of one of the factors. In another aspect, a CDMA receiver includes a space time equalizer having an equalization coefficient and a despreader, wherein the equalization coefficient is at least partially a function of a spreading factor. In another aspect, a method includes receiving a plurality of signals via a plurality of receive antennas, wherein the received signal from each receive antenna comprises a combination of one or more signals transmitted from a transmission device; A weighted vector having coefficients is used to process the signal to produce a plurality of bitstreams, the 145325.doc 201015928 medium and far coefficients being at least partially a function of the spreading code reuse. In a further aspect, the CDMA receiver includes an equalization component coupled to the receive antenna, wherein the equalization component applies a weighting vector comprising a coefficient of a function of a spreading factor; The solution spread spectrum component is operatively coupled to the equalization component, wherein the despread component divides the equalization metric sequence into a plurality of modulation symbol sequences. [Embodiment] The word "exemplary" is used herein to mean an example, instance, or description. Any embodiment described herein as "exemplary" is not necessarily interpreted as being better than other embodiments or Figure 1A is a diagram of a communication system 10 that supports a number of users and is capable of implementing at least some aspects and embodiments of the present invention. System 10 provides communication for a plurality of units 2a through 2g each serviced by a corresponding base station 4. The units are organized in such a way as to reach the expected area. For example, the coverage area can be defined as the area where the user of the terminal 6 can reach a specific service level (G〇s). The terminal 6 in the coverage area can be Fixed or active, and generally served by a primary base station. For each active terminal, transmissions from other base stations and terminals represent potential interference. As shown in Figure 1A, various terminals 6 are dispersed. Throughout the system, the terminal 6 includes a processing device 8. Examples of the processing device 8 include, but are not limited to, a processor, program logic, or representative data and instructions. Other base layer configurations. In other embodiments, the processors may include controller circuitry, processor circuitry, processors, general purpose single or multi-chip microprocessors, digital signal processors, embedded microprocessors, micro-controls 145325.doc 201015928 At any particular moment, each terminal 6 on the downlink and uplink communicates with at least one and possibly a plurality of base stations 4, depending, for example, on whether or not to adopt "soft handover" Whether the terminal is designed and operated to receive multiple transmissions from multiple base stations simultaneously or sequentially. The downlink represents the transmission from the base station to the terminal, and the uplink represents the terminal to the base station. In Fig. 1A, the base station 4a transmits data to the terminals 6a and 6j on the downlink, and the base station 4b transmits the data to the terminals 6b and 6j, and the base station 4c transmits the data to the terminal 6c and the like. In Figure 1A, the solid line with the arrow indicates the data transmission from the base station to the terminal. The dotted line with the arrow indicates that the terminal is receiving the pilot signal from the base station, but there is no data transmission. For the sake of brevity, the uplink communication is not shown in Figure 1A. The subject matter disclosed in U.S. Patent Application Serial No. 09/532,492 is entitled "HIGH EFFICIENCY, HIGH PERFORMANCE COMMUNICATIONS SYSTEM EMPLOYING MULTI- CARRIER MODULATION" (March 2000) A system for designing a system 10, which is disclosed in U.S. Patent Application Serial No. 08/963,386, entitled "METHOD AND APPARATUS FOR HIGH RATE PACKET DATA TRANSMISSION" The assignee of the present invention is incorporated herein by reference. System 10 can also be designed as a CDMA system that supports one or more CDMA standards, such as the IS-95 standard, the Wideband CDMA (W-CDMA) standard, other standards, or a combination thereof. In system 10, a number of terminals share a common resource, i.e., a total operating bandwidth W. In order to achieve the desired level of performance at a particular terminal, the interference from other transmissions needs to be reduced to an acceptable level. Similarly, in order to perform reliable transmission at a high data rate for a specific operating bandwidth, it is necessary to perform a specific carrier-to-interference plus interference ratio (C/I) level or higher. The total available resources are divided into small portions that are each assigned to a particular single unit to achieve interference reduction and required C/I achievement. ❿
舉例而言’可將總操作頻寬w劃分成咖相等的操作頻 帶(意即,B=w/N),且可將每一單元分配至該1^個頻帶中 的一者。週期性地重複使用該等頻帶,以達成較高的頻谱 效率。對於諸如受圖丨八支持之重複使用模式的7單元重複 使用模式,單元2a可分配得第-頻帶,單元2b可分配得第 二頻帶等。 通信系統通常經設計以符合許多系統要求,其可包括 (例如)’服務品質(QOS)、覆蓋性,及效能要求。通常將 服務品質定義為覆蓋區域中的每一終端機在規定的百分比 時間内能夠達成指定的最小平均位元率。 藉由在傳輸器及接收器兩者中使用多重天線,多輸入多 輸出(ΜΙΜΟ)傳輸技術的新近發展預示了在未來無線通信 系統中的大流量增益。可將ΜΙΜΟ技術併入至各種調變及 多向近接方案中,諸如,MIMO-CDMA、多輸入多輸出-正 交分頻多工(MIMO-OFDM)等。 在3G CDMA標準中之高速封包資料通道(諸如,高速下 行鏈路共用通道(HS_DSCH)及前向鏈路封包資料通道(F_ PDCH)等)通常使用多通道化編碼,諸如華許(Waish)碼, 其具有固定展頻因子(SF)以在較短訊框間隔内傳輸及接收 145325.doc 201015928 較大量的資訊資料。視當前封包的資料速率而定,基地台 (BS)可自可用通道化編碼中選出許多編碼,以供給對應數 目的調變符號。當MIMO-CDMA系統支持經由多重傳輸天 線的多重傳輸流時,對應BS通常將相同的通道化編碼重複 使用於不同天線。除非在MIMO-CDMA情境中另行設計, 否則傳輸天線中的編碼重複使用會引起行動台(MS)空間時 間等化器的嚴重損壞。 ΜΙΜΟ多重碼CDMA的系統模型 圖1B為包括傳輸器部分1〇2及接收器部分1〇4之ΜΙΜΟ多 重碼CDMA系統1 〇〇之實施例的方塊圖。在下列論述中, 展頻因子表示為。 傳輸器部分102包括編碼器106、映射器1〇8、解多工器 110、複數個展頻器112’及複數個傳輸天線114。傳輸天 線114的數目為μ,且分配至每一傳輸天線ι14之正交展頻 瑪的數目為《/(«/< SF)。 接收器部分104包括複數個接收天線116 '最小均方誤差 (MMSE)空間時間等化器118、複數個解展頻器12〇、多工 器122、解映射器124,及解碼器126。接收天線116的數目 為Ν ’且分配至每一接收天線116之解展頻器ι2〇的數目為 ,其對應於分配至每一傳輸天線114之展頻器112的 數目。一般熟習此項技術者瞭解,可將本文論述之空間時 間等化器118應用於一般MIMO-CDMA系統。 術語編碼器、解碼器、速率匹配器、交錯器、解交錯 器、映射器、解映射器、展頻器、解展頻器及空間時間等 145325.doc •10- 201015928 化器為意欲具有其一般意義的廣義術語。此外,編碼器。 ^用以將-信號(諸如,位元流)或資料自—形式編瑪2 一形式(諸如,編碼成適於傳輸、儲存或處理的形式)的裝 置或方法。-般地,可在軟體或硬體中建構編碼^ 如,藉由-程式、演算法、方法或在電路中來建構。解碼 器可為實施編碼器之相反操作的裝置,其取消編碼 操取原始資訊。For example, the total operating bandwidth w can be divided into equal operating bands (i.e., B = w/N), and each cell can be assigned to one of the 1^ bands. These bands are periodically reused to achieve higher spectral efficiency. For a 7-unit reuse mode such as the reuse mode supported by Fig. 8, unit 2a can be allocated a first band, and unit 2b can be assigned a second band or the like. Communication systems are typically designed to meet a number of system requirements, which may include, for example, 'quality of service (QOS), coverage, and performance requirements. Service quality is typically defined as each terminal in the coverage area is able to achieve a specified minimum average bit rate for a specified percentage of time. With the use of multiple antennas in both transmitters and receivers, recent developments in MIMO transmission technology have predicted large traffic gains in future wireless communication systems. The ΜΙΜΟ technology can be incorporated into various modulation and multi-directional proximity schemes, such as MIMO-CDMA, Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM), and the like. High-speed packet data channels in the 3G CDMA standard, such as High Speed Downlink Shared Channel (HS_DSCH) and Forward Link Packet Data Channel (F_PDCH), etc., typically use multi-channel coding, such as the Waish code. , it has a fixed spreading factor (SF) to transmit and receive a larger amount of information in the shorter frame interval. Depending on the data rate of the current packet, the base station (BS) can select a number of codes from the available channelization codes to supply the corresponding number of modulation symbols. When a MIMO-CDMA system supports multiple transport streams via multiple transmission antennas, the corresponding BS typically reuses the same channelized coding for different antennas. Unless otherwise designed in the MIMO-CDMA scenario, code reuse in the transmit antenna can cause severe damage to the mobile station (MS) space time equalizer.系统Multi-code CDMA system model Figure 1B is a block diagram of an embodiment of a multi-code CDMA system 1 including a transmitter portion 1 〇 2 and a receiver portion 〇 4. In the following discussion, the spread factor is expressed as . The transmitter portion 102 includes an encoder 106, a mapper 〇8, a demultiplexer 110, a plurality of spreaders 112', and a plurality of transmit antennas 114. The number of transmission antennas 114 is μ, and the number of orthogonal spreading frequencies assigned to each transmission antenna ι 14 is "/(«/< SF). Receiver portion 104 includes a plurality of receive antennas 116 'Minimum Mean Square Error (MMSE) spatial time equalizer 118, a plurality of despreaders 12A, multiplexer 122, demapper 124, and decoder 126. The number of receive antennas 116 is Ν ' and the number of despreaders ι2 分配 assigned to each receive antenna 116 is corresponding to the number of spreaders 112 assigned to each transmit antenna 114. It is generally understood by those skilled in the art that the spatial time equalizer 118 discussed herein can be applied to a general MIMO-CDMA system. Terminology encoders, decoders, rate matchers, interleavers, deinterlacers, mappers, demappers, spreaders, despreaders, and space time, etc. 145325.doc •10- 201015928 The chemist is intended to have its A general term in the general sense. In addition, the encoder. A device or method for encoding a signal (such as a bit stream) or a data from a form (such as a form suitable for transmission, storage, or processing). In general, the code can be constructed in software or hardware, constructed by -programs, algorithms, methods, or in circuits. The decoder can be a device that implements the reverse operation of the encoder, which cancels the encoding and fetches the original information.
速率匹配n可為將資料流之速率或位元率調整至預 率的裝置或方法。舉例而言,在一傳輸器中,速率匹配器 可調整位元率以匹配傳輸器之能力。在一接收器中速率 匹配器可執行相反過程。 :錯器可為以非鄰接方式排列資料以增加效能之裝置或 =方2地:解交錯器可實施交錯器的相反操作,且以 '列父錯資料,以使其更易於作處理。 為收集'組位元且將其轉換為單一調變符號之 (諸如實施映射器之相反操作Rate matching n can be a device or method that adjusts the rate or bit rate of the data stream to a pre-rate. For example, in a transmitter, the rate matcher can adjust the bit rate to match the capabilities of the transmitter. The rate matcher can perform the reverse process in a receiver. The wrong device can be a device that arranges data in a non-contiguous manner to increase performance or = the de-interlacer can implement the reverse operation of the interleaver and use 'column parent error data to make it easier to process. To collect 'group bits and convert them to a single modulation symbol (such as the opposite of implementing a mapper)
。符號轉換成一組位元)的裝置或方法。 展頻器可為茲A 過並資m瓶因子增加所傳輸信號之頻寬,使其超 育訊4號頻寬 展頻器之相反择祚解展頻器可為一般實施 法。舉例且減小所接收信號之頻寬的裝置或方 資訊頻寬。頻器可將所接收信號的頻寬減小至其 空間時間等化器可 一信號之裝置或方法時間之定比及組合提供至 ' 。舉例而言,空間時間等化器可空間 145325.doc •11· 201015928 及時間地疋比及組合一所接收的信號,以恢復原始信號。 參看圖1B,編碼器106接收源位元序列128。在編碼器 1 〇6中編码、速率匹配(意即’穿孔或重複)及交錯每一訊框 中的源位元序列128 ’且在映射器108中將其映射至調變符 號序列(例如,四相移位鍵控(QPSK)、16點正交幅度調變 (16QAM)等)。繼而,在解多工器u〇中將該調變符號序列 解多工成個流之从個組’其中經由第w個傳輸天線丨丨4來 傳輸第m組。在展頻器U2中藉由j個展頻碼展開每組中的j 個流,其中第y個展頻碼等於第7.個通道化編碼(例如,展頻 因子的正交碼、準正交碼,或華許碼)與38的偽隨機攪 摔碼的乘積。每組通常重複使用相同集合的j個展頻碼, 且每一傳輸天線114通常使用相同的傳輸功率,但本發明 並不限於此等特定情形。 在經過多維多路徑衰落通道後,所傳輸的信號到達該# 個接收天線116,其中MMSE空間時間晶片等化器118對應 於該Μ個傳輸天線丨14,將所接收的信號分成M個組的等化 軟度量序列。繼而,在解展頻器12〇中,等於該^個展頻碼 之共軛的該^/個解展頻碼將每組等化軟度量序列分成^個軟 解調變符號序列,其每一者對應於該組中的一正交華許通 道。在多工器122中將所形成之《/ZM解調變符號序列多工 成單一流,且在解映射器124中將其解映射成諸如對數似 然比(LLR)序列之序列。在解碼器126中解交錯反相速率 匹配及解碼該序列,以將原始源位元序列恢復為經解碼的 位元130。 145325.doc •12· 201015928 圖2A為包括傳輸器部分202及接收器部分2〇4之mim〇多 重碼CDMA系統200之實施例的方塊圖。在下列論述中, 展頻因子表示為 傳輸器部分202包括複數個編碼器206、複數個映射器 2〇8、複數個解多工器210、複數個展頻器lu,及複數個 傳輸天線114。傳輸天線114的數目為从,且分配至每一傳 輸天線114之展頻碼的數目為。 接收器部分204包括複數個接收天線丨丨6、最小均方誤差 (MMSE)空間時間等化器118、複數個解展頻器12〇、複數 個多工器222、複數個解映射器224,及複數個解碼器 226 接收天線116之數目為iV’且分配至每一接收天線116 之解展頻器120的數目,其對應於分配至每一傳 輸天線114之展頻器112的數目。 每一編碼器206接收用於編碼器206之源位元序列128。 每一訊框中的源位元序列128在其對應的編碼器2〇6中進行 編碼、速率匹配(意即,穿孔或重複)及交錯,且在其對應 的映射器208中映射至調變符號序列(例如,QpSK、 16Q AM專)。繼而,該調變符號序列在其對應的解多工器 210中解多工成/個流之一組,其中經由第所個傳輸天線丨】4 傳輸第m組。在展頻器112中,藉由/個展頻碼來展開每組 中的個流,其中第y個展頻碼等於第)個通道化編碼(例 如’展頻因子5^的正交碼、準正交碼’或華許碼)與偽 隨機攪拌碼的乘積。每組通常重複使用相同集合的j個展 頻碼’且每一傳輸天線114通常使用相同的傳輸功率但 145325.doc •13- 201015928 本發明並不限於此等特定的情形。 在經過多維多路徑衰落通道後,所傳輸的信號到達該w 個接收天線116,其中MMSE空間時間晶片等化器n8對應 於該Μ個傳輸天線114,將所接收的信號分成M個組的等化 軟度量序列。繼而,在解展頻器120中,等於該j個展頻碼 之共概的該·/個解展頻碼將每組等化軟度量序列分成j個軟 解調變符號序列’其每一者對應於該組中的.一正交華許通 道。所得的从個·/解調變符號序列中之每一者在其對應的多 工器222中多工成單一流,且在其對應的解映射器224中解 馨 映射成諸如對數似然比(LLR)序列之序列。該μ個序列中 的每一者在其對應的解碼器226中進行解交錯、反相速率 匹配及解碼,以將原始源位元序列恢復為經解碼的位元 230。 在一實施例中,在mmse空間時間等化之後,μιμο fDMA系統1〇〇、2〇〇的軟度量序列包括五個成分:預期信 $ ; 一或多個準時流間干擾(或不同傳輸天線信號中的串 曰)’其將相同展頻碼重複使用為預期信號;一或多個準參 時流間干擾’其並不將該相同展頻碼重複使用為該預期信 號’或多個多路徑干擾(意即,總服務單元信號成分, 其不準時),及背景雜訊(其他單元干擾、熱雜訊等)。 該等準時流間+媒. ^ 丁艘·在藉由解展頻過程重複使用該預期 U的展頻碼之情況下’則保持完整;或在未藉由解展頻 :重複使用該預期信號的展頻碼之情況下,則遭廢棄。 藉由SFSI子粗略抑制多路經干擾及背景雜訊。 145325.doc 14· 201015928 圖2B為空間時間等化器11 8之實施例的方塊圖。該空間 時間等化器118包含對應於Μ個傳輸天線114之μ個等化記 憶庫250(記憶庫m,在此m=0、1、…、Μ-1)。每一記憶庫 250包含對應於N個接收天線116之N個濾波器252(濾波器 η,在此n=0、1、…、N-1),及加法器254。該等濾波器 252具有滤波係數 v m,n opt,其中 m=0、1、2、...、Μ-1, 且n=0、1、2、…、N-1,且每一濾波器252產生一經濾波 的輸出信號。每一記憶庫250自該N個接收天線116中之每 一者接收一信號,且在對應的濾波器252中處理該信號。 加法器254將自每一記憶庫250中之每一濾波器252的經濾 波輸出信號相加,以產生一等化度量序列256。 關注等化記憶庫0 250a,對於第j個濾波器(在記憶庫〇 中,j = 〇、1、…、N-1,其具有濾波係數Vh〇』〇ρτ),濾波 器j的輸入端連接至第j個接收天線,且濾波器j的輸出端連 接至加法器254a的輸入端。 舉例而言,在具有濾波係數VH0, 0 OPT之等化記憶庫〇 250a中之濾波器〇 252a的輸入端連接至接收天線〇 116a, 且濾波器0 252a的輸出端連接至加法器254a的輸入端。同 樣地’具有濾波係數VH〇, Ν-ι 〇PT之濾波器N-1 252b的輸入 端連接至接收天線N-1 116b,且濾波器N-1 252b的輸出端 連接至加法器254a的輸入端。 在加法器254a中將自區塊〇 250a中之濾波器η(η=0、 1、...、N-1)之該等輸出相加,以產生等化度量序列,即 序列0 256a。 145325.doc -15- 201015928 同樣地’將每一區塊m 250(在此m=〇、1、 、中之 N個濾'波器252的該N個經渡波的輸出相加,以產生μ個等 化度量序列256。 自導頻信號計算如在等式8中進一步描述之通道係數匕 及雜訊共方差Rn。使用計异得的通道係數h及雜訊共方差 Rn來什算渡波係數V m, η OPT,其中m = 〇、1、2、…、Μ-1 且 n=0、1、2、...、N-1。 在另一實施例中,在處理器8中將等化器118建構為軟 體。 圖3為說明多重碼CDMA接收系統1〇4、204之一實施例 之操作的流程圖300。在一實施例中,多重碼CDMA接收 系統104、204在一連續迴路中操作,該迴路始於"起始” 塊,且止於"結束"塊。在區塊31〇中,等化器118接收導頻 符號序列。在區塊3 12中,等化器丨丨8使用該等導頻符號計 算等化器係數。 在區塊314中,接收系統1〇4、2〇4經由天線116接收一信 號。在區塊316中,使用等化係數在等化器118中等化所接 收的信號。等化器118處理該等所接收的信號,以產生等 化度量序列256。 在區塊318中,藉由解展頻器12〇處理等化度量序列 256,以產生解調變符號序列。 準時流間干擾的存在使傳統的晶片級MMSE等化器為非 取佳的,此係因為其未考慮到解展頻效應。在mim〇 CDMA應用中’在雜訊空間之非最佳方向中控制傳統晶片 145325.doc 201015928 級MMSE權重,此使得降級解碼效能。此外,單輸入單輸 出(SISO)多重碼CDMA中MMSE權重最佳化的解展頻效應 並不改變權重(或控制方向),除了不同的定比因子以外。 假定解映射器124、224再定比軟解調變符號,則在sis〇多 重碼CDMA中解碼效能不受影響。 通常,當用於每一流之展頻碼的數目增加時,最佳 MMSE權重(其將解展頻效應考慮在内)與非最佳MMSE權重 之間的間隙減少’此係因為準時流間干擾的解展頻增益將 被所用展頻碼之數目因子粗略折扣,如以下之論述。 用於ΜΙΜΟ多重碼CDMA之線性MMSE等化器權重 在ΜΙΜΟ多重碼CDMA中的傳统晶片級MMSE權重最佳化 傳統MMSE空間時間晶片等化器對應於Μ個傳輸天線 114 ’將所接收的信號分成等化軟度量序列之从個組。繼而 由多工器122、222、解映射器124、224及解碼器126、226 來處理該等序列,以分別產生經解碼的位元130、230。 在以下對傳統晶片級MMSE權重最佳化的論述中,多路 徑延遲展頻之跨度為Z個晶片長,等化器的跨度為五個晶片 長,且接收器每個晶片取用户個樣本(意即,超取樣因子為 户)。另外,An„,p(〇(/=〇、1、…、I -1 ; n=0、1、...、 1 ; w=0、1、…、M_l ;户=〇、1、…、/Μ)為第州個傳輸天 線114與第《個接收天線116之間的通道係數,其對應於第ζ 個晶片延遲及晶片的第户個樣本。在晶片時間之第m個傳 輸天線114的晶片信號由表示,其中邱心⑷|2] = 1及2. A device or method of converting a symbol into a set of bits. The spreader can increase the bandwidth of the transmitted signal for the M bottle factor, so that it can be used as a general implementation. A device or square information bandwidth that exemplifies and reduces the bandwidth of the received signal. The frequency converter can reduce the bandwidth of the received signal to its spatial time equalizer. The ratio of the device or method time of a signal can be provided to the combination. For example, the spatial time equalizer can spatially compare and combine a received signal to recover the original signal. Referring to FIG. 1B, encoder 106 receives source bit sequence 128. Encoding, rate matching (ie, 'puncturing or repeating') and interleaving the source bit sequence 128' in each frame in encoder 1 且6 and mapping it to the modulated symbol sequence in mapper 108 (eg , four-phase shift keying (QPSK), 16-point quadrature amplitude modulation (16QAM), etc.). Then, the modulated symbol sequence is multiplexed into a stream from the group ’ in the demultiplexer u ’ where the mth group is transmitted via the wth transmission antenna 丨丨4. In the spreader U2, j streams in each group are expanded by j spreading codes, wherein the yth spreading code is equal to the seventh channelized coding (for example, orthogonal codes of the spreading factor, quasi-orthogonal codes) , or Huaxu code) and the product of the pseudo-random wrestling code of 38. The same set of j spreading codes are typically reused for each group, and each transmission antenna 114 typically uses the same transmission power, although the invention is not limited to these particular circumstances. After passing through the multi-dimensional multipath fading channel, the transmitted signal reaches the # receiving antennas 116, wherein the MMSE spatial time chip equalizer 118 corresponds to the one of the transmitting antennas ,14, and the received signals are divided into M groups. Equalize the soft metric sequence. Then, in the despreader 12A, the ^/a despreading code equal to the conjugate of the spreading codes divides each set of equalized soft metric sequences into ^ soft demodulating symbol sequences, each of which Corresponding to an orthogonal Huawei channel in the group. The resulting "ZM demodulation variable symbol sequence is multiplexed into a single stream in multiplexer 122 and demapped in demapper 124 into a sequence such as a log likelihood ratio (LLR) sequence. The sequence is deinterleaved in decoder 126 to match and decode the sequence to recover the original source bit sequence to decoded bit 130. 145325.doc • 12· 201015928 FIG. 2A is a block diagram of an embodiment of a mim〇 multi-code CDMA system 200 including a transmitter portion 202 and a receiver portion 2〇4. In the following discussion, the spreading factor is represented as a transmitter portion 202 comprising a plurality of encoders 206, a plurality of mappers 2〇8, a plurality of demultiplexers 210, a plurality of spreaders lu, and a plurality of transmit antennas 114. The number of transmission antennas 114 is slaved, and the number of spreading codes assigned to each of the transmission antennas 114 is. The receiver portion 204 includes a plurality of receiving antennas 丨丨6, a minimum mean square error (MMSE) spatial time equalizer 118, a plurality of despreaders 12A, a plurality of multiplexers 222, and a plurality of demappers 224. And a plurality of decoders 226 receive the number of antennas 116 as iV' and the number of despreaders 120 assigned to each of the receive antennas 116, which corresponds to the number of spreaders 112 assigned to each of the transmit antennas 114. Each encoder 206 receives a source bit sequence 128 for the encoder 206. The source bit sequence 128 in each frame is encoded, rate matched (ie, punctured or repeated) and interleaved in its corresponding encoder 2〇6, and mapped to modulation in its corresponding mapper 208. Symbol sequence (for example, QpSK, 16Q AM). In turn, the sequence of modulated symbols is demultiplexed into a set of streams in its corresponding demultiplexer 210, wherein the mth group is transmitted via the first transmit antenna. In the spreader 112, the streams in each group are expanded by a spreading code, wherein the yth spreading code is equal to the first channelized coding (eg, the orthogonal code of the spreading factor 5^, the quasi-positive The product of the code 'or Huaxun code' and the pseudo-random stirring code. Each set typically reuses the same set of j spreading codes' and each transmitting antenna 114 typically uses the same transmission power but 145325.doc • 13-201015928 The invention is not limited to these particular circumstances. After passing through the multi-dimensional multipath fading channel, the transmitted signal reaches the w receiving antennas 116, wherein the MMSE space time chip equalizer n8 corresponds to the one of the transmitting antennas 114, and the received signals are divided into M groups, etc. Soft metric sequence. Then, in the de-spreading unit 120, the //the despreading code equal to the commonality of the j spreading codes divides each set of equalized soft metric sequences into j soft demodulation symbol sequences 'each of which Corresponds to the one orthogonal huaxu channel in the group. Each of the resulting slave/demodulation variable symbol sequences is multiplexed into a single stream in its corresponding multiplexer 222 and mapped in its corresponding demapper 224 to a log likelihood ratio, such as Sequence of (LLR) sequences. Each of the μ sequences is deinterleaved, inverted rate matched, and decoded in its corresponding decoder 226 to restore the original source bit sequence to decoded bit 230. In an embodiment, after the mmse space time is equalized, the soft metric sequence of the ι, 2 μ 包括, 2 包括 includes five components: the expected letter $; one or more on-time inter-stream interference (or different transmission antennas) a string in the signal) 'which reuses the same spreading code as the expected signal; one or more of the quasi-parametric inter-stream interference 'which does not reuse the same spreading code as the expected signal' or multiple multipaths Interference (meaning, the total service unit signal component, which is not on time), and background noise (other unit interference, thermal noise, etc.). The punctual inter-stream + media. ^ Ding························································································ In the case of the spread code, it is discarded. The multipath interference and background noise are roughly suppressed by the SFSI. 145325.doc 14· 201015928 FIG. 2B is a block diagram of an embodiment of a spatial time equalizer 118. The spatial time equalizer 118 includes μ equalization memory banks 250 (memory m, where m = 0, 1, ..., Μ-1) corresponding to one of the transmission antennas 114. Each memory bank 250 contains N filters 252 (filter n, where n = 0, 1, ..., N-1) corresponding to the N receive antennas 116, and an adder 254. The filters 252 have filter coefficients vm,n opt, where m=0, 1, 2, ..., Μ-1, and n=0, 1, 2, ..., N-1, and each filter 252 produces a filtered output signal. Each bank 250 receives a signal from each of the N receive antennas 116 and processes the signal in a corresponding filter 252. Adder 254 adds the filtered output signals from each of filters 252 in each bank 250 to produce an equalized metric sequence 256. Focus on the equalization memory 0 250a, for the jth filter (in the memory bank, j = 〇, 1, ..., N-1, which has the filter coefficient Vh〇 〇 ρτ), the input of the filter j Connected to the jth receive antenna, and the output of filter j is coupled to the input of adder 254a. For example, the input of filter 〇 252a in equalization memory bank 250a having filter coefficients VH0, 0 OPT is coupled to receive antenna 〇 116a, and the output of filter 0 252a is coupled to the input of adder 254a. end. Similarly, the input of the filter N-1 252b having the filter coefficient VH 〇, Ν-ι PT is connected to the receiving antenna N-1 116b, and the output of the filter N-1 252b is connected to the input of the adder 254a. end. The outputs of the filters η (η = 0, 1, ..., N-1) in the block 〇 250a are added in an adder 254a to produce an equalized metric sequence, i.e., sequence 0 256a. 145325.doc -15- 201015928 Similarly, 'add each of the blocks m 250 (in this m=〇, 1, and N of the N filter waves 252) to produce μ The equalization metric sequence 256. The pilot signal is calculated as the channel coefficient 匕 and the noise common variance Rn as further described in Equation 8. The channel coefficient h and the noise common variance Rn are used to calculate the wave coefficient. V m, η OPT, where m = 〇, 1, 2, ..., Μ-1 and n = 0, 1, 2, ..., N-1. In another embodiment, in processor 8 The equalizer 118 is constructed as a software. Figure 3 is a flow diagram 300 illustrating the operation of one embodiment of a multi-code CDMA receiving system 1-4, 204. In one embodiment, the multi-code CDMA receiving system 104, 204 is in a contiguous manner. In loop operation, the loop begins at the "start" block and ends at the "end" block. In block 31, the equalizer 118 receives the pilot symbol sequence. In block 3 12, etc. The equalizer coefficients are calculated using the pilot symbols. In block 314, the receiving systems 1〇4, 2〇4 receive a signal via antenna 116. In block 316, The coefficients are normalized by the equalizer 118. The equalizer 118 processes the received signals to produce an equalized metric sequence 256. In block 318, the despreader 12 is processed, etc. The metric sequence 256 is generated to generate a demodulated variable symbol sequence. The presence of on-time inter-stream interference makes the conventional wafer-level MMSE equalizer less desirable because it does not take into account the despreading effect. In the application, 'control the traditional chip 145325.doc 201015928 MMSE weight in the non-optimal direction of the noise space, which makes the decoding performance degraded. In addition, the MMSE weight optimization solution in single-input single-output (SISO) multi-code CDMA The spread spectrum effect does not change the weight (or control direction), except for different scaling factors. Assuming that the demappers 124, 224 are more than soft demodulated, the decoding performance is not affected in sis 〇 multicode CDMA. In general, when the number of spreading codes used for each stream increases, the gap between the optimal MMSE weight (which takes into account the spread-spreading effect) and the non-optimal MMSE weight is reduced. This is because of the on-time flow. Interdiction The frequency gain will be roughly discounted by the number of spreading codes used, as discussed below. Linear MMSE equalizer weights for multi-code CDMA Traditional wafer-level MMSE weights in multi-code CDMA optimize traditional MMSE space The time chip equalizer corresponds to the slave transmit antennas 114' dividing the received signals into groups of equalized soft metric sequences. The multiplexers 122, 222, demappers 124, 224, and decoders 126, 226 are then used. The sequences are processed to produce decoded bits 130, 230, respectively. In the following discussion of the optimization of conventional wafer level MMSE weights, the span of multipath delay spread spectrum is Z wafer length, the span of the equalizer is five wafer lengths, and the receiver takes one user sample per wafer ( That is, the oversampling factor is household). In addition, An„, p(〇(/=〇, 1,..., I -1 ; n=0, 1,..., 1; w=0, 1,..., M_l; household =〇, 1,... And /Μ) is the channel coefficient between the state transmission antenna 114 and the "receiving antenna 116, which corresponds to the second chip delay and the first sample of the wafer. The mth transmission antenna 114 at the wafer time. The chip signal is represented by which Qiu Xin (4)|2] = 1 and 2
X 為每一傳輸天線114的平均晶片能量。 145325.doc -17· 201015928 定義 χ/»(^) = σ^ [xm(A:) xm(k + l)-"Xm(k + E + L-2)]T (1) 為第w個傳輸天線114之(五+u)維的晶片向量,其自指數^ 跨至免+五+Z-2。同樣,讓⑻及%⑻為第”個接收天線} j 6 處關於第A:個晶片之第p個樣本之所接收樣本及其背景雜訊 成分。 另外,定義 y ” (kM3V。(A:)…Λπ W …凡,。(无 + 五-1)…(* + 五-1)]T (2) 及 n« (k)Ξ [»„,0 (k)- nnJ>_, (k)- nnfi {k + E-\)-· nnJ>_x (A: + £ - 1)]T (3) 為第》個接收天線116處尸五維的所接收樣本向量及對應的背 景雜訊向量,則 y〇W' = 'H〇,〇 ...ϊτ " ^Ο,ΑΖ-Ι + ’ η〇 W (4) yN—'(k\ ...Η _XA/-l(^)_ 〜_】(灸) 在等式4中’ ^,^表示在第w個傳輸天線114與第《個接收天 線116之間的作χ(£+ζ-ι)多路徑通道矩陣,且給定為 办”,m,0 ⑼X is the average wafer energy per transmit antenna 114. 145325.doc -17· 201015928 Definition χ/»(^) = σ^ [xm(A:) xm(k + l)-"Xm(k + E + L-2)]T (1) is the wth The (five + u)-dimensional wafer vector of the transmission antenna 114 spans from the exponent ^ to the free + five + Z-2. Similarly, let (8) and %(8) be the received samples of the p-th sample of the A:th chip at the "receiving antenna} j 6 and its background noise component. In addition, define y" (kM3V. (A: )...Λπ W ...fan,. (none + five-1)...(* + five-1)]T (2) and n« (k)Ξ [»„,0 (k)- nnJ>_, (k )- nnfi {k + E-\)-· nnJ>_x (A: + £ - 1)]T (3) is the received sample vector of the fifth-dimensional receiving antenna at the receiving antenna 116 and the corresponding background noise Vector, then y〇W' = 'H〇,〇...ϊτ " ^Ο,ΑΖ-Ι + ' η〇W (4) yN—'(k\ ...Η _XA/-l(^) _ _ _ (Moxibustion) In Equation 4, '^, ^ denotes the 多 (£+ζ-ι) multipath channel matrix between the wth transmission antenna 114 and the "receiving antenna 116", and gives Set to do", m, 0 (9)
Uz-i)… ΗUz-i)... Η
九,/«,。(厶-1)…ν„,〇⑼ • . • · • ♦ 尸-1 (Z-1)…w〇) 此外,定義為維的總體所接 收樣本之向量,定義為ΛΠ維的總 145325.doc -18- 201015928 趙背景雜訊向量,定義R” 為^的雜訊共方 差矩陣,及定義 H〇,〇 …Η (6) Η ^ [h〇h1 * · ]: •Hn,0 為iVPZxMCE + Z-l)的總體多路徑通道矩陣。則對於具有D個 晶片之目標延遲之第w個傳輸天線晶片流,最小化 可«_-\从+仍卩]之最佳晶片級線性1^18£加權向量<變為.hW+R,,]-1 ~σχ^Μ(£+Λ_1)+ί>| =<^XK( E+L-\)+D 1 Λ^(£+Λ-1)-1+r„ ⑺ 如上所述,其中自一導頻信號計算該等通道矩陣係數 藉由應用矩陣求逆引理,等式7可重寫為: r i ί M (£+/.-1)-1 " X+SNR . X ax^m(E^L-\)+D +R„ \ *'m,chtp J 其中等化器輸出晶片SNR為 (8)nine,/",. (厶-1)...ν„,〇(9) • . • • • ♦ 尸-1 (Z-1)...w〇) In addition, the vector of the received sample defined as the dimension of the dimension is defined as the total 145325 of the dimension. Doc -18- 201015928 Zhao background noise vector, define the noise covariance matrix of R" is ^, and define H〇,〇...Η (6) Η ^ [h〇h1 * · ]: •Hn,0 is iVPZxMCE + Zl) The overall multipath channel matrix. Then for the wth transmit antenna wafer stream with the target delay of D wafers, the optimal wafer level linear 1^18 £weighting vector can be minimized to become a .hW+R ,,]-1 ~σχ^Μ(£+Λ_1)+ί>| =<^XK( E+L-\)+D 1 Λ^(£+Λ-1)-1+r„ (7) As described above, calculating the channel matrix coefficients from a pilot signal by applying a matrix inversion lemma, Equation 7 can be rewritten as: ri ί M (£+/.-1)-1 " X+SNR . X ax^m(E^L-\)+D +R„ \ *'m,chtp J where the equalizer output chip SNR is (8)
SNR m^chipSNR m^chip
E+L-\)+D 參 M(£+L-iy] +Rw J*m(£+L-l )+£),/=〇 h w(£+L-i)+£) (9) 此外,等化器輸出軟晶片度量變為 xm(k + D) = yv^y(k)^ SNRmchin ϊ+气-[Xw(A:”訊]〇0) 當藉由ς顧其中ις·2=1))表示第M展頻竭(或第J·個華許 碼與共同攪拌碼之乘積)時,解展頻器12 、六'甲展頻因子Λ 的輸出軟符號變為 為 〇)=7^2((”_狀+幻〇),乂=0、1、2、 r 1 145325.doc 19- 201015928 其中A*表示A的共軛複數。解映射器i24再定比及轉換輪 出軟符號為對於符號指數„、編碼指數y及傳輸天線指數讲 之位元值。 在對解碼器126、226之觀察下’等式(7)的MMSE加權向 量並非為最佳,此係因為是在未考慮解展頻器12〇中之準 時流間干擾之顯著性質的情況下進行了最佳化。 ΜΙΜΟ多重褐CDMA之增金型晶片級MMSE加權向量 以下論述在解展頻前等化所接收之信號的MIm〇多重碼 CDMA系統。空間時間等化器應用具有為展頻因子之函數 的係數之加權向量。 考慮傳輸晶片值〜w由^/個正交通道成分構成,意即, = (12) 其中幻為對應於第w個傳輸天線丨14之第)個展頻碼的晶 片成分(其中呀^(幻丨2] = 1)),在等式(11)中該解展頻器輸出符 號度量 <(”)之SNR可為 SNRi, symbolE+L-\)+D 参M(£+L-iy) +Rw J*m(£+Ll )+£),/=〇hw(£+Li)+£) (9) In addition, equalization The output of the soft chip metric becomes xm(k + D) = yv^y(k)^ SNRmchin ϊ+gas-[Xw(A:" 讯]〇0) When ις·2=1)) When the Mth exhibition is exhausted (or the product of the Jth code and the common stirring code), the output soft symbol of the despreader 12 and the six 'A spread factor Λ becomes 〇)=7^2 (("_状+幻〇),乂=0,1,2, r 1 145325.doc 19- 201015928 where A* denotes the conjugate complex number of A. The demapper i24 re-determines and converts the round soft symbol to For the symbol index „, the coding index y, and the bit value of the transmission antenna index. The MMSE weighting vector of equation (7) is not optimal under the observation of the decoders 126 and 226, because it is not considered. Optimized in the case of the significant nature of the on-time inter-stream interference in the detuner 12〇. ΜΙΜΟ Multi-brown CDMA gold-enhanced wafer-level MMSE weighting vector The following discusses equalizing the received signal before despreading. MIm〇 multicode CDMA system. Space time equalizer application has a function of the spreading factor The weighted vector of the number. Considering that the transmitted wafer value 〜w is composed of ^/ orthogonal channel components, that is, = (12) where the phantom corresponds to the wafer component of the first spreading code of the wth transmission antenna 丨14 ( Where 呀^(幻丨2] = 1)), in equation (11), the SNR of the despreader output symbol metric <(") can be SNRi, symbol
SF κSF κ
{E+L-\)+D{E+L-\)+D
+ R h+ R h
m(E+L-])+D (13) 注意該正交解展頻應該相對於晶片SNR引入(S^增益因子 及相耗因子。 然而,在編碼重複使用的MIM〇多重碼cdma系統 中,解展頻器輸出符號的實際SNR變得比等式(13)的低, 此係因為在解展頻過程中準時流間干擾表現為與多路徑干 擾或背景雜訊不同。此外,在對解碼器126、226之^察 145325.doc -20· 201015928 下’等式(7)的MMSE加權向量並非為最佳,此係因為是在 未考慮解展頻器120中之準時流間干擾之顯著性質的情況 下進行了最佳化。因此,如以下進一步論述,等式(13)的 SNR在實踐中難以達成。 參看等式(4)-(6)及等式(10)-(12),由加權向量 對於第 w個傳輸天線流)等化且由第y個解展頻碼c*0)解展頻之軟解 調變符號可寫為:m(E+L-])+D (13) Note that the orthogonal solution spread spectrum should be introduced relative to the SNR of the chip (S^gain factor and phase loss factor. However, in the code reuse MIM〇 multicode cdma system The actual SNR of the despreader output symbol becomes lower than that of equation (13) because the inter-time inter-channel interference appears to be different from multipath interference or background noise during the despreading process. The MMSE weighting vector of 'Equation (7) is not optimal for the decoders 126, 226 145325.doc -20 · 201015928, because the inter-flow interference is not considered in the despreader 120 The optimization is performed in the case of significant properties. Therefore, as discussed further below, the SNR of equation (13) is difficult to achieve in practice. See equations (4)-(6) and equations (10)-( 12), the soft demodulation variable symbolized by the weight vector for the wth transmission antenna stream and despread by the yth despreading code c*0) can be written as:
X^HE+L-\)*D ⑻h咐+i_丨)+dX^HE+L-\)*D (8)h咐+i_丨)+d
IVl ~iΣ · p*mtp^Q jSF丨了 (IVl ~iΣ · p*mtp^Q jSF丨 (
rx^p(E+L-\)+D(n)^p(E+L-l)+D + Σ°Ά ⑻\ +(”) 9*p{E^L-\)+D (14)Rx^p(E+L-\)+D(n)^p(E+L-l)+D + Σ°Ά (8)\ +(") 9*p{E^L-\)+D (14)
其中第一及第二項分別代表信號及干擾成分。更特定而 言,等式(M)中的、^心㈣⑻及·)分別代表解 展頻後之預期符號成分、使用第y個展頻碼的準時流間干 擾成分,及多路徑干擾成分。不使用第y•個展頻碼的準時 流間干擾成分在解展頻過程中消失。相反,使用第^•個展 頻碼之準時流間干擾成分由於解展頻而具有幻^展頻增益, =預期信號成分所作。解展頻操作不會改變多路徑干擾成 刀及背景雜訊成分(在等式(丨4)中由y⑻表示)的共方差。 在對解碼器126、226之觀察下,最佳河厘卯加權向量 _應最小化可㈣⑻Π (即,應相對於目標符號 實施最小化),且因此其變為The first and second items represent the signal and interference components, respectively. More specifically, in the equation (M), ^(4)(8) and ·) represent the expected symbol components after the spread spectrum, the on-time inter-channel interference components using the yth spreading code, and the multipath interference components. The on-time inter-stream interference component that does not use the y-th spread code disappears during the despreading process. Conversely, the on-time inter-stream interference component using the first spreading code has a magic spread gain due to the despreading frequency, = the expected signal component. The despreading operation does not change the covariance of the multipath interference shaping and background noise components (represented by y(8) in the equation (丨4)). Under the observation of the decoders 126, 226, the optimal river 卯 weight vector _ should be minimized by (4) (8) Π (ie, should be minimized relative to the target symbol), and thus it becomes
:W^h m(E+L^l)+〇 ^SF 2 h L· j σχ P(£+i-l)+0hp(£. + Σσ>Χ+κ«:W^h m(E+L^l)+〇 ^SF 2 h L· j σχ P(£+i-l)+0hp(£. + Σσ>Χ+κ«
q*p(E+L-\)+D 145325.doc (15) 201015928 藉由應用矩陣求逆引理,可將依展頻因子而定的mmse 加權向量重寫為 m,opt :]ΙΨσΧ(q*p(E+L-\)+D 145325.doc (15) 201015928 By applying the matrix inversion lemma, the mmse weighted vector according to the spreading factor can be rewritten as m,opt :]ΙΨσΧ(
S+L-l)+D Σ p^mtp=0S+L-l)+D Σ p^mtp=0
SF •σSF • σ
:11 p(E+L-\)+Dnp(E+l-])+D q*P{E+L-\)+〇 (16) 第W個傳輸天線114之第y個編碼的解展頻器輸出符號 SNR變為 SNRt°JU〇,=:11 p(E+L-\)+Dnp(E+l-])+D q*P{E+L-\)+〇(16) The y-coded decoding of the Wth transmission antenna 114 The frequency converter output symbol SNR becomes SNRt°JU〇,=
SF m(£+Z,-l)+Z) ΛΪ ·息 ΣSF m(£+Z,-l)+Z) ΛΪ·息 Σ
SFSF
X ^p(E+L-\)+D^p(E+L~\)+D Σσ>Χ 9^p(f+Z,-l)+£)X ^p(E+L-\)+D^p(E+L~\)+D Σσ>Χ 9^p(f+Z,-l)+£)
m(E^L-\)+D (17) 等式(13)及(17)藉由SF/J因子展示,等式(17)之準時干擾 成为的方差比等式(13)的方差較大。因此等式(17)中可達 成之SNR比等式(13)之預期Snr低,除非將獨立的卯編碼 分配至資料傳輸’且該等傳輸天線114對其進行充分重複 使用(意即,J=SF)。在實踐中’經分配及經重複使用之編 碼的數目通常由於依資料速率而定的展頻碼分配(例如, 較低資料速率時較小數目的編碼,及較高資料速率時較大 數目的編碼)、控制通道、音頻通道的存在等,而小於 SF。等式(8)及(16)展示,歸因於準時流間干擾成分之功率 因子SF/J的差異,在待由解映射器丨24、224及解碼器 145325.doc •22· 201015928 126 226使用之軟符號等級中,傳統晶片級最佳化μ議 加權向量並非為最佳。傳統晶片級刪£加權向量低估了 準時流間干擾成分,因為其未將解展頻效應考慮在内,且 因此在非最佳方向中進行控制。因此,在一實施例中使 用等式⑻的加權向量,實際符號SNR變得甚至低於等式 (17),其遠離等式(13)的上限。當吾人減少供多重天線重 複使用之展頻碼的數目時,等式(16)中之mim〜cdma最 佳化MMSE加權向量與等式⑻中之傳統加權向量間的效能 攀 間隙變得較大。 在獲得增強型晶片級等化器118中,使用圖!及圖2的系 統模型’其中多重天線j i 4重複使用相同的展頻碼,且所 有天線114及編碼使用近似相同量的傳輸功率。 參看等式(8)及等式(16),改變加權向量之控制方向的成 分為準時流間干擾。因此,在不存在流間干擾之sis〇多重 碼CDMA系統中,傳統晶片級MMSE加權向量及增強型 • MMSE加權向量在相同方向中進行控制(亦即,其於信號空 間中對準)。然而,該等加權向量的定比可能不同。定比 因子為SNR的函數,且若解映射器124、224能夠精確地再 定比輸入軟符號以得到公正的評估,則傳統晶片級mmse 加權向量及增強型MMSE加權向量具有近似相同的解碼效 能。 在ΜΙΜΟ多重碼CDMA中增強型等化器對任意功率及編瑪 分配情形之一般化 在產生用於ΜΙΜΟ多重碼CDMA接收器104、204之增強 145325.doc -23- 201015928 型晶片級MMSE加權向量中,在等式(i2)_(i7)中,假定所 有Μ個傳輸天線114重複使用相同的^個展頻碼,且他2總 體傳輸晶片能量經平等劃分且被分配至由傳輸天線丨〗4及 展頻碼分開的個流。同等地,假定流中的每一者具 有的晶片能量。在此部分中,任意編碼及功率分配情 形將實際劃碼多工導頻、控制及音頻通道及不平等的功率 分配之存在考慮在内。 為此’將圮定義為分配至第個傳輸天線U4(w = 〇、 1、…、M-1)及展頻因子SF之第j·個編碼(;=〇、1、、 1)的晶片能量,其包括分配至第j個編碼之所有可能子碼樹 (若其正用於第w個天線114中)之晶片能量的總和。若第所 個傳輸天線114並未使用第y個編碼,則纪等於〇。如上所 述,用於ΜΙΜΟ多重碼CDMA之增強型晶片級MMSE加權向 量的結果對於特殊情形有效,其中m(E^L-\)+D (17) Equations (13) and (17) are shown by the SF/J factor, and the variance of the quasi-time interference of equation (17) is greater than the variance of equation (13). Big. Thus the SNR achievable in equation (17) is lower than the expected Snr of equation (13) unless a separate 卯 code is assigned to the data transmission' and the transmission antennas 114 are fully re-used (ie, J =SF). In practice, the number of assigned and re-used codes is usually due to the spread of the spreading code depending on the data rate (eg, a smaller number of codes at lower data rates, and a larger number at higher data rates) Coding), control channel, presence of audio channel, etc., and less than SF. Equations (8) and (16) show that due to the difference in power factor SF/J of the on-time inter-flow interference component, the demapper 、24, 224 and the decoder 145325.doc •22· 201015928 126 226 In the soft symbol level used, the traditional wafer level optimization is not optimal. The traditional wafer level de-emphasis weighting vector underestimates the on-time inter-stream interference component because it does not take into account the despreading effect and therefore controls in a non-optimal direction. Thus, in an embodiment using the weighting vector of equation (8), the actual symbol SNR becomes even lower than equation (17), which is far from the upper limit of equation (13). When we reduce the number of spreading codes for multiple antenna reuse, the performance gap between the mim~cdma optimized MMSE weighting vector in equation (16) and the traditional weighting vector in equation (8) becomes larger. . In the enhanced wafer level equalizer 118, use the map! And the system model of Figure 2 wherein the multiple antennas j i 4 reuse the same spreading code, and all antennas 114 and encoding use approximately the same amount of transmission power. Referring to equations (8) and (16), the variation of the control direction of the weight vector is changed to just-time inter-stream interference. Thus, in sis 〇 multi-code CDMA systems where there is no inter-stream interference, conventional wafer-level MMSE weighting vectors and enhanced MMSE weighting vectors are controlled in the same direction (i.e., they are aligned in the signal space). However, the ratios of the weighted vectors may differ. The scaling factor is a function of SNR, and if the demappers 124, 224 are able to accurately rescale the input soft symbols for a fair evaluation, the conventional wafer level mmse weighting vector and the enhanced MMSE weighting vector have approximately the same decoding performance. . The generalization of the enhanced equalizer for arbitrary power and semaphore allocation in MIMO multi-code CDMA is the generation of enhanced 145325.doc -23- 201015928 wafer-level MMSE weighting vectors for ΜΙΜΟ multicode CDMA receivers 104, 204. In equations (i2)_(i7), it is assumed that all of the two transmission antennas 114 repeatedly use the same spreading code, and that the total transmission wafer energy of the second 2 is equally divided and assigned to the transmission antenna. And separate streams of the spread spectrum code. Equally, assume that each of the streams has wafer energy. In this section, arbitrary coding and power allocation scenarios take into account the existence of actual coded multiplexed pilot, control and audio channels, and unequal power allocation. For this purpose, 'will be defined as a chip assigned to the first transmission antenna U4 (w = 〇, 1, ..., M-1) and the jth code (; = 〇, 1, 1) of the spreading factor SF. Energy, which includes the sum of the wafer energies assigned to all possible subcode trees of the jth code (if they are being used in the wth antenna 114). If the first transmission antenna 114 does not use the yth code, then Ji is equal to 〇. As described above, the results of the enhanced wafer level MMSE weighted vector for multi-code CDMA are valid for special cases, where
Ei W = 0,1,...Λ/-l;y = 〇,l,...J-l m 1 0, m = -l;j = J,J + \,...SF -1 (18) 且傳輸功率分配至資料傳輸。在一實施例中,無控制通 道或導頻通道與ΜΙΜΟ資料流同時共用該傳輸功率。由c 表示第m個傳輸天線114的總體傳輸晶片能量,其包括所有 通道’諸如資料、導頻、控制通道等,且定義/w , m=〇 第)個編碼及第m個傳輸流之最佳MMSE加權向量 能以 用於等式(15)的方式得出,其變為 Α/-ΙEi W = 0,1,...Λ/-l;y = 〇,l,...Jl m 1 0, m = -l;j = J,J + \,...SF -1 (18 And the transmission power is allocated to the data transmission. In one embodiment, the uncontrolled channel or pilot channel shares the transmitted power with the data stream. The total transmitted wafer energy of the mth transmission antenna 114 is represented by c, which includes all channels 'such as data, pilot, control channel, etc., and defines /w, m=〇) codes and the mth transmission stream. The good MMSE weight vector can be derived in the way of equation (15), which becomes Α/-Ι
m(E+L~\)+D Ρ u p{E+L^\ )+D p{E+L^i + Σοχ+R” q*p(E+L-\)+D /»=〇,1,…,A/-1 (19) 145325.doc -24 - 201015928 此外,應用矩陣求逆引理,等效加權向量變為 w丹 =m(E+L~\)+D Ρ up{E+L^\ )+D p{E+L^i + Σοχ+R” q*p(E+L-\)+D /»=〇, 1,...,A/-1 (19) 145325.doc -24 - 201015928 In addition, applying the matrix inversion lemma, the equivalent weight vector becomes w dan =
/ \ 1 X yjSF · EJm hm(£+x,_i)+i> · .E^hgf£+L_n+£)hpfg+L_n+D + [l + SNRi;Z'mbolj p*m,p=0 g*p(E+L-l)+D (20) 其中第m個傳輸天線114之第個編碼的解展頻器輸出符號 SNR變為/ \ 1 X yjSF · EJm hm(£+x,_i)+i> · .E^hgf£+L_n+£)hpfg+L_n+D + [l + SNRi;Z'mbolj p*m,p=0 g *p(E+Ll)+D (20) where the first coded despreader output symbol SNR of the mth transmit antenna 114 becomes
(21) SF-EJmh /w(£"+Z<_l )+·0 A/—1ΣΞΙΡ·Ε>(21) SF-EJmh /w(£"+Z<_l )+·0 A/—1ΣΞΙΡ·Ε>
p(E+L-\)+D np(E^L-\)+Dp(E+L-\)+D np(E^L-\)+D
e/w(£+Z,-l)+D ρΦΐη,ρ-Ο q*p(E+L-\)+D A/-1e/w(£+Z,-l)+D ρΦΐη,ρ-Ο q*p(E+L-\)+D A/-1
如圖4中之說明,針對各種晶片SNR值,比較傳統等化 器(傳統型EQ)與增強型等化器(增強型EQ)間之區塊錯誤率 (BLER)效能的模擬值.(五c/iVo) 〇針對4個傳輸(或M=4)天線 114及4個接收(或N=4)天線116的情況進行該等模擬。根據 3GPP HSDPA HS-DSCH規格組態編碼、速率匹配、交錯、 群集映射及接收器配對物。在HS-DSCH中,晶片速率為 3.84 Mcps,訊框長度(或區塊長度)為2 ms, 為16,及對 於每一天線114,每訊框每展頻碼之調變符號的數目為 480。在模擬中,將調變群集固定至QPSK。因此,使用 個展頻碼經由4個天線114在訊框中進行傳輸之經編碼位元 的總數目為3840«/。該4個傳輸天線114經設定以使用相同 集合的·/個展頻碼,且相同量的傳輸晶片能量五c/M經平均 劃分而分配至每一天線114的該J個編碼通道。 145325.doc -25- 201015928 為簡潔起見’在該模擬中未模仿負載通道(例如,共同 導頻通道、控制通道、音頻通道等)。因此,總體Bs傳輸 晶片能量/〇r等於HS-DSCH晶片能量五c。在3Gpp HSDpA規 格中之渦輪碼(turbo code)用於編碼,且編碼速率經由該模 擬保持在約1/3。將載波頻率設定為2GHz。藉由功率頻譜 密度沁之空間無關白高斯隨機過程來模仿4個接收天線ιΐ6 時之背景雜訊成分。在模擬中使用具有通道係 方差之完全同步及完全評估之晶片隔離式等化器=(意 即,將超取樣因子户設定為1)β當多路徑延遲跨越Z個晶片⑩ 時,將空間時間等化器時間跨度£及目標延遲时定為几 個晶片及U-1個晶片。 圖4展示標準SCM鍵路級描述之3 km/h車輛Α模型(6個路 徑、2度的BS角展度、35度的Ms角展度、1〇波長之bs天線 間隔、〇·5波長之MS天線間隔)中之單編碼重複使用的 BLER效能。將對應的資訊資料速率設定至州kbps,且編 Μ元的數目為3 840。在單編碼情形中如圖4中的說 明,在ΗΓ2之區塊錯誤率(BLER)下,存在約這的增益。❹ 觀測到*編碼數目增加時,自增強型等化器的增益減 少:當編碼數目接近狀時’準時流間干擾組分與⑽之多 干擾及β景雜組分之間的功率平衡變得更接近於⑻ 之傳統等化器的功率平衡。從而,對於_編碼的改良比 對於單編碼的改良小。 傳統晶片級MMSE加權向量⑻提供比在不同傳輸天線 中重複使用相同編碼之MIM〇多重碼CDMA之增強型 145325.doc 26 201015928 MMSE加權向量(16)小的信號雜訊比。如吾人在(8)與(i6) 之比較中所見,該兩個加權向量甚至在補償定比因子後仍 在不同方向中進行控制。在—實施例巾,準時流間干擾為 關鍵成分。因此,考慮到解展頻效應之增強SMMSE加權 向量較佳。 熟習此項技術者將瞭解,可使用各種不同技術及方法中 的任一者來表示該等資訊及信號。例如,可用電壓、電 流、電磁波、磁場或粒子、光學場或粒子或其任何組合來 表不可以上所有描述中所參考的資料、指令、命令、資 訊、信號、位元、符號及晶片。 熟習此項技術者將進一步瞭解可將結合本文揭示之該等 實施例所描述之各種說明性邏輯塊、模組、電路及演算法 步驟建構為電子硬體、電腦軟體或兩者的組合。為了清楚 說明硬體與軟體之此互換性,各種說明性組件、區塊、模 組、電路及步驟在上文中已根據各自的功能性進行了一般 描述將該功能性建構為硬體或是軟體將視特定應用及對 於整個系統的設計約束而定。熟練的技術人員可針對每一 特定應用以不同方式建構所述功能性,但該等建構決策不 應解釋為會導致背離本發明之範疇。 可藉由通用處理器、數位信號處理器(DSP)、特殊應用 積體電路(ASIC)、場可程式化閘陣列(FPGA)或旨在執行本 文所述之功能的其他可程式化邏輯裝置、離散閘或電晶體 邏輯、離散硬體組件或其任何組合,來建構或執行結合本 文所揭示之該等實施例所描述的各種說明性邏輯塊、模組 145325.doc -27- 201015928 及電路。通用處理器可為一微處理器、習知處理器 器、微控制器狀態機等。亦可將一處理器建構為計算:置 如’一Dsp與一微處理器之組合、複數個微處 該L離、r—Dsp核"之―或多個微處理器,或任何其他 結合本文所揭示之該等實施例所描述之方法或演算法的 步驟可直接包含於硬體中、由一處理 .執仃的軟體模組 中,或兩者之組合中。軟體模組可駐留As shown in Figure 4, the analog error value of the block error rate (BLER) performance between the conventional equalizer (conventional EQ) and the enhanced equalizer (enhanced EQ) is compared for various wafer SNR values. c/iVo) 该 These simulations are performed for 4 transmission (or M=4) antennas 114 and 4 reception (or N=4) antennas 116. Coding, rate matching, interleaving, cluster mapping, and receiver counterparts are configured according to the 3GPP HSDPA HS-DSCH specification. In the HS-DSCH, the chip rate is 3.84 Mcps, the frame length (or block length) is 2 ms, which is 16, and for each antenna 114, the number of modulation symbols per spreading code per frame is 480. . In the simulation, fix the modulation cluster to QPSK. Therefore, the total number of coded bits transmitted by the spread spectrum code via the four antennas 114 in the frame is 3840 «/. The four transmit antennas 114 are set to use the same set of // spread spectrum codes, and the same amount of transfer wafer energy five c/M is equally divided and distributed to the J code channels of each antenna 114. 145325.doc -25- 201015928 For the sake of brevity, load channels (eg, common pilot channels, control channels, audio channels, etc.) are not mimicked in this simulation. Therefore, the overall Bs transfer wafer energy / 〇r is equal to the HS-DSCH wafer energy five c. The turbo code in the 3Gpp HSDpA specification is used for encoding, and the encoding rate is maintained at about 1/3 via the simulation. The carrier frequency is set to 2 GHz. The background noise component of the four receive antennas ιΐ6 is modeled by a spatially independent white Gaussian random process of power spectral density 沁. A wafer-isolated equalizer with fully synchronized and fully evaluated channel variance is used in the simulation = (ie, the oversampling factor is set to 1). When the multipath delay spans Z wafers 10, the spatial time is used. The equalizer time span and the target delay are determined to be several wafers and U-1 wafers. Figure 4 shows the 3 km/h vehicle Α model described in the standard SCM keyway level (6 paths, 2 degree BS angular spread, 35 degree Ms angular spread, 1 〇 wavelength bs antenna spacing, 〇·5 wavelength Single-code reusable BLER performance in MS antenna spacing). The corresponding information rate is set to state kbps, and the number of elements is 3 840. In the single coding case, as illustrated in Fig. 4, at the block error rate (BLER) of ΗΓ2, there is a gain of about this.观测 Observed that the number of * codes increases, the gain of the self-enhanced equalizer decreases: when the number of codes is close to the shape, the power balance between the on-time inter-flow interference component and the multi-interference (10) and the β-phase component becomes Closer to the power balance of the conventional equalizer of (8). Thus, the improvement for _ coding is smaller than the improvement for single coding. The conventional wafer level MMSE weighting vector (8) provides a smaller signal to noise ratio than the MIM 〇 multicode CDMA enhancement 145325.doc 26 201015928 MMSE weighting vector (16) that reuses the same encoding in different transmission antennas. As we can see in the comparison between (8) and (i6), the two weight vectors are still controlled in different directions even after compensating for the scaling factor. In the example towel, on-time interflow interference is a key component. Therefore, it is preferable to consider the enhanced SMMSE weighting vector for the despreading effect. Those skilled in the art will appreciate that any of a variety of different techniques and methods can be used to represent such information and signals. For example, the materials, instructions, commands, signals, signals, bits, symbols, and wafers referred to in all of the above descriptions may be referenced by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof. Those skilled in the art will further appreciate that the various illustrative logic blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein can be constructed as electronic hardware, computer software, or a combination of both. In order to clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above in terms of their respective functionalities as a hardware or software. It will depend on the particular application and design constraints for the overall system. The skilled artisan can construct the described functionality in a different manner for each particular application, but such construction decisions should not be construed as causing a departure from the scope of the invention. A general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device designed to perform the functions described herein, Discrete gate or transistor logic, discrete hardware components, or any combination thereof, to construct or perform various illustrative logic blocks, modules 145325.doc -27- 201015928 and circuits described in connection with the embodiments disclosed herein. A general purpose processor can be a microprocessor, a conventional processor, a microcontroller state machine, or the like. A processor can also be constructed to calculate: a combination of 'a Dsp and a microprocessor, a plurality of micro-portions, an R-Dsp core', or a plurality of microprocessors, or any other combination The steps of the methods or algorithms described in the embodiments disclosed herein may be embodied directly in the hardware, in a processed software module, or in a combination of the two. Software module can reside
快閃記憶體、㈣記憶鋒⑽)、可捧可程H =1 體(:_)、電子可擦可程式唯讀… (ROM)、暫存器、硬碟、抽取式碟片、 記憶體(一 M),或此項技術中已知的任何其他:= 儲存媒體中。將一儲存媒體耦接至處 、 —,^ 裔使得該處理器 替二Γ體讀取資訊’及將資訊窝入該儲存媒體。在 替代方案中’該儲存媒體可整合於該處理 參 與儲存媒體可駐留於一一該撕可駐留二= 離在替代方案中’該處理器與儲存媒體可作為 散、件駐留於一使用者終端機中。 :等模組可包括(但不僅限於)下列諸項中的任一者:軟 ^體組件,諸如,軟體物件導向式軟體组件、類別組 :及:務曰组件、處理序、方法、功能、屬性、步驟、程 料庫、資料結構十㈣1路、資料、資 提供所揭示之實施例的先前說明,以使任何熟習此項技 145325.doc -28 · 201015928 術者能夠製造或使用本發明。對於熟習此項技術者,對此 等實施例之各種修改為極其明顯的,且在不背離本發明之 精神或範疇的情況下,可將本文定義之一般原理應用於其 他實施例中。因此’本發明並不意欲限制於本文所示之該 等實施例,而應符合與本文所揭示之該等原理及新穎特徵 一致的最廣泛範疇。 【圖式簡單說明】 圖1A為通信系統之圖,其支持許多使用者且能夠實施本 發明之至少若干態樣及實施例; 圖1B為ΜΙΜΟ多重碼CDMA系統之一實施例的方塊圖; 圖2A為ΜΙΜΟ多重碼CDMA系統之另一實施例的方塊 圖; 圖2B為MMSE空間時間等化器之一實施例的方塊圖 圖3為說明多重碼CDMA系統之一實施例之操作的流程 圖;及Flash memory, (4) Memory front (10)), can hold H = 1 body (: _), electronic erasable program only read (ROM), scratchpad, hard disk, removable disc, memory (a M), or any other known in the art: = in storage media. Coupling a storage medium to, for example, the processor causes the processor to read information for the second entity and to insert information into the storage medium. In the alternative, the storage medium may be integrated in the processing. The participating storage medium may reside in the removable storage area. 2. In the alternative, the processor and the storage medium may reside as a user. In the machine. : Modules may include, but are not limited to, any of the following: software components, such as software object oriented software components, category groups: and: components, processes, methods, functions, Attributes, Procedures, Library, Data Structures, Telecommunications, Data, and Resources provide a prior description of the disclosed embodiments to enable any practitioner skilled in the art to make or use the present invention 145325.doc -28 - 201015928. Various modifications to the embodiments are obvious to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but in the broadest scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a diagram of a communication system supporting a number of users and capable of implementing at least some aspects and embodiments of the present invention; FIG. 1B is a block diagram of one embodiment of a multi-code CDMA system; 2A is a block diagram of another embodiment of a multi-code CDMA system; FIG. 2B is a block diagram of one embodiment of an MMSE space time equalizer; FIG. 3 is a flow chart illustrating operation of one embodiment of a multi-code CDMA system; and
圖4為使用1編碼重複使用及3 km/h車輛A多路徑通道模 型之本發明一實施例的各種晶片·信號雜訊比(SNR)值之區 塊錯誤率的圖表。 【主要元件符號說明】 2A-2G 32 一 單7L 4A-4G 基地台 6A-6J 終端機 8 處理器 10 通信系統 145325.doc 201015928 100 ΜΙΜΟ多重碼CDMA系統 102 傳輸器部分 104 接收器部分 106 編碼器 108 映射器 110 解多工器 112 展頻器 114 傳輸天線 116 接收天線 116a 接收天線 116b 接收天線 118 最小均方誤差空間時間等化器 120 解展頻器 122 多工器 124 解映射器 126 解碼器 128 源位元序列 130 經解碼的位元 200 ΜΙΜΟ多重碼CDMA系統 202 傳輸器部分 204 接收器部分 206 編碼 208 映射器 210 解多工器 145325.doc - 30 - 201015928 多工器 解映射器 解碼器 經解碼的位元 等化記憶庫 等化記憶庫 濾、波器 濾波器 濾波器 加法器 222 224 226 230 250 250a 252 252a ❿ 252b 254 254a 加法器 256 等化度量序列 256a 等化度量序列Figure 4 is a graph of block error rates for various wafer-to-signal noise ratio (SNR) values for an embodiment of the present invention using a one-code reuse and a 3 km/h vehicle A multipath channel model. [Main component symbol description] 2A-2G 32 One 7L 4A-4G Base station 6A-6J Terminal 8 Processor 10 Communication system 145325.doc 201015928 100 ΜΙΜΟMulticode CDMA system 102 Transmitter part 104 Receiver part 106 Encoder 108 Mapper 110 Demultiplexer 112 Spreader 114 Transmission Antenna 116 Receive Antenna 116a Receive Antenna 116b Receive Antenna 118 Minimum Mean Square Error Space Time Equalizer 120 Despreader 122 Multiplexer 124 Demapper 126 Decoder 128 source bit sequence 130 decoded bit 200 ΜΙΜΟ multicode CDMA system 202 transmitter portion 204 receiver portion 206 encoding 208 mapper 210 demultiplexer 145325.doc - 30 - 201015928 multiplexer demapper decoder Decoded bit equalization memory equalization memory filter, filter filter adder 222 224 226 230 250 250a 252 252a 252 252b 254 254a adder 256 equalization metric sequence 256a equalization metric sequence
-31 - 145325.doc-31 - 145325.doc
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/284,601 US8780957B2 (en) | 2005-01-14 | 2005-11-21 | Optimal weights for MMSE space-time equalizer of multicode CDMA system |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201015928A true TW201015928A (en) | 2010-04-16 |
Family
ID=39469929
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095121238A TWI345904B (en) | 2005-11-21 | 2006-06-14 | Optimal weights for mmse space-time equalizer of multicode cdma system |
TW098143726A TW201015928A (en) | 2005-11-21 | 2006-06-14 | Optimal weights for MMSE space-time equalizer of multicode CDMA system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095121238A TWI345904B (en) | 2005-11-21 | 2006-06-14 | Optimal weights for mmse space-time equalizer of multicode cdma system |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1938465A4 (en) |
JP (3) | JP5745748B2 (en) |
KR (1) | KR101019397B1 (en) |
CN (1) | CN101310450B (en) |
TW (2) | TWI345904B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8923377B2 (en) | 2011-05-13 | 2014-12-30 | Nokia Corporation | Methods and devices for receipt of imbalanced transmission signal |
US9166855B2 (en) * | 2013-03-11 | 2015-10-20 | Sony Corporation | MIMO communication method, MIMO transmitting device, and MIMO receiving device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777910A (en) * | 1996-11-19 | 1998-07-07 | Thomson Multimedia S.A. | Sparse equalization filter adaptive in two dimensions |
US7095814B2 (en) * | 2000-10-11 | 2006-08-22 | Electronics And Telecommunications Research Institute | Apparatus and method for very high performance space-time array reception processing using chip-level beamforming and fading rate adaptation |
KR100803115B1 (en) * | 2001-06-07 | 2008-02-14 | 엘지전자 주식회사 | Signal Processing Method in WCDMA System with Adaptive Antenna Array System for this |
US7359466B2 (en) * | 2001-08-24 | 2008-04-15 | Lucent Technologies Inc. | Signal detection by a receiver in a multiple antenna time-dispersive system |
US20030142762A1 (en) | 2002-01-11 | 2003-07-31 | Burke Joseph P. | Wireless receiver method and apparatus using space-cover-time equalization |
US7302238B2 (en) * | 2003-04-25 | 2007-11-27 | Samsung Electronics Co., Ltd. | Transmit diversity system, method and computer program product |
US7356073B2 (en) * | 2003-09-10 | 2008-04-08 | Nokia Corporation | Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector |
US7780886B2 (en) * | 2003-10-21 | 2010-08-24 | Certainteed Corporation | Insulation product having directional facing layer thereon and method of making the same |
WO2005074147A1 (en) * | 2004-01-30 | 2005-08-11 | Universite Laval | Multi-user adaptive array receiver and method |
US7324583B2 (en) * | 2004-02-13 | 2008-01-29 | Nokia Corporation | Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations |
-
2006
- 2006-06-14 CN CN200680043068.1A patent/CN101310450B/en not_active Expired - Fee Related
- 2006-06-14 JP JP2008542298A patent/JP5745748B2/en not_active Expired - Fee Related
- 2006-06-14 EP EP06773184A patent/EP1938465A4/en not_active Withdrawn
- 2006-06-14 KR KR1020087015135A patent/KR101019397B1/en not_active Expired - Fee Related
- 2006-06-14 TW TW095121238A patent/TWI345904B/en not_active IP Right Cessation
- 2006-06-14 TW TW098143726A patent/TW201015928A/en unknown
-
2011
- 2011-10-19 JP JP2011229606A patent/JP5512627B2/en not_active Expired - Fee Related
-
2013
- 2013-10-11 JP JP2013214242A patent/JP5722407B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TW200721752A (en) | 2007-06-01 |
CN101310450A (en) | 2008-11-19 |
KR20080069266A (en) | 2008-07-25 |
JP2014053927A (en) | 2014-03-20 |
CN101310450B (en) | 2016-03-09 |
JP2009516986A (en) | 2009-04-23 |
JP5745748B2 (en) | 2015-07-08 |
JP2012095295A (en) | 2012-05-17 |
JP5512627B2 (en) | 2014-06-04 |
EP1938465A4 (en) | 2012-08-08 |
KR101019397B1 (en) | 2011-03-07 |
EP1938465A2 (en) | 2008-07-02 |
TWI345904B (en) | 2011-07-21 |
JP5722407B2 (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8780957B2 (en) | Optimal weights for MMSE space-time equalizer of multicode CDMA system | |
KR100909973B1 (en) | Wireless communication system | |
EP2899897B1 (en) | Methods and systems for combined precoding and cyclic delay diversity | |
JP4072539B2 (en) | Apparatus and method for receiving a signal in a communication system using a multiple-input multiple-output scheme | |
KR100916167B1 (en) | Allocation of Uplink Resources in a Multiple-Input Multiple-Output (MMIO) Communication System | |
US7809072B2 (en) | Transmitter and receiver for use in a relay network, and system and method for performing transmission and reception using the same | |
US20020173302A1 (en) | Radio communication system | |
EP1687924A2 (en) | Flexible rate split method for mimo transmission | |
KR20070038150A (en) | Method and Detector for a Novel Channel Quality Indicator for Spatial-Time Coding Multiple Input and Multiple Output Spread Spectrum Systems in Frequency Select Channels | |
KR20140085447A (en) | Signature Sequence Selection, System Value Bit Loading and Energy Allocation Method and Apparatus for Multicode Single-input Single-output and Multiple-input Multiple-output Parallel Channels | |
JP2015519806A (en) | Data transmission method and apparatus | |
CN102246439B (en) | SNIR Estimation in HSPA Implementing MIMO | |
CN1941661B (en) | Multiplexing diversity method in multi-antenna input and output system | |
KR20180038325A (en) | Integer forcing scheme for multi user mimo communication | |
TW201015928A (en) | Optimal weights for MMSE space-time equalizer of multicode CDMA system | |
Xiao et al. | A cognitive spatial multiplexing scheme for MIMO-CDMA networks | |
Huang et al. | Multiple antenna enhancements for a high rate CDMA packet data system | |
Gurcan et al. | System value-based optimum spreading sequence selection for high-speed downlink packet access (HSDPA) MIMO | |
WO2015087716A1 (en) | Base-station device, terminal device, transmission method, and reception method | |
Doostnejad et al. | Transmitter and receiver designs for the MIMO fading broadcast channel |