201015482 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種數位影像處理系統及方法,尤其係關 •於-種於數位影像巾移除浮水印資訊之纟統及方法。 【先前技術】 於網際網路蓬勃發展之資訊時代裏,數位資訊之傳遞 及^製之速度相當快速,為了防止數字媒體之知識產權受 到知害,尤其係具有商業價值之影像及音樂,是目前需要 ^視之問題之-。因此許多浮水印資訊隱藏之技術被廣泛 提出,以保護或驗證擁有者之版權資訊。隨著電子商務之 興起]網路上進行之商業行為也愈來愈頻繁, 網路侵權事 ^曰益增加使得數位媒體的知識產權問題愈來愈受到重 視例如’許多影像處理軟體也加入了浮水印功能來保護 ,用者之〜*創作。但是,既然、有保護之技術,當然也就 有嘗試水印資訊移除的方法。 目刖、,汙水印攻擊是將隱藏於影像中的浮水印資訊移 =的後’被移除浮水印資訊後的影像還能夠保有原媒體之 而業才算是成功地達到移除浮水印資訊之目之。然 :影::::印移除技術雖然能夠將隱藏之浮水印資訊於 '' 位是不能保證被移除浮水印資訊後的影像 之品質’使得被移除浮水印 資訊後的影像失真不能保有原 影像媒體之商業價值。 【發明内容】 馨;X上内各’有必要提供一種浮水印資訊移除系統 201015482 卜該電///H移m安裝錢行於電子裝置 用於從記憶體中系統包括:影像存取模組, ❹ 量之特徵㈣彳_成相應數 號;特徵圖形馨^母一用圖形按順序進行圖形編 要移、、、Α 從分㈣之紐目形雲別需 組,算於 之牿㈣,“,、絲圍母一張特徵圖形中所有特徵點 特η σ、所有紐狀倾值得顺張特徵圓形之 = 具有浮水印資 特徵圖形並將剩餘的特徵圖形組合成且一==選出的 子梦印資訊移除方法,應用於電子謝,該電 令4敢己憶體。該方法包括如下步驟:(a)於記憶體 Ιί :水印影像;(b)根據浮水㈣像之圖元大小 4 陽像分解成相應數量之特徵圖形,並將 :張特徵圖轉财騎圖形編號;U)於分解出之特徵 =鑒別出需要移除的特徵圖形之圖形編號範圍;⑷於 馨別出Μ形編號範_篩選㈣有浮水㈣訊之特徵 二,】嶋4選出的特徵圖形並將剩餘的特徵圖形組 及讀⑴檢查該組合影像之品f是否失真; 及(g)將4失真的組合影像儲存到記憶體卜 201015482 相較於習知技術,所述之浮水印資訊移除系統及方 法,能夠藉由一奇異值分解演算法及一基植於特徵影像之 -鑒別失真演算法將隱藏於浮水印影像中的浮水印資訊進行 ,移除,除了可將隱藏於浮水印影像中的浮水印資訊移除的 外,還能夠保有原影像之品質。 【實施方式】 參閱圖1所示,係本發明浮水印資訊移除系統1較佳 ❹ 實施例之剌環㈣。料水印資訊移除系統χ安裝並運 行於電子裝置巾,該舒裝置包括處理ϋ 2及記憶體3。 於本實施财,該電子裝置騎機。於其他實_中,所 述^子裝置可以為電腦、PDA及其他具有影像處理功能 餅1戶斤述之處理器2用於運行浮水印資訊移除系 2將隱藏科切影像巾的料印#餅浮水印影像中 :::記憶體3用於儲存具有浮水印資訊之浮水印 影像’及被移除浮水印資崎_的組合影像。 浮水印資訊移除系統1用於從記憶體3中讀取 =印影像,將該浮水印影像分解成—定數量之特徵圖形 带,:lmage) ’找出並移除具有浮水印資訊之特徵圖 ’ 1j餘的特徵圖形組合成—幅被移除浮水印資訊後的 :广像及檢查該組合影像質並將該組合影像儲 f _ 3中。於本實_巾,所述之浮水印資訊移除 ^ ^括心像存取模組11、影像分解模多且12、特徵圖形 組1口3特徵圖形篩選模組U、浮水印資訊移除模組 5及影像品質檢查模組16。 7 201015482201015482 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a digital image processing system and method, and more particularly to a system and method for removing watermark information from a digital image towel. [Prior Art] In the information age of the Internet, the speed of digital information transmission and control is quite fast. In order to prevent intellectual property rights of digital media from being harmed, especially for commercial images and music, it is currently Need to see the problem -. Therefore, many techniques for watermark information hiding have been widely proposed to protect or verify the owner's copyright information. With the rise of e-commerce] the business practices on the Internet are becoming more and more frequent, and the increase in Internet infringements has made digital media issues more and more important. For example, many image processing software have also added watermarks. Function to protect, the user's ~ * creation. However, since there is a technology to protect, there is of course a way to try to remove the watermark information. Seeing that the smear-printing attack is to shift the watermark information hidden in the image to the 'after the watermark information is removed, the image can still retain the original media, and the industry can successfully achieve the removal of the watermark information. Purpose. However: the shadow::::print removal technology can hide the watermark information in the ''bit is not guaranteed to be the quality of the image after the watermark information is removed' so that the image distortion after the watermark information is removed cannot be Preserve the commercial value of the original video media. [Summary of the Invention] Xin; X on each 'need to provide a watermark information removal system 201015482 卜 / / / / H shift m installation money in the electronic device for use in memory from the system includes: image access mode Group, 特征 之 特征 ( 四 成 成 成 成 成 成 ; 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征 特征, ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The method of removing the information of the child's dream printing is applied to the electronic thank-you. The electric command 4 dares to recall the body. The method includes the following steps: (a) in the memory Ι ί: watermark image; (b) according to the floating water (four) image element The size 4 positive image is decomposed into a corresponding number of characteristic figures, and the: Zhang feature map is transferred to the wealth riding figure number; U) is decomposed into the feature = the graphic number range of the feature graphic to be removed is identified; (4) Yu Xin is out Μ形编号范_Screening (4) There are floating water (four) features of the second,] 4 selected feature graphics and the remaining feature graphics group and read (1) check whether the product f of the combined image is distorted; and (g) store the 4 distortion combined image to the memory of the memory 201015482 compared to the prior art, The watermarking information removal system and method can remove and remove the watermark information hidden in the watermark image by a singular value decomposition algorithm and a feature-image-identification distortion algorithm. The watermark information hidden in the watermark image can be removed, and the quality of the original image can be preserved. [Embodiment] Referring to FIG. 1, the watermark information removing system 1 of the present invention is preferably an embodiment.剌 ring (4). The material watermark information removal system is installed and operated on the electronic device towel, and the device includes a processing device 2 and a memory device 3. In the implementation, the electronic device rides the bicycle. ^Sub-devices can be used for computers, PDAs, and other processors with image processing functions. The processor 2 is used to run the watermark information removal system 2 to hide the material of the Koche image towel. : remember The volume 3 is used to store the watermarked image with watermark information and the combined image of the watermarked akizaki_. The watermark information removal system 1 is used to read the printed image from the memory 3, and the floating image The watermark image is decomposed into a certain number of characteristic graphics bands, :lmage) 'find and remove the feature map with watermark information'. The feature graphics of the 1j are combined into the image after the watermark information is removed: wide image and Checking the combined image quality and storing the combined image in f_3. In the actual towel, the watermark information is removed, and the image image access module 11, the image decomposition module is more than 12, and the feature graphic group is 1-port 3 feature graphic screening module U, watermarking information removal module 5 and image quality inspection module 16. 7 201015482
/影像存取模組11用於從記憶體3中讀取1浮 影像,及將料水”像被移除浮水印資訊後得到的U ,像儲存到記㈣3中。所述之浮水印影像隱藏有相鹿: 净水印資訊’例如,浮水印影像中隱藏有保護 ^ 者之版權資訊。 擁有 Ο 影像分解模、組12用於利用一種奇異值分解(1时 Value DeC〇mposition’簡稱SVD)演算法根據浮水印= 之圖,大小將該浮水印影像分解成-定數量之特徵圖:;, 並將每-張特徵圖軸順序騎圖形編號。料之影^八 解模組12可以將浮水印影像分解成64張特徵圖形\刀 張特徵圖形,或者更多數量之特徵圖形。於本實施例中 原始影像大小為圖元,影像分解模组u將浮 衫像分解成128張特徵圖形,每一張特徵圖形均有一個 應之圖形編號’例如,特徵圖形—次被編號為HU、 128號特徵圖形。所述之SVD演算法係一種藉由量化略 計算出浮水印影像中最大奇異值點來提取浮水印資訊之寅 算法。由於藉由SVD分解完之特徵圖形,越靠近原始影二 之特徵圖形會跟原始影像越接近。因此,若將128張特徵 圖形重新組合後,則組合出之影像會跟原始影像相同',、二 組合前126張特徵圖形,則組合出之影像跟原始影像差異 係用戶肉眼無法分辨的。 ' 特徵圖形鑒別模組13用於利用一種鑒別失真 Noticeable Distortion,簡稱JND)演算法於分解出之特^ 圖形鑒別出需要移除的圖形編號範圍。所述之jND演算^ 8 201015482 係一種藉由計算特徵圖形中特徵 定鮮㈣w e ® T_f作應之特難大小來確 疋特徵圖形中是否含有浮水印資訊之演算法。 範圍=圖形師選模組14用於計算於翻出之圖形編號 =2^ 形中所有特徵點之特徵值,加總所有 ^ = 得賴張特_歡特魏值,及根據該 特徵總值之大小篩選出具有浮水”訊之特徵圖形。若某The image access module 11 is configured to read a floating image from the memory 3, and store the U water image obtained by removing the watermark information into the memory (4) 3. The watermark image is Hidden deer: Net watermark information 'For example, the copyright information of the protected object is hidden in the watermark image. Ο Image decomposition module, group 12 is used to decompose with a singular value (1 time Value DeC〇mposition' for short SVD The algorithm decomposes the watermark image into a fixed number of feature maps according to the size of the watermark==, and the number of each feature sheet is sequentially numbered. The shadow of the image ^8 solution module 12 can The watermark image is decomposed into 64 feature graphics, a knife feature graphic, or a larger number of feature graphics. In this embodiment, the original image size is a primitive, and the image decomposition module u decomposes the floating image into 128 features. Graphics, each feature graphic has a corresponding graphic number 'for example, feature graphic—the number is numbered as HU, 128 feature graphic. The SVD algorithm is a method to calculate the maximum of the watermark image by quantization. Singular value points to extract float The algorithm of printing information. Because the feature graphics are decomposed by SVD, the closer the feature image is to the original image, the closer it will be to the original image. Therefore, if 128 feature graphics are recombined, the combined image will be followed. If the original image is the same as the first 126 feature patterns, the difference between the combined image and the original image is indistinguishable to the user's naked eye. 'The feature graphics authentication module 13 is used to calculate the Distorable Distortion (JND) algorithm. The method is used to identify the range of graphic numbers to be removed. The jND calculus is used to calculate the characteristic size of the characteristic graphics (4) w e ® T_f. Whether the feature graphic contains the algorithm of the watermark information. Scope=Graphic teacher module 14 is used to calculate the feature value of all the feature points in the figure number = 2^, and add up all ^ = _ 特 魏 wei value, and according to the size of the total value of the feature screened with a feature graphic of floating water. If
一張特徵®形之特徵總值越A,職張特徵圖形隱藏之浮 K P貝訊摘^,反之’若某—張特徵圖形之特徵總值越 小,則該張特徵圖形隱藏之浮水印資訊就越少。 孚水印-貝訊移除模組15用於刪除筛選出的具有浮水 印資訊之特徵圖形,及將剩餘__形組合成—幅影像。 影像品質檢查模組16用於計算該組合影像之峰值雜 訊比值(Peak Signal to Noise Ratio,簡稱 psNR 值),並根 據該PSNR值是否超過一個預設之psNR允許值判斷該組 合影像之品質是否失真。於本實施例中,影像品質檢查模 組16藉由計算浮水印影像的圖元值與該、组合影像的圖元 值之比值得到該組合影像之PSNR值。一般地,用戶可以 根據浮水印影像的圖元值大小來設定該浮水印影像之 PSNR允許值’例如用戶可以設置浮水印影像之pSNR允 許值為0.8。也就是說,若組合影像之psnr值大於等於 0.8 ’則說明該組合影像相對於浮水印影像之失真度較小, 其與原始影像差異係用戶肉吸無法分辨的。 參閱圖2所示’係本發明浮水印資訊移除方法較隹實 施例之流程圖。於本實施例中,所述之浮水印資訊移除方 201015482 法藉由-SVD分解技術及-基植於贿影像之聰技術 將隱藏於浮水印影像中的浮水印f訊進行移除除了可將 隱藏於浮水印影像t的浮水印資訊移除的外,還能夠保有 原來影像之品質。 影像存取模組11於記憶體3中讀取一幅浮水印影像 (步驟S11)。所述之浮水彡像隱藏有相狀浮水印資 訊例如,浮水印影像中隱藏有保護或驗證擁有者之版權 資訊。 -影像分解模組12利用SVD演算法根據浮水印影像之 圖=大小將該浮水印影像分解成數量之特徵圖形並 將每張特徵圖形按順序進行圖形編號(步驟S12)。於本 實施例中,縣印影像大]、為128*128,影像分解模組12 將浮水印影像分解成128張特徵圖形,每-張特徵圖形均 有對應之圖形編號,例如,特徵圖形一次被編號為第U、 3…128號特徵圖形。 ,特徵®形鑒別模組則了nd演算法於分解出之特 徵圖形鑒別出需要移除的特徵圖形之圖形編號範圍(步驟 su)於本實施例中,特徵圖形赛別模組u將於I:8張 特徵圖形中馨別出之需要移除的圖形編號範圍為第刈張 至第1〇0張。該特徵圖形_選模組13如何利用励演算 法於特徵®㈣別需要移除的圖形編號範圍將於圖3中詳 細描述。 …特徵囫形篩選模組14於已赛別出之圖形編號範圍内 4選出具有浮水印資訊之特徵圖形(步驟si4)。該特徵圖 201015482 形篩選模組14圖如何筛選出具有浮水印 將於圖4中詳細描述。 幵徵圖形 浮水印資訊移除模組15刪除筛選出的具 訊之特徵圖形,並將剩餘的特徵圖形 〔:貝 的組合影像(步驟S15)。 惟破攻擊後 Ο 影像品質檢查模組16計算浮水印影像的圖 組合影像的圖疏之比值得到該組合影像之PSNr^該 驟s⑻。影像品質檢查模組16藉由判斷職值^步 設定之醒允許值來判斷該組合影像之品 失真(步驟S17)。-般地,用戶可以根據浮水印否 讀大小來設定浮水印影像之pSNR允許值圖 以設置浮水印影像之PSNR允許值為Q 8。也就是說用二可 合影像之PSNR值大於等㈣·8,則說明該組合影像相^組 浮水印影像之失真度較小,Α與眉 相對於 無法分辨的。 ”與原始衫像差異係用戶肉眼 ❿ 於步驟S17中,若該組合影像之品質已失真,亦即該 組合影像之PSNR值祕用戶設定之pSNR允許值,則= =返回步驟S13重新鑒別需要移除的圖形編號範圍以對隱 藏=浮水印影像中的浮水印資訊進行移除。若該組合影像 之0口質沒有失真,亦即該組合影像之psNR值大於等於用 戶設定之PSNR允許值’料彡像存取模組n將沒有失真的 組合影像儲存到記憶體3中(步驟Sl8)…般地,若組合 影像相對於浮水印影狀失真度料,麟為該組合影像 與原始影像差異係用戶肉眼無法分辨的,可以被用戶接受。 11 201015482 ^圖3所示,係圖2中步驟S13之 細化流程方法閣述了如何利用jn 程圖。該 別需要移除的特徵圖形之圖形編號範圍於特徵圖形馨 ^徵圖形馨別模組13利用励 圖像_ 影像 计箅該JND圖傻由益 口〜蒌别模組13 ‘财,(步驟個圖元點之_值,其表示為 ❹ ❹ 之平均JND值,計算該聊圓像中所有圖元點 特徵圏形蓉步驟S133)。 之腦值恤顺μ 一個圖元點 /办,力大於平均JND佶Γ 圑兀點之JND值 點(步驟S135)。 %的圖70點作為特徵圖形之特徵 特徵圖形馨別模組13 圖形中對應之_值(步驟^^徵點於母一張特徵 ==特徵圖形中對應之_值相接近之特徵 編於範圍内^牛徵圖形放入需要被移除的特徵圖形之圖形 =二 7)。於本實施例中,假如某-個特 第〇至49張特徵圖形中的特徵值差別 : 於第5〇至100張特徵圖形中的特徵值差別相對接 近,而於第仙至128張特徵圖形中的特徵值差別也比對 大’因此特徵圖形鑒別额13將圖形編號範圍為第刈至 張特徵圖形放入需要被移除的特徵圓形之圖形編號範 圍内。 12 201015482 . , 參閱圖4所示,係_2f 細化流程方法蘭述7如何 4之細化流輕圖。該 .水印資訊之特徵圖形。以下 濟算法筛選出具有浮 -圓形為特徵圖形“馬”。 ;形編號範園内的特徵 特徵圖形篩選模組14 的圖元值,其表示為“阶步^令每一圖元點 ❹ 二二 若圖元點的圖元值仏㈣小於等於^圖__咖)。 特徵圖形㈣模組14將該特徵圖㈣$ ’則 =二進位值“。”(步驟S144>若圖元 =平均:元值五一特徵圖形_ =二中該圖元值_化 將= S145)。特徵圖 m上C步驟 中數值為M選 》取錄每—_徵_ 累加得個數(步称S146),並將特徵點個數 (步驟s147) 尽之特徵總值,其表示為“和” 到小個特徵總值π按照於大 頃序進订排序(步驟S148)。最後,特徵圖 4選擇具有最大特徵總值扣所對應之特徵圖The more the total value of a feature® shape is A, the hidden feature of the job profile is KP, but the smaller the total feature value of the feature image is, the watermark information hidden by the feature graphic is hidden. The less. The watermark-bein removal module 15 is used to delete the filtered feature patterns with floating print information and to combine the remaining __ shapes into a single image. The image quality checking module 16 is configured to calculate a Peak Signal to Noise Ratio (psNR value) of the combined image, and determine whether the quality of the combined image is based on whether the PSNR value exceeds a preset psNR allowable value. distortion. In this embodiment, the image quality inspection module 16 obtains the PSNR value of the combined image by calculating the ratio of the primitive value of the watermark image to the primitive value of the combined image. Generally, the user can set the PSNR allowable value of the watermark image according to the size of the primitive value of the watermark image. For example, the user can set the pSNR allowable value of the watermark image to 0.8. That is to say, if the psnr value of the combined image is greater than or equal to 0.8 ′, the distortion of the combined image relative to the watermark image is small, and the difference from the original image is indistinguishable from the user. Referring to Figure 2, a flow chart of a method for removing watermark information of the present invention is shown. In the embodiment, the watermarking information removing party 201015482 removes the watermarking information hidden in the watermark image by using the -SVD decomposition technology and the technology of the image of the bribe image. The watermark information hidden in the watermark image t can be removed, and the quality of the original image can be preserved. The image access module 11 reads a watermark image in the memory 3 (step S11). The floating water image hides the phase watermark information. For example, the watermark image hides the copyright information of the protection or verification owner. The image decomposing module 12 uses the SVD algorithm to decompose the watermark image into a number of feature patterns based on the image size of the watermark image and sequentially number each feature pattern (step S12). In this embodiment, the image of the county print is 128*128, and the image decomposition module 12 decomposes the watermark image into 128 feature graphics, and each of the feature graphics has a corresponding graphic number, for example, the feature graphic once. It is numbered as the U, 3...128 feature graphic. The feature о shape authentication module uses the nd algorithm to identify the feature number range of the feature graphic to be removed from the decomposed feature graphic (step su). In this embodiment, the feature graphic game module u will be I. : The number of graphics that need to be removed in the eight characteristic graphics ranges from the first to the first. How the feature pattern_selection module 13 utilizes the excitation algorithm for the feature number (4) that needs to be removed will be described in detail in FIG. The feature graphic screening module 14 selects the feature graphic having the watermark information within the range of the graphic number that has been played (step si4). The feature map 201015482 shape screening module 14 how to filter out having a watermark will be described in detail in FIG. The pattern of the watermark information removing module 15 deletes the filtered feature pattern of the message and the remaining feature pattern [: a combined image of the shell (step S15). After the attack is completed, the image quality inspection module 16 calculates the ratio of the image of the watermark image to the PSNr of the combined image to obtain the s(8). The image quality check module 16 determines the distortion of the combined image by determining the wake-up allowable value set by the job value step (step S17). Generally, the user can set the pSNR allowable value map of the watermark image according to the watermark no read size to set the PSNR allowable value of the watermark image to Q 8 . That is to say, the PSNR value of the two-combinable image is greater than (4)·8, which means that the combined image has a small degree of distortion of the watermark image, and the eyebrow and the eyebrow are relatively indistinguishable. The difference from the original shirt image is the user's naked eye. In step S17, if the quality of the combined image is distorted, that is, the PSNR allowable value set by the user of the combined image, then == return to step S13 to re-authenticate the need to move The range of the graphic number is removed to remove the watermark information in the hidden=watermark image. If the zero quality of the combined image is not distorted, that is, the psNR value of the combined image is greater than or equal to the user-defined PSNR allowable value. The image access module n stores the combined image without distortion in the memory 3 (step S18). Similarly, if the combined image is compared with the watermark distortion, the difference between the combined image and the original image is It is unacceptable to the naked eye and can be accepted by the user. 11 201015482 ^ As shown in Fig. 3, the detailed process method of step S13 in Fig. 2 shows how to use the jn diagram. The figure number range of the feature pattern that needs to be removed In the feature graphic ^ ^ 图形 馨 馨 馨 13 13 13 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 J J J J J J J J J J J J J J J J J J J J J J J J J J JThe average JND value is calculated as the feature of all the pixel points in the chat circle image step S133). The brain value is shun a pixel point/do, the force is greater than the average JND佶Γ point of the JND value point ( Step S135). The 70 point of the figure is used as the characteristic feature of the feature graphic. The corresponding _ value in the graphic 13 module (step ^^ sign in the parent feature == the corresponding _ value in the feature graphic is close to The feature is programmed in the range ^ The graphic is placed in the graphic of the feature graphic to be removed = 2 7). In this embodiment, if there is a difference in the feature value in a certain feature to 49 feature graphics: The difference of the feature values in the 5th to 100th feature patterns is relatively close, and the difference in the feature values in the first to the 128th feature patterns is also larger than the pair. Therefore, the feature number of the feature pattern 13 is the range of the figure number to the third to the sheet. The feature graphic is placed in the range of the graphic number of the feature circle that needs to be removed. 12 201015482 . , See Figure 4, the system _2f refines the flow method, how to refine the flow chart. Characteristic graph of information. The following algorithm is screened to have a float-circle The characteristic figure "horse". The feature value of the feature feature graphic screening module 14 in the shape number field is represented as "step step ^ each element point ❹ 22 if the primitive value of the primitive point 仏 (4) Less than or equal to ^图__咖). The feature graphic (4) module 14 maps the feature map (4) $ ' == binary value "." (step S144 > if the primitive = average: the value of the five-one feature graphic _ = two of the primitive value _ will be = S145 ). On the feature map m, the value in the C step is M-selection, and the number of each of the -_signals is accumulated (step S146), and the number of feature points (step s147) is the total value of the feature, which is expressed as "and". The total value π to the small feature is sorted according to the large order (step S148). Finally, feature map 4 selects the feature map corresponding to the maximum feature total value buckle.
^徵圖形“圮”’並將該特徵圖形&於需要被移除S ' 形仏之圖形編號範圍内移除(步驟S149)。—般地, 13 201015482 若特徵圖形五r中的特徵點之特 圖來⑽,〈特徵總值犯越大,則該特徵 圖形仏中隱藏之浮水印資訊就越多。 =發_以較佳實施方式揭露如上,然其並非用以限 =/明。任何雜此項技藝者,在不脫離本發明之精神 和fc圍内,當可做更動與潤飾,因此本發明之保護範圍當 視後附之申請專利範圍所界定者為準。 【圖式簡單說明】The symbol "圮" is deleted and the feature pattern & is removed within the range of the pattern number to be removed from the S' shape (step S149). In general, 13 201015482 If the feature points in the feature graph 5 r are (10), the larger the feature total value is, the more the watermark information is hidden in the feature graph. = _ is disclosed in the preferred embodiment as above, but it is not intended to limit = / Ming. Any modification of this invention may be made without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. [Simple description of the map]
Q 圖1係本發明浮水印資訊移除系統較佳實施例之應用 環境圖。 圖2係本發明浮水印資訊移除方法較佳實施例之流程 圖。 圖3係圖2中步驟Sl3之細化流程圖。 圖4係圖2中步驟Sl4之細化流程圖。 【主要元件符號說明】 浮水印資訊移除系統 1 影像存取模組 11 影像分解模組 12 特徵圖形鑒別模組 13 特徵圖形篩選模組 14 浮水印資訊移除模組 15 影像品質檢查模組 16 處理器 2 記憶體 3 從記憶體中讀取浮水印影像 S11 201015482 ' 利用SVD演算法將浮水印影像分解成特徵圖形S12 利用JND演算法鑒別圖形編號範圍 S13 • 篩選出具有浮水印資訊之特徵圖形 S14 • 刪除篩選出之特徵圖形,並組合一幅組合影像 S15 計算組合影像之PSNR值 S16 根據PSNR值判斷組合影像是否失真 S17 儲存組合影像至記憶體中 S18 〇 ❿ 15Q Figure 1 is an application environment diagram of a preferred embodiment of the watermarking information removal system of the present invention. Fig. 2 is a flow chart showing a preferred embodiment of the method for removing watermark information according to the present invention. FIG. 3 is a detailed flowchart of step S13 in FIG. 2. FIG. 4 is a detailed flowchart of step S14 in FIG. 2. [Main component symbol description] Watermark information removal system 1 Image access module 11 Image decomposition module 12 Feature graphics authentication module 13 Feature graphics screening module 14 Watermark information removal module 15 Image quality inspection module 16 Processor 2 Memory 3 Reads the watermark image from the memory. S11 201015482 ' Decomposes the watermark image into a feature graphic using the SVD algorithm. S12 uses the JND algorithm to identify the graphic number range S13. • Filters the feature graphic with watermark information. S14 • Delete the selected feature graphic and combine a combined image S15 to calculate the PSNR value of the combined image. S16 Determine whether the combined image is distorted according to the PSNR value. S17 Store the combined image into the memory. S18 〇❿ 15