TW201013360A - Method and system for providing maximum power point tracking in an energy generating system - Google Patents
Method and system for providing maximum power point tracking in an energy generating system Download PDFInfo
- Publication number
- TW201013360A TW201013360A TW098115862A TW98115862A TW201013360A TW 201013360 A TW201013360 A TW 201013360A TW 098115862 A TW098115862 A TW 098115862A TW 98115862 A TW98115862 A TW 98115862A TW 201013360 A TW201013360 A TW 201013360A
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- mppt
- local
- local converter
- converter
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 115
- 230000008569 process Effects 0.000 claims abstract description 15
- 230000008878 coupling Effects 0.000 claims abstract description 4
- 238000010168 coupling process Methods 0.000 claims abstract description 4
- 238000005859 coupling reaction Methods 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 137
- 238000012545 processing Methods 0.000 claims description 32
- 239000003999 initiator Substances 0.000 description 23
- 238000004891 communication Methods 0.000 description 16
- 108091022873 acetoacetate decarboxylase Proteins 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 239000000446 fuel Substances 0.000 description 11
- 101150069548 ppan gene Proteins 0.000 description 11
- 230000005855 radiation Effects 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 9
- 101000797092 Mesorhizobium japonicum (strain LMG 29417 / CECT 9101 / MAFF 303099) Probable acetoacetate decarboxylase 3 Proteins 0.000 description 7
- 239000007858 starting material Substances 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- MKGIQRNAGSSHRV-UHFFFAOYSA-N 1,1-dimethyl-4-phenylpiperazin-1-ium Chemical compound C1C[N+](C)(C)CCN1C1=CC=CC=C1 MKGIQRNAGSSHRV-UHFFFAOYSA-N 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
201013360 六、發明說明: 相關申請案之交互參考資料 此申請案係爲2008年5月14日提出申請之美國專利 申請案第 1 2/1 5249 1 號「MTHEOD AND SYSTEM FOR PROVIDING LOCAL CONVERTERS TO PROVIDE MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM」之部分延續案,並以其爲優先權 φ 案基礎。此專利申請案讓與予本專利申請案之受讓人。該 專利申請案所揭示之標的物以參考資料方式與本申請案之 揭示內容合倂,作爲此文件所全數提出者。 本身請案係有關於美國專利申請案第_____號(代理 人案號 P07 1 68P02 ),發明名稱爲 「METHOD AND SYSTEM FOR INTEGRATING LOCAL MAXIMUM POWER POINT TRACKING INTO AN ENERGY GENERATING SYSTEM HAVING CENTRALIZED MAXIMUM POWER φ POINT TRACKING」,且與此申請案同時申請。該專利申 請案讓與予本申請案之受讓人。該專利申請案之標的物以 參考資料方式與本申請案之揭示內容合倂,作爲此文件所 全數提出者。 【發明所屬之技術領域】 所揭示之內容大致上係關於能量產生系統。更明確而 言,揭示內容係關於用以在能量產生系統中提供最大功率 點追蹤的方法及系統。 -5- 201013360 【先前技術】 相對於習知的非再生、會污染的能量來源(離如煤或 是石油)而言,太陽能及風力提供可再生且不會污染的能 量來源。因此,太陽能及風力已成爲日益重要的可轉換爲 電能的能量來源。對於太陽能而言,排列成陣列的光伏打 面板通常提供用以轉換太陽能爲電能的裝置。類似的陣列 可用於收集風力或是其他自然的能量來源。 在操作光伏打陣列時,通常使用最大功率點追蹤( MPPT )以自動地判定應在何種電壓或是電流操作該陣列 ,以在特定溫度及太陽輻射產生最大功率輸出。儘管當陣 列在理想條件(亦即,對於陣列中之各個面板有相同的輻 射、溫度及電性特徵)時,對於整體陣列而言,實施 MPPT相當簡單,但當有不匹配或是部份被遮蔽的情況下 ,對於整體陣列之MPPT則更爲複雜。在此情況中,因爲 不匹配的陣列的多峰功率對電壓特徵的相對最佳條件, MPPT技術不能提供精確的結果。因此,該陣列面板中僅 有一些能理想地操作。因爲對於包含數排面板的陣列而言 ,最無效率的面板會決定整體面板的電流及效率,如此則 造成產生功率的劇烈下降。 【發明內容及實施方式】 在此份專利文件中,以下所述之圖1到1 2及用於描 述本發明之原理的各種實施例僅用於說明而不應解釋爲 限制本發明之範圍。熟知本技藝者當可知,本發明之 -6- 201013360 原理能應用於任何類型的合適配置的裝置或是系統。 圖1A爲根據揭示內容之一實施例,顯示—能量產生 系統10,其能利用集中式局部最大功率點追蹤(MPPT ) 整合MPPT。能量產生系統1〇包含多數個能量產生裝置 (EGD) 12,各耦接至對應的局部轉換器14, EGD 12及 對應的局部轉換器1 4合倂形成能量產生陣列丨6。所述之 光伏打系統10亦包含耦接至局部轉換器14之DC-AC轉 換器22,且其可用以從局部轉換器14接收電流及電壓。 對於一特定實施例而言,如揭示內容所述,能量產生 系統10可包含光伏打系統,且能量產生裝置12可包含光 伏打(PV)面板。然而’應了解者爲,能量產生系統10 可包含合適種類的任何其他能量產生系統,例如風力渦輪 系統、燃料電池系統等。對於此等實施例而言,能量產生 裝置12可包含風力渦輪、燃料電池等。且,能量產生系 統10可爲接地系統或是浮動系統。 陣列16中之PV面板12係設置於串24上,對於所 述之實施例而言,陣列16包含兩個串24,各串24包含 三個面板12。然而,應了解者爲,陣列16可包含任意合 適數目的串24,且各串24可包含任意合適數目的面板12 。且對於所述之實施例而言’各串24中之面板12設置爲 串聯連接。因此,各個局部轉換器14之輸出電壓仍然相 近於其輸入電壓,而供給高電壓至DC-AC轉換器22之輸 入埠,對於某些實施例而言’其可操作在輸入電壓爲150 V到500 V之間。因此’不需要以變壓器爲基礎的轉換器 201013360 (例如在並聯構造串中所使用者),產生實現高效率及低 成本的局部轉換器14的能力。 各個PV面板12能將太陽能轉換爲電能。各個局部 轉換器14係耦接至對應的面板12,且能重新塑造面板12 造成的電壓對電流的輸入關係,使陣列16之面板12產生 的電能可爲負載(未顯示於圖1A中)所利用。DC-AC轉 換器22係耦接至陣列16,且能將局部轉換器14產生的 負載直流(DC)轉換爲交流(AC),負載可耦接至DC-AC轉換器22。DC-AC轉換器22包含中央MPPT控制區 塊32,其能藉由校準陣列16之MPP提供集中式MPPT。 MPPT自動判定陣列16或面板12應操作之電壓或是 電流,以對特定溫度及太陽輻射產生最大功率輸出。儘管 當陣列在理想條件(亦即,對於陣列中之各個面板有相同 的輻射、溫度及電性特徵)時,對於整體陣列而言,實施 集中式MPPT相當簡單,但當有不匹配或是部份被遮蔽的 情況下,對於整體陣列之MPPT則更爲複雜。因此,該陣 列面板中僅有一些能理想地操作,造成功率產生劇烈下降 〇201013360 VI. INSTRUCTIONS: CROSS-REFERENCE TO RELATED APPLICATIONS This application is filed on May 14, 2008. Part of the continuation of POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM, which is based on the priority φ case. This patent application is assigned to the assignee of the present application. The subject matter disclosed in this patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in the extent of the disclosure of the disclosure. The request for the case is related to US Patent Application No. _____ (Agent No. P07 1 68P02), and the invention name is "METHOD AND SYSTEM FOR INTEGRATING LOCAL MAXIMUM POWER POINT TRACKING INTO AN ENERGY GENERATING SYSTEM HAVING CENTRALIZED MAXIMUM POWER φ POINT TRACKING" and apply at the same time as this application. This patent application is assigned to the assignee of the present application. The subject matter of this patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in the extent of the disclosure of the disclosure. TECHNICAL FIELD The disclosed content is generally related to an energy generating system. More specifically, the disclosure relates to methods and systems for providing maximum power point tracking in an energy generating system. -5- 201013360 [Prior Art] Solar energy and wind power provide a renewable and non-polluting source of energy relative to conventional non-renewable, polluting sources of energy (such as coal or petroleum). As a result, solar and wind have become an increasingly important source of energy that can be converted into electricity. For solar energy, photovoltaic panels arranged in an array typically provide means for converting solar energy into electrical energy. Similar arrays can be used to collect wind or other natural sources of energy. When operating a photovoltaic array, maximum power point tracking (MPPT) is typically used to automatically determine at which voltage or current the array should be operated to produce maximum power output at a particular temperature and solar radiation. Although the MPPT is fairly simple for the overall array when the array is in ideal conditions (i.e., for the same radiation, temperature, and electrical characteristics of the various panels in the array), when there is a mismatch or a partial In the case of shadowing, the MPPT for the overall array is more complicated. In this case, the MPPT technique does not provide accurate results because of the relatively optimal conditions of the multi-peak power versus voltage characteristics of the unmatched array. Therefore, only some of the array panels are ideal for operation. Because for an array containing several rows of panels, the most inefficient panel determines the current and efficiency of the overall panel, which results in a dramatic drop in power generation. BRIEF DESCRIPTION OF THE DRAWINGS In the present patent document, the following description of FIGS. 1 to 12 and various embodiments for describing the principles of the present invention are intended to be illustrative only and not to limit the scope of the present invention. It will be apparent to those skilled in the art that the principles of the present invention -6-201013360 can be applied to any type of suitably configured device or system. 1A is a display-energy generation system 10 that can integrate MPPT using centralized local maximum power point tracking (MPPT), in accordance with an embodiment of the disclosure. The energy generating system 1 includes a plurality of energy generating devices (EGD) 12, each coupled to a corresponding local converter 14, and the EGD 12 and the corresponding local converter 14 are combined to form an energy generating array 丨6. The photovoltaic system 10 also includes a DC-AC converter 22 coupled to the local converter 14, and which can be used to receive current and voltage from the local converter 14. For a particular embodiment, as disclosed, the energy generating system 10 can include a photovoltaic system, and the energy generating device 12 can include a photovoltaic (PV) panel. However, it should be understood that the energy generating system 10 can include any other energy generating system of a suitable variety, such as a wind turbine system, a fuel cell system, and the like. For such embodiments, energy generating device 12 may comprise a wind turbine, a fuel cell, or the like. Moreover, the energy generating system 10 can be a grounded system or a floating system. The PV panels 12 in the array 16 are disposed on a string 24 which, for the embodiment described, comprises two strings 24, each string 24 comprising three panels 12. However, it should be understood that array 16 can include any suitable number of strings 24, and each string 24 can include any suitable number of panels 12. And for the embodiment described, the panels 12 in each of the strings 24 are arranged in series. Thus, the output voltage of each local converter 14 is still close to its input voltage, while the high voltage is supplied to the input port of the DC-AC converter 22, which for some embodiments can operate at an input voltage of 150 V to Between 500 V. Thus, transformer-based converter 201013360 (e.g., in a parallel configuration string) is not required to produce the ability to achieve high efficiency and low cost local converter 14. Each PV panel 12 is capable of converting solar energy into electrical energy. Each local converter 14 is coupled to the corresponding panel 12 and can reshape the voltage-to-current input relationship caused by the panel 12 so that the electrical energy generated by the panel 12 of the array 16 can be a load (not shown in FIG. 1A). use. The DC-AC converter 22 is coupled to the array 16 and is capable of converting the load DC (DC) generated by the local converter 14 to alternating current (AC), and the load can be coupled to the DC-AC converter 22. The DC-AC converter 22 includes a central MPPT control block 32 that provides a centralized MPPT by calibrating the MPP of the array 16. The MPPT automatically determines the voltage or current at which the array 16 or panel 12 should operate to produce maximum power output for a particular temperature and solar radiation. Although implementing a centralized MPPT is quite simple for an overall array when the array is in ideal conditions (ie, for the same radiation, temperature, and electrical characteristics of the various panels in the array), when there is a mismatch or part In the case of being obscured, the MPPT for the overall array is more complicated. Therefore, only some of the array panels are ideally operated, causing a dramatic drop in power.
能量產生系統10對整體系統10設置受中央MPPT控 制區塊32控制的系統控制迴圏,且對各個面板12設置由 對應的局部轉換器14控制的局部控制迴圈。該等迴圈的 操作頻率彼此至少分離一段預定距離,以避免系統振盪, 且避免面板12離開其MPP操作。對於一實施例而言,系 統控制迴圈爲閉迴圈系統,其包含陣列1 6、中央MPPT 201013360 控制區塊32、DC-AC轉換器22。此外,各個局部控制迴 圈爲閉迴圈系統,其包含一面板12及對應的局部轉換器 14 ° 對於某些實施例而言,各個局部轉換器14設計成使 轉換器14之局部控制迴圈的穩定時間較系統控制迴圈的 時間常數爲快。在一特定實施例中,各個局部控制迴圈之 穩定時間至少比系統控制迴圈的時間常數快五倍。因此, 在穩定狀態,面板12組成的陣列16可作爲DC-AC轉換 器22之電源,其功率量爲各個面板12可用之最大功率之 總和。同時,中央MPPT控制區塊32可實施正規的最佳 化演算法,最後,中央MPPT控制區塊32可將串電壓設 定爲最大化局部轉換器14之效能之値。 在此方式中,可避免由系統控制迴圈及局部控制迴圈 之間的動態反應造成的系統振盪。此外,面板12 —般可 在其MPP操作。又,可在系統及局部迴圈之間使之同步 ,以避免無限制增加的串電壓可能會造成的損害。最後, 可避免孤立DC-AC轉換器22,其會使DC-AC轉換器22 停止吸收能量,並造成無法控制的輸入電壓成長。 圖1B爲根據揭示內容之一實施例,顯示能夠爲集中 式控制的能量產生系統100。能量產生系統100包含多數 個能量產生裝置(EGD ) 102,其各耦接至對應的局部轉 換器104’能量產生裝置102及局部轉換器104—起形成 能量產生陣列106。對於一特定實施例而言,如揭示內容 所述,能量產生系統100可包含光伏打系統,且能量產生 201013360 裝置102包含光伏打(PV)面板。然而,應了解者爲, 能量產生系統100可包含任何其他合適種類的能量產生系 統,例如風力渦輪系統、燃料電池系統等。對於該等實施 例而言,能量產生裝置102可包含風力渦輪、燃料電池等 。且,能量產生系統100可爲接地系統或是浮動系統。 所述之光伏打系統1 00包含中央陣列控制器1 1 〇,且 亦包含DC-AC轉換器112,或用於系統100係操作爲倂 聯型系統的情況中的其他合適的負載。然而,應了解者爲 ,系統100可藉由耦接陣列106至電池充電器或是其他合 適的能量儲存裝置而非DC-AC轉換器112,而操作爲獨 立型系統。 陣列106中之PV面板102係排列於串114中。對於 所述實施例而言,陣列106包含兩個串114,各個串114 包含三個面板102。然而,應了解者爲,陣列1〇6可包含 任何合適數目的串114,且各個串114可包含任何合適數 目的面板102。亦對於所述的實施例而言,各個串114中 之面板102爲串聯連接。因此,供給高電壓至DC-AC轉 換器112之輸入璋時,各個局部轉換器1〇4之輸出電壓仍 接近其輸入電壓。且對於某些實施例而言,DC-AC轉換 器112操作的輸入電壓爲介於150 V到500 V之間。因此 ,不需要用於並聯構造的串中之以變壓器於基礎的轉換器 ,如此則造成實現高效能及低成本的局部轉換器104的能 力。 各個PV面板102能夠將太陽能轉換爲電能。各個局 201013360 部轉換器104係耦接至對應的面板1〇2,且能重新塑造面 板102供應的輸入電壓對電流的輸入關係,使陣列1〇6之 面板102產生的電能可爲負載(未顯示於圖iB中)所利 用。DC-AC轉換器112係耦接至陣列1〇6,且能將局部轉 換器1〇4產生的負載直流(DC)轉換爲交流(AC),負 載可耦接至DC-AC轉換器112。 最大能量點追蹤(MPPT )自動判定面板102應操作 之電壓或是電流,以對特定溫度及太陽輻射產生最大功率 輸出。儘管當陣列1 06在理想條件(亦即,對於陣列1 〇6 中之各個面板102有相同的輻射、溫度及電性特徵)時, 對於整體陣列106而言,實施集中式Μ PPT相當簡單。然 而,當例如有不匹配或是部份被遮蔽的情況下,對於整體 陣列106之ΜΡΡΤ則更爲複雜。在此情況中,因爲不匹配 的陣列1 06的多峰功率對電壓特性的相對最佳條件, ΜΡΡΤ技術不能提供精確的結果。因此,該陣列106中僅 有一些面板102能理想地操作,使得產生能量急遽下降。 因此,爲了解決此問題,各個局部轉換器104可對其對應 的面板102提供局部ΜΡΡΤ。在此方式中,不論在理想的 或是不匹配或是被遮蔽的情況下,各個面板102皆可操作 在其自有的最大能量點(ΜΡΡ )。對於其中能量產生裝置 102包含風力渦輪的實施例而言,ΜΡΡΤ可用於調整風力 渦輪的葉片間距。亦應了解者爲’ ΜΡΡΤ可用於最佳化包 含其他種類的能量產生裝置1〇2的系統100。 中央陣列控制器1 1 0耦接至陣列1 0 6 ’且能夠透過有 -11 - 201013360 線連接(例如串聯或是並聯匯流排)或是無線連接與陣列 106通訊。中央陣列控制器1 10可包含診斷模組120及/或 控制模組125。診斷模組120能監控光伏打系統100,而 控制模組1 25能控制光伏打系統1 00。 診斷模組1 20能從陣列1 06中之各個局部轉換器1 〇4 接收用於局部轉換器104的局部轉換器資料及用於局部轉 換器104對應的面板102的裝置資料。此處所使用之「裝 置資料」表示面板102之輸出電壓、輸出電流、溫度、輻 射、輸出功率等。相似地,「局部轉換器資料」表示局部 轉換器輸出電壓、局部轉換器輸出電流、局部轉換器輸出 功率等。 診斷模組120亦能夠在系統100上產生報告,且提供 報告予操作者。舉例而言,診斷模組120能夠顯示裝置資 料及局部轉換器資料其中一些或是全部予操作者查看。此 外,診斷模組120能夠提供裝置資料及局部轉換器資料其 中一些或是全部予控制模組125。診斷模組120亦能夠以 任何合適的方式分析資料,並提供分析結果予操作者及/ 或控制模組125。例如,診斷模組12〇能夠根據任何合適 的時限,例如每小時、每天、每星期、或是每個月,判定 各個面板102的統計資料。 診斷模組120亦能夠對陣列106提供錯誤監控。根據 自局部轉換器104所接收的資料,診斷模組120可辨識一 個或更多個具有瑕疵的面板102,例如失敗的面板102、 失效的面板102、被遮蔽的面板1〇2、髒污的面板102等 -12- 201013360 。當應更換、修復、或是清潔具有瑕疵的面板102時,診 斷模組1 20亦可通知操作者。 控制模組1 25能夠藉由傳送控制信號至一個或更多個 局部轉換器1 04而實際地控制陣列1 〇6。例如,控制模組 125可傳送繞行控制信號至對應的面板1〇2失效的特定局 部轉換器104。繞行控制信號促使局部轉換器104繞過面 板102,有效地自陣列106移去面板102而不會影響在相 同串114中之其他面板1〇2(如同被繞過的面板102)的 操作。 此外,控制模組125能夠傳送控制信號至一個或更多 個局部轉換器104,其引導局部轉換器調整其之輸出電壓 或是電流。對於某些實施例而言,局部轉換器104的 MPPT功能可移至中央陣列控制器1 1 0。對於該等實施例 而言,控制模組125亦可校準各個面板102之MPP,及根 據校準而傳送轉換比例命令至各個局部轉換器104,以使 各個面板102操作於其自有的MPP,如控制模組125所判 定者。 控制模組1 25亦可自操作者接收指令並啓動指令。例 如,操作者可引導控制模組1 25系統1 00爲倂聯型或是獨 立型,且控制模組125可藉由將系統1〇〇設爲倂聯或是獨 立該系統1〇〇而回應操作者。 因此,藉由利用中央陣列控制器11 〇,光伏打系統 100以面板爲基礎可提供更佳的利用。且,系統100藉由 可混合不同來源,而增加彈性。中央陣列控制器11 〇亦對 -13- 201013360 整個系統100提供較佳的保護及資料收集。 圖2爲根據揭不內容之一實施例,顯不局部轉換器 204。局部轉換器204可表示圖1A中之局部轉換器14其 中之一個,或是表示圖中之局部轉換器104其中之一 個,然而,應了解者爲,局部轉換器204能在不脫離揭示 內容的範圍中,以任何合適的方式設於能量產生系統中。 此外,儘管所示者爲耦接至稱爲PV面板的能量產生裝置 2 02,應了解者爲,局部轉換器2 04可耦接至PV面板的 單一電池或是光伏打陣列的面板子組合,或是耦接至另一 能量產生裝置202,例如風力渦輪、燃料電池等。 局部轉換器204包含功率級206及局部控制器208, 其更包含MPPT模組210及選用的通訊介面212。功率級 206可包含DC-DC轉換器,其能從PV面板202接收面板 電壓及電流做爲輸入,並重新塑造輸入的電壓對電流關係 ,以產生輸出電壓及電流。 局部控制器208的通訊介面212能提供局部轉換器 2 04及中央陣列控制器(例如圖1 B中之中央陣列控制器 110)之間的通訊通道。然而,對於局部轉換器204不與 中央陣列控制器通訊的實施例而言,可以省略通訊介面 212 ° MPPT模組210能從面板202接收面板電壓及電流作 爲輸入,且若所使用的演算法有需要,可從功率級206接 收輸出電壓及電流。根據該等輸入,MPPT模組210能提 供信號,以控制功率級206。在此方式中,局部控制器 201013360 208之MPPT模組210能對於PV面板202提供ΜΡΡΤ。 藉由提供ΜΡΡΤ,ΜΡΡΤ模組210將對應的面板202 保持於實質上固定的操作點(亦即,對應於面板202之最 大功率點的固定電壓Vpan及電流Ipan)。因此,對於給定 的固定太陽輻射而言,在穩定狀態中,若局部轉換器204 對應於面板202之相對或是絕對最大功率點,則局部轉換 器204之輸入功率是固定的(亦即,Ppan = Vpa/Ipan)。此 φ 外,局部轉換器204具有相對高的效能,因此,輸出功率 幾乎等於輸入功率(亦即,P〇ut=Ppan)。 圖3爲根據揭示內容之一實施例,顯示局部轉換器 204之細部。對於此實施例而言,功率級206實現爲單一 電感、四開關同步升降切換調節器,且MPPT模組210包 含功率級調節器302、MPPT控制區塊304、及兩個類比 到數位轉換器(ADC) 306及308。 ADC 3 06能夠縮放及量子化類比面板電壓Vpan及類 φ 比面板電流Ipan,以分別產生數位面板電壓及數位面板電 流。應了解者爲,儘管所述爲面板電壓及面板電流,對於 任何合適的能量產生裝置202 (例如風力渦輪、燃料電池 等)而言,Vpan可稱爲輸出裝置電壓且Ipan可稱爲輸出裝 置電流。耦接至MPPT控制區塊304及通訊介面212的 ADC 3 06亦能夠提供數位面板電壓及電流至MPPT控制區 塊304及通訊介面212。相似地,ADC 3 08能夠縮放及量 子化類比輸出電壓及類比輸出電流,以分別產生數位輸出 電壓及數位輸出電流。亦耦接至MMPT控制區塊304及 -15- 201013360 通訊介面212的ADC 3 08能提供數位輸出電壓及電流信 號至MPPT控制區塊304及通訊介面212。通訊介面212 能提供ADC 3 06所產生的數位面板電壓及電流信號及 ADC 3 08所產生的數位輸出電壓及電流信號至中央陣列控 制器。 耦接至功率級調節器302的MPPT控制區塊304能自 ADC 306接收數位面板電壓及電流,及自ADC 308接收 數位輸出電壓及電流。根據該等數位信號其中至少一些。 MPPT控制區塊304能產生用於功率級調節器302的轉換 比例命令。轉換比例命令包含用於功率級調節器302的轉 換比例,以在操作功率級206時使用。對於MPPT控制區 塊304能根據數位面板電壓及電流(而非根據數位輸出電 壓及電流)而產生轉換命令的實施例而言,ADC 3 08僅提 供數位輸出電壓及電流至通訊介面212,而不會至MPPT 控制區塊3 04。 對於某些實施例而言,功率級調節器302包含升降模 式控制邏輯及數位脈衝寬度調節器。此功率級調節器302 能藉由根據MPPT控制區塊304所提供的轉換比例產生脈 衝寬度調變(PWM)信號,而使功率級206操作於不同模 式,MPPT控制區塊304可校準用於功率級206之PWM 信號的轉換比例。 功率級調節器302耦接至功率級206,且能藉由使用 工作週期及一模式來操作功率級2 06,而根據MPPT控制 區塊304所產生的轉換比例操作功率級206,工作週期及 201013360 該模式係根據轉換比例而判定。對於功率級206實現爲升 降轉換器之實施例而言,功率級206之可能模式包含降級 模式、升級模式、升降模式、旁通模式及停止模式。 對於此實施例而言,當轉換比例CR落在升降範圍內 時’功率級調節器3 02能使功率級206操作在升降模式; 當轉換比例CR小於升降範圍時,功率級調節器302能使 功率級206操作在降級模式;當轉換比例CR大於升降範 φ 圍時,功率級調節器302能使功率級206操作在升級模式 。升降範圍包含實質上等於1的値。例如,對於一特定實 施例而言,升降範圍包含0_95到1.05。當功率級206爲 降級模式時,若CR小於最大降級轉換比例 . 功率級調節器3 02能以降級構造操作整個功率級206。相 似地,若CR大於最小升級轉換比例CRb()()St,min,功率級 調節器302能使功率級206操作於升級構造。 最後,當轉換比例大於CRbuek,max且小於CRbc^st.min φ 時,功率級調節器302能交替地在降級構成及升級構成中 操作功率級206。在此情況中,功率級調節器302可實施 分時多工,以在降級構成及升級構成之間交替。因此,當 轉換比例更接近CRbuek,max時,功率級調節器302在降級 構成中操作功率級206較在升級構成中操作功率級206爲 頻繁。相似地,當轉換比例更接近CRb(><)St,min時,功率級 調節器3 02在升級構成中操作功率級206較在降級構成中 操作功率級206爲頻繁。當轉換比例靠近CRbuek,max及 CRboost.min之間的中間點時,功率級調節器302在降級構 -17- 201013360 成中操作功率級206與在升級構成中操作功率級206的頻 繁度不相上下。例如,當功率級206爲在升降模式時,功 率級調節器302可均勻地交替操作功率級206呈降級構成 及升級構成。 對於所述實施例而言,功率級206包含四個開關 310 a-d,及電感L及電容C。對於某些實施例而言,開關 310可包含N-通道功率MOSFET。對於一特定實施例而言 ,該等電晶體可包含矽上的氮化鎵裝置。然而,應了解者 爲,在不脫離揭示內容範圍之內,開關310可爲其他適合 的方式實現。此外,功率級206可包含一個或更多個驅動 器(未顯示於圖3中),以驅動開關310(例如電晶體之 閘極)。例如,對於一特定實施例而言,第一驅動器可耦 接至功率級調節器302及電晶體310a及310b之間,以驅 動電晶體310a及310b之閘極,第二驅動器可耦接至功率 級調節器3 02及電晶體3 10c及3 10d之間,以驅動電晶體 310c及310d之閘極。對此實施例而言,功率級調節器 302所產生之PWM信號供應至驅動器,根據該等信號, 分別驅動其個別的電晶體3 1 0之閘極。 對於所述之實施例而言,在操作功率級206中,功率 級調節器3 02能產生數位脈衝,以控制功率級206的開關 310。對於下述實施例而言,開關包含電晶體。對於降級 構成而言,功率級調節器3 02關閉電晶體31 〇C並開啓電 晶體31 0d。然後,脈衝交替地開啓及關閉電晶體310a及 電晶體310b,使功率級206操作爲降級調節器。對此實 201013360 施例而言,電晶體310a之工作週期等於工作週期D,其 係包含於MPPT控制區塊304所產生的轉換比例命令中。 對於升級模式而言,功率級調節器3 02開啓電晶體310a 及關閉電晶體310b。脈衝交替地開啓及關閉電晶體310c 及電晶體310d,以使功率級206操作爲升級調節器。對 此實施例而言,電晶體310之工作週期等於1-D。 對於升降模式而言,功率級調節器302在降級及升級 φ 構成之間實施分時多工,如上述。功率級調節器302產生 用於電晶體310a及310b的降級開關對的控制信號,及用 於電晶體310c及31 0d的升級開關對的控制信號。電晶體 3 10a的工作週期固定於對應CRbuek,max的工作週期,電晶 . 體310c的工作週期固定於對應CRb(3<)st,min的工作週期。 經過一段指定時間期間的降級構成及升級構成操作之間的 比例爲與D呈線性比例。 當輸出電壓接近面板電壓時,功率級206係操作於升 φ 降模式中。在此情況中,對於所述實施例而言,電感電流 漣波及電壓切換造成的應力遠小於SEPIC及習知的升降 轉換器。且,相較於習知的升降轉換器,所述的功率級 206可達到更高的效能。 對於某些實施例而言,如以下將與圖4A —同詳細敘 述者,MPPT控制區塊3 04能操作在以下四個模式其中之 一個:休眠模式、追蹤模式、保持模式、及旁通模式。當 面板電壓少於預定的初級臨限電壓時,MPPT控制區塊 3 04可操作在休眠模式中。在休眠模式中,MPPT控制區 -19- 201013360 塊304使電晶體310a-d關閉。例如,對於某些實施例而 言,當MPPT控制區塊爲休眠模式時,MPPT控制區塊 3 04能產生轉換比例命令,其促使功率級調節器302關閉 電晶體3 10a-d。因此,功率級206係在停止模式,且面板 2 02被繞過,如此則能有效地避免移除使用面板202之光 伏打系統中之面板202。 當面板電壓升高到高於初級臨限電壓時,MPPT控制 區塊3 04操作於追蹤模式。在此模式中,MPPT控制區塊 3 04對面板202實施最大功率點追蹤,以判定功率級調節 器302之最佳轉換比例。且在此模式中,功率級調節器 302會取決於目前產生的轉換比例命令,而將功率級206 置於降級模式、升級模式、或是升降模式中。 此外,對於某些實施例而言,MPPT控制區塊304亦 可包含停止暫存器,其可藉由系統之操作者或是任何合適 的控制程式(例如設於中央陣列控制器中之控制程式)修 改,以強制MPPT控制區塊304保持功率級206爲停止模 式。對於此實施例而言,除非(i)面板電壓超出初級臨 限電壓,及(ii)停止暫存器表示MPPT控制區塊304會 將功率級206移出停止模式,否則MPPT控制區塊304不 會開始操作於追蹤模式中。The energy generating system 10 sets the system control of the overall system 10 controlled by the central MPPT control block 32, and sets the local control loops controlled by the corresponding local converters 14 for each panel 12. The operating frequencies of the loops are separated from each other by at least a predetermined distance to avoid system oscillations and to prevent the panel 12 from leaving its MPP operation. For an embodiment, the system control loop is a closed loop system that includes an array 16, a central MPPT 201013360 control block 32, and a DC-AC converter 22. In addition, each local control loop is a closed loop system that includes a panel 12 and a corresponding local converter 14 °. For some embodiments, each local converter 14 is designed to cause local control loops of the converter 14 The settling time is faster than the time constant of the system control loop. In a particular embodiment, each local control loop has a settling time that is at least five times faster than the time constant of the system control loop. Thus, in a steady state, array 16 of panels 12 can serve as a power source for DC-AC converter 22, the amount of power being the sum of the maximum power available to each panel 12. At the same time, the central MPPT control block 32 can implement a normal optimization algorithm. Finally, the central MPPT control block 32 can set the string voltage to maximize the performance of the local converter 14. In this way, system oscillations caused by dynamic reactions between the system control loop and the local control loop can be avoided. In addition, panel 12 is generally operable in its MPP. Also, it can be synchronized between the system and the local loop to avoid damage that can be caused by an unrestricted increase in string voltage. Finally, the isolated DC-AC converter 22 can be avoided, which causes the DC-AC converter 22 to stop absorbing energy and causing an uncontrollable input voltage to grow. FIG. 1B illustrates an energy generating system 100 capable of centralized control, in accordance with an embodiment of the disclosure. The energy generating system 100 includes a plurality of energy generating devices (EGDs) 102 each coupled to a corresponding local converter 104' energy generating device 102 and a local converter 104 to form an energy generating array 106. For a particular embodiment, as disclosed, the energy generating system 100 can include a photovoltaic system, and the energy generation 201013360 device 102 includes a photovoltaic panel (PV) panel. However, it should be appreciated that the energy generating system 100 can include any other suitable type of energy generating system, such as a wind turbine system, a fuel cell system, and the like. For such embodiments, energy generating device 102 can include a wind turbine, a fuel cell, and the like. Moreover, the energy generating system 100 can be a grounded system or a floating system. The photovoltaic system 100 includes a central array controller 1 1 〇 and also includes a DC-AC converter 112, or other suitable load for use in the case where the system 100 operates as a truss system. However, it should be appreciated that system 100 can operate as a stand-alone system by coupling array 106 to a battery charger or other suitable energy storage device instead of DC-AC converter 112. The PV panels 102 in the array 106 are arranged in a string 114. For the illustrated embodiment, array 106 includes two strings 114, each string 114 including three panels 102. However, it should be appreciated that arrays 1〇6 can include any suitable number of strings 114, and each string 114 can include any suitable number of panels 102. Also for the described embodiment, the panels 102 in each string 114 are connected in series. Therefore, when a high voltage is supplied to the input port of the DC-AC converter 112, the output voltage of each of the local converters 1?4 is still close to its input voltage. And for some embodiments, the DC-AC converter 112 operates with an input voltage between 150V and 500V. Therefore, a transformer-based converter for use in a parallel configuration of the strings is not required, thus resulting in the ability to achieve high efficiency and low cost local converters 104. Each PV panel 102 is capable of converting solar energy into electrical energy. Each office 201013360 converter 104 is coupled to the corresponding panel 1〇2, and can reshape the input voltage to current input relationship of the panel 102, so that the energy generated by the panel 102 of the array 1〇6 can be a load (not Shown in Figure iB). The DC-AC converter 112 is coupled to the array 1〇6 and is capable of converting the load direct current (DC) generated by the local converter 1〇4 into alternating current (AC), and the load can be coupled to the DC-AC converter 112. Maximum Energy Point Tracking (MPPT) automatically determines the voltage or current that panel 102 should operate to produce maximum power output for a particular temperature and solar radiation. While the array 106 is under ideal conditions (i.e., having the same radiation, temperature, and electrical characteristics for each of the panels 102 in the array 1 〇 6), implementing a centralized Μ PPT is relatively simple for the overall array 106. However, the difference between the overall array 106 is more complicated when, for example, there is a mismatch or a partial obscuration. In this case, the ΜΡΡΤ technique does not provide accurate results because of the relatively optimal condition of the multi-peak power versus voltage characteristics of the array 106 that does not match. Thus, only some of the panels 102 in the array 106 are ideally operated, resulting in a sharp drop in energy production. Therefore, to address this issue, each local converter 104 can provide a local 对其 to its corresponding panel 102. In this manner, each panel 102 can operate at its own maximum energy point (ΜΡΡ), whether ideal or not matched or obscured. For embodiments in which the energy generating device 102 includes a wind turbine, helium can be used to adjust the blade pitch of the wind turbine. It should also be appreciated that the system 100 can be used to optimize the inclusion of other types of energy generating devices 1〇2. The central array controller 110 is coupled to the array 1 0 6 ' and is capable of communicating with the array 106 via a -11 - 201013360 line connection (eg, a series or parallel bus) or a wireless connection. The central array controller 110 can include a diagnostic module 120 and/or a control module 125. The diagnostic module 120 can monitor the photovoltaic system 100, and the control module 125 can control the photovoltaic system 100. The diagnostic module 120 can receive local converter data for the local converter 104 and device data for the panel 102 corresponding to the local converter 104 from the respective local converters 1 〇 4 in the array 106. The "device data" used herein indicates the output voltage, output current, temperature, radiation, output power, and the like of the panel 102. Similarly, "local converter data" indicates the local converter output voltage, local converter output current, local converter output power, and so on. The diagnostic module 120 is also capable of generating reports on the system 100 and providing reports to the operator. For example, the diagnostic module 120 can display some or all of the device data and local converter data for viewing by the operator. In addition, the diagnostic module 120 can provide some or all of the device data and local converter data to the control module 125. The diagnostic module 120 can also analyze the data in any suitable manner and provide analysis results to the operator and/or control module 125. For example, the diagnostic module 12 can determine the statistics for each panel 102 based on any suitable time frame, such as hourly, daily, weekly, or monthly. The diagnostic module 120 is also capable of providing error monitoring to the array 106. Based on the information received from the local converter 104, the diagnostic module 120 can identify one or more panels 102 having defects, such as failed panels 102, failed panels 102, shaded panels 1 , 2, dirty Panel 102 and so on -12- 201013360. The diagnostic module 120 can also notify the operator when the defective panel 102 should be replaced, repaired, or cleaned. Control module 125 can actually control array 1 〇 6 by transmitting control signals to one or more local converters 104. For example, control module 125 can transmit a bypass control signal to a particular local converter 104 where the corresponding panel 1〇2 fails. The bypass control signal causes the local converter 104 to bypass the panel 102, effectively removing the panel 102 from the array 106 without affecting the operation of the other panels 1 & 2 (like the bypassed panel 102) in the same string 114. In addition, control module 125 can transmit control signals to one or more local converters 104 that direct the local converters to adjust their output voltage or current. For some embodiments, the MPPT function of local converter 104 can be moved to central array controller 110. For the embodiments, the control module 125 can also calibrate the MPP of each panel 102 and transmit a conversion ratio command to each local converter 104 according to the calibration so that each panel 102 operates on its own MPP, such as The person determined by the control module 125. The control module 125 can also receive commands from the operator and initiate commands. For example, the operator can guide the control module 1 25 system 100 to be connected or independent, and the control module 125 can respond by setting the system 1 to be connected or independent of the system 1 operator. Thus, by utilizing the central array controller 11 , the photovoltaic system 100 can provide better utilization on a panel basis. Moreover, system 100 increases flexibility by mixing different sources. The central array controller 11 also provides better protection and data collection for the entire system 100 from -13 to 201013360. 2 is a diagram showing a local converter 204 in accordance with one embodiment of the disclosure. The local converter 204 can represent one of the local converters 14 of FIG. 1A or one of the local converters 104 in the figure. However, it should be understood that the local converter 204 can be used without departing from the disclosure. In the range, it is provided in the energy generating system in any suitable manner. In addition, although shown as being coupled to an energy generating device 206, referred to as a PV panel, it should be understood that the local converter 206 can be coupled to a single cell of a PV panel or a panel sub-combination of a photovoltaic array. Either coupled to another energy generating device 202, such as a wind turbine, a fuel cell, or the like. The local converter 204 includes a power stage 206 and a local controller 208, which further includes an MPPT module 210 and an optional communication interface 212. The power stage 206 can include a DC-DC converter that can receive panel voltage and current from the PV panel 202 as an input and reshape the input voltage versus current relationship to produce an output voltage and current. The communication interface 212 of the local controller 208 can provide a communication path between the local converter 240 and a central array controller (e.g., the central array controller 110 of FIG. 1B). However, for embodiments in which local converter 204 is not in communication with the central array controller, the communication interface 212 ° may be omitted. MPPT module 210 can receive panel voltage and current from panel 202 as input, and if the algorithm used has The output voltage and current can be received from power stage 206 as needed. Based on the inputs, the MPPT module 210 can provide signals to control the power stage 206. In this manner, the MPPT module 210 of the local controller 201013360 208 can provide a UI for the PV panel 202. By providing ΜΡΡΤ, the ΜΡΡΤ module 210 maintains the corresponding panel 202 at a substantially fixed operating point (i.e., a fixed voltage Vpan and current Ipan corresponding to the maximum power point of the panel 202). Thus, for a given fixed solar radiation, in the steady state, if the local converter 204 corresponds to the relative or absolute maximum power point of the panel 202, the input power of the local converter 204 is fixed (ie, Ppan = Vpa/Ipan). In addition to this φ, the local converter 204 has a relatively high performance, and therefore, the output power is almost equal to the input power (i.e., P〇ut = Ppan). 3 is a detail showing a local converter 204, in accordance with an embodiment of the disclosure. For this embodiment, the power stage 206 is implemented as a single inductor, four-switch synchronous lift switching regulator, and the MPPT module 210 includes a power stage regulator 302, an MPPT control block 304, and two analog to digital converters ( ADC) 306 and 308. The ADC 3 06 is capable of scaling and quantizing the analog panel voltage Vpan and the class φ ratio panel current Ipan to produce digital panel voltage and digital panel current, respectively. It should be appreciated that while the panel voltage and panel current are described, for any suitable energy generating device 202 (eg, wind turbine, fuel cell, etc.), Vpan may be referred to as an output device voltage and Ipan may be referred to as an output device current. . The ADC 306 coupled to the MPPT control block 304 and the communication interface 212 can also provide digital panel voltage and current to the MPPT control block 304 and the communication interface 212. Similarly, ADC 3 08 scales and quantizes the analog output voltage and analog output current to produce a digital output voltage and a digital output current, respectively. The ADC 3 08, which is also coupled to the MMPT control block 304 and the -15-201013360 communication interface 212, can provide digital output voltage and current signals to the MPPT control block 304 and the communication interface 212. The communication interface 212 can provide the digital panel voltage and current signals generated by the ADC 306 and the digital output voltage and current signals generated by the ADC 308 to the central array controller. The MPPT control block 304 coupled to the power stage regulator 302 is capable of receiving digital panel voltages and currents from the ADC 306 and receiving digital output voltages and currents from the ADC 308. Based on at least some of the digital signals. The MPPT control block 304 can generate a conversion proportional command for the power stage regulator 302. The conversion ratio command includes a conversion ratio for the power stage regulator 302 for use in operating the power stage 206. For embodiments in which the MPPT control block 304 can generate a conversion command based on the digital panel voltage and current (rather than the digital output voltage and current), the ADC 3 08 only provides the digital output voltage and current to the communication interface 212 instead of Go to MPPT Control Block 3 04. For certain embodiments, power stage regulator 302 includes lift mode control logic and a digital pulse width adjuster. The power stage regulator 302 can operate the power stage 206 in different modes by generating a pulse width modulation (PWM) signal according to the conversion ratio provided by the MPPT control block 304, and the MPPT control block 304 can be calibrated for power. The conversion ratio of the PWM signal of stage 206. The power stage regulator 302 is coupled to the power stage 206 and can operate the power stage 206 by using the duty cycle and a mode, and operates the power stage 206 according to the conversion ratio generated by the MPPT control block 304, the duty cycle and 201013360. This mode is determined based on the conversion ratio. For embodiments in which power stage 206 is implemented as an up-converter, the possible modes of power stage 206 include a degraded mode, an upgrade mode, a lift mode, a bypass mode, and a stop mode. For this embodiment, the power stage regulator 302 enables the power stage 206 to operate in the lift mode when the conversion ratio CR falls within the lift range; the power stage adjuster 302 enables the power stage adjuster 302 when the conversion ratio CR is less than the lift range The power stage 206 operates in a degraded mode; when the conversion ratio CR is greater than the elevating range φ, the power stage regulator 302 enables the power stage 206 to operate in an upgrade mode. The lift range contains 値 that is substantially equal to one. For example, for a particular embodiment, the lift range includes 0_95 to 1.05. When the power stage 206 is in the degraded mode, if the CR is less than the maximum degraded conversion ratio, the power stage regulator 302 can operate the entire power stage 206 in a degraded configuration. Similarly, power level regulator 302 enables power stage 206 to operate in an upgrade configuration if CR is greater than the minimum upgrade conversion ratio CRb()() St, min. Finally, when the conversion ratio is greater than CRbuek,max and less than CRbc^st.min φ, the power stage regulator 302 can alternately operate the power stage 206 in the degraded configuration and upgrade configuration. In this case, the power stage regulator 302 can implement time division multiplexing to alternate between the degraded configuration and the upgrade configuration. Therefore, when the conversion ratio is closer to CRbuek,max, the power stage regulator 302 operates the power stage 206 in the degraded configuration more frequently than the operating power level 206 in the upgrade configuration. Similarly, when the conversion ratio is closer to CRb(><)St,min, the power stage regulator 302 operates the power stage 206 in the upgrade configuration more frequently than the operation power level 206 in the degraded configuration. When the conversion ratio is close to the intermediate point between CRbuek, max and CRboost.min, the power stage regulator 302 operates the power stage 206 in the degraded configuration -17-201013360 and does not have the frequency of operating the power stage 206 in the upgrade configuration. up and down. For example, when the power stage 206 is in the hoist mode, the power stage regulator 302 can alternately operate the power stage 206 in a degraded configuration and upgrade configuration. For the illustrated embodiment, power stage 206 includes four switches 310a-d, and an inductor L and a capacitor C. For some embodiments, switch 310 can include an N-channel power MOSFET. For a particular embodiment, the transistors can include a gallium nitride device on the crucible. However, it is to be understood that switch 310 can be implemented in other suitable manners without departing from the scope of the disclosure. In addition, power stage 206 can include one or more drivers (not shown in Figure 3) to drive switch 310 (e.g., the gate of a transistor). For example, for a particular embodiment, the first driver can be coupled between the power stage regulator 302 and the transistors 310a and 310b to drive the gates of the transistors 310a and 310b, and the second driver can be coupled to the power. The level regulator 312 and the transistors 3 10c and 3 10d are driven to drive the gates of the transistors 310c and 310d. For this embodiment, the PWM signal generated by power stage regulator 302 is supplied to the driver, and based on the signals, the gates of their respective transistors 310 are driven, respectively. For the illustrated embodiment, in operating power stage 206, power stage regulator 312 can generate digital pulses to control switch 310 of power stage 206. For the embodiments described below, the switch comprises a transistor. For the degraded configuration, the power stage regulator 302 turns off the transistor 31 〇C and turns on the transistor 31 0d. Then, the pulses alternately turn on and off the transistor 310a and the transistor 310b, causing the power stage 206 to operate as a degrading regulator. For this embodiment of the 201013360 embodiment, the duty cycle of the transistor 310a is equal to the duty cycle D, which is included in the conversion ratio command generated by the MPPT control block 304. For the upgrade mode, the power stage regulator 302 turns on the transistor 310a and turns off the transistor 310b. The pulses alternately turn on and off transistor 310c and transistor 310d to operate power stage 206 as an upgrade regulator. For this embodiment, the duty cycle of transistor 310 is equal to 1-D. For the lift mode, the power stage regulator 302 performs time division multiplexing between the degraded and upgraded φ configurations, as described above. Power stage regulator 302 generates control signals for the degraded switch pairs of transistors 310a and 310b, and control signals for the upgrade switch pairs of transistors 310c and 31d. The duty cycle of the transistor 3 10a is fixed to the duty cycle corresponding to CRbuek,max, and the duty cycle of the body 310c is fixed to the duty cycle corresponding to CRb(3<)st, min. The ratio between the composition of the degradation and the operation of the upgrade over a specified period of time is linearly proportional to D. When the output voltage approaches the panel voltage, the power stage 206 operates in the up-down mode. In this case, for the described embodiment, the stress caused by the inductor current chopping and voltage switching is much smaller than that of the SEPIC and the conventional upshift converter. Moreover, the power stage 206 can achieve higher performance than conventional lift converters. For some embodiments, as will be described in more detail below with respect to FIG. 4A, the MPPT control block 310 can operate in one of four modes: sleep mode, tracking mode, hold mode, and bypass mode. . When the panel voltage is less than the predetermined primary threshold voltage, the MPPT control block 304 can operate in the sleep mode. In sleep mode, MPPT Control Area -19-201013360 block 304 turns transistors 310a-d off. For example, for some embodiments, when the MPPT control block is in the sleep mode, the MPPT control block 408 can generate a conversion ratio command that causes the power stage regulator 302 to turn off the transistors 3 10a-d. Thus, power stage 206 is in stop mode and panel 02 is bypassed, thus effectively avoiding removal of panel 202 in the photovoltaic system using panel 202. When the panel voltage rises above the primary threshold voltage, the MPPT control block 304 operates in the tracking mode. In this mode, MPPT control block 308 performs maximum power point tracking on panel 202 to determine the optimal conversion ratio of power stage regulator 302. And in this mode, the power stage regulator 302 will place the power stage 206 in the degraded mode, the upgrade mode, or the lift mode depending on the currently generated conversion ratio command. In addition, for some embodiments, the MPPT control block 304 may also include a stop register, which may be operated by a system operator or any suitable control program (eg, a control program located in the central array controller). The modification is to force the MPPT control block 304 to maintain the power stage 206 in the stop mode. For this embodiment, unless (i) the panel voltage exceeds the primary threshold voltage, and (ii) the stop register indicates that the MPPT control block 304 will move the power stage 206 out of the stop mode, the MPPT control block 304 will not Start working in tracking mode.
當MPPT控制區塊304找出最佳轉換比例時,MPPT 控制區塊3 04可操作於保持模式一段預定期間的時間。在 此模式中,MPPT控制區塊304可繼續提供在追蹤模式中 被判定爲最佳轉換比例之相同的轉換比例予功率級調節器 -20- 201013360 3 02。且在此模式中,如在追蹤模式中,功率級206係取 決於轉換比例命令所提供的最佳轉換比例,而處於降級模 式、升級模式、或是升降模式中。在經過預定期間的時間 之後,MPPT控制區塊304可恢復爲追蹤模式,以確保最 佳的轉換比例不會改變,或是若面板1 〇2之條件改變’可 找出新的最佳轉換比例。 如連同圖5-8之以下更詳盡的說明,當光伏打陣列中 之各個面板(例如面板202 )被均勻照亮,且面板202之 間沒有不匹配時,中央陣列控制器可設置MPPT控制區塊 3 04與功率級206爲旁通模式。在旁通模式中,對於某些 實施例而言,電晶體310a及310d爲開啓,電晶體310b 及310c爲關閉,以使面板電壓等於輸出電壓。對於其他 實施例而言,功率級206可包含選用的開關3 1 2,功率級 2 06可耦接輸入埠至輸出埠,以使輸出電壓等於面板電壓 。在此方式中,當不需要局部MPPT時,實質上可自系統 移除局部轉換器204,藉此藉由減少有關局部轉換器204 之損失,而最大化效能,並增加壽命。 因此,如上述,MPPT控制區塊3 04能操作於休眠模 式中,且將功率級206置於繞過面板202的停止模式。 MPPT控制區塊3 04亦能操作於追蹤模式或是保持模式。 不論在何種模式中,MPPT控制區塊3 04能將功率級206 置於降級模式、升級模式、及升降模式其中之一個模式中 。最後,MPPT控制區塊3 04能操作於旁通模式中,且將 功率級206置於旁通模式中,在旁通模式中,會繞過局部 21 - 201013360 轉換器204,容許面板202直接耦接至陣列中的其他面板 202 > 藉由以此種方式操作局部轉換器204,包含面板202 之面板串的串電流與個別的面板電流無關。反之,係藉由 串電壓及總串功率來設定串電流。此外,沒有被遮蔽的面 板2 02可繼續操作於最高功率點,不用考慮串中之其他面 板的部份被遮蔽的條件。 對於一替換性實施例而言,當MPPT控制區塊304找 出最佳轉換比例時,當最佳轉換比例對應於功率級206的 升降模式時,MPPT控制區塊3 04可不操作於保持模式而 是操作於旁通模式中。在升降模式中,輸出電壓接近面板 電壓。因此,面板2 02可藉由繞過局部轉換器204而操作 於接近其最大功率點,如此則增加效能。如前述之實施例 ,MPPT控制區塊3 04定期地自旁通模式恢復爲追蹤模式 ,以驗證最佳轉換比例是否落於升降模式範圍之內。 對於某些實施例而言,MPPT控制區塊304能逐漸調 整用於功率級調節器3 02之轉換比例,而非正常的階式變 化,以避免加諸於功率級2 06之電晶體、電感、及電容的 應力。對於某些實施例而言,MPPT控制區塊304能實現 不同的MPPT技術,以調整面板電壓或是傳導率,而非調 整轉換比例。此外,MPPT控制區塊304可調整參考電壓 ,而非調整轉換比例,以用於動態的輸入電壓調節。 此外,MPPT控制區塊304能致能功率級206之停止 模式及其他模式之間的相對快速及平滑的轉折。MPPT控 201013360 制區塊304可包含非揮發性記憶體,其能儲存前一最大功 率點狀態,例如轉換比例等。對於此實施例而言,當 MPPT控制區塊304轉換到休眠模式時,最大功率點狀態 係儲存於此非揮發性記憶體中。當MPPT控制區塊304其 後回歸到追蹤模式時,所儲存的最大功率點狀態可用作爲 初始的最大功率點狀態。在此方式中,對功率級206而言 ,停止及其他模式之間的轉換時間可明顯減少。 對於某些實施例而言,MPPT控制區塊304亦能對局 部轉換器2 04提供過功率且/或過電壓保護。因爲信號 Vpan及Ipan經由ADC 306向前饋入MPPT控制區塊304, MPPT控制方塊3 04嘗試擷取最大功率。若功率級2 06輸 出有開路電路,則局部轉換器204之輸出電壓達到最大値 。因此,對於過功率保護而言,局部轉換器204之輸出電 流可用作爲開啓及關閉MPPT控制區塊304的信號。對此 實施例而言,若輸出電流下降到太低,則可由MPPT控制 區塊304設定轉換比例,以使面板電壓幾乎等於輸出電壓 〇 對於過電壓保護而言,MPPT控制區塊304可對轉換 比例命令具有最大轉換比例,MPPT控制區塊304不會超 過該最大轉換比例。因此,若轉換比例持續高於最大轉換 比例,則MPPT控制區塊304將轉換比例限制於最大値。 如此則能確保輸出電壓不會增加到超過對應的最大値。最 大轉換比例的値可爲固定性的或是適應性的。舉例而言, 可藉由感應面板電壓及根據功率級206的轉換比例來計算 -23- 201013360 對應於轉換比例的次一程式化値的輸出電壓,而達成適應 性的轉換比例限制。 此外,對於所述的實施例而言,功率級206包含選用 的單向開關314。當功率級206爲停止模式時,包含選用 的開關314以容許面板2 02被繞過,藉此自陣列移除面板 202,並容許其他面板2 02繼續操作。對於特定的實施例 而言,單向開關314可包含二極體。然而,應了解者爲, 在不脫離揭示內容的範圍之內,單向開關314可包含任何 其他合適類型的單向開關。 圖4A爲根據揭示內容之一實施例,顯示在局部轉換 器2 04中實現MPPT之方法400。方法400之實施例僅爲 說明性。可在不脫離揭示內容的範圍之內,實現方法400 的其他實施例。 方法4 0 0以Μ P P T控制區塊操作在休眠模式中作爲開 始(步驟401 )。例如,ΜΡΡΤ控制區塊可產生轉換比例 命令,以促使功率級調節器3 02關閉電晶體310a-d或是 功率級206,藉此將功率級206置於停止模式,且繞過面 板 202。 當在休眠模式中時,MPPT控制區塊304監控面板電 壓Vpan,並比較面板電壓與初級臨限電壓Vth (步驟402 )。例如,ADC 306可將面板電壓自類比信號轉換爲數位 信號,並將數位信號提供至MPPT控制區塊304,其儲存 有初級臨限電壓,以與數位面板電壓作比較。 只要面板電壓保持在初級臨限電壓之下(步驟402 ) 201013360 ,MPPT控制區塊3 04就持續操作於休眠模式中。此外, 如上述,當停止暫存器表示功率級206保持爲停止模式時 ,ΜΡΡΤ控制區塊304保持於休眠模式中。然而,—但面 板電壓超出初級臨限電壓(步驟402 ),ΜΡΡΤ控制區塊 3 04產生用以操作功率級206的轉換比例命令,轉換比例 命令包含初始的轉換比例(步驟403)。例如,對於一實 施例而言,ΜΡΡΤ控制區塊3 04以轉換比例1作爲開始。 或者,ΜΡΡ Τ控制區塊3 04能儲存在前一追蹤模式所判定 的最佳轉換比例。對於此實施例而言,ΜΡΡΤ控制區塊 3 04可將轉換比例初始化爲與先前判定的最佳轉換比例相 同。且,ΜΡΡΤ控制區塊304所產生的轉換比例命令供應 至功率級調節器302,其使用初始轉換比例操作功率級 206 ° 此時,ΜΡΡΤ控制區塊304監控面板電流Ipan及輸出 電流Uut,並比較面板電流及輸出電流與臨限電流Ith (步 驟404 )。例如,ADC 3 06可將面板電流自類比信號轉換 爲數位信號,並將數位面板電流供應至ΜΡΡΤ控制區塊 3 04,ADC 3 08可將輸出電流自類比信號轉換爲數位信號 ,且供應數位輸出電流至ΜΡΡΤ控制區塊304,其儲存用 以與數位面板電流及數位輸出電流作比較的臨限電流。只 要電流Ipan及“ut其中至少之一個仍維持低於臨限電流( 步驟404 ) ,ΜΡΡΤ控制區塊304就會持續監控電流位準 。然而,一但該等電流皆超出臨限電流(步驟404 ),則 ΜΡΡΤ控制區塊3 04開始操作於追蹤模式中,其包含初始 -25- 201013360 化設定追蹤變數T爲1,且初始化一計數器(步驟406 ) 〇 儘管未示於圖4A的方法400中,應了解者爲,在追 蹤模式中時,MPPT控制區塊304可繼續監控面板電壓, 及比較面板電壓與少於初級臨限電壓的次級臨限電壓。若 面板電壓減少到低於次級臨限電壓,則MPPT控制區塊 3 04恢復爲休眠模式。藉由使用少於初級臨限電壓的次級 臨限電壓,MPPT控制區塊3 04對雜訊免疫,如此則能避 免MPPT控制區塊304經常在休眠及追蹤模式之間切換。 在設定追蹤變數之値及初始化計數器之後,MPPT控 制區塊304計算用於面板202之初始功率(步驟408 )。 例如,ADC 306可提供數位面板電流及面板電壓信號( Ipan及Vpan )至MPPT控制區塊304,其後,MPPT控制區 塊304將此等信號相乘,以判定裝置(或是面板)功率( Ipa,Vpan)的初始値。 在計算初始功率之後,MPPT控制區塊304以第一方 向修改轉換比例,並產生包含修改過的轉換比例的轉換比 例命令(步驟 410)。例如,對於某些實施例而言, MPPT控制區塊304可增加轉換比例。對於其他實施例而 言,MPPT控制區塊304可減少轉換比例。在經過一段時 間使系統穩定之後,MPPT控制區塊304計算用於面板 202的電流功率(步驟412)。舉例而言,ADC 306可提 供數位面板電流及面板電壓信號至MPPT控制區塊304, 其後,MPPT控制區塊3 04將此等信號相乘,以判定面板 201013360 功率之目前値。 然後,MPPT控制區塊304比較現在計算的功率與先 前計算的功率,其爲初始功率(步驟414)。若目前功率 大於先前功率(步驟414),則MPPT控制區塊304以與 先前修改的相同方向修改轉換比例,並產生更新的轉換比 例命令(步驟416)。對於某些實施例而言,以等量增加 將轉換比例修改得更高或是更低。對於其他實施例而言, 轉換比例能以線性或是非線性增量而修改得更高或是更低 ,以最佳化系統響應。例如,對於某些系統而言,若轉換 比例與最佳値差距甚大,則隨著愈益靠近最佳値,較佳者 爲先使用較大的增量,然後再使用較小的增量。 MPPT控制區塊3 04亦判定追蹤變數T等於1,表示 因爲轉換比例在先前計算之前已經改變過,轉換比例以與 先前計算相同的方向改變(步驟418)。因此,當T等於 1時,面板功率以相同方向隨著轉換比例的先前改變增加 。在此情況中,在給系統一段時間使其穩定之後,MPPT 控制區塊3 04再次計算面板2 02之目前功率(步驟412) ,並比較目前功率與先前功率(步驟414)。然而,若 MPPT控制區塊304判定T不等於1,表示因爲轉換比例 在先前計算之前已經改變過,轉換比例以與先前計算相反 的方向改變(步驟41 8 ),貝!J MPPT控制區塊3 04設定T 爲1,並增加計數器(步驟420)。 然後,MPPT控制區塊304判定計數器是否超出計數 器臨限値Cth (步驟422 )。若目前計數器之値未超出計 -27- 201013360 數器臨限値(步驟422),在給系統一段時間使其穩定之 後,MPPT控制區塊3 04再次計算面板202之目前功率( 步驟412),並比較目前功率與先前功率(步驟414) ’ 以判定面板功率是增加中或是減少中。 若MPPT控制區塊3 04判定目前功率並未大於先前功 率(步驟414 ),則MPPT控制區塊304以與先前修改相 反的方向修改轉換比例,並產生更新的轉換比例命令(步 驟424 ) 。MPPT控制區塊304亦判定追蹤變數T是否等 於2,T若等於2則表示因爲轉換比例在先前計算之前已 經改變過,以與先前計算相反的方向修改轉換比例(步驟 426)。在此情況中,在給系統一段時間使其穩定之後’ MPPT控制區塊304再次計算面板202之目前功率(步驟 412),並比較目前功率與先前功率(步驟414)。 然而,若MPPT控制區塊304判定T不等於2,表示 因爲轉換比例在先前計算之前已經改變過,以與先前計算 相同的方向修改轉換比例(步驟426 ),則MPPT控制區 塊設定T爲2,並增加計數器(步驟42 8 )。然後MPPT 控制區塊304判定計數器是否超出計數器臨限値Cth (步 驟422 ),如上述。 若計數器未超出計數器臨限値(步驟422 ),表示轉 換比例在第一方向及第二方向中已交替地改變數次,此次 數大於計數器臨限値,MPPT控制區塊304找出對應於面 板2 02之最大功率點的最佳轉換比例,且MPPT控制區塊 3 04開始操作於保持模式(步驟430 )。 201013360 在保存模式中時’ MPPT控制區塊304可設定計時器 並重新初始化計數器(步驟43 2 )。當計時器屆期(步驟 434 ) ,ΜΡΡΤ控制區塊304可恢復爲追蹤模式(步驟436 )。並計算目前功率(步驟412) ’以比較目前功率與 ΜΡΡΤ控制區塊304在追蹤模式中最後計算的功率(步驟 4 14)。以此方式,ΜΡΡΤ控制區塊304可確保不會改變 最佳轉換比例,或當面板202之條件改變時,可找出不同 的最佳轉換比例。 儘管圖4Α顯示用於追蹤能量產生裝置202之最大功 率點的方法400的範例,但可對方法400作出各種變更。 例如,儘管係參考光伏打面板而描述方法400,但方法 400可用於其他能量產生裝置202,例如風力渦輪、燃料 電池等。更進一步,儘管係參照圖3之ΜΡΡΤ控制區塊 3 04而描述方法400,但應了解者爲,在不脫離揭示內容 的範圍之內,方法400可用於任何合適地設置的ΜΡΡΤ控 制區塊。此外,對於某些實施例而言,在步驟430中,若 ΜΡΡΤ控制區塊304判定最佳轉換比例相當於功率級206 的升降模式,ΜΡΡΤ控制區塊3 04可操作於休眠模式而非 保持模式。對於該等實施例而言,休眠模式之後,計時器 屆期的時間與保持模式的計時器的時間可以相同或是不同 。且,儘管係以一連串的步驟顯示,但方法400中之步驟 可以重疊、平行發生、發生多次、或是以不同順序發生。 圖4Β爲根據揭示內容之另一實施例,顯示在局部轉 換器204中實現ΜΡΡΤ之方法450»對於一特定實施例而 -29- 201013360 言’圖4B之方法450可對應於圖4A之方法40〇其中一 部份。例如’方法450所述之步驟—般係對應於方法4〇〇 之步驟 403、408、410、412、414、416、及 424。然而, 方法450包含除了該等步驟之外的額外細節。對於另一特 定實施例而言’方法450可獨立於方法400實施,且不限 於上述之方法400的實現方法。此外,如方法400,以下 所述之方法450僅爲說明性。在不脫離揭示內容的範圍之 內’可實現方法45 0之其他實施例。 方法450以包含步驟452、454、及456的開機組作 爲開始。剛開始’ MPPT控制區塊304設定轉換器轉換比 例Μ爲最小轉換比例Mmin (步驟452)。然後,MPPT控 制區塊304設定先前轉換器轉換比例M。^爲Μ,Mud爲 用於前一 MPPT反覆之轉換比例,並對於目前的MPPT反 覆設定轉換比例Μ爲MMd+ AM,其中ΔΜ爲各個反覆之 間的轉換比例的增加差量(步驟454)。若在此步驟中所 設定之Μ値少於初始轉換比例Mstart的値,以用於實施 MPPT (步驟456 ),然後,Mud及\1皆如上述更新,使 兩者皆增加△ Μ (步驟454 )。一但Μ値達到或超過 Mstart之値(步驟456 ),則開機組就完成,且方法進行 至步驟458。 MPPT控制區塊304設定Μ値爲Mstart,並設定「符 號」之値爲1,符號之値表示MPPT處理中的各次反覆的 MPPT擾動方向(步驟45 8 )。在此時’MPPT控制區塊 304感測ADC 306供應的輸入電壓及電流(乂^及Iin) ’ 201013360 並感測ADC 3 08供應的輸出電壓及電流(Vm及Ι。^)( 步驟460 ) 。MPPT控制區塊304亦計算平均的輸入電壓 及電流(Vin av及Iin av ),及平均的輸出電壓及電流( V。u t a v及I。u t a v ),之後*以Vjn avXlin av3十算輸入功率( 步驟4 6 0 )。 對於某些實施例而言,平均的輸入電壓及電流及平均 的輸出電壓及電流係在MPPT擾動間隔的第二個一半計算 。對於具有50 MHz時脈的特定實施例而言,輸入電壓及 電流可在12.5 kHz取樣,且在750 Hz計算平均的輸入電 壓及電流及平均的輸出電壓及電流。 然後,在致能MPPT處理之前,MPPT控制區塊304 判定溫度及電流是否爲可接受的(步驟462 )。對於一特 定實施例而言,MPPT控制區塊304包含當溫度超出預定 臨限値時,能接收過熱信號的過熱接腳。對此實施例而言 ,當過熱信號表示已超出臨限値時,MPPT控制區塊304 判定溫度爲不能接受的。 對於一特定實施例而言,MPPT控制區塊304可藉由 比較輸出電流I〇ut與平均的輸入電流Iinav與較小電流臨 限値的上限Imin hi而判定電流是否爲可接受的,以確保輸 出電流及平均的輸入電流在開始MPPT處理之前爲足夠, 且藉由比較平均的輸出電流Uut av與最大的輸出電流 lout max,以確保平均的輸出電流不會太高。對此實施例而 言,當輸出電流及平均的輸入電流均大於較小電流臨限値 的上限,及當平均的輸出電流小於最大輸出電流時, -31 - 201013360 MPPT控制區塊3 04判定電流爲可接受的。或者,當輸出 電流或是平均的輸入電流少於最小電流臨限値的上限,或 是當平均的輸出電流大於最大的輸出電流時,ΜΡΡΤ控制 區塊304判定電流爲不可接受的。 對於一特定實施例而言,ΜΡΡΤ控制區塊304亦可包 含過電流接腳,當平均的輸出電流超出最大的輸出電流時 ,過電流接腳能接收過電流信號。例如,可經由電阻式分 壓器指定最大輸出電流之値予過電流接腳。然後,當超出 最大輸出電流時,過電流接腳會接收過電流信號。 當ΜΡΡΤ控制區塊304判定溫度且/或電流爲不可接 受時(步驟462 ) ’重設Μ値爲Mstart ’且重設「符號」 値爲1(步驟458)。當在溫度太高而設定Μ値爲Mstart 時通常會造成遠離ΜΡΡΤ而操作面板202,從而減少轉換 器204所傳送的功率。此外,可將MstaM選擇爲最小化局 部轉換器204之損失的操作點。例如,對於一特定實施例 而言,可選擇Mstart爲1。因此,當溫度爲無法接受的太 高時,回歸Mstart —般會造成因爲功率減少而使溫度下降 。此外,當輸出短路電路造成平均的輸出電流太高時’設 定Μ値爲Mstart會造成面板電壓強制設爲零。 當ΜΡΡΤ控制區塊3 04判定溫度及電流皆爲能接受時 (步驟462 ),則致能ΜΡΡΤ處理。對於上述之特定實施 例而言,當溫度及平均的輸出電流皆夠低’且輸出電流及 平均的輸入電流皆夠高時’ ΜΡΡΤ控制區塊304判定溫度 及電流爲可接受的。如此則造成局部轉換器204及DC- 201013360 AC轉換器22或112之間的開機及停止同步的能力。對於 此實施例而言’在開機時,各個局部轉換器204爲固定的 轉換比例,且操作於此狀態一段時間,此時間足以使系統 10或100成爲穩定狀態。若DC-AC轉換器22或112未 在此時開始其操作,則局部轉換器204會快速充電其之電 容到固定電壓。例如,此固定電壓可由開路的面板電壓及 初始轉換比例Mstart給定。一但達到此狀態,則局部轉換 φ 器204之輸入及輸出電流爲虛擬的零。 對於此實施例而言,可藉由感測局部轉換器204之輸 出(或是輸入)電流及僅在感測電流超出特定臨限値時容 許MPPT而提供同步。當DC-AC轉換器22或112開始正 . 規操作時,局部轉換器204之輸出(或是輸入)電流超過 最小的臨限値,且所有的局部轉換器204在DC-AC轉換 器22或112開始其MPPT操作的同時開始其MPPT操作 。同樣的,當由於任何原因而中斷DC-AC轉換器22或 112時(例如孤立),相同技術可使局部轉換器204同步 停止。 對於圖4B之方法450而言,MPPT處理以先前輸入 功率Pin «id設定爲目前輸入功率Pin作爲開始(步驟4 64 )。因此,在剛開始時,先前輸入功率設定爲步驟46 0所 計算之輸入功率之値。MPPT控制方塊304設定Μ値爲 MC1C1 +符號値><△ Μ,然後將之値設定爲Μ (步驟466 )。因此,以符號値所指定的方向將轉換比例調整ΔΜ, 藉由將値改變爲相同値,可在後續的反覆中可使用 -33- 201013360 最終的轉換比例。 接著,MPPT控制區塊304判定轉換比例Μ是否落在 預定範圍之內,及平均的輸出電壓是否太高。對於所述之 實施例而言,當轉換比例少於最大轉換比例Mmax且大於 最小轉換比Mmin時,轉換比例爲落在預定範圍之內。且 對於所述實施例而言,當平均的輸出電壓超出最大輸出電 壓Vut max時,平均的輸出電壓視爲太高。 因此,若Μ大於Mmax或是V〇ut av大於V。^ max (步 驟468 ),則MPPT控制區塊3 04將符號値設定爲-1 (步 驟4 70 ),其會使(若繼續進行之)MPPT處理之後續反 覆中的轉換比例減少,如以下更詳盡說明。相似地,若Μ 小於Mmin (步驟472 ),則MPPT控制區塊304設定符號 値爲1(步驟474 ),其會造成(若繼續進行之)MPPT 處理之後續反覆中的轉換比例增加,如以下更詳盡說明。 因此,當平均的輸出電壓大於最大輸出電壓時(步驟 470 ),並非簡單的關閉轉換步驟中的開關,而是容許局 部轉換器204繼續操作,且能藉由MPPT控制區塊304減 少轉換比例而避免局部轉換器2 04超出最大輸出電壓。如 此的優點在於即使在一般會造成平均的輸出電壓超出某些 構件的額定電壓的極大不匹配條件下,仍能容許平均的能 量收集。 此時,MPPT控制區塊304感測ADC 306供應的輸入 電壓及電流(Vin及Iin) ’並感測ADC 308供應的輸出電 壓及電流(Vcut及I〇ut)(步驟476 ) 。MPPT控制區塊 201013360 3 04亦計算平均的輸入電壓及電流(Vin av及Iin av ),及 平均的輸出電壓及電流(Vw av及Iut av ),之後,以 Vuavxlinav計算輸入功率(步驟476)。 然後,MPPT控制區塊304判定目前的輸入功率Pin 是否大於先前的輸入功率PinQld,其係在前一反覆中計算 (步驟478 )。若目前的輸入功率並未大於先前的輸入功 率(步驟478 ),則MPPT控制區塊304藉由捨定符號値 爲(-符號。ld)改變「符號」之値,其中符號。u爲乘以-1 之前的目前符號値(步驟480 )。因此,在MPPT處理的 後續反覆中,比起若MPPT處理繼續下去的目前反覆’轉 換比例以不同的方向修改,如以下更詳細說明。 若目前的輸入功率大於先前的輸入功率(步驟478) ,貝!J MPPT控制區塊304保持「符號」之値(步驟482) 。因此,在MPPT處理的後續反覆中’比起若MPPT處理 繼續下去的目前反覆,轉換比例以相同的方向修改’如以 下更詳細說明。 MPPT控制區塊304判定溫度及電流是否爲繼續 MPPT處理所能接受的(步驟484 )。對於上述之特定實 施例(其中MPPT控制區塊304包含過熱接腳)而言’當 過熱信號表示已超出臨限値時,MPPT控制區塊304可判 定溫度爲不能接受的。 對於一特定實施例而言,MPPT控制區塊304可藉由 比較輸出電流lout及平均的輸入電流Iin av與最小電流臨 限値下限Imin, low ’判定電流是否爲可接受的’以確保在 -35- 201013360 繼續MPPT處理之前,輸出電流及平均輸入電流皆夠高’ 且藉由比較平均輸出電流laut,av與最大輸出電流I〇ut, max ,以確保平均的輸出電流不會太大。對此實施例而言’當 輸出電流且/或平均的輸入電流大於最小電流臨限値下限 ,且當平均的輸出電流少於最大輸出電流時’ MPPT控制 區塊304判定此電流爲可接受的。或者,當輸出電流及平 均的輸入電流皆少於最小電流臨限値的下限’或當平均的 輸出電流大於最大輸出電流時,MPPT控制區塊304判定 此電流爲不可接受的。藉由使用最小電流臨限値的上限以 致能MPPT處理(步驟4 62 )及使用最小電流臨限値的下 限停止MPPT處理(步驟484 ),如此’ MPPT控制區塊 304可避免MPPT處理多次開始及停止,若輸出及平均的 輸入電流接近用於致能及停止MPPT處理的單一電流臨限 値時,有可能發生MPPT處理的多次開始及停止。 當MPPT控制區塊304判定溫度且/或電流爲不能接 受時(步驟484),停止MPPT處理。此時,將Μ値重設 爲Mstart,並將「符號」値重設爲1(步驟458),且此方 法如前述般繼續。當MPPT控制區塊304判定溫度及電流 皆爲可接受時(步驟484),先前輸入功率之値Pin。^設 定爲目前輸入功率之値Pin (步驟464 ),且MPPT控制 區塊304開始MPPT處理之後續反覆,如前述。 儘管圖4B爲顯示實現對能量產生裝置202之MPPT 之方法450,但可對於方法450作出各種變更。例如,儘 管係參照光伏打面板而說明方法450,但方法450可用於 201013360 其他能量產生裝置202,例如風力渦輪、燃料電池等。更 進一步,儘管係參照圖3之MPPT控制區塊304而說明方 法450,但應了解者爲,在不脫離揭示內容的範圍之內, 方法45 0可用於任何適當設置的MPPT控制區塊中。且, 雖然所示者爲一連串的步驟,但方法450中之步驟可重疊 、平行發生、發生多次、或是以不同順序發生。對於一特 定實施例而言,應了解者爲,在MPPT處理中,並非在各 次反覆中僅實施一次,而是可不斷地藉由MPPT控制區塊 3〇4實施步驟484中之有關溫度及電流的可接受性判定。 圖5爲根據揭示內容之一實施例,顯示能量產生系統 5〇〇,能量產生系統500包含多數個能量產生裝置502及 中央陣列控制器5 1 0,中央陣列控制器5 1 0能對於能量產 生系統100選擇集中式或是分散式MPPT。對所述之實施 例而言,能量產生系統指的是光伏打系統500,光伏打系 統500包含光伏打面板502組成之陣列,光伏打面板502 各耦皆至一局部轉換器504。 各個局部轉換器5 04包含一功率級5 06及一局部控制 器508。此外,對於某些實施例而言,可經由選用的內部 開關(例如開關312)繞過各個局部轉換器504。被繞過 時,局部轉換器5 04之輸出電壓實質上等於其輸入電壓。 以此方式,有關局部轉換器5 04之操作的損失可被最小化 甚至被消除(當不需要局部轉換器504時)。 除了中央陣列控制器510之外,系統500之實施例亦 包含轉換級512、方格514、及資料匯流排516。中央陣 -37- 201013360 列控制器510包含一診斷模組520、一控制模組525及一 選用的轉換級(CS )最佳化器530。此外,所述的實施例 對轉換級512設置總體控制器540。然而,應了解者爲, 總體控制器540可設於中央陣列控制器5 1 0中,而非設於 轉換級512中。且,CS最佳化器53 0可設於轉換級512 中,而非設於中央陣列控制器5 1 0中。 對於某些實施例而言,面板5 02及局部轉換器5 04代 表圖1B之面板102及局部轉換器104且/或代表圖2或3 的面板202及局部轉換器204,中央陣列控制器510可代 表圖1B之中央陣列控制器110,且/或轉換級512可代表 圖1B之DC-AC轉換器112。此外,診斷模組520及控制 模組525可分別代表圖1B之診斷模組120及控制模組 125。然而,應了解者爲,系統500之構件能以任何合適 的方式實現。轉換級512可包含DC-AC轉換器、電池充 電器、或其他能量儲存裝置,或任何其他合適的構件。方 格5 14可包含能夠根據光伏打系統500產生的能量而操作 的任何合適的負載。 各個局部控制器5 08能經由資料匯流排516或者經由 無線連接,提供對應的面板裝置之資料及局部轉換器資料 予中央陣列控制器510。根據該資料,診斷模組520能判 定面板502是否操作在準理想的條件下,亦即,面板502 不會不匹配,且被實質上均勻地照亮。在此情況中,診斷 模組520能促使控制模組5 25將系統500置於集中式 MPPT ( CMPPT )模式中。爲了要完成此種狀態,控制模 201013360 組525能經由資料匯流排516傳送停止信號至各個局部控 制器508,以藉由操作局部轉換器504於旁通模式中,停 止局部轉換器5 04。控制模組525亦能傳送致能信號至總 體控制器540。 在旁通模式中,局部控制器508不再實施MPPT,且 功率級506的輸出電壓實質上等於面板5 02之面板電壓。 因此,可以最小化有關於操作局部轉換器504之損失,並 能最大化系統500之效能。當局簿轉換器504爲操作在旁 通模式中時,總體控制器540能對面板502組成的陣列實 施 CMPPT。 診斷模組520亦能判定某些面板502是否被遮蔽或是 不匹配(亦即,與陣列中的其他面板502相比,某些面板 5 02具有不同特徵)。在此情況中,診斷模組520能促使 控制模組525將系統500置於分散式MPPT(DMPPT)模 式中。爲了要完成此狀態,控制模組525能經由資料匯流 排516傳送致能信號至各個局部控制器508,以藉由容許 局部轉換器5 04之正規操作,而致能局部轉換器5 04。控 制模組525亦能傳送停止信號至總體控制器540 » 當某些面板502被遮蔽時,診斷模組520亦能判定某 些被遮蔽的面板5 02爲部份被遮蔽。在此情況中,除了促 使控制模組525將系統500置於DMPPT模式中之外,診 斷模組410亦能對系統500實施完全診斷掃描,以確保部 份被遮蔽的面板502之局部控制器508可找到真正的最大 功率點,而非局部最大値。對於其中能量產生裝置502包 -39- 201013360 含風力渦輪的實施例而言’診斷模組520能判定是否因爲 改變風力圖案、丘陵、或是其他阻擋風的構造,或是其他 影響風力條件而造成某些風力渦輪「被遮蔽」。 在圖6及7A-C中說明光伏打系統5 00被部份遮蔽的 情況。圖6顯示在部份被遮蔽的情況下的光伏打陣列600 。圖7A-C爲顯示對應於圖6之三個光伏打面板的電壓對 功率特性的圖700、705、及710。 所述的陣列具有三個設有光伏打面板的串610。在串 610c中的三個面板被標示爲面板A、面板B、及面板C。 應了解者爲,此等面板可代表圖5之面板502或是在其他 任何合適地設置的光伏打系統中的面板。某些面板被遮蔽 區域620完全覆蓋或是部份覆蓋。 在所述之實施例中,面板A被完全照亮,而面板B 被遮蔽區域620部份遮蔽,面板C被遮蔽區域62 0完全遮 蔽。圖7A中之圖700中的電壓對功率特性對應於面板A ’圖7B中之圖70 5的電壓對功率特性對應於面板B,且 圖7C中之圖710的電壓對功率特性對應於面板C。 因此’如圖705所示,被部份遮蔽的面板B具有與實 際最大功率點725不同的局部最大値720。中央陣列控制 器510之診斷模組520能判定面板b被部份遮蔽,並實施 全診斷掃描’以確保面板B係爲其之局部控制器508在其 實際最大功率點725操作,而非局部最大點720。取代操 作在實際最大功率點(例如點725 ),而操作在局部最大 功率點(例如點720 )的面板5 02被稱爲「操作之下」的 201013360 面板5 02。 對於一特定實施例而言,診斷模組520可如下辨識被 部份遮蔽的面板502。首先,診斷模組520假設面板1、 …、N爲所考慮陣列中之面板502之子組合,其具有相同 的特性,並假設Ppan,i爲屬於組合[1、…、N]的第i個面 板502的輸出功率。因此, P pan,max ^ Ppan,i^ Ppan,min 其中Ppan,max爲最佳實施面板502之輸出功率^ Ppan,min爲 最差實施面板5 02之輸出功率。 . 診斷模組520亦藉由下式定義一變數φ ,·: p 一 p ,Λ 一 rpanvaax rpani ^ i= ~~p- rpan max 第i個面板5 02全部或是部份被遮蔽的機率可由下式表示 ❿ 1 ^(-^ΜΗΐπβχ ^pano)When the MPPT control block 304 finds the optimal conversion ratio, the MPPT control block 304 can operate in the hold mode for a predetermined period of time. In this mode, the MPPT control block 304 can continue to provide the same conversion ratio determined to be the optimal conversion ratio in the tracking mode to the power stage regulator -20-201013360 3 02. And in this mode, as in the tracking mode, the power stage 206 is in the degraded mode, the upgrade mode, or the lift mode depending on the optimum conversion ratio provided by the conversion ratio command. After the lapse of the predetermined period of time, the MPPT control block 304 can be restored to the tracking mode to ensure that the optimal conversion ratio does not change, or if the condition of the panel 1 〇 2 changes 'to find a new optimal conversion ratio . As explained in greater detail below with respect to Figures 5-8, the central array controller can set the MPPT control area when the various panels in the photovoltaic array (e.g., panel 202) are uniformly illuminated and there is no mismatch between the panels 202. Block 3 04 and power stage 206 are in bypass mode. In the bypass mode, for some embodiments, transistors 310a and 310d are turned on and transistors 310b and 310c are turned off so that the panel voltage is equal to the output voltage. For other embodiments, power stage 206 can include an optional switch 3 1 2 that can couple input 埠 to output 以 such that the output voltage is equal to the panel voltage. In this manner, local converter 204 can be substantially removed from the system when local MPPT is not required, thereby maximizing performance and increasing lifetime by reducing losses associated with local converter 204. Thus, as described above, the MPPT control block 304 can operate in the sleep mode and place the power stage 206 in a stop mode that bypasses the panel 202. The MPPT control block 3 04 can also operate in tracking mode or hold mode. Regardless of the mode, the MPPT control block 304 can place the power stage 206 in one of the degraded mode, the upgrade mode, and the elevating mode. Finally, the MPPT control block 304 can operate in the bypass mode and place the power stage 206 in the bypass mode. In the bypass mode, the local 21 - 201013360 converter 204 is bypassed, allowing the panel 202 to be directly coupled. Connecting to Other Panels 202 in the Array By operating local converter 204 in this manner, the string current of the panel string containing panel 202 is independent of the individual panel currents. Conversely, the string current is set by the string voltage and the total string power. In addition, the unmasked panel 02 can continue to operate at the highest power point without regard to the condition that portions of other panels in the string are obscured. For an alternative embodiment, when the MPPT control block 304 finds the optimal conversion ratio, when the optimal conversion ratio corresponds to the elevation mode of the power stage 206, the MPPT control block 304 may not operate in the hold mode. It is operated in the bypass mode. In lift mode, the output voltage is close to the panel voltage. Thus, panel 02 can operate close to its maximum power point by bypassing local converter 204, thus increasing performance. As in the previous embodiment, the MPPT control block 304 periodically reverts from the bypass mode to the tracking mode to verify that the optimal conversion ratio falls within the lift mode range. For some embodiments, the MPPT control block 304 can gradually adjust the conversion ratio for the power stage regulator 302 instead of the normal step change to avoid the transistors, inductors applied to the power stage 206. And the stress of the capacitor. For some embodiments, the MPPT control block 304 can implement different MPPT techniques to adjust the panel voltage or conductivity rather than adjusting the conversion ratio. In addition, the MPPT control block 304 can adjust the reference voltage instead of adjusting the conversion ratio for dynamic input voltage regulation. In addition, MPPT control block 304 enables a relatively fast and smooth transition between the stop mode of power stage 206 and other modes. The MPPT Control 201013360 block 304 can include non-volatile memory that can store the previous maximum power point state, such as the conversion ratio. For this embodiment, when the MPPT control block 304 transitions to the sleep mode, the maximum power point state is stored in the non-volatile memory. When the MPPT control block 304 subsequently returns to the tracking mode, the stored maximum power point state can be used as the initial maximum power point state. In this manner, for power stage 206, the transition time between stop and other modes can be significantly reduced. For some embodiments, MPPT control block 304 can also provide overpower and/or overvoltage protection to local converter 204. Because signals Vpan and Ipan are fed forward into MPPT control block 304 via ADC 306, MPPT control block 304 attempts to draw maximum power. If the power stage 206 outputs an open circuit, the output voltage of the local converter 204 reaches a maximum 値. Thus, for overpower protection, the output current of local converter 204 can be used as a signal to turn MPPT control block 304 on and off. For this embodiment, if the output current drops too low, the conversion ratio can be set by the MPPT control block 304 so that the panel voltage is almost equal to the output voltage. For overvoltage protection, the MPPT control block 304 can be converted. The proportional command has a maximum conversion ratio, and the MPPT control block 304 does not exceed the maximum conversion ratio. Therefore, if the conversion ratio continues to be higher than the maximum conversion ratio, the MPPT control block 304 limits the conversion ratio to the maximum 値. This ensures that the output voltage does not increase beyond the corresponding maximum 値. The maximum conversion ratio can be fixed or adaptive. For example, the output voltage of the next stylized chirp corresponding to the conversion ratio can be calculated by sensing the panel voltage and the conversion ratio according to the power stage 206 to achieve an adaptive conversion ratio limitation. Moreover, for the described embodiment, power stage 206 includes an optional one-way switch 314. When the power stage 206 is in the stop mode, an optional switch 314 is included to allow the panel 206 to be bypassed, thereby removing the panel 202 from the array and allowing the other panels 02 to continue operation. For a particular embodiment, the unidirectional switch 314 can include a diode. However, it should be understood that the unidirectional switch 314 can include any other suitable type of unidirectional switch, without departing from the scope of the disclosure. 4A is a diagram showing a method 400 of implementing MPPT in a local converter 206, in accordance with an embodiment of the disclosure. The embodiment of method 400 is merely illustrative. Other embodiments of method 400 may be implemented without departing from the scope of the disclosure. The method 400 starts with the Μ P P T control block operation in the sleep mode (step 401). For example, the ΜΡΡΤ control block can generate a conversion ratio command to cause the power stage regulator 302 to turn off the transistors 310a-d or power stage 206, thereby placing the power stage 206 in the stop mode and bypassing the panel 202. While in the sleep mode, the MPPT control block 304 monitors the panel voltage Vpan and compares the panel voltage to the primary threshold voltage Vth (step 402). For example, ADC 306 can convert the panel voltage from the analog signal to a digital signal and provide the digital signal to MPPT control block 304, which stores the primary threshold voltage for comparison with the digital panel voltage. As long as the panel voltage remains below the primary threshold voltage (step 402) 201013360, the MPPT control block 304 continues to operate in the sleep mode. Moreover, as described above, when the stop register indicates that the power stage 206 remains in the stop mode, the control block 304 remains in the sleep mode. However, - but the panel voltage exceeds the primary threshold voltage (step 402), the control block 309 generates a conversion ratio command to operate the power stage 206, and the conversion ratio command includes an initial conversion ratio (step 403). For example, for an embodiment, the control block 310 begins with a conversion ratio of one. Alternatively, ΜΡΡ Τ Control Block 3 04 can store the optimal conversion ratio determined in the previous tracking mode. For this embodiment, the control block 310 can initialize the conversion ratio to be the same as the previously determined optimal conversion ratio. Moreover, the conversion ratio command generated by the control block 304 is supplied to the power stage regulator 302, which operates the power stage 206 ° using the initial conversion ratio. At this time, the control block 304 monitors the panel current Ipan and the output current Uut and compares them. The panel current and the output current and the threshold current Ith (step 404). For example, the ADC 3 06 converts the panel current from the analog signal to a digital signal and supplies the digital panel current to the control block 3 04. The ADC 3 08 converts the output current from the analog signal to a digital signal and supplies the digital output. Current is passed to control block 304, which stores the threshold current for comparison with the digital panel current and the digital output current. As long as at least one of the current Ipan and "ut remains below the threshold current (step 404), the control block 304 will continuously monitor the current level. However, once the currents exceed the threshold current (step 404) Then, the control block 3 04 starts operating in the tracking mode, which includes the initial -25-201013360 setting set tracking variable T being 1, and initializing a counter (step 406), although not shown in the method 400 of FIG. 4A. It should be understood that, in the tracking mode, the MPPT control block 304 can continue to monitor the panel voltage and compare the panel voltage to a secondary threshold voltage that is less than the primary threshold voltage. If the panel voltage is reduced below the secondary At the threshold voltage, the MPPT control block 34 returns to the sleep mode. By using a secondary threshold voltage that is less than the primary threshold voltage, the MPPT control block 304 is immune to the noise, thus avoiding the MPPT control region. Block 304 is often switched between sleep and tracking modes. After setting the tracking variable and initializing the counter, MPPT control block 304 calculates the initial power for panel 202 (step 408). The ADC 306 can provide digital panel current and panel voltage signals (Ipan and Vpan) to the MPPT control block 304. Thereafter, the MPPT control block 304 multiplies the signals to determine the device (or panel) power (Ipa). After calculating the initial power, the MPPT control block 304 modifies the conversion ratio in a first direction and generates a conversion ratio command including the modified conversion ratio (step 410). For example, for some embodiments In other words, the MPPT control block 304 can increase the conversion ratio. For other embodiments, the MPPT control block 304 can reduce the conversion ratio. After the system has stabilized over a period of time, the MPPT control block 304 calculates for the panel 202. Current power (step 412). For example, ADC 306 can provide digital panel current and panel voltage signals to MPPT control block 304, after which MPPT control block 304 multiplies these signals to determine panel 201013360 power. The MPPT control block 304 then compares the currently calculated power with the previously calculated power, which is the initial power (step 414). If the current power is greater than Prior power (step 414), then MPPT control block 304 modifies the conversion ratio in the same direction as the previous modification and produces an updated conversion ratio command (step 416). For some embodiments, the conversion will be performed with an equal amount of increase. The ratio is modified to be higher or lower. For other embodiments, the conversion ratio can be modified higher or lower in linear or non-linear increments to optimize system response. For example, for some systems In this case, if the conversion ratio is very different from the best, then as you get closer to the best, it is better to use a larger increment first, and then use a smaller increment. The MPPT control block 304 also determines that the tracking variable T is equal to 1, indicating that since the conversion ratio has changed before the previous calculation, the conversion ratio is changed in the same direction as the previous calculation (step 418). Therefore, when T is equal to 1, the panel power increases in the same direction as the previous change in the conversion ratio. In this case, after the system has been stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power (step 414). However, if the MPPT control block 304 determines that T is not equal to 1, it indicates that since the conversion ratio has changed before the previous calculation, the conversion ratio is changed in the opposite direction to the previous calculation (step 41 8), Bay! J MPPT Control Block 3 04 sets T to 1, and increments the counter (step 420). The MPPT control block 304 then determines if the counter exceeds the counter threshold 値Cth (step 422). If the current counter does not exceed the threshold of -27-201013360 (step 422), after the system is stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412), And compare the current power with the previous power (step 414)' to determine whether the panel power is increasing or decreasing. If the MPPT control block 403 determines that the current power is not greater than the previous power (step 414), the MPPT control block 304 modifies the conversion ratio in the opposite direction to the previous modification and generates an updated conversion ratio command (step 424). The MPPT control block 304 also determines if the tracking variable T is equal to 2, and a T equal to 2 indicates that the conversion ratio has been modified in the opposite direction to the previous calculation because the conversion ratio has been changed prior to the previous calculation (step 426). In this case, after giving the system a period of time to stabilize it, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power (step 414). However, if the MPPT control block 304 determines that T is not equal to 2, indicating that the conversion ratio has been changed in the same direction as the previous calculation (step 426) because the conversion ratio has been changed before the previous calculation, the MPPT control block sets T to 2. And increment the counter (step 42 8). The MPPT control block 304 then determines if the counter exceeds the counter threshold 値Cth (step 422), as described above. If the counter does not exceed the counter threshold 步骤 (step 422), it indicates that the conversion ratio has been changed several times in the first direction and the second direction, the number of times is greater than the counter threshold 値, and the MPPT control block 304 finds the corresponding panel. The optimal conversion ratio of the maximum power point of 02 is, and the MPPT control block 304 starts operating in the hold mode (step 430). 201013360 When in save mode, the MPPT control block 304 can set a timer and reinitialize the counter (step 43 2). When the timer expires (step 434), the control block 304 can be restored to the tracking mode (step 436). The current power is calculated (step 412)' to compare the power calculated by the current power with the control block 304 in the tracking mode (step 4 14). In this manner, the control block 304 can ensure that the optimal conversion ratio is not changed, or that different optimal conversion ratios can be found when the conditions of the panel 202 are changed. Although FIG. 4A shows an example of a method 400 for tracking the maximum power point of the energy generating device 202, various changes can be made to the method 400. For example, although method 400 is described with reference to a photovoltaic panel, method 400 can be used with other energy generating devices 202, such as wind turbines, fuel cells, and the like. Still further, although the method 400 is described with reference to Figure 3, the control block 404, it is understood that the method 400 can be used with any suitably arranged ΜΡΡΤ control block, without departing from the scope of the disclosure. Moreover, for some embodiments, in step 430, if the control block 304 determines that the optimal conversion ratio is equivalent to the lift mode of the power stage 206, the control block 310 can operate in the sleep mode instead of the hold mode. . For these embodiments, after the sleep mode, the time of the timer period may be the same as or different from the time of the timer of the hold mode. Moreover, although shown in a series of steps, the steps in method 400 may overlap, occur in parallel, occur multiple times, or occur in a different order. 4A shows a method 450 for implementing a chirp in a local converter 204 in accordance with another embodiment of the disclosure. For a particular embodiment, -29-201013360, the method 450 of FIG. 4B may correspond to the method 40 of FIG. 4A. Part of it. For example, the steps described in method 450 generally correspond to steps 403, 408, 410, 412, 414, 416, and 424 of method 4. However, method 450 includes additional details in addition to the steps. For another particular embodiment, the method 450 can be implemented independently of the method 400 and is not limited to the method of implementation of the method 400 described above. Moreover, as with method 400, the method 450 described below is merely illustrative. Other embodiments of method 45 can be implemented without departing from the scope of the disclosure. Method 450 begins with a power-on set that includes steps 452, 454, and 456. Initially, the MPPT control block 304 sets the converter conversion ratio to the minimum conversion ratio Mmin (step 452). The MPPT control block 304 then sets the previous converter conversion ratio M. ^为Μ, Mud is the conversion ratio for the previous MPPT, and the conversion ratio is set to MMd+ AM for the current MPPT, where ΔΜ is the difference of the conversion ratio between the respective reversals (step 454). If the Μ値 set in this step is less than the initial conversion ratio Mstart for the implementation of the MPPT (step 456), then both Mud and \1 are updated as described above, so that both increase Δ Μ (step 454) ). Once the Mstart is reached or exceeded (step 456), the power-on group is completed and the method proceeds to step 458. The MPPT control block 304 sets Μ値 to Mstart and sets the 符 of the symbol to 1, and the symbol 値 indicates the repeated MPPT disturbance direction in the MPPT process (step 452). At this time, the 'MPPT control block 304 senses the input voltage and current (乂^ and Iin) '201013360 supplied by the ADC 306 and senses the output voltage and current (Vm and Ι.^) supplied by the ADC 3 08 (step 460). . The MPPT control block 304 also calculates the average input voltage and current (Vin av and Iin av ), and the average output voltage and current ( V. utav and I. utav ), and then * calculates the input power by Vjn avXlin av3 (step 4 6 0 ). For some embodiments, the average input voltage and current and the average output voltage and current are calculated in the second half of the MPPT disturbance interval. For a particular embodiment with a 50 MHz clock, the input voltage and current can be sampled at 12.5 kHz and the average input voltage and current and average output voltage and current are calculated at 750 Hz. Then, prior to enabling MPPT processing, MPPT control block 304 determines if the temperature and current are acceptable (step 462). For a particular embodiment, MPPT control block 304 includes a hot tap that can receive an overheat signal when the temperature exceeds a predetermined threshold. For this embodiment, when the overheat signal indicates that the threshold has been exceeded, the MPPT control block 304 determines that the temperature is unacceptable. For a particular embodiment, the MPPT control block 304 can determine whether the current is acceptable by comparing the output current I〇ut with the average input current Iinav and the upper limit Imin of the smaller current threshold 以 to ensure that the current is acceptable. The output current and the average input current are sufficient before starting the MPPT process, and by comparing the average output current Uut av with the maximum output current lout max to ensure that the average output current is not too high. For this embodiment, when the output current and the average input current are both greater than the upper limit of the smaller current threshold, and when the average output current is less than the maximum output current, the -31 - 201013360 MPPT control block 3 04 determines the current Acceptable. Alternatively, control current block 304 determines that the current is unacceptable when the output current or average input current is less than the upper limit of the minimum current threshold ,, or when the average output current is greater than the maximum output current. For a particular embodiment, the ΜΡΡΤ control block 304 can also include an overcurrent pin that can receive an overcurrent signal when the average output current exceeds the maximum output current. For example, the maximum output current can be specified via a resistive divider to the overcurrent pin. Then, when the maximum output current is exceeded, the overcurrent pin receives an overcurrent signal. When the control block 304 determines the temperature and/or the current is unacceptable (step 462), 'reset Μ値 to Mstart' and reset "symbol" 値 to 1 (step 458). When the temperature is too high and the setting Μ値 is Mstart, the panel 202 is usually operated away from the enthalpy, thereby reducing the power transmitted by the converter 204. In addition, MstaM can be selected as an operating point that minimizes the loss of local converter 204. For example, for a particular embodiment, Mstart can be selected to be one. Therefore, when the temperature is unacceptably high, returning to Mstart will cause the temperature to drop due to reduced power. In addition, when the output short circuit causes the average output current to be too high, setting Μ値 to Mstart will cause the panel voltage to be forced to zero. When the control block 310 determines that both the temperature and the current are acceptable (step 462), the process is enabled. For the particular embodiment described above, when both the temperature and the average output current are low enough and the output current and the average input current are both high enough, the control block 304 determines that the temperature and current are acceptable. This results in the ability to turn the local converter 204 and the DC-201013360 AC converter 22 or 112 on and off. For this embodiment, each local converter 204 is at a fixed conversion ratio and is operating in this state for a period of time sufficient to bring the system 10 or 100 into a steady state. If the DC-AC converter 22 or 112 does not begin its operation at this time, the local converter 204 will quickly charge its capacitance to a fixed voltage. For example, this fixed voltage can be given by the open panel voltage and the initial conversion ratio Mstart. Once this state is reached, the input and output currents of the local conversion φ 214 are virtual zeros. For this embodiment, synchronization can be provided by sensing the output (or input) current of local converter 204 and allowing MPPT only when the sense current exceeds a certain threshold. When the DC-AC converter 22 or 112 begins normal operation, the output (or input) current of the local converter 204 exceeds the minimum threshold, and all of the local converters 204 are in the DC-AC converter 22 or 112 begins its MPPT operation while starting its MPPT operation. Similarly, when the DC-AC converter 22 or 112 is interrupted (e.g., isolated) for any reason, the same technique can cause the local converter 204 to stop synchronously. For the method 450 of Figure 4B, the MPPT process begins with the previous input power Pin «id set to the current input power Pin (step 4 64). Therefore, at the beginning, the previous input power is set to the sum of the input power calculated in step 46 0. The MPPT control block 304 sets Μ値 to MC1C1 + symbol 値 ><Δ Μ, then set 値 to Μ (step 466). Therefore, the conversion ratio is adjusted by ΔΜ in the direction specified by the symbol Μ, and by changing 値 to the same 値, the final conversion ratio of -33-201013360 can be used in subsequent iterations. Next, the MPPT control block 304 determines whether the conversion ratio Μ falls within a predetermined range and whether the average output voltage is too high. For the embodiment described, when the conversion ratio is less than the maximum conversion ratio Mmax and greater than the minimum conversion ratio Mmin, the conversion ratio falls within the predetermined range. And for the described embodiment, the average output voltage is considered too high when the average output voltage exceeds the maximum output voltage Vut max. Therefore, if Μ is greater than Mmax or V〇ut av is greater than V. ^ max (step 468), the MPPT control block 304 sets the symbol 値 to -1 (step 4 70), which will reduce (if proceeding) the conversion ratio in the subsequent iteration of the MPPT processing, as follows Detailed instructions. Similarly, if Μ is less than Mmin (step 472), MPPT control block 304 sets the sign 値 to 1 (step 474), which causes (if continued) the proportion of conversions in subsequent replies of MPPT processing to increase, such as More detailed instructions. Therefore, when the average output voltage is greater than the maximum output voltage (step 470), instead of simply turning off the switch in the conversion step, the local converter 204 is allowed to continue operation, and the conversion ratio can be reduced by the MPPT control block 304. Avoid local converter 2 04 exceeding the maximum output voltage. The advantage of this is that average energy harvesting is allowed even under extreme mismatch conditions that typically result in an average output voltage that exceeds the nominal voltage of some components. At this time, the MPPT control block 304 senses the input voltage and current (Vin and Iin)' supplied by the ADC 306 and senses the output voltage and current (Vcut and I〇ut) supplied by the ADC 308 (step 476). The MPPT control block 201013360 3 04 also calculates the average input voltage and current (Vin av and Iin av ), and the average output voltage and current (Vw av and Iut av ), after which the input power is calculated as Vuavxlinav (step 476). MPPT control block 304 then determines if the current input power Pin is greater than the previous input power PinQld, which is calculated in the previous iteration (step 478). If the current input power is not greater than the previous input power (step 478), the MPPT control block 304 changes the "symbol" by the rounding symbol 値 (-symbol ld), where the symbol. u is the current symbol 乘 before multiplying by -1 (step 480). Therefore, in the subsequent iteration of the MPPT processing, the current reversal ratio is modified in a different direction than if the MPPT processing continues, as explained in more detail below. If the current input power is greater than the previous input power (step 478), the Bay! J MPPT control block 304 remains "symbol" (step 482). Therefore, in the subsequent iteration of the MPPT processing, the conversion ratio is modified in the same direction as compared to the current repetition if the MPPT processing continues, as explained in more detail below. The MPPT control block 304 determines if the temperature and current are acceptable for continued MPPT processing (step 484). For the particular embodiment described above (where MPPT control block 304 includes a hot tap), the MPPT control block 304 can determine that the temperature is unacceptable when the overheat signal indicates that the threshold has been exceeded. For a particular embodiment, the MPPT control block 304 can ensure that the output current lout and the average input current Iin av and the minimum current threshold I lower limit Imin, low 'determine whether the current is acceptable' to ensure that - 35- 201013360 Before the MPPT processing, the output current and the average input current are both high enough and by comparing the average output current laut, av with the maximum output current I〇ut, max to ensure that the average output current is not too large. For this embodiment, 'when the output current and/or the average input current is greater than the minimum current threshold 値 lower limit, and when the average output current is less than the maximum output current', the MPPT control block 304 determines that the current is acceptable. . Alternatively, MPPT control block 304 determines that the current is unacceptable when both the output current and the average input current are less than the lower limit of minimum current threshold ’ or when the average output current is greater than the maximum output current. The MPPT process is stopped (step 484) by using the upper limit of the minimum current threshold 以 to enable MPPT processing (step 4 62) and using the lower limit of the minimum current threshold ,, such that the 'MPPT control block 304 can prevent the MPPT process from starting multiple times. And stop. If the output and average input current are close to the single current threshold for enabling and stopping MPPT processing, multiple starts and stops of MPPT processing may occur. When the MPPT control block 304 determines the temperature and/or the current is unacceptable (step 484), the MPPT process is stopped. At this point, reset Μ値 to Mstart and reset “symbol” 1 to 1 (step 458), and the method continues as described above. When the MPPT control block 304 determines that both temperature and current are acceptable (step 484), the previous input power is Pin. ^ is set to the current input power 値Pin (step 464), and the MPPT control block 304 begins the subsequent iteration of the MPPT process, as described above. Although FIG. 4B is a diagram showing a method 450 of implementing an MPPT to the energy generating device 202, various changes can be made to the method 450. For example, although method 450 is illustrated with reference to a photovoltaic panel, method 450 can be used with other energy generating devices 202, such as wind turbines, fuel cells, and the like. Furthermore, although the method 450 is illustrated with reference to the MPPT control block 304 of Figure 3, it should be understood that the method 45 0 can be used in any suitably arranged MPPT control block without departing from the scope of the disclosure. Also, although shown as a series of steps, the steps in method 450 may overlap, occur in parallel, occur multiple times, or occur in a different order. For a specific embodiment, it should be understood that in the MPPT processing, not only once in each iteration, but the temperature and the temperature in step 484 can be continuously implemented by the MPPT control block 3〇4. The acceptability of the current is determined. 5 is a display energy generating system 5, which includes a plurality of energy generating devices 502 and a central array controller 510, which can generate energy for an energy generation system according to an embodiment of the disclosure. System 100 selects a centralized or decentralized MPPT. For the illustrated embodiment, the energy generating system is referred to as a photovoltaic system 500, and the photovoltaic system 500 includes an array of photovoltaic panels 502, each coupled to a local converter 504. Each local converter 504 includes a power stage 506 and a local controller 508. Moreover, for some embodiments, each local converter 504 can be bypassed via an optional internal switch (e.g., switch 312). When bypassed, the output voltage of local converter 504 is substantially equal to its input voltage. In this way, the loss associated with the operation of local converter 504 can be minimized or even eliminated (when local converter 504 is not needed). In addition to the central array controller 510, embodiments of the system 500 also include a conversion stage 512, a square 514, and a data bus 516. The central array -37-201013360 column controller 510 includes a diagnostic module 520, a control module 525, and an optional conversion stage (CS) optimizer 530. Moreover, the described embodiment sets the overall controller 540 for the conversion stage 512. However, it should be appreciated that the overall controller 540 can be located in the central array controller 510 instead of the conversion stage 512. Moreover, the CS optimizer 530 can be disposed in the conversion stage 512 instead of being disposed in the central array controller 510. For some embodiments, panel 502 and local converter 504 represent panel 102 and local converter 104 of FIG. 1B and/or panel 202 and local converter 204 of FIG. 2 or 3, central array controller 510 The central array controller 110 of FIG. 1B may be representative, and/or the conversion stage 512 may represent the DC-AC converter 112 of FIG. 1B. In addition, the diagnostic module 520 and the control module 525 can respectively represent the diagnostic module 120 and the control module 125 of FIG. 1B. However, it should be understood that the components of system 500 can be implemented in any suitable manner. Conversion stage 512 can include a DC-AC converter, battery charger, or other energy storage device, or any other suitable component. The square 5 14 can include any suitable load that can be operated in accordance with the energy produced by the photovoltaic system 500. Each local controller 508 can provide data and local converter data for the corresponding panel device to the central array controller 510 via the data bus 516 or via a wireless connection. Based on this information, the diagnostic module 520 can determine if the panel 502 is operating under quasi-ideal conditions, i.e., the panel 502 will not mismatch and will be substantially uniformly illuminated. In this case, the diagnostic module 520 can cause the control module 525 to place the system 500 in a centralized MPPT (CMPPT) mode. To accomplish this, the control mode 201013360 group 525 can transmit a stop signal to each local controller 508 via the data bus 516 to stop the local converter 504 by operating the local converter 504 in the bypass mode. The control module 525 can also transmit an enable signal to the overall controller 540. In the bypass mode, the local controller 508 no longer implements the MPPT, and the output voltage of the power stage 506 is substantially equal to the panel voltage of the panel 502. Therefore, the loss associated with operating the local converter 504 can be minimized and the performance of the system 500 can be maximized. When the authority book converter 504 is operating in the bypass mode, the overall controller 540 can implement CMPPT on the array of panels 502. The diagnostic module 520 can also determine if certain panels 502 are obscured or mismatched (i.e., some panels 502 have different characteristics than other panels 502 in the array). In this case, the diagnostic module 520 can cause the control module 525 to place the system 500 in a decentralized MPPT (DMPPT) mode. To accomplish this, control module 525 can transmit an enable signal to each local controller 508 via data bus 516 to enable local converter 504 by allowing normal operation of local converter 504. The control module 525 can also transmit a stop signal to the overall controller 540. » When certain panels 502 are obscured, the diagnostic module 520 can also determine that some of the shaded panels 502 are partially obscured. In this case, in addition to causing the control module 525 to place the system 500 in the DMPPT mode, the diagnostic module 410 can also perform a full diagnostic scan of the system 500 to ensure a partial controller 508 of the partially shielded panel 502. The true maximum power point can be found instead of the local maximum 値. For embodiments in which the energy generating device 502 package-39-201013360 includes a wind turbine, the diagnostic module 520 can determine whether the wind pattern, hills, or other wind blocking structures are altered, or other wind conditions are affected. Some wind turbines are "shadowed." The case where the photovoltaic system 500 is partially shielded is illustrated in Figures 6 and 7A-C. Figure 6 shows a photovoltaic array 600 with portions partially obscured. Figures 7A-C are graphs 700, 705, and 710 showing voltage versus power characteristics corresponding to the three photovoltaic panels of Figure 6. The array has three strings 610 provided with photovoltaic panels. The three panels in string 610c are labeled Panel A, Panel B, and Panel C. It should be understood that such panels may represent panels 502 of Figure 5 or panels in any other suitably arranged photovoltaic system. Some of the panels are completely covered or partially covered by the obscured area 620. In the illustrated embodiment, panel A is fully illuminated and panel B is partially obscured by shaded area 620, which is completely obscured by masked area 62 0 . The voltage versus power characteristics in the graph 700 in FIG. 7A correspond to panel A. The voltage versus power characteristics of graph 70 5 in FIG. 7B correspond to panel B, and the voltage versus power characteristics of graph 710 in FIG. 7C correspond to panel C. . Thus, as shown in FIG. 705, the partially masked panel B has a local maximum 値 720 that is different from the actual maximum power point 725. The diagnostic module 520 of the central array controller 510 can determine that the panel b is partially obscured and implement a full diagnostic scan 'to ensure that panel B is operating at its actual maximum power point 725 for its local controller 508, rather than local maximum Point 720. Instead of operating at the actual maximum power point (e.g., point 725), panel 502 operating at a local maximum power point (e.g., point 720) is referred to as "under operation" 201013360 panel 502. For a particular embodiment, the diagnostic module 520 can identify the partially obscured panel 502 as follows. First, the diagnostic module 520 assumes that the panels 1, ..., N are sub-assemblies of the panels 502 in the array under consideration, which have the same characteristics, and assume that Ppan,i is the i-th panel belonging to the combination [1, ..., N] 502 output power. Therefore, P pan,max ^ Ppan, i^ Ppan,min where Ppan,max is the output power of the best implementation panel 502 ^ Ppan,min is the output power of the worst implementation panel 502. The diagnostic module 520 also defines a variable φ by the following formula: ·: p a p , Λ a rpanvaax rpani ^ i= ~~p- rpan max The probability that the i-th panel 5 02 is partially or partially obscured may be The following formula represents ❿ 1 ^(-^ΜΗΐπβχ ^pano)
Pi=^<Pi= —^- ^pan max 其中,k爲少於或是等於1的常數。接著是: 其中,Pi=^<Pi= —^- ^pan max where k is a constant less than or equal to 1. Followed by: Among them,
Pnm.Pnm.
=0且=0 and
診斷模組5 20亦定義(p DMPPT)爲機率函數(p max 201013360 )之最小値,使DMPPT爲必須。因此,若(p max)大於 (p DMPP τ),則會致能DMPPT。此外,將(P diag)定義 爲機率函數(max )之最小値,以使診斷函數爲必須, 其係用以判定未操作於MPP之被部份遮蔽的任何面板5〇2 。因此,若(iOmax)大於(PdUg),則診斷模組520將 面板5 02辨識爲被部份遮蔽,且會對於辨識出的面板5 02 實施掃描。 對於相對很小的面板5 02的不匹配而言,診斷模組 520依然可致能DMPPT,但對於更大的不匹配,診斷模組 520亦能實施全診斷掃描。就本身而言,(pdmppt)之値 通常小於(p dug)之値。 因此,對於某些實施例而言,當(pmax) <( Pdmppt)時’診斷模組520能判定系統500應操作於 CMPPT 模式’當(P DMPPT ) < ( /〇 max ) < ( /〇 diag )時, 系統500應操作於DMPPT模式中,且當(p max) > ( Pdug)時,系統500應連同全診斷掃描操作於DMPPT模 式中。 對於該等實施例而言,全診斷掃描可包含(Pj> Pdug)各面板j的電壓對功率特性的完整掃描。診斷模 組520可個別地根據中央陣列控制器510所給定的時序而 掃描各面板502之特性》在此方式中,轉換級512可持續 正常地操作。 當系統500操作於DMPPT模式中時,CS最佳化器 5 30能最佳化轉換級512的操作點。對於一實施例而言, 201013360 轉換級512的操作點可設定爲常數。然而,對於使用CS 最佳化器530的實施例而言,可藉由CS最佳化器530最 佳化轉換級512的操作點。 對於一特定實施例而言,CS最佳化器530能如下述 判定轉換級512之最佳化操作點。對於第i個功率級506 而言,將其工作週期定義爲Di,並將其轉換比例定義爲 M ( Di )。功率級506設計成具有標稱轉換比例MQ。因此 ,盡可能地接近於M〇而操作功率級506能夠提供較高的 效率,減少壓力,並減少輸出電壓飽和的可能性》對於包 含階式升降轉換器的功率級5 06而言,M〇可爲1» 因此,最佳化的原理可定義如下’· |>(Α·) ^-= Μ0 Ν 0 則, ±Μφ.^±^ηι.^-±Ιραη,The diagnostic module 5 20 also defines (p DMPPT) as the minimum 机 of the probability function (p max 201013360 ), making DMPPT necessary. Therefore, if (p max) is greater than (p DMPP τ), DMPPT is enabled. In addition, (P diag ) is defined as the minimum 机 of the probability function (max ) so that the diagnostic function is necessary to determine any panel 5 〇 2 that is not partially obscured by the MPP. Therefore, if (iOmax) is greater than (PdUg), the diagnostic module 520 recognizes the panel 502 as being partially obscured and performs scanning on the identified panel 502. Diagnostic module 520 can still enable DMPPT for a relatively small mismatch of panel 052, but for larger mismatches, diagnostic module 520 can also perform a full diagnostic scan. For its part, (pdmppt) is usually less than (p dug). Thus, for some embodiments, when (pmax) <( Pdmppt), the 'diagnostic module 520 can determine that the system 500 should operate in the CMPPT mode' when (P DMPPT ) < ( /〇max ) < ( When /〇diag ), system 500 should operate in DMPPT mode, and when (p max) > ( Pdug), system 500 should operate in DMPPT mode along with a full diagnostic scan. For these embodiments, the full diagnostic scan may include (Pj > Pdug) a full scan of the voltage versus power characteristics of each panel j. The diagnostic module 520 can individually scan the characteristics of each panel 502 according to the timing given by the central array controller 510. In this manner, the conversion stage 512 can continue to operate normally. When system 500 is operating in DMPPT mode, CS optimizer 530 can optimize the operating point of conversion stage 512. For an embodiment, the operating point of the 201013360 conversion stage 512 can be set to a constant. However, for embodiments using CS optimizer 530, the operating point of conversion stage 512 can be optimized by CS optimizer 530. For a particular embodiment, CS optimizer 530 can determine the optimized operating point of conversion stage 512 as follows. For the ith power stage 506, its duty cycle is defined as Di, and its conversion ratio is defined as M ( Di ). Power stage 506 is designed to have a nominal conversion ratio MQ. Thus, operating power stage 506 as close as possible to M〇 can provide higher efficiency, reduce stress, and reduce the likelihood of output voltage saturation. For power stage 506 including step-up converters, M〇 Can be 1» Therefore, the principle of optimization can be defined as follows: '· |>(Α·) ^-= Μ0 Ν 0 Then, ±Μφ.^±^ηι.^-±Ιραη,
issl /=1 ^autj ^ LOAD 其中,Ipan,i是第i個功率級506的輸入電流’ Iout.i是第i 個功率級5 06的輸出電流,7?i是第i個功率級5 06的效 率 1 Il〇AD 是轉換級512的輸入電流。因此’最佳化的原 理可重新撰寫如下: / _ WAD~ NM0 CS最佳化器530可藉由在轉換級512的輸入埠使用標準 -43- 201013360 電流模式控制技術而達成最佳化,使轉換級512的輸入電 流設定爲Iload。 圖8爲根據揭示內容之一實施例,顯示對於能量產生 系統500選擇集中式MPPT或分散式MPPT的方法80(^ 方法8 00之實施例僅爲說明性。可在不脫離揭示內容的範 圍之內實現方法800的其他實施例。 方法8 00以診斷模組520設定計時器作爲開始(步驟 802 )。診斷模組520可使用計時器以循環方式而觸發方 法800的初始化。然後,診斷模組520分析系統500中的 能量產生裝置,例如面板502 (步驟804 )。例如,對於 某些實施例而言,診斷模組520可藉由計算各個面板502 的面板功率Ppan而分析面板502,然後根據Ppan的該等計 算値判定數個其他値,如以上有關圖5所述。舉例而言, 診斷模組520可判定計算値Ppan的最大値及最小値(分別 爲Ppan,max及Ppan,min ),接著使用該等最大値及最小値以 計算各面板5 02被完全遮蔽或部份遮蔽的機率(p)。診 斷模組520也可決定所計算機率的最大値(i〇max)。 在分析面板5 02 (步驟804)之後,診斷模組520可 判定光伏打系統500是否操作於準理想的條件下(步驟 806 ) »例如,對於某些實施例而言,診斷模組520可將 計算出的面板502被遮蔽機率之最大値(i〇max)及預定Issl /=1 ^autj ^ LOAD where Ipan,i is the input current of the ith power stage 506' Iout.i is the output current of the ith power stage 506, and 7?i is the ith power level 5 06 The efficiency of 1 Il〇AD is the input current of the conversion stage 512. Therefore, the principle of 'optimization can be rewritten as follows: / _ WAD~ NM0 CS optimizer 530 can be optimized by using the standard -43-201013360 current mode control technology at the input of the conversion stage 512. The input current of the conversion stage 512 is set to Iload. 8 is a diagram showing a method for selecting a centralized MPPT or a decentralized MPPT for the energy generating system 500 in accordance with an embodiment of the disclosure (the method of the method 800 is merely illustrative, and may be omitted from the scope of the disclosure. Other embodiments of method 800 are implemented. Method 800 begins with a diagnostic module 520 setting a timer (step 802). Diagnostic module 520 can trigger initialization of method 800 in a round-robin fashion using a timer. 520 analyzes energy generating devices in system 500, such as panel 502 (step 804). For example, for some embodiments, diagnostic module 520 can analyze panel 502 by calculating panel power Ppan for each panel 502, and then The Ppan's calculations determine a number of other defects, as described above with respect to Figure 5. For example, the diagnostic module 520 can determine the maximum and minimum 値 of the 値Ppan (Ppan, max and Ppan, min, respectively). Then, the maximum chirp and the minimum chirp are used to calculate the probability (p) that each panel 502 is completely or partially shielded. The diagnostic module 520 can also determine the maximum 値(i〇max) of the computer rate. After analyzing panel 502 (step 804), diagnostic module 520 can determine whether photovoltaic system 500 is operating under quasi-ideal conditions (step 806). For example, for some embodiments, diagnostic module 520 can The calculated panel 502 is masked by the maximum probability (i〇max) and predetermined
DMPP臨限(p DMPPT )予以比較。如果P max小於P DMPPT ,則面板5 02之最大輸出功率及最小輸出功率夠接近’因 此,可將面板502之間的不匹配視爲極小’且系統500可 201013360 視爲操作於準理想狀態。同樣地,如果p max,不小於最 大輸出功率(pDMPPT),則面板502的最大輸出功率及 最小輸出功率相差夠遠,使得面板502之間的不匹配不能 視爲極小,且系統5 00視爲沒有在準理想條件下操作。 若診斷模組520判定系統500沒有操作於準理想條件 下(步驟806 ),則控制模組525致能局部控制器508 ( 步驟808),並停止總體控制器540 (步驟810),藉此 φ 將系統5〇〇設於DMPPT模式中。因此,在此情況中,局 部控制器508對各個面板502實施MPPT » 因爲是對於面板502之間具有相對很小不匹配情況而 使用DMPPT模式,則即使當被遮蔽的面板502的機率爲 . 低(但不是極低)時,診斷模組520可判定系統500爲沒 有操作於準理想條件下。因此,在進入DMPPT模式之後 ,診斷·模組520判定被遮蔽的面板502的機率是否爲高( 步驟812)。例如,診斷模組520可將面板502遮蔽的最 • 大(P max)與預定的診斷臨限(Pdiag)予以比較。如果 P max大於P «Hag,則面板502的最大輸出功率及最小輸出 功率相差夠大,使面板5 02之間的不匹配的機率視爲相對 之下極高,因此,至少一個面板502被遮蔽的機率很高。 若面板5 02被遮蔽的機率很髙(步驟812),則診斷 模組5 20對於有可能被遮蔽的任何一個面板502實施全特 性掃描(步驟814)。例如,診斷模組520可藉由對於各 個面板5 02比較面板被遮蔽的機率(p )與診斷臨限( i〇<nag),而辨識出可能被遮蔽的面板502。如果特定面 -45- 201013360 板5 02大於p diag,則特定面板502的輸出功率與系統 5〇〇中之一面板5〇2之最大輸出功率相差夠大,則特定面 板5 02至少被部份遮蔽的機率相對很高》 在實施全特性掃描時,診斷模組520可根據中央陣列 控制器510所提供之時序,對於有可能被遮蔽的各個面板 502個別地實施電壓對功率特性掃描。在此方式中,轉換 級5 12可繼續在掃描期間正常地操作。 若在實施任何全特性掃描的期間中,診斷模組520判 定任一面板5 02爲在實施中(即,操作於局部最大功率點 (MPP ),例如局部MPP 720,而非實際的MPP,例如 MPP725 ),則控制模組525可對於該等實施中的面板502 提供校正(步驟816)。 在此時,或是若面板502被遮蔽的機率不髙(步驟 812),診斷模組520判定計時器是否屆期(步驟818) ,表示方法8 00必須再次被初始化。一但計時器屆期(步 驟818),診斷模組520即重設計時器(步驟820),並 開始再次分析面板5 02 (步驟8 04 )。 若診斷模組520判定系統500操作於準理想條件下( 步驟806 ),則控制模組525停止局部控制器508 (步驟 822 )並致能總體控制器54〇 (步驟824 ),藉此將系統 5〇〇設於CMPPT模式中。因此,在此情況中,總體控制 器540對整個系統5〇〇實施MPPT。 且在此時,診斷模組520判定計時器是否屆期(步驟 818) ’表示方法800必須再次被初始化。一但計時器屆 201013360 期(步驟818),診斷模組520即重設計時器(步驟82〇 ),並開始再次分析面板502 (步驟804)。 儘管圖8已顯示選擇集中式或是分散式MPPT的方法 800的範例’但可對於方法800作出各種變更。例如,儘 管係配合光伏打系統而描述方法800,但方法800仍可用 於其他能量產生系統500,例如風力渦輪系統、燃料電池 系統。更進一步,儘管係配合圖5之系統500而描述方法 8 00’應了解者爲,在不脫離揭示內容的範圍之內,方法 8 00可用於任何合適地設置的能量產生系統。此外,儘管 所示者爲一連串步驟,但方法8 00中之步驟可重疊、平行 發生、發生多次或是以不同順序發生。· 圖9爲根據揭示內容之一實施例,顯示用以在能量產 生系統中啓動及停止一局部轉換器904之局部控制器908 之系統900。系統900包含能量產生裝置902 (被稱爲光 伏打面板902),及局部轉換器904。局部轉換器9 04包 含功率級906、局部控制器908及啓動器910。 局部轉換器9 04可表示圖1B中之局部轉換器104、 圖2或3中之局部轉換器204其中之一個,且/或圖5之 局部轉換器504其中之一個,然而,應了解者爲,在不脫 離揭示內容的範圍之內,局部轉換器904可實現在任何合 適設置能量產生系統中。因此,應了解者爲,系統9 00可 串聯耦接且/或是並聯耦接至其他類似的系統900,以形成 能量產生陣列。 對於所述實施例而言,啓動器910係耦接於面板902 -47 - 201013360 及局部控制器908之間。對於某些實施例而言,啓動器 910能根據面板902的輸出電壓而啓動及停止局部控制器 908。當面板902的輸出電壓太低時,啓動器910能提供 實質上爲零的供給電壓至局部控制器908,藉此關閉局部 控制器908。當面板902的輸出電壓較高時,啓動器910 能提供非零的供給電壓至局部控制器908,以使局部控制 器908爲運作。 應了解者爲,除了提供供給電壓至局部控制器908之 外,啓動器910能以任何合適的方式啓動及停止局部控制 器9 08。例如,對於一替換性實施例而言,啓動器910可 設定局部控制器908的一個或更多個接腳,以啓動及停止 局部控制器908。對於另一替換性實施例而言,啓動器 910能將第一個預定値寫入局部控制器908中的第一個暫 存器,以啓動局部控制器908,並將第二個預定値(根據 特定實施手段而可與第一個預定値相同或是不同)寫入局 部控制器908中的第一個暫存器或是第二個暫存器,以停 止局部控制器908。 因此,系統900不使用電池或是外部電源就能使局部 轉換器904自發性操作。當太陽輻射夠高時,輸出面板電 壓Vpan增加到使啓動器910開始產生非零的供給電壓Vcc 的位準。此時,局部控制器908且/或中央陣列控制器( 未顯示於圖9中)可開始實施啓動程序,例如暫存器的初 始化,面板902之間的初步電壓比較,類比到數位轉換器 校準,時脈同步或是時脈插入,功率級906及/或是中央 201013360 陣列控制器的同步啓動等。相似地,在停止系統900之前 ,可實施停止程序,例如在單獨應用情況中,與備份單元 的同步化,與功率級906的同步停止等。在該等停止程序 期間中,啓動器910仍能保持本身爲啓動的。 此外,對於某些實施例而言,啓動器910能夠對局部 轉換器904提供過功率保護。如上述與圖3相關之說明, 爲局部控制器208的一部份的MPPT控制區塊604可提供 過功率保護。然而,作爲包含啓動器910之系統之替換性 實施例,反而是啓動器910能提供此種保護功能。因此, 對於此替換性實施例而言,若輸出電流下降到太低,則啓 動器910可能會關閉局部控制器908的MPPT功能,使面 板電壓Vpan幾乎等於輸出電壓Vut。 圖10爲根據揭示內容之一實施例,顯示系統9 00之 裝置電壓隨著時間而改變的圖920。對於光伏打面板902 而言,在太陽輻射位準在啓動器910的電壓啓動位準( Vt-〇n)附近振盪的情況中,使用相同的電壓啓動位準作爲 電壓停止位準(V^ff)會產生不想要的系統900多次啓動及 停止。因此,如圖920所示,使用較低的電壓停止位準, 以避免此種現象。藉由使用較低的電壓停止位準,系統 900可維持一致的啓動,直到太陽輻射位準充分下降使得 面板電壓下降到低於電壓啓動位準爲止。因此,可避免頻 繁的啓動及停止,而對系統900提供雜訊免疫。 對於某些實施例而言,在面板電壓超出使局部控制器 90 8啓動的電壓啓動位準之後,若面板電壓下降至低於電 -49- 201013360 壓啓動位準,則局部控制器908開始停止程序’以能夠比 面板電壓持續下降到低於電壓停止位準時更快速地停止。 此外,對於某些實施例而言’在到達電壓停止位準之前’ 在某些情況中’局部控制器90 8能關閉啓動器910及其本 身。 圖11爲根據揭示內容之一實施例,顯示啓動器910 。對此實施例而言’啓動器910包含電源930、多數個電 阻Rl、R2、R3及二極體D。電阻R1及R2串聯耦接至電 源930的輸入節點(IN)及地面之間。二極體及電阻R3 串聯耦接至電源93 0的輸出節點(OUT)及節點940之間 ,電阻器R1及R2在節點940耦接。此外,電源930的 中止節點(SD )亦耦接至節點940。 電源93 0能在輸入節點接收面板電壓Vpan,並在輸出 節點產生對於局部控制器908之供應電壓Vcc。若電源 930之控制電路所判定的中止節點的電壓位準超出規定的 電壓VQ ’則電源93 0的中止節點致能電源93〇的操作, 且若中止節點的電壓位準下降到低於規定的電壓V(),則 中止節點停止電源930的操作。 當電源93 0關閉時,二極體不會導通,且中止節點的 電壓以下式表示:The DMPP threshold (p DMPPT ) is compared. If Pmax is less than P DMPPT , then the maximum output power and minimum output power of panel 502 are close enough 'so that the mismatch between panels 502 can be considered extremely small' and system 500 can be considered to operate in a quasi-ideal state. Similarly, if p max is not less than the maximum output power (pDMPPT), the maximum output power of the panel 502 and the minimum output power are far enough apart, such that the mismatch between the panels 502 cannot be considered to be extremely small, and the system 500 is considered Not operating under quasi-ideal conditions. If the diagnostic module 520 determines that the system 500 is not operating under a quasi-ideal condition (step 806), the control module 525 enables the local controller 508 (step 808) and stops the overall controller 540 (step 810), whereby φ The system 5 is set in the DMPPT mode. Thus, in this case, the local controller 508 implements MPPT for each panel 502. Because the DMPPT mode is used for relatively small mismatches between the panels 502, even when the masked panel 502 is at a low rate. (but not very low), the diagnostic module 520 can determine that the system 500 is not operating under quasi-ideal conditions. Therefore, after entering the DMPPT mode, the diagnostic module 520 determines whether the probability of the shaded panel 502 is high (step 812). For example, the diagnostic module 520 can compare the maximum (P max ) shaded by the panel 502 to a predetermined diagnostic threshold (Pdiag). If P max is greater than P «Hag, the maximum output power and the minimum output power of the panel 502 are sufficiently different, so that the probability of mismatch between the panels 502 is considered to be extremely high, so that at least one panel 502 is shielded. The chances are high. If the probability of panel 50 is masked (step 812), then diagnostic module 520 performs a full-feature scan for any panel 502 that may be obscured (step 814). For example, the diagnostic module 520 can identify the panel 502 that may be obscured by comparing the probability (p) and diagnostic threshold (i〇<nag) of the panel for each panel 502. If the specific face-45-201013360 board 502 is greater than p diag, the output power of the specific panel 502 is sufficiently different from the maximum output power of one of the panels 5 〇 2 in the system 5 ,, then the specific panel 502 is at least partially The probability of masking is relatively high. When performing full-feature scanning, the diagnostic module 520 can individually perform voltage-to-power characteristic scanning for each panel 502 that is likely to be masked according to the timing provided by the central array controller 510. In this manner, transition stage 5 12 can continue to operate normally during the scan. If during the implementation of any full-featured scan, the diagnostic module 520 determines that any of the panels 502 are in implementation (ie, operating at a local maximum power point (MPP), such as a local MPP 720, rather than an actual MPP, such as MPP 725), control module 525 can provide corrections for panel 502 in such implementations (step 816). At this time, or if the probability of the panel 502 being masked is not good (step 812), the diagnostic module 520 determines if the timer has expired (step 818), indicating that the method 800 must be initialized again. Once the timer expires (step 818), the diagnostic module 520 resets the timer (step 820) and begins analyzing the panel 052 again (step 804). If the diagnostic module 520 determines that the system 500 is operating under a quasi-ideal condition (step 806), the control module 525 stops the local controller 508 (step 822) and enables the overall controller 54 (step 824), thereby 5〇〇 is set in CMPPT mode. Therefore, in this case, the overall controller 540 implements MPPT for the entire system. At this time, the diagnostic module 520 determines whether the timer has expired (step 818)' indicating that the method 800 must be initialized again. Once the timer expires in 201013360 (step 818), the diagnostic module 520 resets the timer (step 82A) and begins analyzing the panel 502 again (step 804). Although FIG. 8 has shown an example of a method 800 of selecting a centralized or decentralized MPPT', various changes can be made to the method 800. For example, although method 800 is described in conjunction with a photovoltaic system, method 800 can still be used with other energy generating systems 500, such as wind turbine systems, fuel cell systems. Still further, although the method is described in conjunction with the system 500 of Figure 5, it should be understood that the method 800 can be used with any suitably arranged energy generating system without departing from the scope of the disclosure. Moreover, although the illustrated steps are a series of steps, the steps in method 800 can occur in overlapping, parallel, multiple occurrences, or in a different order. Figure 9 is a system 900 showing a local controller 908 for activating and deactivating a local converter 904 in an energy generating system, in accordance with one embodiment of the disclosure. System 900 includes an energy generating device 902 (referred to as a photovoltaic panel 902), and a local converter 904. Local converter 94 includes power stage 906, local controller 908, and initiator 910. The local converter 904 may represent one of the local converter 104 of FIG. 1B, the local converter 204 of FIG. 2 or 3, and/or one of the local converters 504 of FIG. 5, however, it should be understood that The local converter 904 can be implemented in any suitable set energy generating system without departing from the scope of the disclosure. Accordingly, it should be appreciated that system 9 00 can be coupled in series and/or coupled in parallel to other similar systems 900 to form an energy generating array. For the embodiment, the initiator 910 is coupled between the panels 902-47 - 201013360 and the local controller 908. For some embodiments, the initiator 910 can activate and deactivate the local controller 908 based on the output voltage of the panel 902. When the output voltage of panel 902 is too low, initiator 910 can provide a substantially zero supply voltage to local controller 908, thereby turning off local controller 908. When the output voltage of panel 902 is high, initiator 910 can provide a non-zero supply voltage to local controller 908 to cause local controller 908 to operate. It will be appreciated that in addition to providing a supply voltage to local controller 908, initiator 910 can activate and deactivate local controller 908 in any suitable manner. For example, for an alternative embodiment, the initiator 910 can set one or more pins of the local controller 908 to start and stop the local controller 908. For another alternative embodiment, the initiator 910 can write the first predetermined 値 to the first register in the local controller 908 to activate the local controller 908 and place the second predetermined 値 ( The first register or the second register in the local controller 908 can be written to the local register 908 to stop the local controller 908, depending on the particular implementation. Thus, system 900 can cause local converter 904 to operate autonomously without the use of a battery or an external power source. When the solar radiation is high enough, the output panel voltage Vpan is increased to a level that causes the starter 910 to begin generating a non-zero supply voltage Vcc. At this point, the local controller 908 and/or the central array controller (not shown in Figure 9) can begin to implement the boot process, such as initialization of the scratchpad, preliminary voltage comparison between the panels 902, analog to digital converter calibration. , clock synchronization or clock insertion, power stage 906 and / or the synchronous start of the central 201013360 array controller. Similarly, the stop procedure can be implemented prior to stopping the system 900, such as in a separate application scenario, synchronization with the backup unit, synchronization with the power stage 906, and the like. During these stop procedures, the initiator 910 can still keep itself activated. Moreover, for certain embodiments, the initiator 910 can provide overpower protection to the local converter 904. As described above in connection with FIG. 3, the MPPT control block 604, which is part of the local controller 208, can provide overpower protection. However, as an alternative embodiment of the system including the initiator 910, instead the initiator 910 can provide such protection. Thus, for this alternative embodiment, if the output current drops too low, the initiator 910 may turn off the MPPT function of the local controller 908 such that the panel voltage Vpan is nearly equal to the output voltage Vut. Figure 10 is a diagram 920 of the display device 9 00 device voltage changes over time, in accordance with an embodiment of the disclosure. For the photovoltaic panel 902, in the case where the solar radiation level oscillates near the voltage activation level (Vt-〇n) of the initiator 910, the same voltage activation level is used as the voltage stop level (V^ff ) will cause unwanted system 900 to start and stop multiple times. Therefore, as shown in Figure 920, a lower voltage stop level is used to avoid this phenomenon. By using a lower voltage stop level, system 900 can maintain a consistent start until the solar radiation level drops sufficiently that the panel voltage drops below the voltage start level. Therefore, the system 900 can be provided with noise immunity by avoiding frequent start and stop. For some embodiments, after the panel voltage exceeds the voltage enable level at which the local controller 90 8 is activated, if the panel voltage drops below the voltage-49-201013360 pressure enable level, the local controller 908 begins to stop. The program 'stops more quickly than when the panel voltage continues to drop below the voltage stop level. Moreover, for some embodiments 'before reaching the voltage stop level', in some cases the local controller 90 8 can turn off the starter 910 and its body. 11 is a display launcher 910, in accordance with an embodiment of the disclosure. For this embodiment, the actuator 910 includes a power supply 930, a plurality of resistors R1, R2, R3, and a diode D. Resistors R1 and R2 are coupled in series between the input node (IN) of power supply 930 and the ground. The diode and the resistor R3 are coupled in series between the output node (OUT) of the power supply 93 0 and the node 940, and the resistors R1 and R2 are coupled at the node 940. In addition, the abort node (SD) of the power supply 930 is also coupled to the node 940. The power supply 93 0 is capable of receiving the panel voltage Vpan at the input node and generating a supply voltage Vcc for the local controller 908 at the output node. If the voltage level of the suspension node determined by the control circuit of the power supply 930 exceeds the predetermined voltage VQ', the suspension node of the power supply 93 0 enables the operation of the power supply 93〇, and if the voltage level of the suspension node falls below the specified level At voltage V(), the abort node stops the operation of the power supply 930. When the power supply 93 0 is turned off, the diode does not turn on, and the voltage of the abort node is expressed by the following equation:
VSD ,r-〇n i?] + i?2 當電壓VsDt-M超出値V。時’二極體開始導通,且中止節 點的電壓變成: -50- 201013360VSD , r-〇n i?] + i?2 When the voltage VsDt-M exceeds 値V. When the 'diode starts to conduct, and the voltage of the abort node becomes: -50- 201013360
_及2 //及3 I (V -V )—R^lR2_ R.+RJ/R, cc dJ R3+R'/fR2 其中,Vd爲二極體壓降,且X//y=^L。當電壓 Vsi^-off x + y 下降到低於Vo時,電源930被關閉。因此可根據電阻R1 、R2及R3的電阻値判定開啓及關閉電壓臨限値。 圖12爲根據揭示內容之一實施例,顯示用以啓動及 • 停止局部轉換器9 04之方法1200。方法1200之實施例僅 爲說明性。可在不脫離揭示內容的範圍內實現方法1200 的其他實施例。 方法1 200以能量產生裝置或是面板902操作於開路 - 條件作爲開始(步驟1 202 )。在此條件中,因爲面板902 • 輸出的面板電壓太低,所以啓動器910並未啓動局部轉換 器90 8。啓動器910監控面板電壓(Vpan)直到面板電壓 超出電壓啓動位準(Vt-π)爲止(步驟1204 )。 # 一但啓動器910判定面板電壓已超出電壓啓動位準( 步驟1204 ),則啓動器910藉由開啓局部控制器908開 始啓動局部轉換器904 (步驟1206)。例如,啓動器910 可藉由對於局部控制器90 8產生非零的供給電壓VCC,而 開始啓動局部轉換器904。對其他實施例而言,啓動器 910可藉由設定局部控制器908的一個或更多個接腳,或 是藉由將第一個預定値寫入局部控制器908之第一個暫存 器中,而開始啓動局部轉換器904。然後局部控制器908 及/或中央陣列控制器對局部轉換器904實施啓動程序( -51 - 201013360 步驟1208 )。例如,啓動程序可包含暫存器的初始化, 面板902之間的初步電壓比較,類比到數位轉換器校準, 時脈同步化或是插入,包含功率級906的一連串面板的同 步啓動等。 局部控制器908以預定的轉換比例操作功率級906 ( 步驟1210),直到操作串中的其他功率級9 06爲止(步 驟1212)。一但串中的各個面板902具有一操作中的功 率級9 06 (步驟1212),局部控制器908將面板電流( Ipan)及啓動電流位準(Imin)予以比較(步驟1214)。 若面板電流大於啓動電流位準(步驟1214),則局部控 制器開始正常地操作(步驟1216)。因此,局部控制器 908開始對於功率級906實施MPPT。 在此方式中,可自動同步化能量產生系統中的全部局 部控制器908的啓動。此外,若僅有光伏打系統中的面板 9 02之子組合產生高得足以啓動該啓動器910的電壓,則 可在各功率級906中包含單向開關(例如開關3 1 4 ),以 容許操作其餘的面板902。 局部控制器908持續比較面板電流與啓動電流位準( 步驟1218)。若面板電流少於啓動電流位準(步驟1218 ),則局部控制器90 8設定一停止計時器(步驟1 220 ) 。然後,局部控制器908重新以預定的轉換比例操作功率 級906 (步驟1222 )。然後局部控制器90 8及/或是中央 陣列控制器對於局部轉換器904實施停止程序(步驟 12 24 )。例如,停止程序可包含在單機應用的情況中,與 201013360 備份單元的同步化,與功率級9 06之同步停止等。 然後局部控制器908判定停止計時器是否屆期(步驟 1 22 6)。如此則容許面板電流上升到超過啓動電流位準的 時間。因此,局部控制器908爲停止預作準備,但等待以 確保應實際執行停止。 因此,只要停止計時器尙未屆期(步驟1 226 ),局 部控制器908仍會將面板電流與啓動電流位準予以比較( 步驟1 228 )。若面板電流持續保持在少於啓動電流位準 (步驟1 228 ),則局部控制器908繼續等待停止計時器 屆期(步驟1 226 )。若在計時器屆期(步驟1 226 )之前 ,面板電流變成大於啓動電流位準(步驟1 22 8),則局 部控制器908藉由對功率級906實施MPPT而能再次正常 地操作(步驟1 2 1 6 )。 然而,若在面板電流少於啓動電流位準時(步驟 1228 ),停止計時器屆期(步驟1226 ),則局部控制器 908關閉功率級906及局部控制器908 ’且再次在開路條 件之下操作面板9 02 (步驟1 23 0)。對於某些實施例而言 ,啓動器910可藉由產生零供應電壓VCC予局部控制器 90 8而完成局部轉換器9 04的停止。對於其他實施例而言 ,啓動器910可藉由設定局部控制器908的一個或更多個 接腳,或是藉由將第二個預定値寫入局部控制器908中的 第一個暫存器或是第二個暫存器’而完成局部轉換器904 的停止。在此時,啓動器910再次監控面板電壓’直到面 板電壓超出電壓啓動位準爲止(步驟1204 )’重新初始 -53- 201013360 化啓動處理。 儘管圖12顯示者爲用以啓動及停止局部轉換器9〇4 的方法1200的範例,但可對方法1 200作出各種變更。例 如’儘管係以光伏打面板來說明方法1200,但方法1200 可用於其他能量產生裝置902,例如風力渦輪、燃料電池 等。更進一步,儘管係參照圖9之局部控制器90 8及啓動 器910來說明方法1 200,應了解者爲,在不脫離揭示內 容的範圍內,局部控制器908及啓動器910可用於任何合 適地配置的能量產生系統。且,儘管如圖所示者爲一連串 的步驟,但方法1200中之步驟可以重疊,平行發生,發 生多次,或是以不同順序發生。 儘管上述說明係參照特定實施例,但應了解者爲,所 述之某些構件、系統及方法可用於水平電泳槽(sub-cell )、單一電池、面板(亦即,電池陣列)、面板陣列及/ 或是面板陣列組成的系統。舉例而言,儘管上述之局部轉 換器各連接於一面板,但相似的系統可實施爲一局部轉換 器連接於面板中之各個電池,或是一局部轉換器連接於各 排面板。此外,上述之某些構件、系統及方法可用於除了 光伏打裝置之外的其他能量產生裝置,例如風力渦輪、燃 料電池等。 有益者爲提出用於此份專利文件中之某些字詞及片語 的定義。「耦接」的術語及其衍生物指的是兩個或更多個 構件之間的直接或是間接通訊,無論該等構件是否爲彼此 實際接觸。「傳送」、「接收」、及「通訊」的術語及其 -54- 201013360 衍生物包含直接及間接通訊。「包括」及「包含」的術語 及其衍生物表示包含但不限於。「或是」的術語是包含性 的’表示及/或是。「各個」的術語表示所指的項目中之 至少一個子組合的其中每一個。「相關於」及「與其相關 」的片語及其衍生物表示用以包含、包含在內、與之互聯 、包含、包含在內、連接至或連接於、耦接至或耦接於、 與其通訊、與其協同合作、插入、並列、接近於、接合至 或接合於、具有、具有某種特性等。 儘管已利用特定實施例及相關的方法說明揭示內容, 但熟知本技藝者當可輕易了解對此等實施例及方法的代換 及組合。因此,上述例示性實施例之說明並不是用以界定 或是限制揭示內容。可在不脫離揭示內容的精神及範圍內 ’其他變更、取代、及輪替亦有可能,如後附之申請專利 範圍所定義。 【圖式簡單說明】 爲了對揭示內容及其特徵有更完整的了解,請參照伴 隨有附圖的以下說明,其中; 圖1A爲根據揭示內容之—實施例,顯示一能量產生 系統,其可利用集中式的局部最大功率點追蹤(MPPT ) 整合MPPT ; 圖1B爲根據揭示內容之一實施例,顯示一能量產生 系統,其可爲集中控制的;_ and 2 // and 3 I (V -V )—R^lR2_ R.+RJ/R, cc dJ R3+R'/fR2 where Vd is the diode drop and X//y=^L . When the voltage Vsi^-off x + y falls below Vo, the power supply 930 is turned off. Therefore, the voltage threshold 开启 can be determined based on the resistances of the resistors R1, R2, and R3. 12 is a diagram showing a method 1200 for activating and/or stopping a local converter 904, in accordance with an embodiment of the disclosure. The embodiment of method 1200 is merely illustrative. Other embodiments of method 1200 can be implemented without departing from the scope of the disclosure. Method 1 200 begins with an energy generating device or panel 902 operating on an open circuit - condition (step 1 202). In this condition, the starter 910 does not activate the local converter 90 8 because the panel voltage of the panel 902 • is too low. The starter 910 monitors the panel voltage (Vpan) until the panel voltage exceeds the voltage enable level (Vt-π) (step 1204). #1: The starter 910 determines that the panel voltage has exceeded the voltage enable level (step 1204), and the initiator 910 starts the local converter 904 by turning on the local controller 908 (step 1206). For example, the initiator 910 can begin to activate the local converter 904 by generating a non-zero supply voltage VCC for the local controller 90 8 . For other embodiments, the initiator 910 can be configured by setting one or more pins of the local controller 908, or by writing the first predetermined buffer to the first register of the local controller 908. In the middle, the local converter 904 is started. The local controller 908 and/or the central array controller then implements a launch procedure for the local converter 904 (-51 - 201013360, step 1208). For example, the boot process may include initialization of the scratchpad, preliminary voltage comparison between panel 902, analog to digital converter calibration, clock synchronization or insertion, synchronous startup of a series of panels including power stage 906, and the like. The local controller 908 operates the power stage 906 at a predetermined conversion ratio (step 1210) until the other power levels 906 in the string are operated (step 1212). Once each panel 902 in the string has an operational power stage 906 (step 1212), the local controller 908 compares the panel current (Ipan) and the startup current level (Imin) (step 1214). If the panel current is greater than the startup current level (step 1214), the local controller begins to operate normally (step 1216). Thus, local controller 908 begins to implement MPPT for power stage 906. In this manner, the activation of all of the local controllers 908 in the energy generating system can be automatically synchronized. In addition, if only the sub-combination of the panel 902 in the photovoltaic system produces a voltage high enough to activate the initiator 910, a unidirectional switch (eg, switch 3 1 4) may be included in each power stage 906 to allow operation. The remaining panels 902. The local controller 908 continues to compare the panel current to the startup current level (step 1218). If the panel current is less than the startup current level (step 1218), local controller 90 8 sets a stop timer (step 1 220). The local controller 908 then operates the power stage 906 again at a predetermined conversion ratio (step 1222). The local controller 90 8 and/or the central array controller then implements a stop procedure for the local converter 904 (step 12 24 ). For example, the stop procedure can be included in the case of a stand-alone application, synchronization with the 201013360 backup unit, synchronization with the power stage 906, etc. The local controller 908 then determines if the stop timer has expired (step 1 22 6). This allows the panel current to rise above the start current level. Therefore, the local controller 908 prepares for the stop, but waits to ensure that the stop should actually be performed. Therefore, as long as the timer is not expired (step 1 226), the local controller 908 will still compare the panel current to the startup current level (step 1 228). If the panel current continues to remain below the startup current level (step 1 228), the local controller 908 continues to wait for the stop timer to expire (step 1 226). If the panel current becomes greater than the startup current level before the timer period (step 1 226) (step 1 22 8), the local controller 908 can again operate normally by performing MPPT on the power stage 906 (step 1 2 1 6). However, if the panel current is less than the startup current level (step 1228), the timer period is stopped (step 1226), then the local controller 908 turns off the power stage 906 and the local controller 908' and operates again under the open circuit condition. Panel 9 02 (step 1 23 0). For some embodiments, the initiator 910 can complete the stop of the local converter 94 by generating a zero supply voltage VCC to the local controller 90 8 . For other embodiments, the initiator 910 can be temporarily stored by setting one or more pins of the local controller 908, or by writing a second predetermined defect to the first one of the local controllers 908. The device or the second register 'completes the local converter 904 to stop. At this time, the initiator 910 monitors the panel voltage ' again until the panel voltage exceeds the voltage start level (step 1204) 're-initial-53-201013360. Although FIG. 12 shows an example of a method 1200 for activating and deactivating the local converters 〇4, various changes can be made to the method 1 200. For example, although the method 1200 is illustrated with a photovoltaic panel, the method 1200 can be used with other energy generating devices 902, such as wind turbines, fuel cells, and the like. Further, although the method 1 200 is described with reference to the local controller 90 8 and the initiator 910 of FIG. 9, it is understood that the local controller 908 and the initiator 910 can be used for any suitable range without departing from the disclosure. Ground-configured energy generation system. Moreover, although a series of steps are shown, the steps in method 1200 may overlap, occur in parallel, occur multiple times, or occur in a different order. Although the above description refers to a particular embodiment, it should be appreciated that certain of the components, systems, and methods described herein can be used in horizontal sub-cells, single cells, panels (ie, battery arrays), panel arrays. And / or a system of panel arrays. For example, although the partial converters described above are each connected to a panel, a similar system can be implemented as a local converter connected to each battery in the panel, or a local converter connected to each row of panels. Moreover, some of the components, systems, and methods described above can be used with other energy generating devices other than photovoltaic devices, such as wind turbines, fuel cells, and the like. The beneficial person is to propose a definition of certain words and phrases used in this patent document. The term "coupled" and its derivatives refer to either direct or indirect communication between two or more components, whether or not such components are in actual contact with each other. The terms "transfer", "receive", and "communication" and their derivatives include direct and indirect communication. The terms "including" and "including" and their derivatives are intended to include, but are not limited to. The term "or" is inclusive and / or. The term "each" means each of at least one of the sub-combinations of the indicated items. The words "related to" and "related to" and their derivatives are intended to be included, included, interconnected, included, included, connected to or connected to, coupled to, or coupled to, Communication, cooperation with it, insertion, juxtaposition, proximity, bonding to or bonding, having, having certain characteristics, and the like. Although the disclosure has been described in terms of specific embodiments and related methods, those skilled in the art can readily appreciate the substitution and combinations of the embodiments and methods. Therefore, the above description of the exemplary embodiments is not intended to limit or limit the disclosure. Other changes, substitutions, and rotations are possible without departing from the spirit and scope of the disclosure, as defined by the scope of the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS In order to provide a more complete understanding of the disclosure and its features, reference is made to the following description accompanying the accompanying drawings in which: FIG. 1A shows an energy generating system according to an embodiment of the disclosure. Integrating MPPT with centralized local maximum power point tracking (MPPT); FIG. 1B shows an energy generating system that can be centrally controlled, in accordance with an embodiment of the disclosure;
圖2爲根據揭示內容之—實施例,顯示圖1A或圖1B -55- 201013360 之局部轉換器; 圖3爲根據揭示內容之一實施例,顯示圖2之局部轉 換器之細部; 圖4A爲根據揭示內容之一實施例,顯示用以在圖2 之局部轉換器中實現MPPT之方法; 圖4B爲根據揭示內容之一實施例,顯示用以在圖2 之局部轉換器中實現MPPT之方法; 圖5爲根據揭示內容之一實施例,顯示一能量產生系 統’其包含一中央陣列控制器,其能爲該能量產生系統選 擇集中式MPPT或是分散式MPPT: 圖6爲根據揭示內容之一實施例,顯示部份被遮蔽的 情況下的圖5之陣列; 圖7A-C爲顯示對應於圖6的三個光伏打面板的電壓 ' 對功率特性; ' 圖8爲根據揭示內容之一實施例,顯示爲圖5之能量 產生系統選擇集中式MPPT或是分散式MPPT之方法; ^ ❹ 圖9爲根據揭示內容之一實施例,顯示啓動及關閉能 量產生系統中的局部轉換器之局部控制器的系統; 圖10爲根據揭示內容之一實施例,顯示裝置電壓隨 著時間改變之範例; 圖11爲根據揭示內容之一實施例,顯示圖9之啓動 器;及 圖12爲根據揭示內容之一實施例,顯示用以啓動或 是關閉圖9之局部轉換器之方法。 -56- 201013360 【主要元件符號說明】 1 〇:能量產生系統 1 2a-1 2f :面板 14a-14f :局部轉換器 1 6 :陣列 22 : DC-AC轉換器 24 :串 32 :中央MPPT控制區塊 1〇〇 :能量產生系統 102 :能量產生裝置 104 :局部轉換器 106 :能量產生陣列 1 1 0 :中央陣列控制器 1 12 : DC-AC轉換器 1 1 4 :串 120 :診斷模組 125 :控制模組 202 :能量產生裝置 204 :局部轉換器 206 :功率級 208 :局部控制器 2 1 0 : Μ P P T 模組 212 :通訊介面 3 02 :功率級調節器 201013360 304: MPPT控制區塊 3 06 :類比到數位轉換器 3 08 :類比到數位轉換器 3 1 0、31Oa-d :開關 3 12 :開關 3 1 4 :單向開關 4 0 0 :方法 450 :方法 5 00 :能量產生系統 5 02 :能量產生裝置 5 04 :局部轉換器 5 0 6 :功率級 5 08 ;局部控制器 5 1 0 :中央陣列控制器 512 :轉換級 5 1 4 :方格 5 1 6 :資料匯流排 520 :診斷模組 5 2 5 :控制模組 5 3 0 :轉換級最佳化器 540 :總體控制器 600 :光伏打陣列 610 :串 620 :遮蔽區域 201013360 700 ··圖 705 :圖 710 :圖 800 :方法 900:能量產生系統 902 :能量產生裝置 904 :局部轉換器2 is a partial converter showing FIG. 1A or FIGS. 1B-55-201013360 according to an embodiment of the disclosure; FIG. 3 is a detail showing the local converter of FIG. 2 according to an embodiment of the disclosure; FIG. In accordance with an embodiment of the disclosure, a method for implementing MPPT in the local converter of FIG. 2 is shown; FIG. 4B is a diagram showing a method for implementing MPPT in the local converter of FIG. 2, in accordance with an embodiment of the disclosure FIG. 5 is a diagram showing an energy generating system that includes a central array controller capable of selecting a centralized MPPT or a decentralized MPPT for the energy generating system, according to an embodiment of the disclosure: FIG. 6 is based on the disclosure An embodiment, the array of FIG. 5 in the case where the display portion is shaded; FIGS. 7A-C are diagrams showing the voltage 'to-power characteristics' corresponding to the three photovoltaic panels of FIG. 6; FIG. 8 is one of the disclosures Embodiments are shown as a method for selecting a centralized MPPT or a decentralized MPPT for the energy generating system of FIG. 5; ^ FIG. 9 is a diagram showing partial rotation in an activation and deactivation energy generating system according to an embodiment of the disclosure. FIG. 10 is an illustration of a display device voltage changing over time in accordance with an embodiment of the disclosure; FIG. 11 is a diagram showing the actuator of FIG. 9 in accordance with an embodiment of the disclosure; and FIG. In accordance with an embodiment of the disclosure, a method for activating or deactivating the local converter of FIG. 9 is shown. -56- 201013360 [Explanation of main component symbols] 1 〇: Energy generation system 1 2a-1 2f: Panel 14a-14f: Local converter 1 6 : Array 22 : DC-AC converter 24 : String 32 : Central MPPT control area Block 1: Energy Generation System 102: Energy Generating Device 104: Local Converter 106: Energy Generation Array 1 1 0: Central Array Controller 1 12: DC-AC Converter 1 1 4: String 120: Diagnostic Module 125 : Control module 202 : Energy generating device 204 : Local converter 206 : Power stage 208 : Local controller 2 1 0 : Μ PPT module 212 : Communication interface 3 02 : Power stage regulator 201013360 304: MPPT control block 3 06: analog to digital converter 3 08: analog to digital converter 3 1 0, 31Oa-d: switch 3 12: switch 3 1 4: unidirectional switch 4 0 0: method 450: method 5 00: energy generating system 5 02: Energy generating device 5 04: Local converter 5 0 6 : Power stage 5 08; Local controller 5 1 0 : Central array controller 512: Conversion stage 5 1 4 : Square 5 1 6 : Data bus 520: Diagnostic Module 5 2 5 : Control Module 5 3 0 : Conversion Stage Optimizer 540: Overall Controller 600: Photovoltaic Array 610: string 620: the mask area 201 013 360 700 705 FIG ··: FIG 710: FIG. 800: 900 Method: the energy generating system 902: the energy generating means 904: the local converter
906 :功率級 9 0 8 :局部控制器 9 1 0 :啓動器 930 :電源 940 :節點 1200 :方法906: Power stage 9 0 8 : Local controller 9 1 0 : Starter 930 : Power supply 940 : Node 1200 : Method
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/152,491 US7969133B2 (en) | 2008-05-14 | 2008-05-14 | Method and system for providing local converters to provide maximum power point tracking in an energy generating system |
US17056709P | 2009-04-17 | 2009-04-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201013360A true TW201013360A (en) | 2010-04-01 |
TWI494734B TWI494734B (en) | 2015-08-01 |
Family
ID=41319346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098115862A TWI494734B (en) | 2008-05-14 | 2009-05-13 | Method and system for providing maximum power point tracking in an energy generating system |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2291897A4 (en) |
JP (1) | JP5357249B2 (en) |
KR (1) | KR20110011683A (en) |
CN (1) | CN102084584B (en) |
TW (1) | TWI494734B (en) |
WO (1) | WO2009140536A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9000748B2 (en) | 2011-12-02 | 2015-04-07 | Industrial Technology Research Institute | Maximum power point tracking controllers and maximum power point tracking methods |
TWI488022B (en) * | 2012-10-16 | 2015-06-11 | Volterra Semiconductor Corp | Scalable maximum power point tracking controllers and associated methods |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US8618692B2 (en) | 2007-12-04 | 2013-12-31 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
WO2009055474A1 (en) | 2007-10-23 | 2009-04-30 | And, Llc | High reliability power systems and solar power converters |
EP2212983B1 (en) | 2007-10-15 | 2021-04-07 | Ampt, Llc | Systems for highly efficient solar power |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
EP3496258B1 (en) | 2007-12-05 | 2025-02-05 | Solaredge Technologies Ltd. | Safety mechanisms in distributed power installations |
US8049523B2 (en) | 2007-12-05 | 2011-11-01 | Solaredge Technologies Ltd. | Current sensing on a MOSFET |
WO2009136358A1 (en) | 2008-05-05 | 2009-11-12 | Solaredge Technologies Ltd. | Direct current power combiner |
WO2010120315A1 (en) | 2009-04-17 | 2010-10-21 | Ampt, Llc | Methods and apparatus for adaptive operation of solar power systems |
WO2011049985A1 (en) | 2009-10-19 | 2011-04-28 | Ampt, Llc | Novel solar panel string converter topology |
JP5499654B2 (en) * | 2009-11-20 | 2014-05-21 | ソニー株式会社 | Power storage control device and power storage control method |
JP5581965B2 (en) * | 2010-01-19 | 2014-09-03 | オムロン株式会社 | MPPT controller, solar cell control device, photovoltaic power generation system, MPPT control program, and MPPT controller control method |
US8576591B2 (en) * | 2010-09-30 | 2013-11-05 | Astec International Limited | Converters and inverters for photovoltaic power systems |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2485527B (en) | 2010-11-09 | 2012-12-19 | Solaredge Technologies Ltd | Arc detection and prevention in a power generation system |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2483317B (en) | 2011-01-12 | 2012-08-22 | Solaredge Technologies Ltd | Serially connected inverters |
WO2012132948A1 (en) * | 2011-03-30 | 2012-10-04 | 三洋電機株式会社 | Power conditioner system |
EP2705414A2 (en) * | 2011-05-06 | 2014-03-12 | SunEdison LLC | Solar power systems including control hubs |
EP2549635B1 (en) * | 2011-07-20 | 2018-12-05 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
US9099938B2 (en) * | 2011-12-16 | 2015-08-04 | Empower Micro Systems | Bi-directional energy converter with multiple DC sources |
US9143056B2 (en) * | 2011-12-16 | 2015-09-22 | Empower Micro Systems, Inc. | Stacked voltage source inverter with separate DC sources |
GB2498365A (en) | 2012-01-11 | 2013-07-17 | Solaredge Technologies Ltd | Photovoltaic module |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
GB2498790A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Maximising power in a photovoltaic distributed power system |
GB2498791A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
GB2499991A (en) | 2012-03-05 | 2013-09-11 | Solaredge Technologies Ltd | DC link circuit for photovoltaic array |
JP5983026B2 (en) * | 2012-05-22 | 2016-08-31 | ソニー株式会社 | Control system |
EP2859650B1 (en) | 2012-05-25 | 2017-02-15 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
DE112012007202B4 (en) * | 2012-10-16 | 2021-12-16 | Volterra Semiconductor Corporation | Systems and methods for controlling regulators for maximum power point tracking |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9397497B2 (en) | 2013-03-15 | 2016-07-19 | Ampt, Llc | High efficiency interleaved solar power supply system |
KR101452776B1 (en) | 2013-07-10 | 2014-12-17 | 엘에스산전 주식회사 | Photovoltaic system |
JP6246616B2 (en) * | 2014-02-25 | 2017-12-13 | 太陽誘電株式会社 | Converter and photovoltaic power generation system including the converter |
KR101682814B1 (en) * | 2015-06-29 | 2016-12-05 | 차진환 | self generation electricity type of charging device using multi heating source in portable electronic devices and therefore power providing method |
US10566798B2 (en) * | 2016-03-31 | 2020-02-18 | Texas Instruments Incorporated | Solar panel disconnect and reactivation system |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US10554050B2 (en) * | 2017-04-21 | 2020-02-04 | Futurewei Technologies, Inc. | Method and apparatus for controlling solar power systems |
DK201870542A1 (en) * | 2018-08-21 | 2020-03-24 | Vestas Wind Systems A/S | METHOD OF OPERATING A HYBRID POWER PLANT TO OPTIMIZE PV POWER OUTPUT |
JP2020077129A (en) * | 2018-11-06 | 2020-05-21 | 太陽誘電株式会社 | Power conversion device, power generation system, and power control method |
JP2020077130A (en) * | 2018-11-06 | 2020-05-21 | 太陽誘電株式会社 | Power conversion device, power generation system, and power control method |
CN110867846B (en) * | 2019-10-25 | 2021-12-17 | 中国科学院电工研究所 | Large-scale photovoltaic direct current series connection boosting grid-connected system with power balancer |
WO2023066458A1 (en) * | 2021-10-19 | 2023-04-27 | Huawei Technologies Co., Ltd. | Dc-dc converter arrangement |
TWI848835B (en) * | 2023-10-18 | 2024-07-11 | 立錡科技股份有限公司 | Buck-boost switching regulator and control method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5604430A (en) * | 1994-10-11 | 1997-02-18 | Trw Inc. | Solar array maximum power tracker with arcjet load |
US6184656B1 (en) * | 1995-06-28 | 2001-02-06 | Aevt, Inc. | Radio frequency energy management system |
JP2000228529A (en) * | 1998-11-30 | 2000-08-15 | Canon Inc | Solar cell module having overvoltage protection element and solar power generation system using the same |
JP3809316B2 (en) * | 1999-01-28 | 2006-08-16 | キヤノン株式会社 | Solar power plant |
JP2005151662A (en) * | 2003-11-13 | 2005-06-09 | Sharp Corp | Inverter device and distributed power supply system |
TWI232361B (en) * | 2003-11-25 | 2005-05-11 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
US7564149B2 (en) * | 2004-07-21 | 2009-07-21 | Kasemsan Siri | Sequentially-controlled solar array power system with maximum power tracking |
US7701685B2 (en) * | 2004-07-27 | 2010-04-20 | Silicon Laboratories Inc. | Digital pulse width modulator with built-in protection functions for over current, over voltage and temperature |
JP2006320149A (en) * | 2005-05-13 | 2006-11-24 | Nippon Oil Corp | Distributed power system |
US7309975B2 (en) * | 2005-05-16 | 2007-12-18 | Eltam Ein Hashofet | Process for operating a switching power supply |
TWI328730B (en) * | 2006-06-16 | 2010-08-11 | Ablerex Electronics Co Ltd | Maximum power point tracking method and tracker thereof for a solar power system |
KR100809443B1 (en) * | 2006-07-26 | 2008-03-07 | 창원대학교 산학협력단 | Controller of Single Phase Power Converter for Solar Power System |
US8751053B2 (en) * | 2006-10-19 | 2014-06-10 | Tigo Energy, Inc. | Method and system to provide a distributed local energy production system with high-voltage DC bus |
-
2009
- 2009-05-13 TW TW098115862A patent/TWI494734B/en active
- 2009-05-14 EP EP09747617A patent/EP2291897A4/en not_active Withdrawn
- 2009-05-14 KR KR1020107027970A patent/KR20110011683A/en not_active Withdrawn
- 2009-05-14 JP JP2011509712A patent/JP5357249B2/en active Active
- 2009-05-14 CN CN200980123578.3A patent/CN102084584B/en active Active
- 2009-05-14 WO PCT/US2009/044015 patent/WO2009140536A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9000748B2 (en) | 2011-12-02 | 2015-04-07 | Industrial Technology Research Institute | Maximum power point tracking controllers and maximum power point tracking methods |
TWI488022B (en) * | 2012-10-16 | 2015-06-11 | Volterra Semiconductor Corp | Scalable maximum power point tracking controllers and associated methods |
Also Published As
Publication number | Publication date |
---|---|
WO2009140536A2 (en) | 2009-11-19 |
CN102084584B (en) | 2015-01-07 |
JP2011521362A (en) | 2011-07-21 |
WO2009140536A3 (en) | 2010-02-18 |
TWI494734B (en) | 2015-08-01 |
KR20110011683A (en) | 2011-02-08 |
EP2291897A4 (en) | 2013-01-23 |
EP2291897A2 (en) | 2011-03-09 |
JP5357249B2 (en) | 2013-12-04 |
CN102084584A (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI494734B (en) | Method and system for providing maximum power point tracking in an energy generating system | |
CN102067437B (en) | Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system | |
TW201013361A (en) | System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking | |
JP5361994B2 (en) | Method and system for providing a local transducer for providing maximum power point tracking in an energy generation system | |
US7962249B1 (en) | Method and system for providing central control in an energy generating system | |
US8279644B2 (en) | Method and system for providing maximum power point tracking in an energy generating system | |
US9077206B2 (en) | Method and system for activating and deactivating an energy generating system | |
US7991511B2 (en) | Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system | |
US8139382B2 (en) | System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking | |
US11740647B2 (en) | Circuit for interconnected direct current power sources | |
EP1842121B1 (en) | System and method for tracking a variable characteristic through a range of operation | |
CN110677118B (en) | Optimizer, photovoltaic power generation system and IV curve scanning method of photovoltaic module | |
KR20190120944A (en) | A solar power conversion unit and operating method for the unit |