[go: up one dir, main page]

TW201007662A - Driving circuit and pixel circuit having the same - Google Patents

Driving circuit and pixel circuit having the same Download PDF

Info

Publication number
TW201007662A
TW201007662A TW97129253A TW97129253A TW201007662A TW 201007662 A TW201007662 A TW 201007662A TW 97129253 A TW97129253 A TW 97129253A TW 97129253 A TW97129253 A TW 97129253A TW 201007662 A TW201007662 A TW 201007662A
Authority
TW
Taiwan
Prior art keywords
transistor
control
capacitor
voltage switch
control signal
Prior art date
Application number
TW97129253A
Other languages
Chinese (zh)
Other versions
TWI413061B (en
Inventor
Zhi-Long Lin
guo-chao Liao
Cheng-Zu Xie
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97129253A priority Critical patent/TWI413061B/en
Publication of TW201007662A publication Critical patent/TW201007662A/en
Application granted granted Critical
Publication of TWI413061B publication Critical patent/TWI413061B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

The invention discloses a pixel circuit, which comprises a luminous element and a driving circuit. The driving circuit comprises: a first transistor, a second transistor, a capacitor, a data voltage switch and a reference voltage switch. The anode of the luminous element is electrically connected to a first power voltage. A second end of the first transistor is electrically connected to a second end and a control end of the second transistor and the cathode of the luminous element. A control end of the first transistor is electrically connected to one end of the capacitor. A first end of the second transistor is electrically connected to another end of the capacitor. A first end of the first transistor is electrically connected to a second power voltage. The data voltage switch is used to determine whether a data voltage is outputted to the control end of the first transistor. The reference voltage switch is used to determine whether a reference voltage is outputted to the first end of the second transistor.

Description

201007662 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種畫素電路,特別是指一種可補償 一薄膜電晶體之臨界電壓變異及補償一有機發光二極體因 材料老化而造成亮度衰減之畫素電路。 【先前技術】 現今,利用有機發光二極體(OLED )來當作光源,已 是相當普遍的應用。而有機發光二極體的亮度是依照流過其 上的驅動電流來決定’因此,對於一用以驅動該有機發光二 極體之驅動電路而言,其中的電晶體與該有機發光二極體在 製程上的相關因素的變化,往往都會影響到該有機發光二極 體的發光效能,針對各種因素對於有機發光二極體的影響說 明如下: 一、 電晶體臨界電壓: 因為一面板長時間使用或是因為製程差異將會造 成該臨界電壓值的變異,將會使得流經該有機發光二 極體的驅動電流產生變化’因此該有機發光二極體的 發光亮度將會受到影響,當該面板中的多數畫素電路 皆受到該臨界電壓值變異所影響時,容易使得該面板 看起來的亮度不均勻或是發生有時較亮有時較暗等亮 度不穩定的問題產生。 二、 驅動電路之電源電壓: 當應用於一大尺寸面板上時,隨著訊號線的拉長 ,内阻逐漸增加,將使得該驅動電路之電源電壓發生 201007662 衰減效應,稱之為IR-drop效應,該效應將導致該驅動 電流下降,因而使得該大尺寸面板亮度不均勻的情況 〇 三、有機發光二極體老化效應: 由於材料老化的現象,有機發光二極體在長時間操作 下,可能會發生電壓降逐漸上升而影響到該驅動電流的大 小。因此,若因長時間操作造成有機發光二極體老化,進 而使得其發光效率下降,那即便是該驅動電流符合預期, 也無法產生預期的亮度。若是發生在RGB三色的發光效率 下降程度不同,更會發生色偏的問題。 針對以上因素,目前已有相關技術與以改善,如: 2007年加拿大滑鐵盧大學於IEEE Journal of Display Technology 中所提出的「AMOLED pixel circuit with electronic compensation of luminance degradation」' 2005 年韓國漢城大學於IEEE Electron Device Letter中所提出的 「A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED」,及2005年台灣交通大學於IEEE/OSA Journal of Display Technology 中所提出的「A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors」。 在該等相關前案中,為了解決上述各種因素造成的問 題,往往導致電路結構太過複雜,使得該畫素電路内具有 較多的元件數量,就會導致開口率的降低,並影響該有機 201007662 / 發光二極體的發光效率。因此,如何有效改善各種因素造 成的問題,同時又可以降低對於該有機發光二極體發光效 率的影響,是相當重要的議題。 【發明内容】 因此,本發明之目的是提供一種晝素電路,包含: 一有機發光二極體,具有一陽極及一陰極;及 一驅動電路,包括: 一第一電晶體’及一第二電晶體,每一電晶體具 _ 有一第一端、一第二端,及一決定該第一端及該第二 端是否導通的控制端; 一電容; 一資料電壓開關;及 一參考電壓開關; 其中’該有機發光二極體之陽極電連接於一第一電源 電壓’該第一電晶體之第二端與該第二電晶體之第二端、 該第二電晶體之控制端、該有機發光二極體之陰極電連接 ❹ ,該第一電晶體之控制端與該電容之一端電連接,該第二 電晶體之第一端與該電容之另一端電連接,該第一電晶體 之第一端與一第二電源電壓電連接,該資料電壓開關接收 一資料電壓,並接受一第一控制訊號的控制,以決定是否 - 輸出該資料電麼到該第一電晶體之控制端,該參考電壓開 關接收一參考電壓,並接受一第二控制訊號的控制,以決 定是否輸出該參考電壓到該第二電晶體之第—端。 此外’本發明另一目的是,提供一種驅動電路,包含 7 201007662 一第一電晶體,及一第二電晶體,每一電晶體具有一 第一端、一第二端,及一決定該第一端及該第二端是否導通 的控制端; 一電容; 一資料電壓開關;及 一參考電壓開關; 其中’該第一電晶體之第二端與該第二電晶體之第二 端、該第二電晶體之控制端電連接,該第一電晶體之控制端 與該電容之一端電連接,該第二電晶體之第一端與該電容之 另端電連接,該第一電晶趙之第一端與一第二電源電壓電 連接,該資料電壓開關接收一資料電壓,並接受一第一控制 訊號的控制,以決定是否輸出該資料電壓到該第一電晶體之 控制端,該參考電壓開關接收一參考電壓,並接受一第二控 制訊號的控制,以決定是讀出該參考電壓到該第二電晶體 之第一端。 本發明之另—目較,提供—種畫素電路,包含 一發光元件,具有一陽極及一陰極;及 一驅動電路,包括: 電晶體,每一電晶體具 決定該第一端及該第二 一第一電晶體,及一第二 有一第一端、一第二端,及— 端是否導通的控制端; 一電容; 一資料電壓開關;及 201007662 一參考電壓開關; 其中,該發光元件之陽極電連接於一第一電源電壓, 該第一電晶體之第二端與該第二電晶體之第二端、該第二 電晶體之控制端、該發光元件之陰極電連接,該第一電晶 體之控制端與該電容之一端電連接,該第二電晶體之第— 端與該電容之另一端電連接,該第一電晶體之第一端與一 第二電源電壓電連接,該資料電壓開關接收一資料電壓, 並接受一第一控制訊號的控制,以決定是否輸出該資料電 ❹ 壓到該第一電晶體之控制端,該參考電壓開關接收一參考 電壓,並接受一第二控制訊號的控制,以決定是否輸出該 參考電壓到該第二電晶體之第一端。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 、 參閱圖1,本發明之較佳實施例包含一有機發光二極體 ® ( 〇LED ) 8及一驅動電路9,該驅動電路9包括一第一電 晶體91、一第二電晶體92、一電容95、一資料電壓開關 98,及一參考電壓開關99,其中,在本實施例中該資料電 壓開關98是一第三電晶體93,而該參考電壓開關99是一 第四電晶體94。該第一至該第四電晶體91〜94是N型薄膜 電晶體(TFT )。其中’每一電晶體91〜94包括一第一端、 一第二端及一決定該第一段與該第二端是否導通之控制端 ’該有機發光一極體8具有一陽極及一陰極。 9 201007662 該第—電晶體91之第二端與該第二電晶體92之第二 〜 端、該第二電晶體92之控制端、該有機發光二極體8之陰 極電連接(以下稱為A點);該第一電晶體91之控制端與 該電容95之一端、該第三電晶體93之第二端電連接(以 下稱為B點);該第二電晶體92之第一端與該電容95之另 一端、該第四電晶體94之第二端電連接(以下稱為c點) 該第電曰曰體91之第一端與一第二電源電壓Vss電連接 ,該第三電晶體93之控制端接收一第一控制訊號Vseu, 該第三電晶體93之第一端接收一資料電壓Vdata,該第四 _ 電晶體94之控制端接收一第二控制訊號VsEL2,該第四電 日日體94之第一端接收一參考電壓vREF,該有機發光二極體 8之陽極電連接於一第一電源電壓VDD。 該較佳實施例之時序圖如圖2所示,可以分為三個階 段: I· 資料輸入階段: 聯合參閱圖1、2’該第一控制訊號vSEL1與該第二控 制訊號VSEL2設定為高電位,該參考電壓VREF設定為低參⑩ 考電位Vref_l ’因此,該第三與第四電晶體93、94會被導 通,因為此時VREF_L與VDATA皆為低電位,所以該電容95 之跨壓V95會經由Vref端與VDATA端放電,其等效電路圖 如圖3所示。 當該電容95放電一段時間之後,C點的電壓持續下降 ,直到C點與A點的電壓差大於該第二電晶體92之臨界電 壓值時Vth,92時(因為該第二電晶體92之閘極電壓與A點 10 201007662 v 電連接),該第二電晶體92將會被導通’此時,進入補償 階段。 II·補償階段: 回復參閱圖1、2,當該第二電晶體92被導通之後’該 第二控制訊號VSEL2設定為低電位,因此,該第四電晶體94 會被關閉’此時,因為該第二電晶體92之閘極電壓電連接 到A點,因此’該電容95之一端(即C點)會持讀充電至 Vg,92 — VTH 92,等效電路圖如圖4所示,因此,^點的電麼 ® 可以表示如下: = VC,92 - ^TH,92 = ^A~ Kh,92 = ^DD ~ ^OLED ~ ^TH,92 其中’ VOLED為該有機發光二極體8之端電麼。 同時’因為該第三電晶體93被導通’因此該資料電壓 vdata將會被傳送至b點。 當c點電壓被充電至Vdd—v〇led_VtH92之後,因為 φ 該第二電晶體92之閘極電壓與源極電壓差v加,92又小於該 第一電晶體之臨界電壓VTH,92,因此,該第二電晶體92將 再度關閉,並進入發先階段。值得注意的是,由於該電容 95沒有放電路徑可供放電,因此在進入發光階段前,該電 谷之電壓V95為B點電壓VB與C點電壓Vc間的電壓差, 如下式所示: V95 = =VDATA ~(VDD-vOLED-vm^)^vDATA _v〇D +v〇LED +Vth^ 為了後續說明方便’我們假設此時C點的電壓為〇, 11 201007662 而 B 點的電壓為 VdaTA— VdD + V〇LED + VtH,92。 III.發光階段: 聯合參閱圖1、2’該參考電壓Vref設定為南參考電位 VREF_H,同時將該第一控制訊號VSEL1設定為低電位,使得 該第三電晶體93被關閉,之後,再將該第二控制訊號 Vs EL2設定為南電位’使得該第四電晶體92被導通’因此, 該高參考電位Vref_h將會傳送至C點,同時,該電容95之 另一端(即B點)之電壓會等量跳躍至乂以^+乂^以一 VdD +V〇LED +VtH,92,同時B點電壓Vb亦為該第一電晶體之 閘極電壓VG,91,等效電路圖如圖5所示,因此,會產生一 由該有機發光二極體8流至該第一電晶體91第二端之驅動 電流Idrive為: ^OLED = ^9l(^GS,91 ~ ^Τ«,9ΐ) =^9l(^G,91 — ^5,91 — ^ΓΗ,9ΐ) =K91(VREF _H +V〇ATA ~VDD +V〇LE〇 +VTH 92 —^77/,91 — ^ss) 根據上述的公式,若是假設該第一電晶體91與該第二 電晶體92具有相同的臨界電壓,也就是說V TH,91=VtH,92 ; _ 此外*當該南參考電位Vref_h設定為與該第'電源電壓 VDD相同之電壓時且Vss為OV,則上述之公式可以簡化成 如下所示: ^OLED = ^9\ ^DATA + ^OLED ) 根據上述的電流公式可以知道,流經有機發光二極體8 的驅動電流I OLED 與該等第一、第二電源電壓VDD、Vss,及 12 201007662 該第—電晶體91的臨界電壓vTH,91無關。因此,在發光階 段時’流經有機發光二極體8的驅動電流i0LED僅僅由該資 料電壓vDATA大小來決定,此外,當vOLED因為該有機發光 一極體8材料的老化而增加時,相對的也會提高該有機發 光一極體8的電流量i〇LED,因此,可以補償該有機發光二 極體8因為材料老化而造成亮度衰減的現象。 值得注意的是’本實施例除了用於驅動該有機發光二 極體8之外’也可以用於驅動其他受電流驅動的發光元件 ’例如.發光二極體(LED) ’且該等電晶體91~94除了是 N型TFT之外,也可以是N型金屬氧化物半導體(pM〇s ) 〇 本實施例採用電路模擬的方式以驗證補償效果。圖6 是藉由輸入各種不同的資料電壓值’假設電路中之電晶體 分別具有-0.3伏特、〇伏特、+〇 3伏特的臨界電壓變異時, 該有機發光二極體之驅動電流與資料電壓的轉移曲線圖。 由圖6中,可以觀察到習知的驅動電流會根據不同的臨界 電壓變異而有相當大的變化,這種現象會造成有機發光二 極體的發光亮度不穩定或是不易控制的缺點,相對而言, 本實施例的驅動電流對於臨界電壓變異所產生的變化,就 穩定很多,換言之’本發明之驅動電流幾乎不受臨界電壓 變異的影響。 參閱圖7’假設當-有機發光二極體長時間操作下,因 材料發生老化導致該有機發光二極體的電壓降v〇l印隨之上 升時,由圖中可以觀察到,在本實施例中,該有:發光二 13 201007662 極體之驅動電流亦隨之增加’因此,可以補償該有機發光 二極體因老化而造成的亮度衰減。 由於本發明之驅動電流I〇LED僅與該資料電壓Vdata& 該有機發光二極體之電壓降V_A小有關,因此,相較於 習知之設計本發明具有下列優點: 具有補償該臨界電壓Vth變異的特性·201007662 IX. Description of the invention: [Technical field of the invention] The present invention relates to a pixel circuit, in particular to a method for compensating for a critical voltage variation of a thin film transistor and compensating for an organic light-emitting diode due to aging of the material. A pixel circuit with reduced brightness. [Prior Art] Nowadays, the use of an organic light-emitting diode (OLED) as a light source has been a fairly common application. The brightness of the organic light emitting diode is determined according to the driving current flowing therethrough. Therefore, for a driving circuit for driving the organic light emitting diode, the transistor and the organic light emitting diode are included. The change of related factors in the process often affects the luminous efficacy of the organic light-emitting diode. The effects on various organic light-emitting diodes are as follows: 1. The critical voltage of the transistor: Because of the long-term use of a panel Or because the process variation will cause the variation of the threshold voltage value, the driving current flowing through the organic light emitting diode will change. Therefore, the brightness of the organic light emitting diode will be affected when the panel When most of the pixel circuits are affected by the variation of the threshold voltage value, it is easy to cause the panel to appear uneven in brightness or a problem of brightness instability such as sometimes brighter and sometimes darker. Second, the power supply voltage of the drive circuit: When applied to a large-size panel, as the signal line is elongated, the internal resistance is gradually increased, which will cause the power supply voltage of the drive circuit to have an attenuation effect of 201007662, called IR-drop. Effect, this effect will cause the driving current to drop, thus making the brightness of the large-sized panel uneven. Third, the aging effect of the organic light-emitting diode: due to the phenomenon of material aging, the organic light-emitting diode is operated under a long time, It may happen that the voltage drop gradually rises to affect the magnitude of the drive current. Therefore, if the organic light-emitting diode is aged due to long-term operation, and thus the luminous efficiency is lowered, even if the driving current is as expected, the desired brightness cannot be produced. If the luminous efficiency of the three colors of RGB is different, the problem of color shift will occur. In view of the above factors, there are related technologies and improvements, such as: "AMOLED pixel circuit with electronic compensation of luminance degradation" proposed by the University of Waterloo in Canada in 2007. Seoul University of Korea in IEEE Electron "A new a-Si: H TFT pixel circuit compensating the threshold voltage shift of a-Si: H TFT and OLED for active matrix OLED", and 2005 Taiwan Jiaotong University in IEEE/OSA Journal of Display "A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors". In these related cases, in order to solve the problems caused by the above various factors, the circuit structure is often too complicated, so that the number of components in the pixel circuit has a large number of components, which leads to a decrease in the aperture ratio and affects the organic 201007662 / Luminous efficiency of light-emitting diodes. Therefore, how to effectively improve the problems caused by various factors and at the same time reduce the influence on the luminous efficiency of the organic light-emitting diode is a very important issue. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a halogen circuit comprising: an organic light emitting diode having an anode and a cathode; and a driving circuit comprising: a first transistor 'and a second a transistor, each of the transistors has a first end, a second end, and a control end that determines whether the first end and the second end are conductive; a capacitor; a data voltage switch; and a reference voltage switch Wherein the anode of the organic light emitting diode is electrically connected to a first power supply voltage, the second end of the first transistor and the second end of the second transistor, the control end of the second transistor, a cathode of the organic light emitting diode is electrically connected, and a control end of the first transistor is electrically connected to one end of the capacitor, and a first end of the second transistor is electrically connected to another end of the capacitor, the first transistor The first end is electrically connected to a second power voltage, the data voltage switch receives a data voltage, and receives control of a first control signal to determine whether to output the data to the control end of the first transistor , the The reference voltage switch receives a reference voltage and receives control of a second control signal to determine whether to output the reference voltage to the first terminal of the second transistor. In addition, another object of the present invention is to provide a driving circuit comprising 7 201007662 a first transistor, and a second transistor, each transistor having a first end, a second end, and a determining the first a control end of whether the one end and the second end are conductive; a capacitor; a data voltage switch; and a reference voltage switch; wherein 'the second end of the first transistor and the second end of the second transistor, the The control end of the second transistor is electrically connected, the control end of the first transistor is electrically connected to one end of the capacitor, and the first end of the second transistor is electrically connected to the other end of the capacitor, the first electric crystal Zhao The first end is electrically connected to a second power voltage, and the data voltage switch receives a data voltage and receives control of a first control signal to determine whether to output the data voltage to the control end of the first transistor. The reference voltage switch receives a reference voltage and receives control of a second control signal to determine that the reference voltage is read to the first end of the second transistor. According to another aspect of the present invention, a pixel circuit includes a light-emitting element having an anode and a cathode, and a driving circuit comprising: a transistor, each of the transistors determining the first end and the first a first transistor, and a second control terminal having a first terminal, a second terminal, and a terminal; a capacitor; a data voltage switch; and a 201007662 reference voltage switch; wherein the light component The anode is electrically connected to a first power supply voltage, and the second end of the first transistor is electrically connected to the second end of the second transistor, the control end of the second transistor, and the cathode of the light emitting element. a control terminal of the transistor is electrically connected to one end of the capacitor, and a first end of the second transistor is electrically connected to the other end of the capacitor, and a first end of the first transistor is electrically connected to a second power voltage. The data voltage switch receives a data voltage and receives control of a first control signal to determine whether to output the data voltage to a control terminal of the first transistor, the reference voltage switch receiving a reference voltage, Receiving a second control signal to the control to determine whether to output the reference voltage to the first terminal of the second transistor. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIG. 1 , a preferred embodiment of the present invention includes an organic light emitting diode ( 〇 LED ) 8 and a driving circuit 9 . The driving circuit 9 includes a first transistor 91 and a second transistor 92 . A capacitor 95, a data voltage switch 98, and a reference voltage switch 99, wherein in the embodiment, the data voltage switch 98 is a third transistor 93, and the reference voltage switch 99 is a fourth transistor 94. . The first to fourth transistors 91 to 94 are N-type thin film transistors (TFTs). Wherein each of the transistors 91 to 94 includes a first end, a second end, and a control end that determines whether the first stage and the second end are conductive. The organic light-emitting body 8 has an anode and a cathode. . 9 201007662 The second end of the first transistor 91 is electrically connected to the second end of the second transistor 92, the control end of the second transistor 92, and the cathode of the organic light emitting diode 8 (hereinafter referred to as A point); the control end of the first transistor 91 is electrically connected to one end of the capacitor 95 and the second end of the third transistor 93 (hereinafter referred to as point B); the first end of the second transistor 92 The other end of the capacitor 95 is electrically connected to the second end of the fourth transistor 94 (hereinafter referred to as point c). The first end of the first electrode body 91 is electrically connected to a second power voltage Vss. The control terminal of the third transistor 93 receives a first control signal Vseu, the first terminal of the third transistor 93 receives a data voltage Vdata, and the control terminal of the fourth transistor 94 receives a second control signal VsEL2. The first end of the fourth electric day body 94 receives a reference voltage vREF, and the anode of the organic light emitting diode 8 is electrically connected to a first power supply voltage VDD. The timing diagram of the preferred embodiment is shown in FIG. 2, and can be divided into three phases: I. Data input phase: Referring to FIG. 1, 2', the first control signal vSEL1 and the second control signal VSEL2 are set to be high. The potential, the reference voltage VREF is set to a low reference voltage Vref_l ' Therefore, the third and fourth transistors 93, 94 will be turned on, because VREF_L and VDATA are both low at this time, so the voltage across the capacitor 95 V95 will discharge through the Vref terminal and the VDATA terminal. The equivalent circuit diagram is shown in Figure 3. After the capacitor 95 is discharged for a period of time, the voltage at point C continues to drop until the voltage difference between point C and point A is greater than the threshold voltage value of the second transistor 92, Vth, 92 (because the second transistor 92 The gate voltage is electrically connected to point A 10 201007662 v), and the second transistor 92 will be turned on 'at this time, entering the compensation phase. II. Compensation phase: Referring back to FIGS. 1 and 2, after the second transistor 92 is turned on, the second control signal VSEL2 is set to a low potential, and therefore, the fourth transistor 94 is turned off. The gate voltage of the second transistor 92 is electrically connected to point A, so that one end of the capacitor 95 (ie, point C) will be read and charged to Vg, 92 - VTH 92, and the equivalent circuit diagram is as shown in FIG. The electric point of ^, can be expressed as follows: = VC, 92 - ^TH, 92 = ^A~ Kh, 92 = ^DD ~ ^OLED ~ ^TH,92 where 'VOLED is the organic light-emitting diode 8 What is the power? At the same time 'because the third transistor 93 is turned on', the data voltage vdata will be transmitted to point b. After the voltage at point c is charged to Vdd_v〇led_VtH92, since the gate voltage and the source voltage difference v of the second transistor 92 are increased by φ, 92 is smaller than the threshold voltage VTH, 92 of the first transistor, The second transistor 92 will be turned off again and enter the initial stage. It is worth noting that since the capacitor 95 has no discharge path for discharging, the voltage V95 of the valley is the voltage difference between the voltage V of point B and the voltage of point C, before entering the light-emitting phase, as shown in the following equation: V95 ==VDATA ~(VDD-vOLED-vm^)^vDATA _v〇D +v〇LED +Vth^ For the convenience of the following description, we assume that the voltage at point C is 〇, 11 201007662 and the voltage at point B is VdaTA— VdD + V〇LED + VtH, 92. III. Illumination phase: Referring to FIG. 1 and FIG. 2', the reference voltage Vref is set to the south reference potential VREF_H, and the first control signal VSEL1 is set to a low potential, so that the third transistor 93 is turned off, and then The second control signal Vs EL2 is set to a south potential 'so that the fourth transistor 92 is turned on'. Therefore, the high reference potential Vref_h will be transmitted to the C point, and the other end of the capacitor 95 (ie, point B) The voltage will jump to the same amount to ^ 乂 ^ to a VdD + V 〇 LED + VtH, 92, while the B point voltage Vb is also the gate voltage of the first transistor VG, 91, the equivalent circuit diagram is shown in Figure 5. As shown, a driving current Idrive flowing from the organic light emitting diode 8 to the second end of the first transistor 91 is generated as follows: ^OLED = ^9l (^GS, 91 ~ ^Τ«, 9ΐ) =^9l(^G,91 — ^5,91 — ^ΓΗ,9ΐ) =K91(VREF _H +V〇ATA ~VDD +V〇LE〇+VTH 92 —^77/,91 — ^ss) According to the above The formula assumes that the first transistor 91 has the same threshold voltage as the second transistor 92, that is, V TH, 91 = VtH, 92; _ additionally * when the south reference potential Vref_h is set to When the voltage of the first power supply voltage VDD is the same and Vss is OV, the above formula can be simplified as follows: ^OLED = ^9\ ^DATA + ^OLED ) According to the above current formula, it can be known that the organic light flows through The driving current I OLED of the diode 8 is independent of the first and second power supply voltages VDD, Vss, and 12 201007662, the threshold voltage vTH, 91 of the first transistor 91. Therefore, the driving current i0LED flowing through the organic light-emitting diode 8 is determined only by the magnitude of the data voltage vDATA during the light-emitting phase, and further, when the vOLED is increased due to the aging of the organic light-emitting body 8 material, the opposite The current amount i 〇 LED of the organic light-emitting body 8 is also increased, and therefore, the phenomenon that the organic light-emitting diode 8 is attenuated due to aging of the material can be compensated for. It should be noted that 'this embodiment can be used to drive other current-driven light-emitting elements 'for example, light-emitting diodes (LEDs)' and these transistors can be used in addition to driving the organic light-emitting diodes 8 91~94 may be an N-type metal oxide semiconductor (pM〇s) in addition to the N-type TFT. This embodiment uses a circuit simulation method to verify the compensation effect. Figure 6 shows the driving current and data voltage of the organic light-emitting diode by inputting various data voltage values 'assuming that the transistors in the circuit have a threshold voltage variation of -0.3 volts, volts volts, + 〇3 volts, respectively. Transfer curve. From Fig. 6, it can be observed that the conventional driving current has a considerable change according to different threshold voltage variations, which may cause the luminance of the organic light emitting diode to be unstable or difficult to control. In other words, the driving current of the present embodiment is much more stable with respect to changes in the threshold voltage variation. In other words, the driving current of the present invention is hardly affected by the critical voltage variation. Referring to FIG. 7', it is assumed that when the organic light-emitting diode is operated for a long time, the voltage drop of the organic light-emitting diode is increased due to aging of the material, as can be observed from the figure, in this embodiment. In the example, the light source has a luminous current of 13 201007662. Therefore, the brightness of the organic light-emitting diode due to aging can be compensated for. Since the driving current I 〇 LED of the present invention is only related to the voltage drop V_A of the data voltage Vdata & the organic light emitting diode, the present invention has the following advantages compared with the conventional design: having the compensation of the threshold voltage Vth variation Characteristics·

當一面板在長時間操作下或是因為製程上的差異 ,所產生的臨界電壓VTH差異,可能會影響該有機發 光一極體8上的驅動電流I0LED大小,進而造成一面板 上發光亮度的不均勻或是不穩定的情形,然而利用本 發明畫素電路之面板,可以避免因臨界電壓vTH的變 異所造成的亮度問題。 一、能應用於大尺寸面板上: 由於本發明之畫素電路的驅動電流i〇led與第一、 第二電源電壓VDD、VSS無關,因此,當應用於大尺寸 面板時’可能因為訊號線過長所引起的IR_dr〇p效應, 將不會影響該驅動電流IOLED,因此,不會對該有機發 Ο 光一極體8的發光亮度造成影響。 三、不會影響該有機發光二極體8的發光效率:When a panel is operated for a long time or because of a difference in the process, the difference in the threshold voltage VTH generated may affect the driving current I0LED on the organic light-emitting body 8, thereby causing the brightness of the light on one side of the board. Uniform or unstable, however, with the panel of the pixel circuit of the present invention, the brightness problem caused by the variation of the threshold voltage vTH can be avoided. 1. It can be applied to a large-sized panel: Since the driving current i〇led of the pixel circuit of the present invention is independent of the first and second power supply voltages VDD and VSS, when applied to a large-sized panel, it may be due to a signal line. The IR_dr〇p effect caused by the excessive length will not affect the driving current IOLED, and therefore, the luminance of the organic light-emitting body 8 will not be affected. Third, it will not affect the luminous efficiency of the organic light-emitting diode 8:

由於本發明之畫素電路的驅動電流1〇1^〇與該有機 發光一極體的電壓降V〇LED有關’因此’當一使用本畫 素電路為光源之面板,内部發生有機發光二極體因為 -長久使用而產生材料老化,進而使得該有機發光二極 體的電壓降VOLED上升時,將會使得該驅動電流IOLED 14 201007662 - 纟1¾著上升,因此,該有機發光二極體的亮度將不會 隨著材料老化而衰減,進而保持穩定的發光效率,因 此,當本發明之畫素電路應用於RGB顯示裝置時可 以避免因A RGB三色發光二極體因為出現發光效率不 一致而導致色偏的問題發生。 四、元件數量較少: 相較於習知之設計,本發明僅僅利用四個電晶體 與一個電容,凡件數量相對而言較少,因此對於該有 〇 機發光二極體的開口率影響較小,也就是說,本發明 可以有效降低對於該有機發光二極體發光效率的影響 〇 綜上所述,本發明之實施例可以確保畫素電路中該驅 動電流將不會受到臨界電壓變異、IR_dr〇p效應及有機發光 二極體老化等因素而改變,同時,又可有效降低對於該有 機光二極體發光效率的影響程度,因此確實能達成本發明 之目的。 _ 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是本發明之較佳實施例之電路示意圖; 圖2是該較佳實施例之時序圖; 圖3是該較佳實施例之資料輸入階段之等效電路示意 15 201007662 |g| · 圍, 圖4是該較佳實施例之補償階段之等效電路示意圖; 圖5是該較佳實施例之發光階段之等效電路示意圖; 圖6是不同資料電壓對於不同臨界電壓變異之轉移曲 線圖;及 圖7是該有機發光二極體電壓降與驅動電流之對應關 係圖。Since the driving current of the pixel circuit of the present invention is related to the voltage drop of the organic light emitting body V〇LED, "therefore, when a panel using the pixel circuit as a light source is used, an organic light emitting diode is generated internally. When the material ages due to long-term use, and the voltage drop of the organic light-emitting diode VOLED rises, the driving current IOLED 14 201007662 - 纟13⁄4 rises, and therefore, the brightness of the organic light-emitting diode It will not attenuate with the aging of the material, thereby maintaining stable luminous efficiency. Therefore, when the pixel circuit of the present invention is applied to an RGB display device, it is possible to avoid the inconsistent luminous efficiency due to the occurrence of the A RGB three-color light-emitting diode. The problem of color shift occurs. Fourth, the number of components is small: Compared with the conventional design, the present invention only uses four transistors and one capacitor, and the number of parts is relatively small, so the influence on the aperture ratio of the LED light-emitting diode is relatively small. Small, that is, the present invention can effectively reduce the influence on the luminous efficiency of the organic light emitting diode. As described above, embodiments of the present invention can ensure that the driving current in the pixel circuit will not be subjected to the threshold voltage variation, The IR_dr〇p effect and the aging of the organic light-emitting diode change, and at the same time, the degree of influence on the luminous efficiency of the organic photodiode can be effectively reduced, so that the object of the present invention can be achieved. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the present invention and the description of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a preferred embodiment of the present invention; FIG. 2 is a timing diagram of the preferred embodiment; FIG. 3 is an equivalent circuit diagram 15 of the data input stage of the preferred embodiment. FIG. 4 is an equivalent circuit diagram of the compensation phase of the preferred embodiment; FIG. 5 is an equivalent circuit diagram of the illumination phase of the preferred embodiment; FIG. 6 is a different data voltage for different criticalities. The transfer curve of the voltage variation; and FIG. 7 is a corresponding relationship between the voltage drop of the organic light emitting diode and the driving current.

16 201007662 ·- 【主要元件符號說明】 8 ,* ……·有機發光二極體 <· X φ Κ « …-第四電晶體 9… "* μ < 4驅動電路 9 5 f" * * …電容 91 *· ………第一電晶體 9 8 …" +…資料電壓開關 92 - .....…第二電晶體 99..... —參考電壓開關 93· .......第三電晶體16 201007662 ·- [Description of main component symbols] 8 ,* ......·organic light-emitting diodes<· X φ Κ « ...-fourth transistor 9... "* μ < 4 drive circuit 9 5 f" * * ...capacitor 91 *· .........first transistor 9 8 ..." +... data voltage switch 92 - ........ second transistor 99..... - reference voltage switch 93 ... ....third transistor

1717

Claims (1)

201007662 十、申請專利範圍: 1. 一種畫素電路,包含: 一有機發光二極體,具有一陽極及一陰極;及 一驅動電路,包括: 一第一電晶體,及一第二電晶體,每一電晶體 具有-第-端、-第二端’及一決定該第一端及該 第二端是否導通的控制端; 一電容;201007662 X. Patent application scope: 1. A pixel circuit comprising: an organic light emitting diode having an anode and a cathode; and a driving circuit comprising: a first transistor, and a second transistor, Each of the transistors has a - first end, a second end 'and a control end that determines whether the first end and the second end are conductive; a capacitor; 一資料電壓開關;及 —參考電壓開關; 其中,該有機發光二極體之陽極電連接於一第一電 源電壓,該第一電晶體之第二端與該第二電晶體之第二 端、該第二電晶體之控制端、該有機發光二極體之陰極 電連接,該第一電晶體之控制端與該電容之—端電連接 ,該第二電晶體之第一端與該電容之另一 第-電晶體之第一端與一第二電源電壓電連=資:a data voltage switch; and a reference voltage switch; wherein the anode of the organic light emitting diode is electrically connected to a first power voltage, the second end of the first transistor and the second end of the second transistor, The control end of the second transistor is electrically connected to the cathode of the organic light emitting diode, and the control end of the first transistor is electrically connected to the end of the capacitor, and the first end of the second transistor and the capacitor are The first end of the other first transistor is electrically connected to a second power supply voltage: 電壓開關接收-資料電壓,並接受—第—控制訊號的控 制,以決定是否輸出該資料電壓到該第一電晶體之控制 端’該參考電壓開關接收一參考電壓,並接受一第二控 制訊號的控制’以衫是否輸出該參考電壓到該第 晶體之第一端。 2.依據申請專利_ i項所述之畫素電路,在一補償丨 段與一發光階段下操作,其中: 當在該補償階段時,該第二電晶體會被導通,然彳 18 201007662 該第一控制訊號設定為高 ^ Φv 蒐位且該第二控制訊號設定 為低電位,因此,該資料 壓開關會被導通,使得該資 料電壓傳送至該電容 „ ^ 端而該參考電壓開關會被關 閉’使得該電容之另一端會持續充電; 參 _當在該發光階段時,該參考電壓設定為高參考電位 s時將該第&制訊號設定為低電位使得該資料電 壓開關被關閉,然後,再將該第二控制訊號為高電 使得該參考電壓開關被導通,因此,將會使得該電 合之#的電壓等量增加該高參考電位,並導通該第一 電曰日體’以產生一由該有機發光二極體流至該第一電晶 體第二端之驅動電流。 3. 依據中明專利範圍第2項所述之畫素電路,其中,該第 一電晶體之臨界電壓與該第二電晶體之臨界電壓相等, 且該高參考電位等於該第一電源電壓。 4. 依據申請專利範圍第2項所述之畫素電路,更包含在一 資料輸入階段下的操作,其中: 當在該資料輸入階段時,該第一控制訊號與該第二 控制訊號設定為高電位,該參考電壓設定為低參考電位 ’因此,該資料電壓開關與該參考電壓開關會被導通。 5. 依據申請專利範圍第1項所述之畫素電路,其中,該資 料電壓開關包括一第三電晶體,其具有一第一端、第二 端及一決定該第一端與該第二端是否導通的控制端,該 第三電晶體的控制端接收該第一控制訊號’該第三電晶 體之第一端接收該資料電壓,該第三電晶體之第二端與 19 201007662 該第一電晶體之控制端及該電容之一端電速接。 6·依據申請專利範圍第1項所述之畫素電路’其中,該參 考電壓開關包括一第四電晶體,其具有一第一端、第二 端及一決定該第一端與該第二端是否導通的控制端,該 第四電晶體的控制端接收該第二控制訊號’該第四電晶 體之第一端接收該參考電壓,該第四電晶體之第二端與 該第二電晶體之第一端及該電容之另一端電連接。 7. 依據申請專利範圍第1項所述之畫素電路,其中,該等 電晶體為N型薄膜電晶體。 8. 依據申請專利範圍第1項所述之畫素電路,其中,該等 電晶體為N型金屬氧化物半導體。 9. 一種驅動電路,包含: 一第一電晶體,及一第二電晶體,每一電晶體具有 一第一端、一第二端,及一決定該第一端及該第二端是 否導通的控制端; 一電容; 一資料電壓開關;及 一參考電壓開關; 其中]亥第一t晶體之第二端與該帛二電晶體之第 二端、該第二電晶體之控制端電連接,該 ^ 电日日體之 控制端與該電容之一端電連接,該第二電晶體之第一 與該電容之另一端電連接,該第一電晶體之第—端與2 第二電源電壓電連接,該資料電壓開關接收—資料電壓 ,並接受-第-控制訊號的控制’以決定是否輪出該資 20 201007662 料電壓到該第一電晶體之控制端’該參,考電壓開關接收 -參考電壓’並接受一第二控制訊號的控制,以決定是 否輪出該參考電壓到該第二電晶體之第一端。 10. 依據中請專利範圍第9項所述之驅動電路,在—補償階 段與一發光階段下操作,其中: 當在該補償階段時,該第二電晶體會被導通,然後 该第一控制訊號設定為高電位,且該第二担制訊號設定 為低電位,因此,該資料電壓開關會被導通,使得該資 ❹ 料電壓傳送至該電容之—端,而該參考電壓開關會被關 閉,使得該電容之另一端會持續充電; 當在該發光階段時,該參考電壓設定為高參考電位 同時將該第一控制訊號設定為低電位,使得該資料電 壓開關被關閉,然後,再將該第二控制訊號設定為高電 使得該參考電壓開關被導通,因此,將會使得該電 容之一端的電壓等量增加該高參考電位,並導通該第一 電晶體’並在該第—電晶體之第二端產生一驅動電流。 11. 依據申請專利範圍第10項所述之驅動電路,更包含在一 資料輸入階段下的操作,其中: 當在該資料輸入階段時,該第一控制訊號與該第二 控制δίΐ號設定為高電位,該參考電壓設定為低參考電位 ’因此’該資料電壓開關與該參考電壓開關會被導通。 12. 依據申清專利範圍第9項所述之驅動電路’其中,該資 料電壓開關包括一第三電晶體,其具有一第一端、第二 端及一決定該第一端與該第二端是否導通的控制端,該 21 201007662 第三電晶體的控制端接收該第一控制訊號,該第三電晶 體之第一端接收該資料電壓,該第三電晶體之第二端與 該第一電晶體之控制端及該電容之一端電連接。The voltage switch receives the data voltage and receives the control of the first-control signal to determine whether to output the data voltage to the control terminal of the first transistor. The reference voltage switch receives a reference voltage and receives a second control signal. Controls whether the shirt outputs the reference voltage to the first end of the crystal. 2. The pixel circuit according to claim _i, operating in a compensation phase and an illumination phase, wherein: when in the compensation phase, the second transistor is turned on, then 18 201007662 The first control signal is set to high ^ Φv search and the second control signal is set to a low potential, therefore, the data pressure switch is turned on, so that the data voltage is transmitted to the capacitor „ ^ terminal and the reference voltage switch is Turn off 'so that the other end of the capacitor will continue to charge; when the reference voltage is set to a high reference potential s when the light-emitting phase is set, the first & signal is set to a low level so that the data voltage switch is turned off, Then, the second control signal is high, so that the reference voltage switch is turned on, so that the voltage of the # is equal to the high reference potential, and the first electric body is turned on. And generating a driving current flowing from the organic light emitting diode to the second end of the first transistor. 3. The pixel circuit according to the second aspect of the invention, wherein the first electricity The threshold voltage of the body is equal to the threshold voltage of the second transistor, and the high reference potential is equal to the first power supply voltage. 4. The pixel circuit according to item 2 of the patent application scope is further included in a data input stage. The operation is as follows: when the data input phase is set, the first control signal and the second control signal are set to a high potential, and the reference voltage is set to a low reference potential. Therefore, the data voltage switch and the reference voltage switch 5. The pixel circuit of claim 1, wherein the data voltage switch comprises a third transistor having a first end, a second end, and a first end The control end of the third transistor receives the first control signal, the first end of the third transistor receives the data voltage, and the second end of the third transistor 19 201007662 The control terminal of the first transistor and the one end of the capacitor are connected to each other. 6. The pixel circuit according to claim 1 of the patent application, wherein the reference voltage switch includes a first a transistor having a first end, a second end, and a control end determining whether the first end and the second end are conductive, and the control end of the fourth transistor receives the second control signal The first end of the crystal receives the reference voltage, and the second end of the fourth transistor is electrically connected to the first end of the second transistor and the other end of the capacitor. 7. According to claim 1 The pixel circuit, wherein the transistor is an N-type thin film transistor. The pixel circuit according to claim 1, wherein the transistor is an N-type metal oxide semiconductor. The driving circuit comprises: a first transistor, and a second transistor, each transistor having a first end, a second end, and a control end determining whether the first end and the second end are conductive a capacitor; a data voltage switch; and a reference voltage switch; wherein the second end of the first t crystal is electrically connected to the second end of the second transistor and the control end of the second transistor, The control end of the electric Japanese body and one end of the capacitor Connecting, the first of the second transistor is electrically connected to the other end of the capacitor, the first end of the first transistor is electrically connected to the second power supply voltage, and the data voltage switch receives the data voltage and accepts - - Control signal control 'to determine whether to turn the resource 20 201007662 material voltage to the control end of the first transistor 'this parameter, test voltage switch receive - reference voltage' and accept a second control signal control to determine Whether to rotate the reference voltage to the first end of the second transistor. 10. The driving circuit according to claim 9 of the patent application, operating in a compensation phase and an illumination phase, wherein: when in the compensation phase, the second transistor is turned on, and then the first control The signal is set to a high potential, and the second duty signal is set to a low potential. Therefore, the data voltage switch is turned on, so that the voltage of the material is transmitted to the end of the capacitor, and the reference voltage switch is turned off. So that the other end of the capacitor is continuously charged; when in the lighting phase, the reference voltage is set to a high reference potential while the first control signal is set to a low level, so that the data voltage switch is turned off, and then Setting the second control signal to high power causes the reference voltage switch to be turned on, thereby causing the voltage at one end of the capacitor to be equal to the high reference potential and turning on the first transistor 'and at the first A second drive produces a drive current. 11. The driving circuit according to claim 10, further comprising an operation in a data input phase, wherein: when in the data input phase, the first control signal and the second control δίΐ are set to At high potential, the reference voltage is set to a low reference potential 'so the data voltage switch and the reference voltage switch are turned on. 12. The driving circuit of claim 9, wherein the data voltage switch comprises a third transistor having a first end, a second end, and a first end and the second end The control terminal of the third transistor receives the first control signal, the first end of the third transistor receives the data voltage, and the second end of the third transistor and the first A control terminal of a transistor and one end of the capacitor are electrically connected. 13. 依據申請專利範圍第9項所述之驅動電路,其中,該參 考電麼開關包括一第四電晶體,其具有一第一端、第二 端及一決定該第一端與該第二端是否導通的控制端,該 第四電晶體的控制端接收該第二控制訊號,該第四電晶 體之第一端接收該參考電壓,該第四電晶體之第二端與 該第二電晶體之第一端及該電容之另一端電連接。 14. 依據申請專利範圍第9項所述之驅動電路,其中,該等 電晶體為N型薄膜電晶體。 15. 依據申請專利範圍第9項所述之驅動電路,其中,該等 電晶體為N型金屬氧化物半導體。 16. —種晝素電路,包含: 一發光元件,具有一陽極及一陰極;及 一驅動電路,包括:13. The driving circuit of claim 9, wherein the reference switch comprises a fourth transistor having a first end, a second end, and a first end and the second end The control end of the fourth transistor receives the second control signal, the first end of the fourth transistor receives the reference voltage, and the second end of the fourth transistor and the second The first end of the crystal and the other end of the capacitor are electrically connected. 14. The driving circuit according to claim 9, wherein the transistor is an N-type thin film transistor. 15. The driving circuit according to claim 9, wherein the isoelectric crystal is an N-type metal oxide semiconductor. 16. A pixel circuit comprising: a light emitting device having an anode and a cathode; and a driving circuit comprising: 一第一電晶體,及一第二電晶體,每—電晶體 具有一第一端、一第二端,及一決定該第—端及該 第二端是否導通的控制端; 一電容; 一資料電壓開關;及 一參考電壓開關; 其中’該發光元件之陽極電連接於一第一電源電壓 ,該第一電晶體之第二端與該第二電晶體之第二端、 22 201007662 第二電晶體之控制端、該發光元件之陰極電連接,該第 一電晶體之控制端與該電容之一端電連接,該第二電晶 體之第一端與該電容之另一端電連接,該第一電晶體之 第一端與一第二電源電壓電連接’該資料電壓開關接收 一資料電壓’並接受一第一控制訊號的控制,以決定是 否輸出該資料電壓到該第一電晶體之控制端,該參考電 壓開關接收一參考電壓,並接受一第二控制訊號的控制 ’以決定是否輸出該參考電壓到該第二電晶體之第一端 〇 17. 依據申請專利範圍第16項所述之畫素電路,在一補償階 段與一發光階段下的操作,其中: 當在該補償階段時,該第二電晶體會被導通,然後 該第一控制訊號設定為高電位,且該第二控制訊號設定 為低電位,因此,該資料電壓開關會被導通,使得該資 料電壓傳送至該電容之一端,而該參考電壓開關會被關 閉’使得該電容之另一端會持續充電; 當在該發光階段時,該參考電壓設定為高參考電位 ,同時將該第一控制訊號設定為低電位,使得該資料電 壓開關被關閉,然後,再將該第二控制訊號設定為高電 位’使得該參考電壓開關被導通,因此,將會使得該電 容之一端的電壓等量增加該高參考電位,並導通該第一 電晶體,以產生一由該發光元件流至該第一電晶體第二 端之驅動電流。 18. 依據申請專利範圍第17項所述之畫素電路該第一電晶 23 201007662 鱧之臨界電壓與該第二電晶體之臨界電壓相等,且該古 參考電位等於該第一電源電壓β 19.依據申請專利範圍第17項所述之畫素電路更包含在 資料輸入階段下的操作,其中:a first transistor, and a second transistor, each of the transistors has a first end, a second end, and a control end that determines whether the first end and the second end are conductive; a capacitor; a voltage switch; and a reference voltage switch; wherein 'the anode of the light-emitting element is electrically connected to a first power voltage, the second end of the first transistor and the second end of the second transistor, 22 201007662 second a control end of the transistor, the cathode of the light-emitting element is electrically connected, a control end of the first transistor is electrically connected to one end of the capacitor, and a first end of the second transistor is electrically connected to the other end of the capacitor, the first The first end of a transistor is electrically connected to a second power voltage 'the data voltage switch receives a data voltage' and receives control of a first control signal to determine whether to output the data voltage to the control of the first transistor End, the reference voltage switch receives a reference voltage and receives a control of the second control signal to determine whether to output the reference voltage to the first end of the second transistor 〇 17. The pixel circuit of item 16, wherein the operation is performed in a compensation phase and an illumination phase, wherein: when in the compensation phase, the second transistor is turned on, and then the first control signal is set to High potential, and the second control signal is set to a low potential, therefore, the data voltage switch is turned on, so that the data voltage is transmitted to one end of the capacitor, and the reference voltage switch is turned off 'so that the other end of the capacitor The charging is continued; when the lighting phase is set, the reference voltage is set to a high reference potential, and the first control signal is set to a low level, so that the data voltage switch is turned off, and then the second control signal is set. "high potential" causes the reference voltage switch to be turned on, and therefore, the voltage at one end of the capacitor is increased by the high reference potential, and the first transistor is turned on to generate a flow of the light emitting element to the first The drive current of the second end of a transistor. 18. According to the pixel circuit of claim 17, the threshold voltage of the first transistor 23 201007662 is equal to the threshold voltage of the second transistor, and the ancient reference potential is equal to the first power voltage β 19 The pixel circuit according to claim 17 of the patent application scope further includes operations under the data input stage, wherein: 當在該資料輸入階段時,該第一控制訊號與該第二 控制訊號設定為高電位,該參考電壓設定為低參考電位 ,因此,該資料電壓開關與該參考電壓開關會被導通。 20.依據申請專利範圍第16項所述之畫素電路,其中,該資 料電壓開關包括一第三電晶體,其具有一第一端、第二 端及一決定該第一端與該第二端是否導通的控制端,該 第三電晶體的控制端接收該第一控制訊號,該第三電晶 體之第一端接收該資料電壓,該第三電晶髏之第二端與 該第一電晶體之控制端及該電容之一端電連接。 21.依據申請專利範圍第16項所述之畫素電路,其中,該參 考電壓開關包括一第四電晶體,其具有一第一端、第二When the data input phase is set, the first control signal and the second control signal are set to a high potential, and the reference voltage is set to a low reference potential, so that the data voltage switch and the reference voltage switch are turned on. The pixel circuit of claim 16, wherein the data voltage switch comprises a third transistor having a first end, a second end, and a first end and the second end The control end of the third transistor receives the first control signal, the first end of the third transistor receives the data voltage, and the second end of the third transistor is opposite to the first The control terminal of the transistor and one end of the capacitor are electrically connected. The pixel circuit of claim 16, wherein the reference voltage switch comprises a fourth transistor having a first end and a second 端及一決定該第一端與該第二端是否導通的控制端,該 第四電晶體的控制端接收該第二控制訊號,該第四電晶 體之第一端接收該參考電壓,該第四電晶體之第二端與 該第二電晶體之第一端及該電容之另一端電連接。 22.依據申請專利範圍第16項所述之晝素電路,其中,該等 電晶艎為Ν型薄膜電晶體。 23,依據申請專利範圍第16項所述之畫素電路’其中,該等 電晶體為Ν型金屬氧化物半導體。 24And a control end that determines whether the first end and the second end are conductive, the control end of the fourth transistor receives the second control signal, and the first end of the fourth transistor receives the reference voltage, the first The second end of the fourth transistor is electrically connected to the first end of the second transistor and the other end of the capacitor. 22. The halogen circuit according to claim 16, wherein the electric crystal is a Ν-type thin film transistor. 23. A pixel circuit as claimed in claim 16 wherein the transistor is a bismuth metal oxide semiconductor. twenty four
TW97129253A 2008-08-01 2008-08-01 A driving circuit and a pixel circuit having the driving circuit TWI413061B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97129253A TWI413061B (en) 2008-08-01 2008-08-01 A driving circuit and a pixel circuit having the driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97129253A TWI413061B (en) 2008-08-01 2008-08-01 A driving circuit and a pixel circuit having the driving circuit

Publications (2)

Publication Number Publication Date
TW201007662A true TW201007662A (en) 2010-02-16
TWI413061B TWI413061B (en) 2013-10-21

Family

ID=44827182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97129253A TWI413061B (en) 2008-08-01 2008-08-01 A driving circuit and a pixel circuit having the driving circuit

Country Status (1)

Country Link
TW (1) TWI413061B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467547B (en) * 2011-10-07 2015-01-01 E Ink Holdings Inc Active organic light emitting diode pixel circuit and operating method thereof
CN111341260A (en) * 2019-10-23 2020-06-26 友达光电股份有限公司 Pixel circuit and related display device
TWI699742B (en) * 2018-06-14 2020-07-21 友達光電股份有限公司 Pixel circuit
TWI819853B (en) * 2022-10-14 2023-10-21 友達光電股份有限公司 Pixel circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290311B (en) * 2003-03-10 2007-11-21 Au Optronics Corp Active matrix organic light emitting diode pixel circuit with current auto compensated function
TWI281139B (en) * 2004-07-15 2007-05-11 Chi Mei Optoelectronics Corp A display pixel compensation circuit and driving method and display apparatus thereof
US8044891B2 (en) * 2005-08-05 2011-10-25 Chimei Innolux Corporation Systems and methods for providing threshold voltage compensation of pixels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467547B (en) * 2011-10-07 2015-01-01 E Ink Holdings Inc Active organic light emitting diode pixel circuit and operating method thereof
TWI699742B (en) * 2018-06-14 2020-07-21 友達光電股份有限公司 Pixel circuit
CN111341260A (en) * 2019-10-23 2020-06-26 友达光电股份有限公司 Pixel circuit and related display device
TWI819853B (en) * 2022-10-14 2023-10-21 友達光電股份有限公司 Pixel circuit

Also Published As

Publication number Publication date
TWI413061B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
CN110036435B (en) Pixel circuit, active matrix organic light emitting diode display panel, display device and method for compensating threshold voltage of driving transistor
CN101563720B (en) Light-emitting display device
US7859486B2 (en) Ambient light sensing circuit and flat panel display including ambient light sensing circuit
TWI381350B (en) Ambient light sensing circuit and flat panel display including ambient light sensing circuit
TWI441138B (en) Light emitting diode circuitry, method for driving light emitting diode circuitry and display
TWI234757B (en) Active-drive type light emitting display device and drive control method thereof
US10204560B2 (en) Emission-control circuit, display apparatus having the same, and driving method thereof
CN103258501B (en) Pixel circuit and driving method thereof
TWI584460B (en) Organic light emitting diode display
CN106531075A (en) Organic light-emitting pixel driving circuit, driving method and organic light-emitting display panel
TW200903417A (en) Display apparatus, method of driving a display, and electronic device
WO2014172977A1 (en) Pixel drive circuit, array substrate and display device
CN101458895A (en) Self-luminous display device and driving method of the same
CN101256097A (en) Ambient light detection circuit and flat panel display including the ambient light detection circuit
WO2015051682A1 (en) Pixel circuit and driving method thereof, and thin film transistor backplane
JP2005316380A (en) Active matrix type organic electro-luminescence display device
CN104064148A (en) Pixel circuit, organic electroluminescent display panel and display device
CN101210846A (en) Ambient light sensor circuit and flat panel display device having the circuit
TWI441137B (en) Compensation circuit for keeping luminance intensity of diode
TW201619944A (en) Pixel unit and driving method thereof
WO2018205556A1 (en) Pixel circuit and drive method therefor, and display panel
TW201841146A (en) Pixel circuit, and drive method and display device thereof capable of reducing the influence of the power supply voltage drop on the current flowing through the light-emitting diode
TW201007662A (en) Driving circuit and pixel circuit having the same
CN101231189A (en) Ambient light detection circuit and flat panel display including ambient light detection circuit
CN101778509A (en) Driving device of luminous element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees