201003486 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種液晶顯示屏,尤其涉及一種觸摸式液 晶顯不屏。 【先前技術】 …,B曰顯不因爲低功耗、小型化及高質量的顯示效果’ 成爲取仏的顯不方式之一。目前較爲常用的液晶顯示屏爲 N (扭曲向列相)模式的)夜晶顯示屏(TN-LCD)。對於 ™nLCD’.!電極上未施加電壓時,罐示屏處於 狀先',光旎透過液晶顯示屏呈通光狀態;當在電 疋電壓時’液晶顯示屏處於“⑽”態、,液晶分 方向排列,光不能透過液晶顯示屏,故 同有選擇地在電極上施加電壓,可以顯示出不 腦顯近ίΓ伴隨著移動電話、觸摸導航系統、集成式電 ==?;視;各種電子設備的高性能化二 子設備逐漸增:;=示面安裝透光性的觸摸屏的電 位於觸摸屏背面的液晶:示者觸摸屏’ -邊對 -邊利用手指或 :屏的顯不内容進行視覺確認, 可以操作使用該液曰顯:尸壓觸摸屏來進行操作。由此, 所述觸摸屏可根據其工作原二 以及表面聲波式。其式電谷感應式、紅外線武 式觸杈屏由於其具有高解柝 201003486 度、高靈敏度及耐用耸 杏俞沾+ κ憂點被廣泛應用。 先刖的電阻式觸镇屏 下表面形成有一上透明、般包括一上基板,該上基板的 表面形成有一下透明導電層;一下基板,該下基板的上 Spacer)設置在上透明導^層,以及多個點狀隔離物(Dot 該上透明導電層與該下電層與下透明導電層之間。其中, 的銦錫氧化物(indium τ遷明導電層通常採用具有導電特性 使用手指或筆按壓上基^ 〇xide,ΙΤ〇)層(下稱ΙΤ0層)。當 處的上透明導電層與下、寺上基板叙生扭曲,使得按壓 電子電路分別向上透明=明導電層彼此接觸。通過外接的 壓,觸摸屏控制@诵、' 電層與下透明導電層依次施加電 與第二導電層上的;,測量第一導電層上的電壓變化 成觸點坐檩。觸摸屏控,並進行精確計算’將它轉換 央處理器。中央處理器】器將數字化的觸點坐標傳遞給中201003486 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display, and more particularly to a touch type liquid crystal display. [Prior Art] ..., B is not because of low power consumption, miniaturization and high-quality display effect. At present, the more commonly used liquid crystal display is a N (twisted nematic phase) mode night crystal display (TN-LCD). For TMnLCD’.! When no voltage is applied to the electrode, the can display is in the first state, and the light is transmitted through the liquid crystal display; when the voltage is in the liquid crystal display, the liquid crystal display is in the "10" state, and the liquid crystal is arranged in the direction of the light. Through the liquid crystal display, it is possible to selectively apply voltage to the electrodes, which can show that it is not close to the brain. With mobile phones, touch navigation systems, integrated electric power ==?; visual; high-performance two-child of various electronic devices The device is gradually increased:; = the surface of the touch screen is mounted on the back of the touch screen LCD: the touch screen of the display - side-to-side visual confirmation with the finger or the display of the screen, the liquid can be operated Display: The cadaver presses the touch screen to operate. Thus, the touch screen can be based on its working principle and surface acoustic wave type. Its electric valley inductive and infrared martial touch screen is widely used due to its high resolution 201003486 degree, high sensitivity and durability. The upper surface of the resistive touch screen is formed with an upper transparent surface, generally including an upper substrate, the upper substrate is formed with a transparent conductive layer; the lower substrate, the upper substrate of the lower substrate is disposed on the upper transparent conductive layer And a plurality of dot spacers (Dot between the transparent conductive layer and the lower conductive layer and the lower transparent conductive layer. wherein, the indium tin oxide (indium τ eclipse conductive layer is usually used with conductive properties using a finger or The pen presses the upper layer 〇xide, ΙΤ〇) layer (hereinafter referred to as ΙΤ0 layer). The upper transparent conductive layer and the lower and upper temple substrates are twisted and twisted, so that the pressing electronic circuits are respectively transparent upwards = the conductive layers are in contact with each other. Through the external pressure, the touch screen controls @诵, 'the electric layer and the lower transparent conductive layer sequentially apply electricity and the second conductive layer; and the voltage on the first conductive layer is measured to become a contact seat. Touch screen control, and Accurately calculate 'convert it to the central processor. The central processor' passes the digitized contact coordinates to the middle
電子設備的各種功C觸點坐標發出相應指令,啓動 元件顯示。 換,並通過顯示器控制器控制顯示 然而’ ΙΤ0層作爲透明導電層通常採用離子束濺射或 /賤鑛專工藝製備’ Kazuhiro Noda等在文獻Production of Transparent Conductive Films with Inserted Si02 AnchorThe various work C contact coordinates of the electronic device issue corresponding commands to activate the component display. Change and control the display through the display controller. However, the ΙΤ0 layer as a transparent conductive layer is usually prepared by ion beam sputtering or /贱 mineralization process. Kazuhiro Noda et al. in the publication of Production of Transparent Conductive Films with Inserted Si02 Anchor
Layer, and Application to a Resistive Touch Panel (Electronics and Communications in Japan, Part 2, Vol.84, P39-45(2001))中介紹了一種採用IT0/Si02/聚對苯二曱酸 乙二醇酯層的觸摸屏。該IT0層在製備的過程,需要較高 的真空環境及需要加熱到200〜300°C,因此’使得ΙΤ0層 9 201003486 •作爲透明電極的觸摸屏的製備成本較高。 . 中的ιτο芦柞邕、* nn $ , 无m技術 曲及阻值二層具械性能不够好、難以彎 _-尸/ 句等缺點’不適用於柔性的觸推式液曰 顯不屏中。此外,ϊτο在潮濕的空氣^夜曰曰 =而=先爾阻式觸摸屏及顯示敦置 好,靈敏度低、線性及準確性較差等缺點。另外用 %阻式觸摸屏只能實現單點輸入信號。 刖、 =於此,提供—種觸摸式液晶顯示屏實為必要,該 、式液晶顯不屏具有耐用性好、靈敏度高 性强且可實現多點信號輸入的優點。 、、及丰確 【發明内容】 -種觸摸式液晶顯示屏,其包括:一上基板 板包括一觸摸屏’該觸摸屏包括多個透明電極;一下其板: 該下基板與上基板相對設置,該下基板包括—薄_晶體 该溥膜電晶體面板包括多個薄膜電晶 L =:括一半導體層;以及一液晶層,設置於該J _!:: 間,其中,該觸摸屏中的透明電極包括-第 ::厌g yf „亥薄膜電晶體面板中的薄膜電 管層,該第—奈米碳管層及第二奈 木石厌官層包括多個奈米碳管。 相較於先前技術,所述觸摸式液晶顯示屏具有以下優 ^ ·其-’由於採用奈米碳管的觸携屏可直接輸入操作命 令和信息,可代替傳統的鍵盤n讀鍵等輸入設備, 從而可以簡化使用該觸摸式液晶顯示屏的電子設備的結 10 201003486 -構。其—,奈米碳管的優異的 •很好_性和機械强度,並且耐彎折,=透明電極具有 高觸摸屏的耐用性,進而提高該觸摸式、應的提 性,同時,與柔性基體配合,可以制^夜:顧不屏的对用 顯示屏。另冰衣傷—柔性觸摸式液晶 ‘、負丁屏另外,採用第二奈米碳管層 多晶石夕或有機半導體聚合物作爲半導體屬,:石夕、 高薄膜電晶體的羊性,尤、A a可以相應的提 並應用於柔性觸摸式液晶顯示屏令…、:曰曰體面板, 在潮濕的條件下且右_拉认^ ,、一 ’由於奈米碳管 爲觸摸屏的透明電桎义了'明度’故採用奈米碳管層作 开叼边咧电極,可以使該觸摸 度,進而有利於提高該觸摸式 ^ 乂 、、明 由於太半#目μ 式夜日日顯不屏的解析度。其四, 由於具有優異料電性能 奈米細具有均勾的阻值分1由;:“官組成的 管層作透明電極,可以相庫:^因而’採用上述奈米碳 电 相應的提高觸摸屏的解析产和萨成 度’進而提高賴摸;切晶顯 ”確 五,由於半導體性的太乎石山其目Γ 度精確度。其 薄臈電晶體具有較大的載子移動 口此 $x ^ μ m m 'Φ ± ,认 ' /寻膜電晶體面板具有 :的響應速率’攸而使應用該薄膜電晶體面板的 ::::屏具有較好的顯示性能。其六, 管; 2更南,可以用於高解析度的液晶顯示。反知 【貫施方式】 以下將結合附圖詳細說明太钍 晶顯示屏。 林技*方案提供的觸摸式液 11 201003486 - 請參閱圖1,本技術方案實施例提供一種觸摸式液晶 顯示屏300 ’其包括一上基板100、一與上基板相對設 置的下基板200以及一設置於該上基板1〇〇與下基板 之間的液晶層310。 所述液晶層310包括多個長棒狀的 晶層310的液晶材料爲先前技術中常用的液晶材料。所述 液晶層310的厚度1〜50微米,本實施例中,液晶層 的厚度爲5微米。 所述上基板100從上至下依次包括一觸摸屏1〇、—第 一偏光層110及一第一配向層112。該第一偏光層11〇設 置於該觸摸屏10的下表面,用於控制通過液晶層31〇的偏 振光的出射。該第一配向層112設置於所述第一偏光層 的下表面。進-步地,該第一配向層112的下表面包括多 個平行的第-溝槽,用於使液晶層310的液晶分子定向排 列。該上基板中第—配向層112靠近液晶層310設置。 該觸摸屏10爲四線、五線或八線式結構的電阻式觸摸 二t實二中’該觸摸屏1G爲四線式結構,請參閱圖2 θ 、、從上至下依次包括一第_電極板12、多個 =輯物16及一第二電極板14。該第二電極… 極板12相對設置,該多個透明的點狀隔離物16設 置在第:電極板12與第二電極板14之間。 電極電:板12包括一第—基體120、多個第-透明 电極12 2以及多個第一仿妹持,η / 有—繁主 仏唬線124。所述第一基體120且 ’ 弟—表面128。多個笛.泰叫〜 '、 夕们弟一透明電極122沿第一方向間 12 201003486 - 隔設置在第一基體120的第一表面128,且多個第一透明 • 電極122相互平行、均勻分布。所述第一方向爲X坐標方 向。所述多個第一透明電極122具有一第一端122a和一第 二端122b。該多個第一透明電極122的第一端122a分別 通過多條第一信號線124電連接至一 X坐標驅動電源 180。該X坐標驅動電源180用於向所述多個第一透明電 極122輸入驅動電壓。該多個第一透明電極122的第二端 122b分別通過多條第一信號線124電連接至一傳感器 182。所述多個第一信號線124相互平行。 該第二電極板14包括一第二基體140,多個第二透明 電極142以及多個第二信號線144。所述第二基體140具 有一第二表面148。多個第二透明電極142沿第二方向間 隔設置在第二基體140的第二表面148,與多個第一透明 電極122正對設置。所述多個第二透明電極142相互平行、 均勻分布。所述第二方向爲Y坐標方向。所述多個第二透 明電極142具有一第一端142a和一第二端142b。該多個 ' 第二透明電極142的第一端142a分別通過多條第二信號線 144電連接至一 Y坐標驅動電源184。該Y坐標驅動電源 184用於向所述多個第二透明電極142輸入驅動電壓。該 多個第二透明電極142的第二端142b接地。所述多個第二 信號線124相互平行。 所述第一基體120與第二基體140均爲透明的薄膜或 薄板。該第一基體120具有一定柔軟度,可由塑料或樹脂 荨柔性材料形成。該第二基體140的材料可以爲玻璃、石 13 201003486 央、金剛石等硬性材料。所述第二基體⑽主要起 .作用。當用於柔性觸摸屏中時,該第二基體14〇 = 可爲塑料或樹脂等柔性材料。具體地,該第一基體12〇: 第二基體140所用的材料選擇爲聚碳酸酯(pc)、聚甲 嫦酸曱I旨(腹财)、聚對苯巧酸乙二醇g|(pET)等聚= 料’以及聚_(PES)、、纖維素醋、純乙稀(pvc)、^並 環丁稀(BCB)及丙稀酸樹脂等材料。該第一基體12〇 二基體140的厚度爲1毫米〜1厘米。本實施例中,該第一 基體120及第二基體14〇的材料均爲pET,厚度均爲2毫 米。可以理解,形成所述第一基體12〇及第二基體上扣的 材料並不限於上述列舉的材料,只要能使所述第—基體 120及第二基體140具有較好的透明度,所述第二基體 起到支撑的作用,且所述第一基體12〇具有一定柔性的材 料,都在本發明保護的範圍内。 所述第一信號線124間隔設置在第一基體12〇的第一 _表面沿第一方向的兩側。所述第二信號線144間隔設置在 第二基體140的第二表面沿第二方向的兩側。所述第一信 號線124和第二信號線144由阻值較小的導電材料組成。 具體地,所述第一信號線124和第二信號線144爲銦錫氧 化物(ITO )線、録錫氧化物(ΑΤΟ )線、導電聚合物線等。 所述弟一彳§號線124和弟二信號線144也可以由細的不透 明導線形成’其直徑小於100微米,故不會顯著影響觸摸 屏的透光率和顯不益的顯不效果。具體的,所述第一作號 線124和第二信號線144可由金屬薄膜(如—鎳金薄膜) 14 201003486 .蝕刻形成,或由奈米碳管長線構成。本實施例中,所述第 ,二虎、線124和第二信號線144冑一奈米碳管長線,該奈 米厌吕長,可通過對一奈求碳管薄膜採用有機溶劑處理或 沿奈米碳管的長度方向扭轉形成。該奈米碳管長線包括多 個奈米碳管首尾相連且沿該奈米碳管長線軸向/長度方向 3 = 具體地’該奈米碳管長線中奈米碳管沿該 ίί二向/長度方向平行排列或呈螺旋狀排列。該 中的奈米碳管通過凡德瓦爾力緊密結合。該 不未厌吕長線的寬度爲0.5奈米〜1〇〇微米。 可以理解,由於奈米碳管本身的比表面積非常大,所 碳:長線本身具有較强的黏性。因此,該奈米碳 黏附在基體⑽二 =。和㈣ 勺括透明電極122與多個第二透明電極⑷均 ^括不未石反官層。該奈米碳管層爲帶狀 狀。本技術方案實施例中,所述奈米碳管册 米碳管層包括多個奈米碳管。進一步地,㈣ :可:係軍個奈米碳管薄膜或多個奈来竣 置,故’上述奈米碳管層的長度和厚度不限, 有理想的透明度,可根據實際需要製成音::够, 度:奈广炭管層。所述奈米碳管層的寬度爲 被米’厚度爲0.5奈求〜微米。所述透;广250 = 一米。本技術方案實施例中’,: ^見度50微米,厚度爲5〇奈米,透明電極 15 201003486 122 ’ 142之間的間距爲2〇微米。 .上述奈米碳f層巾的奈米碳管薄膜由有序的或 不米碳官組成,並且該奈米碳管薄膜具有均勻的厚度。具 2米石炭f層包括無序的奈米碳管薄膜或者Ϊ序^ =二"専骐。無序的奈米碳管薄膜中’奈米碳管爲無序 $各向同性排列。該無序排列的奈米碳管相互纏繞,該各 向同!·生排列的奈米碳管平行於奈米碳管薄膜的表面 米碳管薄膜中,奈米碳管爲沿同一方向擇優取向排列 =不同方向擇優取向。當奈米碳管層包括多層有序 碳管薄臈時,該多層奈米碳管薄膜可以沿任意方向重=設 置因此,在言亥奈米石炭管層中,I米石炭管爲沿相同或不同 方向擇優取向排列。優選地,當該奈米碳管層令的 序奈米碳管薄膜時,該有序奈米碳管薄膜爲‘ 不 、未反官陣列中直接拉取獲得的奈米碳管拉膜結構。請灸 閱圖5,所述奈米碳管拉膜結構包括多個奈米碳管首尾相 ^擇優取向排列。該多個奈米碳管之間通過凡德瓦爾力 ::合:一方面,首尾相連的奈米碳管之間通過凡德瓦爾力 、接,另方面,擇優取向排列的奈米碳管之間部分通過 凡德瓦爾力結合。故’該奈米碳管拉膜結構具有較好的自 支撑2柔拿刃性。當該奈米碳管層令包括多層重叠設置的 二米石反官拉膜結構時’相鄰兩層奈米碳管薄膜巾奈米碳管 形成一夾角α,且〇。$ a $ 90。。 …進-步地,所述奈米碳管層可以包括上述各種奈米碳 官薄膜與一高分子材料組成的複合層。所述高分子材料均 16 201003486 •勻分布於所述奈米碳管薄膜 .所述高分子材料爲—诱『广未厌官之間的間隙中。 包# Ψ t &徐ψ 间刀子材料’其具體材料不限, 已祜承苯乙細·、聚乙烯、气 ΓΡΜΜΛ^ - 來妷酸酯、聚甲基丙烯酸甲酯 i丙(PC)、對笨,乙二醇酯()、 本丙裱丁烯(BCB)、聚環烯烴等。 本實施例中,所述多個楚 if明+托m + 述夕们第—透明電極122與多個第二 透明“二42中的奈米碳管層爲—層奈 1本:组成的複合層。具體的,多個第-透明電極J的 示米石厌管拉膜結構中的奈书焚 ^ 、 第一、# ”人s均沿弟一方向排列,多個 142的奈米碳管拉膜結構中奈米碳管均沿第 彳::向排列。所述奈米碳管複合層的厚度爲。.5奈米〜⑽ 辟太1 斤^米碳管層中的奈米碳管包括單壁奈米碳管、雙 土示米石厌管以及多壁奈米碳管中 又 S的直m.5奈米,奈米,雙壁奈米碳管的直 徑爲1奈米〜5〇太半,户碟* , 丨厌吕的罝 夺米。所、f太:二 碳管的直徑爲U奈米〜50 ’、’、所述不米奴官層的厚度爲〇.5奈米〜100微米。 另夕卜,由於設置有透明電極122,124的區域與未 爲:f極122’124的區域具有不同的光折射率與透射i, /吏觸抵屏10整體透光性的視覺差異最小,可以在透 白^22,124之間的間隙中形成—填充層跡該填充居⑽ ==有與透明電極122 ’ 124材料相同或接近的折射率 所述傳感器182可爲先前技術中的任何傳感器。本技 17 201003486 .術方案實施例令,該傳感器i82用於 • X坐標驅動電源18 ,笔壓變化時 坐標._源⑻所對應 坐標。所述X坐標驅動電源 的位置 m及第二透明電二緊動電源,用於向第-透明電極 心乃罨極142施加電壓。 進一步地,該第二電極板14上表 層上述的第—電極板 ®^有一絕緣 第-電極板12的多個第、“…邑緣層18上,且該 14的多個第二透明電極14 對:亥弟-笔極板 物16設置在所#、$ 夕個透明點狀隔離 之間,且St—透明電極122和第二透明電極⑷ 極板12與第-帝托& ^ 及匕間隔叹置。弟一電 緣…透=之間的距離爲2,微米。該絕 曰透明點狀隔離物16均可採 他絕緣透明材料製成。設置絕緣層18* === 16可使得第-電極板14與第二電極板;:狀 解,當觸摸屏10尺寸_/{、0 士、^ 电絕緣。可以理 擇的結構,只需確保第1雷:明點“離物16爲可選 緣即可。 、^圣板14與第二電極板12電絕 -步=置電極板12遠離第二電極板14的表面進 通過二t,古明保濩膜126。所述透明保護膜126可以 k過黏結劑直接逢j;纟士 + # 壓法,與第-電120上表面’也可採用熱 可採用一爲本 反12壓合在一起。該透明保護膜126 -、面硬化處理、光滑防刮的塑料層或樹脂層, 18 201003486 j脂層可由I丙環丁稀(BCB)、聚§旨以及丙稀酸樹脂等 ::形成。本實施例中,形成該透明保護膜126的材料爲 j笨二甲酸乙二醇酿(PET)’用於保護第—電極板12, ^耐用性。該透明保護膜126可用以提供—些附加功 月匕’如可以减少眩光或降低反射。 所述第-偏光層11G的材料可以爲先前技術中常用的 如二向色性有機高分子材料,具體可以爲峨系 f或乐枓材料等。另夕卜該第—偏光層11G也可爲-芦 =的奈米碳管薄膜,所述有序的奈㈣管薄射奈米石二 口同-方向定向排列。優選的,該第一偏光層 — :米碳管拉膜結構。所述第一第一偏光層 微米〜0.5毫米。 子又馬1 由於奈米碳管對電磁波的吸收接近絕對黑體,奈米碳 :各種波長的電磁波均有均—的吸收特性,故所述第 =層110中的有序奈㈣f薄膜對於各種波長的電磁 波=均-的偏振吸收性能。#光波人射時,振動方 :於奈米碳管束長度方向的光被吸收,垂直於奈米碳管束 f度方向的光能透過,所以透射光成爲線偏振光。因此, :米:炭:薄膜可以代替先前技術中的偏振片起到偏光作 的”以所述第一偏光層110包括沿同-方向定向排列 1;::^吕,從而所述所述第一偏光層110具有良好的導 %性此’可作爲觸摸式液晶顯示屏谓令的上電極層。因 此本技術方案實施例的觸摸式液晶顯示器3〇〇中 偏光㈣可以同時起到偏光及上電極的作用,無;:: 19 201003486 -增加上電極層,從而可使得觸摸式液晶顯示屏3〇〇呈· .薄的厚f,簡化觸摸式液晶顯示屏3〇〇的結構和製造: 本’提高背光源的利用率’改善顯示質量。 所述第-配向層H2的材料可以爲聚笨乙婦及其衍生 物、聚醯亞胺、聚乙烯醇、聚酯、環氧樹脂、聚胺酯 石夕烧等。所述第一配向層112的第—溝槽可以採用先前技 術的膜磨擦法,傾斜賤鍍Si0x膜法和對膜進行微溝槽声 理法等方法形成,該第一溝槽可使液晶分子定向排列。曰: 實施例中,所述第-配向層112的材料爲聚酿亞胺 爲1〜50微米。 又 請參閱圖4,所述下基板200從上至下依次包括 ==212 '—薄膜電晶體面板22〇及—第二偏光層 210。該第二配向層212設置在該薄膜電晶體面板細的上 表=進一步地,第二配向層212的上表面可包括多個平 溝槽’所述第—配向層112的第—溝槽的排列方 向/、第一配向層212的第二溝槽的排列方向垂直。該第二 偏光層210設置在該薄膜電晶體面板22〇的下表面。該— 基板200中第二配向層212靠近所述液晶層训設置。 所述第二偏光層210的材料與第一偏光層no 相同。所述第二偏光層210的厚度爲1微米〜0.5毫米。所 述第二偏光層210的作用爲將從設置於觸摸式液晶顯示屏 300下表面的導光板發出的光進行起偏,從而得到沿單— 方向偏振的光線。所述第二偏光層21〇的偏振方向— 偏光層110的偏振方向垂直。 乐 20 201003486 所述第二配向層212與第一配向層112的材料相同, 所述第二配向層212的第二溝槽可使液晶分子定向排列。 由於所述第一配向層112的第一溝槽與第二配向層212的 第二溝槽的排列方向垂直,故第一配向層112與第二配向 層212之間的液晶分子在兩個配向層之間的排列角度産生 90度旋轉,從而起到旋光的作用,將第二偏光層210起偏 後的光線的偏振方向旋轉90度。本實施例中,所述第二配 向層212的材料爲聚醯亞胺,厚度爲1〜50微米。 請參閱圖6,所述薄膜電晶體面板220包括一個第三 基體240以及設置在第三基體240上表面的多個薄膜電晶 體222、多個晝素電極224、多個源極線226及多個閘極線 228 ° 上述多個源極線226按行相互平行設置,上述多個閘 極線228按列相互平行設置,並與源極線226交叉並絕緣 設置,從而將第三基體240劃分成多個網格區域242。上 述多個晝素電極224及多個薄膜電晶體222分別設置於上 述網格區域242中,上述多個晝素電極224之間以及上述 多個薄膜電晶體222之間間隔設置。每一網格區域242設 置一個薄膜電晶體222及一個晝素電極224,該晝素電極 224與該薄膜電晶體222的汲極電連接。該薄膜電晶體222 的源極與一源極線226電連接。具體地,上述網格區域242 以矩陣方式按行及按列排列。上述每行網格區域242中的 薄膜電晶體222的源極均與其所在行的源極線226電連 接。上述薄膜電晶體222的閘極與一閘極線228電連接。 21 201003486 具體地,上述每列網格區域242中的薄膜電晶體222的閘 極均與其所在列的閘極線228電連接。 進一步地,所述薄膜電晶體面板220還可以包括一顯 示屏驅動電路(未示出),所述源極線226與閘極線228 與顯示屏驅動電路相連接,顯示屏驅動電路通過源極線 226與閘極線228控制薄膜電晶體222的的開關。所述顯 示屏驅動電路集成設置於第三基體240之上,形成一集成 電路板。 所述第三基體240爲透明基體,起支撑作用,其材料 可選擇爲玻璃、石英、陶瓷、金剛石、矽片等硬性材料或 塑料、樹脂等柔性材料。本實施例中,所述第三基體240 的材料爲PET。所述第三基體240也可選用大規模集成電 路中的印刷線路板。 所述晝素電極224爲一導電薄膜,該導電薄膜的材料 爲一導電材料,當用於液晶顯示器中時,該晝素電極224 可選擇爲銦錫氧化物(ITO)層、銻錫氧化物(ΑΤΟ)層、銦鋅 氧化物(ΙΖΟ)層或金屬性奈米碳管薄膜等透明導電層。所述 晝素電極224的面積爲10平方微米〜0.1平方毫米。本實 施例中,所述晝素電極224的材料爲ΙΤΟ,面積爲0.05平 方毫米。 所述閘極線228及源極線226的材料爲導電材料,如 金屬、合金、導電聚合物。該金屬或合金材料可以爲銘、 銅、鎮、錮、金、鈦、鈥、把、鉋及其任意組合的合金。 所述閘極線228及源極線226也可以爲金屬性奈米碳管長 22 201003486 線結構。所述閘極線228及源極線226的寬度爲0.5奈米 〜100微米。本實施例中,所述閘極線228及源極線226的 材料爲鋁,寬度爲10微米。 請參閱圖7,所述薄膜電晶體222可爲頂閘型或底閘 型結構,具體包括一半導體層2220、一源極2222、一汲極 2224、一絕緣層2226及一閘極2228。該半導體層2220與 該源極2222和汲極2224電連接,該閘極2228通過該絕緣 層2226與該半導體層2220、源極2222及汲極2224絕緣 設置。 本實施例中,所述薄膜電晶體222爲底閘型結構。上 述閘極2228設置於所述第三基體240上表面,上述絕緣層 2226設置於該閘極2228上表面,上述半導體層2220設置 於該絕緣層2226上表面,通過絕緣層2226與閘極2228 絕緣設置,上述源極2222及汲極2224間隔設置並與上述 半導體層2220電接觸。 所述半導體層2220包括一第二奈米碳管層。該第二奈 米碳管層中包括多個奈米碳管。該奈米碳管爲單壁或雙壁 的半導體性奈米碳管。所述單壁的半導體性奈米碳管的直 徑爲0.5奈米〜50奈米;所述雙壁的半導體性奈米碳管的 直徑爲1.0奈米〜50奈米。優選地,所述半導體性奈米碳 管的直徑小於10奈米。所述半導體層2220的長度爲1微 米〜100微米,寬度爲1微米〜1毫米,厚度爲0.5奈米〜100 微米。 具體地,所述第二奈米碳管層可以包括無序或有序的 23 201003486 薄膜。無序的奈米碳管薄膜中’奈米碳管爲無序 2各向同性排列。該無序排列的奈米碳管 ^性排列的奈米卿行於奈米碳管薄膜的表面。有; 管薄膜中,奈米碳管爲沿同一方向擇優取向排列 同方向擇優取向。優選地,該第二奈米碳管層包括 夕層由長奈米碳管組成的有序的長奈米碳管薄膜处 構。如圖8所示,該長奈米碳管薄膜結構中的奈米碳管^ =排設置,相鄰兩個奈米碳管之間通過凡德瓦爾 =緊。此時,該第二奈米碳管層的長度等於其中的 奈米碳管的長度。 當上述第二奈米碳管層包括多個重叠設置的有序夺 石=薄膜時,該多個有序奈米碳管薄膜可以沿任意方向重 豐设置’因此’在該第二奈米碳管層巾,相鄰的奈米碳管 溥'中的奈米碳管形成一夾角α,且〇、as9〇。。優選地, 所述第二奈求碳管層中的奈米碳管均沿薄膜電晶體的源極 至汲極方向排列。 本技術方案實施例中,所述半導體層222〇包括一層由 長奈米碳管組成的有序奈米石炭管薄膜,該半導體層的^产 爲50微米,寬度爲3〇〇微米,厚度爲5奈/卡。所述半導= 層2220位於所述源極2222和汲極2224之間的區域形成— 通道。所ί通道的長度爲5微米,寬度爲4G〜⑽微米。 所述奈米碳管兩個端部連接源極2222與汲極2224。 一該薄膜電晶體面板22〇在觸摸式液晶顯示屏3〇〇中作 爲液晶晝素點的驅動元件,#通過所述顯示屏驅動電路胃 24 201003486 畫素電極224與第一偏光片11()之間施加一電壓時,第一 配向層112與第二配向層212之間的液晶層31〇中的液晶 分子定向排列,從而使經由第二偏光層21〇起偏的光線不 經旋光直接照射至第一偏光層11〇,此時光線將不能通過 第一偏光層110。當在晝素電極224及第一偏光層u〇之 間未施加電壓時,光線經過液晶分子旋光後可以通過第一 偏光層110出射。 言月參閱圖9,該觸摸式液晶顯示屏 — 觸拉屏控制器40、-中央處理器5〇及―顯示設備控制器 6〇°其中’該觸摸屏控制器4〇、該中央處理器%及該顯 不设備控制H 6G三者通過電路相互連接,賴摸屏控制器 40與該觸摸屏1〇電連接,該顯示設備控制器連接所述 下基板期的薄膜電晶體面板22〇的顯 觸摸屏控制器30通過手指等觸摸物6〇觸摸的圖標:菜二 I :二立輸入,並將該信息傳遞”央處理器 -曰心、&該顯示器控制器50控制該薄膜 _主一反22G的顯示屏驅動電路進行圖像顯示。、 驅動二圖9,使科,通過X坐標 透明電…多述多個第- 壓,使用者-邊視覺確認在觸摸屏1G ^施力卜定電 晶顯示屏3〇〇的顯示,一、蠢 ^ °又置的觸摸式液 按壓觸摸屏10第—電二過觸扣物60如手指或/及筆 中第-編。發生;作。第-… 使仵知堡處70的第-透明電極 25 201003486 =與第—透明電極142接觸形成導通。由於多個从 明電極142 66结_ 时"、夕個弟二透 、一端142b接地,故所述傳$ Ί Μ 出發生變化心坐標驅動電源可探測 透明電極122及Υ—一、 所對應驅動的第- aa , 丄私驅動電源I84所對應驅動的第_ 明電極142,並脾兮於έ〆 切日7弟—透 ^ ^ 將该“息傳遞給觸摸屏控制器40,觸 坐標。觸摸朴制!^ ^心確定該接觸點的χ坐標和γ 理哭5〇 :_1 將數字化的觸點坐標傳遞給中央處 -50。中央處理器5〇根據觸 :央處 動電子設備的各種功能切換,並通過顯干曰令,啓 *多點於^ 動電路進行圖像顯示。 田夕-占輸入時,多個按壓處7〇的第一 與第二透明電極142接觸带&道3 弟透明電極122 18〇…標驅動電界:由於x坐標驅動電源 極⑵及多個第:=Γ 時向所述多個第-透明電 感器182可依次分別产、,上142施加一定電塵’故所述傳 動電源180所對:驅二多次發生電壓變化時Χ坐標驅 4所對應驅動的第二透明電極"a 一人發生電壓變化時的信自傳 人將该夕 控制器4〇依次通過上;屏控制器4〇’觸摸屏 的X坐桿和Yt 分別確定該多個接觸點 払觸扣屏控制器40將該多個數字 觸點坐標傳遞給中央處理^ 5Q。 =化的 坐標發出相應指令,啓動電 、:5〇根據觸點 過顯示器控制器6。控制==種功能切換,並通 電路進行圖像顯示。 電曰曰體面板220的顯示屏驅動 26 201003486 本技術方案實施例提供的奈米碳管作爲透明電極 -偏光層及薄膜電晶體的半導體層的觸摸式液晶顯: 有以下優點‘其一,由於採用奈米碳管的觸摸屏可直奸 人操:命令和信息,可代替傳統的鍵盤、氣標或4 = 入設備’從而可以簡化使用該觸摸式液晶顯示屏子二 的結構。其二,奈米碳管的優異的力學特性使得透明; 極具有很好的韋刃性和機械强度,並且耐弯折,故 =高觸摸屏的耐用性,進而提高該 : 二目 式液晶顯示屏。另;柔性觸摸 ⑼、多晶蝴機半導體:二先= =提而薄臈電晶體的柔性’尤其適用於柔性: 面板,並應用於柔性觸摸式液晶顯示屏中。1三, 米碳管在潮濕的條件下具有良好的透明度,故:::示 ^作爲觸摸屏的透明電極,可以使該觸摸屏具有 明度’進而有利於提高該觸摸式液晶顯 = 優異的導電性能,則由奈=管 奈米碳管層作透明電極因而’採用上述 度。第五广 式液晶顯示屏的解析度和精確 有幸交'等⑽危 層仗而可使仔觸摸式液晶顯示屏且 二=式液晶顯示屏的結構和製造成 ““源的利用率,改善顯示質量。其六,由於半 27 201003486 導體性的奈米碳管具有優異的半 具有較大的載子移動率,薄膜電晶體面板電晶體 速=,從而使應用該薄膜電晶體面板振響應 具有較好的顯示性能。其七,採、^曰曰顯示屏 層的薄膜電晶體尺寸較小,薄Μ晶體=層作爲半導體 可以用於高解析度的液晶顯示等領域。其:解析度更高, 摸屏令的第一透明電極的一端電連接於二X由:所述觸 源,另-端電連接於一傳感器,所述第 I驅動電 接地丄另-端電連接於一 γ坐標驅動電源,故可^的一端 傳感器依次探測出多個發生電 X w、過所述 對應驅動的第-透明電極及γ^ =坐標驅動電源所 第二透明電極,進而確定多個: 故所述觸摸式液晶顯示屏可實現多點錢="仏, 提出已符合發明專利之要件,遂依法 =^申§月°惟,以上所述者僅為本發明之較佳實施例, 以此限制本案之申請專利範圍。舉凡習知本案技疏 蓋於以明之精神所作之等效修飾或變化,皆應涵 盖於以下申請專利範圍内。 【圖式簡單說明】 ^係本技财案實施例觸摸切晶顯科 構不意圖。 2係本技術方案實施例觸摸式液晶顯示屏中觸摸屏 弟電極板的俯視結構示意圖。 圖3係本技術方案實施例觸摸式液晶顯示屏中觸摸屏 28 201003486 第二電極板的俯視結構示意圖。 式液晶顯示屏中下基板 圖4係本技術方案實施例觸摸 的立體結構示意圖。 固〇你本技術方案實 官拉膜結構的掃描電鏡照片 圖6係本技術方案實施例觸摸 晶體面板的俯視結構示意圖。 夜3曰顯示屏中薄膜電 圖7係圖6的薄獏電晶體面板 圖8係阁7 嗝时 眠电晶體的剖視圖。 口 〇你圖7的薄膜電晶體中的 口 掃插電鏡照片。 的長奈米碳管薄膜結構的 圖9係本技術方案實施 示意圖。 彳j觸也式液晶顯示屏工作原理 10 100 110 112 12 120 122 122a 122b 124 【主要元件符號說明】 觸携屏 上基板 第一偏光層 第一配向層 第一電極板 第—基體 ^ 一透明電極 =一透明電極的第一端 弟一逯明電極的第二端 第一信號線 第一表面 29 128 201003486 - 填充層 160 . X坐標驅動電源 180 傳感器 182 第一電極 124 透明保護膜 126 第二電極板 14 第二基體 140 第二透明電極 142 : 第二透明電極的第一端 142a 第二透明電極的第二端 142b 第二信號線 144 第二表面 148 Y坐標驅動電源 184 第二電極 144 點狀隔離物 16 絕緣層 18 '下基板 200 第二偏光層 210 第二配向層 212 薄膜電晶體面板 220 薄膜電晶體 222 半導體層 2220 源極 2222 汲極 2224 30 201003486 2226 絕緣層 閘極 2228 晝素電極 224 源極線 226 閘極線 228 第三基體 240 網格區域 242 觸摸式液晶顯示屏 300 液晶層 310 觸摸屏控制器 40 中央處理器 50 顯示設備控制器 60 觸摸物 60 按壓處 70 31Layer, and Application to a Resistive Touch Panel (Electronics and Communications in Japan, Part 2, Vol. 84, P39-45 (2001)) describes the use of an IT0/SiO 2 / polyethylene terephthalate layer Touch screen. The IT0 layer requires a high vacuum environment during the preparation process and needs to be heated to 200 to 300 ° C, so that the 触摸 0 layer 9 201003486 • the touch screen as a transparent electrode is more expensive to prepare. Ιτο芦柞邕, * nn $ , no m technical song and resistance value two layers of mechanical performance is not good enough, difficult to bend _- corpse / sentence and other shortcomings 'not suitable for flexible touch-type liquid sputum display in. In addition, ϊτο is in the humid air ^ night 曰曰 = and = first resistance touch screen and display good, low sensitivity, linearity and poor accuracy and other shortcomings. In addition, a single-point input signal can only be realized with the % resistive touch screen.刖, =,, it is necessary to provide a touch-type liquid crystal display, which has the advantages of good durability, high sensitivity, and multi-point signal input. The invention relates to a touch-type liquid crystal display, comprising: an upper substrate plate comprising a touch screen, the touch screen comprises a plurality of transparent electrodes; and a lower plate: the lower substrate is disposed opposite to the upper substrate, The lower substrate includes a thin film. The germanium film transistor panel includes a plurality of thin film transistors L =: a semiconductor layer; and a liquid crystal layer disposed between the J _!::, wherein the transparent electrode in the touch screen Including: -:: a thin film tube layer in a thin film transistor panel, the first carbon nanotube layer and the second nano stone layer include a plurality of carbon nanotubes. Compared with the prior art The touch-type liquid crystal display has the following advantages: - because the touch panel of the carbon nanotube can directly input operation commands and information, it can replace the input device such as the traditional keyboard n-read key, thereby simplifying the use The electronic device of the touch-type liquid crystal display has a structure of 10 201003486 - its excellent performance of the carbon nanotubes, good and mechanical strength, and resistance to bending, = transparent electrodes have high touch screen durability, To improve the touch At the same time, it should be improved, and at the same time, with the flexible substrate, it can be made into a night: the screen is not used for the screen. Another ice injury - flexible touch LCD ', negative Ding screen, the second carbon nanotube Layer polycrystalline or organic semiconductor polymer as a semiconductor genus,: Shi Xi, high thin film transistor sheep, especially, A a can be correspondingly applied to flexible touch LCD display...,: 曰曰The panel, in the wet condition and right _ pull recognition ^,, a 'because the carbon nanotube is the transparent electro-optical of the touch screen, the 'lightness' is used, so the carbon nanotube layer is used as the opening edge electrode, which can make The degree of touch, in turn, is advantageous for improving the resolution of the touch type, the brightness of the screen, and the resolution of the screen. The fourth is because of the excellent material electrical properties. The value is divided into 1 by: "The layer composed of the official layer is used as a transparent electrode, which can be used as a phase library: ^ thus 'the above-mentioned nano carbon power is used to improve the analytical production of the touch screen and the degree of Sa's degree, and then improve the Lai touch; Indeed, because of the semiconductor nature, it is too accurate. The thin tantalum transistor has a larger carrier moving port of $x^μmm 'Φ±, and the 'film-seeking transistor panel has a response rate' that allows the application of the thin-film transistor panel:: :: Screen has better display performance. Six, tube; 2 more south, can be used for high-resolution liquid crystal display. Anti-knowledge [common method] The following will explain the crystal display in detail with reference to the accompanying drawings. The touch liquid provided by the technical solution 11 201003486 - Please refer to FIG. 1 , the embodiment of the present invention provides a touch liquid crystal display 300 ′ including an upper substrate 100 , a lower substrate 200 disposed opposite the upper substrate, and a setting The liquid crystal layer 310 between the upper substrate 1 and the lower substrate. The liquid crystal material of the liquid crystal layer 310 including a plurality of long rod-shaped crystal layers 310 is a liquid crystal material commonly used in the prior art. The thickness of the liquid crystal layer 310 is 1 to 50 μm. In this embodiment, the thickness of the liquid crystal layer is 5 μm. The upper substrate 100 includes a touch screen 1 〇, a first polarizing layer 110 and a first alignment layer 112 in order from top to bottom. The first polarizing layer 11 is disposed on the lower surface of the touch panel 10 for controlling the emission of the polarized light passing through the liquid crystal layer 31. The first alignment layer 112 is disposed on a lower surface of the first polarizing layer. Further, the lower surface of the first alignment layer 112 includes a plurality of parallel first grooves for aligning the liquid crystal molecules of the liquid crystal layer 310. The first alignment layer 112 of the upper substrate is disposed adjacent to the liquid crystal layer 310. The touch screen 10 is a four-wire, five-wire or eight-wire structure. The touch screen 1G is a four-wire structure. Please refer to FIG. 2 θ , and include a _ electrode from top to bottom. The plate 12, the plurality of objects 16 and a second electrode plate 14 are provided. The second electrodes ... are opposed to each other, and the plurality of transparent dot spacers 16 are disposed between the first electrode plate 12 and the second electrode plate 14. Electrode: The board 12 includes a first substrate 120, a plurality of first transparent electrodes 12 2 and a plurality of first dummy, η / — - 仏唬 124 124. The first substrate 120 and the body-surface 128. A plurality of flutes are called ~ ', a transparent electrode 122 along the first direction 12 201003486 - is disposed on the first surface 128 of the first substrate 120, and the plurality of first transparent electrodes 122 are parallel and uniform distributed. The first direction is the X coordinate direction. The plurality of first transparent electrodes 122 have a first end 122a and a second end 122b. The first ends 122a of the plurality of first transparent electrodes 122 are electrically connected to an X-coordinate driving power source 180 through a plurality of first signal lines 124, respectively. The X-coordinate driving power source 180 is for inputting a driving voltage to the plurality of first transparent electrodes 122. The second ends 122b of the plurality of first transparent electrodes 122 are electrically connected to a sensor 182 through a plurality of first signal lines 124, respectively. The plurality of first signal lines 124 are parallel to each other. The second electrode plate 14 includes a second substrate 140, a plurality of second transparent electrodes 142, and a plurality of second signal lines 144. The second substrate 140 has a second surface 148. The plurality of second transparent electrodes 142 are spaced apart from each other in the second direction on the second surface 148 of the second substrate 140, and are disposed opposite the plurality of first transparent electrodes 122. The plurality of second transparent electrodes 142 are parallel and evenly distributed with each other. The second direction is a Y coordinate direction. The plurality of second transparent electrodes 142 have a first end 142a and a second end 142b. The first ends 142a of the plurality of 'second transparent electrodes 142 are electrically connected to a Y-coordinate driving power source 184 through a plurality of second signal lines 144, respectively. The Y coordinate driving power source 184 is for inputting a driving voltage to the plurality of second transparent electrodes 142. The second end 142b of the plurality of second transparent electrodes 142 is grounded. The plurality of second signal lines 124 are parallel to each other. The first substrate 120 and the second substrate 140 are both transparent films or sheets. The first substrate 120 has a certain degree of softness and may be formed of a plastic or resin enamel flexible material. The material of the second substrate 140 may be a hard material such as glass or stone. The second substrate (10) functions primarily. When used in a flexible touch screen, the second substrate 14 〇 = can be a flexible material such as plastic or resin. Specifically, the first substrate 12 is: the material used for the second substrate 140 is selected from the group consisting of polycarbonate (pc), polymethyl phthalate (Ibirth), and polyethylene terephthalate g | (pET). ) such as poly = material 'and poly _ (PES), cellulose vinegar, pure ethylene (pvc), ^ butyl butyl (BCB) and acrylic resin and other materials. The first substrate 12 has a thickness of 1 mm to 1 cm. In this embodiment, the materials of the first substrate 120 and the second substrate 14 are both pET and the thickness is 2 mm. It can be understood that the materials for forming the first base 12 and the second base are not limited to the materials listed above, as long as the first base 120 and the second base 140 can have better transparency. The second substrate serves as a support, and the first substrate 12 has a certain flexibility, and is within the scope of the present invention. The first signal lines 124 are spaced apart from each other on both sides of the first surface of the first substrate 12A in the first direction. The second signal lines 144 are spaced apart from each other on both sides of the second surface of the second substrate 140 in the second direction. The first signal line 124 and the second signal line 144 are composed of a conductive material having a small resistance. Specifically, the first signal line 124 and the second signal line 144 are indium tin oxide (ITO) lines, tin oxide (ΑΤΟ) lines, conductive polymer lines, and the like. The 彳 彳 line 124 and the second signal line 144 can also be formed of thin opaque wires whose diameter is less than 100 microns, so that the transmittance of the touch screen and the unfavorable effect are not significantly affected. Specifically, the first line 124 and the second signal line 144 may be formed by etching a metal film (such as a nickel-gold film) 14 201003486 or by a long line of carbon nanotubes. In this embodiment, the first, second tiger, the line 124 and the second signal line 144 are one long carbon nanotube long line, and the nanometer is long and can be treated by an organic solvent or a carbon nanotube film. The carbon nanotubes are twisted in the longitudinal direction. The nano carbon tube long line includes a plurality of carbon nanotubes connected end to end and along the long axis of the carbon nanotube axial/length direction 3 = specifically 'the carbon nanotube long line in the middle of the carbon tube along the ίί two direction / The length directions are arranged in parallel or in a spiral shape. The carbon nanotubes in this are tightly integrated by Van der Waals forces. The width of the long line is not 0.5 nm to 1 〇〇 micron. It can be understood that since the specific surface area of the carbon nanotube itself is very large, the carbon: the long line itself has a strong viscosity. Therefore, the nanocarbon adheres to the matrix (10) two =. And (4) the transparent electrode 122 and the plurality of second transparent electrodes (4) are both included in the stone. The carbon nanotube layer is in the form of a strip. In an embodiment of the technical solution, the carbon nanotube layer comprises a plurality of carbon nanotubes. Further, (4): can be: a military carbon nanotube film or a plurality of nano-tubes, so the length and thickness of the above-mentioned carbon nanotube layer are not limited, there is ideal transparency, and the sound can be made according to actual needs. :: Enough, Degree: Naiguang carbon pipe layer. The width of the carbon nanotube layer is determined by the thickness of the rice to be 0.5 μm to μm. The permeation; wide 250 = one meter. In the embodiment of the technical solution, the thickness of the film is 50 micrometers, the thickness is 5 nanometers, and the spacing between the transparent electrodes 15 201003486 122 ' 142 is 2 micrometers. The carbon nanotube film of the above carbon carbon layer towel is composed of ordered or non-carbonaceous, and the carbon nanotube film has a uniform thickness. A 2 m charcoal f layer consists of a disordered carbon nanotube film or a sequence of ^ = two " In the disordered carbon nanotube film, the 'nanocarbon tubes are unordered and isotropically aligned. The disordered array of carbon nanotubes are intertwined, and the same! The raw carbon nanotubes are parallel to the surface of the carbon nanotube film. In the carbon nanotube film, the carbon nanotubes are arranged in the same direction in the same direction = preferred orientation in different directions. When the carbon nanotube layer comprises a multi-layered ordered carbon tube thin layer, the multi-layered carbon nanotube film can be weighted in any direction. Therefore, in the Yannai carboniferous tube layer, the I-meter carbon tube is along the same or Different orientations are preferred. Preferably, when the carbon nanotube layer is ordered to form a carbon nanotube film, the ordered carbon nanotube film is a carbon nanotube film structure obtained by direct drawing in a non-reverse array. Please refer to Figure 5, the nano carbon tube tensile membrane structure comprises a plurality of carbon nanotubes, the first and last phase, preferred orientation alignment. The van der Waals force is passed between the plurality of carbon nanotubes:: on the one hand, the carbon nanotubes connected end to end through the van der Waals force, the other side, the preferred orientation of the carbon nanotubes The part is combined by Van der Valli. Therefore, the nano carbon tube film structure has a good self-supporting 2 soft blade. When the carbon nanotube layer comprises a multi-layered overlapping two-meter stone reverse-stretched film structure, the adjacent two-layered carbon nanotube film carbon nanotubes form an angle α, and 〇. $ a $ 90. . Further, the carbon nanotube layer may comprise a composite layer composed of the above various carbon carbon thin films and a polymer material. The polymer material is 16 201003486 • is evenly distributed on the carbon nanotube film. The polymer material is in the gap between the two.包# Ψ t & 徐ψ 刀 Knife material's specific material is not limited, it has been supported by styrene, polyethylene, gas ΓΡΜΜΛ ^ - phthalate, polymethyl methacrylate Stupid, ethylene glycol ester (), propylene carbonate (BCB), polycycloolefin, and the like. In this embodiment, the plurality of Chu XI Ming + 托 m + 第 第 第 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明Specifically, the Nishi-burning, first, and #" human s in the display structure of the plurality of first-transparent electrodes J are arranged along the direction of the brother, and a plurality of 142 carbon nanotubes are arranged. The carbon nanotubes in the film structure are arranged along the 彳:: direction. The thickness of the carbon nanotube composite layer is . .5 nanometer ~ (10) The carbon nanotubes in the 1 jin ^ m carbon tube layer include a single-walled carbon nanotube, a double-soiled rice-soiled tube, and a multi-walled carbon tube with a straight m of S. 5 nm, nanometer, double-walled carbon nanotubes with a diameter of 1 nm ~ 5 〇 too half, household dish *, 丨 吕 Lu's 罝 米 rice. And f: the diameter of the carbon nanotube is U nanometer ~ 50 ', ', and the thickness of the non-nano layer is 〇. 5 nm to 100 μm. In addition, since the area where the transparent electrodes 122, 124 are provided has a different light refractive index and transmission i than the area which is not the f-pole 122'124, the visual difference of the overall light transmittance of the touch screen 10 is the smallest, Can be formed in the gap between the white passes 22, 124 - the fill layer traces the fill population (10) = = has the same or close refractive index as the transparent electrode 122 ' 124 material. The sensor 182 can be any sensor of the prior art . The present invention 17 201003486. The embodiment of the program, the sensor i82 is used for the X coordinate driving power source 18, the coordinate corresponding to the coordinate._source (8) when the pen pressure changes. The X-coordinate driving power source position m and the second transparent electric two-clamping power source are used to apply a voltage to the first transparent electrode core and the drain electrode 142. Further, the first electrode plate of the surface of the second electrode plate 14 has a plurality of first, "..." edge layers 18 of the insulating first electrode plate 12, and the plurality of second transparent electrodes 14 of the 14 Yes: Haidi-Pen-Board 16 is placed between #, $, a transparent point-like isolation, and St-transparent electrode 122 and second transparent electrode (4) plate 12 and Di-Ten & ^ and 匕The spacing between the sighs and the younger ones is 2, the micrometers. The transparent transparent dot-like spacers 16 can be made of insulating transparent material. The insulating layer 18* === 16 can be made. The first electrode plate 14 and the second electrode plate;: the solution, when the size of the touch screen 10 is _/{, 0 士, ^ electrical insulation. The structure can be selected, only need to ensure the first mine: the bright point "offer 16" Optional edge can be. , the holy plate 14 and the second electrode plate 12 are electrically insulated. Step = the electrode plate 12 is moved away from the surface of the second electrode plate 14 through the two t, Gu Ming Bao film 126. The transparent protective film 126 may be k-bonded directly to the j; gentleman + # pressure method, and the first surface of the first electric 120 may also be heat-pressible. The transparent protective film 126 -, a surface hardening treatment, a smooth scratch-resistant plastic layer or a resin layer, 18 201003486 j lipid layer can be formed by I ring butyl (BCB), polystyrene, acrylic resin, and the like. In this embodiment, the material for forming the transparent protective film 126 is j-diphenyl glycolate (PET) for protecting the first electrode plate 12, and durability. The transparent protective film 126 can be used to provide some additional powers such as to reduce glare or reduce reflection. The material of the first polarizing layer 11G may be a dichroic organic polymer material commonly used in the prior art, and specifically may be a lanthanide f or a fluorene material. In addition, the first polarizing layer 11G may also be a carbon nanotube film of -lu =, and the ordered neat (n) thin film nanowires are aligned in the same direction. Preferably, the first polarizing layer is: a carbon nanotube film structure. The first first polarizing layer is micrometers to 0.5 mm. Since the absorption of electromagnetic waves by the carbon nanotubes is close to the absolute black body, the nano-carbon: electromagnetic waves of various wavelengths have uniform absorption characteristics, so the ordered na(n)f film in the first layer 110 is for various wavelengths. Electromagnetic wave = uniform - polarization absorption performance. #光波人射,振方: The light in the longitudinal direction of the carbon nanotube bundle is absorbed, and the light energy in the direction of the f-direction perpendicular to the carbon nanotube bundle is transmitted, so the transmitted light becomes linearly polarized light. Therefore, the:m:carbon:film can be polarized instead of the polarizing plate of the prior art", wherein the first polarizing layer 110 includes aligned 1 in the same direction, so that the A polarizing layer 110 has a good conductivity. This can be used as a top electrode layer of a touch-type liquid crystal display. Therefore, the polarized light (4) of the touch liquid crystal display of the embodiment of the present invention can simultaneously polarize and The role of the electrode, no;:: 19 201003486 -The upper electrode layer is added, so that the touch-type liquid crystal display can be made thin. The thin thickness f simplifies the structure and manufacture of the touch-type liquid crystal display 3: 'Improve the utilization of the backlight' to improve the display quality. The material of the first alignment layer H2 may be polystyrene and its derivatives, polyimine, polyvinyl alcohol, polyester, epoxy resin, polyurethane stone. The first trench of the first alignment layer 112 can be formed by a prior art film rubbing method, a tilted yttrium-plated Si0x film method, and a micro-groove method for the film. The first trench can be formed. Orienting the liquid crystal molecules. 曰: Real In one example, the material of the first alignment layer 112 is 1 to 50 micrometers of polyacrylonitrile. Referring also to FIG. 4, the lower substrate 200 includes == 212 ' in order from top to bottom - the thin film transistor panel 22 And a second polarizing layer 210. The second alignment layer 212 is disposed on the thinned surface of the thin film transistor panel. Further, the upper surface of the second alignment layer 212 may include a plurality of flat trenches. The alignment direction of the first trenches of the alignment layer 112/the alignment direction of the second trenches of the first alignment layer 212 is perpendicular. The second polarizing layer 210 is disposed on the lower surface of the thin film transistor panel 22A. The second alignment layer 212 of 200 is disposed adjacent to the liquid crystal layer. The material of the second polarizing layer 210 is the same as that of the first polarizing layer no. The thickness of the second polarizing layer 210 is 1 micrometer to 0.5 millimeter. The second polarizing layer 210 functions to polarize light emitted from the light guide plate disposed on the lower surface of the touch liquid crystal display 300 to obtain light polarized in a single direction. The polarization of the second polarizing layer 21〇 Direction - The polarization direction of the polarizing layer 110 is perpendicular. Le 20 201003486 The second alignment layer 212 is the same material as the first alignment layer 112, and the second trench of the second alignment layer 212 can align the liquid crystal molecules. The first trench and the first alignment layer 112 The arrangement direction of the second trenches of the two alignment layers 212 is perpendicular, so that the alignment angle of the liquid crystal molecules between the first alignment layer 112 and the second alignment layer 212 between the two alignment layers is rotated by 90 degrees, thereby performing optical rotation. The polarizing direction of the second polarizing layer 210 is rotated by 90 degrees. In the embodiment, the second alignment layer 212 is made of polyimide and has a thickness of 1 to 50 micrometers. 6, the thin film transistor panel 220 includes a third substrate 240 and a plurality of thin film transistors 222 disposed on the upper surface of the third substrate 240, a plurality of halogen electrodes 224, a plurality of source lines 226, and a plurality of gates. The plurality of source lines 226 are arranged in parallel with each other in rows, and the plurality of gate lines 228 are arranged in parallel with each other in columns, and are interposed and insulated from the source lines 226, thereby dividing the third substrate 240 into a plurality of lines. Grid area 242. The plurality of halogen electrodes 224 and the plurality of thin film transistors 222 are respectively disposed in the mesh region 242, and are disposed between the plurality of halogen electrodes 224 and the plurality of thin film transistors 222. Each of the grid regions 242 is provided with a thin film transistor 222 and a halogen electrode 224 electrically connected to the drain of the thin film transistor 222. The source of the thin film transistor 222 is electrically connected to a source line 226. Specifically, the mesh areas 242 are arranged in a matrix and in columns. The source of the thin film transistor 222 in each of the above-described grid regions 242 is electrically connected to the source line 226 of its row. The gate of the thin film transistor 222 is electrically connected to a gate line 228. 21 201003486 Specifically, the gates of the thin film transistors 222 in each of the column grid regions 242 are electrically connected to the gate lines 228 of the column in which they are located. Further, the thin film transistor panel 220 may further include a display driving circuit (not shown), the source line 226 and the gate line 228 are connected to the display driving circuit, and the display driving circuit passes through the source. Line 226 and gate line 228 control the switching of thin film transistor 222. The display panel driving circuit is integrated on the third substrate 240 to form an integrated circuit board. The third substrate 240 is a transparent substrate and serves as a supporting material. The material of the third substrate 240 may be a hard material such as glass, quartz, ceramic, diamond or cymbal or a flexible material such as plastic or resin. In this embodiment, the material of the third base 240 is PET. The third substrate 240 can also be selected from printed circuit boards in a large scale integrated circuit. The halogen electrode 224 is a conductive film, and the material of the conductive film is a conductive material. When used in a liquid crystal display, the halogen electrode 224 can be selected from an indium tin oxide (ITO) layer and a tantalum tin oxide. A transparent conductive layer such as a (ΑΤΟ) layer, an indium zinc oxide (ruthenium) layer, or a metallic carbon nanotube film. The area of the halogen electrode 224 is from 10 square micrometers to 0.1 square millimeters. In this embodiment, the material of the halogen electrode 224 is ΙΤΟ, and the area is 0.05 square millimeters. The material of the gate line 228 and the source line 226 is a conductive material such as a metal, an alloy, or a conductive polymer. The metal or alloy material may be an alloy of ingot, copper, town, tantalum, gold, titanium, tantalum, handle, planer, and any combination thereof. The gate line 228 and the source line 226 may also be a metallic carbon nanotube length 22 201003486 line structure. The gate line 228 and the source line 226 have a width of 0.5 nm to 100 μm. In this embodiment, the material of the gate line 228 and the source line 226 is aluminum and has a width of 10 micrometers. Referring to FIG. 7, the thin film transistor 222 can be a top gate or bottom gate structure, and specifically includes a semiconductor layer 2220, a source 2222, a drain 2224, an insulating layer 2226, and a gate 2228. The semiconductor layer 2220 is electrically connected to the source 2222 and the drain 2224. The gate 2228 is insulated from the semiconductor layer 2220, the source 2222, and the drain 2224 by the insulating layer 2226. In this embodiment, the thin film transistor 222 is a bottom gate type structure. The gate 2228 is disposed on the upper surface of the third substrate 240, the insulating layer 2226 is disposed on the upper surface of the gate 2228, and the semiconductor layer 2220 is disposed on the upper surface of the insulating layer 2226, and is insulated from the gate 2228 by the insulating layer 2226. The source 2222 and the drain 2224 are disposed at intervals and are in electrical contact with the semiconductor layer 2220. The semiconductor layer 2220 includes a second carbon nanotube layer. The second carbon nanotube layer includes a plurality of carbon nanotubes. The carbon nanotube is a single-walled or double-walled semiconducting carbon nanotube. The single-walled semiconducting carbon nanotube has a diameter of from 0.5 nm to 50 nm; and the double-walled semiconducting carbon nanotube has a diameter of from 1.0 nm to 50 nm. Preferably, the semiconducting carbon nanotube has a diameter of less than 10 nm. The semiconductor layer 2220 has a length of from 1 μm to 100 μm, a width of from 1 μm to 1 mm, and a thickness of from 0.5 nm to 100 μm. In particular, the second layer of carbon nanotubes may comprise a disordered or ordered 23 201003486 film. In the disordered carbon nanotube film, the 'nanocarbon tubes are disordered 2 isotropically aligned. The disordered arrangement of carbon nanotubes is arranged on the surface of the carbon nanotube film. In the tube film, the carbon nanotubes are arranged in the same direction in the same direction. Preferably, the second carbon nanotube layer comprises an ordered long carbon nanotube film structure composed of a long carbon nanotube. As shown in Fig. 8, the carbon nanotubes in the long carbon nanotube film structure are arranged in rows, and the adjacent two carbon nanotubes pass through van der Waals = tight. At this time, the length of the second carbon nanotube layer is equal to the length of the carbon nanotube therein. When the second carbon nanotube layer comprises a plurality of overlapping ordered stone=films, the plurality of ordered carbon nanotube films can be arranged in any direction to be 'in' in the second nanocarbon The tube layer towel, the carbon nanotubes in the adjacent carbon nanotubes' form an angle α, and 〇, as9〇. . Preferably, the carbon nanotubes in the second carbon nanotube layer are arranged along the source to the drain of the thin film transistor. In the embodiment of the technical solution, the semiconductor layer 222 includes an ordered nano-carboniferous film composed of a long carbon nanotube, and the semiconductor layer has a thickness of 50 μm, a width of 3 μm, and a thickness of 5 Nai / card. The semiconducting layer 2220 is located in a region between the source 2222 and the drain 2224 to form a channel. The ί channel has a length of 5 microns and a width of 4G to (10) microns. The two ends of the carbon nanotube are connected to the source 2222 and the drain 2224. A thin film transistor panel 22 is used as a driving element of a liquid crystal pixel point in the touch type liquid crystal display panel 3, through which the display screen drives the circuit stomach 24 201003486 pixel electrode 224 and the first polarizer 11 () When a voltage is applied between them, the liquid crystal molecules in the liquid crystal layer 31〇 between the first alignment layer 112 and the second alignment layer 212 are aligned, so that the light deflected by the second polarizing layer 21 is directly irradiated without the optical rotation. To the first polarizing layer 11 〇, the light will not pass through the first polarizing layer 110 at this time. When no voltage is applied between the halogen electrode 224 and the first polarizing layer u, the light can be emitted through the first polarizing layer 110 after being rotated by the liquid crystal molecules. Referring to Figure 9, the touch-type liquid crystal display - touch screen controller 40, - central processing unit 5 and "display device controller 6" where 'the touch screen controller 4〇, the central processor% and The display device controller 40 is electrically connected to the touch screen 1〇, and the display device controller is connected to the display screen of the thin film transistor panel 22 of the lower substrate period. The controller 30 touches the icon touched by a finger or the like 6: the second input: the second input, and transmits the information to the "central processor - the heart, the display controller 50 controls the film _ the main one reverse 22G The display drive circuit performs image display. The drive is shown in Figure 9. Let the section, through the X coordinate transparent electric... more than one first-pressure, user-side visual confirmation on the touch screen 1G ^ 力力定定晶晶The display of the screen 3 ,, one, stupid ^ ° and the touch-type liquid presses the touch screen 10 - the second two-touch fastener 60 such as a finger or / and the pen in the first - edit. Occasion; made. -... The first transparent electrode 25 of the Fortress 70 is 201003486 = connected to the first transparent electrode 142 The contact forms a conduction. Since a plurality of light electrodes 142 66 are connected to each other, and the other end is 142b, the transfer is performed, and the transfer of the core coordinate driving power source can detect the transparent electrode 122 and the defect. 1. The corresponding -aa, the _thright electrode 142 driven by the smuggling drive power source I84, and the spleen smashed to the touch screen controller 40, Touch coordinates. Touch the menu! ^ ^ Heart to determine the χ coordinate of the contact point and γ 哭 cry 5〇 : _1 Pass the digitized contact coordinates to the center -50. The central processing unit 5 switches according to various functions of the mobile electronic device, and displays the image by displaying the multi-point circuit. Tian Xi - Occupy input, the first and second transparent electrodes 142 of the plurality of pressing places are in contact with the band & the channel 3 transparent electrode 122 18 〇 ... mark drive electrical boundary: because the x coordinate drive power pole (2) and multiple When :=Γ, the plurality of first-transparent inductors 182 can be respectively produced in sequence, and a certain electric dust is applied to the upper portion 142. Therefore, the transmission power source 180 is paired: when the voltage change is repeated two times, the coordinate driving device 4 Corresponding to the driving of the second transparent electrode "a when a person changes voltage, the autobiographer passes the controller 4〇 in turn; the screen controller 4〇' touch panel X seat and Yt respectively determine the plurality of contact points The touch screen controller 40 passes the plurality of digital contact coordinates to the central processing unit 5Q. The = coordinate of the corresponding command is issued, and the power is turned on: 5〇 according to the contact through the display controller 6. Control == kind of function switching, and the image is displayed through the circuit. Display screen drive 26 of the electric body panel 220 201003486 The carbon nanotube provided by the embodiment of the present technical solution is used as a transparent liquid-polarization layer and a semiconductor layer of a thin film transistor. The touch liquid crystal display has the following advantages: The carbon nanotube touch screen can be used to directly manipulate people: commands and information can replace the traditional keyboard, gas mark or 4 = into the device', which simplifies the structure of the touch-screen LCD. Secondly, the excellent mechanical properties of the carbon nanotubes make it transparent; it has very good edge and mechanical strength, and is resistant to bending, so the durability of the high touch screen improves the: two-eye LCD . Another; flexible touch (9), polycrystalline butterfly semiconductor: two first = = to improve the flexibility of the thin transistor ‘especially suitable for flexible: panel, and used in flexible touch-type liquid crystal display. 1 3, the carbon nanotube has good transparency under wet conditions, so::: as a transparent electrode of the touch screen, the touch screen can have brightness "and thus improve the touch liquid crystal display = excellent electrical conductivity, Then, the nanotube-tube carbon nanotube layer is used as a transparent electrode and thus the above degree is employed. The resolution and precision of the fifth wide-format LCD screen is fortunate to be handed over to '10' critical layer, which enables the structure and manufacture of the touch-type liquid crystal display and the two-type liquid crystal display to ""source utilization, improve display quality. Sixth, because the semi-27 201003486 conductive carbon nanotube has an excellent half with a large carrier mobility, the thin film transistor panel transistor speed =, so that the application of the thin film transistor panel vibration response has better Display performance. Seventh, the thin film transistor of the display layer is smaller in size, and the thin germanium crystal = layer as a semiconductor can be used in high-resolution liquid crystal display and the like. The first transparent electrode of the touch screen is electrically connected to the second X by: the contact source, the other end is electrically connected to a sensor, and the first driving electric ground is electrically connected to the other end. Connected to a gamma-coordinate driving power supply, so that one end of the sensor can sequentially detect a plurality of generating electric power X w , the corresponding transparent driving first transparent electrode and the γ ^ = coordinate driving power supply second transparent electrode, thereby determining more A: The touch-type liquid crystal display can realize a lot of money = " 仏, proposed that the requirements of the invention patent have been met, 遂 = 申 § ° ° ° °, only the above is only the preferred implementation of the present invention For example, this limits the scope of patent application in this case. Any equivalent modifications or variations made in the spirit of the present invention should be covered in the scope of the following patent application. [Simple description of the diagram] ^ is not intended for the touch-cutting crystal structure of the embodiment of the present financial scheme. 2 is a schematic structural view of a touch screen of an electrode plate in a touch type liquid crystal display according to an embodiment of the present technical solution. FIG. 3 is a schematic diagram of a top view of a second electrode plate in a touch screen of the touch screen of the embodiment of the present invention. The lower substrate of the liquid crystal display screen is a three-dimensional structure diagram of the touch of the embodiment of the present technical solution. SEM image of the actual structure of the film of the present invention. FIG. 6 is a schematic top view of the touch crystal panel of the embodiment of the present technical solution. Fig. 7 is a thin-film transistor panel of Fig. 6. Fig. 8 is a cross-sectional view of a sleepy transistor of the cabinet.口 〇 〇 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Figure 9 of the structure of the long carbon nanotube film is a schematic diagram of the implementation of the technical solution.彳j touch-type liquid crystal display working principle 10 100 110 112 12 120 122 122a 122b 124 [Main component symbol description] Touch screen upper substrate first polarizing layer first alignment layer first electrode plate first body - base body ^ a transparent electrode = a first end of a transparent electrode, a second end of the electrode, a first signal line, a first surface 29 128 201003486 - a filling layer 160. an X coordinate driving power supply 180 sensor 182 a first electrode 124 a transparent protective film 126 a second electrode Plate 14 second substrate 140 second transparent electrode 142: first end 142a of second transparent electrode second end 142b of second transparent electrode second signal line 144 second surface 148 Y coordinate driving power source 184 second electrode 144 point shape Isolation layer 16 insulating layer 18 'lower substrate 200 second polarizing layer 210 second alignment layer 212 thin film transistor panel 220 thin film transistor 222 semiconductor layer 2220 source 2222 drain 2224 30 201003486 2226 insulating layer gate 2228 germanium electrode 224 Source line 226 gate line 228 third substrate 240 grid area 242 touch liquid crystal display 300 liquid crystal layer 310 touch screen controller 40 central Processor 50 Display device controller 60 Touch object 60 Press point 70 31