201001894 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種不間斷電源裝置,尤指一種改進的脫機式不 間斷電源裝置(二)。 【先前技術】 不間斷電源(ups)是一種交流電源供應器,其可以在市電不 正*時瞬間提供交流電。第3圖為一種簡單的脫機式不間斷電源 褒置’當市電正料僅將市電通過滤波器(44’)直接經過繼電器 (奶’)連到輸出端’供連接在輸出端的負載使用;當市電不 正常時(電壓過高或過低等),UPS將其内部的電池(41,),先經 ^直流/直_難置⑷,)0X7DC:⑽verter)轉換成高的直 電壓再利用直流/交流轉換裝置(43,)將此高的直流電壓轉換 成交流賴再㈣職ϋ(45,)切換輸出。但是第3圖所示的脫 機式不間斷電源裝置,輸出的交流電壓是一種方波形式,此種方 波輸出對於電感性負载(如變壓器,馬達),將會造成負載容易損 壞因此要產生正弦波交流電壓輸出,要在第3圖的直流/交流轉 …、裝置(43 )巾使肖正弦;^脈寬調變技術,這樣就會降低轉換效 率,損耗太多功率轉換。 【發明内容】 本毛月的個目的在於提供一種改進的脫機式不間斷電源裝 、)通過直抓/直流轉換裝置’將直流電源輸出的直流電壓 轉換為正弦波脈寬直流賴,只在直流/直流轉換裝置中利用了一 201001894 次電力轉換實現將輸入電壓轉換為正弦波脈寬直流電壓,經直流/ 交流轉換裝置輸出正弦波脈寬交流電壓。 為實現本發明的上述目的,本發明的脫機式不間斷電源裝置 (二)包括: 一直流電源,用來在市電停電時提供直流電壓; 一充電裝置,搞合於直流電源的兩端,用來對直流電源進行 充電; 一直流/直流轉換裝置,其輸入端耦合於該直流電源的輸出 端,用來將輸入的直流電壓轉換為正弦波脈寬直流電壓輸出,該 直流/直流轉換裝置包括一升壓變壓器,該升壓變壓器包括一初級 端和一次級端,該初級端包括兩個繞組,以及分別耦合於該初級 端的兩個繞組的第一功率開關和第二功率開關,該次級端包括兩 個繞組,以及分別耦合於該次級端的兩個繞組的第三功率開關和 第四功率開關; 一直流/交流轉換裝置’其輸入端耦合於該直流/直流轉換裝 置的輪出端’該直流/交流轉換裝置包括四個由處理器控制的功率 開關和一低通濾波器; 一繼電器,耦合於交流輪出端,用來切換市電供電與該不間 斷電源裝置供電;以及 一處理器,用來控制該第一與第三功率開關交替導通與關 斷第二與第四功率開關交替導通與關斷; 201001894 該直流/直流轉換裝置由該處理器控制,將輸入的直流電壓轉 換為正弦波脈寬直流電壓,經該直流/交流轉換裝置輸出正弦波脈 寬交流電壓,再進行濾、波後輸出。 由於採用了上述技術方案,本發明的脫機式不間斷電源裳置 (二)利用直流/直流轉換裝置將經整流的直流電壓轉換為正弦波 脈寬直流電壓,經直流/交流轉換裝置輸出正弦波脈寬交流電壓, 只在直流/直流轉換裝置中利用了一次電力轉換,減少了轉換功率 損耗,提高整機運行效率。 本發明的另一個目的在於提供一種改進的脫機式不間斷電 源,其利用放/餘轉換裝置將貞賴歧直流/交流轉換裝置 產生的多餘能量送回直流電源儲能。 為實現本發明社述目的’該錢/直流轉換裝置還包括一儲 能電路,該儲能電路包括-降壓變壓器、一電容和一二極體,該 降壓變壓器包括-初級端和-次級端,其中該降壓變壓器初級端 即為該升壓變壓器次級端,該降壓變壓器次級端包括一敝,該 直流/直鱗鱗置通職魏電轉貞_或者紐/交流轉換 裝置產生的多餘能量送回直流電源儲能。 由於採用了該技術方案,該脫機式不間斷電源裝置(二)在 負載側或者直流/交流轉換裝置產生的多餘能量時,可將多餘 通流/直流轉換裝置中的儲能電路细直流電___ 到節能的目的。 【實施方式】 201001894 第1圖是根據本發明一較佳具體實施例的脫機式不間斷電源 裝置(二)的結構方塊示意圖。該較佳具體實施例的脫機式不間 斷電源裝置(二)包括: 一電池裝置(1),用來在市電停電時提供直流電壓; 一充電裝置(2),耦合於電池裝置(1)的兩端,用來對電池 裝置(1)進行充電; 一直流/直流轉換裝置(3),其輸入端耦合於電池裝置(1) 的輸出端; 一直流/交流轉換裝置(4),其輸入端耦合於直流/直流轉換 裝置(3)的輪出端; 一繼電器(5) ’耦合於交流輸出端,用來切換市電供電與該 不間斷電源裝置供電; 一濾波裴置(6),耦合於該脫機式不間斷電源裝置(二)的 輸出端’用來將輸出的電壓經滤波’供給用戶端設備;以及 一處理器,用來控制直流/直流轉換裝置(3)和直流/交流轉 換裝置(4)及繼電器(5)。 更為具體地,該直流/直流轉換裝置(3)包括一升壓變壓器, 由初級端繞組(31) (32)與第一功率開關(33)、第二功率開關 (34)組成推挽式電路初級端,其導通占空比小於5〇%,由次級端 繞組(35) (36)與第三功率開關(37)、第四功率開關(38)組 成次級端並聯輪出,用來將輸入的直流電壓轉換為正弦波脈寬直 流電壓輸出。當負載側或交流/直流轉換裝置(4)工作時產生產 生多餘能量時,第三功率開關(37)、第四功率開關(38)導通將 201001894 ^罝送回降壓變壓II次級端繞組⑽經二極體(观),慮波電 谷(302),將能量儲存到電池裝置(1)。由於要產生的spwM信號 導通占空比大於50%,所以由第一功率開關⑶)、第二功率開關 (34)各導通一半再經過升壓變壓器次級端繞組(35) (36)相加 輸出&成,如果不考慮轉換效率,為降低成本可以用二 極體取代第二功率開關(37)、第四功率開關(38) ^可以設定第 一功率開關(33)與第三功率開關(37)同步導通,第二功率開 關(34)與第四功率開關(38)同步導通,降低功率開關導通時 電壓降,提高效率。 該直流/交流轉換裝置(4),包括四個功率開關(41 )(42) (43) (44) ’以及由一電感(45)與一電容(46)組成用來進行濾波的低通 滤波器。利用處理器控制功率開關(41)(42)(43)(44)的導通與關 斷’功率開關(41)(42)導通產生正半周的SPWM電壓波形,功率開 關(43)(44)導通產生負半周的SPWM電壓波形,將從直流/直流轉 換裝置(3)輸出的正弦波脈寬直流電壓經四個功率開關 (41)(42)(43)(44)輸出為正弦波脈寬交流電壓。 本發明的脫機式不間斷電源(UPS),不受市電電源品質的影 響。當市電正常時,該脫機式不間斷電源裝置(二)不工作,市 電直接輸出供用戶端設備使用;當市電停電或電壓異常時,經繼 電器(5)切換到該脫機式不間斷電源供電,由電池裝置1提供能 量繼續提供純淨的交流電源。 市電停電或電壓異常時,由處理器控制繼電器(5)切換到該 脫機式不間斷電源供電。電池裝置(1)輸出直流電壓(如第2圖 201001894 所示的參考波形(81)),提供給直流/直流變換器(3)的升壓變 壓器初級端繞組(31) (32) ’由處理器控制第一功率開關(33)、 第二功率開關(34)交替導通產生高頻率脈波電壓(如第2圖所 示的參考波形82、83) ’為避免變壓器飽合,限制升壓變壓器初級 知繞組(31) (32)的最大占空比不大於5〇%,經過升壓變壓器隔 離升壓到次級端繞組(35) (36),將波形相加合成真正的正弦波 脈寬尚頻直流電壓(如第2圖所示的參考波形84)(由處理器計算 母一正弦波脈寬的值除以二,做為第一功率開關(犯)、第二功率 開關(34)的開關控制信號),再將正弦波脈寬高頻直流電壓經過 直流/交流轉換裝置(4)產生低頻(50Hz/60Hz)正弦波交流電壓, 功率開關(41)(42)導通時產生正半周(如第2圖所示的參考波形 4142) ’功率開關(43)(44)導通時產生負半周(如第2圖所示的參 考波形4344)’直流/交流轉換裝置(4)將從直流/直流轉換裝置 (3)輸出的正弦波脈寬高頻直流電壓經四個功率開關 (41)(42)(43)(44)輸出為正弦波脈寬交流電壓(如第2圖所示的 參考波形85),然後經過電感器(45)與電容器(46)組成的低通濾波 器濾除高頻成份輸出純淨低頻正弦波交流電壓(如第2圖所示的 參考波形86)’再經過繼電器(5)輸出,經濾波裝置(6)濾除諧 波後提供給用戶設備繼續供電。 可以理解的是,上述實施例的詳細說明是為了闡述和解釋本 發明的原理而不是對本發明的保護範圍的限定。在不脫離本發明 的主曰的如長:下,本領域的一般技術人員通過對上述技術方案的 所教導的原理的理解可以在這些實施例基礎上做出修改,變化和 201001894 改動。因此本發明的保護範圍由所附的權利要求以及其等同來限 定。 【圖式簡單說明】 第1圖為本發明一較佳具體實施例的脫機式不間斷電源裝置 (一) 的結構方塊示意圖。 第2圖為本發明一較佳具體實施例的脫機式不間斷電源裝置 (二) 在電池裝置供電時各點的輸出波形示意圖。 第3圖為習知的脫機式不間斷電源裝置的結構方框示意圖。 【主要元件符號說明】 (1)電池裝置 (2)充電裝置 (3)直流/直流轉換裝置 (301)二極體 (302)濾波電容 (31)(32)初級端繞組 (33)第一功率開關 (34)第二功率開關 (35)(36)次級端繞組 (37)第三功率開關 (38)第四功率開關 (39)次級端繞組 (4)直流/交流轉換裝置 (41)(42)(43)(44)功率開關 (45)電感器 (46)電容器 (5)繼電器 (6)濾波裝置 (81)(82)(83)(84)(85)(86)參考波形 (4Γ )電池 (42’)直流/直流轉換裝置 (43,)直流/交流轉換裝置 (45’)繼電器 (44’)濾波器 11201001894 IX. Description of the Invention: [Technical Field] The present invention relates to an uninterruptible power supply device, and more particularly to an improved off-line uninterruptible power supply device (2). [Prior Art] An uninterruptible power supply (ups) is an AC power supply that can supply an alternating current instantaneously when the mains supply is not correct*. Figure 3 shows a simple off-line uninterruptible power supply unit. 'When the mains supply is just the mains, the mains is connected via the filter (44') directly through the relay (milk') to the output 'for the load connected to the output; When the mains is not normal (voltage is too high or too low, etc.), the UPS converts its internal battery (41,) to ^DC/straight (4), 0X7DC: (10)verter) to high straight voltage and reuse The DC/AC converter (43,) converts this high DC voltage into an AC (4) duty (45,) switching output. However, in the offline uninterruptible power supply unit shown in Figure 3, the output AC voltage is a square wave form. Such a square wave output will cause damage to the inductive load (such as a transformer or a motor). The sinusoidal AC voltage output, in the DC / AC converter in Figure 3, the device (43) towel to make the sine chord; ^ pulse width modulation technology, this will reduce the conversion efficiency, loss of too much power conversion. SUMMARY OF THE INVENTION The purpose of this month is to provide an improved off-line uninterruptible power supply, and to convert the DC voltage outputted by the DC power supply into a sinusoidal pulse width DC through a direct-clamp/DC conversion device. The DC/DC converter uses a 201001894 power conversion to convert the input voltage into a sinusoidal pulse width DC voltage, and outputs a sinusoidal pulse width AC voltage via a DC/AC converter. In order to achieve the above object of the present invention, the off-line uninterruptible power supply device (2) of the present invention comprises: a DC power supply for supplying a DC voltage during a power failure; a charging device that engages both ends of the DC power supply, Used for charging a DC power supply; a DC/DC converter having an input coupled to an output of the DC power source for converting an input DC voltage into a sinusoidal pulse width DC voltage output, the DC/DC converter A step-up transformer is included, the step-up transformer includes a primary end and a primary stage, the primary end includes two windings, and a first power switch and a second power switch respectively coupled to the two windings of the primary end, The stage includes two windings, and a third power switch and a fourth power switch respectively coupled to the two windings of the secondary end; a DC/AC conversion device whose input is coupled to the DC/DC converter The 'DC/AC conversion device includes four processor-controlled power switches and a low-pass filter; a relay coupled to the AC An output for switching between the mains supply and the uninterruptible power supply; and a processor for controlling the first and third power switches to alternately turn on and off the second and fourth power switches to be alternately turned on and off; 201001894 The DC/DC converter is controlled by the processor to convert the input DC voltage into a sinusoidal pulse width DC voltage, and output a sinusoidal pulse width AC voltage through the DC/AC conversion device, and then filter and wave output. Due to the adoption of the above technical solution, the offline uninterruptible power supply of the present invention (2) converts the rectified DC voltage into a sinusoidal pulse width DC voltage by using a DC/DC converter, and outputs a sine through the DC/AC conversion device. The pulse width AC voltage uses only one power conversion in the DC/DC converter, which reduces the conversion power loss and improves the operating efficiency of the whole machine. Another object of the present invention is to provide an improved off-line uninterruptible power supply that utilizes a discharge/return converter to return excess energy generated by a DC/AC converter to a DC power source for energy storage. In order to achieve the object of the present invention, the money/DC conversion device further includes a storage circuit including a step-down transformer, a capacitor and a diode, the step-down transformer including - primary end and - times The step end, wherein the primary end of the step-down transformer is the secondary end of the step-up transformer, and the secondary end of the step-down transformer includes a cymbal, the DC/straight scale scale is set to serve the WI-transfer _ or the neon/AC conversion device The excess energy generated is sent back to the DC power source for energy storage. Due to the adoption of the technical solution, the off-line uninterruptible power supply device (2) can charge the DC circuit of the energy storage circuit in the excess flow/DC conversion device when the excess energy generated by the load side or the DC/AC conversion device is _ __ To the purpose of energy saving. [Embodiment] 201001894 FIG. 1 is a block diagram showing the structure of an off-line uninterruptible power supply device (2) according to a preferred embodiment of the present invention. The off-line uninterruptible power supply device (2) of the preferred embodiment comprises: a battery device (1) for providing a DC voltage when the mains is powered off; a charging device (2) coupled to the battery device (1) Both ends are used to charge the battery device (1); a DC/DC conversion device (3) having an input coupled to the output of the battery device (1); a DC/AC conversion device (4) The input end is coupled to the output end of the DC/DC converter (3); a relay (5) is coupled to the AC output for switching the mains supply and the uninterruptible power supply; a filter device (6), An output terminal 'coupled to the off-line uninterruptible power supply device (2) is used to filter the output voltage to the customer premises device; and a processor for controlling the DC/DC conversion device (3) and the DC/ AC converter (4) and relay (5). More specifically, the DC/DC converter (3) includes a step-up transformer, and the push-pull type is composed of a primary side winding (31) (32) and a first power switch (33) and a second power switch (34). The primary end of the circuit has a conduction duty ratio of less than 5〇%, and is connected in parallel by the secondary end winding (35) (36) and the third power switch (37) and the fourth power switch (38). To convert the input DC voltage into a sinusoidal pulse width DC voltage output. When the load side or the AC/DC converter (4) is working to generate excess energy, the third power switch (37) and the fourth power switch (38) are turned on to send the 201001894^罝 back to the buck transformer II secondary end. The winding (10) is stored in the battery device (1) via the diode (view) and the wave valley (302). Since the spwM signal to be generated has a turn-on duty ratio greater than 50%, the first power switch (3)) and the second power switch (34) are each turned on and then passed through the step-up transformer secondary winding (35) (36). Output & If, regardless of conversion efficiency, the second power switch (37) and the fourth power switch (38) can be replaced by diodes for cost reduction. ^ The first power switch (33) and the third power switch can be set. (37) Synchronous conduction, the second power switch (34) and the fourth power switch (38) are turned on synchronously to reduce the voltage drop when the power switch is turned on, thereby improving efficiency. The DC/AC conversion device (4) comprises four power switches (41) (42) (43) (44) ' and low-pass filtering consisting of an inductor (45) and a capacitor (46) for filtering Device. Using the processor to control the power switch (41) (42) (43) (44) turn on and off 'power switch (41) (42) turn on to generate a positive half cycle SPWM voltage waveform, power switch (43) (44) turn on A negative half cycle SPWM voltage waveform is generated, and a sinusoidal pulse width DC voltage output from the DC/DC converter (3) is output as a sine wave pulse width AC through four power switches (41) (42) (43) (44). Voltage. The off-line uninterruptible power supply (UPS) of the present invention is not affected by the quality of the commercial power supply. When the utility power is normal, the offline uninterruptible power supply device (2) does not work, and the commercial power is directly output for the user equipment; when the utility power is cut off or the voltage is abnormal, the relay (5) is switched to the offline uninterruptible power supply. Power is supplied by the battery unit 1 to continue to provide pure AC power. When the utility power is cut off or the voltage is abnormal, the processor control relay (5) switches to the offline uninterruptible power supply. The battery device (1) outputs a DC voltage (such as the reference waveform (81) shown in Figure 201001894), which is supplied to the DC/DC converter (3) of the step-up transformer primary winding (31) (32) 'Processed The first power switch (33) and the second power switch (34) are alternately turned on to generate a high frequency pulse wave voltage (such as reference waveforms 82, 83 shown in FIG. 2). 'To avoid transformer saturation, limit the step-up transformer The primary duty winding (31) (32) has a maximum duty cycle of no more than 5〇%, is isolated and boosted to the secondary winding (35) (36) via a step-up transformer, and adds the waveforms to form a true sine wave pulse width. The frequency of the DC voltage (such as the reference waveform 84 shown in Figure 2) (the processor calculates the value of the mother-sine wave pulse width divided by two, as the first power switch (guid), the second power switch (34) The switch control signal), and then the sine wave pulse width high frequency DC voltage is generated by the DC/AC conversion device (4) to generate a low frequency (50Hz/60Hz) sine wave AC voltage, and the power switch (41) (42) is turned on to generate a positive half cycle. (Refer to the reference waveform 4142 shown in Figure 2) 'Power switch (43) (44) is turned on Generate a negative half cycle (refer to the reference waveform 4344 shown in Figure 2). The DC/AC converter (4) passes the sine wave pulse width high frequency DC voltage output from the DC/DC converter (3) through four power switches ( 41) (42) (43) (44) The output is a sinusoidal pulse width AC voltage (refer to the reference waveform 85 shown in Figure 2), and then passed through a low-pass filter composed of an inductor (45) and a capacitor (46). Filter out the high frequency component to output the pure low frequency sine wave AC voltage (such as the reference waveform 86 shown in Figure 2)' and then output it through the relay (5), and filter the harmonics through the filtering device (6) to provide power to the user equipment. . It is to be understood that the detailed description of the embodiments of the present invention are intended to illustrate and explain the principles of the invention Modifications, variations, and changes of 201001894 may be made by those of ordinary skill in the art in light of the understanding of the principles disclosed herein. The scope of the invention is therefore defined by the appended claims and their equivalents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the structure of an off-line uninterruptible power supply unit (1) according to a preferred embodiment of the present invention. 2 is a diagram showing an off-line uninterruptible power supply device according to a preferred embodiment of the present invention. (2) A schematic diagram of output waveforms at various points when the battery device is powered. Figure 3 is a block diagram showing the structure of a conventional off-line uninterruptible power supply unit. [Main component symbol description] (1) Battery device (2) Charging device (3) DC/DC converter device (301) Diode (302) Filter capacitor (31) (32) Primary winding (33) First power Switch (34) second power switch (35) (36) secondary winding (37) third power switch (38) fourth power switch (39) secondary winding (4) DC / AC conversion device (41) (42)(43)(44) Power Switch (45) Inductor (46) Capacitor (5) Relay (6) Filtering Device (81) (82) (83) (84) (85) (86) Reference Waveform ( 4Γ) Battery (42') DC/DC converter (43,) DC/AC converter (45') Relay (44') Filter 11