201001019 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種背光模組及其應用,且特別是有 關於用以提升背光均句性之背光模组及其在顯示裝置上的 應用。 【先前技術】 隨著資訊、通信產業不斷地推陳出新,帶動了液晶顯 示器(Liquid Crystal Display ; LCD)市場的蓬勃發展。液晶 頁示器具有南晝Μ、體積小、重量輕、低驅動電壓、與低 消耗功率等優點,因此被廣泛應用於個人數位助理 CPefscmal Digital Assistant; PDA)、行動電話、攝錄放影機、 筆記型電腦、桌上型顯示器、車用顯示器、及投影電視等 消費性通訊或電子產品。 目前市場上常見之液晶顯示器大部分為背光型液晶顯 不器,這類的液晶顯示器一般主要係由前端之液晶顯示面 板以及後端之背光模組所組成。因此,背光模組為液晶顯 示器中相當關鍵之零組件之一。背光模組可依照光源入射 位置的不同分成側光式入光(Edge Lighting)與直下式入光 (Bottom Lighting)兩種,通常係運用於各種資訊、通訊、消 費產品之中’藉以提供上述產品的液晶顯示器(Liquid201001019 IX. Description of the Invention: [Technical Field] The present invention relates to a backlight module and an application thereof, and particularly to a backlight module for improving backlight uniformity and application thereof to a display device . [Prior Art] With the continuous innovation of the information and communication industry, the market for liquid crystal display (LCD) has been booming. The LCD page has the advantages of south, small size, light weight, low driving voltage, low power consumption, etc., so it is widely used in personal digital assistant CPefscmal Digital Assistant; PDA), mobile phone, video recorder, Consumer communications or electronic products such as notebook computers, desktop displays, automotive displays, and projection televisions. Most of the liquid crystal displays currently on the market are backlight type liquid crystal displays. Such liquid crystal displays are generally composed of a liquid crystal display panel at the front end and a backlight module at the back end. Therefore, the backlight module is one of the most critical components in the liquid crystal display. The backlight module can be divided into two types: Edge Lighting and Bottom Lighting according to the incident position of the light source. It is usually used in various information, communication and consumer products. Liquid crystal display (Liquid
Crystal Display ’· LCD)—個面光源。 當背光模組為直下式入光時,一般背光模組可設有複 數個光源於一背板上,以形成一面光源。然而,若背光模 組的光源數目不足’亦即光源之間的間距過大,此時,在 5 201001019 光源之間的光強度較弱, 背光模組所提供之面光源不::易:而成雲紋^ 顯示品質。 勾進而影響液晶顯示器的 通常,為了改善上述問題’可增加光源與一光學膜片 ':光m或一面板之間的距離(亦即混光距離),以提升 升':光效果r紋情形。然而’雖,然增加混光距離可提 果,亦同時增加背光模組的厚度,因而不利於背 光杈組或液晶顯示器的薄型化發展。 【發明内容】 因此本發明之一方面係在於提供—種背光模組及其應 ,藉以均勻化背光模組所提供之背光源,並可減少雲紋 情形 t發明之又-方面係在於提供一種背光模組及其應 用藉以減少光源的設置數量和混光距離。 根據本發明之實施例,本發明之背光模組可包含反射 面、複數個光源、複數個第一反射區及複數個第二反射區。 此些光源設置於反射面上’第一反射區係形成於反射面 上,且分別位於光源之間,第二反射區形成於反射面上, 且分別位於第一反射區之間,其中第一反射區的表面反射 率係大於弟一反射區的表面反射率。 又,根據本發明之實施例,本發明之背光模組可應用 於液晶顯示裝置中。 因此,本發明之背光模組及其在液晶顯示裝置上的應 用可有效地提升背光均勻性,且可減少光源的設置數量和 6 201001019 混光距離,以達到降低成本和薄型化的功效。 【實施方式】Crystal Display ’·LCD)—a surface light source. When the backlight module is a direct-lit light, the backlight module can be provided with a plurality of light sources on a backplane to form a light source. However, if the number of light sources of the backlight module is insufficient, that is, the spacing between the light sources is too large, at this time, the light intensity between the light sources of 5 201001019 is weak, and the surface light source provided by the backlight module is not: Moire ^ display quality. In general, in order to improve the above problem, in order to improve the above problem, the light source and an optical film can be increased: the distance between the light m or a panel (ie, the light mixing distance) to enhance the rise: the light effect r pattern . However, although the increase of the light-mixing distance can be improved, the thickness of the backlight module is also increased, which is disadvantageous for the thinning development of the backlight unit or the liquid crystal display. SUMMARY OF THE INVENTION Therefore, one aspect of the present invention is to provide a backlight module and a solution thereof, thereby homogenizing the backlight provided by the backlight module, and reducing the cloud pattern. The backlight module and its application are used to reduce the number of light sources and the light mixing distance. According to an embodiment of the invention, the backlight module of the present invention may include a reflective surface, a plurality of light sources, a plurality of first reflective regions, and a plurality of second reflective regions. The light sources are disposed on the reflective surface. The first reflective regions are formed on the reflective surface and are respectively located between the light sources. The second reflective regions are formed on the reflective surface and are respectively located between the first reflective regions, wherein the first The surface reflectance of the reflective region is greater than the surface reflectance of the reflective region. Further, according to an embodiment of the present invention, the backlight module of the present invention can be applied to a liquid crystal display device. Therefore, the backlight module of the present invention and its application on the liquid crystal display device can effectively improve the uniformity of the backlight, and can reduce the number of light source installations and the 6201001019 light mixing distance, thereby achieving the effect of reducing cost and thinning. [Embodiment]
請參照第1圖,其繪示依照本發明之第一實施例之背 光模組與液晶顯示面板的剖面示意圖。本實施例之 組100較佳為直下式背光模.组,其相對於_:液晶顯示面板 200來設置,藉以形成一液晶顯示裝置。背光模組1〇〇可包 含有殼體110、複數個光源120、反射面13〇、複數個第一 反射區140、複數個第二反射區15〇及至少一光學膜片 160。光源120係設置於反射面130上,第一反射區14〇和 第二反射區150係形成於反射面13〇上,且第一反射區14〇 係分別位於光源丨20之間,其中第一反射區14〇的表面反 射率係大於第二反射區150的表面反射率,以增強光源12〇 之間的光強度,並提升背光模組100的背光均勻度。光學 膜月160設置於錢、120上,以進行不同目的之光學改善 動作。 口 如第1圖所示,本實施例之殼體11〇具有光出射口⑴ 和腔室112。光出射σ iu係用以出光,殼體u〇係由不透 光材質所製成,例如··塑化材料、金屬材料或上述材料之 組合。腔室112係形成於殼體110的内部空間,用以容置 此些光源120。腔室112的内側側壁U2a可塗佈有高反射 率材料,例如:銀、铭、金、鉻、鋼、鋼、錶、錄^、、 銖、铑、錫、#旦、鎢、錳、其上述任意組合之合金或耐黃 化且耐熱之白色反射漆料,用以反射—部分未正面射出的 光線至光出射口 111。 7 201001019 如第1圖所示,本實施例之此些光源120例如為:冷 陰極螢光燈管(Cold Cathode Fluorescent Lamp ; CCFL)、熱 陰極螢光燈(Hot Cathode Fluorescent Lamp ; HCFL)、發先 二極體(Light-Emitting Diode ; LED)或有機發光二極體 (Organic Light Emitting Diode ; OLED)等點光源或線光源。 此些光源120係排列設置於殼體110的腔室112中,用以 朝光出射口 111來出光。 如第1圖所示,本實施例之反射面13 0係形成於殼體 110之腔室112的底面上,且相對於光出射口 in,藉以反 射光源120的發光至光出射口 1丨丨來出光。在本實施例中, 反射面130可藉由塗佈不同反射率之材料的方式來形成, 其形成於腔室112的底面上。在一實施例中,亦可設置一 反射片(未繪示)於腔室112的底面上,以形成反射面13〇。 第一反射區140係分別位於光源12〇之間,第二反射區15〇 係分別位於第一反射區140之間,亦即光源12〇係分別靠 近於第二反射區15〇β第一反射區14〇和第二反射區15〇 較佳係分別以不同的材料來形成,以具有不同的表面反射 率,且第一反射區140的表面反射率係大於第二反射區15〇 的表面反射率,以增強光源12〇之間的光強度,減少雲紋 (Mura)情形(亦㈣光不均勻情形)。在本實施例巾,此些光 源120可為複數個冷_瑩光燈管(ccfl),㈣列設置於 反射面130上’此時,冑一反射區14〇係分別形成於冷陰 極螢光燈管之間,並形成有金屬反射材料,例如·銀、紹、 、鉻_銦、銥、鎳、鉑、銖、鍺、錫、鈕、鎢、錳、 〃述任思、、且合之合金,而第二反射區可分別形成於 8 201001019 冷陰極螢光燈管的下方,並形成有白色反射漆料,由於金 屬反射材料的反射率大於白色反射漆料的反射率,因而可 形成不同表面反射率的第一反射區14〇和第二反射區 150且第一反射區140的表面反射率係大於第二反射區 150的表面反射率。 在—實施例中,可貼附複數個金屬片(或鋁箔、銀箔) 於正面具有白色反射漆料的底面上,並分別位於光源 之間’以形成第一反射區140(亦即為金屬片),並相對地形 成第二反射區150(具有白色反射漆料的底面)於第一反射 區140之間。 如第1圖所示,本實施例之光學膜片160例如為:擴 散片、稜鏡片、增亮膜(BrightnessEnhancementFilm;BEF)、 射式增冗膜(Dual Brightness Enhancement Film ; DBEF)、 非夕層膜式反射偏光片(Diffused Reflective m DRpF)或上述之任意組合,其設置於光源⑽上,用 、對光源120所出光之光線進行不同目的之光學改善動作。 冨本貝把例之背光模組1 〇〇進行出光時,此些光源^ 所發出之光線可藉由反射面13Q來反射光線,並藉由表面 反射率較大的第一反射區14〇來補償光源丄之間的光強 度,以均勻化整體出光,並減少雲紋(Mura)情形。且由於 光源120之間的第一反射區14〇可提升光反射效果和均勻 整體出光’因而提升背光效| ’進而背光模植1〇〇可減少 光源120的没置數量。且由於背光模組1〇〇可無需增加光 源120的混光距離(例如光源12〇與光學膜片16〇之間的距 離)來均勻化發光,因而減少背光模組1〇〇的厚度,增加薄 9 201001019 型化效果。 因此’本實施例之背光模組100可提升均光效果,並 可減少光源120的設置數量,以降低成本。再者,本實施 例之背光模組100可減少背光模組1〇〇的厚度,並同時確 保混光效果。 請參照第2圖、第3圖、第4圖及第5圖,其繪示依 照本發明之第二實施例之背光模組的局部剖面示意^。以 下僅就本實施例與第一實施例之相異處進行說明,關於相 似處在此不再贅述。相較於第一實施例,第二實施例之背 光模組可更包含有複數個反射結構17Qa,其分別形成於光 源m之間,以進一步提升光反射效果。反射結構17如為 立體多邊結構,用以對應反射光源120之發光。反射結構 可-體成型於殼體或一反射片上。如第2圖所示,在 本實施例中,反射結構170a可形成於第—反射區i4〇a上, 並具有至少-高反射面171a和至少一擴散面ma,其^ 反射面!7la與反射面13G之間所形成的角度^係實質: 於150度,較佳係介於15〇度與9〇度之間,而擴散面_ 與反射面!30之間所形成的角度^係實f大於i5()度 散面172a較佳係平行於反射面13〇。亦即光源⑶所發 之光線對於高反射面17U的入射角度^’係實質小於 度,而光源120所發出之光線對於擴散面咖的入 θ2,係實質大於60度(如第1圖% _、 1 又 又(如第3圖所不)。由於反射結構17 係位於光源m的-側,因而高反射面 增進光線朝光出射口 又又汁可 之方向反射的效果,以提 】20之間的光強度,達到均 /,% 慫匀9先效果。而擴散面】72a之角度 201001019 可增進光擴散效果,達到混光效果。在本實施例中, =::〇a:如為梯形結構、多邊梯形結構或多階段金 、二7、'Q冓(如弟4圖所示)’因而可形成高反射面HU於 冓或夕邊梯形結構(或多階段金字塔形結構)的兩側 ,面,並可形成擴散面172a於其頂面。 如第5圖所示,在—實施例中,高反射面⑺&與擴散 面172a可分別形成(塗佈或貼附)不同材料,以具有不同的 表面反射率’且咼反射面ma的表面反射率可大於擴散面 172a的表面反射率,亦即高反射面⑺&可形成第一反射區 14〇a,而擴散面172a可形成第二反射區i5〇a。此時,高反 射面ma上可例如形成有金屬反射材料,以增加光反射效 果’而擴散面172a可例如形成有白色反射漆料,以增加光 擴散效果。因此’本實施例之背光模組更可藉由反射結構 170a來進一步提升均光和光擴散效果。 +請參照S 6圖,其繪示依照本發明之第三實施例之背 光模组的俯視示意圖。以下僅就本實施例與第一實施例之 =異處進行說明,關於相似處在此不再贅述q目較於第— 實施例,第三實施例之光源〗20b例如為複數個發光二極體 (led)或LED發光燈條(Light Bar),此日寺,光源、厲可設 置於第二反射區15〇b上’並形成第_反射區i楊於第二 反射區150b之間,以提升光源!鳥之間的光強度,因而 可均勻化背光模组的出光,並可減少光源12〇b的設置數量 及整體厚度’達到降低成本和薄型化之功效。 由上述本發明的實施例可知’本發明之背光模組及其 在液晶顯示裝置上的應用可有效地提升背光均勻性,並減 201001019 少雲紋情形,且可減少光源的設置數量和混光距離,以達 到降低成本和薄型化的功效。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,何熟習此技㈣,在不脫離本發明t精神和範 圍内’當可作各種之更動與潤飾’因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係依照本發明之第一實施例之背光模組與液晶 顯示面板的剖面示意圖。 第2圖、第3圖、第4圖及第5圖係繪示依照本發明 之第二實施例之背光模組的局部剖面示意圖。 第6圖係繪示依照本發明之第三實施例之背光模組的 俯視示意圖。 【主要元件符號說明】 0 1、0 2 :角度 1〇〇 :背光模組 111 :光出射口 112a :内側側壁 130 :反射面 0〆、0 2’ :入射角度 11 〇 :殼體 112 :腔室 120、12〇b :光源 140、140a、14〇a:第一反射區 150、150a、150b ··第二反射區160 :光學膜片 12 201001019 高反射面 170a :反射結構 171a : 172a :擴散面 200 ·液晶顯不面板Please refer to FIG. 1 , which is a cross-sectional view of a backlight module and a liquid crystal display panel according to a first embodiment of the present invention. The group 100 of the present embodiment is preferably a direct type backlight module set which is disposed relative to the liquid crystal display panel 200 to form a liquid crystal display device. The backlight module 1 can include a housing 110, a plurality of light sources 120, a reflective surface 13A, a plurality of first reflective regions 140, a plurality of second reflective regions 15A, and at least one optical film 160. The light source 120 is disposed on the reflective surface 130. The first reflective area 14〇 and the second reflective area 150 are formed on the reflective surface 13〇, and the first reflective area 14 is respectively located between the light source 丨20, wherein the first The surface reflectance of the reflective region 14〇 is greater than the surface reflectance of the second reflective region 150 to enhance the light intensity between the light sources 12〇 and to improve the backlight uniformity of the backlight module 100. The optical film month 160 is placed on the money and 120 to perform optical improvement actions for different purposes. Port As shown in Fig. 1, the casing 11 of the present embodiment has a light exit opening (1) and a chamber 112. The light exit σ iu is used to emit light, and the shell u is made of a light-impermeable material, such as a plasticized material, a metal material or a combination of the above materials. The chamber 112 is formed in an inner space of the housing 110 for accommodating the light sources 120. The inner side wall U2a of the chamber 112 may be coated with a high reflectivity material such as: silver, inscription, gold, chromium, steel, steel, watch, recording, bismuth, antimony, tin, #旦, tungsten, manganese, An alloy of any combination of the above or a yellowish-resistant and heat-resistant white reflective paint for reflecting a portion of the light that is not emitted from the front side to the light exit opening 111. 7 201001019 As shown in FIG. 1 , the light sources 120 of this embodiment are, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), and a hair source 120. A point source or a line source such as a Light-Emitting Diode (LED) or an Organic Light Emitting Diode (OLED). The light sources 120 are arranged in the chamber 112 of the housing 110 for emitting light toward the light exit opening 111. As shown in FIG. 1, the reflecting surface 130 of the present embodiment is formed on the bottom surface of the chamber 112 of the housing 110, and the light from the reflecting light source 120 is reflected to the light exit opening 1 with respect to the light exit opening in. Come out. In the present embodiment, the reflective surface 130 can be formed by coating materials of different reflectivities, which are formed on the bottom surface of the chamber 112. In one embodiment, a reflective sheet (not shown) may be disposed on the bottom surface of the chamber 112 to form a reflective surface 13A. The first reflective regions 140 are respectively located between the light sources 12A, and the second reflective regions 15 are respectively located between the first reflective regions 140, that is, the light source 12 is respectively adjacent to the second reflective region 15〇β first reflection. The region 14〇 and the second reflective region 15〇 are preferably formed of different materials to have different surface reflectivities, and the surface reflectance of the first reflective region 140 is greater than the surface reflection of the second reflective region 15〇. Rate to enhance the light intensity between the light source 12〇 and reduce the Mura condition (also (4) light unevenness). In the embodiment, the light source 120 may be a plurality of cold-light tubes (ccfl), and the (four) columns are disposed on the reflecting surface 130. At this time, the first reflecting area 14 is formed on the cold cathode fluorescent light. Between the lamps, metal reflective materials are formed, such as silver, sulphur, chrome-indium, bismuth, nickel, platinum, rhodium, iridium, tin, knob, tungsten, manganese, 〃 任 思, and The alloy, and the second reflective region can be formed under the 8 201001019 cold cathode fluorescent tube, respectively, and formed with a white reflective paint, which can be formed differently because the reflectivity of the metal reflective material is greater than the reflectivity of the white reflective paint. The first reflective region 14A and the second reflective region 150 of the surface reflectance and the surface reflectance of the first reflective region 140 are greater than the surface reflectance of the second reflective region 150. In an embodiment, a plurality of metal sheets (or aluminum foil, silver foil) may be attached to the bottom surface of the front side having a white reflective paint, and are respectively located between the light sources to form a first reflective area 140 (ie, a metal sheet). And forming a second reflective region 150 (a bottom surface having a white reflective paint) between the first reflective regions 140. As shown in FIG. 1 , the optical film 160 of the present embodiment is, for example, a diffusion sheet, a ruthenium sheet, a brightness enhancement film (BEF), a blister brightness enhancement film (Dual Brightness Enhancement Film; DBEF), and a non-slip layer. A Diffused Reflective m DRpF or any combination thereof is disposed on the light source (10) for performing optical improvement operations for different purposes for the light emitted by the light source 120. When the backlight module 1 of the example of the present invention emits light, the light emitted by the light sources ^ can be reflected by the reflecting surface 13Q and compensated by the first reflecting area 14〇 having a large surface reflectance. The light intensity between the light sources to homogenize the overall light output and reduce the Mura condition. Moreover, since the first reflective region 14 between the light sources 120 can enhance the light reflection effect and uniform overall light emission, thereby improving the backlight effect, and thus backlighting, the number of light sources 120 can be reduced. Moreover, since the backlight module 1〇〇 can be used to uniformize the light emission without increasing the light mixing distance of the light source 120 (for example, the distance between the light source 12〇 and the optical film 16〇), the thickness of the backlight module 1〇〇 is reduced, and the thickness is increased. Thin 9 201001019 Modeling effect. Therefore, the backlight module 100 of the present embodiment can improve the uniform light effect, and can reduce the number of the light sources 120 to reduce the cost. Furthermore, the backlight module 100 of the present embodiment can reduce the thickness of the backlight module 1〇〇 while ensuring the light mixing effect. Referring to FIG. 2, FIG. 3, FIG. 4 and FIG. 5, a partial cross-sectional view of a backlight module in accordance with a second embodiment of the present invention is shown. Only the differences between the present embodiment and the first embodiment will be described below, and the similarities will not be described herein. Compared with the first embodiment, the backlight module of the second embodiment may further include a plurality of reflective structures 17Qa formed between the light sources m to further enhance the light reflection effect. The reflective structure 17 is a three-dimensional polygonal structure for corresponding to the illumination of the reflected light source 120. The reflective structure can be formed on the housing or a reflective sheet. As shown in Fig. 2, in the present embodiment, the reflection structure 170a may be formed on the first reflection region i4〇a and have at least a high reflection surface 171a and at least one diffusion surface ma, which are reflection surfaces! The angle formed between 7la and the reflecting surface 13G is substantially: at 150 degrees, preferably between 15 degrees and 9 degrees, and the diffusing surface _ and the reflecting surface! The angle formed between 30 is greater than i5 () degrees. The surface 172a is preferably parallel to the reflective surface 13A. That is, the incident angle of the light emitted by the light source (3) to the highly reflective surface 17U is substantially less than the degree, and the light emitted by the light source 120 is substantially greater than 60 degrees for the diffusion θ2 (as shown in Fig. 1% _ 1 (also as shown in Fig. 3). Since the reflective structure 17 is located on the - side of the light source m, the highly reflective surface enhances the effect of light reflecting toward the light exit opening and in the direction of the juice. The light intensity between the two reaches the average /, % 怂 uniform 9 first effect. The diffusion surface 72a angle 201001019 can enhance the light diffusion effect and achieve the light mixing effect. In this embodiment, =:: 〇a: as a trapezoid Structure, polygonal trapezoidal structure or multi-stage gold, two 7, 'Q冓 (as shown in Figure 4)' thus can form a high-reflection surface HU on either side of the 梯形 or 夕-sided trapezoidal structure (or multi-stage pyramidal structure) a surface, and a diffusion surface 172a may be formed on the top surface thereof. As shown in Fig. 5, in the embodiment, the high reflection surface (7) & and the diffusion surface 172a may respectively form (coat or attach) different materials to Has a different surface reflectance 'and the surface reflectance of the reflective surface ma can be greater than The surface reflectance of the surface 172a, that is, the high reflection surface (7) & can form the first reflection region 14A, and the diffusion surface 172a can form the second reflection region i5a. At this time, the high reflection surface ma can be formed, for example. There is a metal reflective material to increase the light reflection effect', and the diffusion surface 172a can be formed, for example, with a white reflective paint to increase the light diffusion effect. Therefore, the backlight module of the embodiment can be further improved by the reflective structure 170a. Light and light diffusion effect. + Please refer to FIG. 6 for a top view of a backlight module according to a third embodiment of the present invention. The following is only a description of the difference between the present embodiment and the first embodiment. The light source 〗 20b of the third embodiment is, for example, a plurality of light-emitting diodes (LEDs) or LED light strips (Light Bars), which is a light source. , can be disposed on the second reflective region 15 〇 b ' and form a _ reflective region i between the second reflective region 150 b to enhance the light source! The light intensity between the birds, thus uniformizing the backlight module Light out, and reduce the setting of the light source 12〇b The quantity and the overall thickness can achieve the effect of reducing cost and thinning. It can be seen from the above embodiments of the present invention that the backlight module of the present invention and its application on the liquid crystal display device can effectively improve the uniformity of the backlight and reduce the number of 201001019. In the case of moiré, and the number of light sources and the light-mixing distance can be reduced to achieve the effect of reducing cost and thinning. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and is familiar with the technology (4) The scope of protection of the present invention is defined by the scope of the appended claims, and the scope of the invention is defined by the scope of the appended claims. The above and other objects, features, advantages and embodiments of the invention will become more apparent and understood. schematic diagram. 2, 3, 4, and 5 are partial cross-sectional views showing a backlight module in accordance with a second embodiment of the present invention. Figure 6 is a top plan view showing a backlight module in accordance with a third embodiment of the present invention. [Main component symbol description] 0 1, 0 2 : Angle 1〇〇: backlight module 111: light exit port 112a: inner side wall 130: reflective surface 0〆, 0 2': incident angle 11 〇: housing 112: cavity Room 120, 12〇b: light source 140, 140a, 14〇a: first reflection area 150, 150a, 150b · second reflection area 160: optical film 12 201001019 high reflection surface 170a: reflection structure 171a: 172a: diffusion Face 200 · LCD display panel
1313