200949200 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種電子裝置設置之方位判斷技術,尤 其是指一種辨識導航裝置設置之方位辨識方法以及使用該 方法之導航裝置。 【先前技術】 如圖一所示,該圖係為習用之全球定位(global position system, GPS)與慣性導航(inertia navigation system)系統示意圖。該在該習用技術中,該全球定位與慣 性導航系統10係固定設置於一交通工具(例如:車輛)内之 儀表板11上。由於圖一之系統係固定安裝於車輛内,因此 對於使用者在空間的利用上比較沒有機動性。近年來,隨 著慣性原件價格的平民化,未來全球定位與慣性導航系統 已經逐漸普及在PDA或手機之中。 由於PDA或手機等可攜式電子產品的體積小攜帶方 便,因此使用者可以隨著自己喜好安裝於車内的任意位 置。然而在縱向與橫向的使用上需要克服幾個問題,第一 為判斷旋轉方位,以調整影像顯示方向。第二為當全球定 位與慣性導航系統之使用方向改變時,全球定位與慣性導 航系統中的慣性導航模組中的加速度及角速度偵測軸向也 與原來的大地參考座標產生了一座標轉換關係,此時若不 作任何座標轉換修正,慣性導航模組將無法正常工作。 判斷系統工作方位之技術,目前有被應用在手持式遊 5 200949200 * 戲機上,例如:美國專利US. Pat. Ν0· 6, 908, 388專利中描 述一個3D空間的遊戲環境’包含一個外殼可供使用者抓 取,一個傾斜感測器在外殼之内,觀測點座標判斷機制跟 . 隨著傾斜感測器的輪出訊號而判斷觀測座標。一個遊戲影 • 像產生處理機制,根據所判定的座標來產生遊戲影像。而 該遊戲系統以最小的處理負擔,可以提供一個使用者感覺 3D遊戲空間隨遊戲裝置的傾斜而變化。另外在美國專利 ❹ US. Pat. No· 7, 158, 118專利中也描述一包括雙軸陀螺儀及 加速度計以及處理單元之3D指示裝置,其係利用第一參 考面(例如3D指榡裝置之本體)感測到之運動資訊轉換到 第二參考面(例如,使用者參考面),主要是用來消除了手持 此3D指標裝置之角度傾斜效應。簡單來說,即是一種使用 慣性元件姿態偵測再利用座標轉換去消除傾斜的影響。然 而在剛述之習用技術中,對於如何克服前述之兩個問題, 並未有具體而有致之作法。 ‘〇 【發明内容】 本發明提供一種設置方位辨識方法,其係應用在可攜 楚導航裝,中。讀方法主要是根據加速度計在第一方向及 A =方向I測到的加速度值來判定該導航裝置之設置方位 ,縱1或橫向,迷進行相對應之座標轉換,使導航裝置不 叉工作方位影響維持正常之工作。 本發明更提供一種導航裴置,其係利用前述之設置方 =辨識方法來_該導航裝置之設置方㈣及彳貞測導航裝 之所在座標位置以提供使用者位置以及交通資訊。 6 200949200 . 在—實施例中,本發明提供-種設置方位辨識太沐 其係包括有下列步驟:提供—導航裝置,其係具有向 感測模組以及感測一第一方向加速度之第一二 .帛二加速度計;揭取該導航裝 .、σ、又汁以及該第二加速度計所輸出之加速产 值’以及根據該第一加速度計以及該第二加速度計所輸= 之加速度值與-辨識資訊相比較以判斷該導航裝置之設置 ❹方位’其中該辨識資訊係為當導航裝置被轉向到特定役置 綠時該第-加速度計與該第二加速度計理論上應該感測 到的加速度值。 在另一實施例中,本發明更提供一種導航裝置包括: -慣性導航單元,其係具有―第—加速度計、—第二加速 度計、一第三加速度計以及—角速度感測模組;一衛星訊 號接收單元,以接收一衛星訊號;以及一訊號處理單元, 其係與該慣性導航單元以及該衛星訊號接收單元相偶接, ❹該訊號處理單元係可根據該第一加速度計以及該第二加速 度計所輸出之加速度值與一辨識資訊相比較以判斷該導航 裝置之設置方位以及根據該慣性導航單元以及該衛星訊號 輸出一座標位置,其中該辨識資訊係為當導航裝置被轉向 到特定設置方位時該第一加速度計與該第二加速度計理論 上應該感測到的加速度值。 在另一實施例中,本發明更提供一種導航裝置,其係 可設置於一交通工具内,並根據使用需要調整其設置方 位,該導航裝置包括:一慣性導航單元,其係具有一第一 加速度計、一第二加速度計、一第三加速度計以及一角速 7 200949200 度感測模組;一衛星訊號接收單元,以接收一衛星訊號; -訊,處理單元’其係與該慣性導航單元以及該衛星訊號 接收單元相偶接,該訊號處理單元係可根據該第一加速度 計以及該第二加速度計所輸出之加速度值與一辨識資訊相 比較以判斷該導航裝置之設置方位以及根據該慣性導航單 =及該衛星訊號輸出-座標位置,其中該辨識資訊係為 =導航敦置被轉向到特定設置方位時該第—加速度計與該 ❹弟一加迷度計理論上應該感測到的加速度值;一資料庫, $係與該訊號處理單元相偶接,該資料庫内係建立有地圖 路交通資訊;以及—顯示裝置,其係與該訊號處理單 凡目連接,該顯示裝置係顯示該資料庫所提供之資訊。 【貧掩方式】200949200 IX. Description of the Invention: [Technical Field] The present invention relates to an orientation determination technique for setting an electronic device, and more particularly to a method for identifying an orientation of a navigation device and a navigation device using the same. [Prior Art] As shown in FIG. 1, the figure is a schematic diagram of a conventional global position system (GPS) and inertial navigation system. In the conventional technique, the global positioning and inertial navigation system 10 is fixedly mounted on the dashboard 11 in a vehicle (e.g., a vehicle). Since the system of Fig. 1 is fixedly mounted in the vehicle, there is no maneuverability for the user to utilize the space. In recent years, with the civilianization of inertial original prices, the future global positioning and inertial navigation systems have gradually become popular among PDAs or mobile phones. Since portable electronic products such as PDAs or mobile phones are small in carrying capacity, users can install them anywhere in the car as they like. However, there are several problems to be overcome in the use of the vertical and horizontal directions. The first is to determine the rotational orientation to adjust the image display direction. The second is that when the direction of use of global positioning and inertial navigation system changes, the acceleration and angular velocity detection axes in the inertial navigation module in the global positioning and inertial navigation system also have a standard conversion relationship with the original geodetic reference coordinates. At this time, if no coordinate conversion correction is made, the inertial navigation module will not work properly. The technique for judging the working orientation of the system is currently applied to the handheld game 5 200949200 *, for example, the US Patent No. US Pat. No. 6, 908, 388 describes a 3D space game environment 'contains a casing It can be grasped by the user. A tilt sensor is inside the casing, and the coordinate judgment mechanism of the observation point is followed. The observation coordinate is judged by the rotation signal of the tilt sensor. A game shadow • image generation processing mechanism that generates game images based on the determined coordinates. The game system, with minimal processing burden, can provide a user with the perception that the 3D game space varies with the tilt of the gaming device. A 3D indicating device including a dual-axis gyroscope and an accelerometer and a processing unit is also described in the U.S. Patent No. 7,158,118, which utilizes a first reference surface (for example, a 3D fingerprinting device). The sensed motion information is converted to a second reference surface (eg, a user reference plane), primarily to eliminate the angular tilt effect of the handheld 3D indicator device. To put it simply, it is the use of inertial component attitude detection to reuse coordinate transformation to eliminate the effects of tilt. However, in the conventional techniques just described, there is no specific and specific way to overcome the above two problems. ‘〇 [Summary of the Invention] The present invention provides a method for setting azimuth identification, which is applied to a portable navigation device. The reading method mainly determines the setting orientation of the navigation device according to the acceleration value measured by the accelerometer in the first direction and the A= direction I, and the vertical or horizontal direction, the fan performs the corresponding coordinate conversion, so that the navigation device does not work. Affect the maintenance of normal work. The present invention further provides a navigation device that uses the aforementioned setting method = identification method to set the navigation device (4) and the coordinate position of the navigation device to provide user location and traffic information. 6 200949200. In an embodiment, the present invention provides a set orientation recognition method comprising the steps of: providing a navigation device having a first sensing acceleration module and sensing a first direction acceleration 2. The second accelerometer; extracting the acceleration output value of the navigation device, the σ, the juice and the second accelerometer, and the acceleration value according to the first accelerometer and the second accelerometer - the identification information is compared to determine the setting of the navigation device, wherein the identification information is that the first accelerometer and the second accelerometer should theoretically be sensed when the navigation device is turned to a particular service green Acceleration value. In another embodiment, the present invention further provides a navigation device comprising: - an inertial navigation unit having a "first" accelerometer, a second accelerometer, a third accelerometer, and an angular velocity sensing module; a satellite signal receiving unit for receiving a satellite signal; and a signal processing unit coupled to the inertial navigation unit and the satellite signal receiving unit, wherein the signal processing unit is responsive to the first accelerometer and the first The acceleration value output by the two accelerometers is compared with an identification information to determine a set orientation of the navigation device and output a target position according to the inertial navigation unit and the satellite signal, wherein the identification information is when the navigation device is turned to a specific The first accelerometer and the second accelerometer should theoretically sense the acceleration value when the orientation is set. In another embodiment, the present invention further provides a navigation device that can be disposed in a vehicle and adjusts its orientation according to the needs of use. The navigation device includes: an inertial navigation unit having a first An accelerometer, a second accelerometer, a third accelerometer, and an angular rate 7 200949200 degree sensing module; a satellite signal receiving unit to receive a satellite signal; - the signal processing unit 'the system and the inertial navigation unit The signal processing unit is coupled to the satellite signal receiving unit, and the signal processing unit is configured to compare the acceleration value output by the first accelerometer and the second accelerometer with an identification information to determine a positioning orientation of the navigation device and according to the Inertial navigation single = and the satellite signal output - coordinate position, wherein the identification information is = the navigational accelerometer is turned to a specific set orientation, the first accelerometer and the younger one plus the meter should theoretically be sensed Acceleration value; a database, $ is coupled with the signal processing unit, the database is built with map traffic information; And - a display device, which is connected to the signal processing system where a single head, the display device displays based information provided by the library. [Poor mode]
為使貴審查委員能對本發明之特徵、目的及功能有 一步的認知與瞭解,下文特將本發明之裝置的相關細 邛結構以及設計的理念原由進行說明,以使得審查委員可 以了解本發明之特點,詳細說明陳述如下: 靖參閱圖二所示,該圖係為本發明之導航裝置實施例 方塊示意圖。該導航裝置2,其係可設置於一交通工具内 ^例如:輪型車輛)内’該導航裝置2主要包括有一慣性 航單元 20(inertia navigation system,INS)、一衛星 訊號接收單元 21(global position system,GPS)以及一 4號處理單元22。該慣性導航單元20,其係可量測空間中 二轴之如速度狀態以及該導航裝置的轉動狀態。在本實施 8 200949200 例中,該慣性導航單元20具有一第一加速度計1 ’其係 可偵測第一軸(X軸)之加速度、一第二加速度計202,其係 可偵測第三軸(Z轴)之加速度、一第三加速度計203 ’其係 可偵測第二軸(Y軸)之加速度以及一角速度感測模組 204,其係可以感測第一轴(X轴)之轉速以及弟二轴(Z轴) 之轉速。 雖然圖二中之實施例是利用三個加速度感測器201、 ❹ 202與203,但是由於現在半導體製程的進步’亦可選擇整 合三個加速度計以感測三軸之運動狀態的單一加速度計來 實施。這是熟悉此項技術之人根據本發明所揭露之技術, 可以輕易置換的。其中該第二轴(Y軸)之加速度係代表 交通工具之前進或後退之加速度,而第一軸轉速大小係可 代表交通工具傾角之角速度大小,第三軸(Z轴)轉速大小 則可代表該交通工具左右轉向之角速度大小。In order to enable the reviewing committee to have a one-step understanding and understanding of the features, objects and functions of the present invention, the related detailed structure of the device of the present invention and the concept of the design are explained below so that the reviewing committee can understand the present invention. The detailed description is as follows: As shown in FIG. 2, the figure is a block diagram of an embodiment of the navigation device of the present invention. The navigation device 2 can be disposed in a vehicle (for example, a wheeled vehicle). The navigation device 2 mainly includes an inertia navigation system (INS) and a satellite signal receiving unit 21 (global). Position system, GPS) and a processing unit 22. The inertial navigation unit 20 is capable of measuring a two-axis speed state and a rotational state of the navigation device in the space. In the embodiment of the present invention, the inertial navigation unit 20 has a first accelerometer 1 'which can detect the acceleration of the first axis (X axis) and a second accelerometer 202, which can detect the third The acceleration of the axis (Z-axis), a third accelerometer 203' can detect the acceleration of the second axis (Y-axis) and an angular velocity sensing module 204, which can sense the first axis (X-axis) The speed and the speed of the second axis (Z axis). Although the embodiment in FIG. 2 utilizes three acceleration sensors 201, ❹ 202 and 203, due to advances in semiconductor manufacturing, it is also possible to select a single accelerometer that integrates three accelerometers to sense the motion state of the three axes. To implement. This is a technique that is familiar to those skilled in the art and can be readily substituted in accordance with the teachings of the present invention. The acceleration of the second axis (Y axis) represents the acceleration of the vehicle forward or backward, and the first axis rotation speed can represent the angular velocity of the vehicle inclination, and the third axis (Z axis) rotation speed can represent The angular velocity of the left and right steering of the vehicle.
如圖三A所示,該圖係為本發明角速度感測模組第一 .Θ 實施例方塊示意圖。在本實施例中,該角速度感測模組204 • 係由兩個陀螺儀感測器2041與2042所構成以分別感測X 軸以及Z軸之轉速。利用陀螺儀感測器感測角速度之技術 係屬於習用技術,在此不做贅述。如圖三B所示,該圖係 為本發明角速度感測模組第二實施例方塊示意圖。在本實 施例中,該角速度感測模組204具有一陀螺儀感測器2043 以感測X軸之轉速。至於Z軸之轉速係由一差分模組2044 所負責,其係具有一對加速度計2051與2052,且相距一 距離。藉由該對加速度計2051與2052感測同一軸向之一 加速度變化’利用差分得到第一轴之轉動狀態。如圖四所 200949200 • 示,該圖係為本發明之角速度感測說明示意圖。在圖示中, 當加速度計2051以及加速度計2052所感測之第一軸(X軸) 加速度訊號積分便可得到位移(S!,S2),然後推算,S2 之差值,由於加速度計2051以及加速度計2052相差一距 離h,所以可藉由計算得到該第三轴(Z軸)之角度0變化。 請參閱圖三C所示,該圖係為本發明之角速度感測模 組第三實施例示意圖。在本實施例中,該角速度感測模組 q 204係由兩個差分模組2045與2046所構成,每一個差分 模組2045或2046具有一對加速度計2053與2054以及2055 與2056,每一對加速度計2053與2054或2055與2056相 距一距離。其中差分模組2045係可藉由感測同一軸向(Z 軸)之加速度變化,以利用差分算出第一軸(X軸)的轉速, 而另一差分模組2046係可藉由感測同一軸向(X轴)之加速 度變化,以利用差分算出則可量測第三轴(Z轴)之轉速。 如圖三D所示,該圖係為本發明之角速度感測模組第 〇 四實施例示意圖。在本實施例中,該角速度感測模組204 具有一第一輔助加速度計2047以及一第二辅助加速度計 2048。請參閱圖三D與圖二所示,其中,該第一輔助加速 度計2047,其係與該第一加速度計201相距一距離,藉由 該第一加速度計201以及該第一輔助加速度計2047所感測 之一加速度變化,利用差分以得到第三轴(Z轴)之轉動狀 態。該第二輔助加速度計2048,其係與該第二加速度計202 相距一距離,藉由該第二加速度計202以及該第二辅助加 速度計2048感測之一加速度變化,利用差分以得到第一軸 (X軸)之轉動狀態。 200949200 • 再回到圖二所示,該衛星訊號接收單元21 ,以接收一 衛星訊號。該衛星訊號接收單元21係屬全球定位系統之習 用技術元件,在此不作贅述。該訊號處理單元22,其係與 該慣性導航單元2 0以及該衛星訊號接收單元21相偶接, 該訊號處理單元22係可根據該第一加速度計2〇1以及該第 二加速度計202所輸出之加速度值與一辨識資訊相比較以 判斷該導航裝置2之設置方位以及根據該慣性導航單元2〇 以及該衛星訊號輸出一座標位置。 〇 接續來說明該訊號處理單元之運作方法,如圖五所 示,該圖係為本發明之設置方位辨識方法流程示意圖。該 方法主要包括有下列步驟:首先進行步驟40,擷取第一加 速度計以及第一加速度計所輸出之加速度值。第一加速度 計可以感測X軸方向之加埠度,第二加速度計可以感測z 軸方向之加速度。再回到圖五所示,接著進行步驟41,根 據該第一加速度計以及該第二加速度計所輸出之加速度值 ❹ 與一辨識資訊相比較以判斷該導航裝置之設置方位。如圖 二所示,該辨識資訊係可儲存於一記憶單元23中,該記憶 單元23係與該訊號處理單元22相偶接。一般而言,該記 憶單元23係可選擇為習用之記憶體元件,其係屬於習用技 術在此不作贅述。 由於導航裝置2之擺設方位會使得第一加速度計以及 第二加速度計所感測到的加速度產生變化。例如圖六A所 示’ s玄圖係為導航裝置2直立狀態示意圖。圖二之方塊係 設置於圖六A中之導航裝置之殼體26内,在圖六A中僅以 標號來示明各個加速度計。在圖六A之狀態下,由於重力 200949200 G的作用,因此該第二加迷声 度。反之,如圖六B所示,十:可以感測到重力加速 音、圖。當導航裝置經由圖^導航I置橫向設置示 A於笛一 * 由順時針翻轉至圖六B的 狀態時,由於第一加速度計 ^ 位改變,所以此時感測到重“:加速度計202之方 201,其感測到的重力力口逮度、又的為第一加速度計 經由圖六a經由逆時針d另外’當導航裝置 加速度計_二加速狀態時’由於第一 刀 ^ ^ 又口十2〇2之方位改變,所以此時 藏 + ““ 加逮度計201,其感測到的重 力加速度值為負值。需_的是,軸前軌重力加速度As shown in FIG. 3A, the figure is a block diagram of the first embodiment of the angular velocity sensing module of the present invention. In this embodiment, the angular velocity sensing module 204 is configured by two gyro sensors 2041 and 2042 to sense the rotational speeds of the X-axis and the Z-axis, respectively. The technique of sensing the angular velocity using the gyro sensor is a conventional technique and will not be described here. As shown in FIG. 3B, the figure is a block diagram of a second embodiment of the angular velocity sensing module of the present invention. In the present embodiment, the angular velocity sensing module 204 has a gyro sensor 2043 to sense the rotational speed of the X-axis. The rotational speed of the Z-axis is the responsibility of a differential module 2044 having a pair of accelerometers 2051 and 2052 at a distance. The pair of accelerometers 2051 and 2052 senses one of the same axial acceleration changes' using the difference to obtain the rotational state of the first axis. As shown in Figure 4, 200949200, this figure is a schematic diagram of the angular velocity sensing of the present invention. In the figure, when the first axis (X-axis) acceleration signal sensed by the accelerometer 2051 and the accelerometer 2052 is integrated, the displacement (S!, S2) can be obtained, and then the difference between S2 is obtained, due to the accelerometer 2051 and The accelerometers 2052 are separated by a distance h, so that the angle 0 change of the third axis (Z-axis) can be calculated by calculation. Referring to Figure 3C, the figure is a schematic view of a third embodiment of the angular velocity sensing module of the present invention. In this embodiment, the angular velocity sensing module q 204 is composed of two differential modules 2045 and 2046. Each differential module 2045 or 2046 has a pair of accelerometers 2053 and 2054 and 2055 and 2056, each of which Accelerometers 2053 and 2054 or 2055 and 2056 are separated by a distance. The differential module 2045 can calculate the rotational speed of the first axis (X-axis) by using the difference in the same axial direction (Z-axis), and the other differential module 2046 can sense the same The acceleration of the axial direction (X-axis) is measured to calculate the rotational speed of the third axis (Z-axis) by using the difference calculation. As shown in FIG. 3D, the figure is a schematic diagram of a fourth embodiment of the angular velocity sensing module of the present invention. In the embodiment, the angular velocity sensing module 204 has a first auxiliary accelerometer 2047 and a second auxiliary accelerometer 2048. Referring to FIG. 3D and FIG. 2 , the first auxiliary accelerometer 2047 is at a distance from the first accelerometer 201 , and the first accelerometer 201 and the first auxiliary accelerometer 2047 . One of the acceleration changes is sensed, and the difference is used to obtain the rotation state of the third axis (Z axis). The second auxiliary accelerometer 2048 is at a distance from the second accelerometer 202. The second accelerometer 202 and the second auxiliary accelerometer 2048 sense one of the acceleration changes, and use the difference to obtain the first The rotation state of the shaft (X axis). 200949200 • Returning to Figure 2, the satellite signal receiving unit 21 receives a satellite signal. The satellite signal receiving unit 21 is a conventional technical component of the global positioning system and will not be described herein. The signal processing unit 22 is coupled to the inertial navigation unit 20 and the satellite signal receiving unit 21, and the signal processing unit 22 can be based on the first accelerometer 2〇1 and the second accelerometer 202. The output acceleration value is compared with an identification information to determine the set orientation of the navigation device 2 and to output a target position according to the inertial navigation unit 2 and the satellite signal.接 Continuing to illustrate the operation method of the signal processing unit, as shown in FIG. 5, the figure is a schematic flow chart of the method for setting the orientation of the present invention. The method mainly includes the following steps: First, step 40 is performed to obtain the acceleration values output by the first accelerometer and the first accelerometer. The first accelerometer senses the twist in the X-axis direction and the second accelerometer senses the acceleration in the z-axis direction. Returning to FIG. 5, step 41 is performed to determine the set orientation of the navigation device based on the acceleration value ❹ outputted by the first accelerometer and the second accelerometer compared with an identification information. As shown in FIG. 2, the identification information can be stored in a memory unit 23, which is coupled to the signal processing unit 22. In general, the memory unit 23 can be selected as a conventional memory component, which is not a part of the prior art. Due to the orientation of the navigation device 2, the acceleration sensed by the first accelerometer and the second accelerometer changes. For example, the 's' view shown in Fig. 6A is a schematic diagram of the navigation device 2 in an upright state. The block of Fig. 2 is disposed within the housing 26 of the navigation device of Fig. 6A, and the various accelerometers are only indicated by reference numerals in Fig. 6A. In the state of Fig. 6A, the second fascination is due to the effect of gravity 200949200 G. On the contrary, as shown in Fig. 6B, ten: the gravity acceleration sound and the map can be sensed. When the navigation device is set to the horizontal direction by means of the navigation device I, the clock is flipped to the state of FIG. 6B, since the first accelerometer is changed, the weight is sensed at this time: the accelerometer 202 The square 201, the sensed gravity force port capture, and again the first accelerometer via Figure 6a via counterclockwise d additionally 'when the navigation device accelerometer _ two acceleration state' due to the first knife ^ ^ The position of the mouth of the mouth is changed, so at this time, the Tibetan + "" is added to the meter 201, and the sensed gravitational acceleration value is a negative value. The _ is the front axle gravity acceleration
為説明實關’但這切於車輛在平坦道路上行駛而言的 情況下(亦即車輛傾角為零度)。如果當車輛有具有傾角 時,例如.上下坡或者是上下交流道時,則所感測到的加 速度值應該為重力加速度的三角函數關係值。這是熟悉此 項技術之人,根據本發明所揭露之技術可以瞭解的。 再回到圖五所示,由於導航裝置方位改變時第一加速 度計與第二加速度計所镇測到的加速度值會有變化,因此 在步驟41中可以將所偵測到的值與事先存在記憶單元中 的辨識資訊進行比對’進而判斷出該導航裝置所處之設置 方位狀態。該辨識資訊係為當導航裝置被轉向到特定設置 方位時該第一加速度計與該第二加速度計理論上應該感測 到的加速度值,例如:圖六A的直立狀態時,則感測到重 力加速度為第二加速度計202 ’如果是圖六B之狀態時, 則感測到重力加速度的為第一加速度計201 ’其感測到的 重力加速度值為正值。如果是圖六C的狀態,.則感測到重 12 200949200 力加速度的為第一加速度計201,其感測到的重力加速度 值為負值。因此經由步驟41的比對之後,即可立即判斷出 該導航裝置所設置之方位。最後,當判斷出導航裝置所設 置之方位後(如圖六A、圖六B或者是圖六C的狀態),再 進行步驟42,進行重新轉換慣性導航單元之座標軸方向。 當導航裝置不管是由直立設置轉成橫向設置或者是由 橫向設置轉成直立設置時,其内之慣性導航單元所感測到 0 的物理量對應到絕對座標系統時會產生改變。這是因為原 先慣性導航單元中負責偵測交通工具轉向以及傾角的感測 器會隨著導航裝置位置之改變而產生變化。例如在圖六A 中,其第一軸X’係與絕對座標系90的第一轴X—致,而 所測得關於第一軸的轉速ω X’代表車輛的傾角,另外,第 三軸ζ’係與絕對座標系90的第三軸Ζ —致,而所得關於 第三軸的轉速ωζ’代表車輛的轉向。可是當轉至圖六Β之 狀態時,原先的第一轴X’則會與絕對座標系的第三轴Ζ @ 一致,因此所偵測到的轉速ωχ’則代表車輛的轉向而非原 先的車輛傾角。同樣地,原先的第三轴ζ’則與絕對座標 系90的第一軸X —致,所以所偵測到的轉速ωζ’得代表 車輛的傾角而非原先的轉向角度。 因為有上述的變化,因此為了維持導航裝置正常運 作,因此需要進行步驟42,將進行重新轉換慣性導航單元 之座標軸方向。亦即,系統會根據導航裝置的設置方位, 而對感測到的轉動狀態給予不同的判斷。例如:以圖三A 的角速度感測模組為例,當導航裝置處於圖六A之狀態 時,陀螺儀感測器2041所偵測到的轉速係代表絕對座標系 13 200949200 . 90中的x軸轉速,也代表交通工具的傾角,而陀螺儀感測 器2042所偵測到的轉速則代表絕對座標9〇的z軸轉速, 亦即代表交通工具的轉向。當藉由步驟41判斷出導航裝置 的設置方位後,便透過步驟42進行座標轉換,也就是說, •當導航裴置由直立改為橫向時,陀螺儀感測器2〇41所偵測 到的訊號便會對應到絕對座標z軸的轉速,而反映出車輛 的轉向。同樣地,陀螺儀感測器2042所偵測到的訊號則對 ❹應到絕對座標X軸的轉速,反映出交通工具的傾角。由於 同樣的陀螺儀感測器2041或2042所偵測到的轉速,會隨 著導航裝置的設置方位改變而有不同的物理意義’因此步 驟42的座標轉換極為重要。 4參閱圖二所示,該導航裝置更具有一資料庫以及 一顯示裝置25。該資料庫24係與該訊號處理單元22相偶 接,該資料庫24内係建立有地圖與道路交通資訊。該顯示 裝置25,其係與該訊號處理單元22相連接,該顯示裝置 ❹ 25係顯示該資料庫22所提供之資訊。該顯示裝置25可以 顯示出對應該座樑位置的區域地圖,並於該地圖上顯示出 ^記’以裡使用者識別其所在的位置。另外,該訊號處理 單元22根據該座標位置以及使用者輸入欲前往的目的 地,規劃出行車略線,並於該顯示裝置25上顯示出來。 惟以上所述者,僅為本發明之實施例,當不能以之限 制本發明範圍。即大凡依本發明申請專利範圍所做之均等 變化及修飾三仍將不失本發明之要義所在,亦不脫離本發 明之精神和範圍,故都應視為本發明的進一步實施狀況。 200949200 綜合上述,本發明提供之設置方位辨識方法及其導航 裝置,可以判斷導航裝置之設置位置並且可以根據其設置 之設置方位轉換座標系統以維持導航裝置的運作。本發明 之特徵已經可以提高該產業之競爭力以及帶動週遭產業之 發展,誠已符合發明專利法所規定申請發明所需具備之要 件,故爰依法呈提發明專利之申請,謹請貴審查委員允 撥時間惠予審視,並賜准專利為禱。 ❹To illustrate the reality, but this is in the case of the vehicle driving on a flat road (that is, the vehicle inclination is zero degrees). If the vehicle has an angle of inclination, for example, up and down slopes or up and down rails, then the sensed acceleration value should be a trigonometric relationship of gravity acceleration. This is a person skilled in the art and will be understood in light of the teachings of the present invention. Returning to FIG. 5, since the acceleration values measured by the first accelerometer and the second accelerometer change when the orientation of the navigation device changes, the detected value and the pre-existence may be present in step 41. The identification information in the memory unit is compared to determine the set orientation state of the navigation device. The identification information is an acceleration value that the first accelerometer and the second accelerometer should theoretically sense when the navigation device is turned to a specific set orientation, for example, when the erect state of FIG. 6A is sensed, The gravitational acceleration is the second accelerometer 202'. If it is the state of FIG. 6B, then the gravitational acceleration is sensed as the first accelerometer 201', and the sensed gravitational acceleration value is a positive value. If it is the state of Fig. 6C, then the first acceleration accelerometer 201 is sensed for the force acceleration of 200949200, and the sensed gravitational acceleration value is a negative value. Therefore, after the comparison of step 41, the orientation set by the navigation device can be immediately determined. Finally, after judging the orientation set by the navigation device (as shown in Fig. 6A, Fig. 6B or Fig. 6C), step 42 is performed to re-convert the coordinate axis direction of the inertial navigation unit. When the navigation device is switched from the upright setting to the lateral setting or from the horizontal setting to the upright setting, the inertial navigation unit within it senses that the physical quantity of 0 corresponds to the absolute coordinate system. This is because the sensor responsible for detecting vehicle steering and tilt in the original inertial navigation unit changes as the position of the navigation device changes. For example, in FIG. 6A, its first axis X' is consistent with the first axis X of the absolute coordinate system 90, and the measured rotational speed ω X' with respect to the first axis represents the inclination of the vehicle, and in addition, the third axis The ζ' is the third axis of the absolute coordinate system 90, and the resulting rotational speed ωζ' with respect to the third axis represents the steering of the vehicle. However, when turning to the state of Figure 6, the original first axis X' will coincide with the third axis Ζ @ of the absolute coordinate system, so the detected rotational speed ωχ' represents the steering of the vehicle instead of the original Vehicle inclination. Similarly, the original third axis ζ' is coincident with the first axis X of the absolute coordinate system 90, so the detected rotational speed ω ζ ' represents the inclination of the vehicle rather than the original steering angle. Because of the above changes, in order to maintain the normal operation of the navigation device, step 42 is required to re-convert the coordinate axis direction of the inertial navigation unit. That is, the system will give different judgments on the sensed rotation state according to the orientation of the navigation device. For example, taking the angular velocity sensing module of FIG. 3A as an example, when the navigation device is in the state of FIG. 6A, the rotational speed detected by the gyroscope sensor 2041 represents the absolute coordinate system 13 200949200. The shaft speed also represents the inclination of the vehicle, and the speed detected by the gyro sensor 2042 represents the z-axis speed of the absolute coordinate 9〇, which represents the steering of the vehicle. After determining the set orientation of the navigation device by step 41, coordinate conversion is performed through step 42, that is, when the navigation device is changed from upright to lateral, the gyro sensor 2〇41 detects The signal will correspond to the speed of the z-axis of the absolute coordinate, reflecting the steering of the vehicle. Similarly, the signal detected by the gyro sensor 2042 reflects the inclination of the vehicle against the X-axis of the absolute coordinate. Since the rotational speed detected by the same gyro sensor 2041 or 2042 has a different physical meaning as the orientation of the navigation device changes, the coordinate conversion of step 42 is extremely important. 4 Referring to FIG. 2, the navigation device further has a database and a display device 25. The database 24 is coupled to the signal processing unit 22, and the database 24 is provided with map and road traffic information. The display device 25 is connected to the signal processing unit 22, and the display device 25 displays the information provided by the database 22. The display device 25 can display a map of the area corresponding to the position of the seat beam, and display the position on the map where the user identifies it. Further, the signal processing unit 22 plans an outline of the driving line based on the coordinate position and the destination to which the user inputs, and displays it on the display device 25. However, the above is only an embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as further implementation of the present invention. 200949200 In summary, the present invention provides a method for setting azimuth identification and a navigation device thereof, which can determine the setting position of the navigation device and can convert the coordinate system according to the set orientation of the setting to maintain the operation of the navigation device. The features of the present invention can improve the competitiveness of the industry and promote the development of the surrounding industries. Cheng has already met the requirements for applying for inventions as stipulated by the invention patent law. Therefore, the application for invention patents is submitted according to law. Allow time to review and grant patents as prayers. ❹
15 200949200 【圈式簡單說明】 圖一係為習用之全球定位(global position system, GPS) 與慣性導航(inertia navigation system)系統示意圖。 圖二係為本發明之導航裝置實施例方塊示意圖。 圖三A係為本發明角速度感測模組第一實施例方塊示意 圖。 圖三B係為本發明角速度感測模組第二實施例方塊示意 〇 圖。 圖三C係為本發明之角速度感測模組第三實施例示意圖。 圖三D係為本發明之角速度感測模組第四實施例示意圖。 圖四係為本發明之角速度感測說明示意圖。 圖五係為本發明之設置方位辨識方法流程示意圖。 圖六A係為導航裝置直立狀態示意圖。 圖六B與圖六C係為導航裝置橫向設置示意圖。 【主要元件符號說明】 10-全球定位與慣性導航系統 11 -儀表板 2-導航裝置 20-慣性導航單元 201- 第一加速度計 202- 第二加速度計 203- 第三加速度計 200949200 ' 204-角速度感測模組 2041、2042、2043-陀螺儀感測器 2044、2045、2046-差分模組 2051〜2056-加速度計 2047- 第一輔助加速度計 2048- 第二輔助加速度計 21-衛星訊號接收單元 Ο 22-訊號處理單元 23- 記憶單元 24- 地圖資料庫 25- 顯示裝置 4-設置方位辨識方法 40〜42_步驟 90-絕對座標系 ❹ 1715 200949200 [Simple description of the circle] Figure 1 is a schematic diagram of the global position system (GPS) and inertial navigation system. 2 is a block diagram showing an embodiment of a navigation device of the present invention. Figure 3A is a block diagram showing the first embodiment of the angular velocity sensing module of the present invention. Figure 3B is a block diagram showing a second embodiment of the angular velocity sensing module of the present invention. FIG. 3C is a schematic diagram of a third embodiment of the angular velocity sensing module of the present invention. FIG. 3D is a schematic diagram of a fourth embodiment of the angular velocity sensing module of the present invention. Figure 4 is a schematic diagram of the angular velocity sensing of the present invention. FIG. 5 is a schematic flow chart of the method for setting the orientation of the present invention. Figure 6A is a schematic diagram of the navigation device in an upright state. Figure 6B and Figure 6C are schematic diagrams of the lateral arrangement of the navigation device. [Main component symbol description] 10-Global positioning and inertial navigation system 11 - Instrument panel 2 - Navigation device 20 - Inertial navigation unit 201 - First accelerometer 202 - Second accelerometer 203 - Third accelerometer 200949200 '204-Angle speed Sensing module 2041, 2042, 2043 - gyro sensor 2044, 2045, 2046 - differential module 2051 ~ 2056 - accelerometer 2047 - first auxiliary accelerometer 2048 - second auxiliary accelerometer 21 - satellite signal receiving unit Ο 22-Signal Processing Unit 23 - Memory Unit 24 - Map Library 25 - Display Unit 4 - Setting Azimuth Identification Method 40~42_Step 90 - Absolute Coordinate System ❹ 17